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A weakly coupled scalar fiel® with a simple exponential potentisl= M‘F‘, exp(—Ad/Mp) whereMp is the
reduced Planck mass, akd>2, has an attractor solution in a radiation or matter dominated universe in which
it mimics the scaling of the dominant component, contributing a fixed fradlign(determined by\) to the
energy density. Such fields arise generically in particle physics theories involving compactified dimensions,
with values of\ which give a cosmologically relevafit ,. For natural initial conditions on the scalar field in
the early universe the attractor solution is established long before the epoch of structure formation, and in
contrast with the solutions used in other scalar field cosmologies, it is one which does not involve an energy
scale for the scalar field characteristic of late times. We study in some detail the evolution of matter and
radiation perturbations in a standard inflation-motivateer 1 dark-matter dominated cosmology with this
extra field. Using a full Einstein-Boltzmann calculation we compare observable quantities with current data.
We find that, for(} ,=~0.08-0.12, these models are consistent with large angle cosmic microwave background
anisotropies as detected by COBE, the linear mass variance as compiled from galaxy surveys, big bang
nucleosynthesis, the abundance of rich clusters and constraints from the laysymtems at high redshift.
Given the simplicity of the model, its theoretical motivation and its success in matching observations, we argue
that it should be taken on a par with other currently viable models of structure formation.
[S0556-282(98)02214-0

PACS numbdrs): 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION match those observd®]. To be more specific, if we define
the amplitude of mass fluctuations in a sphere of radius
The past twenty years have seen a tremendous revoluti®h™* Mpc, og, then COBE normalized SCDM predicts,
in how we study the origin and evolution of our universe. On= 1.2 while the measured val@through cluster abundanges
the one hand developments in theoretical particle physicis o3=0.6+0.1, a discrepancy by a factor of 2. Further not
have lead to a proliferation of ideas on how high energyonly the amplitude but also thecale dependencef the
physics might have an observable effect on the large scal8CDM model differs from the one measurgd, and there
structure of our universe. On the other hand the increasingre also a number of problems with the non-linear evolution
quality of astrophysical data has led to firm constraints orof baryons and velocities on small scales.
what physics is allowed in the early universe. Probably the These failings of SCDM have led to attempts to modify it,
most impressive example of such an interplay is how thewvhile keeping its basic features intact. The lattersimple
Cosmic Background ExplorglCOBE) detection[1] has af- choice of background cosmological parameters itk 1
fected the most popular and theoretically explored theory ond quantum generation of fluctuatiprese associated with
structure formation, the standard cold dark matter modeits theoretical motivation from inflation. The most prominent
(SCDM). candidate theories of structure formation of this type are now
The SCDM model brings together the idea of inflation a universe with a cosmological constdAtCDM) [8] and a
[2—4] and the picture of large scale gravitational collafige  universe with a fifth of its dark matter component in two
A period of superluminal expansion of the universe wouldfamilies of massive neutrinodDM) [9]. Models of struc-
have led to the amplification of subhorizon vacuum fluctua-ture formation in an open univer$©®CDM), for which there
tions to superhorizon scales. The net result would be a set @ considerable evidence, have also been extensively studied
scale invariant, Gaussian perturbations which would evolve,10]. All these models, once COBE normalized, predict the
through gravitational collapse, into the structures we see toapproximately correct distribution of mass fluctuations. Over
day. The relic radiation bears an imprint of these fluctuationshe past few years other flat models have been constructed
from when the universe recombined. The distribution of gal-which, like MDM, are more related to our understanding of
axies and clusters of galaxies should reflect these fluctuatiorfandamental particle physics. This is the case of decaying
today. It has been found however that the SCDM modetosmological constant mod€dl$1,12 and decaying massive
cannot successfully accommodate the data observed on garticles[6,13]. Unfortunately, unlike the SCDM scenario,
scales. Matching its predictions to COBE measureménts all these models involve a tuning of parameters which is
large scalesof the microwave background, one finds that theunnatural from the point of view of particle physics, simply
amplitude of fluctuations on 8% Mpc scalegwhere h is the because one is using super-GeV physics to explain sub-eV
Hubble constant today in units of 100 km/s/Mpdo not observations. Just as is the caseAdDM (which involves
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tuning the cosmological constant to be relevant only atdensity determined by. The existence of this homogeneous
present epochghis tuning does not provide a reason to dis-solution was shown i115,19,2Q. Because the scalar field
card these models, but is a very unattractive feature of thentan contribute at most a small fraction of the total energy

Both the cosmology of weakly coupled scalar fields anddensity at nucleosynthesis, its potential interest in the context
their theoretical motivation have been much studied since thef the problem of structure formation has been overlooked.
advent of the idea of inflation. In most of the theoretical This constraint suggespsima faciethat the field in such an
particle physics extensions of the standard mdesj. super- attractor can have little effect on cosmology at late time. As
symmetry and supergravijtyveakly coupled scalar fields of we shall see, this is incorrect, for the simple reason that a
various kinds are ubiquitous. Unfortunately there is as yet n@mall contribution acting over a long time can have as big an
experimental evidence for the existence of any fundamentadffect as a large contribution entering only at late times. The
scalar field at all, in particular the Higgs particle of the stan-particular merit of the model is related to the fact that the
dard model remains to date undetected. However the the@osmological solution is an attractor for the scalar field: Be-
retical motivation for such scalar fields is sufficiently com- cause of this, there is no tuning of the type involvedalh
pelling that it is certainly worthwhile considering what other proposed modifications of SCDM. The only parameter
consequences their existence might have for cosmology bedditional to SCDM is\, and the value{5-6) which gives
yond the confines of inflation. An example of this is given bya best fit to structure formation, is of the order naturally
the main alternative of structure formation—defectexpected in the particle physics models in which the poten-
theories—which usually involve the existence of some scalatial arises. As a cosmology it resembles MDM much more
field e.g. the “texture” theory 14] relies on the existence of than any of the scalar field models which have been studied
a scalar field invariant under a global non-Abelian symmetryin the literature.

broken at the grand unified theof@UT) scale, with associ- Some comment is perhaps necessary at the outset regard-
ated goldstone particles which are unobservably weaklyng the assumption that the universe is flat and dominated by
coupled to ordinary matter. a component scaling as matter, as there is mounting obser-

The role that a weakly coupled scalar field might play invational evidence that this is not the case. The most adver-
late time cosmology if it contributes a component to thetised is the age problem, that is, the fact that we see objects
homogeneous background energy density of the universe haghich are older than the age of the universe if we assume a
also been investigated. [i5] the authors considered in gen- flat matter dominated universe with the currently observed
eral terms the idea that a significant contribution to the enHubble constant oH,=65+10 km s 1 Mpc L. Several of
ergy density from a homogeneous scalar field could have athe modifications we have discussed particular the cos-
important effect on structure formation, and applied the ideanological constant model and some of the scalar field mod-
to a baryonic universe with an initial spectrum of perturba-els) avoid this problem since the dominant component at the
tions with power law behavior. After some general analysispresent epoch is not matter. The recent measurements of the
of the homogeneous dynamics, the model singled out for #ipparcos satellit§21] seem to indicate that the age of these
detailed treatment was that of a scalar field in a negativebjects have been overestimated by around 10% and a re-
power law potential which comes to dominate at late timesanalysis of the uncertainties in the estimates seem to indicate
producing behavior very similar to that associated with athat a flat matter dominated universe witiH,
cosmological constant. Another kind of model which has<66 km s Mpc™! is compatible with the current age esti-
been developed in detail, for the case of a cold dark mattemates. Another argument for a low density universe comes
dominated cosmology, ifl1,17 involves a cosine potential from the analysis of large scale flows. [@2] it has been
with a combination of Planck and sub eV physics. This pro-argued thaiz=Q%%b<1 from the analysis of the Mark Il
vides a specific realization of a “decaying cosmological con-data and comparison with the Infrared Astronomy Satellite
stant,” in which the field initially behaves like a cosmologi- (IRAS) surveys. However there is concern with the self con-
cal constant and then rolls so that it scales asymptoticallgistency of the velocity data and another gr¢2g] indicates
like matter. All these models have an energy density in thehat the flows are consistent with a universe with
scalar field which comes to dominate at late times, as have-0.4—1. Small scale observations also seem to indicate that
two more recent very detailed studigs6,17. In [16] the  there are problems with a high density universe. In particular
case of a scalar field which scales slower than matter is dehe baryon fraction in clusters is difficult to reconcile with
scribed more generically in terms of its equation of state, anghe big bang nucleosynthesiBBN) limits unless one con-
in [17] the specific cases of late time dominance realized irsiders a low density univer$@4]. Again there are uncertain-
both cosine and exponential potentials. ties in such an analysis; they rely on elaborate numerical

In this paper we present in detail the results which haveimulations which are at the limit of current computational
been reported ifil8]. The model we study is SCDM with the power. It is conceivable that some physissich as cooling
addition of a scalar field with a simple exponential poten- of the cluster mediumis being overlooked. The same can be
tial V=M‘F‘, exp(—AD/Mp) where Mp=(87G) ¥?=2.4  said for the cold velocity dispersion which is measured on
x 10'® GeV is the reduced Planck mass, angt2. In this  few Mpc scaleg5]. Although all these observations together
specific case there is a very special and interesting solutiobegin to make a strong case for an open universe, the uncer-
for matter and radiation coupled through gravity to this field,tainties and inconsistencies are sufficiently large for us to
in which the scalar field energy follows that of the dominantstill consider a high density, matter dominated universe. It
component, contributing a fixed fraction of the total energymay be that in the next few years the evidence is sufficiently
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compelling to rule out these models, but this is definitely notthe notation® = ¢+ ¢, where ¢ denotes the perturbation

the case yet. about the homogeneous solutignWorking for the moment
The structure of the paper is as follows. In Sec. Il we firstin comoving coordinates in which the metricds®= —dt?

discuss the homogeneous modes of scalar fields in a universeazb‘ijdxidxi (wherea is the scale fact9r the contribution

with matter and radiation in general terms, and explain howo the energy-momentum tensor from the scalar field is

the case of a simple exponential with its attractor solutions

for )'\>2 is a speg:lal one. _We.dlscuss briefly the possuble Too=ps, T =82p¢5ij

origin of exponential potentials in fundamental theories. We

then discuss the initial conditions on this scalar field in the 1.,

early universe, and when these lead the attractor to be estab- ~ Where py=|5 #°+V(¢)|, py=

lished. In typical inflationary theories we argue that the at-

tractor describes the homogeneous cosmology well before @

nucleosynthesis, while in an alternative theory of reheatin

which can be realized with the same exponential field th

scalar field may still be negligible at nucleosynthesis for

natural parameter values. In Sec. lll we analyze the evolution

of perturbations in our scenario. We describe the complete

set of equations which govern their evolution and analyze the

asymptotic behavior in the interesting regimes. The similari-

1.,
5 62 V(9) .

gl'he equations of motion for the scalar field are then

| o

1
33

¢+3HP+V'(d)= 5 5;(@°h)+V'(4)=0, (2

o

t

ties with evolution of density fluctuations in an MDM uni- |.|2:_2<E &> +V(P)+pp |, 3

verse lead us to pursue the comparison in some detail and we 3M;

come to the conclusion that scalar field is more effective at

suppressing perturbations than hot dark matter. We also con- 5 +nHp.=0 4
pntNHp,=0, 4)

sider the effect on the cosmic microwave backgro(@iIB)
and deconstruct the different effects it has on the angulajherep, is the energy density in radiatiom€4) or non-
power spectrum of the CMB. In Sec. IV we compare the e aiyistic matter 6=3), H=a/a is the Hubble expansion

preldlcuons of linear per'gurbapt;n theorguslng the full  ate of the universe, dots are derivatives with respect to time,
Boltzmann-Einstein equatiopsvith some observations. In rimes derivatives with respect to the field, and Mp

particular we compare it to the COBE data and then use thi:(st)fl/zzz 4% 108 GeV is the reduced Planck mass

comparison to normalize the theory and compare to the Pe‘gt'he scalar field is assumed to be coupled to ordinary matter

cock and Dodds data. As a byproduct we derive a fitr§o _ L . .
for our models and we quantify the amount of structu%e onOnly through gravity. Multiplying Eq(2) by ¢ and integrat-

small scales and high redshift, comparing with constraintd"9: On€ obtains

derived from Lymana systems. In Sec. V we summarize our

findings and draw some conclusions about future prospects a da
for our model and other issues related to it which might be p¢,(a)=p(ao)exp( _J 6(1_5(3))3)
further investigated. °

a,

1. V(o)
T 42 -
Il. THE “SELF-TUNING” SCALAR FIELD where py=5 $"+V(). &=— = O
WITH AN EXPONENTIAL POTENTIAL
) _ o ) It follows from this that, given the range of possible values
In this section we describe in detail the homogeneous at0<§<1 [assumingV( &) is positive, the energy density of

tractor sqlutions which specify_the zero—_order cosmology.4 scalar field has the range of scaling behaviors
about which we treat perturbations fully in the subsequent

part of the paper. We explain the very special feature of this
model which contrasts it with other scalar field cosmologies

which have been treated in the literatulo special energy How the energy in a homogeneous mode of a scalar field

scale characteristic (.)f late time cosmo_logy need be InVOkegcales is thus determined by the ratio of the potential to the
to produce the required solutioWe will show that for a

very wide and natural range of initial conditions on the scalarkme“C energy. Alternatively one can phrase the statement in

field in the very early universe, the attractor will be attainedterms of the equation of state obeyed by the mode: From

. Eq. (1) we have é=3(1—w) where Ps=Wpy, and m
as early as assumed in the rest of the paper. —3(1+w) (for constantw) in Eq. (5).

These statements are true independent of any specific as-
sumption abouH i.e. about what dominates the energy den-
We begin with a general discussion of homogeneousity of the universe. When the potential energy dominates
Friedmann-Robertson-WalkgFRW) cosmology in which  over kinetic energy, we havé—1 and thereforg 4~ const
there is, in addition to the usual matter and radiation conteni,e. an energy density which behaves like a cosmological
a contribution to the energy momentum coming from a scalaconstantand w= —1); in the opposite limit ofé—0 i.e. a
field ® with a potentiaM(®). In the rest of the paper we use kinetic energy dominated mode, we have an energy density

pgxl/a™, 0=m=6. (6)

A. Scaling of the energy density in a scalar field
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with p 4 1/a% i.e. red-shifting faster than radiation or matter \<v2. For \>6 there is not a single attractor with a finite
(and w=+1). Inflation occurs when the former type of value of & but every solution hag—0 asymptotically and
mode also dominates the energy density; the opposite limifpo 1/a°.
when the universe is dominated by the kinetic energy of a As \ increases from zero we obtain the entire range of
scalar field(which, following [25], we refer to askination) possible scaling behavio(8) for the energy in a scalar field.
gives a sub-luminal expansion witet*3, By comparison with this potential we can infer how scalar
We now consider more specifically what sorts of poten-modes will scale: The “slow-roll” conditions|MpV'/V|
tials give rise to these different types of scaling. One simple</6, |M§,V”/V|<3) for inflation, for example, could be
case to analyze is that in which a field rolls about the mini-stated as the requirement that the first two derivatives of a
mum of a potential. In such an oscillatory phase the approxipotential be smaller than those of an exponential with
mate scaling of the energy density can be extracted from Eg=v3. An analogous “fast-roll” condition for “kination”
(5) by replacing¢ by its average value over an oscillation. can clearly be provided by comparison with an exponential
For a porEennaI which is power law about its minimum with with \=\6 e.g. a potential~e*“¢2"\"»23 will have such
V(¢)¢" the resul{26] is that modes for sufficiently largeb.

These statements apply only to the case of scalar field
n 6n dominance since we took,=0. What interests us in the

&= nto Po” 1/a",  m= n+2 (7) present context is how the scalar energy behaves in the pres-
ence of matter and radiation i.e. wigh#0. There are two

reproducing the well known result that a coherent mode osduite distinct cases which can be immediately distinguished
cillating in a quadratic potential gives the same scaling agccording to their behavior when,=0: Those potentials in
matter, and ap* potential that of radiation. Fon>4 one  Which the energy density scales slower thaa"1(i.e. X
obtains modes scaling faster than radiation. <y/n), and those in which it scales fastexn). When
Again this statement does not depend on what componemt,# 0 these two types of potential will show very different
dominates the energy density, and the same scaling appli@¢havior for the following reason: Adding a component in-
to the mode irrespective of whether the universe has0,  creases the damping term in E@), and it follows that the
or is matter or radiation dominated. The case of a field roll-scaling witha of the energy density in the scalar field is
ing down a potentialbefore it reaches its minimum, or if it alwayssloweri.e. p ;> 1/a**~? with 2= 6=0. Fora<in
has no minimumis quite different. The equation of motion the scalar energy will still red-shift slower than the other
(2) is just a damped roll with the energy content determiningcomponent and it will always come to dominate asymptoti-
the damping through Eq3). The scaling obtained for a cally, approaching the attract(®). For\>\/n, however, the
given potential depends on what components are presericalar field energy cannot always scale as in the ggse
because what determines the scaling is the balance betweerp, By doing so it would become arbitrarily sub-dominant
the increase in kinetic energy relative to potential energy agelative to the componeni,, and thus arbitrarily strongly
the field rolls down the potential, and the decrease of th@lamped. Eventually this damping must reduce its kinetic en-
same quantity due to the damping. The criterion for a parergy so that it will then scale slowlgsinceé— 1) and begin
ticular scaling is therefore a requirement of the “steepness’tg catch up again with the,, component. It is not surprising
of the potential. That the simple exponential potentialthen to find that there are in fact, fpr,#0, a quite different
V(¢)=V,.e **"* provides the appropriate yard-stick in the set of solutions to Eq<2)—(4) for the exponential potential
case of scalar field domination is indicated by the existence15 19, in which the energy in the scalar field mimics that of
of a family of solutions for this potential to Eq€2),(3) with  the dominant component, contributing a fixed fraction of the

pn="0 [15,19,2q, energy density determined bygiven by
0= o+ 2Pt _2Me, Vol? Q=_Ps _" van g1 " 9
R S N F RS S ogten a2 PR e @

B A2 1 o2 This solution is also an attractp20], with ¢ again evolving
§=1- 6’ sz“y' axt ®) logarithmically in time as given by Eq8) (with only ¢,
differing). Figure 1 illustrates the evolution towards the at-
tractor starting from initial conditions with the scalar field
< . . . )
for A< 6, and ¢, can always be chosen to be zerg byenergy very dominantbtained by a numerical evolution of

redefining the origin ofg, in which caseV,=(2/\?)(6/\2 ; . :
—1)M% . These solutions, which are attracforere written the hor_nogen_eous equations of motion for_th_e exponential
P ' scalar field withx =4 and components of radiation and mat-

down[27,2 in the context of power-law inflatiof29), as- ter which are equal aa=1). The scalar field energy first

sociated with the superluminal growth of the scale-factor forscales rapidly, approximately asa®/as indicated by the so-

lution (8), until it has undershot the energy density in the
radiation. It then turns around and starts scaling much slower

!t is simple to verify directly from Egs(2) and(3) that homoge-  than radiation or matter until it again catches up with them in
neous perturbations about the solution decay dsandt!~ ", the matter dominated regime, and then settles down at the
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FIG. 1. In the left panel we plot the evolution of the energy ol | I

density in the scalar fieldp(,) and in a component of radiation- -5
matter as a function of scale factor for a situation in which the

scalar field(with A =4) initially dominates, then undergoes a tran-  F|G, 2. The evolution of the fractional energy density in the
sient and finally locks on to the scaling solution. In the right panelgca|ar field for a selection ofs

we plot the evolution of the fractional density in the scalar field.

0
log(a/a,,)

) . ) . than a simple exponential with=v3 will support modes
fraction given by Eq(9) with n=3. As anticipated above the yith energy scaling slower than matter, and always asymp-
main feature—the turn around in the scaling—can be undergyica|ly dominate. Simple exponentials with<2 have at-
stood to arise from the increase in damping as the radiatiof,ctors in the radiation and matter dominated epoch given
or matter becomes dominant. One can easily see qu6ant|t:5y Eq.(9), and those with/3<\ <2 in the matter dominated
tively how this comes about: The energy scaling a1/ gpoch only. A scalar field rolling down a potential steeper
scaling occurs while th¥’(¢) term in Eq.(2) is very sub- . . —ud?IME

than these simple exponential e.ge™ # P will clearly

dominant and we have th?moc La®. If the d_omlna_mt_ com- always decay away asymptotically relative to radiation or
panent on the rlght-hgnd SidBRHS) O.f Eq.(2)is r.adlatlon OF " matter. We also saw that oscillating modes scale in a way
matter one then obtains the evolution of the field which is independent of what other component is present,
and there are no attractor solutions.
o 2 The attractor solutions for the exponential scalar field are
1- (T) ) pn<py (N=3), therefore a special case. Before embarking on the full treat-
ment of the cosmology in which the attract®) describes
e thtT unperturbed Ilimilt, we discussf further why tlhis atltractor
_ . o . _ solution is particularly interesting from a cosmological point
¢(t)_¢°+2¢°t°(l ( t) ) Pn<<py  (N=4). of view: By virtue of its being gan attractor, it a?/oidspthe
(10 tuning problems which are inevitably a feature of all other
scalar field cosmologies which have been proposed. First,

In contrast with the case of the logarithmic dependence oRgwever, we discuss briefly another attractive aspect of the
time of the attractors, the potential term evolves in eithefequired potentials.

case more slowly than the first two terms in Eg). This
results in a slow-down in the scaling of the scalar energy
which drives it back eventually towards the dominant com-
ponent. We will discuss in greater detail below what deter- Scalar fields with simple exponential potentials occur in
mines the duration of this transient period in which the scalafact quite generically in certain kinds of particle physics
energy is very sub-dominant. We will also see below that theéheories. Because of the existence of the power-law inflation-
re-entry in this example in the matter-dominated epoch isary solutions(8) such theories have been studied in some
just a result of the initial conditions. Far>2 the attractor detail by various authors, with attention focused on models
exists both in the radiation and matter dominated epochsand parameters which lead to inflation. We will not carry out
Given that the relative contribution of the scalar field energyany detailed analysis here of particular theories which would
and the dominant component differs so little in the two ep-produce the exact parameters required for the present case,
ochs(by a factor of 3/4 one would anticipate that the scalar but limit ourselves to a brief review of such theories and the
field, if established in the attractor in the radiation dominatedobservation that the parameter values which we require are
epoch will match tightly onto its asymptotic value in the quite reasonable in the context of such theories.
matter dominated epoch. That this is indeed the case can be The first are Kaluza-Klein theories in which the funda-
seen from Fig 2, which shows the evolution of the fractionalmental theory has extra dimensions, which are compactified
contribution to the energy density for a range of valuea of to produce the four dimensional world we observe. In the
(with the scalar field prepared in the attractor at the begineffective four dimensional theory scalar fields arise which
ning of the evolution correspond to the dynamical degree of freedomssociated
The conclusion from this discussion is that, in the preswith the “stretching” of the internal dimensions. The poten-
ence of matter or radiation, a scalar potential which is flattetial is generically exponential because the kinetic term has

()= o+ doto

B. Theoretical origin of exponential potentials
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the form (I'_/L)Z, while the potential “stretching energy” is ) k )
polynomial in L. A simple example[30,31 is a six- V(®)=A, eXF<—2M—)+E An eXF{—ZM—)
dimensional Einstein-Maxwell theory where the two extra Pl n=2 P
dimensions are compactified 8 with radiusL. Defining a o \n

1—exp( M—P” (15

field @, X
where theA,, are rational coefficients determined by thae.
results simply in four-dimensional Einstein gravity mini- AS ®— +% we haveV~exd (k—2)®/Mp].

®=2M5p In L, (11)

mally coupled to this field which then has the potential All previous analysis of the cosmological consequences
of the existence of such scalar fields has focused on inflation,

2 which is realized in the case of the simple exponential for

V(Cb)ocexp( - 3) 1— ex% - 3” (12)  M<v2. The fact that many of these models can at best give

Mp Mp A=v2 rather than the considerably flatter potentials needed

) _ for inflation (to naturally give a large number of e-foldings
In the regime of largeb we haveV(®)~exp(~®/Mp) i.e.  and a nearly flat spectrum of perturbatipnseant that these
effectively a simple exponential potential with=2. An-  theories provided a general motivation rather than a realistic
other example studied in detail |80,32,33 is the case of a |,0del. In[35], for example, an extra ad hoc damping term
pure gravitational theqry wit_h higher derivative terms in anyy5s introduced to produce a more satisfactory model from
arbitrary number of dimension®) +4, where spontaneous gypergravity motivated models. In the present context this is
compactification arises because of the higher derivativgot the case: We will see that the most interesting range for
terms. The effective four dimensional theory is in this casesiycture formation is();,[0.08,0.12 in the matter era
c_onsideraply more complic_ated, but again_ includes a scalgfhich approximately corresponds to the range[5,6]. Al-
field & defined as the logarithm of the “radius” of the com- {hogh these values are a little larger than in the simplest
pactified D-dimensions which gives, in certain regimes, anogels we have reviewed, some of the models above clearly
potential driving the dynamics of the zero mode of the field5,, jead to parameters in this range, and, for example, the
of the form of Eq.(2) with V(®)~exd—D(®/V87Mp)].  number of compactified dimensions required to give these
~Another set of models in which such potentials appear i/ajues in the first type of theory we reviewed is certainly not
in supergravity and superstring theorig®4]. One of the ynreasonable in the context of superstring theory. In terms of
most studied is the Salam-Sezgin model withz=2 super-  the theoretical origin of the potential we study therefore, it is
gravity coupled to matter in six dimensions. It predi3]  not just the form of the potential which is one which arises
the existence of two scalar fieldsandY with a potential of naturally, but it may also be that the precise value of the
the form single free parameter in this potential is a natural one.
Clearly further analysis of such models would be required to
) make a stronger statement than this, and to see if the cosmo-
M—) (13  logical effect of these fields which we study in this paper
P might ultimately be used to give us specific hints about fun-

For Y>0 it corresponds to a potential of the required formdamental particle physics.
we want, withx =v2. Further examples relevant to inflation
are given by the authors ¢85], who find two scalar fields
with A=v2 and\ =+/6 in andN=2 model, as well as in an

N=1 ten-dimensional model with gaugino condensation In considering the p.ossibility th?t some signifi_cant frac-
[36]. tion of the energy density of the universe may be in a homo-

A further class of theories in which such fields arise is in9€N€oUs mode of a scalar field, the earliest constraint comes

higher order gravity. There is a conformal equivalesee from nucleosynthesis. SUCh. a contrib.ut'ion from a weakly
[37], and references therdibetween pure gravity described COUPIed scalar field enters in determining the outcome of
by a Lagrangian which is an analytic function of the scalarnUCIGOSymr‘eS"(‘Sthe pr|mo_rd|al densmes_ of the light nuc)el_
curvatureR and general relativity plus a scalar field with a only through the expansion rate. Adding a component n-
determined potential, and in the presence of matter the me reases the expansion rate at a given temperature. The_ domi-
ric associated with the latter description is the physical ondant effect of such a change is in its effect on the ratio of

[38]. For exampld37] in d dimensions the potential in the neutrons to protons when the weak interactions keeping them
case of a Lagrangian quadratic Rnis in equilibrium freeze-out at a temperature-ofl MeV. The

range of expansion rates at this temperature compatible with
) observations is usually translated into a bound on the number
1-ex F{ _d-2 g” (14  Of effective relativistic degrees of freedom-atl MeV. Tak-
2 Mp ing ANgs to be the maximum number of such degrees of
freedom additional to those of the standard mduth three
and, ford=4 and a polynomial Lagrangian of the form massless neutrinpshe equivalent bound on the contribution
=K_,a,R", itis from a scalar field is

V(cb,Y):V(Y)exp( -2

C. Nucleosynthesis constraints

V(@ d—4 &
(P)xexp —— Mo
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7AN¢/4 scale, and that there is nothing “unnatural” about models of

N TN (16)  this type
10.75+ 7ANgsi/4 T . .
0 et The special case we have discussed of the attractor in the

(where 10.75 is number of effective degrees of freedom inexponential potential is quite different, simply because it is

the standard modelA wide range of values for the wpper ¢SSR 8 SETCER e L B e
bounds omMANgs; exists in the literature, the variation being ymp y 9 P

due both to the data taken into account and the methods <§P"?"af field domi_nated cosmology, and the tuning referred to
analysis used. We will not attempt here to review all the's just that required to make the coupled system of scalar

issues involved and accept one or other bound as definitivféeId and maiter approach this attractor just at the present

(see, for exampld 39] for a full discussion The tendency in epoch. For the mode_ls with an o_scH_Ia_tlng mode there is no
the last few years has been towards less restrictive bounégtracmr' and the tuning consists in fixing the energy density

e were Generaly thought corect previoush. A ypcal” ' 08" Tkl 0 be conparable o ha i mater unen &
value now used is a bound &fN.¢;= 0.9 which is given by g :

; h radiation in the present case, the scalar field plus matter or
various authorq40], or even a more conservative one of P P

- . radiation will always end up in this solution asymptotically.
?ONG”_]'B by otherg41,43. This range corresponds here In this paper we will take this solution to apply from the

beginning of our simulation of structure formation, deep in
the radiation era at a red-shift @~ 10" when the tempera-
ture is ~100 eV. We now address the question as to what

- . . range of initial conditions on the scalar field in the early
This is the range of values we will take when we discuss . G . X ;
I universe will give rise to this behavior. In the course of this
nucleosynthesis in the rest of the paper. The result for mor¢ . . . o .
- . analysis we will also determine what sorts of initial condi-
restrictive nucleosynthesis analyses can be read off from E lons are compatible with the late entip the matter era at a
(16). Note also that we have assumed here that the standard p ¥

model number of relativistic degrees of freedom at 1 MeV.er"‘:’h"ct of ~70) to the attractor discussed j7].
The strict experimental lower bound on this number is in fact . . ) ) )
9, given that the upper bound on the mass oftheutrino is E. Initial conditions in the early universe and the “self-tuning”

Q4(1 MeV)<

Q41 MeV)<0.13-0.2. (17)

18 MeV [43]. In the case that ther neutrino is non- scalar field
relativistic (and decays before nucleosynthedise bound The assessment of what are “natural” initial conditions
(17) is changed td2 ,(1 MeV)<0.27-0.33. for a scalar field in the early universe requires of course a

particular framework within which to address the question.
What we need to determine is essentially just the kinetic and
o ) ) _ potential energy in the scalar field at some early time relative
In modifications of standard inflationary flat cosmologiestg that in radiationand therefore mattgrGiven that we are
[15-17 involving a contribution from a scalar field which yyorking in the context of inflation-motivated flat homoge-
have been considered to date, attention has been focussggoys cosmologie@nd will assume Gaussian adiabatic per-
exclusively on the case that the scalar field contributes sign,rhations of the type produced by inflatiowe assess the
nificantly only at recent epochs, at the earliest well after theyestion within this framework. The energy density in radia-
transition to matter domination. The main reason for this isjon, js then determined by how the universe is reheated after
that one of the motivations for many models has been tGnfiation. We consider both the usual scenario for reheating
produce a contribution at late times which scales slower thagy gecay of the inflaton and then an alternative scenario in-
matter and dominates asymptotically, producing effects veryroquced inf44]. The reason for our detailed analysis of this
similar to that of a cosmological constant. In this case therggcond non-standard case will become clear below.
is unavoidably the same sort of tuning as involved in the  First consider the standard reheating scenario. We sup-
cosmological constant model: One requires an initial energygse there is an inflaton field and the scalar field with an
density in the scalar field which is characterized by the engyponential potentiav,e *¢Mp with \>2 (i.e. with the

ergy density in the universe at recent epochs. . attractor in the radiation/matter epochs which we will con-
_ Another kind of model which has been considered is thagjqey. Let us consider a typical inflationary model e.g. cha-
in which the energy density in the scalar field scales likeyic inflation. The simplest and most natural assumption for

matter asymptotically, implemented in an oscillating modete relative energy densities at the onset of inflation is
of a sinusoidal potential. If the field lies initially away from

the minimum, it becomes important once the curvature of the -

potential is comparable to the expansion rate and initially 5 ¢"~V(P)=Vins (18)
behave like a cosmological constant before rolling down the

potential and scaling asymptotically like matter. This model

also involves the same sort of tuning, since a small energwhereV,,; is the energy density in the inflaton. We make the
scale must be introduced to single out this late time at whichatter assumption since it is required for the onset of infla-
the scalar field becomes dynamically important. It has beetion. The dynamics of the two fields are then described by
argued in[11] that there are particle physics motivations for Egs.(2)—(4), but with p,, now the total energy of the inflaton
the introduction of such a potential with such a characteristi@ndn a function of the inflatom=6(1— &,;), whereé;; is

D. Scalar fields at late time and fine-tuning
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the ratio of the potential energy of the inflaton to its total — of~--"-"- U ' ] eefTTTTTTTTTTTTTTT
energy. For the same reasons as in the case discussed abc h - ]
when p, describes matter or radiation, there is an attractor
solution given by Eq(9) with n=6(1—&;,¢) (assumingn
changes slowly which is the case for slow-roll inflatiomhe 3
energy in the scalar field scales so slowly because its roll is -
strongly damped by the inflaton, with E(®) specifying the
exact ratio of energies at which the damping slows the roll to
give precisely the same scaling as for the inflaton. In infla-
tion driven by an exactly constant energy density, this ratio is
zero and just represents the asymptotically approached solu-
tion in which the scalar field rolls away to an arbitrarily large  FIG. 3. In the left panel we plot the evolution of the energy
values of the field after an arbitrarily long time. In any real- density in the scalar fieldp(;) with A=4 and in the remaining
istic model of inflation however the inflation must roll in a matter as a function of scale fact@the units are arbitrajy in the
non-trivial potential in order to exit from inflaton ang, case that the scalar field is initially sub-dominant. In the right panel
#1. For example, in chaotic inflation in a potential! ; , we plot the evolution of the fractional density in the scalar field.
one has, in the slow-roll inflationary regimen

=8(Mp/ins)2. Once inflation commences, say dt,; reheat temperature is at most a few orders of magnitude be-

=%, the energy in the scalar field will be driven towards 0w the GUT scale, the attractor will be approached to great
accuracy not only by the time scales relevant to structure

-5 F R
03 -

1 ozl 4

0.1 - -

-25

log(a)

log(a)

m 2 m formation, as we assume below, but also long before nucleo-
o Mo 80y [ Mp)° 2y 19  synthesis ’
N2~ 9 #° “ON (19 o . . .
inf e Late entry into the attractor for the scalar field, in particu-

lar late in the matter dominated epoch as assumed in the case

whereﬂ[y is the fraction of the energy density in the attrac- of this type treated ifl7], is therefore certainly not what one
tor in the matter era, ano~ 3 (¢%,/Mp)? is the number of  would expect from typical inflationary models with the usual
e-foldings of inflation. As the inflaton rolls down the poten- method of reheating. Inflation is however not embodied in a
tial n increases and the fraction of energy in the attractospecific model or set of models, and it would certainly be
grows. possible(and easy to see hgwo devise a model in which

Starting from initial conditions like Eq(18) the roll of the  the energy density in the scalar field at the end of inflation
scalar field is very rapidly over-damped due to the rapidcould be tuned to any required value.
red-shifting of its initial energy density. It will always then  Given that the attractor solution is typically established by
scale much slower than it would in the absence of the inflanucleosynthesis, one must satisfy the constraint discussed
ton, with £&~1. In the next section we will see that this is above. Converting E¢(17) to one on the contribution from
enough to ensure that its energy density relative to the inflathe scalar field at late time& the matter dominated epoch
ton will never drop substantially below that in the attractor. gives
(The transient with sub-dominance we observe in that case
results from the.field having initially evolvgd without tig 04<0.1-0.15 or A>55-45, (20)
component playing any role for a long periptVithout ana-
lyzing in detail how precisely the energy density can track
the (growing attractor value during inflation, we thus con- Itis because this quantity would seem to be too small to play
clude that the fraction of the energy in the scalar field at theany important cosmological role that this kind of attractor
end of inflation will be bounded below b@‘; as given by solution has been disregarded by the authors who have noted
Eq. (19). these solutiond.That this is not in fact the case we will see

From Fig. 3(and our previous discussion of Fig) ve N greater detail in the later part of this paper. Because the
see that this conclusion is enough to establish that, after in-
flation, the attractor for the scalar field in the radiation domi-

nated epoch is approached within a few expansion times of2The upper bound here which corresponds to the analy<id1df
the end of inflation. When the inflaton starts oscillatingis actually given explicitly in this forntfor the exponential attrac-
and/or decays it begins to scale like matter or radiationtor) in [42].

while the scalar field remains overdamped and its energysg ... . Peebldds)]

| t tant until the attractor is attained. In Fig. 3 give this explicitly as the reason for the
almost constant until the aftractor IS attained. In F19. 5 Weya tor solution model being “phenomenologically untenakje”

assume an abrupt transition from inflation with essentiallyz41¢ \wetterich in[19] considers the homogeneous cosmology of
constant energy to radiation type scaling at scale faator (he case in which the exponential field dominates at late times; in
=1, and take the initial fraction of the energy in the scalargrger to satisfy the nucleosynthesis constraint he discusses the pos-
field to be 3x10™*. The energy density approaches that insibility of late entry brought about by a tuning of the initial scalar
the attractor bya~ 10, and then oscillates about it as it ap- energy density to an appropriately small value, and also the possi-
proaches it asymptotically. Without further detailed analysisnility that A, rather than being constant, decreases between nucleo-
it is clear that for a typical inflationary model, in which the synthesis and late times.
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contribution is important for a long time it can have just as
significant an effect as a larger contribution which plays a
role only at late times.

The initial motivation for our detailed study of this model
was not, however, the realization that the attractor might
consistently be established by nucleosynthesis for cosmo-
logically relevant cases. Rather our starting point was the >
observation that there are interesting and viable cosmologies G 10
in which scalar field energy in a rapidly scaling mode could sl
dominate over radiation in the very early universe, and that
in the case that this field is an exponential of the type rel- 1o
evant to late time cosmology, there may be, as shown in Fig.
1 a transient period between the two epobisdomination
by the scalar field, and the late time attragtiasting many 108
expansion times in which the scalar field energy is negli-
gible. If this transient period includes nucleosynthesis the
constraint(20) would not apply. We now discuss this model

and examine how the time of entry into the attractor depends ) o _ _ )
on the parameters in the model. FIG. 4. Reheating by kination in a simple exponential potential:

The solid region is that excluded by nucleosynthesis constraints.
The solid lines(dash-dot, dottedshow the models for which the
F. Late entry in an alternative model of reheating attractor is established at the beginning of structure formdtiuat-

An epoch dominated by a scalar field in a mode scaling®" domination, today
faster than radiatioffor kination[25]) comes about by con- . i . 5.
struction in an alternative theory of reheating suggested ifhflation, andx (or, equivalently Q) ,=3/\" in the attractor
[44]. Instead of rolling down to the minimum of a potential, N Matter domination These entirely specify the post-
oscillating and decaying, as envisaged in the standard rehedfflationary homogeneous cosmology, which evolves, as il-
ing scenario, the inflaton field can roll into a steeper potentiafuStrated in Fig. 1, from the scalar field dominated phase
supporting a mode scaling faster than radiatiog an expo- through a transient into the late time attractor. What we want
nential withA>2 or steeper Rather than being, as is often to determine here is the time at which the attractor is ap-
stated, completely “cold and empty” at the end of inflation, Proached as a function ¢;, and the range of parameters
the universe contains a component of radiation created sinfOf Which the model is compatible with nucleosynthesis.

ply by the expansion of the universgeith energy density The results, which are summarized in Fig. 4, can be un-
~HY. Although initially very sub-dominant relative to the derstood after some closer examination of the solutions. The

energyp, in the scalar field I€I4/p¢~p¢/M‘F‘,) a transition first feature to note is that the nucleosynthesis constraint,

P : : ted by the hatched region, allows a rangkl ot given
to a radiation dominated cosmology will take place at soméjeno A -
subsequent time since the radiation red-shifts away slowers Which is (i) only bounded below for,<0.15, (ii)
than the energy in the scalar field. bounded above and below fét ,>0.15 in a range which

We restrict ourselves to the case that the relevant field {§nches off ad},—0.5, so that for larger values 6F,, there
the simple exponential with>2 (i.e. 0,<0.75. We IS no parameter space in the model compatible with nucleo-

evolve the system of scalar field plus radiation and matteFYNthesis.

forward in time from the end of inflation, at which time we | NS can be understood as follows. The lower bound
take the initial conditions to be specified by comes from the requirement that the initial regime of scalar

field dominance end sufficiently long before nucleosynthesis.
—am242 0 _ 144 —10-3 In its initial phase the scalar field approaches rapidly a mode
V(o) =3MpH{, ¢0=0, pr=eHi, €=10 (21)  in which it sl,acales approximately as%%/for Q¢<OF)5 [())/r as
given by Eq.(8) for ,<0.5 \> J6)1. In order that the
radiationp,,4 come to dominate by the time its temperature
(T~H,;a;/a) corresponds to that at nucleosynthesis,(
(Tns~1 MeV), this meangfrom Eq.(21)] that

—
o
ey
=

P ARRLL BRRLL BLRRLL B

o“% ;

©
S

0.2 0.6

e}
-

whereH; is the expansion rate at the end of inflation. The
initial condition assumes an abrupt end to slow-roll inflation
i.e. when the inflaton begins rolling in the region in which
the potential is exponential, the potential energy is still domi- T\ u2g\ 14
nant. The c_h(_)l_cer=1_0 _3 corresponds to t_he S|mplest_ esti- Hi>MP< e”d) (_) ~10’ GeV (22)
mate of the initial radiation density, taking it to be dominated Mp
by the radiation at the horizon scale at the end of inflation
(with “temperature” T~H/27 [45], see[44,46] for a more  whereT,,qis defined as the temperature at which the scalar
detailed discussion We will see below that the results we field energy becomes equal to that in the radiation, and we
are interested in here are not very sensitive to these choicetmok T.,4=3 MeV to obtain the numerical value. The higher
In this model with the exponential potential there are thervalue of the lower bound in Fig. 4 results from the fact, since
just two parametersH;, the expansion rate at the end of our initial conditions are still inflationary, the scalar field

023503-9



PEDRO G. FERREIRA AND MICHAEL JOYCE PHYSICAL REVIEW [38 023503

LI L B DL B which shows, forQ2=0.1 (left pane} and 2=0.5 (right

1 TN 0.-03 pane) the temperaturdl .4 (When the scalar field energy
| \\ v first equals that in the radiatiband atT 5, when the attrac-
08 102 101 | 108 tor is established. This behavior can be understood by look-

ing back to the attractor solutiori8). In the late time attrac-
tor the parameter§=V(¢)/p, must reach a certain
determined value; as indicated by E&) the valuex = 6
separates two quite distinct regions in whighehaves quite
differently. Fora< /6 the p,=0 attractor tends to a finite
value; in the steeper potential with> /6 the potential en-
ergy “runs away” faster and¢ decreases rapidly towards
zero. As long a€=~0 the scalar energy continues to scale
away as H° and it may take a long time for the kinetic

o o energy to catch up aga_in on the pote_ntial ene(lggyich es-

0 10 5 o _5 _10 sentially stops decreasing once the field’s roll is damped by
log,(T/Gev) the radiation or mattgr The large “undershoot” and long
10 . .
period of sub-dominance of the scalar energy thus results

FIG. 5. The fractional energy density as a function of temperafrom the fact that the exponential field with> /6 evolves

ture forQ ,=0.3 and three values ¢, . for a long time damped only by its own energy density,

which allows the field to run away so fast that the potential
takes a short time to attain the rapidly scaling behavior asenergy decreases enormously. On the other handQfor
sumed in deriving Eq(22). The increase of the lower bound =0.6 (\ =/5) the scalar field in the first phase follows the
with Q , is explained in the same way—the transition to thep, =0 attractor(8) with ¢=5/6, and only a little adjustment
1/a® scaling takes longer as the potential flattéas\ de-  is needed to find the late time radiation dominated attractor
creasep From Eq.(22) we also can see quantitatively the with ¢=2/3. The nucleosynthesis constraint is therefore
weak dependence on never satisfied in this case.

As we observed in Fig. 1 the scalar field dominance is Also shown in Fig. 4 are the curves corresponding to
followed by a transient period in which it is very sub- “entry” to the attractor at different temperatures—at 100 eV
dominant, before approaching the late-time attractor. The upisolid line), at matter-radiation equalitgdash-dot ling and
per bound orH; which appears &) ,=0.15 is just the re- today(dotted ling. The undashed region lying to the right of
quirement that, foX) ,2>0.15[using the weaker limit of the the first of these lines corresponds to the parameter frce
bound in Eq.(17)], this period lasts until after nucleosynthe- this mode] we will consider in the rest of this paper, which
sis. This gives an upper bound because the transient ends consistent with nucleosynthesis and with our assumption
earlier according as the first phase of scalar field dominancef the validity of the attractor with E¢(9) as our homoge-
does. In Fig. 5 we see the evolution of the fraction of theneous solution. The line corresponding to re-entry at nucleo-
energy density as a function of temperature for various difsynthesis is not given, but one can infer that it would mark
ferentH;. For H;=10" GeV the nucleosynthesis bound is out a substantial part of this regigbounded by the solid
violated because we enter the attractor too early; Hpr line), which corresponds to entry into the the attractor after
=10° GeV it is violated because we exit the first phase toonucleosynthesis but prior f6=100 eV. There is also a re-
late. Why the allowed range &f; “pinches off” as we goto  gion, bounded by the first and third line, which we do not
1 ,=0.5 is that the duration of the transient decreases as weescribe and which might be of relevance to late time cos-
approach this value. This can be seen clearly from Fig. @nology. The region to the left of the dotted line corresponds
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FIG. 6. The solid line is the temperature at which the scalar field energy density first equals that in the radiation and the dashed line is
the temperature at which the attractor is established.

023503-10



COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503

to regions where the scalar field would still be irrelevantin conformal coordinates which we use in the rest of the
today, and therefore the existence of the exponential field hgsaper. For completeness, in Sec. Il B we present the equa-
no implications for late time cosmology. tions for the evolution of cosmological perturbations in the
One can also determine from Fig. 4 that, for entry in thesynchronous gauge. In Sec. Ill C we derive analytic solutions
matter dominated epoch, the largest possible valu@ pin  to the evolution of perturbations on sub- and superhorizon
this model is approximately 0.3. This places an upper boundcales in the radiation and matter era. It becomes apparent
on what contribution to the energy density might be expectedhat they are very similar to those in a cosmology in which
to come from this type of solution, if one is not to use thepart of the matter content is in a massive neut(k®M ). It
sort of tuning which, as we have emphasized, the model has thus instructive to identify the key differences between our
the merit of being able to avoidln particular we note that scenario and the MDM model, and we do so in Sec. llI D. In
we cannot obtain the cage,=0.6 of [17].) Sec. Il E we look at the evolution of perturbations in the
Is there a “natural” value forH; within the allowed radiation and how it affects the temperature anisotropy an-
range?H; is related to the inflaton energy at the end of in- gular power spectrum.
flation by p;~(HMp)?, and the range H;
e[10°,10'] GeV corresponds approximately tgp* A. Equations of motion and initial conditions
€[10',10'] GeV. With a more developed model with a for the background

full ansatz for the part of the potential which supports infla- Normalizing the scalar field in units ol » and defining

tion, one can relatél; to the amplitude of density perturba- - . 4_—2\D
tions, and require that they match those observed in th'([ehe origin of so that the scalar potential Mpe ™, the

CMBR by COBE. The simplest calculatioffior a very flat equation of motion for the_ unperturbed. baCEQrSU”d szcalar
) . . 1/4 6 field is, in conformal coordinates for whiahs’>=a’[ —d~
inflaton potential would give pi**~10'® GeV, or H;, 6 dxidxi]

~10' GeV. However the result is not model independent. " ’

In [46] a particular model is constructed in whieh can be bt 2Hb—a?AM2 exp — N d)=0

as low as the value at which the phase of scalar dominance ¢ ¢ P X\ d)
ends just before nucleosynthesis. This parameter range for

the model has the particular interest that it leads to quite H?=——
radical modifications of physics at the electroweak scale, 3Mp

since the expansion rate can be up to five order of magnitude ] .
greater than in the radiation dominated case Tt wherea is the scale factor}{ is the conformal Hubble fac-

~100 GeV. tor, dots denote derivatives with respect to conformal time

In the rest of this paper we study only cosmology starting®m IS the energy density in matter and radiation, and
from T~100 eV. We will assume the existence of the
simple exponential, and take the homogenous cosmology p¢=M,23 % $2+M2 exg —\ o)
about which we perturb to be given exactly by the attractor at 2a
this initial time. \ is thus the sole adjustable parameter addi-
tional to those of SCDM. To allow the simplest direct com- In the attracto(9) we have
parison of structure formation in our model with SCDM we
take the fiducial valu€,h?=0.0125 for the baryon fraction. Px _

az(P¢+ pm) (23

. (29

Py _ N

n
In the present study we will not consider the effect of vary- Py 6’ Protal  N°
ing this parameter. If we were to do so we would have to be )

more definite about our assumptions about nucleosynthesigherep, = (1/2a%) ¢? is the kinetic energy density af. We

since the allowed range d,h? (or equivalently baryon to  yse these to fix the initial conditions ahand ¢ to be
photon ratioz) depends on the expansion rate at nucleosyn-

H 2
pma|=3M%(g) (25)

thesis. The canonically quoted range, which corresponds to .n 1 4n(6—n)H?
that consistent with observations for the chke= 3, narrows b= NS b=- N log —aaz (26)

as the expansion rate at freeze-out incredsese the frac-
tion of helium produced increases as the expansion ratgheren=4, since we begin the evolution deep in the radia-
doeg. As the expansion rate reaches its upper boundzthe tion dominated epoch.
required for consistency with observations is pushed towards
its lower bound. Having used the constraints of structure
formation to determine the best value Qf, in our model,
we will comment again in our conclusions on the consistency We use the notation and results of Ma and Bertschinger
of entry to the attractor prior to nucleosynthesis. [47], with the modifications brought about by the addition of
a scalar field; we present the full set of equations but we refer
the reader t¢47] and[48] for details on how to solve them.
The formalism we work in is the synchronous gauge where
We now analyze the evolution of perturbations in thisds’=a? —d7?+ (8, +h;;)dx'dx]. Restricting ourselves to
cosmology. The structure of this section is as follows. Wescalar perturbations, the metric perturbations can be param-
first write down the equations for the unperturbed cosmologyetrized as

B. Linear perturbation theory

Ill. EVOLUTION OF PERTURBATIONS
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kik;h(k,7) +

(27)

Pressureless matté&rold dark matteérhas only one non-zero
component of the perturbed energy-momentum tensor:

hij = J dgkeik.x

U |

ST?): ~pcdc (28)

and it evolves as

(29

Radiation can be characterized in terms of a temperature
brightness functionA1(k,n,7) and polarization brightness

PHYSICAL REVIEW [38 023503

3 4 .
gkAy3+_ h+

20 15

B 8.
157 57

9 1

~ gaNeoTo,t EaneUT(APo_Apz)

Aq= SrrpHAti-y= (D Arey)]—aneordy

. k
Ap= m[IAP(I—l)_(I +1)Apg+1)]

55
+ —_
S+ 5

|

1
+aneor| Ap+ E(AT2+APO+AP2)

Ap(k,ﬁ,r). These brightness functions can be expanded in

Legendre polynomials df- n:

AT(k,ﬁ,7)=ZO (—)'(21+1)Aq(k, )P, (k- N)

oo

Ap(k,n,m)=2 (=D)'(21+1)Ap (k)P (k-N). (30)
I=0
Defining the density, velocity and shear perturbations by

1
A,

3
5)/:AT0! ay:ZkATl! 0'725 (31)

the perturbed energy-momentum tensor for radiation is

sTo=—p,3,

ikiészi 0
I 3p’}/ }/

1 .
(STEZ §p757+2}

4

L. 1 .
(kikj_gﬁij>2}:_§py07' (32)

Thomson scattering couples the radiation and baryons, and

the latter have a perturbed energy momentum tensor:

8T9=—ppdy
iki&T.O:i 0 (33
i 3p‘y b-

The evolution equations for radiation are

4 2.

6,=— §97_ 3 h (34

i 1
0,= kz(Z 6,— o, |anor(6,—0,)

and for baryons

9b= —Hop+ Ral”bO'T( 07_ 0b)
(35

o1 is the Thomson scattering cross sectiogis the electron
density, andR=4p /3p;,. The evolution equations for mass-
less neutrinos can be obtained from those for radiation by
settingAp=R=01=0 andT—v.

The perturbationp in the scalar field about the homoge-
neous solutionp has the equation of motion

. . 1..
<p+2H<,o—V2<p+a2v"<p+E $h=0 (36)

and gives rise to perturbations in the energy momentum ten-
sor which are

a25T8= - qﬁ(p— a’V' o
—a24;6T’= ¢pV?¢ 37
a26Ti=3¢¢p—3a%V'¢.
Finally we have the perturbed Einstein equations

1
kzn—EHh=47-rGa25T8
k?np=4mGalik;sT?

h+2Hh—2k?7=—87Ga?sT!
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, Consider first the superhorizon evolution. In this limit we
5;|2;.  set k=0 and (assuming adiabatic initial conditions as
above 5C=§57. Using the scaling solutions for the homo-
geneous mode of the scalar field, in the radiation era we

Having defined the evolution equations for the perturba-have:
tions, all that remains to be specified are the initial condi-

h+67+2H(h+67)—2k?y=+ 247G a?| kik;—

tions. We are working within the context of inflation and 4(1_ i)

. e . . 2
consider an initial set of perturbations of the type generically 5 4 1 5 A 5 8 . _ 4 —0
predicted by the simplest such scenarios: We assume a ¢ e 72 CONT AN

Gaussian set of adiabatic perturbations with a scale invariant
power spectrum. This completely defines the statistical prop- 2 4
erties of the ensemble. Putting the adiabatic perturbations in

the superhorizon growing mode give$7]

1 3 3
5C=—§h—5bzz5,,zztsy
o 14+4R, 1 K43
b= h=2zrar, " 18T
B 4C )2
v 3(15+4R,) K7
e 5+4R, (k)2
7=2C- g5+ ar,) k7
(39
and, as we will see in more detail below,
5\
502747 (40

(and C is the overall normalization All the remaining per-
turbation variables are set to zero initially.

C. Asymptotic solutions to the evolution of density
perturbations

We can arrive at a simple understanding of how perturba-
tions evolve in this scenario by considering the simplified
case in which there is only cold dark matter, radiation and

the scalar field. The evolution equations are then

. .3 .
St Ho— 5 H2(Q5.+20,8,)—2pp+a’V ¢=0

(41
.1 ) 4
5r+ §k 5r_§ 5(::0
(42)

p+2Hp+KPp+a?V" o— $S.=0
(43

WhereQX:pX /Ptot (X: C! Y.V, ¢) .

_ 4.
go-l—; o+ ;QD—X 5(:——0.
(44)

These equations are solvable and gdgeand ¢ as a linear
combination ofr2, 7~2 and 7{(~1*¥=15+64A%2) Taking only
the coefficient of the growing mode to be non-zero, we find
(as stated aboye .=(5N/4)¢=A72. On superhorizon
scales in the matter era we have

3
5,2 6(1_F5 2. 18
T T T T %\ PN
4 18 6 .

o+ — o+ —p—— So==
PTTET L )\Tac 0
(45)

which can be solved to giv8. and¢ as a linear combination

of 7, 773 and A8 V=7H12ATA) \jith the assumption
therefore of initial adiabatic perturbations in the growing
mode in the radiation era, we hawe=(28\/6)px 2. We
conclude, therefore, that the evolution of perturbations on
superhorizon scales are exactly the same as in a scalar field
free universe. This is just a manifestation of the fact that, on
very large scales, the dominant interaction is gravitational,
which is blind to matter type.

Next we turn to the subhorizon evolution of perturbations,
i.e.kr>1. Consider first the radiation era. Assuming that the
gravitational feedback is unimportant on small scales, we
have

3
5, 1'5 3(1—F)5 8 o2 =0
A VA vl
1

. b
5+ 5K?8,=0

2
ot~ o+ k2p==0.
(46)
The last two equations are easy to solve, giviag
e K™ and poc (1//7) Iy K7), (LN T)Ny(kT) whered,,
and N, are spherical Bessel functions. Clearly these have

little effect on 6. and one can drop these terms from the first
equation to gets.C,,log 7. The subhorizon evolution in
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FIG. 7. On the left panel we plot the evolution &f for two wave numbers in a SCDM cosmolofgashed lingand in a universe with
Q,4,=0.1. In the right panel we plotg;; for k=0.1 Mpc ! for the same cosmology. The uppiéwer) dotted line is the asymptotic matter
era solution in the sCDM ,=0.1) case.

the radiation era is thus essentially the same in a universe (. 2
with and without a scalar field. k* if ks T
. . 0
In the matter era on sub-horizon scales the equations re- )
r
duce to A2%(k)cq k472%€ if ks —, (50)
Teq
) 2
6 16 consttin k if k>T—.
S+ -0 N S 1218 0 (4 \ )
¢t re ° TNr TN RYT “7) It is instructive to see the evolution of density perturba-

tions for a few wave numbers, one that comes into the hori-

zon at around radiation-matter equality=€0.1 Mpc %) and

4 6 . one that comes in during the radiation efa=(1.0 Mpc %)
ot k?p— 37 %=0. for Q,=0.1. They are compared in Fig. 7 to density pertur-
(48) bations in a universe with no scalar field and it is clear that
there is a suppression of growth after horizon crossing. An-
other useful quantity to plot is the dimensionless growth rate

To a first approximation we can discard the gravitationalNess=(7/Jc) d.. For a scalar field free universe we know
feedback term in Eq(48). The solutions to this wave equa- that deep in the radiation or matter erg;= 2. For the scalar
tion are o= (1/7%9)J5(k7),(1/7?)Ng(k7) i.e. oscillatory  field cosmology we have deep in the radiation Bgg=2
solutions with decaying amplitudes. Clearly this will contrib- but deep in the matter erg¢t=2— €. In Fig. 7 we plotng
ute little to the growing mode and we can drop the last twofor k=0.1 Mpc* and can clearly see the different
terms in Eq.(47). The equation is easy to solve and, usingasymptotic regimes. Note that there is a long transient to the
Q,=3A\? we find the growing mode solutiond, matter era solution in both the cosmologies considered.
o 72+ (512014 JI=(2472500 4] The subhorizon growing mode is
therefore suppressed relative to that in a scalar field free  D. A comparison with the evolution of perturbations
universe. with mixed dark matter

Having derived these approximate forms we now have a
rough idea of what the mass variance per unit ik lis,
where this is defined as

By analyzing the simplified system we have been able to
get an idea of what to expect from solving the full set of
perturbation equations. We found that the presence of
the matter era suppressed the growth of perturbations by an
3 easily determined factor. The behavior of this system is very
A2(K) = — (| 5.(K)|2). (49) much like that of an MDM cosmology. There one has, in
2w addition to pressureless matter, radiation, baryons and mass-
less neutrinos, a component of matter in two species of mas-
sive neutrinos with masses), of order a few eV. The evo-
One haddefining 2e=5(—1+ y1—(24/25X},)] lution of the energy density is similar to that of the scalar
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FIG. 8. The evolution of the fractional energy density ¢n FIG. 9. We plot the evolution afi.;; for k=0.1 Mpc in a MDM

(dashed ling for a h=0.5 universe with(2 ,=0.1, ,=0.85 and  cosmology (dashed ling and in a universe with(),=0.1 (solid
0,=0.05 and the fractional energy density in two species of mastine). The dotted line is the asymptotic matter era solutien,
sive neutrinog(solid line) with ,=0.1 (massive, Q.=0.85 and
0,=0.05. pressureless matter and grow. So perturbations in an inter-
mediate range of wave numbers, despite suppression during
field in the present case. Deep in the radiation era, these finite period of time, catch up on the pressureless matter
neutrinos behave as a massless species and therefore the perturbations and contribute to gravitational collapse. This
ergy density scales as radiation {/a*), while deep in the effect can be seen when we comparg; for both these
matter era they behave as non-relativistic matter which scalescenarios fok=1 Mpc (i.e. a mode that comes into the ho-
as 1A°. Unlike the scalar field case, where the transitionrizon at radiation-matter equalityIn Fig. 9 we see that,
between the two regimes is determined by the transition fromvhile in the CDM casen.¢s— €, in the MDM case, pertur-
radiation to matter domination the transition in the case obations in massive neutrinos start to grow as pressureless
the neutrinos occurs wherkgT ,=m,,, wherekg is the Bolt-  matter andngs— 2.
zmann constant ant@lv is the massive neutrino temperature. A further subtle difference between the two scenarios can
This corresponds to redshift=1.8x 10° m,/30 eV. In Fig.  be seen at the transition between super- and subhorizon be-
8 we plot the evolution of the energy densities in the extrahavior in the radiation era. As shown above, the subhorizon
component in each of the two cosmologies. The energy derevolution of §. is « constant, Inr. The initial amplitude of
sity in the scalar fieldp follows the transition very tightly these solutions is set by the amplitude at horizon crossing,
while the energy density in neutrinos becomes noni.e. whenkr=1. In the MDM case, the analysis is also
relativistic after radiation-matter equality. In the latter casesimple. The neutrinos are effectively massless and therefore
there is a short period of time after equality when the masbehave exactly like radiation. So again the subhorizon evo-
sive neutrinos contribute less to the energy density than thelution of &, is « constant, Inr. However the transition to
do asymptotically, and as a result the pressureless mattsubhorizon evolution happens at smaller scales than for the
clumps more strongly for this period. ¢. Indeed from the equations we see that the transition
The correction to the exponent of the growing mode in theshould happen wheakr=1 (wherec§= 3). A simple way
matter era is also very similar in the two models.[#9] it  of seeing this is by looking at the source term for
was shown that the correction for MDM iSVZS[.—l the &, in the radiation era, &Kk, 7)=3d.+(1/7)5,
+V1-(24/25)1,], exactly the same as we have just de-=j (rn,)(8,/7%). On superhorizon scale&(k,7)=1, and
rived for the scalar field cosmology. The reason is just thathe time when this quantity starts to deviate from a constant

the sole assumption in the derivation of this result was thajndicates the transition from super- to subhorizon behavior.
the exotic form of mattekthe ¢ field in our case and the \we have

massive neutrinos in the MDM casedoes not cluster below

a certain scale. There is however again a small but important 3_,

difference. Forp, the scale below which a given mode does Stk,7)= 4 HA(Q2y6,+0,5,) (52)

not cluster is the horizon, i.e<1/7. Once it comes into the
honzon. it neverclusters. For the massive neutrlno perturba-in the MDM scenario where we have grouped the massless
tions this is not the case. The free-streaming scale, when thaend massive neutrinos together. and we have
neutrinos are non-relativistic isk¢s=8a4m,/10 eV)h 9 ’

Mpc~?, which grows with time. Perturbations of a given 3 ) 1
wave numbek are damped whil&>k;, but as soon ak; _2 .2 e .-
becomes small enough they beha\fe like perturbatiosns in S(k’T)_4 HAQ,0,+ 0,0+ AT ot 272% (62
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perature anisotropy measured in a given direction of the sky
can be expanded in spherical harmonics as

AT
\ T (M= anYim(n). (53

0.1
We work again in the framework of inflationary cosmologies
so thea,,s are Gaussian random variables which satisfy

y ol

S(7)

(a8’ @im)=C 81 Omrm- (54
0.01 =
The angular power spectrur@,, contains all the informa-
tion about the statistical properties of the cosmic microwave
background. One can relate it to the temperature brightness
function we derived above through

0.001 . 1 e | I PRI
0.1 1

. dk
C|:4Wf ?|AT|(vaO)|2 (55

FIG. 10. The evolution of S at horizon crossing K
=5h Mpc Y for the scalar field cosmologgsolid line) and for the where we assume again that we are considering the scale-
mixed dark matter cosmologiglashed ling invariant, inflationary scenario.

In Ref.[50], the authors presented a useful simplification
in the $CDM case. In Fig. 10 we look at the time evolution with which one can understand the various features in the
of a mode withk=>5h Mpc™* and see that transition to sub- angular power spectrum. We shall present a simplified ver-
horizon evolution occurs earlier in the scalar field scenarigsion, in the synchronous gauge and use it to understand the
than in the MDM scenario. As a resufl; stops growing effect(), will have on theC;s. To a reasonable approxima-
earlier and there is an additional small, but non-negligible;, we can write defining y = (h-+ 67)/2k?]
suppression factor in the radiation era.

In Fig. 11 we compare the evolution &f, for these two 1 )
models. It is evident that the suppressiondgfin the scalar ATI(kaTO):[Z O, 1 2x
field model starts much earlier than in the MDM model. This
is also clear when we comparg;; in the two cases.

In conclusion, all these effects we have just discussed
combine to give additional suppression in %DM model

as compared to the MDM model. I+1
~orrqii-1k(ro—= 7))

(k!T*)jl(k( 70— T*))+

Oy
K2 X

|
X mjl—l(k(TO_T*))

TO .

+ f (n(K,7)
Tx

E. The temperature anisotropy angular power spectrum

. . _ +x(K,1)ji(K(7o— 7)) (56)
To complete our analysis of the evolution of perturbations
in this cosmology, we shall now look at the effect of the assuming instantaneous recombinatiomatwe do not con-
scalar field on the cosmic microwave background. The temsider Silk damping in this discussipn

108 |

104 |

1000

0.1)/ (6., 0,=0)

(0 Oy

L NEETETETT B SRR T | MR BN AR B RETIT B TITT R |
04 T L
1 10 100 1000 10 0.01 0.1 1 10 100 1000 104 1 10 100 1000 10*

T T T

FIG. 11. In the left panel we plot the evolution 8f (k=1 Mpc ™) for the scalar field cosmologigolid line) and the mixed dark matter
cosmology. In the center panel we plot the suppression factor relative to the standard cold dark matter scenario. In the right panel we plot
the dimensionless growth rate for these two modes.
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FIG. 12. The angular power spectrum of CMB anisotropies for = 092 .

different values Oﬂ¢. These power spectra are not normalized to 09 Dl ool PR EEENR R REERE AT BTSRRI

COBE 10  10-° 0.0001 0.001 0.01 0.1 1
. a

) FIG. 13. The top panel shows the ratio of the total energy den-

In Fig. 12 we plot the angular power spectrum of thesity in a universe with() ,=0.1 to that in a scalar field free uni-
CMB for a few values ofC,. Comparing to a SCDNC; we  verse. The bottom panel shows the ratio of conformal horizons.
see two effects. First, fdr>200 we see that the peaks are
slightly shifted to smaller scales. [B1] a clear analysis was Finally, the other effecf), has on the peaks is to boost
presented Wh|Ch eXplainS the |Ocati0n Of the peakS in th%ew amp“tude_ Let us assurné:%, |e we are deep in the
MDM model scenario, and we will now see that the sameragiation era. As shown in the Sec. Ill C we can write
effect is present herglbeit in the opposite directionThe
anisotropies at these scales are generated primarily ahd Lk? .
for the purpose of this discussion we can assume that the first Syt 39,739 (58)
term in Eq.(56) dominates. As shown ifb0] the peak struc-

ture of this term is given by so the acoustic oscillations are sourceddy One finds that

this source is larger in the presence of the scalar field than in
its absencdsee Fig. 14 The increase in the amplitude of
— 8 ,+2yxcoskry(r,) (57)  this driving term will increase the amplitude i, and lead
47 to the increase by a few percent of the acoustic peaks of the
angular power spectrum.

wherer is the sound horizon in the baryon-photon fluid, AL AR USRI
r(7)=[o(d7'/3[1+R(7")]). Now one of the effects de- I
scribed in[51] and which we see here is that for a given
redshift (during a period of time which contains the time of
recombinatiol, r is different in the presence of the scalar

field than in its absence. This is to be expected as deep in the 0.01 & 3
radiation era we now have three components contributing, F 7
the radiation(whose energy density is set By-yg), the gﬁ - ]
massless neutrindsvhose energy density is set By,) and 0.001

the scalar field whose energy density is a constant fraction of
the total energy density. Therefore, for a given redshift, the i
total energy density in the presence of the scalar field is 10001
larger than the total energy density in the absence of the g
scalar field. As a consequence the expansion rate will be i
larger and the conformal horizon will be smaller. In Fig. 13 105 Lyl T
we plot the ratio of energy densities and the ratio of comov- 0.1 1 10 100
ing horizons as a function of scale factor. At recombination
(a=10"%), the conformal horizon(and consequently the FIG. 14. A comparison of the source of acoustic oscillations in
sound horizopis smaller, and as seen in Fig. 12 the peakss, for k=0.2h Mpc ! for SCDM (dashedland #CDM (solid) with

are shifted to the right. 04=0.1 andH,=50 km s * Mpc ™.

023503-17



PEDRO G. FERREIRA AND MICHAEL JOYCE

100

80

60

40

Q+1)C,/2 m)/2uK

20

10 100 1000

1

PHYSICAL REVIEW [38 023503

C;s to the COBE data and calculate the normalization of the
perturbations model for differen2 ,. For completeness we
plot a selection ofZ;, compared to a compilation of data sets
and other candidate theories. We then compsfek) with

the observationah?(k) rendered in{7] from a compilation

of surveys. For this section we defiggCDM; to be a uni-
verse with( ;= 0.08,H,=50 km s* Mpc™* and ¢CDM; to

be a universe witt{) ;=0.12, Hy=65 km s * Mpc™.

The past five years has seen a tremendous growth in ex-
perimental physics of the CMB. Over twenty experimental
groups have reported detections of fluctuations in the CMB
and a rough picture is emerging of the angular power spec-
trum. It is fair to say that the most uncontroversial and useful
measurement that we have is that of COBE, which tells us
that on scales larger than 10° the fluctuation are approxi-
mately scale invariant with &,,s=18 uK. Measurements
on smaller scales seem to indicate a rise in the power spec-
trum, but a convincing constraint is still lacking. In Fig. 15
we present a compilation of measurement§5#] as com-

FIG. 15. A comparison of the angular power spectra of temperapared to two)CDM models and a few candidate rival mod-
ture anisotropies for five COBE normalized models with the currentels. Clearly there is still is a large spread although an overall

experimental situation. The models are sCDM in solid=(5),
ACDM in long dash,(Q,=.6, h=.65, MDM in dotted, (,=.2
andh=.5), CDM in dot-short dash({} ,=.08, h=.5) and CDM
in dot-long dash,(Q,=.12, h=.65). All of them have Qph?

=0.0125.

V. CONSTRAINTS FROM COBE AND LARGE SCALE
STRUCTURE

shape is emerging.

In the previous section we described the effect gt
would have on theC;s. For smallls the dominant effect to
note is the increase in power of the acoustic peaks relative to
the large-scale, scale-invariant plateau. The largérjs the
larger is the boost and therefore the smallerlthahich are
affected. In practice it introduces an effective “tilt” in the
large angle power spectrum as can be seen in Fig. 16. It is

In the previous section we have discussed in some detailseful to quantify how good a fitCDM C,s are to the
the evolution of density perturbations and temperatureCOBE data. The correct framework to work with is maxi-
anisotropies in thepCDM cosmology. This approximate mum likelihood analysis. I153] the authors have supplied
analysis indicated that results should be similar to those ims with an efficient way of evaluating the likelihood of a
the MDM model, except that there should be additional supgiven mode relative to purely scale invariant fluctuations. On
pression of power im?(k) on small scales. Using the full the left panel we plot the likelihood of the best fit model as a
results of our numerical evolution we now compare ourfunction of(},. There are two important things to note. First
model with the observational constraints which measurghe well known fact that, if one includes the quadrupole, the
fluctuations on a wide range of scales. We first compare th€OBE data favors more tilted models and therefore a larger

(10+1)C,/2 mV2uK

1

10

77—

L‘max(0¢)

2,

FIG. 16. The left panel shows the smalingular power spectrum for a family giCDM models. The models afe ,=0, 0.04, 0.08 and
0.12 in order of increasing “tilt.” The right panel shows the maximum likelihood of the best fit model as a functidp .oWVe have fixed
h=0.5 andQ,h?=0.0125.
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Q,. Secondly, the likelihood function fof), should be A useful quantity to work with is that characterizing the
very flat; indeed the dependence of the tilt O, is very  mass fluctuations oRh™ 1 Mpc scales
weak. As explained in the previous section the effecflqf : 2
. = dk 3j1(kR)

on theC;s is of order a few percent and concentrated at large dA(R)= J —A2(k) )
I's. There will be little variation on COBE scales. k kR

One of the key observational constraints for any class o[
models is the mass variance per unit interval ik las de-

(60)

n partlicular it has become the norm to compare this quantity

. ) . i . at 8h - Mpc with the abundances of rich clusters. It is pre-
fined in Eq.(49). This quantifies the amount of cIust_enng mature topuse this constraint with our current understar?ding
over a range of scales. [i] the authors compiled a series of ¢ #CDM. The best measurements of such abundances in-
surveys and attempted to extract what they believe to be thgy\ye an estimate of the number density of x ray clusters of
underlyingA?(k) of the linear density field. This involved a 5 given surface temperature. To relate these temperatures to
series of corrections: First, the a.SSUmption that the differer\tnasses in an accurate way one has to re|y on N_body simu-
samples were biased in different ways with respect to theations of clusters. This has been done for a few cosmologies
underlying density field; secondly, that there are redshift disand we can use the results they use as a rough guide but care
tortions in the observed structures; and finally, that some o$hould be taken with using such results at face value. The
the structures have undergone non-linear collapse. This finct that we can fin?(k) to the data of 7] is already strong
correction is model dependent and in principal great caréndication that we are on the right track. If we use the values
should be taken2 in making definitive comparisons betweenf [57] we haveog=0.5-0.8. A good fit targ is

our theoreticalA<(k) and that presented ifv]. In practice 115

we shall assume(th)at possiblerc):orrections are smpall and com- og(Q4)=e 8% ggPM (6)

ﬁr?ézrt?ggu:gsao];utt#i;etﬁgg:;:at'on we shall analyze the NOMyherea$PM is the COBE normalized sCDMyg. As would

. ‘ . be expected, for the range of values for which we get a good
In Fig. 17 we plot a family of COBE normalizef*(k)  oorcorient itH{7], we also match the cluster abundance
with h=0.5 andQ,h?=0.0125. We clearly see the features g With(7], w . N

. ; ) constraints.
‘k"isc”bh‘?dh'gzsic'é” B, |.e.f the Iargltar_tﬁla¢ . the Sn:allﬁrthi Finally it is desirable to make a comparison with some
or which A%(k) departs from scale invariance. In the other o ¢ re of small scale clustering at early timeg58, the
panel we can also see how it differs from a MDM model

. . authors used a simple analytic estimate of the fraction of
with the same background cosmological parameters. For thg,)ahseqd objects at redshift= 3 andz=4 to show that for
same energy density in exotic matter compon@et ¢ or

. h . o DM 0 ,=0.3, MDM models predict too little structure as com-
m_asswev) there is more suppression in e case. pared to that inferred from the Lymanmeasurements9].
Finally we see how it compares to the data[ . We find

) More recently in[60], the authors considered a larger range
that, for{),, in the range 0.08-0.12 we can match the datgy¢ ¢ osmoogical parameters and found that constraints from
with as good agreement as the MDM mpdel and some Othetﬁe Lymane systems could be sufficiently restrictive to rule
candidate models. This is displayed in Fig. 18. In the foIIow—out a large range of models. From Fig. 18 we can see that
ing table we tabulate th_,eZ_vaIues(With 15 degrees of free- ¢CDM should fare better than MDM on very small scales.
Fiom) of th_e;e mpdels, In Increasing goodness ofLDM This is easy to understand: We argued in Sec. Il that effec-
is competitive with the best fit model of MDM. tiveness ofpCDM was mainly due to the fact that the scalar
field free-streaming scale grows with time while the massive

X1s neutrino free streaming scale decays with time. We then need
SCDM 103.96 a larger amount of massive neutrinos to fit both COBE and
ACDM 52.5 the cluster abundances in the MDM model than the amount
¢CDM, 14.5 of scalar field ingCDM. On much smaller scaléthe scales
MDM 10.25 probed by Lymanx systemy i.e. scales smaller than the
#CDM, 7.53 massive neutrino free streaming scale, perturbations in

. _ MDM should be more suppressed than #CDM. This
One can fitA%(k) for these model$to 10% in the range 0 means¢CDM should fare better than MDM with regard to

<,<0.16 with: the Lymane constraints. A preliminary check on our model
can be done using the technique [68]. In brief one can
A%(k)= D(k,Q¢)A2(k)CDM make a conservative estimate that a fractigy, of matter is
in gas at that time and set bounds on the amount of objects
D(K,Q,)=(1+150,-1002) with masses greater than¥(L—Q ;) "*h~ M. Using the

Press-Schecter formalism one can then derive a bound:
1.01

14 5KL1295; 4)2259 1150
7 (59)

1+1x10'k>?%° >0.160/fq,, z=3

erfc( —)
V20(R,2)

whereA?%(K)cpy is the COBE normalized CDM mass vari- 17
ance, and contains all the dependence on remaining cosmo- erfd ————|>0.104/f,,,, z=4 (62)
logical parameters such &, andQ, [54] (c.f. [55,56]). v20(R,2) 9
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FIG. 17. On the left panel we plot the dependencerdfk)=da?/d Ink on Q. For h=.5, Q,h?=0.0125 we show(in order of
decreasing amplitudeplots for() ,=0, .02, .04, .06, .08, .10 and .12. In the right panel we compare a family of MDM m@iiedbed, with
,=0.04, 0.08 and 0.12 in order of decreasing amplijwei¢h a family of $CDM models(dashed, with(2 ,=0.04, 0.08 and 0.12 in order
of decreasing amplitude

where erfc is the complementary error function aRd V. CONCLUSIONS

=0.1-0.2 Mpc. FohCDM in the range oh and(},, that In the first part of this paper we gave the motivation for

we have been considering we find that §=1, these mod- . qidering the particular scalar field cosmology we have
els are consistent with this constraisee Fig. 18 Note that o, studied in detail: The addition made to the standard

the MDM model already has serious problems with this conscpm model does not involve any tuning of the type in-
servative constraint. If we consider a less a conservative CORp|yed in other modifications, in that no energy scale char-
straint and takd 55~ 0.1 as seems to be indicated by hydro- acteristic of the universe at recent epochs is invoked. The
dynamical studies, thaCDM is inconsistent with these form of the required potential is one which arises in many
measurements. More detailed observations and modeling @farticle physics models, with values of the single free param-
Lyman-w systems will supply us with a very strong con- eter of the order required. Having analyzed the model and
straint on this class of models. determined the best fit to structure formation, we now first
comment on these aspects of the model.

In Sec. Il E we argued that, in typical inflationary models
with the usual mechanism of reheating, one would expect the
attractor solution to be established well prior to nucleosyn-
thesis. In this case we should therefore compare our best fit

105—

- 01F 2 ‘
& E E \
) i ] 0.15)
0.01 | 4
] & o1
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0.0001 Lt Lol M, 005
0.01 0.1 1
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FIG. 18. A comparison of the mass variance per unit interval in q

Ink, A%(k)=do?/d Ink, for five COBE normalized models with a
rendition of the linear power spectrum from various data &=is
rections for non-linearity, redshift distortions and biasing have been FIG. 19. The shaded region represents the allowed region of
introduced. The models are sCDM in solidhE&.5), ACDM in parameter space consistent with the Lymaanenstraints off59].

long dash(Q,=.6, h=.65, MDM in dotted ((2,=.2 andh=.5), The solid hatched region corresponds to the valueb ahd O,
¢CDM in dot-short dash() ,=.08, h=.5) and $CDM in dot-long  excluded forf,,.=1. The dotted hatched region corresponds to the
dash(Q 4=.12, h=.65). All of them haveQ,h?=0.0125. values ofh and (), excluded forfg,,=0.1.
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to the constraint from the latter, as given in EBQ), which  bations in¢pCDM. We found that perturbations in the scalar
is satisfied(clearly for the conservative bound, and margin-field on subhorizon scales decayed, leading to a suppression
ally for the tighter ong Further, in this case we need to of power on small scales. The similarities with MDM led us
check that the valu€)ph?=0.0125 which is equivalent to to pursue the comparison in more detail. We found that the
the baryon to photon ratigy;o=3.3 (in units of 10'% is  contribution from the scalar field was more efficient at sup-
within the allowed range at the corresponding expansioipressing perturbations in the CDM than massive neutrinos.
rate. This is not a question which is easy to answer simplyve showed that this was due to a simple difference in the
because most nucleosynthesis calculations give results oniyolution of the “free-streaming” scale in the two theories:
in terms of the range ofy;o allowed at the standard model |n $CDM the free streaming scale grows with the horizon
expansion rate, or the maximum additional number degree afhile in MDM the freestreaming scale decays as. IThis
freedom allowed. For the conservative critdi3®,41 which  means that perturbations in the scalar fie&/ergrow once
gave the weaker upper bound in Eg0) the allowed range they come into the horizon, in contrast to perturbations in the
narrows fromz;,e[1.65,8.9 at () ,=0 to the lower bound massive neutrino which end up clumping after some finite
n10=1.65 at() ,=0.15. Extrapolating the use of these crite- time. We analyzed the effect the scalar field would have on
ria for a more restrictive case for which the required data ishe CMB and found it to be small but distinctly different
given in [42] (i.e. the allowed range of; is given as a from that of MDM.

function of the energy density in an extra compopnehe In Sec. IV we used the results of a Boltzmann-Einstein
value 7,0=3.3 would appear to be in the allowed range atsolver to test how well this class of models fared when com-
0 ,4=0.1. For a more restrictive set of nucleosynthesis conpared to various astrophysical data. Because of the weak
straints a slightly lower value dRyh? might be required for effect the scalar field has on the CMB, the angular power
consistency. spectrum is effectivelywith the current accuracy of experi-

In an alternative model of reheatingvhich is by con- ments as in SCDM. Using the COBE data we normalized
struction associated with the existence of this same type ahese theories and compared the mass variance per logarith-
potentia), we saw that the time of re-entry to the attractor mic interval ink to the one estimated ifi7]. Our models
could be after nucleosynthesis, at a time which depends ofared as well, or better, than competing flat universe models.
both ), and the other parameter in this modi¢l, the ex- A comparison with an estimate of the mass variance at
pansion rate at the end of inflation. By making the assumpsh™! Mpc from the abundances of rich clusters gave the
tion that the attractor is established prior to nucleosynthesisame results. We finally compared the amount of structure at
we restricted ourselves to(&arge part of parameter space. high redshift our model predicts, as compared to that inferred
From Fig. 4 we can read off that this corresponds, gy ~ from Lyman« systems. This has proven to be a serious
~0.1, toH;>10" GeV or p**>10'® GeV. As we noted at problem for MDM models. We saw that our model is con-
the end of the section this is consistent with what we wouldsistent, albeit marginally, with these constraints.
guess would be the most natural range of these parameters in Lastly a few further comments on other related issues
this model. On the other hand, it is inconsistent with modelswvhich it would be interesting to investigate:
in which the phase of scalar field domination continues until (i) We assumed an initial flat adiabatic spectrum of per-
just before nucleosynthesiwith the consequences described turbations, in line with the most generic type of inflation.
in [46]) since they correspond to the line defining the lowerWithin the context of inflation one can of course have dif-
bound from nucleosynthesis in Fig. 4. For entry to the attracferent spectra etc., and within the context of some very well
tor before today, it can be see from Fig. 4 that one requires imotivated form for the inflationary part of the potential in the
this case(),>0.22. It would be interesting to analyze the alternative reheating model, it would be interesting to look at
effect on structure formation in these models, and indeed ithe combined effect on structure formation. In more general,
all of the parameter space for this model excluded by us imn interesting feature of the exponential which would be
our present analysis. worth investigating is the fact that the attractor is also an

In terms of A our best-fit corresponds to the range attractor for isocurvature fluctuations, and hence the assump-
€[5,6.1]. As we discussed in Sec. Il B this value is certainly tion of adiabatic initial conditions might have a much more
of the order observed in the fundamental particle physicapeneral motivation than the standard inflationary one.
theories of which they have been observed to be a generic (ii) Inflation was assumed simply because it is the para-
feature, and may even be in the precise range found in cegigmatic model. The existence of the exponential scalar field
tain theories. This suggests the exciting possibility of ulti-might of course have an effect on any cosmology. In an open
mately linking the cosmological features which would pro- cosmology, for example, the analogous attractor also exists
vide a signature for these fields to details of physics at thén the curvature dominated regime and the asymptotic state
Planck scale. From the point of view of particle physics mo-has a scalar field energy scaling aa®l/
tivated model-building it would be particularly interesting  (ii) We have shown that the effect of the exponential
also to look at models where the simple exponential potentiatcalar field on the angular power spectrum of the CMB is
represents the asymptotic behavior of a potential which canfuite small, much like the case of MDM. However, recent
support inflation in another region, since this would be likelyhigh precision analysis of parameter estimation from the
to produce a very constrained modelith reheating as dis- CMB (as one would expect from the satellite missjoinsli-
cussegl cates that one may achieve a precisionAdd ,=0.04 or

In Sec. Il we analyzed in detail the evolution of pertur- better[61]. This opens up the interesting possibility of actu-
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ally trying to constrain(} , with the CMB. From the point of view of structure formation we have

(iv) In addition to the issue of consistency with entry into described a new model which has the same qualitative fea-
the attractor prior to nucleosynthesis which would motivatetures as MDM. Unlike other scalar field cosmologies, which
the study of the dependence fiyh? away from the SCDM  affect the local expansion rafep to redshift of a few our
value we assumed, there are further observational reasons foackground evolution is exactly matter dominated, the modi-
doing so. The recent measurement$&#] indicate that one fication arising at the perturbation level. Given the wealth of
may have a higher baryon content than previously expecteadurrent data on small scales, at recent redshifts, this raises the
Since a higher baryon content leads to less structure oquestion of whether this is the right approach to the construc-
smaller scales, a best fit to large scale structure constraint®n models of structure formation: The existence of struc-
would be obtained with a smaller value@fy . The effecton  ture at high redshift combined with the small scale velocity
the Lymane constraints might be more dramatic, since theredispersion today at I Mpc seems to argue for a strong
would be a competition between the suppression of powemodification of the growth rate of perturbations in the last
and the increase in the amount of gas simply due to the fadew redshifts. This would point towards a low density uni-
that there are more baryons around. That the result is noterse. However, until we have a more detailed understanding
immediately evident can be seen from the analysis of MDMof the non-linear evolution of perturbations in models such
in [60]. Further, to determine whether entry to the attractoras ¢CDM (on scales between 0.1 and I6MMpc), these
prior to nucleosynthesis is consistent in this case, one woulthodels should not be ruled out. We are currently analyzing
have to determine whether this decrease (lj would the non-linear regime o$CDM using an N-body code.
broaden the allowed range i sufficiently.
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