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Innermost stable circular orbit of a spinning particle in Kerr spacetime
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We study the stability of circular orbits of spinning test particles in Kerr spacetime. We find that some of the
circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are
still stable in the radial direction. For the large spin ceSEuM<0(1)], the innermost stable circular orbit
(ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes
the radius of the ISCO and therefore the frequency of the last circular EB6556-282(98)04014-4

PACS numbg(s): 97.80—d, 04.25--g, 04.70.Bw

I. INTRODUCTION rate from those systems was calculated. We investigated
more generic motion of a spinning particle around a
Coalescence of two compact objects, such as neutrorSchwarzschild black hole and pointed out that the spin effect
star—neutron-star, neutron-star—black-hole, and/or blackean make some orbits chaofitl].
hole—black-hole binaries, is one of the promising sources of When we discuss the gravitational waves from a binary
gravitational waves which may be detected in the near futursystem, one of the most important keys is the innermost
by laser interferometric detectors, such as the U.S. Lasestable circular orbi{ISCO). In the binary system, as gravi-
Interferometric Gravitational Wave ObservatgtGO) [1].  tational waves are emitted, both energy and angular momen-
If we detect a signal of gravitational waves emitted fromtum of the system decrease, and so the orbital radius gradu-
those systems and compare it with theoretical templates, wally decreases. When the angular momentum is reduced
may be able not only to determine a variety of astrophysicabelow some critical value, we cannot find any circular orbit.
parameters of the sources, e.g., their orbital informationThe binary system evolves from the quasi-stationary stage
masses, and spins, but also to obtain more information aboiito a more dynamical stage, i.e., the stars in the system
fundamental physics, e.g., the equation of state at high dercollide with each other. The last circular orbit is the ISCO. It
sity [2]. In order to obtain such important information from may determine the observable frequency of the system. Us-
the observed data, we have to make an exact template aimh the effective potential of the spinning particle in the
then we need to know the exact motion of the binary. Hencequatorial plane, the binding energy of the circular orbit is
the equations of motion in the post-Newtonian frameworkdiscussed iff9]. They assumed that a stable circular orbit
have been studied by many authf@$ We can see from the exists unless the minimum point of the effective potential in
obtained equations of motion that spins of stars play a verghe equatorial plane disappears.
important role. For example, this effect induces a precession However, before the system reaches such a last orbit, if
of the orbital plane, resulting in modulation of the gravita- there exists any unstable mode, it will change the ISCO, and
tional wave forms[4]. Although such post-Newtonian ap- therefore the last circular radius, binding energy and fre-
proaches are definitely important, a fully general relativisticquency, which may be important in gravitational wave as-
treatment must become necessary at some stage. Numeritadnomy. In[9], the instability of a circular orbit in the radial
relativity is one of most promising treatments to give a cor-direction is discussed. IfiL1], we found that some circular
rect template, but it is still at a developing stage. Instead, therbits of a spinning particle in Schwarzschild spacetime be-
black hole perturbation technique has been well studied andome unstable in the direction perpendicular to the equatorial
provides us a good approximation. We expect that the gerplane[11].
eral relativistic spin effect is also well understood by such a In this paper, extending our previous analygld], we
perturbation approach. study an instability of the spinning test particle in a Kerr
Many studies about a relativistic spin effect using a spin-spacetime. There are three reasons for a transition from the
ning test particle around a black hole have been made sinaguasi-periodic stage to dynamical stage. The most important
the basic equations were first derived by Papapdtspand one is general relativistic strong gravity, i.e., when the orbital
reformulated by Dixori6]. Bailey and Israel elaborated this separation of the binary becomes smallras6M, the cen-
system using the Lagrangian formaligif]. Corinaldesi and trifugal force cannot be balanced with the gravitational force,
Papapetrou first discussed the motion of a spinning test paso that the star cannot stop from changing its circular orbit to
ticle in Schwarzschild spacetimg8]. The Kerr or Kerr- a plunging one. The second effect is the hydrodynamical
Newman spacetime case was also analyzed by several aimteraction between two stars, i.e., at the moment when the
thors [9]. In [10], the gravitational waves produced by a surfaces of the stars come into contact, we expect that such a
spinning particle falling into a Kerr black hole or moving transition will occur due to the direct interaction between
circularly around it were discussed and the energy emissioatars. The third one is an effect due to an intrinsic property of
the star such as a mass quadrupole moment. For example, in
[12], they show that instability can occur due to a tidal force.
*Electronic address: shingo@gravity.phys.waseda.ac.jp When the orbital separation of the stars becomes small, each
"Electronic address: maeda@mse.waseda.ac.jp star of the binary is significantly deformed by a tidal force.
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As a result, circular orbits of the stars become unstable and 1 5
the ISCO appears earlier. In this analysis, however, the mo- o=1+ mRaﬁwS‘wS’ , (2.6)
tion of the stars is restricted to the equatorial plane and the

stars plunge into each other when the motion becomes uRmdN is a normalization constant, which is fixed by a choice
stable in the radial direction. Here, we look for a new type Ofof the affine parameta_ ul= pV/M is a normalized momen-

instability due to an effect belonging to the third category,tuym, where the mass of the partigleis defined by
i.e., the instability in the direction perpendicular to the equa-

2__ v

torial plane. We will show that such an instability really N 2.7
occurs when the spin of a test particle is high. A spinning
particle leaves the equatorial plane and falls into black hole,
Since it is important to determine the ISCO for gravitational
wave astronomy, we believe that it is also worthwhile to
analyze such a new instability of a spinning particle in Kerr
spacetime.

This paper is organized as follows. After a brief review of
the basic equations in Sec. Il, we analyze the stability of avhere e***“ is the Levi-Civita tensor. The basic equations
circular orbit of a spinning test particle in Sec. lll, using a aré now
linear perturbation method. We show changes of the radius dx*

It may sometimes be more convenient or more intuitive to
scribe the basic equations by use of a spin veS8jor
which is defined by

1
S,=—

5 €unpat” S, 2.9

of the ISCO, of the binding energy and of the frequency due as =v#, (2.9
to such an instability. A summary and some remarks follow
in Sec. IV. Throughout this paper we use umitsG=1. Our Dp#
notation including the signature of the metric follows that of ds ;R*’uvpav "Sp?, (2.10
Misner, Thorne, and WheeléMTW) [13].
DS 1 e svwpn e
Il. BASIC EQUATIONS FOR A SPINNING TEST ds _ p3P T mee> TSR '
PARTICLE
where
A. Pole-dipole approximation 1
The equations of motion of a spinning test particle in a R*WMEERM“BGMW- (212

relativistic spacetime were first derived by Papapet®l
and then reformulated by Dixdi6]. These are a set of equa- Equation(2.4) with the definition(2.8) reads

tions:
ons p,S"=0, (2.13
dx*
E:vﬁ’ (2.2) which gives the relation betweert and p*,
1
Dp* 1 vH=Uut+ — *R*#, S'SPUC, (2.14
4s ~ ER",,WU vspo, (2.2 u? P
DSAY where
=prv’—pv¥, (2.3 1
ds * R*,u,vpc'E Ef,uvaBR* aﬁpa; (213

wheres, v#, p#* andS*” are an affine parameter of the orbit i i i .
x=x%(s), the 4-velocity of the particle, the momentum, we fix the affine parametes using the conditiorv*u,=

and the spin tensor, respectively. This is called the pole= 0. 'I_'his choice makes the perturbation equations simpler as
dipole approximation, where the multipole moments of theVe Will show later.

particle higher than mass monopole and spin dipole are ig- For a particle mption in a Kerr spacetime, we find several
nored. We need a supplementary condition which gives onserved quantities. Regardless of the symmetry of the

relation betweem” andp”, because* is no longer parallel °ackground spacetime, it is easy to show thaand the
to v*. The consistent choice of the center of mass provide&'2gnitude of spir, defined by
such a conditiori6]: S§%2=s,3", (2.16

P.S*"=0. (2.4 are constants of motion. When the spacetime possesses some

) ) ) symmetry described by a Killing vectay*,
Using Eq.(2.4) we find the relation betweem* and p* as

1
1 C=¢"p,— 54,8 (2.17)
— 79N o 2 MY
v*=N|u*+ 2/.L_255# u RV)\p(,SP , (2.5
is conserved6]. For the spacetime which has both axial and
where timelike Killing vectors such as Kerr spacetime, we have two
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conserved quantities, i.e., the enefgynd thez component VA S 1 as(r+M)
of the total angular momentum of a spinning parti¢je For J,=— o at+ —) Po+ T r+a?+ o |Ps-
Schwarzschild spacetime, the<™ and “ y” components of - # (2.22
the total angular momentum of a particle are also conserved '
because of spherical symmetry. Solving these equations with respectpandp; and using
the solutions angb,= 0, we find that Eq(2.7) is reduced to
B. Effective potential of a spinning particle (py)?=A(E— U )(E=Uy), (2.23

on the equatorial plane

In order to discuss the motion of a test particle in a black""nd

hole spacetime, we usually introduce an effective potential. Uy(r;d,,Sa)=XJ,+ VX2=Y)32-z, (229
However, if the test particle has a spin, it is not so easy to -

find an effective potential because of an additional dynami- 5. o &S M MS S
cal freedom of the spin direction. In our previous paper, we retatt m 1+ Tat ur —Ala+ M
defined an “effective potential” for a spinning test particle X= as M\ 12 S\ 2 ,
in Schwarzschild spacetime, i.eV.\(r,6;J,S) given by r2+a2+—(1+— —Ala+—
Egs.(2.31) and(2.32 in [11]. Setting the total angular mo- M r M
mentum so as to point in the direction, i.e., 0x,Jy,J;) MS) 2
=(0,0J), those equations are obtained from the condition of a+ —r) —A
p'=p?=0 in Egs.(2.4) and(2.7). We use quotation marks Y= 5 MM . 5
L ; ) S a
E)c()algause it is not a real effective potential but plays a similar (2e a2+ 2214 = } Alas S
: s

The patrticle with energf can move within the contour 52

curve defined by A M _ 2
22 MK

. . . r’+a?+ — |1+ — } —Ala+—
This “effective potential” has two parameterd, and S, M r M
whose values determine the topology of its contours. From as VIRE: 2
the contours of the “effective potential(Fig. 2 in[11]), we r2+a24+ — | a4+ — } —Ala+ =
can easily see the stability of a bound orbit. _ M r 2

However, since we are interested in a Kerr background MS? 2
spacetime, whose metric is given as P —r

ds?= — ( 1— 2Mr)dt2+ Edr2+2d02 Note that the suffices of the momentum and the spin vector
3 A denote tetrad components. The tetrad frame has been defined
as
A 4Ma
+§sin20d¢2—Tr sirfédtde, (2.19 . \/g \/g
e#=< 500~ asir? E)’
where (o \/f oo
S =r?+a%cogh, A=r?-2Mr+a? ST DN
(2.25
A= (r?+a??—a?A sirte, (2.20 e2=(0,002,0),

it is hard to define an effective potential even in the above 3_|_ & r’+a?

; o : e, = sing,0,0; siné],
naive sense. This is because we cannot find new conserved ® NS NS

quantities in a Kerr background spacetime, which correspond _ S
to J,, Jy for the Schwarzschild case or Carter’s constant fowheree, = (e} ,€; e} ,€,) for i=0~3. Sincludes the direc-
a spinless particlgl3], in addition toE andJ,. However, if  tion of spin as well as the magnitude. Th@6>0 means the
we restrict the particle motion to the equatorial plane, anspin of the particle is parallel to that of the black hole and
effective potential for the radial motion is fouri@]. The  aS<0 means anti-parallel.
direction of spin must be parallel to the rotational axis. ~We regardJ.(r;J,,S,a) as an effective potential of the
In fact, imposing 6=m/2, S'=S'=8°=0, =-S5 and  particle on the equatorial plane. WhenvanishesU ., is
p*=0 to Eq.(2.17, we find that the energy and tlecom-  reduced toV(_(r,7/2;3,5) in the Schwarzschild cagd.1]
ponent of the angular momentum take the following forms: for SJ,>0 and toV(r,7/2;J,5) for §3J,<0. The particle
with energyE can move only in the region &=U . (or
_E= E B E(aJr M_S) 2.21) E<U(_,) on the equatorial plane. The typical shapeJot,
r Po r ur Ps. ' is shown in Fig. 1. We usually discuss the orbit in the equa-
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FIG. 1. The effective potentidll .., on the equatorial plane far,=4uM, S=1uM anda=0.5M. (a) The potentialU ., has two
extremal points(b) The potentiall _, has no extremum. A particle with positive energy is not bounded.

torial plane by use of this effective potential. In the case of 3=p(20)=0, S(()O): 5(10): 3(30):0, 3(20): — S and the time de-

spinless particle, it is enough because the conservation (?fvatives of these variables vanish. Here, we use the suffix

angular_ momentum prevents the particle from leaving th?O) for the unperturbed variables. From E@.14), we find
equatorial plane. If the angular momentum is larger than

some critical value, we always find a stable circular orbit. 0 p?o) MS?

Since no circular orbit exists below the critical angular mo- YO\ T WA ) (3.5
mentum, the particle eventually enters a dynamical stage s

from a quasi-periodic stage because the emitted gravitational 3 P 2MS?

waves remove angular momentum from the system. This ')(0):7 w?rs (3.6

critical value gives the ISCO. If a test particle has a spin,
however, the orbital angular momentum need not be conand v(10)=u(20)=0. The conserved quantities in our system
served. The particle may move off the equatorial planeare the energy and thecomponent of total angular momen-
Hence the analysis by use of the above effective potentiaim, which are now given as
may not give the ISCO. We need a more detailed analysis to /A

0

i i ) i 1 MS
see whether the circular orbit on the equatorial plane is really _ S plyt —|at— P(30) , 3.7)
stable or not. l'o l'o
VA S\, . . a8 M\,
[ll. STABILITY OF A CIRCULAR ORBIT J,=—/|a+— Pyt —|rota’+ — 1+ — Plo)-
OF A SPINNING PARTICLE o I o I ro

(3.8
The linear perturbation method is used to analyze the sta- ) ] )
bility of a circular orbit of a spinning particle. In the tetrad The way to determine the unperturbed variables is as fol-
frame, the equations of motion of a spinning particle ardows. First, the Kerr parameter and the magnitude of the

rewritten as spin S are fixed. Next, we give the radius of a circular orbit
A ro. Then, from the condition of potential extremumrat
X .
o5 — e’ @y &
dU ()
dp? 1 —ar =0, (3.9
S pupP+ = R¥ 3, b (3.2 R
ds c w c '

4s 1 J, is determined. The energy of the particle is obtained by
E:wcbavcsb_’_?paSiR*ijklijk 3 (3.3 E3= U(ro). F|'nally, from Egs.(3.7) and (3.8), p?o) anq
P(o) are determined. We denote these unperturbed variables
asXx{oy, (g)» P(oy aNdSpy - Of course, if no real solutiod,
is found for given parametes and S, a circular orbit does
Wijk= €€ €y, - (3.4  notexistatry. _
Let 8x*, v', 8p' and S be the perturbations around the

We assume a circular orbit in the equatorial plane as amnperturbed variables. We shall introduce a tetrad descrip-

unperturbed orbit, i.e.,rg=ro=const, 6)=m/2, p(lo) tion for 6x* as 5x'Ee'M5x“. From Eq.(2.14),

where w;; are the Ricci rotation coefficients defined as
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Sv'=X;oxI+Y|opl+ 259,
where,

1 _
i Ak *xp* i | m ..n
Xi= 28 ax¢ Ry mnSi0S0)Poo)

11 .
|
Y'j:;53+ o “R) 1mnS(0)S(0) 9] »

1

"

Inserting
xt=xto, +ef o',

Ui=v'(0)+5vi,
p'=pio)* o0,
S'=S,+ 43S,

_ . | |
Z'i=—3 "R imn( 6,0+ S(0)9])P(o) -

(3.10

(3.11

(3.12

(3.13

(3.19

PHYSICAL REVIEW D 58 023005

R i i
_ x i | * I m N
(I)'J_; &' i R0y im0 T Rio) imnX'j | Sio)P0) »

1
H'J:;R?m' imn(Y'1P{0)+ 008 S5 » 317

1
|
‘I"J:;R?m' imn(Z';S(0)F0.(0)8]") (o) -

In the case of a spinless particle, £g.15 is nothing but the
equation of geodesic deviation. The eigenvalues of the ma-
trix in Eq. (3.15 determine the stability of a test particle.
Inserting the unperturbed variables into the matrix in Eq.
(3.15, the matrix becomes rather simple. In the Appendix,
we show the explicit form of the matrix and its components
and discuss the structure of the matrix. The eigenvalue equa-
tion forms

MNONP= AN = Ag N2+ Agp)=0, (318

into Egs. (3.1—(3.9 and neglecting terms higher than the WhereA,, A, and A, are defined in the Appendix. First,
first order of perturbed variables, we find the linear perturbal® Se€ the meaning of this equation, we consider a simple

tion equations as

g [ Aj B Ch\ fax
—_— 5p| = DIJ Ell FIJ 5p]
ds i ) . ) i

where
Aij=Xij+ w(0)|ki 5;-<v|(0)—w(0)|kivl((0)5} ,
Bij:Yij ,
Cijzzij ’

. d . . .
_ | k | ~k
D'j=ef' 7 @' (0)P(0) T @0k X'jPo)+ P,

i — i1 in/l :
E'j=w0)k'v(0)6) + @)k Y'jP(oy T I1';
i _ il ok i
Fi= oo ZjpPo+ V',

) J ) )
i il K iyl ok
G ]—e]“ (9XP“ (l)(o)“( v(O)S(0)+w(0)|k X JS(O)

+ i2pi<0)5(0)|q>|j ,
m

1

3

Hij:
M

b o nd
R0)abcaS(0)V (0)S(0)P(0) 9

. 1 .
K
+“’(O)IleljS(0)+ Mz-p'S(o”H'j,

|i_:w _iUI + 1 i R . p2 Sb c
|~ @(0)j V(o) gépw) (0)jabe (0)2(0)P(0)

. 1
| ok |
+ ook Z S0 T 2 Pio)Son V'

with

(3.19

(3.19

case. Wher5=0 anda=0, this equation is reduced to

M/.LZ(rO GM) 3

8 \2 2 —
+_h + — , .

A% A ro(ro M) A I’g 0 (3.19

ie.,

o Mu(ro—6m)

" rire=3m)
L2
z

Aolz—r—4, (3.20
0

A‘g2:0,

wherelL, is thez component of orbital angular momentum,

and it is given for an unperturbed circular orbit as
2.2

z ro_3M )

(3.21

This equation shows that no circular orbit exists fg«3M.
The positivity of the second parenthesis of E8.19 guar-
antees the stability in th@ direction, i.e., in the direction
perpendicular to the equatorial plane. Therefore, the orbit of
a spinless particle in Schwarzschild spacetime is stable
against perturbations in thédirection. The first parenthesis
in Eq. (3.19 shows the stability in the direction. Forr,
<6M, the eigenvalues are real, while for-6M, those are
purely imaginary. This means that the equilibrium pdiit-
cular orbip with ry<6M is unstable, while it is stable for the
case ofro,>6M. We find the critical radius =6M when
L,=12uM. This corresponds to the ISCO of a spinless
particle in Schwarzschild spacetime.

In the general case, we can analyze the stability of the
circular orbit in ther direction by A, and in theé direction
by Ay and A 4, (see also the AppendixIf A,>0, the cir-
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a=0 a=04[M] a=0.8[M]
1.1 1.1 1.1
© © ©
0.9 0.9 0.9
3.6 3.7 3 3.1 2.05 2.15
J. [uM] J [uM] Jz [uM]
(a) (b) ©

FIG. 2. The parameter regions for which the circular orbit becomes unstable in the direction perpendicular to the equatorial plane. The
minimal values of the spin for each case éaeS=0.98uM, (b) S=0.9uM, and(c) S=0.94uM.

cular orbit is unstable against a radial perturbation, while ifsified into four types depending on its topology of contour
the real part of any solution of the equation (Figs. 2 and 3 if11]). From Fig. 2 in[11], we can see easily
4 2 _ the stability of the circular orbit of the spinning particle in
M= Aph A p=0, (3-22 Schwarzschild background spacetime. The (i has one
addle point and one minimal point on the equatorial plane.
he saddle point is maximal in thedirection and minimal
in the # direction. At the minimal point, it is minimal in both
irections. For the typg®2) potential, there are two saddle
Qgints away from the equatorial plane and one maximal and
one minimal point also exist on the equatorial plane. In the
type(U2) potential, we find one unstable point in both direc-
tions and one saddle point. At this saddle point, we find that
the orbit is stable in the direction but unstable in th@
direction. This is exactly the same as what we found in this
¢ Paper as the new type of instability. The stability of the cir-
cular orbit on the equatorial plane is summarized in Table I.
The solid lines in Fig. 3 show the radius of the ISCO for Eor a Kerr ballckground' spacetlmg, h'owever,. we cannot
define the effective potential for a spinning particle. There-

three values ofr. The radius of the ISCO decreases&s . o
: . . ) upon, instead of the topology of the contour, we divided the
increases or as increases, which means that the spin effect

plays the role of a repulsive force f@sS>0 basically. parameter space using the stability of the circular orbit. The
Therefore, the particle can approach the horizon of the black
hole without passing the horizon. But,Sfis larger than the

critical value, the radius of the ISCO increases. This shows 7
the occurrence of the instability of the motion in thelirec-

tion. The hatched regions below the solid lines denote the 6
interval of radii over which an orbit is stable on the equato- — 5
rial plane but unstable perpendicularly. Whea 1M, the
intervals are 3.80M <r=<3.8508V for a=0, 2.883M =<r
<3.0945% for a=0.4M and 1.934M<r=<1.970(M for
a=0.8M, respectively. In Fig. 4, we show the energy of the
particle and the orbital frequency of the ISCO.[®], the 2
energy the ISCO for same system was analyzed, but only th
instability in the radial direction was taken into account.

is positive, it is unstable against perturbations perpendicul
to the equatorial plane.

In Fig. 2, we show the unstable parameter ranges b
shaded regions for the caseast 0,0.4M and 0.81. We find
that the unstable parameter range is usually narrow, becau
we have a constraint for the particle spin &M =<0(1)
(see the discussion iril]). As we can see from this figure,
the unstable region in thee=0.4M case is larger than that in
the a=0 case. The value of at the bottom edge of this
region is~0.9«M. However, in thea=0.8M case, the un-
stable region becomes narrow again. The lowest valug o
for this region is about 0.94M.

a=20
a=04[M]

Tisco [M

a = 0.8 [M]

When the instability in thed direction is included, the energy 0 : : ' : :
and frequency of the ISCO behaves in the different mannel -5 -1 05 0 05 1 15
beyond the critical value. S [uM]
IV. DISCUSSIONS AND SUMMARY FIG. 3. The solid lines show the radius of the innermost stable

circular orbit (ISCO). Above the critical value of, the radius of
In our previous papefrll], we discussed the motion of a the ISCO increases. The hatched region denotes the interval of radii
spinning test particle in a Schwarzschild spacetime by use afver which an orbit is stable on the equatorial plane but unstable
an “effective potential.” The “effective potential” is clas- perpendicularly.
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FIG. 4. (a) The particle energ¥ of the ISCO.(b) The orbital frequency of the ISCO for which the mass of the black hole is assumed
to be 1M .

result for thea=0 case is shown in Fig. 5. The name of Schwarzschild spacetime. This is consistent with the fact that
classified types in this figure are same as those of the “efKerr spacetime possesses lower symmetry than Schwarzs-
fective potential” in[11] in which the circular orbit shows child spacetime and therefore the number of the constants of
the same stability type as the present analysis. Since the raiotion is smaller than that in the Schwarzschild case. As for
gion of J,=3.5uM andS=0 coincides with Fig. 3 in11], an example, we show in Fig. 7 the Poincanap of four
we believe that the present classification is the same as th@bits for thea=0.8M case constructed with the same rule
previous one by use of the “effective potential.” Figure 6 is as in[11]. These four orbits have different initial conditions
the classification for the Kerr background spacetime. We exbut same parameters of the motion, i&+2.8uM and S
pected that the parameter region for the 48 potential =0.4uM, which are in the typ@2) region. We can see that
for Kerr background spacetime would be larger than that fothe torus structures are broken and the motions of these or-
Schwarzschild spacetime because of the lower symmetry artults are chaotic. For the Schwarzschild case, the lowest value
the existence of the spin-spin interaction. However, as wef the spin for which chaos occurs is about &M (Fig. 7 in
have seen in Fig. 2, the parameter region is not enlargedL2)). It is much higher than that in the above Kerr case (
abruptly asa increases. Rather, for large this region gets =0.4um). This result supports our expectation that a par-
narrow. ticle motion in Kerr spacetime is more chaotic than that in
Since our system is not integrable as showrif], it = Schwarzschild casgl4].
may be worth mentioning about a chaotic motion of a spin- In this paper, we have analyzed the stability of a circular
ning test particle in Kerr background spacetime. In our pre-orbit of a spinning test particle in a Kerr background space-
vious paper, we estimated the Lyapunov exponent of a maime using the linear perturbation method. The circular orbit
tion of a spinning test particle in the Schwarzschildcan be unstable not only in thedirection but also in the
spacetime. We found that the timescale for which the chaotidirection due to the spin. This instability occurs when the
motion becomes much longer than the dynamical one. Sincgarameters are within the shaded regions of Fig. 2. In Fig. 8,

we are interested in analysis of a compact binary system, we
will not discuss unbounded orbits such as in the tdg Type(B1)
and typ€U2) potentials in this paper, although it may also be /M)

interesting to analyze those. Then we may conclude that ¢

: ) . : ) 1.4
particle motion can be chaotic and such a chaotic behavior | 5 |
could affect a template of gravitational waves emitted from a 1+
binary system only in the case of ty{B2) potential. 0.8 | Type(B2)
As we see from Fig. 6, the ty(®2) region becomes 0.6
larger asa increases. Then, we expect that a particle motion 0.4 1 1
. i : L 0.2 | Type(Ul)
in Kerr spacetime may become more chaotic than that inS o
% -0.2 |
TABLE |. The stability of a spinning test particle on the equa- -0.4 Type(B2)
torial plane. -0.6
-0.8 X
Inner extremal point Outer extremal point ~ 1_12 Type(U2) Type(B1)
r direction @ direction r direction 6 direction A S S T o0 I & s 4
Type(B1) Unstable Stable Stable Stable J, [uM]
Type(B2) Unstable Unstable Stable Stable
TypeUl) No extremal point FIG. 5. The classification of the “effective potential” of the
TypeU2) Unstable Unstable Stable Unstable particle for thea=0 case in theJ,-S plane. The regionJ,

023005-7

>3.5uM andS>0 is the same as Fig. 3 [12].
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a=0.8 [M] 0.03
a=04[M)]
a=0 0.025 +
1.4
1.2 0.02
1 —
0.8 = 0015}
0.6 N
0.4
S 0.2 0.01
3 0
w 0-2 0.005 |
«@ -0.4
-0.6 0 . ! .
-0.8
1 3.048 3.0485 3.049 3.0495 3.05
o p [M]

a=08[M] —f/ /
a=04[M] FIG. 8. The orbit of a spinning particle in the ty{#) potential
a=0 in Kerr background spacetime witi=0.4M. The particle is at the

minimum point of the “effective potential” in the direction on the
equatorial plane and the direction of the spin vector is slightly de-
viated from the direction perpendicular to the equatorial plane ini-
tially. The parameters of the orbit adg=3.06620962243M, E
=0.8619995086@, S=1.0uM andry=3.05M. The initial pertur-

a typical unstable orbit with these parameters and its fate argation is §S*=3.672835 10 5uM.

shown. We have chosen the parameters for the initially cir-

cular orbit of the particle as S=1uM, E particle on the ISCO and the orbital frequency of the ISCO
=0.86199950868, J,=3.06620962243M, ry=3.05M are also depicted.

and 6= w/2. The Kerr parameter ia=0.4M. For a pertur- If this new type of instability occurs in a real astrophysi-
bation, the direction of the spin is set to be slightly differentcal system such as a binary system, it changes the radius of
from the perpendicular to the equatorial plane, 88  the ISCO. This is very important for observation, especially,
=3.672835% 10 °uM. Because this circular orbit is un- gravitational astronomy as mentioned in the Introduction. So,
stable in thed direction, the particle leaves the equatorial we may restrict the parameters of the system, for example
plane and falls into the black hole eventually. Therefore thighe lower limit of the spin, from the observation of gravita-
type of instability may change the radius of the ISCO. In Fig.tional waves. And the chaos is also an important factor for
3, the dependence of the radius of the ISCO upon the maggravitational wave astronomy, because if chaos occurs in the
nitude of the spin is shown. In Fig. 4, the energy of thesystem, it must affect the gravitational wave emitted from
the system. However, the test particle model should not be
adopted as a model of the last stage of a binary system. In

FIG. 6. The classification of the effective potential of the par-
ticle on the equatorial plane for a Kerr black hole.

0015 fact, in our analysis, the radius of the ISCO gets very small.
For such small distances to the horizon, instabilities due to
001 - other effects mentioned in the Introduction must be taken
into account. Therefore, we need further investigation to
0005 [ check the importance of this type of instability in a more
= realistic binary system.
< of
S I N, .tﬁg;. - ACKNOWLEDGMENTS
-0.005 .\-‘_'.-'-._ ‘-"'.?3';;.-:;,7;-.'_«_'3?""'.,‘# We would like to thank Paul Haines for his critical read-
et _'_',',:... .4‘3{ ing of our paper. This work was supported partially by the
001 e e T Grant-in-Aid for Scientific Research Fund of the Ministry of
Education, Science and Cultu&pecially Promoted Re-
-0015 ] search No. 08102010 by a JSPS Grant-in-Aid(No.
63 64 65 6.6 6.7 095790, and by the Waseda University Grant for Special
r [ M] Research Projects.
FIG. 7. The Poincarenap for the orbit in a Kerr spacetima, APPENDIX A: THE PERTURBATION MATRIX
=0.8M, with parameters which belong to the tyB&). All orbits AND ITS EIGENVALUE EQUATION
haveJ,=2.8uM, §=0.4uM andE=0.9275. We setp'=0 ini-
tially. And the initial position isr,=6.5, 6.592, 6.628 and 6.68. Here, we present the explicit form of the perturbation ma-
We find that the motion is chaotic. trix in Eq. (3.19 and its non-vanishing components:

023005-8



INNERMOST STABLE CIRCULAR ORBIT OFA.. ..

0 A% o0
0 0 O
0 0 O
0 A3 O
A B C 0 00
j By G 1
D, E|, Fi|= 0 b O
2
G H Il 0 0 D%
J J J 0 0 0
0 0 GY%
0 0 O
0 0 O
0 0 G5
where
o SMSZ\/— (JK)’ o
p — v ’
=55 Pom T - (0)
., 2a, VA, GMSZ\/—
1=72%0 " 2l p(O),
0 0
o 1( MSZ)
B =— —3
M Mo
Bl_l( MSZ)
VoplTowg)
1
B2,=—,
o
|33_1 1+2|\/|$2>
s 2MS
C"= —EM p(O)*
, Ms§
C%= ,ur3p(°)’
2MS
C?3= Mrsp(30),
AMS
_ 3
Caz—_MTrgp(ow

O 0 0o © 0o © © o © o o ©

Oooo._‘

PHYSICAL REVIEW D 58 023005

(A1)

0
0
0
o |’
0
0
1

O o

023005-9

D2

El

2=~

1:

0=

(Poy)?

r=rg

T

oy

3,5
Mo

JK)’

6MS2A

3M aSz\/—
37 W37 37 (p(O))

3
p(O)p(O)

0 0
V(0)P(0)
r=rg

_E(

)

JK)”

2

)

3 3
Tz V)P0

.

)

r=rg
\/Z
0

+2(aurqy+3M S)U?o)p?O)]’

a 0 .0
_rg(aﬂro+3MS)U<0)p(0)

1
- _rg[ﬂro(rc2)+ a’)+ GMS]U(SO)p(so)

a\/_

(U<0>p<0>+v<0>p<0>)

MS?
,u,r

3 p 0
Mzro @

-

r

au+ 2|\/|S<

ap+MsS |

0
3 V(o)
urd O

U(0)+

r=rg

MS?
MZ 3 p(O)

au+ 2|\/|S<
1



SHINGO SUZUKI AND KEI-ICHI MAEDA

!

VA au+MS
—2| — U?O)"F—g U(So),

r=rg
a,u+MS( 2M82> 0
P

Mzrg 2.3 (0)

#To
L aut2MS 2VA

1 _
3=

+
I
JA
_ 3
Egl _gv(o)y
2MS(\/K)' (0% )?
2=~ 33| Po)
Mo\ T 1,
2Mas , 4M8\/_( 2
- PP p
“ r5 P~ M3 5 (0)
3 0 0 3
j(v(mp(oﬁzv(o)p(o))’
3Mas?
3 3 0
G=—75 i (v0)P(0) T {0y Pi0)) Ploy

a’s , aSVA .

+'r4 U(0)+ r4 U(o),
0 0

3Mas?
G=—735 238 — 3,5 (U(O)p +20?0)p(30))p(30)

aSyA ,  S(rg+a?)
T Yo 3 Yo
0 0

HY= SV4

2= —,
MTo
3MS
0 _ 3 0 0 3 0
| 1—MTrg(v(o>p<0>+U<0>p(0>)p(0)
JAY' a ,
- Vo)t 2V
r=ry 0

r

MSZ\/— VA a
o= —55Plo~| Vo) =20{0)
o r r r—r )
0
2MS%VA ., a , VA
Ily=— s 0%+~ v
3 p(o> 2 (0) 2 (0)
M o
3MS
3 _ 3 0 0 3 3
1*1=—33(0{0)P(0)* ¥ (0)P(0)) Pl0)
©7To
a VA
2V~ 20
0 0

PHYSICAL REVIEW D 58 023005

A prime denotesl/dr. It is easily shown that the eigenequa-
tion of the matrix(Al) can be decomposed as follows:

- 0 o0 BY
0 -x 0 EY%
0 0 -\ E%
DY, EY E} -
- 0 0 D? F?
0 -x 0 G% 19
x| 0 0 =\ G35 13 |=0 (A2
B2, C% C% -\ O
HY, 1% 15 0 -

Three zero eigenvalues come from two zero columns and a
zero line in the matrix, which are related to the facts that
and ¢ are the cyclic coordinates of the system and that the
magnitude of the spin is conserved, respectively. The second
part consists of the components relatedtd, 5p°, sp® and

Spt. Because of the conservation of the energy and the an-
gular momentum of the particle, two eigenvalues of this part
are zero. The remaining two eigenvalues describe the stabil-
ity in the r direction. The components of the last part are
related tosp?, 863, 6S°, 6x? and8St. The eigenequation of
this part, except for one zero eigenvalue which comes from
the condition(2.13, turns out to be a quadratic equation of
\? and determines the stability in thgdirection. Finally, we

find the eigenvalue equation as,

NONZ= AN = A A2+ A ) =0, (A3)

where
=(BY, DY +E EY+ELES), (A4)

A p1=(B%,D?,+ C%,G%+ C2%,G3,+F2 H1,
+191+11513), (A5)
A02: (CZOleGOZH 12+ C23F21632H 12_ C20D22H 12' Ol
—B%F?G%I %+ B?D?1 %11+ C%G3%I1% 1Y,
—B?%F?1G%,1 13— C%G3,1 %1 13— C%3D % H Y1,
—C?3G%I1%13,+ B2,D?,1 5513, + C2,G%1 5518)).
(AB)

To analyze the stability of a circular orbit, we have to know
A, for the stability in ther direction, whileA 4, and A , for
that in thed direction.
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