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Innermost stable circular orbit of a spinning particle in Kerr spacetime

Shingo Suzuki* and Kei-ichi Maeda†

Department of Physics, Waseda University, Shinjuku-ku, Tokyo 169, Japan
~Received 29 December 1997; published 25 June 1998!

We study the stability of circular orbits of spinning test particles in Kerr spacetime. We find that some of the
circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are
still stable in the radial direction. For the large spin case@S/mM&O(1)#, the innermost stable circular orbit
~ISCO! appears before the minimum of the effective potential in the equatorial plane disappears. This changes
the radius of the ISCO and therefore the frequency of the last circular orbit.@S0556-2821~98!04014-4#

PACS number~s!: 97.80.2d, 04.25.2g, 04.70.Bw
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I. INTRODUCTION

Coalescence of two compact objects, such as neut
star–neutron-star, neutron-star–black-hole, and/or bla
hole–black-hole binaries, is one of the promising source
gravitational waves which may be detected in the near fu
by laser interferometric detectors, such as the U.S. La
Interferometric Gravitational Wave Observatory~LIGO! @1#.
If we detect a signal of gravitational waves emitted fro
those systems and compare it with theoretical templates
may be able not only to determine a variety of astrophys
parameters of the sources, e.g., their orbital informati
masses, and spins, but also to obtain more information a
fundamental physics, e.g., the equation of state at high d
sity @2#. In order to obtain such important information fro
the observed data, we have to make an exact template
then we need to know the exact motion of the binary. He
the equations of motion in the post-Newtonian framewo
have been studied by many authors@3#. We can see from the
obtained equations of motion that spins of stars play a v
important role. For example, this effect induces a preces
of the orbital plane, resulting in modulation of the gravit
tional wave forms@4#. Although such post-Newtonian ap
proaches are definitely important, a fully general relativis
treatment must become necessary at some stage. Num
relativity is one of most promising treatments to give a c
rect template, but it is still at a developing stage. Instead,
black hole perturbation technique has been well studied
provides us a good approximation. We expect that the g
eral relativistic spin effect is also well understood by suc
perturbation approach.

Many studies about a relativistic spin effect using a sp
ning test particle around a black hole have been made s
the basic equations were first derived by Papapetrou@5# and
reformulated by Dixon@6#. Bailey and Israel elaborated th
system using the Lagrangian formalism@7#. Corinaldesi and
Papapetrou first discussed the motion of a spinning test
ticle in Schwarzschild spacetime@8#. The Kerr or Kerr-
Newman spacetime case was also analyzed by severa
thors @9#. In @10#, the gravitational waves produced by
spinning particle falling into a Kerr black hole or movin
circularly around it were discussed and the energy emis
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rate from those systems was calculated. We investiga
more generic motion of a spinning particle around
Schwarzschild black hole and pointed out that the spin ef
can make some orbits chaotic@11#.

When we discuss the gravitational waves from a bin
system, one of the most important keys is the innerm
stable circular orbit~ISCO!. In the binary system, as grav
tational waves are emitted, both energy and angular mom
tum of the system decrease, and so the orbital radius gr
ally decreases. When the angular momentum is redu
below some critical value, we cannot find any circular orb
The binary system evolves from the quasi-stationary st
into a more dynamical stage, i.e., the stars in the sys
collide with each other. The last circular orbit is the ISCO.
may determine the observable frequency of the system.
ing the effective potential of the spinning particle in th
equatorial plane, the binding energy of the circular orbit
discussed in@9#. They assumed that a stable circular or
exists unless the minimum point of the effective potential
the equatorial plane disappears.

However, before the system reaches such a last orb
there exists any unstable mode, it will change the ISCO,
therefore the last circular radius, binding energy and f
quency, which may be important in gravitational wave a
tronomy. In@9#, the instability of a circular orbit in the radia
direction is discussed. In@11#, we found that some circula
orbits of a spinning particle in Schwarzschild spacetime
come unstable in the direction perpendicular to the equato
plane@11#.

In this paper, extending our previous analysis@11#, we
study an instability of the spinning test particle in a Ke
spacetime. There are three reasons for a transition from
quasi-periodic stage to dynamical stage. The most impor
one is general relativistic strong gravity, i.e., when the orb
separation of the binary becomes small asr;6M , the cen-
trifugal force cannot be balanced with the gravitational for
so that the star cannot stop from changing its circular orbi
a plunging one. The second effect is the hydrodynam
interaction between two stars, i.e., at the moment when
surfaces of the stars come into contact, we expect that su
transition will occur due to the direct interaction betwe
stars. The third one is an effect due to an intrinsic property
the star such as a mass quadrupole moment. For examp
@12#, they show that instability can occur due to a tidal forc
When the orbital separation of the stars becomes small, e
star of the binary is significantly deformed by a tidal forc
© 1998 The American Physical Society05-1
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SHINGO SUZUKI AND KEI-ICHI MAEDA PHYSICAL REVIEW D 58 023005
As a result, circular orbits of the stars become unstable
the ISCO appears earlier. In this analysis, however, the
tion of the stars is restricted to the equatorial plane and
stars plunge into each other when the motion becomes
stable in the radial direction. Here, we look for a new type
instability due to an effect belonging to the third catego
i.e., the instability in the direction perpendicular to the equ
torial plane. We will show that such an instability real
occurs when the spin of a test particle is high. A spinn
particle leaves the equatorial plane and falls into black h
Since it is important to determine the ISCO for gravitation
wave astronomy, we believe that it is also worthwhile
analyze such a new instability of a spinning particle in K
spacetime.

This paper is organized as follows. After a brief review
the basic equations in Sec. II, we analyze the stability o
circular orbit of a spinning test particle in Sec. III, using
linear perturbation method. We show changes of the rad
of the ISCO, of the binding energy and of the frequency d
to such an instability. A summary and some remarks foll
in Sec. IV. Throughout this paper we use unitsc5G51. Our
notation including the signature of the metric follows that
Misner, Thorne, and Wheeler~MTW! @13#.

II. BASIC EQUATIONS FOR A SPINNING TEST
PARTICLE

A. Pole-dipole approximation

The equations of motion of a spinning test particle in
relativistic spacetime were first derived by Papapetrou@5#
and then reformulated by Dixon@6#. These are a set of equa
tions:

dxm

ds
5vm, ~2.1!

Dpm

ds
52

1

2
Rm

nrsvnSrs, ~2.2!

DSmn

ds
5pmvn2pnvm, ~2.3!

wheres, vm, pm andSmn are an affine parameter of the orb
xm5xm(s), the 4-velocity of the particle, the momentum
and the spin tensor, respectively. This is called the po
dipole approximation, where the multipole moments of t
particle higher than mass monopole and spin dipole are
nored. We need a supplementary condition which give
relation betweenvm andpm, becausepm is no longer parallel
to vm. The consistent choice of the center of mass provi
such a condition@6#:

pmSmn50. ~2.4!

Using Eq.~2.4! we find the relation betweenvm andpm as

vm5NFum1
1

2m2d
SmnulRnlrsSrsG , ~2.5!

where
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4m2 RabgdSabSgd, ~2.6!

andN is a normalization constant, which is fixed by a choi
of the affine parameters. un[pn/m is a normalized momen
tum, where the mass of the particlem is defined by

m252pnpn. ~2.7!

It may sometimes be more convenient or more intuitive
describe the basic equations by use of a spin vectorSm ,
which is defined by

Sm52
1

2
emnrsunSrs, ~2.8!

whereemnrs is the Levi-Civita tensor. The basic equation
are now

dxm

ds
5vm, ~2.9!

Dpm

ds
5

1

m
R* m

nrsvnSrps, ~2.10!

DSm

ds
5

1

m3 pmR* nlrsSnvlSrps, ~2.11!

where

R* mnrs[
1

2
Rmn

abeabrs . ~2.12!

Equation~2.4! with the definition~2.8! reads

pnSn50, ~2.13!

which gives the relation betweenvm andpm,

vm5um1
1

m2 * R* m
nrsSnSrus, ~2.14!

where

* R* mnrs[
1

2
emnabR* ab

rs ; ~2.15!

we fix the affine parameters using the conditionvmum5
2d. This choice makes the perturbation equations simple
we will show later.

For a particle motion in a Kerr spacetime, we find seve
conserved quantities. Regardless of the symmetry of
background spacetime, it is easy to show thatm and the
magnitude of spinS, defined by

S 2[SnSn, ~2.16!

are constants of motion. When the spacetime possesses
symmetry described by a Killing vectorjm,

C[jmpm2
1

2
jm;nSmn ~2.17!

is conserved@6#. For the spacetime which has both axial a
timelike Killing vectors such as Kerr spacetime, we have t
5-2
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INNERMOST STABLE CIRCULAR ORBIT OFA . . . PHYSICAL REVIEW D 58 023005
conserved quantities, i.e., the energyE and thez component
of the total angular momentum of a spinning particleJz . For
Schwarzschild spacetime, the ‘‘x’’ and ‘‘ y’’ components of
the total angular momentum of a particle are also conser
because of spherical symmetry.

B. Effective potential of a spinning particle
on the equatorial plane

In order to discuss the motion of a test particle in a bla
hole spacetime, we usually introduce an effective poten
However, if the test particle has a spin, it is not so easy
find an effective potential because of an additional dyna
cal freedom of the spin direction. In our previous paper,
defined an ‘‘effective potential’’ for a spinning test partic
in Schwarzschild spacetime, i.e.,V(6)(r ,u;J,S) given by
Eqs.~2.31! and ~2.32! in @11#. Setting the total angular mo
mentum so as to point in thez direction, i.e., (Jx ,Jy ,Jz)
5(0,0,J), those equations are obtained from the condition
pr5pu50 in Eqs.~2.4! and ~2.7!. We use quotation mark
because it is not a real effective potential but plays a sim
role.

The particle with energyE can move within the contou
curve defined by

E5V~6 !~r ,u;J,S!. ~2.18!

This ‘‘effective potential’’ has two parameters,J and S,
whose values determine the topology of its contours. Fr
the contours of the ‘‘effective potential’’~Fig. 2 in @11#!, we
can easily see the stability of a bound orbit.

However, since we are interested in a Kerr backgrou
spacetime, whose metric is given as

ds252S 12
2Mr

S Ddt21
S

D
dr21Sdu2

1
A
S

sin2udf22
4Ma

S
r sin2udtdf, ~2.19!

where

S5r 21a2cos2u, D5r 222Mr 1a2,

A5~r 21a2!22a2D sin2u, ~2.20!

it is hard to define an effective potential even in the abo
naive sense. This is because we cannot find new conse
quantities in a Kerr background spacetime, which corresp
to Jx , Jy for the Schwarzschild case or Carter’s constant
a spinless particle@13#, in addition toE andJz . However, if
we restrict the particle motion to the equatorial plane,
effective potential for the radial motion is found@9#. The
direction of spin must be parallel to the rotational ax
In fact, imposing u5p/2, S05S15S350, S2[2S and
p250 to Eq.~2.17!, we find that the energy and thez com-
ponent of the angular momentum take the following form

2E5
AD

r
p02

1

r S a1
MS
mr D p3 , ~2.21!
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Jz52
AD

r S a1
S
m D p01

1

r F r 21a21
aS~r 1M !

mr Gp3 .

~2.22!

Solving these equations with respect top0 andp3 and using
the solutions andp250, we find that Eq.~2.7! is reduced to

~p1!25A~E2U ~1 !!~E2U ~2 !!, ~2.23!

and

U ~6 !~r ;Jz ,S,a!5XJz6A~X22Y!Jz
22Z, ~2.24!

X5

F r 21a21
aS
m S 11

M

r D G S a1
MS
mr D2DS a1

S
m D

F r 21a21
aS
m S 11

M

r D G2

2DS a1
S

m D 2 ,

Y5

S a1
MS
mr D 2

2D

F r 21a21
aS
m S 11

M

r D G2

2DS a1
S
m D 2 ,

Z52

DS MS 2

m2r 2 2r Dm2

F r 21a21
aS
m S 11

M

r D G2

2DS a1
S
m D 2 ,

A5

F r 21a21
aS
m S a1

M

r D G2

2DS a1
S
m D 2

DS MS 2

m2r 2 2r D 2 .

Note that the suffices of the momentum and the spin ve
denote tetrad components. The tetrad frame has been de
as

em
0 5SAD

S
,0,0,2asin2uAD

S D ,

em
1 5S 0,AS

D
,0,0D ,

~2.25!
em

2 5~0,0,AS,0!,

em
3 5S 2

a

AS
sinu,0,0,

r 21a2

AS
sin u D ,

whereem
i 5(et

i ,er
i ,eu

i ,ef
i ) for i 50;3. S includes the direc-

tion of spin as well as the magnitude. ThenaS.0 means the
spin of the particle is parallel to that of the black hole a
aS,0 means anti-parallel.

We regardU (6)(r ;Jz ,S,a) as an effective potential of the
particle on the equatorial plane. Whena vanishes,U (1) is
reduced toV(2)(r ,p/2;J,S) in the Schwarzschild case@11#
for SJz.0 and toV(1)(r ,p/2;J,S) for SJz,0. The particle
with energyE can move only in the region ofE>U (1) ~or
E<U (2)) on the equatorial plane. The typical shape ofU (6)
is shown in Fig. 1. We usually discuss the orbit in the eq
5-3
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FIG. 1. The effective potentialU (6) on the equatorial plane forJz54mM , S51mM and a50.5M . ~a! The potentialU (1) has two
extremal points.~b! The potentialU (2) has no extremum. A particle with positive energy is not bounded.
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torial plane by use of this effective potential. In the case o
spinless particle, it is enough because the conservatio
angular momentum prevents the particle from leaving
equatorial plane. If the angular momentum is larger th
some critical value, we always find a stable circular orb
Since no circular orbit exists below the critical angular m
mentum, the particle eventually enters a dynamical st
from a quasi-periodic stage because the emitted gravitati
waves remove angular momentum from the system. T
critical value gives the ISCO. If a test particle has a sp
however, the orbital angular momentum need not be c
served. The particle may move off the equatorial pla
Hence the analysis by use of the above effective poten
may not give the ISCO. We need a more detailed analysi
see whether the circular orbit on the equatorial plane is re
stable or not.

III. STABILITY OF A CIRCULAR ORBIT
OF A SPINNING PARTICLE

The linear perturbation method is used to analyze the
bility of a circular orbit of a spinning particle. In the tetra
frame, the equations of motion of a spinning particle a
rewritten as

dxm

ds
5ea

mva, ~3.1!

dpa

ds
5vcb

avcpb1
1

m
R* a

bcdv
bScpd, ~3.2!

dSa

ds
5vcb

avcSb1
1

m3 paSiR* i jkl v
jSkpl , ~3.3!

wherev i jk are the Ricci rotation coefficients defined as

v i jk5ei
nej

mekm;n . ~3.4!

We assume a circular orbit in the equatorial plane as
unperturbed orbit, i.e.,r (0)5r 05const, u (0)5p/2, p(0)

1
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5p(0)
2 50, S(0)

0 5S(0)
1 5S(0)

3 50, S(0)
2 52S and the time de-

rivatives of these variables vanish. Here, we use the su
~0! for the unperturbed variables. From Eq.~2.14!, we find

v ~0!
0 5

p~0!
0

m S 12
MS 2

m2r 3 D , ~3.5!

v ~0!
3 5

p~0!
3

m S 11
2MS 2

m2r 3 D , ~3.6!

and v (0)
1 5v (0)

2 50. The conserved quantities in our syste
are the energy and thez component of total angular momen
tum, which are now given as

E5
AD

r 0
p~0!

0 1
1

r 0
S a1

MS
m D p~0!

3 , ~3.7!

Jz5
AD

r 0
S a1

S
m D p~0!

0 1
1

r 0
F r 0

21a21
aS
m S 11

M

r 0
D Gp~0!

3 .

~3.8!

The way to determine the unperturbed variables is as
lows. First, the Kerr parametera and the magnitude of the
spinS are fixed. Next, we give the radius of a circular orb
r 0 . Then, from the condition of potential extremum atr 0 ,
i.e.

dU~1 !~r !

dr U
r 5r 0

50, ~3.9!

Jz is determined. The energy of the particle is obtained
E5U (1)(r 0). Finally, from Eqs.~3.7! and ~3.8!, p(0)

0 and
p(0)

3 are determined. We denote these unperturbed varia
asx(0)

m , v (0)
i , p(0)

i andS(0)
i . Of course, if no real solutionJz

is found for given parametersa andS, a circular orbit does
not exist atr 0 .

Let dxm, dv i , dpi anddSi be the perturbations around th
unperturbed variables. We shall introduce a tetrad desc
tion for dxm asdxi[em

i dxm. From Eq.~2.14!,
5-4
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INNERMOST STABLE CIRCULAR ORBIT OFA . . . PHYSICAL REVIEW D 58 023005
dv i5Xj
i dxj1Yj

i dpj1Zj
i dSj , ~3.10!

where,

Xi
j5

1

m
ej

m ]

]xm * R~0! lmn* i S~0!
l S~0!

m p~0!
n , ~3.11!

Yi
j5

1

m
d j

i 1
1

m3 * R~0! lmn* i S~0!
l S~0!

m d j
n , ~3.12!

Zi
j5

1

m3 * R~0! lmn* i ~d j
l S~0!

m 1S~0!
l d j

m!p~0!
n . ~3.13!

Inserting

xm5x~0!
m 1ei

mdxi ,

v i5v ~0!
i 1dv i ,

~3.14!
pi5p~0!

i 1dpi ,

Si5S~0!
i 1dSi ,

into Eqs. ~3.1!–~3.3! and neglecting terms higher than th
first order of perturbed variables, we find the linear pertur
tion equations as

d

ds S dxi

dpi

dSi
D 5S Ai

j Bi
j Ci

j

Di
j Ei

j Fi
j

Gi
j Hi

j I i
j

D S dxj

dpj

dSj
D , ~3.15!

where

Ai
j5Xi

j1v~0!lk
id j

kv ~0!
l 2v~0!lk

iv ~0!
k d j

l ,

Bi
j5Yi

j ,

Ci
j5Zi

j ,

Di
j5ej

m ]

]xm v~0!lk
iv ~0!

l p~0!
k 1v~0!lk

iXl
j p~0!

k 1F i
j ,

Ei
j5v~0!lk

iv ~0!
l d j

k1v~0!lk
iYl

j p~0!
k 1P i

j , ~3.16!

Fi
j5v~0!lk

iZl
j p~0!

k 1C i
j ,

Gi
j5ej

m ]

]xm v~0!lk
iv ~0!

l S~0!
k 1v~0!lk

iXl
jS~0!

k

1
1

m2 p~0!
i S~0!lF

l
j ,

Hi
j5

1

m3 R~0!abcd* S~0!
a v ~0!

b S~0!
c p~0!

d d j
i

1v~0!lk
iYl

jS~0!
k 1

1

m2 piS~0!lP
l
j ,

I i
j5v~0!l j

iv ~0!
l 1

1

m3 p~0!
i R~0! jabc* v ~0!

a S~0!
b p~0!

c

1v~0!lk
iZl

jS~0!
k 1

1

m2 p~0!
i S~0!lC

l
j ,

with
02300
-

F i
j5

1

m S ej
m ]

]xm R~0! lmn* i v ~0!
l 1R~0! lmn* i Xl

j DS~0!
m p~0!

n ,

P i
j5

1

m
R~0! lmn* i ~Yl

j p~0!
n 1v ~0!

l d j
n!S~0!

m , ~3.17!

C i
j5

1

m
R~0! lmn* i ~Zl

jS~0!
m 1v ~0!

l d j
m!p~0!

n .

In the case of a spinless particle, Eq.~3.15! is nothing but the
equation of geodesic deviation. The eigenvalues of the
trix in Eq. ~3.15! determine the stability of a test particle
Inserting the unperturbed variables into the matrix in E
~3.15!, the matrix becomes rather simple. In the Append
we show the explicit form of the matrix and its componen
and discuss the structure of the matrix. The eigenvalue eq
tion forms

l6~l22L r !~l42Lu1l21Lu2!50, ~3.18!

whereL r , Lu1 andLu2 are defined in the Appendix. Firs
to see the meaning of this equation, we consider a sim
case. WhenS50 anda50, this equation is reduced to

l8S l21
Mm2~r 026M !

r 0
3~r 023M ! D S l21

Lz
2

r 0
4 D 50, ~3.19!

i.e.,

L r52
Mm2~r 026M !

r 0
3~r 023M !

,

Lu152
Lz

2

r 0
4 , ~3.20!

Lu250,

whereLz is thez component of orbital angular momentum
and it is given for an unperturbed circular orbit as

Lz
25

Mm2r 0
2

r 023M
. ~3.21!

This equation shows that no circular orbit exists forr 0,3M .
The positivity of the second parenthesis of Eq.~3.19! guar-
antees the stability in theu direction, i.e., in the direction
perpendicular to the equatorial plane. Therefore, the orbi
a spinless particle in Schwarzschild spacetime is sta
against perturbations in theu direction. The first parenthesi
in Eq. ~3.19! shows the stability in ther direction. Forr 0
<6M , the eigenvalues are real, while forr .6M , those are
purely imaginary. This means that the equilibrium point~cir-
cular orbit! with r 0<6M is unstable, while it is stable for the
case ofr 0.6M . We find the critical radiusr 56M when
Lz5A12mM . This corresponds to the ISCO of a spinle
particle in Schwarzschild spacetime.

In the general case, we can analyze the stability of
circular orbit in ther direction byL r and in theu direction
by Lu1 andLu2 ~see also the Appendix!. If L r.0, the cir-
5-5
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FIG. 2. The parameter regions for which the circular orbit becomes unstable in the direction perpendicular to the equatorial pl
minimal values of the spin for each case are~a! S50.98mM , ~b! S50.9mM , and~c! S50.94mM .
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cular orbit is unstable against a radial perturbation, while
the real part of any solution of the equation

l42Lu1l21Lu250, ~3.22!

is positive, it is unstable against perturbations perpendic
to the equatorial plane.

In Fig. 2, we show the unstable parameter ranges
shaded regions for the case ofa50,0.4M and 0.8M . We find
that the unstable parameter range is usually narrow, bec
we have a constraint for the particle spin asS/mM&O(1)
~see the discussion in@11#!. As we can see from this figure
the unstable region in thea50.4M case is larger than that i
the a50 case. The value ofS at the bottom edge of this
region is;0.9mM . However, in thea50.8M case, the un-
stable region becomes narrow again. The lowest value oS
for this region is about 0.94mM .

The solid lines in Fig. 3 show the radius of the ISCO f
three values ofa. The radius of the ISCO decreases asS
increases or asa increases, which means that the spin eff
plays the role of a repulsive force foraS.0 basically.
Therefore, the particle can approach the horizon of the bl
hole without passing the horizon. But, ifS is larger than the
critical value, the radius of the ISCO increases. This sho
the occurrence of the instability of the motion in theu direc-
tion. The hatched regions below the solid lines denote
interval of radii over which an orbit is stable on the equa
rial plane but unstable perpendicularly. WhenS51mM , the
intervals are 3.8073M<r<3.8508M for a50, 2.8835M<r
<3.0945M for a50.4M and 1.9340M<r<1.9700M for
a50.8M , respectively. In Fig. 4, we show the energy of t
particle and the orbital frequency of the ISCO. In@9#, the
energy the ISCO for same system was analyzed, but only
instability in the radial direction was taken into accou
When the instability in theu direction is included, the energ
and frequency of the ISCO behaves in the different man
beyond the critical value.

IV. DISCUSSIONS AND SUMMARY

In our previous paper@11#, we discussed the motion of
spinning test particle in a Schwarzschild spacetime by us
an ‘‘effective potential.’’ The ‘‘effective potential’’ is clas-
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sified into four types depending on its topology of conto
~Figs. 2 and 3 in@11#!. From Fig. 2 in@11#, we can see easily
the stability of the circular orbit of the spinning particle
Schwarzschild background spacetime. The type~B1! has one
saddle point and one minimal point on the equatorial pla
The saddle point is maximal in ther direction and minimal
in theu direction. At the minimal point, it is minimal in both
directions. For the type~B2! potential, there are two saddl
points away from the equatorial plane and one maximal
one minimal point also exist on the equatorial plane. In
type~U2! potential, we find one unstable point in both dire
tions and one saddle point. At this saddle point, we find t
the orbit is stable in ther direction but unstable in theu
direction. This is exactly the same as what we found in t
paper as the new type of instability. The stability of the c
cular orbit on the equatorial plane is summarized in Tabl

For a Kerr background spacetime, however, we can
define the effective potential for a spinning particle. The
upon, instead of the topology of the contour, we divided
parameter space using the stability of the circular orbit. T

FIG. 3. The solid lines show the radius of the innermost sta
circular orbit ~ISCO!. Above the critical value ofS, the radius of
the ISCO increases. The hatched region denotes the interval of
over which an orbit is stable on the equatorial plane but unsta
perpendicularly.
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FIG. 4. ~a! The particle energyE of the ISCO.~b! The orbital frequency of the ISCO for which the mass of the black hole is assu
to be 10M ( .
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result for thea50 case is shown in Fig. 5. The name
classified types in this figure are same as those of the
fective potential’’ in @11# in which the circular orbit shows
the same stability type as the present analysis. Since th
gion of Jz>3.5mM andS>0 coincides with Fig. 3 in@11#,
we believe that the present classification is the same as
previous one by use of the ‘‘effective potential.’’ Figure 6
the classification for the Kerr background spacetime. We
pected that the parameter region for the type~U2! potential
for Kerr background spacetime would be larger than that
Schwarzschild spacetime because of the lower symmetry
the existence of the spin-spin interaction. However, as
have seen in Fig. 2, the parameter region is not enlar
abruptly asa increases. Rather, for largea, this region gets
narrow.

Since our system is not integrable as shown in@11#, it
may be worth mentioning about a chaotic motion of a sp
ning test particle in Kerr background spacetime. In our p
vious paper, we estimated the Lyapunov exponent of a
tion of a spinning test particle in the Schwarzsch
spacetime. We found that the timescale for which the cha
motion becomes much longer than the dynamical one. S
we are interested in analysis of a compact binary system
will not discuss unbounded orbits such as in the type~U1!
and type~U2! potentials in this paper, although it may also
interesting to analyze those. Then we may conclude th
particle motion can be chaotic and such a chaotic beha
could affect a template of gravitational waves emitted from
binary system only in the case of type~B2! potential.

As we see from Fig. 6, the type~B2! region becomes
larger asa increases. Then, we expect that a particle mot
in Kerr spacetime may become more chaotic than tha

TABLE I. The stability of a spinning test particle on the equ
torial plane.

Inner extremal point Outer extremal point

r direction u direction r direction u direction

Type~B1! Unstable Stable Stable Stable
Type~B2! Unstable Unstable Stable Stable
Type~U1! No extremal point
Type~U2! Unstable Unstable Stable Unstable
02300
f-

re-

he

x-

r
nd
e
d

-
-
o-

ic
ce
e

a
or
a

n
in

Schwarzschild spacetime. This is consistent with the fact
Kerr spacetime possesses lower symmetry than Schwa
child spacetime and therefore the number of the constan
motion is smaller than that in the Schwarzschild case. As
an example, we show in Fig. 7 the Poincare´ map of four
orbits for thea50.8M case constructed with the same ru
as in@11#. These four orbits have different initial condition
but same parameters of the motion, i.e.,Jz52.8mM andS
50.4mM , which are in the type~B2! region. We can see tha
the torus structures are broken and the motions of these
bits are chaotic. For the Schwarzschild case, the lowest v
of the spin for which chaos occurs is about 0.6mM ~Fig. 7 in
@12#!. It is much higher than that in the above Kerr caseS
50.4mm). This result supports our expectation that a p
ticle motion in Kerr spacetime is more chaotic than that
Schwarzschild case@14#.

In this paper, we have analyzed the stability of a circu
orbit of a spinning test particle in a Kerr background spa
time using the linear perturbation method. The circular or
can be unstable not only in ther direction but also in theu
direction due to the spin. This instability occurs when t
parameters are within the shaded regions of Fig. 2. In Fig

FIG. 5. The classification of the ‘‘effective potential’’ of th
particle for the a50 case in theJz-S plane. The regionJz

.3.5mM andS.0 is the same as Fig. 3 in@12#.
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a typical unstable orbit with these parameters and its fate
shown. We have chosen the parameters for the initially
cular orbit of the particle as S51mM , E
50.86199950863m, Jz53.06620962243mM , r 053.05M
andu5p/2. The Kerr parameter isa50.4M . For a pertur-
bation, the direction of the spin is set to be slightly differe
from the perpendicular to the equatorial plane, i.e.dS3

53.67283531025mM . Because this circular orbit is un
stable in theu direction, the particle leaves the equator
plane and falls into the black hole eventually. Therefore t
type of instability may change the radius of the ISCO. In F
3, the dependence of the radius of the ISCO upon the m
nitude of the spin is shown. In Fig. 4, the energy of t

FIG. 6. The classification of the effective potential of the p
ticle on the equatorial plane for a Kerr black hole.

FIG. 7. The Poincare´ map for the orbit in a Kerr spacetime,a
50.8M , with parameters which belong to the type~B2!. All orbits
haveJz52.8mM , S50.4mM andE50.9275m. We setpr50 ini-
tially. And the initial position isr 056.5, 6.592, 6.628 and 6.68M .
We find that the motion is chaotic.
02300
re
r-

t
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g-

particle on the ISCO and the orbital frequency of the ISC
are also depicted.

If this new type of instability occurs in a real astrophys
cal system such as a binary system, it changes the radiu
the ISCO. This is very important for observation, especia
gravitational astronomy as mentioned in the Introduction.
we may restrict the parameters of the system, for exam
the lower limit of the spin, from the observation of gravit
tional waves. And the chaos is also an important factor
gravitational wave astronomy, because if chaos occurs in
system, it must affect the gravitational wave emitted fro
the system. However, the test particle model should not
adopted as a model of the last stage of a binary system
fact, in our analysis, the radius of the ISCO gets very sm
For such small distances to the horizon, instabilities due
other effects mentioned in the Introduction must be tak
into account. Therefore, we need further investigation
check the importance of this type of instability in a mo
realistic binary system.
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APPENDIX A: THE PERTURBATION MATRIX
AND ITS EIGENVALUE EQUATION

Here, we present the explicit form of the perturbation m
trix in Eq. ~3.15! and its non-vanishing components:

-

FIG. 8. The orbit of a spinning particle in the type~U2! potential
in Kerr background spacetime witha50.4M . The particle is at the
minimum point of the ‘‘effective potential’’ in ther direction on the
equatorial plane and the direction of the spin vector is slightly
viated from the direction perpendicular to the equatorial plane
tially. The parameters of the orbit areJz53.06620962243mM , E
50.86199950863m, S51.0mM andr 053.05M . The initial pertur-
bation isdS353.67283531025mM .
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A prime denotesd/dr. It is easily shown that the eigenequ
tion of the matrix~A1! can be decomposed as follows:

l3U2l 0 0 B1
1

0 2l 0 E0
1

0 0 2l E3
1

D1
1 E1

0 E1
3 2l

U
3U2l 0 0 D2

2 F2
1

0 2l 0 G0
2 I 0

1

0 0 2l G3
2 I 3

1

B2
2 C2

0 C2
3 2l 0

H1
2 I 1

0 I 1
3 0 2l

U50. ~A2!

Three zero eigenvalues come from two zero columns an
zero line in the matrix, which are related to the facts that
and f are the cyclic coordinates of the system and that
magnitude of the spin is conserved, respectively. The sec
part consists of the components related todx1,dp0, dp3 and
dp1. Because of the conservation of the energy and the
gular momentum of the particle, two eigenvalues of this p
are zero. The remaining two eigenvalues describe the sta
ity in the r direction. The components of the last part a
related todp2, dS0, dS3, dx2 anddS1. The eigenequation o
this part, except for one zero eigenvalue which comes fr
the condition~2.13!, turns out to be a quadratic equation
l2 and determines the stability in theu direction. Finally, we
find the eigenvalue equation as,

l6~l22L r !~l42Lu1l21Lu2!50, ~A3!

where

L r5~B1
1D1

11E0
1E1

01E1
3E3

1!, ~A4!

Lu15~B2
2D2

21C2
0G0

21C2
3G3

21F2
1H1

2

1I 0
1I 1

01I 1
3I 3

1!, ~A5!

Lu25~C2
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1!.

~A6!

To analyze the stability of a circular orbit, we have to kno
L r for the stability in ther direction, whileLu1 andLu2 for
that in theu direction.
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