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Cosmology with a primordial scaling field
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A weakly coupled scalar fieldF with a simple exponential potentialV5M P
4 exp(2lF/MP) whereM P is the

reduced Planck mass, andl.2, has an attractor solution in a radiation or matter dominated universe in which
it mimics the scaling of the dominant component, contributing a fixed fractionVf ~determined byl! to the
energy density. Such fields arise generically in particle physics theories involving compactified dimensions,
with values ofl which give a cosmologically relevantVf . For natural initial conditions on the scalar field in
the early universe the attractor solution is established long before the epoch of structure formation, and in
contrast with the solutions used in other scalar field cosmologies, it is one which does not involve an energy
scale for the scalar field characteristic of late times. We study in some detail the evolution of matter and
radiation perturbations in a standard inflation-motivatedV51 dark-matter dominated cosmology with this
extra field. Using a full Einstein-Boltzmann calculation we compare observable quantities with current data.
We find that, forVf.0.08– 0.12, these models are consistent with large angle cosmic microwave background
anisotropies as detected by COBE, the linear mass variance as compiled from galaxy surveys, big bang
nucleosynthesis, the abundance of rich clusters and constraints from the Lyman-a systems at high redshift.
Given the simplicity of the model, its theoretical motivation and its success in matching observations, we argue
that it should be taken on a par with other currently viable models of structure formation.
@S0556-2821~98!02214-0#

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Hw
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I. INTRODUCTION

The past twenty years have seen a tremendous revolu
in how we study the origin and evolution of our universe. O
the one hand developments in theoretical particle phy
have lead to a proliferation of ideas on how high ene
physics might have an observable effect on the large s
structure of our universe. On the other hand the increas
quality of astrophysical data has led to firm constraints
what physics is allowed in the early universe. Probably
most impressive example of such an interplay is how
Cosmic Background Explorer~COBE! detection@1# has af-
fected the most popular and theoretically explored theory
structure formation, the standard cold dark matter mo
~SCDM!.

The SCDM model brings together the idea of inflati
@2–4# and the picture of large scale gravitational collapse@5#.
A period of superluminal expansion of the universe wou
have led to the amplification of subhorizon vacuum fluctu
tions to superhorizon scales. The net result would be a se
scale invariant, Gaussian perturbations which would evo
through gravitational collapse, into the structures we see
day. The relic radiation bears an imprint of these fluctuatio
from when the universe recombined. The distribution of g
axies and clusters of galaxies should reflect these fluctuat
today. It has been found however that the SCDM mo
cannot successfully accommodate the data observed o
scales. Matching its predictions to COBE measurements~on
large scales! of the microwave background, one finds that t
amplitude of fluctuations on 8h21 Mpc scales~where h is the
Hubble constant today in units of 100 km/s/Mpc! do not
0556-2821/98/58~2!/023503~23!/$15.00 58 0235
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match those observed@6#. To be more specific, if we define
the amplitude of mass fluctuations in a sphere of rad
8h21 Mpc, s8 , then COBE normalized SCDM predictss8

51.2 while the measured value~through cluster abundances!
is s850.660.1, a discrepancy by a factor of 2. Further n
only the amplitude but also thescale dependenceof the
SCDM model differs from the one measured@7#, and there
are also a number of problems with the non-linear evolut
of baryons and velocities on small scales.

These failings of SCDM have led to attempts to modify
while keeping its basic features intact. The latter~a simple
choice of background cosmological parameters withV51
and quantum generation of fluctuations! are associated with
its theoretical motivation from inflation. The most promine
candidate theories of structure formation of this type are n
a universe with a cosmological constant~LCDM! @8# and a
universe with a fifth of its dark matter component in tw
families of massive neutrinos~MDM ! @9#. Models of struc-
ture formation in an open universe~OCDM!, for which there
is considerable evidence, have also been extensively stu
@10#. All these models, once COBE normalized, predict t
approximately correct distribution of mass fluctuations. Ov
the past few years other flat models have been constru
which, like MDM, are more related to our understanding
fundamental particle physics. This is the case of decay
cosmological constant models@11,12# and decaying massive
particles@6,13#. Unfortunately, unlike the SCDM scenario
all these models involve a tuning of parameters which
unnatural from the point of view of particle physics, simp
because one is using super-GeV physics to explain sub
observations. Just as is the case ofLCDM ~which involves
© 1998 The American Physical Society03-1
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tuning the cosmological constant to be relevant only
present epochs! this tuning does not provide a reason to d
card these models, but is a very unattractive feature of th

Both the cosmology of weakly coupled scalar fields a
their theoretical motivation have been much studied since
advent of the idea of inflation. In most of the theoretic
particle physics extensions of the standard model~e.g. super-
symmetry and supergravity! weakly coupled scalar fields o
various kinds are ubiquitous. Unfortunately there is as yet
experimental evidence for the existence of any fundame
scalar field at all, in particular the Higgs particle of the sta
dard model remains to date undetected. However the th
retical motivation for such scalar fields is sufficiently com
pelling that it is certainly worthwhile considering wha
consequences their existence might have for cosmology
yond the confines of inflation. An example of this is given
the main alternative of structure formation—defe
theories—which usually involve the existence of some sc
field e.g. the ‘‘texture’’ theory@14# relies on the existence o
a scalar field invariant under a global non-Abelian symme
broken at the grand unified theory~GUT! scale, with associ-
ated goldstone particles which are unobservably wea
coupled to ordinary matter.

The role that a weakly coupled scalar field might play
late time cosmology if it contributes a component to t
homogeneous background energy density of the universe
also been investigated. In@15# the authors considered in gen
eral terms the idea that a significant contribution to the
ergy density from a homogeneous scalar field could have
important effect on structure formation, and applied the id
to a baryonic universe with an initial spectrum of perturb
tions with power law behavior. After some general analy
of the homogeneous dynamics, the model singled out fo
detailed treatment was that of a scalar field in a nega
power law potential which comes to dominate at late tim
producing behavior very similar to that associated with
cosmological constant. Another kind of model which h
been developed in detail, for the case of a cold dark ma
dominated cosmology, in@11,12# involves a cosine potentia
with a combination of Planck and sub eV physics. This p
vides a specific realization of a ‘‘decaying cosmological co
stant,’’ in which the field initially behaves like a cosmolog
cal constant and then rolls so that it scales asymptotic
like matter. All these models have an energy density in
scalar field which comes to dominate at late times, as h
two more recent very detailed studies@16,17#. In @16# the
case of a scalar field which scales slower than matter is
scribed more generically in terms of its equation of state,
in @17# the specific cases of late time dominance realized
both cosine and exponential potentials.

In this paper we present in detail the results which ha
been reported in@18#. The model we study is SCDM with th
addition of a scalar fieldF with a simple exponential poten
tial V5M P

4 exp(2lF/MP) where M P[(8pG)21/252.4
31018 GeV is the reduced Planck mass, andl.2. In this
specific case there is a very special and interesting solu
for matter and radiation coupled through gravity to this fie
in which the scalar field energy follows that of the domina
component, contributing a fixed fraction of the total ener
02350
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density determined byl. The existence of this homogeneou
solution was shown in@15,19,20#. Because the scalar fiel
can contribute at most a small fraction of the total ene
density at nucleosynthesis, its potential interest in the con
of the problem of structure formation has been overlook
This constraint suggestsprima faciethat the field in such an
attractor can have little effect on cosmology at late time.
we shall see, this is incorrect, for the simple reason tha
small contribution acting over a long time can have as big
effect as a large contribution entering only at late times. T
particular merit of the model is related to the fact that t
cosmological solution is an attractor for the scalar field: B
cause of this, there is no tuning of the type involved inall
other proposed modifications of SCDM. The only parame
additional to SCDM isl, and the value (;5 – 6) which gives
a best fit to structure formation, is of the order natura
expected in the particle physics models in which the pot
tial arises. As a cosmology it resembles MDM much mo
than any of the scalar field models which have been stud
in the literature.

Some comment is perhaps necessary at the outset re
ing the assumption that the universe is flat and dominated
a component scaling as matter, as there is mounting ob
vational evidence that this is not the case. The most ad
tised is the age problem, that is, the fact that we see obj
which are older than the age of the universe if we assum
flat matter dominated universe with the currently observ
Hubble constant ofH0565610 km s21 Mpc21. Several of
the modifications we have discussed~in particular the cos-
mological constant model and some of the scalar field m
els! avoid this problem since the dominant component at
present epoch is not matter. The recent measurements o
Hipparcos satellite@21# seem to indicate that the age of the
objects have been overestimated by around 10% and a
analysis of the uncertainties in the estimates seem to indi
that a flat matter dominated universe withH0
,66 km s21 Mpc21 is compatible with the current age est
mates. Another argument for a low density universe com
from the analysis of large scale flows. In@22# it has been
argued thatb5V0.6/b,1 from the analysis of the Mark III
data and comparison with the Infrared Astronomy Satel
~IRAS! surveys. However there is concern with the self co
sistency of the velocity data and another group@23# indicates
that the flows are consistent with a universe withV
50.4– 1. Small scale observations also seem to indicate
there are problems with a high density universe. In particu
the baryon fraction in clusters is difficult to reconcile wi
the big bang nucleosynthesis~BBN! limits unless one con-
siders a low density universe@24#. Again there are uncertain
ties in such an analysis; they rely on elaborate numer
simulations which are at the limit of current computation
power. It is conceivable that some physics~such as cooling
of the cluster medium! is being overlooked. The same can b
said for the cold velocity dispersion which is measured
few Mpc scales@5#. Although all these observations togeth
begin to make a strong case for an open universe, the un
tainties and inconsistencies are sufficiently large for us
still consider a high density, matter dominated universe
may be that in the next few years the evidence is sufficien
3-2
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
compelling to rule out these models, but this is definitely n
the case yet.

The structure of the paper is as follows. In Sec. II we fi
discuss the homogeneous modes of scalar fields in a univ
with matter and radiation in general terms, and explain h
the case of a simple exponential with its attractor solutio
for l.2 is a special one. We discuss briefly the possi
origin of exponential potentials in fundamental theories. W
then discuss the initial conditions on this scalar field in
early universe, and when these lead the attractor to be e
lished. In typical inflationary theories we argue that the
tractor describes the homogeneous cosmology well be
nucleosynthesis, while in an alternative theory of reheat
which can be realized with the same exponential field
scalar field may still be negligible at nucleosynthesis
natural parameter values. In Sec. III we analyze the evolu
of perturbations in our scenario. We describe the comp
set of equations which govern their evolution and analyze
asymptotic behavior in the interesting regimes. The simila
ties with evolution of density fluctuations in an MDM un
verse lead us to pursue the comparison in some detail an
come to the conclusion that scalar field is more effective
suppressing perturbations than hot dark matter. We also
sider the effect on the cosmic microwave background~CMB!
and deconstruct the different effects it has on the ang
power spectrum of the CMB. In Sec. IV we compare t
predictions of linear perturbation theory~using the full
Boltzmann-Einstein equations! with some observations. In
particular we compare it to the COBE data and then use
comparison to normalize the theory and compare to the P
cock and Dodds data. As a byproduct we derive a fit tos8
for our models and we quantify the amount of structure
small scales and high redshift, comparing with constra
derived from Lyman-a systems. In Sec. V we summarize o
findings and draw some conclusions about future prosp
for our model and other issues related to it which might
further investigated.

II. THE ‘‘SELF-TUNING’’ SCALAR FIELD
WITH AN EXPONENTIAL POTENTIAL

In this section we describe in detail the homogeneous
tractor solutions which specify the zero-order cosmolo
about which we treat perturbations fully in the subsequ
part of the paper. We explain the very special feature of
model which contrasts it with other scalar field cosmolog
which have been treated in the literature:No special energy
scale characteristic of late time cosmology need be invo
to produce the required solution. We will show that for a
very wide and natural range of initial conditions on the sca
field in the very early universe, the attractor will be attain
as early as assumed in the rest of the paper.

A. Scaling of the energy density in a scalar field

We begin with a general discussion of homogene
Friedmann-Robertson-Walker~FRW! cosmology in which
there is, in addition to the usual matter and radiation cont
a contribution to the energy momentum coming from a sca
field F with a potentialV(F). In the rest of the paper we us
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the notationF5f1w, where w denotes the perturbatio
about the homogeneous solutionf. Working for the moment
in comoving coordinates in which the metric isds252dt2

1a2d i j dxidxj ~wherea is the scale factor!, the contribution
to the energy-momentum tensor from the scalar field is

T005rf , Ti j 5a2pfd i j

where rf5F1

2
ḟ21V~f!G , pf5F1

2
ḟ22V~f!G .

~1!

The equations of motion for the scalar field are then

f̈13Hḟ1V8~f!5
1

a3

d

dt
~a3ḟ !1V8~f!50, ~2!

H25
1

3M p
2 S 1

2
ḟ21V~f!1rnD , ~3!

r ṅ1nHrn50, ~4!

wherern is the energy density in radiation (n54) or non-
relativistic matter (n53), H5ȧ/a is the Hubble expansion
rate of the universe, dots are derivatives with respect to ti
primes derivatives with respect to the fieldf, and M P
[(8pG)21/252.431018 GeV is the reduced Planck mas
The scalar field is assumed to be coupled to ordinary ma
only through gravity. Multiplying Eq.~2! by ḟ and integrat-
ing, one obtains

rf~a!5r~ao!expS 2E
ao

a

6„12j~a!…
da

a D
where rf5

1

2
ḟ21V~f!, j5

V~f!

rf
. ~5!

It follows from this that, given the range of possible valu
0,j,1 @assumingV(f) is positive#, the energy density of
a scalar field has the range of scaling behaviors

rf}1/am, 0<m<6. ~6!

How the energy in a homogeneous mode of a scalar fi
scales is thus determined by the ratio of the potential to
kinetic energy. Alternatively one can phrase the statemen
terms of the equation of state obeyed by the mode: Fr
Eq. ~1! we have j5 1

2 (12w) where pf5wrf , and m
53(11w) ~for constantw! in Eq. ~5!.

These statements are true independent of any specific
sumption aboutH i.e. about what dominates the energy de
sity of the universe. When the potential energy domina
over kinetic energy, we havej→1 and thereforerf'const
i.e. an energy density which behaves like a cosmolog
constant~and w521!; in the opposite limit ofj→0 i.e. a
kinetic energy dominated mode, we have an energy den
3-3
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PEDRO G. FERREIRA AND MICHAEL JOYCE PHYSICAL REVIEW D58 023503
with rf}1/a6 i.e. red-shifting faster than radiation or matt
~and w511!. Inflation occurs when the former type o
mode also dominates the energy density; the opposite li
when the universe is dominated by the kinetic energy o
scalar field~which, following @25#, we refer to askination!
gives a sub-luminal expansion witha}t1/3.

We now consider more specifically what sorts of pote
tials give rise to these different types of scaling. One sim
case to analyze is that in which a field rolls about the m
mum of a potential. In such an oscillatory phase the appro
mate scaling of the energy density can be extracted from
~5! by replacingj by its average value over an oscillatio
For a potential which is power law about its minimum wi
V(f)}fn the result@26# is that

j5
2

n12
, rf}1/am, m5

6n

n12
~7!

reproducing the well known result that a coherent mode
cillating in a quadratic potential gives the same scaling
matter, and af4 potential that of radiation. Forn.4 one
obtains modes scaling faster than radiation.

Again this statement does not depend on what compo
dominates the energy density, and the same scaling ap
to the mode irrespective of whether the universe hasrn50,
or is matter or radiation dominated. The case of a field r
ing down a potential~before it reaches its minimum, or if i
has no minimum! is quite different. The equation of motio
~2! is just a damped roll with the energy content determin
the damping through Eq.~3!. The scaling obtained for a
given potential depends on what components are pres
because what determines the scaling is the balance bet
the increase in kinetic energy relative to potential energy
the field rolls down the potential, and the decrease of
same quantity due to the damping. The criterion for a p
ticular scaling is therefore a requirement of the ‘‘steepne
of the potential. That the simple exponential potent
V(f)5Voe2lf/M P provides the appropriate yard-stick in th
case of scalar field domination is indicated by the existe
of a family of solutions for this potential to Eqs.~2!,~3! with
rn50 @15,19,20#,

f~ t !5fo1
2M P

l
ln~ tM P! fo5

2M P

l
lnS Vol2

2M P
4 ~62l2! D

j512
l2

6
, rf}

1

al2 , a}t2/l2
~8!

for l,A6, and fo can always be chosen to be zero
redefining the origin off, in which caseVo5(2/l2)(6/l2

21)M P
4 . These solutions, which are attractors1 were written

down @27,28# in the context of power-law inflation@29#, as-
sociated with the superluminal growth of the scale-factor

1It is simple to verify directly from Eqs.~2! and~3! that homoge-

neous perturbations about the solution decay ast21 and t126/l2
.
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l,&. For l.6 there is not a single attractor with a finit
value of j, but every solution hasj→0 asymptotically and
r}1/a6.

As l increases from zero we obtain the entire range
possible scaling behaviors~6! for the energy in a scalar field
By comparison with this potential we can infer how sca
modes will scale: The ‘‘slow-roll’’ conditions~uM PV8/Vu
!A6, uM P

2V9/Vu!3! for inflation, for example, could be
stated as the requirement that the first two derivatives o
potential be smaller than those of an exponential withl
5). An analogous ‘‘fast-roll’’ condition for ‘‘kination’’
can clearly be provided by comparison with an exponen

with l5A6 e.g. a potential;e2mf2/M P
2

will have such
modes for sufficiently largef.

These statements apply only to the case of scalar fi
dominance since we tookrn50. What interests us in the
present context is how the scalar energy behaves in the p
ence of matter and radiation i.e. withrnÞ0. There are two
quite distinct cases which can be immediately distinguish
according to their behavior whenrn50: Those potentials in
which the energy density scales slower than 1/an ~i.e. l
,An!, and those in which it scales faster (l.An). When
rnÞ0 these two types of potential will show very differe
behavior for the following reason: Adding a component
creases the damping term in Eq.~2!, and it follows that the
scaling with a of the energy density in the scalar field
alwaysslower i.e. rf}1/al22d with l2>d>0. For l,An
the scalar energy will still red-shift slower than the oth
component and it will always come to dominate asympto
cally, approaching the attractor~8!. Forl.An, however, the
scalar field energy cannot always scale as in the casern
50. By doing so it would become arbitrarily sub-domina
relative to the componentrn , and thus arbitrarily strongly
damped. Eventually this damping must reduce its kinetic
ergy so that it will then scale slowly~sincej→1! and begin
to catch up again with thern component. It is not surprising
then to find that there are in fact, forrnÞ0, a quite different
set of solutions to Eqs.~2!–~4! for the exponential potentia
@15,19#, in which the energy in the scalar field mimics that
the dominant component, contributing a fixed fraction of t
energy density determined byl given by

Vf[
rf

rf1rn
5

n

l2 rf}1/an, j512
n

6
. ~9!

This solution is also an attractor@20#, with f again evolving
logarithmically in time as given by Eq.~8! ~with only fo
differing!. Figure 1 illustrates the evolution towards the a
tractor starting from initial conditions with the scalar fie
energy very dominant~obtained by a numerical evolution o
the homogeneous equations of motion for the exponen
scalar field withl54 and components of radiation and ma
ter which are equal ata51!. The scalar field energy firs
scales rapidly, approximately as 1/a6 as indicated by the so
lution ~8!, until it has undershot the energy density in t
radiation. It then turns around and starts scaling much slo
than radiation or matter until it again catches up with them
the matter dominated regime, and then settles down at
3-4
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
fraction given by Eq.~9! with n53. As anticipated above th
main feature—the turn around in the scaling—can be und
stood to arise from the increase in damping as the radia
or matter becomes dominant. One can easily see quan
tively how this comes about: The energy scaling as 1a6

scaling occurs while theV8(f) term in Eq.~2! is very sub-
dominant and we have thenḟ}1/a3. If the dominant com-
ponent on the right-hand side~RHS! of Eq. ~2! is radiation or
matter one then obtains the evolution of the field

f~ t !5fo1ḟotoX12S to

t D 2C, rn!rf ~n53!,

f~ t !5fo12ḟotoX12S to

t D 1/2C, rn!rf ~n54!.

~10!

In contrast with the case of the logarithmic dependence
time of the attractors, the potential term evolves in eith
case more slowly than the first two terms in Eq.~2!. This
results in a slow-down in the scaling of the scalar ene
which drives it back eventually towards the dominant co
ponent. We will discuss in greater detail below what det
mines the duration of this transient period in which the sca
energy is very sub-dominant. We will also see below that
re-entry in this example in the matter-dominated epoch
just a result of the initial conditions. Forl.2 the attractor
exists both in the radiation and matter dominated epoc
Given that the relative contribution of the scalar field ene
and the dominant component differs so little in the two e
ochs~by a factor of 3/4! one would anticipate that the scal
field, if established in the attractor in the radiation domina
epoch will match tightly onto its asymptotic value in th
matter dominated epoch. That this is indeed the case ca
seen from Fig 2, which shows the evolution of the fraction
contribution to the energy density for a range of values ol
~with the scalar field prepared in the attractor at the beg
ning of the evolution!.

The conclusion from this discussion is that, in the pr
ence of matter or radiation, a scalar potential which is fla

FIG. 1. In the left panel we plot the evolution of the ener
density in the scalar field (rf) and in a component of radiation
matter as a function of scale factor for a situation in which
scalar field~with l54! initially dominates, then undergoes a tra
sient and finally locks on to the scaling solution. In the right pa
we plot the evolution of the fractional density in the scalar field
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than a simple exponential withl5) will support modes
with energy scaling slower than matter, and always asym
totically dominate. Simple exponentials withl,2 have at-
tractors in the radiation and matter dominated epoch gi
by Eq.~9!, and those with),l,2 in the matter dominated
epoch only. A scalar field rolling down a potential steep

than these simple exponential e.g.;e2mf2/M P
2

will clearly
always decay away asymptotically relative to radiation
matter. We also saw that oscillating modes scale in a w
which is independent of what other component is prese
and there are no attractor solutions.

The attractor solutions for the exponential scalar field
therefore a special case. Before embarking on the full tre
ment of the cosmology in which the attractor~9! describes
the unperturbed limit, we discuss further why this attrac
solution is particularly interesting from a cosmological po
of view: By virtue of its being an attractor, it avoids th
tuning problems which are inevitably a feature of all oth
scalar field cosmologies which have been proposed. F
however, we discuss briefly another attractive aspect of
required potentials.

B. Theoretical origin of exponential potentials

Scalar fields with simple exponential potentials occur
fact quite generically in certain kinds of particle physi
theories. Because of the existence of the power-law inflati
ary solutions~8! such theories have been studied in so
detail by various authors, with attention focused on mod
and parameters which lead to inflation. We will not carry o
any detailed analysis here of particular theories which wo
produce the exact parameters required for the present c
but limit ourselves to a brief review of such theories and
observation that the parameter values which we require
quite reasonable in the context of such theories.

The first are Kaluza-Klein theories in which the fund
mental theory has extra dimensions, which are compacti
to produce the four dimensional world we observe. In t
effective four dimensional theory scalar fields arise wh
correspond to the dynamical degree of freedomL associated
with the ‘‘stretching’’ of the internal dimensions. The pote
tial is generically exponential because the kinetic term

l
FIG. 2. The evolution of the fractional energy density in t

scalar field for a selection ofls
3-5
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the form (L̇/L)2, while the potential ‘‘stretching energy’’ is
polynomial in L. A simple example@30,31# is a six-
dimensional Einstein-Maxwell theory where the two ex
dimensions are compactified toS2 with radiusL. Defining a
field F,

F52M P ln L, ~11!

results simply in four-dimensional Einstein gravity min
mally coupled to this field which then has the potential

V~F!}expS 2
F

M P
D F12expS 2

F

M P
D G2

. ~12!

In the regime of largeF we haveV(F);exp(2F/MP) i.e.
effectively a simple exponential potential withl52. An-
other example studied in detail in@30,32,33# is the case of a
pure gravitational theory with higher derivative terms in
arbitrary number of dimensions,D14, where spontaneou
compactification arises because of the higher deriva
terms. The effective four dimensional theory is in this ca
considerably more complicated, but again includes a sc
field F defined as the logarithm of the ‘‘radius’’ of the com
pactified D-dimensions which gives, in certain regimes
potential driving the dynamics of the zero mode of the fie
of the form of Eq.~2! with V(F);exp@2D(F/A8pM P)#.

Another set of models in which such potentials appea
in supergravity and superstring theories@34#. One of the
most studied is the Salam-Sezgin model with,N52 super-
gravity coupled to matter in six dimensions. It predicts@27#
the existence of two scalar fieldsF andY with a potential of
the form

V~F,Y!5V̄~Y!expS 2&
F

M P
D . ~13!

For Y@0 it corresponds to a potential of the required fo
we want, withl5&. Further examples relevant to inflatio
are given by the authors of@35#, who find two scalar fields
with l5& andl5A6 in andN52 model, as well as in an
N51 ten-dimensional model with gaugino condensat
@36#.

A further class of theories in which such fields arise is
higher order gravity. There is a conformal equivalence~see
@37#, and references therein! between pure gravity describe
by a Lagrangian which is an analytic function of the sca
curvatureR and general relativity plus a scalar field with
determined potential, and in the presence of matter the m
ric associated with the latter description is the physical o
@38#. For example@37# in d dimensions the potential in th
case of a Lagrangian quadratic inR is

V~F!}expS d24

2

F

M P
D F12expS 2

d22

2

F

M P
D G2

~14!

and, for d54 and a polynomial Lagrangian of the form
(n51

k anRn, it is
02350
e
e
ar

a

is

n

r

t-
e

V~F!5A1 expS 22
F

M P
D1 (

n52

k

An expS 22
F

M P
D

3F12expS F

M P
D Gn

~15!

where theAn are rational coefficients determined by thean .
As F→1` we haveV;exp@(k22)F/MP#.

All previous analysis of the cosmological consequen
of the existence of such scalar fields has focused on inflat
which is realized in the case of the simple exponential
l,&. The fact that many of these models can at best g
l&& rather than the considerably flatter potentials nee
for inflation ~to naturally give a large number of e-folding
and a nearly flat spectrum of perturbations! meant that these
theories provided a general motivation rather than a reali
model. In @35#, for example, an extra ad hoc damping ter
was introduced to produce a more satisfactory model fr
supergravity motivated models. In the present context thi
not the case: We will see that the most interesting range
structure formation isVfP@0.08,0.12# in the matter era
which approximately corresponds to the rangelP@5,6#. Al-
though these values are a little larger than in the simp
models we have reviewed, some of the models above cle
can lead to parameters in this range, and, for example,
number of compactified dimensions required to give th
values in the first type of theory we reviewed is certainly n
unreasonable in the context of superstring theory. In term
the theoretical origin of the potential we study therefore, it
not just the form of the potential which is one which aris
naturally, but it may also be that the precise value of
single free parameter in this potential is a natural o
Clearly further analysis of such models would be required
make a stronger statement than this, and to see if the cos
logical effect of these fields which we study in this pap
might ultimately be used to give us specific hints about fu
damental particle physics.

C. Nucleosynthesis constraints

In considering the possibility that some significant fra
tion of the energy density of the universe may be in a hom
geneous mode of a scalar field, the earliest constraint co
from nucleosynthesis. Such a contribution from a wea
coupled scalar field enters in determining the outcome
nucleosynthesis~the primordial densities of the light nucle!
only through the expansion rate. Adding a component
creases the expansion rate at a given temperature. The d
nant effect of such a change is in its effect on the ratio
neutrons to protons when the weak interactions keeping th
in equilibrium freeze-out at a temperature of;1 MeV. The
range of expansion rates at this temperature compatible
observations is usually translated into a bound on the num
of effective relativistic degrees of freedom at;1 MeV. Tak-
ing DNe f f to be the maximum number of such degrees
freedom additional to those of the standard model~with three
massless neutrinos! the equivalent bound on the contributio
from a scalar field is
3-6
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Vf~1 MeV!,
7DNe f f/4

10.7517DNe f f/4
~16!

~where 10.75 is number of effective degrees of freedom
the standard model!. A wide range of values for the uppe
bounds onDNe f f exists in the literature, the variation bein
due both to the data taken into account and the method
analysis used. We will not attempt here to review all t
issues involved and accept one or other bound as defin
~see, for example,@39# for a full discussion!. The tendency in
the last few years has been towards less restrictive bou
than were generally thought correct previously. A typic
value now used is a bound ofDNe f f50.9 which is given by
various authors@40#, or even a more conservative one
DNe f f51.5 by others@41,42#. This range corresponds he
to

Vf~1 MeV!,0.13– 0.2. ~17!

This is the range of values we will take when we discu
nucleosynthesis in the rest of the paper. The result for m
restrictive nucleosynthesis analyses can be read off from
~16!. Note also that we have assumed here that the stan
model number of relativistic degrees of freedom at 1 Me
The strict experimental lower bound on this number is in f
9, given that the upper bound on the mass of thet neutrino is
18 MeV @43#. In the case that thet neutrino is non-
relativistic ~and decays before nucleosynthesis! the bound
~17! is changed toVf(1 MeV),0.27– 0.33.

D. Scalar fields at late time and fine-tuning

In modifications of standard inflationary flat cosmologi
@15–17# involving a contribution from a scalar field whic
have been considered to date, attention has been focu
exclusively on the case that the scalar field contributes
nificantly only at recent epochs, at the earliest well after
transition to matter domination. The main reason for this
that one of the motivations for many models has been
produce a contribution at late times which scales slower t
matter and dominates asymptotically, producing effects v
similar to that of a cosmological constant. In this case th
is unavoidably the same sort of tuning as involved in
cosmological constant model: One requires an initial ene
density in the scalar field which is characterized by the
ergy density in the universe at recent epochs.

Another kind of model which has been considered is t
in which the energy density in the scalar field scales l
matter asymptotically, implemented in an oscillating mo
of a sinusoidal potential. If the field lies initially away from
the minimum, it becomes important once the curvature of
potential is comparable to the expansion rate and initia
behave like a cosmological constant before rolling down
potential and scaling asymptotically like matter. This mod
also involves the same sort of tuning, since a small ene
scale must be introduced to single out this late time at wh
the scalar field becomes dynamically important. It has b
argued in@11# that there are particle physics motivations f
the introduction of such a potential with such a characteri
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scale, and that there is nothing ‘‘unnatural’’ about models
this type.

The special case we have discussed of the attractor in
exponential potential is quite different, simply because it
an attractor. In contrast the only attractor in the case o
field asymptotically scaling slower than matter is the pu
scalar field dominated cosmology, and the tuning referred
is just that required to make the coupled system of sc
field and matter approach this attractor just at the pres
epoch. For the models with an oscillating mode there is
attractor, and the tuning consists in fixing the energy den
in the scalar field to be comparable to that in matter whe
starts scaling like matter. With the attractor for matter a
radiation in the present case, the scalar field plus matte
radiation will always end up in this solution asymptoticall
In this paper we will take this solution to apply from th
beginning of our simulation of structure formation, deep
the radiation era at a red-shift ofz;107 when the tempera-
ture is ;100 eV. We now address the question as to w
range of initial conditions on the scalar field in the ea
universe will give rise to this behavior. In the course of th
analysis we will also determine what sorts of initial cond
tions are compatible with the late entry~in the matter era at a
red-shift of;70! to the attractor discussed in@17#.

E. Initial conditions in the early universe and the ‘‘self-tuning’’
scalar field

The assessment of what are ‘‘natural’’ initial condition
for a scalar field in the early universe requires of cours
particular framework within which to address the questio
What we need to determine is essentially just the kinetic
potential energy in the scalar field at some early time rela
to that in radiation~and therefore matter!. Given that we are
working in the context of inflation-motivated flat homog
neous cosmologies~and will assume Gaussian adiabatic pe
turbations of the type produced by inflation! we assess the
question within this framework. The energy density in rad
tion is then determined by how the universe is reheated a
inflation. We consider both the usual scenario for reheat
by decay of the inflaton and then an alternative scenario
troduced in@44#. The reason for our detailed analysis of th
second non-standard case will become clear below.

First consider the standard reheating scenario. We s
pose there is an inflaton field and the scalar field with
exponential potentialVoe2lf/M P with l.2 ~i.e. with the
attractor in the radiation/matter epochs which we will co
sider!. Let us consider a typical inflationary model e.g. ch
otic inflation. The simplest and most natural assumption
the relative energy densities at the onset of inflation is

1

2
ḟ2;V~f!&Vin f ~18!

whereVin f is the energy density in the inflaton. We make t
latter assumption since it is required for the onset of infl
tion. The dynamics of the two fields are then described
Eqs.~2!–~4!, but withrn now the total energy of the inflaton
andn a function of the inflatonn56(12j in f), wherej in f is
3-7



ta
ab
to

ll

l t
fla
o
o
e
l-

a

ds

c-

n-
to

pi
n
fla
is
fl

or
a

c
-

th

r i
i

s
ng
on
rg
w
ll
r
la
in

p-
si
e

be-
eat
ure
leo-

u-
case
e
al

n a
be

ion

by
sed

lay
or
oted
e
the

e

of
; in
pos-

ar
ssi-
leo-

gy

nel
.
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the ratio of the potential energy of the inflaton to its to
energy. For the same reasons as in the case discussed
when rn describes matter or radiation, there is an attrac
solution given by Eq.~9! with n56(12j in f) ~assumingn
changes slowly which is the case for slow-roll inflation!. The
energy in the scalar field scales so slowly because its ro
strongly damped by the inflaton, with Eq.~9! specifying the
exact ratio of energies at which the damping slows the rol
give precisely the same scaling as for the inflaton. In in
tion driven by an exactly constant energy density, this rati
zero and just represents the asymptotically approached s
tion in which the scalar field rolls away to an arbitrarily larg
values of the field after an arbitrarily long time. In any rea
istic model of inflation however the inflation must roll in
non-trivial potential in order to exit from inflaton andj in f

Þ1. For example, in chaotic inflation in a potential;f in f
4 ,

one has, in the slow-roll inflationary regime,n
5 8

3 (M P /f in f)
2. Once inflation commences, say atf in f

5f in f
o , the energy in the scalar field will be driven towar

Vf
o 5

no

l2 5
8Vf

m

9 S M P

f in f
o D 2

'
Vf

m

9Ne
~19!

whereVf
m is the fraction of the energy density in the attra

tor in the matter era, andNe'
1
8 (f in f

o /M P)2 is the number of
e-foldings of inflation. As the inflaton rolls down the pote
tial n increases and the fraction of energy in the attrac
grows.

Starting from initial conditions like Eq.~18! the roll of the
scalar field is very rapidly over-damped due to the ra
red-shifting of its initial energy density. It will always the
scale much slower than it would in the absence of the in
ton, with j'1. In the next section we will see that this
enough to ensure that its energy density relative to the in
ton will never drop substantially below that in the attract
~The transient with sub-dominance we observe in that c
results from the field having initially evolved without thern
component playing any role for a long period.! Without ana-
lyzing in detail how precisely the energy density can tra
the ~growing! attractor value during inflation, we thus con
clude that the fraction of the energy in the scalar field at
end of inflation will be bounded below byVf

o as given by
Eq. ~19!.

From Fig. 3~and our previous discussion of Fig. 1! we
see that this conclusion is enough to establish that, afte
flation, the attractor for the scalar field in the radiation dom
nated epoch is approached within a few expansion time
the end of inflation. When the inflaton starts oscillati
and/or decays it begins to scale like matter or radiati
while the scalar field remains overdamped and its ene
almost constant until the attractor is attained. In Fig. 3
assume an abrupt transition from inflation with essentia
constant energy to radiation type scaling at scale factoa
51, and take the initial fraction of the energy in the sca
field to be 331024. The energy density approaches that
the attractor bya;10, and then oscillates about it as it a
proaches it asymptotically. Without further detailed analy
it is clear that for a typical inflationary model, in which th
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reheat temperature is at most a few orders of magnitude
low the GUT scale, the attractor will be approached to gr
accuracy not only by the time scales relevant to struct
formation, as we assume below, but also long before nuc
synthesis.

Late entry into the attractor for the scalar field, in partic
lar late in the matter dominated epoch as assumed in the
of this type treated in@17#, is therefore certainly not what on
would expect from typical inflationary models with the usu
method of reheating. Inflation is however not embodied i
specific model or set of models, and it would certainly
possible~and easy to see how! to devise a model in which
the energy density in the scalar field at the end of inflat
could be tuned to any required value.

Given that the attractor solution is typically established
nucleosynthesis, one must satisfy the constraint discus
above. Converting Eq.~17! to one on the contribution from
the scalar field at late times~in the matter dominated epoch!
gives2

Vf,0.120.15 or l.5.524.5. ~20!

It is because this quantity would seem to be too small to p
any important cosmological role that this kind of attract
solution has been disregarded by the authors who have n
these solutions.3 That this is not in fact the case we will se
in greater detail in the later part of this paper. Because

2The upper bound here which corresponds to the analysis of@41#
is actually given explicitly in this form~for the exponential attrac-
tor! in @42#.

3Ratra and Peebles@15# give this explicitly as the reason for th
attractor solution model being ‘‘phenomenologically untenable’’~p.
3416!. Wetterich in@19# considers the homogeneous cosmology
the case in which the exponential field dominates at late times
order to satisfy the nucleosynthesis constraint he discusses the
sibility of late entry brought about by a tuning of the initial scal
energy density to an appropriately small value, and also the po
bility that l, rather than being constant, decreases between nuc
synthesis and late times.

FIG. 3. In the left panel we plot the evolution of the ener
density in the scalar field (rf) with l54 and in the remaining
matter as a function of scale factor~the units are arbitrary!, in the
case that the scalar field is initially sub-dominant. In the right pa
we plot the evolution of the fractional density in the scalar field
3-8
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
contribution is important for a long time it can have just
significant an effect as a larger contribution which plays
role only at late times.

The initial motivation for our detailed study of this mod
was not, however, the realization that the attractor mi
consistently be established by nucleosynthesis for cos
logically relevant cases. Rather our starting point was
observation that there are interesting and viable cosmolo
in which scalar field energy in a rapidly scaling mode cou
dominate over radiation in the very early universe, and t
in the case that this field is an exponential of the type
evant to late time cosmology, there may be, as shown in
1 a transient period between the two epochs~of domination
by the scalar field, and the late time attractor! lasting many
expansion times in which the scalar field energy is ne
gible. If this transient period includes nucleosynthesis
constraint~20! would not apply. We now discuss this mod
and examine how the time of entry into the attractor depe
on the parameters in the model.

F. Late entry in an alternative model of reheating

An epoch dominated by a scalar field in a mode scal
faster than radiation~or kination @25#! comes about by con
struction in an alternative theory of reheating suggested
@44#. Instead of rolling down to the minimum of a potentia
oscillating and decaying, as envisaged in the standard reh
ing scenario, the inflaton field can roll into a steeper poten
supporting a mode scaling faster than radiation~i.e. an expo-
nential withl.2 or steeper!. Rather than being, as is ofte
stated, completely ‘‘cold and empty’’ at the end of inflatio
the universe contains a component of radiation created
ply by the expansion of the universe~with energy density
;H4!. Although initially very sub-dominant relative to th
energyrf in the scalar field (H4/rf;rf /M P

4 ) a transition
to a radiation dominated cosmology will take place at so
subsequent time since the radiation red-shifts away slo
than the energy in the scalar field.

We restrict ourselves to the case that the relevant fiel
the simple exponential withl.2 ~i.e. Vf,0.75!. We
evolve the system of scalar field plus radiation and ma
forward in time from the end of inflation, at which time w
take the initial conditions to be specified by

V~fo!53M P
2Hi

2, ḟo50, r rad
o 5eHi

4, e51023

~21!

whereHi is the expansion rate at the end of inflation. T
initial condition assumes an abrupt end to slow-roll inflati
i.e. when the inflaton begins rolling in the region in whic
the potential is exponential, the potential energy is still dom
nant. The choicee51023 corresponds to the simplest es
mate of the initial radiation density, taking it to be dominat
by the radiation at the horizon scale at the end of inflat
~with ‘‘temperature’’ T;H/2p @45#, see@44,46# for a more
detailed discussion!. We will see below that the results w
are interested in here are not very sensitive to these cho

In this model with the exponential potential there are th
just two parameters:Hi , the expansion rate at the end
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inflation, andl ~or, equivalently,Vf[3/l2 in the attractor
in matter domination!. These entirely specify the pos
inflationary homogeneous cosmology, which evolves, as
lustrated in Fig. 1, from the scalar field dominated pha
through a transient into the late time attractor. What we w
to determine here is the time at which the attractor is
proached as a function ofHi , and the range of paramete
for which the model is compatible with nucleosynthesis.

The results, which are summarized in Fig. 4, can be
derstood after some closer examination of the solutions.
first feature to note is that the nucleosynthesis constra
denoted by the hatched region, allows a range ofHi at given
Vf which is ~i! only bounded below forVf,0.15, ~ii !
bounded above and below forVf.0.15 in a range which
pinches off asVf→0.5, so that for larger values ofVf there
is no parameter space in the model compatible with nuc
synthesis.

This can be understood as follows. The lower bou
comes from the requirement that the initial regime of sca
field dominance end sufficiently long before nucleosynthe
In its initial phase the scalar field approaches rapidly a m
in which it scales approximately as 1/a6 for Vf,0.5 @or as
given by Eq.~8! for Vf,0.5 (l.A6)#. In order that the
radiationr rad

i come to dominate by the time its temperatu
(T;Hiai /a) corresponds to that at nucleosynthesis (Tns
~Tns;1 MeV!, this means@from Eq. ~21!# that

Hi.M PS Tend

M P
D 1/2S 3

e D 1/4

'107 GeV ~22!

whereTend is defined as the temperature at which the sca
field energy becomes equal to that in the radiation, and
took Tend53 MeV to obtain the numerical value. The high
value of the lower bound in Fig. 4 results from the fact, sin
our initial conditions are still inflationary, the scalar fie

FIG. 4. Reheating by kination in a simple exponential potent
The solid region is that excluded by nucleosynthesis constra
The solid lines~dash-dot, dotted! show the models for which the
attractor is established at the beginning of structure formation~mat-
ter domination, today!.
3-9
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takes a short time to attain the rapidly scaling behavior
sumed in deriving Eq.~22!. The increase of the lower boun
with Vf is explained in the same way—the transition to t
1/a6 scaling takes longer as the potential flattens~as l de-
creases!. From Eq.~22! we also can see quantitatively th
weak dependence one.

As we observed in Fig. 1 the scalar field dominance
followed by a transient period in which it is very sub
dominant, before approaching the late-time attractor. The
per bound onHi which appears atVf50.15 is just the re-
quirement that, forVf.0.15 @using the weaker limit of the
bound in Eq.~17!#, this period lasts until after nucleosynth
sis. This gives an upper bound because the transient
earlier according as the first phase of scalar field domina
does. In Fig. 5 we see the evolution of the fraction of t
energy density as a function of temperature for various
ferent Hi . For Hi51012 GeV the nucleosynthesis bound
violated because we enter the attractor too early; forHi
5108 GeV it is violated because we exit the first phase
late. Why the allowed range ofHi ‘‘pinches off’’ as we go to
Vf50.5 is that the duration of the transient decreases as
approach this value. This can be seen clearly from Fig

FIG. 5. The fractional energy density as a function of tempe
ture for Vf50.3 and three values ofHi .
02350
s-

s

p-

ds
ce

f-

o

e
6

which shows, forV50.1 ~left panel! and V50.5 ~right
panel! the temperatureTend ~when the scalar field energ
first equals that in the radiation! and atTatt , when the attrac-
tor is established. This behavior can be understood by lo
ing back to the attractor solutions~8!. In the late time attrac-
tor the parameterj5V(f)/rf must reach a certain
determined value; as indicated by Eq.~8! the valuel5A6
separates two quite distinct regions in whichj behaves quite
differently. Forl,A6 the rn50 attractor tends to a finite
value; in the steeper potential withl.A6 the potential en-
ergy ‘‘runs away’’ faster andj decreases rapidly toward
zero. As long asj'0 the scalar energy continues to sca
away as 1/a6, and it may take a long time for the kineti
energy to catch up again on the potential energy~which es-
sentially stops decreasing once the field’s roll is damped
the radiation or matter!. The large ‘‘undershoot’’ and long
period of sub-dominance of the scalar energy thus res
from the fact that the exponential field withl.A6 evolves
for a long time damped only by its own energy densi
which allows the field to run away so fast that the poten
energy decreases enormously. On the other hand foV
50.6 (l5A5) the scalar field in the first phase follows th
rn50 attractor~8! with j55/6, and only a little adjustmen
is needed to find the late time radiation dominated attrac
with j52/3. The nucleosynthesis constraint is therefo
never satisfied in this case.

Also shown in Fig. 4 are the curves corresponding
‘‘entry’’ to the attractor at different temperatures—at 100 e
~solid line!, at matter-radiation equality~dash-dot line! and
today~dotted line!. The undashed region lying to the right o
the first of these lines corresponds to the parameter space~for
this model! we will consider in the rest of this paper, whic
is consistent with nucleosynthesis and with our assump
of the validity of the attractor with Eq.~9! as our homoge-
neous solution. The line corresponding to re-entry at nucl
synthesis is not given, but one can infer that it would ma
out a substantial part of this region~bounded by the solid
line!, which corresponds to entry into the the attractor af
nucleosynthesis but prior toT5100 eV. There is also a re
gion, bounded by the first and third line, which we do n
describe and which might be of relevance to late time c
mology. The region to the left of the dotted line correspon

-

ed line is
FIG. 6. The solid line is the temperature at which the scalar field energy density first equals that in the radiation and the dash
the temperature at which the attractor is established.
3-10
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to regions where the scalar field would still be irreleva
today, and therefore the existence of the exponential field
no implications for late time cosmology.

One can also determine from Fig. 4 that, for entry in t
matter dominated epoch, the largest possible value ofVf in
this model is approximately 0.3. This places an upper bo
on what contribution to the energy density might be expec
to come from this type of solution, if one is not to use t
sort of tuning which, as we have emphasized, the model
the merit of being able to avoid.~In particular we note tha
we cannot obtain the caseVf50.6 of @17#.!

Is there a ‘‘natural’’ value forHi within the allowed
range?Hi is related to the inflaton energy at the end of
flation by r i;(HiM P)2, and the range Hi

P@108,1016# GeV corresponds approximately tor i
1/4

P@1013,1017# GeV. With a more developed model with
full ansatz for the part of the potential which supports infl
tion, one can relateHi to the amplitude of density perturba
tions, and require that they match those observed in
CMBR by COBE. The simplest calculation~for a very flat
inflaton potential! would give r i

1/4;1016 GeV, or Hi

;1014 GeV. However the result is not model independe
In @46# a particular model is constructed in whichHi can be
as low as the value at which the phase of scalar domina
ends just before nucleosynthesis. This parameter range
the model has the particular interest that it leads to q
radical modifications of physics at the electroweak sca
since the expansion rate can be up to five order of magni
greater than in the radiation dominated case atT
;100 GeV.

In the rest of this paper we study only cosmology start
from T;100 eV. We will assume the existence of th
simple exponential, and take the homogenous cosmo
about which we perturb to be given exactly by the attracto
this initial time.l is thus the sole adjustable parameter ad
tional to those of SCDM. To allow the simplest direct com
parison of structure formation in our model with SCDM w
take the fiducial valueVbh250.0125 for the baryon fraction
In the present study we will not consider the effect of va
ing this parameter. If we were to do so we would have to
more definite about our assumptions about nucleosynth
since the allowed range ofVbh2 ~or equivalently baryon to
photon ratioh! depends on the expansion rate at nucleos
thesis. The canonically quoted range, which correspond
that consistent with observations for the caseNn53, narrows
as the expansion rate at freeze-out increases~since the frac-
tion of helium produced increases as the expansion
does!. As the expansion rate reaches its upper bound, thh
required for consistency with observations is pushed towa
its lower bound. Having used the constraints of struct
formation to determine the best value ofVf in our model,
we will comment again in our conclusions on the consiste
of entry to the attractor prior to nucleosynthesis.

III. EVOLUTION OF PERTURBATIONS

We now analyze the evolution of perturbations in th
cosmology. The structure of this section is as follows. W
first write down the equations for the unperturbed cosmolo
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in conformal coordinates which we use in the rest of t
paper. For completeness, in Sec. III B we present the eq
tions for the evolution of cosmological perturbations in t
synchronous gauge. In Sec. III C we derive analytic solutio
to the evolution of perturbations on sub- and superhoriz
scales in the radiation and matter era. It becomes appa
that they are very similar to those in a cosmology in whi
part of the matter content is in a massive neutrino~MDM !. It
is thus instructive to identify the key differences between o
scenario and the MDM model, and we do so in Sec. III D.
Sec. III E we look at the evolution of perturbations in th
radiation and how it affects the temperature anisotropy
gular power spectrum.

A. Equations of motion and initial conditions
for the background

Normalizing the scalar field in units ofM P and defining
the origin of F so that the scalar potential isM P

4e2lF, the
equation of motion for the unperturbed background sca
field is, in conformal coordinates for whichds25a2@2dt2

1d i j dxidxj #,

f̈12Hḟ2a2lM P
2 exp~2lf!50

H 25
1

3M P
2 a2~rf1rM ! ~23!

wherea is the scale factor,H is the conformal Hubble fac-
tor, dots denote derivatives with respect to conformal timet,
rM is the energy density in matter and radiation, and

rf5M P
2 F 1

2a2 ḟ21M P
2 exp~2lf!G . ~24!

In the attractor~9! we have

rK

rf
5

n

6
,

rf

r total
5

n

l2 r total53M P
2 SHa D 2

~25!

whererK5(1/2a2)ḟ2 is the kinetic energy density off. We
use these to fix the initial conditions onf and ḟ to be

ḟ5
n

l
H, f52

1

l
logS 4n~62n!H 2

a2l2 D ~26!

wheren54, since we begin the evolution deep in the rad
tion dominated epoch.

B. Linear perturbation theory

We use the notation and results of Ma and Bertschin
@47#, with the modifications brought about by the addition
a scalar field; we present the full set of equations but we re
the reader to@47# and@48# for details on how to solve them
The formalism we work in is the synchronous gauge wh
ds25a2@2dt21(d i j 1hi j )dxidxj #. Restricting ourselves to
scalar perturbations, the metric perturbations can be par
etrized as
3-11
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hi j 5E d3keik•xF k̂ i k̂ jh~k,t!1S k̂ i k̂ j2
1

3
d i j D6h~k,t!G .

~27!

Pressureless matter~cold dark matter! has only one non-zero
component of the perturbed energy-momentum tensor:

dT0
052rcdc ~28!

and it evolves as

ḋc52
1

2
ḣ. ~29!

Radiation can be characterized in terms of a tempera
brightness function,DT(k,n̂,t) and polarization brightnes
DP(k,n̂,t). These brightness functions can be expanded
Legendre polynomials ofk̂•n̂:

DT~k,n̂,t!5(
l 5o

`

~2 i ! l~2l 11!DTl~k,t!Pl~ k̂•n̂!

DP~k,n̂,t!5(
l 5o

`

~2 i ! l~2l 11!DPl~k,t!Pl~ k̂•n̂!. ~30!

Defining the density, velocity and shear perturbations by

dg5DT0 , ug5
3

4
kDT1 , sg5

1

2
DT2 ~31!

the perturbed energy-momentum tensor for radiation is

dT0
052rgdg

ik idTi
05

4

3
rgug

dTj
i 5

1

3
rgdg1S j

i

S k̂ i k̂ j2
1

3
d i j DS j

i 52
4

3
rgsg . ~32!

Thomson scattering couples the radiation and baryons,
the latter have a perturbed energy momentum tensor:

dT0
052rbdb

ikidTi
05

4

3
rgub . ~33!

The evolution equations for radiation are

ḋg52
4

3
ug2

2

3
ḣ ~34!

u̇g5k2S 1

4
dg2sgDanesT~ub2ug!
02350
re

in

nd

2ṡg5
8

15
ug2

3

5
kDg31

4

15
ḣ1

8

5
ḣ

2
9

5
anesTsg1

1

10
anesT~DP02DP2!

ḊTl5
k

2l 11
@ lDT~ l 21!2~ l 11!DT~ l 11!#2anesTDTl

ḊPl5
k

2l 11
@ lDP~ l 21!2~ l 11!DP~ l 11!#

1anesTFDPl1
1

2
~DT21DP01DP2!S d0l1

d5l

5 D G
and for baryons

ḋb52ub2
1

2
ḣ

u̇b52Hub1RanesT~ug2ub!.
~35!

sT is the Thomson scattering cross section,ne is the electron
density, andR54rg/3rb . The evolution equations for mass
less neutrinos can be obtained from those for radiation
settingDP5R5sT50 andT→n.

The perturbationw in the scalar field about the homoge
neous solutionf has the equation of motion

ẅ12Hẇ2¹2w1a2V9w1
1

2
ḟḣ50 ~36!

and gives rise to perturbations in the energy momentum
sor which are

a2dT0
052ḟẇ2a2V8w

2a2] idTi
05ḟ¹2w ~37!

a2dTi
i53ḟẇ23a2V8w.

Finally we have the perturbed Einstein equations

k2h2
1

2
Hḣ54pGa2dT0

0

k2ḣ54pGa2i k̂ idTi
0

ḧ12Hḣ22k2h528pGa2dTi
i

3-12
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ḧ16ḧ12H~ ḣ16ḣ !22k2h5124pGa2S k̂ i k̂ j2
1

3
d i j DS j

i .

~38!

Having defined the evolution equations for the pertur
tions, all that remains to be specified are the initial con
tions. We are working within the context of inflation an
consider an initial set of perturbations of the type generica
predicted by the simplest such scenarios: We assum
Gaussian set of adiabatic perturbations with a scale invar
power spectrum. This completely defines the statistical pr
erties of the ensemble. Putting the adiabatic perturbation
the superhorizon growing mode gives@47#

dg52
2

3
C~kt!2

dc52
1

2
h5db5

3

4
dn5

3

4
dg

ug5ub5
1414Rn

2314Rn
un52

1

18
~k4t3!

sn5
4C

3~1514Rn!
~kt!2

h52C2
514Rn

6~1514Rn!
C~kt!2

~39!

and, as we will see in more detail below,

dc5
5l

4
w ~40!

~andC is the overall normalization!. All the remaining per-
turbation variables are set to zero initially.

C. Asymptotic solutions to the evolution of density
perturbations

We can arrive at a simple understanding of how pertur
tions evolve in this scenario by considering the simplifi
case in which there is only cold dark matter, radiation a
the scalar field. The evolution equations are then

d̈c1Hḋc2
3

2
H 2~Vcdc12V rd r !22ḟẇ1a2V8w50

~41!

d̈ r1
1

3
k2d r2

4

3
d̈c50

~42!

ẅ12Hẇ1k2w1a2V9w2ḟḋc50
~43!

whereVX5rX /r tot (X5C,g,n,f).
02350
-
i-

y
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Consider first the superhorizon evolution. In this limit w
set k250 and ~assuming adiabatic initial conditions a
above! dc5 3

4 dg . Using the scaling solutions for the homo
geneous mode of the scalar field, in the radiation era
have:

d̈c1
1

t
ḋc2

4S 12
4

l2D
t2 dc2

8

lt
ẇ2

4

lt2 w50

ẅ1
2

t
ẇ1

4

t
w2

4

l
ḋc550.

~44!

These equations are solvable and givedc and w as a linear

combination oft2, t22 andt (216A215164/l2/2). Taking only
the coefficient of the growing mode to be non-zero, we fi
~as stated above! dc5(5l/4)w5At2. On superhorizon
scales in the matter era we have

d̈c1
2

t
ḋc2

6S 12
3

l2D
t2 dc2

12

lt
ẇ2

18

lt2 w50

ẅ1
4

t
ẇ1

18

t
w2

6

lt
ḋc550

~45!

which can be solved to givedc andw as a linear combination

of t2, t23 and t (266A27112/l2/4). With the assumption
therefore of initial adiabatic perturbations in the growin
mode in the radiation era, we havedc5(28l/6)w}t2. We
conclude, therefore, that the evolution of perturbations
superhorizon scales are exactly the same as in a scalar
free universe. This is just a manifestation of the fact that,
very large scales, the dominant interaction is gravitation
which is blind to matter type.

Next we turn to the subhorizon evolution of perturbation
i.e. kt@1. Consider first the radiation era. Assuming that t
gravitational feedback is unimportant on small scales,
have

d̈c1
1

t
ḋc2

3S 12
3

l2D
t2 dg2

8

lt
ẇ2

4

lt
w50

d̈g1
1

3
k2dg.0

ẅ1
2

t
ẇ1k2w.50.

~46!

The last two equations are easy to solve, givingdg

}e6( ik/))t andw}(1/At)J1/2(kt),(1/At)N1/2(kt) whereJm
and Nm are spherical Bessel functions. Clearly these ha
little effect ondc and one can drop these terms from the fi
equation to getdc}C1 ,log t. The subhorizon evolution in
3-13
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FIG. 7. On the left panel we plot the evolution ofdc for two wave numbers in a sCDM cosmology~dashed line! and in a universe with
Vf50.1. In the right panel we plotne f f for k50.1 Mpc21 for the same cosmology. The upper~lower! dotted line is the asymptotic matte
era solution in the sCDM (Vf50.1) case.
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the radiation era is thus essentially the same in a univ
with and without a scalar field.

In the matter era on sub-horizon scales the equations
duce to

d̈c1
2

t
ḋc2

6S 12
16

3l2D
t2 dc2

12

lt
ẇ2

18

lt2 w50 ~47!

ẅ1
4

t
ẇ1k2w2

6

lt
ḋc50.

~48!

To a first approximation we can discard the gravitatio
feedback term in Eq.~48!. The solutions to this wave equa
tion are w}(1/t3/2)J3/2(kt),(1/t3/2)N3/2(kt) i.e. oscillatory
solutions with decaying amplitudes. Clearly this will contri
ute little to the growing mode and we can drop the last t
terms in Eq.~47!. The equation is easy to solve and, usi
Vf53/l2 we find the growing mode solutiondc

}t21(5/2)@211A12(24/25)Vf#. The subhorizon growing mode i
therefore suppressed relative to that in a scalar field
universe.

Having derived these approximate forms we now hav
rough idea of what the mass variance per unit in lnk is,
where this is defined as

D2~k!5
k3

2p2 ^udc~k!u2&. ~49!

One has@defining 2e55„211A12(24/25)Vf…#
02350
se

e-

l

o

e

a

D2~k!}5
k4 if k<

2p

t0
,

k422e if k<
2p

teq
,

const1 ln k if k.
2p

teq
.

~50!

It is instructive to see the evolution of density perturb
tions for a few wave numbers, one that comes into the h
zon at around radiation-matter equality (k50.1 Mpc21) and
one that comes in during the radiation era (k51.0 Mpc21)
for Vf50.1. They are compared in Fig. 7 to density pertu
bations in a universe with no scalar field and it is clear t
there is a suppression of growth after horizon crossing. A
other useful quantity to plot is the dimensionless growth r
ne f f5(t/dc) ḋc . For a scalar field free universe we kno
that deep in the radiation or matter erane f f52. For the scalar
field cosmology we have deep in the radiation erane f f52
but deep in the matter erane f f522e. In Fig. 7 we plotne f f
for k50.1 Mpc21 and can clearly see the differen
asymptotic regimes. Note that there is a long transient to
matter era solution in both the cosmologies considered.

D. A comparison with the evolution of perturbations
with mixed dark matter

By analyzing the simplified system we have been able
get an idea of what to expect from solving the full set
perturbation equations. We found that the presence off in
the matter era suppressed the growth of perturbations b
easily determined factor. The behavior of this system is v
much like that of an MDM cosmology. There one has,
addition to pressureless matter, radiation, baryons and m
less neutrinos, a component of matter in two species of m
sive neutrinos with masses,mn of order a few eV. The evo-
lution of the energy density is similar to that of the sca
3-14
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
field in the present case. Deep in the radiation era, th
neutrinos behave as a massless species and therefore th
ergy density scales as radiation (}1/a4), while deep in the
matter era they behave as non-relativistic matter which sc
as 1/a3. Unlike the scalar field case, where the transiti
between the two regimes is determined by the transition fr
radiation to matter domination the transition in the case
the neutrinos occurs when 3kBTn.mn , wherekB is the Bolt-
zmann constant andTn is the massive neutrino temperatur
This corresponds to redshiftz.1.83105 mn /30 eV. In Fig.
8 we plot the evolution of the energy densities in the ex
component in each of the two cosmologies. The energy d
sity in the scalar fieldf follows the transition very tightly
while the energy density in neutrinos becomes n
relativistic after radiation-matter equality. In the latter ca
there is a short period of time after equality when the m
sive neutrinos contribute less to the energy density than
do asymptotically, and as a result the pressureless m
clumps more strongly for this period.

The correction to the exponent of the growing mode in
matter era is also very similar in the two models. In@49# it
was shown that the correction for MDM isen5 5

2 @21
1A12(24/25)Vn#, exactly the same as we have just d
rived for the scalar field cosmology. The reason is just t
the sole assumption in the derivation of this result was t
the exotic form of matter~the f field in our case and the
massive neutrinos in the MDM case! does not cluster below
a certain scale. There is however again a small but impor
difference. Forw, the scale below which a given mode do
not cluster is the horizon, i.e.}1/t. Once it comes into the
horizon it neverclusters. For the massive neutrino perturb
tions this is not the case. The free-streaming scale, when
neutrinos are non-relativistic iskf s58a1/2(mn/10 eV)h
Mpc21, which grows with time. Perturbations of a given
wave numberk are damped whilek.kf s , but as soon askf s
becomes small enough they behave like perturbations

FIG. 8. The evolution of the fractional energy density inf
~dashed line! for a h50.5 universe withVf50.1, Vc50.85 and
Vb50.05 and the fractional energy density in two species of m
sive neutrinos~solid line! with Vn50.1 ~massive!, Vc50.85 and
Vb50.05.
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pressureless matter and grow. So perturbations in an in
mediate range of wave numbers, despite suppression du
a finite period of time, catch up on the pressureless ma
perturbations and contribute to gravitational collapse. T
effect can be seen when we comparene f f for both these
scenarios fork51 Mpc ~i.e. a mode that comes into the ho
rizon at radiation-matter equality!. In Fig. 9 we see that,
while in thefCDM casene f f→e, in the MDM case, pertur-
bations in massive neutrinos start to grow as pressure
matter andne f f→2.

A further subtle difference between the two scenarios
be seen at the transition between super- and subhorizon
havior in the radiation era. As shown above, the subhori
evolution of dc is } constant, lnt. The initial amplitude of
these solutions is set by the amplitude at horizon cross
i.e. when kt.1. In the MDM case, the analysis is als
simple. The neutrinos are effectively massless and there
behave exactly like radiation. So again the subhorizon e
lution of dc is } constant, lnt. However the transition to
subhorizon evolution happens at smaller scales than for
w. Indeed from the equations we see that the transit
should happen whencskt.1 ~wherecs

25 1
3 !. A simple way

of seeing this is by looking at the source term f
the dc in the radiation era, 4S(k,t)5 d̈c1(1/t) ḋc
5]t(tne f f)(dc /t2). On superhorizon scalesS(k,t)51, and
the time when this quantity starts to deviate from a const
indicates the transition from super- to subhorizon behav
We have

S~k,t!5
3

4
H 2~Vgdg1Vndn! ~51!

in the MDM scenario where we have grouped the mass
and massive neutrinos together, and we have

S~k,t!5
3

4
H 2~Vgdg1Vndn!1

2

lt
ẇ1

1

2t2 w ~52!

-

FIG. 9. We plot the evolution ofne f f for k50.1 Mpc in a MDM
cosmology~dashed line! and in a universe withVf50.1 ~solid
line!. The dotted line is the asymptotic matter era solution,e.
3-15
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PEDRO G. FERREIRA AND MICHAEL JOYCE PHYSICAL REVIEW D58 023503
in the fCDM case. In Fig. 10 we look at the time evolutio
of a mode withk55h Mpc21 and see that transition to sub
horizon evolution occurs earlier in the scalar field scena
than in the MDM scenario. As a resultdc stops growing
earlier and there is an additional small, but non-negligi
suppression factor in the radiation era.

In Fig. 11 we compare the evolution ofdc for these two
models. It is evident that the suppression ofdc in the scalar
field model starts much earlier than in the MDM model. Th
is also clear when we comparene f f in the two cases.

In conclusion, all these effects we have just discus
combine to give additional suppression in thefCDM model
as compared to the MDM model.

E. The temperature anisotropy angular power spectrum

To complete our analysis of the evolution of perturbatio
in this cosmology, we shall now look at the effect of th
scalar field on the cosmic microwave background. The te

FIG. 10. The evolution of S at horizon crossing (k
55h Mpc21) for the scalar field cosmology~solid line! and for the
mixed dark matter cosmology~dashed line!.
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perature anisotropy measured in a given direction of the
can be expanded in spherical harmonics as

DT

T
~n!5(

lm
almYlm~n!. ~53!

We work again in the framework of inflationary cosmologi
so thealms are Gaussian random variables which satisfy

^al 8m8
* alm&5Cld l 8 ldm8m . ~54!

The angular power spectrum,Cl , contains all the informa-
tion about the statistical properties of the cosmic microwa
background. One can relate it to the temperature brightn
function we derived above through

Cl54pE dk

k
uDTl

~k,t0!u2 ~55!

where we assume again that we are considering the sc
invariant, inflationary scenario.

In Ref. @50#, the authors presented a useful simplificati
with which one can understand the various features in
angular power spectrum. We shall present a simplified v
sion, in the synchronous gauge and use it to understand
effect Vf will have on theCls. To a reasonable approxima
tion we can write@definingx5(ḣ16ḣ)/2k2#

DTl~k,t0!5F1

4
dg12ẋG~k,t* ! j l„k~t02t* !…1Fub

k2 1xG
3F l

2l 11
j l 21„k~t02t* !…

2
l 11

2l 11
j l 21„k~t02t* !…G1E

t
*

t0
„ḣ~k,t!

1ẍ~k,t!…j l„k~t02t!… ~56!

assuming instantaneous recombination att* ~we do not con-
sider Silk damping in this discussion!.
r
el we plot
FIG. 11. In the left panel we plot the evolution ofdc (k51 Mpc21) for the scalar field cosmology~solid line! and the mixed dark matte
cosmology. In the center panel we plot the suppression factor relative to the standard cold dark matter scenario. In the right pan
the dimensionless growth rate for these two modes.
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In Fig. 12 we plot the angular power spectrum of t
CMB for a few values ofCl . Comparing to a SCDMCl we
see two effects. First, forl .200 we see that the peaks a
slightly shifted to smaller scales. In@51# a clear analysis was
presented which explains the location of the peaks in
MDM model scenario, and we will now see that the sa
effect is present here,albeit in the opposite direction. The
anisotropies at these scales are generated primarily att* and
for the purpose of this discussion we can assume that the
term in Eq.~56! dominates. As shown in@50# the peak struc-
ture of this term is given by

1

4
dg12ẋ}coskrs~t* ! ~57!

where r s is the sound horizon in the baryon-photon flui
r s(t)5*0

t
„dt8/3@11R(t8)#…. Now one of the effects de

scribed in@51# and which we see here is that for a give
redshift ~during a period of time which contains the time
recombination!, r s is different in the presence of the scal
field than in its absence. This is to be expected as deep in
radiation era we now have three components contribut
the radiation~whose energy density is set byTCMB!, the
massless neutrinos~whose energy density is set byTn! and
the scalar field whose energy density is a constant fractio
the total energy density. Therefore, for a given redshift,
total energy density in the presence of the scalar field
larger than the total energy density in the absence of
scalar field. As a consequence the expansion rate wil
larger and the conformal horizon will be smaller. In Fig.
we plot the ratio of energy densities and the ratio of com
ing horizons as a function of scale factor. At recombinat
(a.1023), the conformal horizon~and consequently the
sound horizon! is smaller, and as seen in Fig. 12 the pea
are shifted to the right.

FIG. 12. The angular power spectrum of CMB anisotropies
different values ofVf . These power spectra are not normalized
COBE.
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Finally, the other effectVf has on the peaks is to boo
their amplitude. Let us assumecs

25 1
3 , i.e. we are deep in the

radiation era. As shown in the Sec. III C we can write

d̈g1
k2

3
dg5

4

3
d̈c ~58!

so the acoustic oscillations are sourced byd̈c . One finds that
this source is larger in the presence of the scalar field tha
its absence~see Fig. 14!. The increase in the amplitude o
this driving term will increase the amplitude indg and lead
to the increase by a few percent of the acoustic peaks of
angular power spectrum.

r

FIG. 13. The top panel shows the ratio of the total energy d
sity in a universe withVf50.1 to that in a scalar field free uni
verse. The bottom panel shows the ratio of conformal horizons

FIG. 14. A comparison of the source of acoustic oscillations
dg for k50.2h Mpc21 for SCDM ~dashed! andfCDM ~solid! with
Vf50.1 andH0550 km s21 Mpc21.
3-17
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IV. CONSTRAINTS FROM COBE AND LARGE SCALE
STRUCTURE

In the previous section we have discussed in some d
the evolution of density perturbations and temperat
anisotropies in thefCDM cosmology. This approximate
analysis indicated that results should be similar to those
the MDM model, except that there should be additional s
pression of power inD2(k) on small scales. Using the fu
results of our numerical evolution we now compare o
model with the observational constraints which meas
fluctuations on a wide range of scales. We first compare

FIG. 15. A comparison of the angular power spectra of tempe
ture anisotropies for five COBE normalized models with the curr
experimental situation. The models are sCDM in solid, (h5.5),
LCDM in long dash,~VL5.6, h5.65!, MDM in dotted, ~Vn5.2
andh5.5!, fCDM in dot-short dash,~Vf5.08, h5.5! andfCDM
in dot-long dash,~Vf5.12, h5.65!. All of them have Vbh2

50.0125.
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Cls to the COBE data and calculate the normalization of
perturbations model for differentVf . For completeness we
plot a selection ofCl compared to a compilation of data se
and other candidate theories. We then compareD2(k) with
the observationalD2(k) rendered in@7# from a compilation
of surveys. For this section we definefCDM1 to be a uni-
verse withVf50.08,H0550 km s21 Mpc21 andfCDM2 to
be a universe withVf50.12, H0565 km s21 Mpc21.

The past five years has seen a tremendous growth in
perimental physics of the CMB. Over twenty experimen
groups have reported detections of fluctuations in the C
and a rough picture is emerging of the angular power sp
trum. It is fair to say that the most uncontroversial and use
measurement that we have is that of COBE, which tells
that on scales larger than 10° the fluctuation are appr
mately scale invariant with aQrms518 mK. Measurements
on smaller scales seem to indicate a rise in the power s
trum, but a convincing constraint is still lacking. In Fig. 1
we present a compilation of measurements of@52# as com-
pared to twofCDM models and a few candidate rival mod
els. Clearly there is still is a large spread although an ove
shape is emerging.

In the previous section we described the effect thatVf
would have on theCls. For smallls the dominant effect to
note is the increase in power of the acoustic peaks relativ
the large-scale, scale-invariant plateau. The larger isVf , the
larger is the boost and therefore the smaller thels which are
affected. In practice it introduces an effective ‘‘tilt’’ in the
large angle power spectrum as can be seen in Fig. 16.
useful to quantify how good a fitfCDM Cls are to the
COBE data. The correct framework to work with is max
mum likelihood analysis. In@53# the authors have supplie
us with an efficient way of evaluating the likelihood of
given mode relative to purely scale invariant fluctuations.
the left panel we plot the likelihood of the best fit model as
function ofVf . There are two important things to note. Fir
the well known fact that, if one includes the quadrupole,
COBE data favors more tilted models and therefore a lar

-
t

FIG. 16. The left panel shows the smalll angular power spectrum for a family offCDM models. The models areVf50, 0.04, 0.08 and
0.12 in order of increasing ‘‘tilt.’’ The right panel shows the maximum likelihood of the best fit model as a function ofVf . We have fixed
h50.5 andVbh250.0125.
3-18
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
Vf . Secondly, the likelihood function forVf should be
very flat; indeed the dependence of the tilt onVf is very
weak. As explained in the previous section the effect ofVf
on theCls is of order a few percent and concentrated at la
ls. There will be little variation on COBE scales.

One of the key observational constraints for any class
models is the mass variance per unit interval in lnk as de-
fined in Eq. ~49!. This quantifies the amount of clusterin
over a range of scales. In@7# the authors compiled a series
surveys and attempted to extract what they believe to be
underlyingD2(k) of the linear density field. This involved
series of corrections: First, the assumption that the differ
samples were biased in different ways with respect to
underlying density field; secondly, that there are redshift d
tortions in the observed structures; and finally, that some
the structures have undergone non-linear collapse. This
correction is model dependent and in principal great c
should be taken in making definitive comparisons betw
our theoreticalD2(k) and that presented in@7#. In practice
we shall assume that possible corrections are small and c
pare them. In a future publication we shall analyze the n
linear features of this theory.

In Fig. 17 we plot a family of COBE normalizedD2(k)
with h50.5 andVbh250.0125. We clearly see the featur
described in Sec. III B, i.e. the larger theVf , the smaller the
k for which D2(k) departs from scale invariance. In the oth
panel we can also see how it differs from a MDM mod
with the same background cosmological parameters. For
same energy density in exotic matter component~i.e. f or
massiven! there is more suppression in thefCDM case.
Finally we see how it compares to the data of@7#. We find
that, for Vf in the range 0.08–0.12 we can match the d
with as good agreement as the MDM model and some o
candidate models. This is displayed in Fig. 18. In the follo
ing table we tabulate thex2 values~with 15 degrees of free
dom! of these models, in increasing goodness of fit.fCDM
is competitive with the best fit model of MDM.

x2
15

SCDM 103.96
LCDM 52.5
fCDM2 14.5
MDM 10.25
fCDM1 7.53

One can fitD2(k) for these models~to 10% in the range 0
<Vf<0.16! with:

D2~k!5D~k,Vf!D2~k!CDM

D~k,Vf!5~111.5Vf210Vf
2 !

3S 115k1.129514k2.259

1113107k2.259 D 1.15Vf
1.01

~59!

whereD2(k)CDM is the COBE normalized CDM mass var
ance, and contains all the dependence on remaining cos
logical parameters such asH0 andVb @54# ~c.f. @55,56#!.
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A useful quantity to work with is that characterizing th
mass fluctuations onRh21 Mpc scales

s2~R!5E
0

` dk

k
D2~k!S 3 j 1~kR!

kR D 2

. ~60!

In particular it has become the norm to compare this quan
at 8h21 Mpc with the abundances of rich clusters. It is pr
mature to use this constraint with our current understand
of fCDM. The best measurements of such abundances
volve an estimate of the number density of x ray clusters
a given surface temperature. To relate these temperatur
masses in an accurate way one has to rely on N-body si
lations of clusters. This has been done for a few cosmolog
and we can use the results they use as a rough guide but
should be taken with using such results at face value.
fact that we can fitD2(k) to the data of@7# is already strong
indication that we are on the right track. If we use the valu
of @57# we haves8.0.5– 0.8. A good fit tos8 is

s8~Vf!5e28.7Vf
1.15

s8
CDM ~61!

wheres8
CDM is the COBE normalized sCDMs8 . As would

be expected, for the range of values for which we get a g
agreement with@7#, we also match the cluster abundan
constraints.

Finally it is desirable to make a comparison with som
measure of small scale clustering at early times. In@58#, the
authors used a simple analytic estimate of the fraction
collapsed objects at redshiftz53 andz54 to show that for
Vn50.3, MDM models predict too little structure as com
pared to that inferred from the Lyman-a measurements@59#.
More recently in@60#, the authors considered a larger ran
of cosmological parameters and found that constraints fr
the Lyman-a systems could be sufficiently restrictive to ru
out a large range of models. From Fig. 18 we can see
fCDM should fare better than MDM on very small scale
This is easy to understand: We argued in Sec. III that eff
tiveness offCDM was mainly due to the fact that the scal
field free-streaming scale grows with time while the mass
neutrino free streaming scale decays with time. We then n
a larger amount of massive neutrinos to fit both COBE a
the cluster abundances in the MDM model than the amo
of scalar field infCDM. On much smaller scales~the scales
probed by Lyman-a systems! i.e. scales smaller than th
massive neutrino free streaming scale, perturbations
MDM should be more suppressed than infCDM. This
meansfCDM should fare better than MDM with regard t
the Lyman-a constraints. A preliminary check on our mod
can be done using the technique of@58#. In brief one can
make a conservative estimate that a fractionf gas of matter is
in gas at that time and set bounds on the amount of obj
with masses greater than 1010(12Vf)21h21M ( . Using the
Press-Schecter formalism one can then derive a bound:

erfcS 1.7

&s~R,z!
D .0.16h/ f gas, z53

erfcS 1.7

&s~R,z!
D .0.104h/ f gas, z54 ~62!
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FIG. 17. On the left panel we plot the dependence ofD2(k)5ds2/d ln k on Vf . For h5.5, Vbh250.0125 we show~in order of
decreasing amplitude! plots forVf50, .02, .04, .06, .08, .10 and .12. In the right panel we compare a family of MDM models~dashed, with
Vn50.04, 0.08 and 0.12 in order of decreasing amplitude! with a family of fCDM models~dashed, withVf50.04, 0.08 and 0.12 in orde
of decreasing amplitude!.
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where erfc is the complementary error function andR
50.1– 0.2 Mpc. ForfCDM in the range ofh and Vf that
we have been considering we find that iff gas51, these mod-
els are consistent with this constraint~see Fig. 19!. Note that
the MDM model already has serious problems with this c
servative constraint. If we consider a less a conservative c
straint and takef gas;0.1 as seems to be indicated by hydr
dynamical studies, thanfCDM is inconsistent with these
measurements. More detailed observations and modelin
Lyman-a systems will supply us with a very strong co
straint on this class of models.

FIG. 18. A comparison of the mass variance per unit interva
ln k, D2(k)5ds2/d ln k, for five COBE normalized models with a
rendition of the linear power spectrum from various data sets~cor-
rections for non-linearity, redshift distortions and biasing have b
introduced!. The models are sCDM in solid (h5.5), LCDM in
long dash~VL5.6, h5.65!, MDM in dotted ~Vn5.2 andh5.5!,
fCDM in dot-short dash~Vf5.08, h5.5! andfCDM in dot-long
dash~Vf5.12, h5.65!. All of them haveVbh250.0125.
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V. CONCLUSIONS

In the first part of this paper we gave the motivation f
considering the particular scalar field cosmology we ha
now studied in detail: The addition made to the stand
SCDM model does not involve any tuning of the type i
volved in other modifications, in that no energy scale ch
acteristic of the universe at recent epochs is invoked. T
form of the required potential is one which arises in ma
particle physics models, with values of the single free para
eter of the order required. Having analyzed the model a
determined the best fit to structure formation, we now fi
comment on these aspects of the model.

In Sec. II E we argued that, in typical inflationary mode
with the usual mechanism of reheating, one would expect
attractor solution to be established well prior to nucleos
thesis. In this case we should therefore compare our bes

n

n FIG. 19. The shaded region represents the allowed region
parameter space consistent with the Lyman-a constraints of@59#.
The solid hatched region corresponds to the values ofh and Vf

excluded forf gas51. The dotted hatched region corresponds to
values ofh andVf excluded forf gas50.1.
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COSMOLOGY WITH A PRIMORDIAL SCALING FIELD PHYSICAL REVIEW D58 023503
to the constraint from the latter, as given in Eq.~20!, which
is satisfied~clearly for the conservative bound, and marg
ally for the tighter one!. Further, in this case we need
check that the valueVbh250.0125 which is equivalent to
the baryon to photon ratioh1053.3 ~in units of 10210! is
within the allowed range at the corresponding expans
rate. This is not a question which is easy to answer sim
because most nucleosynthesis calculations give results
in terms of the range ofh10 allowed at the standard mode
expansion rate, or the maximum additional number degre
freedom allowed. For the conservative criteria@39,41# which
gave the weaker upper bound in Eq.~20! the allowed range
narrows fromh10P@1.65,8.9# at Vf50 to the lower bound
h1051.65 atVf50.15. Extrapolating the use of these crit
ria for a more restrictive case for which the required data
given in @42# ~i.e. the allowed range ofh10 is given as a
function of the energy density in an extra component! the
value h1053.3 would appear to be in the allowed range
Vf50.1. For a more restrictive set of nucleosynthesis c
straints a slightly lower value ofVbh2 might be required for
consistency.

In an alternative model of reheating~which is by con-
struction associated with the existence of this same typ
potential!, we saw that the time of re-entry to the attract
could be after nucleosynthesis, at a time which depends
both Vf and the other parameter in this modelHi , the ex-
pansion rate at the end of inflation. By making the assum
tion that the attractor is established prior to nucleosynth
we restricted ourselves to a~large! part of parameter space
From Fig. 4 we can read off that this corresponds, forVf

'0.1, toHi.1014 GeV or r i
1/4.1016 GeV. As we noted at

the end of the section this is consistent with what we wo
guess would be the most natural range of these paramete
this model. On the other hand, it is inconsistent with mod
in which the phase of scalar field domination continues u
just before nucleosynthesis~with the consequences describ
in @46#! since they correspond to the line defining the low
bound from nucleosynthesis in Fig. 4. For entry to the attr
tor before today, it can be see from Fig. 4 that one require
this caseVf.0.22. It would be interesting to analyze th
effect on structure formation in these models, and indee
all of the parameter space for this model excluded by us
our present analysis.

In terms of l our best-fit corresponds to the rangel
P@5,6.1#. As we discussed in Sec. II B this value is certain
of the order observed in the fundamental particle phys
theories of which they have been observed to be a gen
feature, and may even be in the precise range found in
tain theories. This suggests the exciting possibility of u
mately linking the cosmological features which would pr
vide a signature for these fields to details of physics at
Planck scale. From the point of view of particle physics m
tivated model-building it would be particularly interestin
also to look at models where the simple exponential poten
represents the asymptotic behavior of a potential which
support inflation in another region, since this would be like
to produce a very constrained model~with reheating as dis-
cussed!.

In Sec. III we analyzed in detail the evolution of pertu
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bations infCDM. We found that perturbations in the scal
field on subhorizon scales decayed, leading to a suppres
of power on small scales. The similarities with MDM led u
to pursue the comparison in more detail. We found that
contribution from the scalar field was more efficient at su
pressing perturbations in the CDM than massive neutrin
We showed that this was due to a simple difference in
evolution of the ‘‘free-streaming’’ scale in the two theorie
In fCDM the free streaming scale grows with the horiz
while in MDM the freestreaming scale decays as 1/t. This
means that perturbations in the scalar fieldnevergrow once
they come into the horizon, in contrast to perturbations in
massive neutrino which end up clumping after some fin
time. We analyzed the effect the scalar field would have
the CMB and found it to be small but distinctly differen
from that of MDM.

In Sec. IV we used the results of a Boltzmann-Einste
solver to test how well this class of models fared when co
pared to various astrophysical data. Because of the w
effect the scalar field has on the CMB, the angular pow
spectrum is effectively~with the current accuracy of exper
ments! as in SCDM. Using the COBE data we normalize
these theories and compared the mass variance per loga
mic interval in k to the one estimated in@7#. Our models
fared as well, or better, than competing flat universe mod
A comparison with an estimate of the mass variance
8h21 Mpc from the abundances of rich clusters gave
same results. We finally compared the amount of structur
high redshift our model predicts, as compared to that infer
from Lyman-a systems. This has proven to be a serio
problem for MDM models. We saw that our model is co
sistent, albeit marginally, with these constraints.

Lastly a few further comments on other related issu
which it would be interesting to investigate:

~i! We assumed an initial flat adiabatic spectrum of p
turbations, in line with the most generic type of inflatio
Within the context of inflation one can of course have d
ferent spectra etc., and within the context of some very w
motivated form for the inflationary part of the potential in th
alternative reheating model, it would be interesting to look
the combined effect on structure formation. In more gene
an interesting feature of the exponential which would
worth investigating is the fact that the attractor is also
attractor for isocurvature fluctuations, and hence the assu
tion of adiabatic initial conditions might have a much mo
general motivation than the standard inflationary one.

~ii ! Inflation was assumed simply because it is the pa
digmatic model. The existence of the exponential scalar fi
might of course have an effect on any cosmology. In an o
cosmology, for example, the analogous attractor also ex
in the curvature dominated regime and the asymptotic s
has a scalar field energy scaling as 1/a2.

~iii ! We have shown that the effect of the exponent
scalar field on the angular power spectrum of the CMB
quite small, much like the case of MDM. However, rece
high precision analysis of parameter estimation from
CMB ~as one would expect from the satellite missions! indi-
cates that one may achieve a precision ofDVn50.04 or
better@61#. This opens up the interesting possibility of act
3-21
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ally trying to constrainVf with the CMB.
~iv! In addition to the issue of consistency with entry in

the attractor prior to nucleosynthesis which would motiv
the study of the dependence onVbh2 away from the SCDM
value we assumed, there are further observational reason
doing so. The recent measurements of@62# indicate that one
may have a higher baryon content than previously expec
Since a higher baryon content leads to less structure
smaller scales, a best fit to large scale structure constra
would be obtained with a smaller value ofVf . The effect on
the Lyman-a constraints might be more dramatic, since the
would be a competition between the suppression of po
and the increase in the amount of gas simply due to the
that there are more baryons around. That the result is
immediately evident can be seen from the analysis of MD
in @60#. Further, to determine whether entry to the attrac
prior to nucleosynthesis is consistent in this case, one wo
have to determine whether this decrease inVf would
broaden the allowed range inh sufficiently.

~v! One of the main problems for the MDM model is th
overwhelming evidence for structure at high redshift. Critic
universe models with massive neutrinos typically underp
duce structure as probed by Lyman-a systems and high red
shift cluster abundances@63#. This problem is somewhat al
leviated in the case offCDM: The different evolution of the
free-streaming scale infCDM leads to more power on sma
scales~and consequently high redshifts! relative to MDM.
This certainly provides strong motivation for further study
the evolution of perturbations on small scales and high r
shift in these models.
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From the point of view of structure formation we hav
described a new model which has the same qualitative
tures as MDM. Unlike other scalar field cosmologies, whi
affect the local expansion rate~up to redshift of a few!, our
background evolution is exactly matter dominated, the mo
fication arising at the perturbation level. Given the wealth
current data on small scales, at recent redshifts, this raise
question of whether this is the right approach to the constr
tion models of structure formation: The existence of stru
ture at high redshift combined with the small scale veloc
dispersion today at 1h21 Mpc seems to argue for a stron
modification of the growth rate of perturbations in the la
few redshifts. This would point towards a low density un
verse. However, until we have a more detailed understand
of the non-linear evolution of perturbations in models su
as fCDM ~on scales between 0.1 and 10h21 Mpc!, these
models should not be ruled out. We are currently analyz
the non-linear regime offCDM using an N-body code.
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