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Covariant and gauge-invariant analysis of cosmic microwave background anisotropies
from scalar perturbations

Anthony Challinor* and Anthony Lasenby†
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~Received 30 March 1998; published 5 June 1998!

We present a new, fully covariant and manifestly gauge-invariant expression for the temperature anisotropy
in the cosmic microwave background radiation resulting from scalar perturbations. We pay particular attention
to gauge issues such as the definition of the temperature perturbation and the placing of the last scattering
surface. In the instantaneous recombination approximation, the expression may be integrated up to a Rees-
Sciama term for arbitrary matter descriptions in flat, open and closed universes. We discuss the interpretation
of our result in the baryon-dominated limit using numerical solutions for conditions on the last scattering
surface, and confirm that for adiabatic perturbations the dominant contribution to the anisotropy on interme-
diate scales~the location of the Doppler peaks! may be understood in terms of the spatial inhomogeneity of the
radiation temperature in the baryon rest frame. Finally, we show how this term enters the usual Sachs-Wolfe
type calculations~it is rarely seen in such analyses! when subtle gauge effects at the last scattering surface are
treated correctly.@S0556-2821~98!05314-4#

PACS number~s!: 98.70.Vc, 95.30.Jx, 98.80.Cq
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I. INTRODUCTION

The calculation of the primary temperature anisotropy
the cosmic microwave background radiation~CMB! result-
ing from density perturbations has a long history, beginn
with the seminal paper by Sachs and Wolfe@1#. Since the
original Sachs-Wolfe estimate, a wealth of detailed pred
tions for the anisotropies expected in various cosmolog
models have been worked out. The calculations are strai
forward in principle, but, like many topics in cosmologic
perturbation theory, are plagued by subtle gauge issues@2#.

The problems of gauge-mode solutions to the linear p
turbation equations and the gauge-ambiguity of initial con
tions can be eliminated by working exclusively with gaug
invariant variables, as in the widely used Bardeen appro
@3# and the less well known covariant approach advocated
Ellis and co-workers@4,5#. However, gauge issues still aris
in connection with the definition of the temperature pert
bation and the placement of the last scattering surface@2,6#.
The latter gauge issues do not arise at first-order in nume
calculations which integrate the Boltzmann equation in
perturbed universe, since the visibility function~which deter-
mines the position of the last scattering surface! multiplies
first-order variables giving only a second-order error fro
the use of a zero-order approximation to the visibility@7#.
However, this is not always the case in Sachs-Wolfe s
analyses, which integrate along null geodesics back to
surface of last scattering, unless care is taken to ensure
the final result involves only first-order variables on the l
scattering surface, which then only need be located to z
order.

In this paper, we present a new expression for the C
temperature anisotropy arising from linear scalar pertur

*Email address: A.D.Challinor@mrao.cam.ac.uk
†Email address: A.N.Lasenby@mrao.cam.ac.uk
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tions which is fully covariant and manifestly gauge invaria
We obtain our expression by integrating the covariant a
gauge-invariant Boltzmann equation@7,8# along observa-
tional null geodesics, paying careful attention to the gau
issues discussed above. Unlike some covariant results in
literature ~see, for example,@8,9#!, the expression derived
here can be integrated trivially, in the instantaneous reco
bination approximation, up to a Rees-Sciama term in u
verses with arbitrary matter descriptions.~The covariant re-
sults in @8,9# can only be integrated in baryon-dominate
universes, thus excluding cold dark matter dominated u
verses, and other such models favored by observation.! We
base our treatment on the physically appealing covariant
gauge-invariant formulation of perturbation theory, as d
scribed in@4,5#. In this approach, one works exclusively wit
gauge-invariant variables which are covariantly-defined a
hence physically observable in principle. The covaria
method has many advantages over other gauge-invarian
proaches~such as that formulated by Bardeen@3#!. Most no-
tably, the covariant variables have transparent physical d
nitions which ensures that predictions are alwa
straightforward to interpret physically. Other advantages
clude the unified treatment of scalar, vector and ten
modes, a systematic linearization procedure which can
extended to consider higher-order effects~the covariant vari-
ables are exactly gauge-invariant, independent of any pe
bative expansion!, and the ability to linearize about a variet
of background models, such as Friedmann-Roberts
Walker ~FRW! or Bianchi models.

For universes which are baryon-dominated at last sca
ing, our expression for the temperature anisotropy may
compared to other gauge-invariant analytic results in the
erature. We show that, with suitable approximations, the
sult derived here reduces to that given by Panek@10# and
corrects a similar result given by Dunsby recently@9#. For
the baryon-dominated universe, we use numerical results
the covariant, gauge-invariant variables on the last scatte
surface, obtained from a gauge-invariant Boltzmann co
© 1998 The American Physical Society01-1



ri
o

on
gr
o

m

gy
ac
e

e
s
n
u
le

t
py
-
o

cu
th

n
fin

s,
M

e

ta
e-
th
e
th
c
e

tri

s

n

ity,
as

d in
ere.
the
are
lly
ov-

tial

sity

-

to

he
rder

ion

e

st

ANTHONY CHALLINOR AND ANTHONY LASENBY PHYSICAL REVIEW D 58 023001
@7#, to discuss the different physical contributions to the p
mary temperature anisotropy. In particular, we show that
intermediate and small scales, the ‘‘monopole’’ contributi
to the temperature anisotropy is described by the spatial
dient of the photon energy density, in the energy-frame,
the last scattering surface. Since the~real! last scattering sur-
face is approximately a surface of constant radiation te
perature~so that recombination does occur there!, the inho-
mogeneity of the radiation energy density in the ener
frame determines a distortion of the last scattering surf
relative to the surfaces of simultaneity in the energy-fram
The extra redshift~due to the expansion of the univers!
which the photons incur due to the distortion is seen a
‘‘monopole’’ contribution to the temperature anisotropy o
intermediate scales. There is a significant ‘‘dipole’’ contrib
tion to the anisotropy on intermediate and small sca
which we discuss also.

We end with a discussion of the gauge issues inheren
the original Sachs-Wolfe calculation of the CMB anisotro
@1#, focusing on the ‘‘monopole’’ contribution to the tem
perature anisotropy on intermediate scales, described ab
This contribution is often missed in Sachs-Wolfe-type cal
lations through an incorrect treatment of gauge effects at
last scattering surface@6#. ~Equivalently, the term is often
missed through a failure to recognize the directio
dependence of the ‘‘expected temperature’’ used to de
the temperature perturbation in many calculations.! This of-
ten neglected term, which is not important on large scale
an essential component of the Doppler peaks in the C
power spectrum.

We employ standard general relativity and use
~1222! metric signature. Our conventions for th
Riemann and Ricci tensors are fixed by@¹a ,¹b#uc

52R abd
cud, andRab[R acb

c. We use units withc5G
51 throughout.

II. COVARIANT COSMOLOGICAL PERTURBATIONS

In this section, we summarize the covariant approach
perturbations in cosmology@4,5# to establish our notation
and conventions. We begin by choosing a velocityua, which
is defined physically in such a manner that if the universe
exactly FRW the velocity reduces to that of the fundamen
observers. This property ofua is necessary to ensure gaug
invariance of the variables defined below. We refer to
choice of velocity as a frame choice. For most of this pap
it will not be necessary to make a frame choice. From
velocity ua, we construct a projection tensor into the spa
perpendicular toua ~the instantaneous rest space of observ
whose velocity isua):

hab[gab2uaub , ~2.1!

wheregab is the metric of spacetime. We use the symme
tensor hab to define a spatial covariant derivative(3)¹a

which acting on a tensorTb . . . c
d . . . e returns a tensor which

is orthogonal toua on every index:

~3!¹aTb . . . c
d . . . e[hp

ahr
b . . . hs

chd
t . . . he

u¹pTr . . . s
t . . . u ,

~2.2!
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where¹a denotes the usual covariant derivative.
The covariant derivative of the velocity decomposes a

¹aub5Ãab1sab1
1

3
uhab1uawb , ~2.3!

where Ãab5Ã [ab] is the vorticity, which satisfiesuaÃab
50, sab5s (ab) is the shear, which is orthogonal toua and
traceless,u[¹aua53H measures the volume expansio
rate (H is the local Hubble parameter!, andwa[ub¹bua is
the acceleration. In an exact FRW universe the vortic
shear and acceleration vanish identically. We regard them
first-order variables@denotedO~1!# in an almost FRW uni-
verse, so that products of such variables may be droppe
expressions in the linearized calculations we consider h
Other first-order variables may be obtained by taking
spatial gradient of scalar quantities. Such quantities
gauge-invariant by construction since they vanish identica
in an exact FRW universe. We shall make use of the com
ing fractional spatial gradient of the densityr ( i ) of a species
i ,

X a
~ i ![

S

r~ i !
~3!¹ar~ i !, ~2.4!

and the comoving spatial gradient of the expansion

Z a[S~3!¹au. ~2.5!

The scalarS is a local scale factor satisfying

Ṡ[ua¹aS5HS, ~3!¹aS5O~1!, ~2.6!

which removes the effects of the expansion from the spa
gradients defined above. The vectorX a

( i ) is a manifestly co-
variant and gauge-invariant characterization of the den
inhomogeneity.

The matter stress-energy tensorTab decomposes with re
spect toua as

Tab[ruaub12u(aqb)2phab1pab , ~2.7!

wherer[T abu
aub is the density of matter~measured by a

comoving observer!, qa[ha
bTbcu

c is the energy~or heat! flux
and is orthogonal toua, p[2habT ab/3 is the isotropic pres-
sure, and the symmetric traceless tensorpab[ha

chb
dTcd

1phab is the anisotropic stress, which is also orthogonal
ua. In an exact FRW universe, isotropy restrictsTab to
perfect-fluid form, so that in an almost FRW universe t
heat flux and isotropic stress may be treated as first-o
variables.

The photons are described by a covariant distribut
function f (g)(E,e), whereE5paua is the energy of a photon
with momentumpa, andea is unit spacelike vector along th
direction of propagation in the frame defined byua. The
photon energy densityr (g), the heat fluxqa

(g) and the aniso-
tropic stresspab

(g) are given by integrals of the three lowe
angular moments of the distribution function:
1-2
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COVARIANT AND GAUGE-INVARIANT ANALYSIS O F . . . PHYSICAL REVIEW D 58 023001
r~g!5E dEdV E3f ~g!~E,e!, ~2.8!

qa
~g!5E dEdV E3f ~g!~E,e!ea , ~2.9!

pab
~g!5E dEdV E3f ~g!~E,e!eaeb1

1

3
r~g!hab ,

~2.10!

wheredV denotes an integration over solid angles. High
order symmetric traceless spatial tensors can be used to
acterize higher moments of the distribution function~see, for
example,@11#!, and are useful in numerical simulations
the CMB anisotropy@7#. We use the temperature differenc
from the mean~the full sky average! as our definition of the
temperature anisotropydT(e), so that

4dT~e![
4p

r~g! E dE E3f ~g!~E,e!21. ~2.11!

The temperature perturbationdT(e) is covariantly defined
and gauge-invariant~it vanishes in an exact FRW universe!,
and is observable directly. This should be contrasted with
gauge-dependent temperature perturbation used by som
thors ~see Sec. V, for examples!.

The final first-order gauge-invariant variables we requ
derive from the Weyl tensorWabcd, which vanishes in an
exact FRW universe due to isotropy and homogeneity. T
electric and magnetic parts of the Weyl tensor, denoted
Eab andBab , respectively, are symmetric traceless tenso
orthogonal toua, which we define by

E ab[ucudWacbd, ~2.12!

Bab[2
1

2
ucudhac

e fWe f bd, ~2.13!

wherehabcd is the covariant permutation tensor withh0123

52A2g.

Linearized perturbation equations

Over the epoch of interest, the individual matter consti
ents of the universe interact with each other only throu
gravity, except for the photons and baryons~including elec-
trons! whose dominant interaction with each other is via T
omson scattering of photons off free electrons. The varia
of the gauge-invariant temperature perturbationdT(e) along
null geodesics is given by the~linearized! covariant Boltz-
mann equation@7,8#:
02300
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dT~e!81sTnedT~e!5sabe
aeb1waea

2S 1

3
u1

r~g!8

4r~g!D @114dT~e!#

2sTneS va
~b!ea2

3

16r~g! pab
~g!eaebD ,

~2.14!

wherene is the free electron density~the effects of thermal
motion of the free electrons is ignored!, sT is the Thomson
cross section,va

(b) is the baryon velocity relative toua

@va
(b)ua5O(2)#, and a prime denotes differentiation with re

spect to the parameterl along the null geodesic, with (ua
1ea)¹al51. In Eq. ~2.14! we have ignored the effects o
polarization. Including polarization gives only a small co
rection to the collision term in the Boltzmann equation d
to the polarization dependence of the Thomson cross sec
Equation~2.14! is valid for any type of perturbation~scalar,
vector or tensor! and for any value of the spatial curvatur
The evolution of the photon density is given by

ṙ ~g!1
4

3
ur~g!1 ~3!¹aqa

~g!50, ~2.15!

where an overdot denotes differentiation with respect
proper time along the integral curves ofua ( ṙ (g)

[ua¹ar (g)). Taking thel 51 angular moment of the Boltz
mann equation~2.14! gives a propagation equation for th
photon heat flux:

q̇a
~g!1

4

3
uqa

~g!1 ~3!¹bpab
~g!1

4

3
r~g!wa2

1

3
~3!¹ar~g!

5sTneS 4

3
r~g!va

~b!2qa
~g!D . ~2.16!

Taking higher-order moments of Eq.~2.14! gives a hierarchy
of equations which are used in the covariant numerical c
culations of CMB anisotropies described in@7#.

The electrons and baryons may be approximated b
tightly-coupled ideal fluid with energy densityr (b), pressure
p(b) in the rest frame of the fluid which has velocityua

1va
(b) . To linear order, the stress-energy tensor of the ba

ons is

T ab
~b!5r~b!uaub12~r~b!1p~b!!u(avb)

~b!2p~b!hab ,
~2.17!

which shows that the baryon heat flux is (r (b)1p(b))va
(b) in

theua frame. The conservation of photon plus baryon stre
energy gives the propagation equations for the density

ṙ ~b!1~r~b!1p~b!!u1~r~b!1p~b!!~3!¹ava
~b!50,

~2.18!

and the velocity
1-3
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~r~b!1p~b!!~ v̇a
~b!1wa!1

1

3
~r~b!1p~b!!uva

~b!

1 ṗ~b!va
~b!2 ~3!¹ap~b!52sTneS 4

3
r~g!va

~b!2qa
~g!D .

~2.19!

In this paper we consider only scalar perturbations. In t
case, the magnetic part of the Weyl tensorBab and the vor-
ticity Ãab vanish identically. The electric part of the We
tensorEab and the shearsab do not vanish, and satisfy th
propagation equations

Ėab1uEab1
1

6
k@3~r1p!sab13~3!¹ (aqb)

2hab
~3!¹cqc23ṗab2upab#50, ~2.20!

ṡab1
2

3
usab2 ~3!¹ (awb)

1
1

3
hab

~3!¹cwc1Eab1
1

2
kpab50, ~2.21!

wherek[8p, and the constraint equations

~3!¹bEab2
1

6
k@2~3!¹ar12uqa13~3!¹bpab#50,

~2.22!

~3!¹bsab2
2

3
~3!¹au2kqa50. ~2.23!

The density, pressure, heat flux and anisotropic stress ap
ing in these equations are total variables obtained by s
ming over all matter constituents.

For scalar perturbations, the temporal and spatial asp
of the problem may be separated by expanding all first-or
gauge-invariant variables in tensors derived from the sc
harmonic functionsQ(k), which are defined covariantly a
eigenfunctions of the generalized Helmholtz equat
(3)¹2Q(k)5k2/S2 Q(k) @12# satisfying Q̇(k)5O(1). Specifi-
cally, we have

X a
~ i !5(

k
kX k

~ i !Qa
~k! , Za5(

k

k2

S
Z kQa

~k! , ~2.24!

qa
~ i !5r~ i !(

k
qk

~ i !Qa
~k! , pab

~ i !5r~ i !(
k

pk
~ i !Qab

~k! ,

~2.25!

Eab5(
k

k2

S2 FkQab
~k! , sab5(

k

k

S
skQab

~k! ,

~2.26!

va
~b!5(

k
vk

~b!Qa
~k! , wa5(

k
wkQa

~k! . ~2.27!
02300
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The scalar expansion coefficients, such asX k
( i ) , are them-

selves first-order gauge-invariant variables, and they sat
(3)¹aX k

( i )5O(2). The spatial vectorQa
(k) and the spatial

tensorQab
(k) , which is symmetric and traceless, are defined

Qa
~k![

S

k
~3!¹aQ~k!,

Qab
~k![

S2

k2
~3!¹ (a

~3!¹b)Q
~k!2

1

3
habQ

~k!. ~2.28!

Some useful properties of the scalar harmonics and der
tensors are summarized in the appendix to Bruniet al. @13#.
This completes the definitions of quantities required in t
paper. Further details of our notation and conventions m
be found in@7,8#.

III. A COVARIANT EXPRESSION FOR THE
TEMPERATURE ANISOTROPY

The gauge-invariant CMB temperature anisotropy alon
given direction is obtained by integrating the Boltzma
equation ~2.14! along the null geodesic~whose tangent
projects onto the given direction! through the observation
point. Before integrating Eq.~2.14!, it is convenient to re-
write the first-order factor multiplying 114dT(e) on the
right-hand side in terms of gauge-invariant variables as
lows:

1

3
u1

r~g!8

4r~g! 5
1

4r~g! ~ea
~3!¹ar~g!2 ~3!¹aqa

~g!!, ~3.1!

where we have made use of the equation of motion of
photon density, Eq.~2.15!, and (ua1ea)(3)¹al51. At this
point, we specialize to scalar perturbations and introduce
harmonic expansions of the gauge-invariant variables gi
in the previous section. We have

1

r~g!
~3!¹aqa

~g!5(
k

k

S
qk

~g!Q~k!, ~3.2!

1

r~g! ea
~3!¹ar~g!5(

k
X k

~g!Q~k!8, ~3.3!

so that

1

4r~g! ~ ~3!¹aqa
~g!2ea

~3!¹ar~g!!

52
1

3 (
k

S k

S
Zk2

S

k
uwkDQ~k!2

1

4 (
k

~X k
~g!Q~k!!8,

~3.4!
1-4
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where we have used the equation

k

S
qk

~g!52
4

3

k

S
Zk1

4

3

S

k
uwk2X k

~g!8 , ~3.5!

which follows from taking the spatial gradient of Eq.~2.15!
02300
and harmonically expanding the result, to eliminateqk
(g) in

favor of Zk and the acceleration. Integrating the Boltzma
equation~2.14! along the null geodesic connecting the rece
tion point R ~wherel5lR) and a point in the distant pas
~wherel5l i), we find
t,

s

have

es
In
e spatial
baryon

s in
„dT~e!…R52
1

4 (
k

~X k
~g!Q~k!!R1(

k
E

l i

lR
e2tF k

S
ske

aebQab
~k!2

1

3 S k

S
Zk2

S

k
uwkDQ~k!1wke

aQa
~k!Gdl

1(
k
E

l i

lR
2t8e2tF 3

16
pk

~g!eaebQab
~k!2vk

~b!eaQa
~k!1

1

4
X k

~g!Q~k!Gdl, ~3.6!

where (M )R denotes the value of the quantityM evaluated at the pointR, andt~l! is the optical depth along the line of sigh
defined by

t~l![E
l

lR
nesT dl. ~3.7!

On angular scales larger than 88 we may approximate the visibility function2t8e2t by a d function whose support define
the last scattering surface~the instantaneous recombination approximation!. With this approximation, Eq.~3.6! integrates to

„dT~e!…R5(
k

S 1

4
X k

~g!Q~k!1
3

16
pk

~g!eaebQab
~k!2vk

~b!eaQa
~k!D

A

1(
k
E

lA

lRH k

SFskS S

k2 ~SQ~k!8!81
1

3
Q~k!D2

1

3
Z kQ

~k!G1
S

k
@wkQ

~k!81HwkQ
~k!#J dl, ~3.8!

where the pointA ~wherel5lA) is the point of intersection of the null geodesic with the last scattering surface, and we
used the result

eaebQab
~k!5

S

k2 ~SQ~k!8!81
1

3
Q~k!. ~3.9!

We have dropped a direction independent~monopole! term evaluated atR from Eq.~3.8! since it will eventually be cancelled
by other monopole terms in the integral. Note that the integrand in Eq.~3.8! contains only kinematic gauge-invariant variabl
~the shear, the spatial gradient of the expansionu and the acceleration!, which simplifies the next stage in the integration.
@8# we gave a more general expression for the anisotropy, valid for all perturbation types, but the integrand involved th
gradient of the baryon density which could only be replaced by the spatial gradient of the total density if the universe is
dominated at recombination. Expression~3.8! proves to be more convenient for the discussion of CMB anisotropie
multicomponent universes where only scalar perturbations are present.

Integrating the last term in Eq.~3.8! by parts twice, we find that

E
lA

lR k

SFskS S

k2 ~SQ~k!8!81
1

3
Q~k!D2

1

3
ZkQ

~k!G1
S

k
@wkQ

~k!81HwkQ
~k!#dl

5Fske
aQa

~k!2
S

k
~ ṡk2wk!Q

~k!G
A

R

1E
lA

lRF S S

k
sk8D 8

1
1

3

k

S
~sk2Zk!2

S

k
wk8GQ~k!dl. ~3.10!
1-5
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The integrand on the right-hand side of Eq.~3.10! may be
simplified by using the linearized propagation and constra
equations for the shear and the electric part of the W
tensor. The harmonic expansions of Eqs.~2.20! and ~2.21!
give

S k

SD 2S Ḟk1
1

3
uFkD1

1

2

k

S
kr~gsk1qk!

1
1

6
kru~3g21!pk2

1

2
krṗk50, ~3.11!

k

S S ṡk1
1

3
usk2wkD1S k

SD 2

Fk1
1

2
krpk50,

~3.12!

whereg is defined byp5(g21)r, and the constraint equa
tion ~2.23! gives

2

3 S k

SD 2FZk2S 12
3K

k2 DskG1krqk50. ~3.13!

In these equations, the scalar variablesqk and pk are the
harmonic expansion coefficients of the total heat flux a
anisotropic stress. They are related to the component v
ablesqk

( i ) andpk
( i ) @defined by Eq.~2.25!# by

rqk5(
i

r~ i !qk
~ i ! , rpk5(

i
r~ i !pk

~ i ! , ~3.14!

where the sums are over individual componentsi .
Evaluating the integrand in Eq.~3.10! by differentiating

the shear propagation equation~3.12!, substituting forqk and
Zk from equations~3.11! and ~3.13!, and using the zero
order Friedmann equation

H21
K

S2 5
1

3
kr, ~3.15!

we find the result

S S

k
sk8D 8

1
1

3

k

S
~sk2Zk!2

S

k
wk8522Ḟk , ~3.16!

which is true for scalar perturbations, independent of
matter description and spatial curvature. With this, we obt
our final result for the temperature anisotropy~which is exact
in linear theory on angular scales where instantaneous
combination is valid!:
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„dT~e!…R5(
k

S F1

4
X k

~g!1
S

k
~ ṡk2wk!GQ~k!D

A

2(
k

~@vk
~b!1sk#e

aQa
~k!!A

1
3

16 (
k

~pk
~g!eaebQab

~k!!A

22(
k
E

lA

lR
ḞkQ

~k! dl, ~3.17!

where we have dropped a~frame-dependent! dipole term
evaluated atR since such a term cannot be distinguish
from a first-order peculiar velocity of the observer atR. The
final term in Eq. ~3.17! describes the Rees-Sciama effe
which only makes a small contribution to the anisotropy
K50 models that are matter dominated at recombinat
~for K50, Fk is approximately constant while a mode
outside the horizon and during the matter dominated era
all scales!. The third term on the right-hand side of E
~3.17! represents a small contribution to the anisotropy fro
photon anisotropic stress at last scattering. The sum of
first and second terms dominates the CMB anisotropy i
K50 universe, with the relative importance of each te
being dependent onVb andH0 . Expression~3.17! is a gen-
eralization of the result given by Dunsby in Sec. V of@9#
which was valid only for universes that are fully baryo
dominated at last scattering and are spatially flat. We s
see in Sec. IV how the result in@9# ~actually a corrected
version of it! may be obtained from Eq.~3.17! in the limit of
baryon domination at recombination. A similar result to E
~3.17! is derived in @14# in terms of Bardeen’s gauge
invariant variables.

In deriving Eq. ~3.17!, we have not made an explic
choice for the velocityua. Each of the four terms on the
right-hand side is frame-independent, which follows fro
the fact that under a change of frameua°ua1va , whereva

is a first-order relative velocity@uava5O(2)#, Eab , Ėab and
pab are invariant, whileva

(b)°va
(b)2va and

sab°sab1 ~3!¹ (avb)2
1

3
hab

~3!¹cvc . ~3.18!

The frame-invariance of the right-hand side of Eq.~3.17! is
necessary sincedT(e) is invariant in linear theory, up to the
dipole terms that we have dropped from Eq.~3.17!.

The nonintegral terms on the right-hand side of Eq.~3.17!
are evaluated at the pointA on the last scattering surface
which lies on a null geodesic through the observation po
R. However, it is only necessary to locateA to zero-order
since the displacement from the ‘‘true’’ position is firs
order, which leads to only a second-order error when eva
ating a first-order variable. We shall return to this point
Sec. V where we discuss some of the gauge issues assoc
with the placement of the last-scattering surface in the s
dard calculations of the Sachs-Wolfe effect.
1-6
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IV. CMB ANISOTROPY IN A UNIVERSE DOMINATED
BY BARYONS AT RECOMBINATION

In cosmological models that are baryon dominated at
combination, the covariant result for the temperature ani
ropy, Eq.~3.17!, may be cast in a more familiar form, whic
aids direct comparison with other such results in the lite
ture ~for example@9#! and physical interpretation.

Using the propagation equations~3.12! and~3.11! for the
shear and the electric part of the Weyl tensor, and the
monic expansion of the constraint~2.22!:

2S k

SD 3S 12
3K

k2 DFk2
k

S
krSXk1F12

3K

k2 GpkD2kruqk50,

~4.1!

we find in the limit

r→r~b!, p→0, Xk→X k
~b! , qk→vk

~b! , pk→0,

~4.2!

at last scattering that

1

4
X k

~g!1
S

k
~ ṡk2wk!→

1

4
X k

~g!2
1

3
X k

~b!

2
1

3
Fk2

2~6K2k2!

3krS2 Fk

1
2

kr
HḞk , ~4.3!

where we have added and subtractedX k
(b)/3 making use of

Eq. ~4.1!, and

2~sk1vk
~b!!→

2k

krS
~Ḟk1HFk!. ~4.4!

It follows that in a universe which is baryon dominated
last scattering, the temperature anisotropy from scalar pe
bations in the instantaneous recombination approxima
becomes

„dT~e!…R5(
k

S F1

4
X k

~g!2
1

3
X k

~b!2
1

3
Fk

2
2~6K2k2!

3krS2 Fk1
2

kr
HḞkGQ~k!D

A

1(
k

S 2k

krS
@Ḟk1HFk#e

aQa
~k!D

A

22(
k
E

lA

lR
ḞkQ

~k! dl. ~4.5!

The first set of terms in square brackets on the right-h
side of Eq.~4.5! give the ‘‘monopole’’ contribution~at last
scattering! to the temperature anisotropy. The term (X k

(g)/4
2X k

(b)/3)Q(k) arises from entropy perturbations, which m
be characterized covariantly by a vectorS a

(gb) where
02300
-
t-

-

r-

t
r-
n

d

S a
~gb![

3

4r~g!
~3!¹ar~g!2

1

r~b!
~3!¹ar~b!. ~4.6!

For adiabatic initial conditions, entropy perturbations van
at last scattering on large scales, where tight-coupling
tween the baryons and photons still holds. The sec
‘‘monopole’’ term, 2FkQ

(k)/3, is the usual Sachs-Wolfe
contribution to the temperature anisotropy@1#, whose effect
is modified on small scales by the third and fourth ‘‘mon
pole’’ terms. As noted by Ellis and Dunsby@6#, the third
term is rarely seen in analytic calculations of the Sac
Wolfe effect, although it is present in Panek’s result@10#.
The omission arises from subtle gauge effects at the
scattering surface which we discuss in Sec. V. The fi
monopole term is a small correction arising from the nons
tionarity of the potentialFk . The terms under the secon
summation in Eq.~4.5! make a ‘‘dipole’’ contribution to the
temperature anisotropy, and are important on small ang
scales.

In a K50 universe, Eq.~4.5! may be written in the form

„dT~e!…R5(
k

S F1

4
X k

~g!2
1

3
X k

~b!2
1

3
Fk

1
2

3
H21Ḟk1

2

9
H k

22FkGQ~k!D
A

1(
k

S 2

3
H k

21@Fk1H21Ḟk#e
aQa

~k!D
A

22(
k
E

lA

lR
ḞkQ

~k! dl, ~4.7!

whereHk[SH/k is the ratio of proper wavelength to th
Hubble radius. This result corrects that given by Dunsby
Sec. V of @9# @his equation~61!; note also the difference in
metric signature from that adopted here#. Note, in particular,
that the dominant contribution to the CMB anisotropy fro
adiabatic perturbations on large scales is2Fk/3, which is a
factor of 3 smaller than the result in@9#.

In Fig. 1 we plot the first two summands in Eqs.~3.17!
and ~4.7! as a function ofk, with S51 at the present, in a
K50 universe, in the limitVb51, whereVb is the present-
day baryon density in units of the critical density. We ta
H0550 km s21 M pc21 and consider adiabatic perturbation
with only the fastest growing mode present. At early tim
we takeFk to be independent ofk. The actual conditions on
the last scattering surface are obtained from the tran
functions of Fig. 1 by multiplying by the initial values ofFk
~which are Gaussian random variables in most inflation
theories!. The gauge-invariant variables on the last scatter
surface are obtained from an accurate Boltzmann code
ploying covariant, gauge-invariant variables, with adiaba
initial conditions @7#. The agreement between the appro
mate expression~4.7! and the ‘‘exact’’ expression~3.17! is
good over the full range ofk depicted. The small discrepanc
between the sets of curves is due to the small but nonz
1-7
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values of r (g)/r and r (n)/r on the last scattering surfac
~which is located atz.1050 in this model!.

On large angular scales~smallk), the ‘‘monopole’’ terms
dominate the CMB anisotropy, giving the familiar Sach
Wolfe plateau for a scale-invariant spectrum of initial con
tions. On smaller angular scales the ‘‘monopole’’ term osc
lates in k due to the coherent acoustic oscillations in t
photon-baryon plasma that occur for modes inside
~sound! horizon. These oscillations, along with the oscill
tions in the ‘‘dipole’’ on small scales, determine the structu
of the Doppler peaks in the CMB power spectrum. For ad
batic perturbations in aK50 universe, the first zero in th
‘‘monopole’’ contribution to the anisotropy~the initially
lower curves in Fig. 1! occurs whereHk'A(2/3). This fol-
lows from Eq.~4.7!, the fact that initially adiabatic perturba
tions are still adiabatic at last scattering on such scales~see
Fig. 2!, and the approximate stationarity of the potentialFk
in the matter dominated era of aK50 universe. This effect
was noted recently by Ellis and Dunsby@6#, and was also
discussed by Hu and Sugiyama@14#. Ellis and Dunsby sug-
gested that this zero in the ‘‘monopole’’ contribution shou
be observable as a zero in the CMB power spectrum
angular scales.508. However, as noted by Hu and Su
iyama and evident in Fig. 1, the ‘‘dipole’’ contribution i
already significant on these angular scales, with its fi
maximum occurring close to the zero in the ‘‘monopole
This tends to wash out the zero~actually a dip once thek

FIG. 1. Contributions to the CMB temperature anisotropy fro
the conditions on the last scattering surface (z.1050) in aK50
universe withVb51, andH0550 km s21 M pc21. Only adiabatic
scalar perturbations are considered, andFk is independent ofk
initially ~so that we are plotting transfer functions!. The curves
should be multiplied by the initialFk to give the actual conditions
on the last scattering surface. The solid lines are calculated f
Eq. ~3.17!; the ‘‘monopole’’ contribution~negative on large scales!

is 1
4X k

(g)1(S/k) (ṡk2wk), and the ‘‘dipole’’ contribution~positive
on large scales! is 2sk2vk

(b) . The dashed lines are given by th
approximate expression~4.7!; the ‘‘monopole’’ contribution~nega-

tive on large scales! is 1
4X k

(g)2
1
3X k

(b)2
1
3 Fk1

2
3 H21Ḟk

1
2
9H k

22Fk , and the ‘‘dipole’’ contribution is 2
3H k

21(Fk

1H21Ḟk). The small discrepancy between the solid and das
curves is due to the small but non-zero values ofr (g)/r andr (n)/r
at last scattering.
02300
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-
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e
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modes are summed over! in the power spectrum, as show
by Hu and Sugiyama@14# in their Fig. 4.

In Fig. 2 we plot the individual contributions to the CMB
anisotropy in the baryon dominated limit from equatio
~4.7!. On large scales~smallk), the dominant contribution is
from the usual Sachs-Wolfe term2Fk/3. The effect of en-
tropy perturbations is negligible on large scales since
baryon-photon fluid is still tightly-coupled at last scatterin
on these scales, and our initial conditions are adiabatic. H
ever, on small scales the entropy perturbations add co
ently with the term 2H k

22Fk/9 to reduce the ‘‘monopole’’
contribution to the anisotropy. These terms along with
‘‘dipole’’ term determine the structure of the Doppler peak

We introducedX k
(b) into Eq. ~4.3! to show explicitly the

contribution from entropy perturbations at last scatterin
and to facilitate comparison with other results in the lite
ture. However, this decomposition into an entropy pertur
tion term and terms involving the potentialFk is rather un-
natural, and can be replaced by an expression which allow
more physical interpretation of the temperature anisotropy
intermediate and small scales. We use Eq.~4.1! to eliminate
X k

(b) and chooseua to coincide with the baryon velocity
(va

(b)50; if the universe is not baryon dominated at reco
bination, then the energy-frame should be employed inst
of the baryon-frame!:

1

4
X k

~g!1
S

k
~ ṡk2wk!→

1

4
X̄k

~g!2
1

3
Fk

2
2

kr

K

S2 Fk1
2H

kr
Ḟk , ~4.8!

m

d

FIG. 2. Approximate contributions to the CMB temperature a
isotropy from the conditions on the last scattering surfacez
.1050) in a K50 universe with Vb51, and H0

550 k ms21 M pc21. Only adiabatic scalar perturbations are co
sidered. On large scales the usual Sachs-Wolfe term~dotted line!
2Fk/3 dominates. For adiabatic initial conditions, the effect
entropy perturbations~dashed-dotted line! is only important on
small scales where the tight-coupling approximation ceases to
and adiabaticity is broken. The coherent sum of the entropy per
bations and the term2

9H k
22Fk ~solid line!, as well as the ‘‘dipole’’

term 2
3H k

21(Fk1H21Ḟk) ~dashed line! determine the structure o
the Doppler peaks.
1-8
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whereX̄k
(g) is the harmonic expansion coefficient of the sp

tial gradient of the photon energy density in the ener
frame. This result actually holds in the energy-frame of a
model that is matter dominated at last scattering, and so
cludes standard CDM and variants. We see that in aK50
universe, which is matter dominated at recombination,
‘‘monopole’’ contribution to the anisotropy consists of th
Sachs-Wolfe term,2FkQ

(k)/3, which is dominant on large

scales, a termX̄k
(g)Q(k)/4 arising from inhomogeneity of the

radiation temperature in the energy-frame, which is imp
tant on intermediate and small scales, and the small t

2H21ḞkQ
(k)/3 arising from nonstationarity of the potenti

at last scattering. Since the last scattering surface is
approximated by a surface of constant radiation temperat
the spatial gradient of the radiation energy density, in
energy frame, across the last scattering surface describ
distortion of the last scattering surface relative to the surfa
of simultaneity of the energy-frame~which are defined by
the average motion of all matter in the universe!. The distor-
tion of the last scattering surface causes photons to in
extra redshift, due to the expansion of the universe, du
propagation from last scattering to the point of observati

Finally, if we consider initially adiabatic perturbations
a K50 baryon dominated universe on large enough sc
that entropy perturbations may be neglected, we may rep

X̄k
(g)/4 by the spatial gradient of the baryon energy density

the baryon-frame,X̄k
(b)/3. ReplacingFk with 3H k

2X̄k
(b)/2

@from the constraint~4.1! with K50# and neglecting terms

involving Ḟk , we obtain the covariant equivalent of Panek
result @10#:

„dT~e!…R5(
k

S 1

3
X̄k

~b!F12
3

2
H k

2GQ~k!D
A

1(
k

~X̄k
~b!Hke

aQa
~k!!A . ~4.9!

V. COMPARISON WITH THE SACHS-WOLFE RESULT

It is instructive to compare the preceding analysis with
original calculation of Sachs and Wolfe@1#. Assuming that
the radiation is nearly isotropic in the frame of the baryons
last scattering, the temperature of the radiation atR ~in the
baryon-frame! is given in terms of the radiation temperatu
at the pointA in the last scattering surface as

TR5
TA

11z
, ~5.1!

where the redshiftz along the null geodesic connectingA
andR is given by@1#

11z5
SR

SA
F12

1

2 E
hA

hR
~]hhi j e

iej12]hhi0ei ! dhG ,
~5.2!
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where SR[S(hR) is the background scale factor atR and
similarly for SA , hmn is the metric perturbation in the co
moving gauge~with h0050), h is conformal time, andei

( i 51,2,3) is the direction of photon propagation in the bac
ground model. Differencing the temperature between two
rections on the sky we find

S DT

T D
R

5S DT

T D
E

1S DS

S D
E

1
1

2
DF E

hE

hR
~]hhi j e

iej12]hhi0ei !dhG ,
~5.3!

where (DM )E[(M )A2(M )B . The (DS)E term on the right-
hand side of Eq.~5.3! is gauge-dependent@first-order gauge
transformations of the formh°h1 f (xi)/S(h), which pre-
serve the gauge-conditions implicit in Eq.~5.2!, move the
field S around in the real universe#, while the term (DT)E is
gauge-invariant. It follows that the sum of the first two term
on the right-hand side of Eq.~5.3! is also gauge-dependen
@A compensating gauge-dependence in the integral term
serves the necessary gauge-invariance of (DT)R .# This sum
may be expressed in terms of the gauge-dependent ph
density perturbationd (g), defined by

1

4
d~g![

T2T~0!

T~0! , ~5.4!

where T(0)[T(0)(h) is the background radiation temper
ture. Using the constancy ofT(0)S, we find

S DT

T D
E

1S DS

S D
E

5
1

4
D~d~g!!E . ~5.5!

The significance of this result is that it is a first-order qua
tity. To evaluateD(d (g))E to first-order, we need only locat
the last scattering surface to zero-order, since locating
last scattering surface correctly amounts to a first-order
placement in a first-order quantity. The implicit choice ma
by many authors is to evaluate Eq.~5.5! on the background
last scattering surface~over whichh is constant!. With this
choiceDS andDT(0) are both equal to zero, and trivially w
obtain the resultD(d (g))E evaluated on the background la
scattering surface. Note that Sachs and Wolfe@1# explicitly
made this choice, although they also made the~gauge-
dependent! assumption that the radiation temperature w
constant on the background last scattering surface. Altho
it is certainly necessary to locate last scattering correctly
calculateD(T)E andD(S)E separately, this is not true for th
differenceD(TS)E , which is all that is required for CMB
calculations. Physically, this effect arises from the comp
sation effect: the extra redshift along a given direction due
the difference between the scale factor on the true last s
tering surface and at the point of intersection of the geode
with the background~zero-order! last scattering surface can
cels out the difference in temperature between the sa
points on the real and true last scattering surface. Note
1-9
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such problems do not arise in the kinetic theory calculat
of Sec. III, since the optical depth~which determines the
position of the last scattering surface! multiplies only first-
order variables, and so is needed only to zero-order.

The termD(d (g))E/4 is often omitted from Sachs-Wolf
type analyses~for example,@15#!, effectively being absorbed

into a ~direction-dependent! ‘‘expected’’ temperature,T̄
[TASA /SR ~see@2,10# for alternative choices!. Along with
the observed temperatureTR , this defines a first-order tem
perature variationdT/T by

dT

T
[

TR2T̄

T̄
. ~5.6!

This should not be confused with the gauge-invariant te
perature fluctuation from the meandT(e), used in the rest of
this paper. The quantitydT/T is gauge-dependent throug
the gauge-arbitrariness in the scale factorS. Differencing
between two directions on the sky, one finds

D~dT/T!R5DF E
hE

hR
~]hhi j e

iej12]hhi0ei !dhG . ~5.7!

Of course, this result is entirely equivalent to Eq.~5.3!, one
needs only the result

DS dT

T D
E

5S DT

T D
E

2
D~TS!E

~TS!E
, ~5.8!

which follows from the definition ofT̄. This appears to be
the step where confusion sometimes arises in Sachs-W
type analyses, with authors comparing the gauge-depen
dT/T with the results of observation, instead of the phy
cally relevant (DT/T)R @or dT(e) which is easily derived
from the former#. As noted in@2#, it is not enough just to
differencedT/T; in general, the result will not be gauge
invariant and will not include the contribution fromd (g) at
last scattering.

Finally, we demonstrate how the gauge-invariant con

butionX̄k
(g)Q(k)/4 to the anisotropy arises in the Sachs-Wo

calculation. If we approximate the~vorticity-free! baryon
motion as being geodesic through recombination to
present, we can choose a comoving gauge withhi050 ~the
synchronous gauge, in which the surfaces of constanth are
surfaces of simultaneity for the baryons!. The result given in
Eq. ~5.3! ~with hi050! still holds in this gauge, and the con
formal time h satisfies¹ah5ua

(b)/S(h), whereua
(b) is the

baryon velocity. It follows that the background scale fac

satisfies (3)¹aS50 and Ṡ5]hS/S5uS/31O(1), where u
5¹aua

(b) is the covariant expansion of the baryon-fram
With this gauge-condition, we have removed the gau
freedom to perform the transformationh°h1 f (xi)/S @the
02300
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gauge-condition(3)¹ah50 forces f (xi) to be a constant#,
with the result thatDS/S is gauge-invariant. Under thes
conditions, we may express the first two terms on the rig
hand side of Eq.~5.3! in terms of covariant, gauge-invarian
variables as follows:

S DT

T D
E

1S DS

S D
E

5
1

4 E
B

AS ¹ar~g!

r~g! 14
¹aS

S Ddxa

5
1

4 E
B

AS ¹ar~g!

r~g! 1
4

3
uua

~b!Ddxa

5(
k

DS 1

4
X̄k

~g!Q~k!D
E

, ~5.9!

where A and B are the points of intersection of the tw
geodesics through the observation pointR with the last scat-
tering surface, dxa lies in the last scattering surfac

@dxaua
(b)5O(1)#, and we have replaced 3Ṡ/S by the cova-

riantly definedu which is correct to the required order. I

this manner, we recover theX̄k
(g)Q(k)/4 contribution to the

temperature anisotropy.

VI. CONCLUSION

Starting from a covariant and gauge-invariant formulati
of the Boltzmann equation, we have derived a new expr
sion for the CMB temperature anisotropy under the instan
neous recombination approximation, valid for scalar pert
bations in open, closed and flat universes. Our expres
uses only covariantly defined variables, and is manifes
gauge invariant. The result is more useful in multicompon
models with scalar perturbations than earlier covariant
sults @6,8,9#. In the case of a universe which is baryo
dominated at recombination, we find a simple expression
the anisotropy which corrects a similar result by Dunsby@9#.
By making use of numerical solutions to the perturbati
equations, we have discussed the conditions on the last
tering surface and their contributions to the characteri
features of the CMB power spectrum. We ended with a d
cussion of the original Sachs-Wolfe calculation for the te
perature anisotropy. We have discussed why it is not ne
sary to locate accurately the last scattering surface in s
calculations~because of the compensation effect!, and how
the extra term in the Sachs-Wolfe calculation, reported
cently by Ellis and Dunsby@6#, is missed in many calcula
tions which employ a gauge-dependent ‘‘expected temp
ture,’’ since the angular dependence of this temperatur
often overlooked. For a universe which is matter domina
at recombination, but not necessarily adiabatic, the e
term is the spatial gradient of the radiation energy density

the energy-frame, (X̄k
(g)Q(k)/4)A . For models with isother-

mal surfaces of last scattering, this inhomogeneity descr
a distortion of the last scattering surface relative to the s
faces of simultaneity of the energy-frame. The extra reds
incurred by this distortion is a significant component of t
temperature anisotropy on intermediate and small scales
1-10
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