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Covariant and gauge-invariant analysis of cosmic microwave background anisotropies
from scalar perturbations
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We present a new, fully covariant and manifestly gauge-invariant expression for the temperature anisotropy
in the cosmic microwave background radiation resulting from scalar perturbations. We pay particular attention
to gauge issues such as the definition of the temperature perturbation and the placing of the last scattering
surface. In the instantaneous recombination approximation, the expression may be integrated up to a Rees-
Sciama term for arbitrary matter descriptions in flat, open and closed universes. We discuss the interpretation
of our result in the baryon-dominated limit using numerical solutions for conditions on the last scattering
surface, and confirm that for adiabatic perturbations the dominant contribution to the anisotropy on interme-
diate scalegthe location of the Doppler peaksay be understood in terms of the spatial inhomogeneity of the
radiation temperature in the baryon rest frame. Finally, we show how this term enters the usual Sachs-Wolfe
type calculationsit is rarely seen in such analygeshen subtle gauge effects at the last scattering surface are
treated correctly] S0556-282(198)05314-4

PACS numbsg(s): 98.70.Vc, 95.30.Jx, 98.80.Cq

[. INTRODUCTION tions which is fully covariant and manifestly gauge invariant.
We obtain our expression by integrating the covariant and

The calculation of the primary temperature anisotropy ingauge-invariant Boltzmann equatidi7,8] along observa-
the cosmic microwave background radiati@®MB) result-  tional null geodesics, paying careful attention to the gauge
ing from density perturbations has a long history, beginningssues discussed above. Unlike some covariant results in the
with the seminal paper by Sachs and Wdlfd. Since the literature (see, for example|8,9)), the expression derived
original Sachs-Wolfe estimate, a wealth of detailed predicN€ré can be integrated trivially, in the instantaneous recom-
tions for the anisotropies expected in various cosmologicaPination approximation, up to a Rees-Sciama term in uni-
models have been worked out. The calculations are straight.6rSeS With arbitrary matter descriptiori$he covariant re-
forward in principle, but, like many topics in cosmological SUltS in[8,9] can only be integrated in baryon-dominated

perturbation theory, are plagued by subtle gauge isk2les \L;g:\égrssesﬁdthcl:tieerxil%ﬂnrgoiioelli ?:\:lérgjageroizg]rlcaat:;i uni-
The problems of gauge-mode solutions to the linear per; ' he phusicall yI' o
turbation equations and the gauge-ambiguity of initial condi-base our tregtment ont € pnysically appealing covariant and
. - X ) . gauge-invariant formulation of perturbation theory, as de-
tions can be eliminated by working exclusively with gauge-

) . bl in the widel d Bard cribed in[4,5]. In this approach, one works exclusively with
invariant variables, as in the widely used Bardeen approacgauge—invariant variables which are covariantly-defined and

[3] and the less well known covariant approach advocated by ace physically observable in principle. The covariant
Ellis and co-workerg4,5]. However, gauge issues still arise yeathod has many advantages over other gauge-invariant ap-
in connection with the definition of the temperature pertur'proaches(such as that formulated by Bardeld]). Most no-
bation and the placement of the last scattering suffad.  taply, the covariant variables have transparent physical defi-
The latter gauge issues do not arise at first-order in numericafitions which ensures that predictions are always
calculations which integrate the Boltzmann equation in astraightforward to interpret physically. Other advantages in-
perturbed universe, since the visibility functibmhich deter-  clude the unified treatment of scalar, vector and tensor
mines the position of the last scattering surfacmiltiplies  modes, a systematic linearization procedure which can be
first-order variables giving only a second-order error fromextended to consider higher-order effettee covariant vari-
the use of a zero-order approximation to the visibi[i#}.  ables are exactly gauge-invariant, independent of any pertur-
However, this is not always the case in Sachs-Wolfe styldative expansion and the ability to linearize about a variety
analyses, which integrate along null geodesics back to thef background models, such as Friedmann-Robertson-
surface of last scattering, unless care is taken to ensure th@falker (FRW) or Bianchi models.
the final result involves only first-order variables on the last For universes which are baryon-dominated at last scatter-
scattering surface, which then only need be located to zerang, our expression for the temperature anisotropy may be
order. compared to other gauge-invariant analytic results in the lit-
In this paper, we present a new expression for the CMBerature. We show that, with suitable approximations, the re-
temperature anisotropy arising from linear scalar perturbasult derived here reduces to that given by Paft¥ and
corrects a similar result given by Dunsby receriy. For
the baryon-dominated universe, we use numerical results for
*Email address: A.D.Challinor@mrao.cam.ac.uk the covariant, gauge-invariant variables on the last scattering
"Email address: A.N.Lasenby@mrao.cam.ac.uk surface, obtained from a gauge-invariant Boltzmann code
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[7], to discuss the different physical contributions to the pri-whereV? denotes the usual covariant derivative.

mary temperature anisotropy. In particular, we show that on The covariant derivative of the velocity decomposes as

intermediate and small scales, the “monopole” contribution

to the temperature anisotropy is described by the spatial gra- 1

dient of the photon energy density, in the energy-frame, on Valp=wap+ dapt 3 Onap+ UaWp, 2.3

the last scattering surface. Since theal) last scattering sur-

face is approximately a surface of constant radiation temyhere Wah=T[ay IS the vorticity, which satisfiesi®w ,,

perature(so that recombination does occur therdie inho- =0, g, = 0'(ap) IS the shear, which is orthogonal t8 and

mogeneity of the radiation energy density in the energytraceless,6=V2u,=3H measures the volume expansion

frame determines a distortion of the last scattering surfacgate (H is the local Hubble paramefendw,=u"V,u, is

relative to the surfaces of simultaneity in the energy-framethe acceleration. In an exact FRW universe the vorticity,

The extra redshiffdue to the expansion of the univeyse shear and acceleration vanish identically. We regard them as

which the photons incur due to the distortion is seen as rst-order variablegdenoted®(1)] in an almost FRW uni-

“monopole™ contribution to the temperature anisotropy on yerse, so that products of such variables may be dropped in

intermediate scales. There is a significant “dipole™ contribu- expressions in the linearized calculations we consider here.

tion to the anisotropy on intermediate and small scalesgther first-order variables may be obtained by taking the

which we discuss also. spatial gradient of scalar quantities. Such quantities are
We end with a discussion of the gauge issues inherent igauge-invariant by construction since they vanish identically

the original Sachs-Wolfe calculation of the CMB anisotropyin an exact FRW universe. We shall make use of the comov-

[1], focusing on the “monopole” contribution to the tem- jnq fractional spatial gradient of the densji§)) of a species
perature anisotropy on intermediate scales, described above.

This contribution is often missed in Sachs-Wolfe-type calcu- ’

lations through an incorrect treatment of gauge effects at the _ IS _

last scattering surfacgs]. (Equivalently, the term is often XY=—55V,p", (2.4
missed through a failure to recognize the direction- P
dependence of the “expected temperature” used to define d th . tial dient of th .
the temperature perturbation in many calculatipiihis of- and the comoving spatial gradient ot the expansion
ten neglected term, which is not important on large scales, is
an essential component of the Doppler peaks in the CMB
power spectrum.

We employ standard general relativity and use
(+——-) metric signature. Our conventions for the o a @va
Riemann and Ricci tensors are fixed Hw,,V,]u® S=u?V,S=HS, Vis=0(1), (2.6
=—Rapu?, and Ryp=R 1c,’. We use units withc=G
=1 throughout.

2,=S%Vv,0. (2.5

aThe scalalS is a local scale factor satisfying

which removes the effects of the expansion from the spatial
gradients defined above. The vecmg) is a manifestly co-

Il. COVARIANT COSMOLOGICAL PERTURBATIONS yariant and _gauge—invariant characterization of the density

inhomogeneity.

In this section, we summarize the covariant approach to The matter stress-energy tensfy, decomposes with re-
perturbations in cosmologi4,5] to establish our notation spect tou® as
and conventions. We begin by choosing a veloafty which
is defined physically in such a manner that if the universe is Tap=pUaUp+ 2U50p) — Phapt Tap, 2.7
exactly FRW the velocity reduces to that of the fundamental
observers. This property of is necessary to ensure gauge- where p="7,,uu” is the density of mattefmeasured by a
invariance of the variables defined below. We refer to thecomoving observerq,=h>7;.uc is the energyor heaj flux
choice of velocity as a frame choice. For most of this paperand is orthogonal ta?, p=—h,,72%3 is the isotropic pres-
it will not be necessary to make a frame choice. From thesure, and the symmetric traceless tensep,=hShi7.,
velocity u?, we construct a projection tensor into the space+ ph,,, is the anisotropic stress, which is also orthogonal to
perpendicular ta® (the instantaneous rest space of observerg2, |n an exact FRW universe, isotropy restricTg,, to
whose velocity isu®): perfect-fluid form, so that in an almost FRW universe the

_ heat flux and isotropic stress may be treated as first-order
hab:gab_ uaub ’ (21) Varlables

whereg,, is the metric of spacetime. We use the symmetric Th_e pl('13tons are describgd t_)y a covariant distribution
tensor h,, to define a spatial covariant derivati@va  unctionf™”’(E,e), whereE=p“u, is the energy of a photon

which acting on a tensor® ¢ returns a tensor which with momentump?, ande® is unit spacelike vector along the
is orthogonal tau® on every inddék'e direction of propagation in the frame defined b§. The

photon energy density”, the heat flixg(” and the aniso-
(Byarh---c;  =h3hP...hhy .. . heVPT™ -5, tropic stressr}) are given by integrals of the three lowest
(2.20  angular moments of the distribution function:
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51(e)' + on dr(e) = o,e?el+w,e?
p(y):f dEdQ E3f(7)(E,e), (2.9 T(e) o1NeS1(€)=0yp al
1 ('
- §0+m [1+46T(e)]
(y)— 35(y)
() —f dEdQ E°f'Y(E,e)e,, (2.9
(2.19

1
Wg{}:f dEdQ E3f(E,e)eep+ = p M hap, , _

3 wheren, is the free electron densitighe effects of thermal
(2.10 motion of the free electrons is ignonedry is the Thomson

cross sectionp is the baryon velocity relative tai,

whered() denotes an integration over solid angles. Higher-[vgb)uazo(z)]v and a prime denotes differentiation with re-
order symmetric traceless spatial tensors can be used to ch&Rect to the parameter along the null geodesic, withug
acterize higher moments of the distribution functisee, for ~ +€a)V*A=1. In Eq.(2.14 we have ignored the effects of
example,[11]), and are useful in numerical simulations of Polarization. Including polarization gives only a small cor-
from the mear(the full sky averageas our definition of the 0 the polarization dependence of the Thomson cross section.

temperature anisotropg;(e), so that Equation(2.14) is valid for any type of perturbatiofscalar,
vector or tensgrand for any value of the spatial curvature.

The evolution of the photon density is given by

_ A 3¢(7) _
451(e)= ) dE Ef'Y(E,e)—1. (2.11) ] 4
P p(y)+ ggp(7)+(3)vaqu):o' (2.15

The temperature perturbatiof(e) is covariantly defined where an overdot denotes differentiation with respect to
and gauge-invariariit vanishes in an exact FRW univejse roper time along the integral curves i (p(”
and is observable directly. This should be contrasted with th&

gauge-dependent temperature perturbation used by some arHuaVap(Y))' Taking thel =1 angular moment of the Boltz-
- ann equation2.14 gives a propagation equation for the
thors(see Sec. V, for examples d n2.14 g propag d

. ) . . . . photon heat flux:
The final first-order gauge-invariant variables we requwep

derive from the Weyl tensoW,ycq, Which vanishes in an _ 4 4 1
exact FRW universe due to isotropy and homogeneity. The g+ =69+ @ V27 + = pMw,— =V p
electric and magnetic parts of the Weyl tensor, denoted by 3 3 3

Eap and By, respectively, are symmetric traceless tensors, 4
orthogonal tou?, which we define by =0Ng gp%gb)—qgw). (2.16
Ep=UUW, 4, (2.12  Taking higher-order moments of E(.14) gives a hierarchy

of equations which are used in the covariant numerical cal-
culations of CMB anisotropies described[if.
1 The electrons and baryons may be approximated by a
Bap=— Eucudnacefwefbdv (2.13  tightly-coupled ideal fluid with energy densipf®, pressure
p® in the rest frame of the fluid which has velocity,
+v® . To linear order, the stress-energy tensor of the bary-
wher\/eﬂbcd is the covariant permutation tensor witfy,,;  ONS is
=—y—0q.
T = gty + 200+ p) o )~ gy,
(2.17
Linearized perturbation equations
Over the epoch of interest, the individual matter constitu-Which shows that the baryon heat flux is'0 +p®)v{” in
ents of the universe interact with each other only througHh€Ua frame. The conservation of photon plus baryon stress-
gravity, except for the photons and barydirluding elec-  energy gives the propagation equations for the density
trons whose dominant interaction with each other is via Th-

omson scattering of photons off free electrons. The variation p P+ (p®+p®) g+ (p® + p®)Bya, b =g,

of the gauge-invariant temperature perturbatye) along (2.18
null geodesics is given by th@inearized covariant Boltz-

mann equatio7,8]: and the velocity
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The scalar expansion coefficients, such4d , are them-
selves first-order gauge-invariant variables, and they satisfy
@yax{=0(2). The spatial vectorQ(® and the spatial
tensongkg , Which is symmetric and traceless, are defined by

. 1
(P +p ) +wo) + 3 () +p) o0

: 4
b b
+pbly®— @y b= — (,Tne( §P(”v(a ) q(a”) _

(2.19

In this paper we consider only scalar perturbations. In this
case, the magnetic part of the Weyl ten#y, and the vor-
ticity w ,p, vanish identically. The electric part of the Weyl

S
Q= PvaQ",

tensor&,, and the sheas,, do not vanish, and satisfy the

propagation equations

1
Capt Oant g k[3(p+p)oapt 32V 0y

_hab(s)chc_s'h—ab_ 0] =0, (2.20
. 2 3)
Tapt 3 00ap= "'V (@Wp)
1 3)oe 1
+ §hab \Y Wc+‘€ab+ §K7Tab:0' (22])

wherex=8, and the constraint equations

1
BIVPEap— g k[20Vap+200,+3VP 7] =0,
(2.22

2
BOyby,,— §<3>Va0— kQ,=0. (2.23

The density, pressure, heat flux and anisotropic stress appear-
ing in these equations are total variables obtained by sum- 3

ming over all matter constituents.

2

S 1
Qb =12V (V5 Q" — 3hanQ™. (2.28

Some useful properties of the scalar harmonics and derived
tensors are summarized in the appendix to Betral. [13].

This completes the definitions of quantities required in this

paper. Further details of our notation and conventions may
be found in[7,8].

lll. A COVARIANT EXPRESSION FOR THE
TEMPERATURE ANISOTROPY

The gauge-invariant CMB temperature anisotropy along a
given direction is obtained by integrating the Boltzmann
equation (2.14 along the null geodesi¢whose tangent
projects onto the given directiprthrough the observation
point. Before integrating Eq2.14), it is convenient to re-
write the first-order factor multiplying £46(e) on the
right-hand side in terms of gauge-invariant variables as fol-
lows:

1 p(y)’

_ T (e (ya,(n_(Byag
4,0~ g (VI VR,

(3.9

For scalar perturbations, the temporal and spatial aspects

of the problem may be separated by expanding all first-ordewhere we have made use of the equation of motion of the
gauge-invariant variables in tensors derived from the scalgshoton density, Eq(2.15, and U2+ e®)®V \=1. At this
harmonic functionsQ®, which are defined covariantly as point, we specialize to scalar perturbations and introduce the
eigenfunctions of the generalized Helmholtz equationharmonic expansions of the gauge-invariant variables given
Py2QM =k2/s2Q® [12] satisfying Q¥ =((1). Specifi-  in the previous section. We have

cally, we have

1 k
. ‘ K2 W@)Va gy)zEk §QI(<7)Q(k)* (3.2
XP=2RQY, 2= 2, (224
1
— _e.®ya,(n= x (k)’, 3.3
(i) — (DE (k) (i) — (i)z (H k) P(Y) ? P EK Q (33
qa =p " Ak Qa ' Tap~— P . Ty Qab'
(2.25 so that
k? (k) k (k) ((3)Va (7)_ g (Bya (7))
5ab:§k: ?‘DkQab, UabZEk: §0'kQab: 4p(7) a a p
(2.26 1 /k_ s 1
- _Z oz _Z (k) _ — (Cre LAY
. X o o 3 n (SZK kGWk>Q 4;(Xk Q )1
vg>:2k vPQlP, wa=2k w QW (2.27) (3.4
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where we have used the equation and harmonically expanding the result, to elimingf® in
K 4K 4 favor of Z, and the acceleration. Integrating the Boltzmann
§q(ky): ~3% Z+ 3% oW, — Xf(v)’ , (3.5  equation(2.14) along the null geodesic connecting the recep-

tion point R (whereA =\g) and a point in the distant past

which follows from taking the spatial gradient of E@.15 (whereA =1;), we find

1 AR k 1/k S
e T S R (§ Zey 9Wk> Q(k”Wkeank)}d”
N 1 3 (¥) @@apb(K) _ . (b) nay(k) 1 (MoK
+; o TTe g €7%€"Qap —vi €°Qa + 7 X"Q | dA, 3.6
i

where (M)g denotes the value of the quantty evaluated at the poiR, andr(\) is the optical depth along the line of sight,
defined by

r(x)zf:RneoT di. 3.7

On angular scales larger than &e may approximate the visibility function 7'e™ " by a § function whose support defines
the last scattering surfadéne instantaneous recombination approximatiaMith this approximation, Eq(3.6) integrates to

1 3
(5T(e))R:; (Z X&V)Q(k)_{_ 1_6 Wf(’y)eaeng(g_vf(b)ean())
Ar| k
+ —
Ek LA (S

where the poinA (whereh =X\ ,) is the point of intersection of the null geodesic with the last scattering surface, and we have
used the result

A

S ,
+ E[WkQ(k) +Hw, QW] dx, (3.8

S , 1 1
ok(p<sdk> )+ §Q<k>) -3 2QY

S ) 1
eaengkb):p(SQk) )+ §Q(k)- 3.9

We have dropped a direction independénbnopole term evaluated aR from Eq.(3.8) since it will eventually be cancelled
by other monopole terms in the integral. Note that the integrand if38).contains only kinematic gauge-invariant variables
(the shear, the spatial gradient of the expangi@nd the acceleratignwhich simplifies the next stage in the integration. In
[8] we gave a more general expression for the anisotropy, valid for all perturbation types, but the integrand involved the spatial
gradient of the baryon density which could only be replaced by the spatial gradient of the total density if the universe is baryon
dominated at recombination. Expressi8) proves to be more convenient for the discussion of CMB anisotropies in
multicomponent universes where only scalar perturbations are present.

Integrating the last term in E¢3.8) by parts twice, we find that

f)\Rk
S

S '
+ E[WKQ(k) +Hw, QW ]dA

S , 1 1
Uk(p(sdk) ) + 3 Q(k)> 3 ZQW
R [ag

|
A Jha
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The integrand on the right-hand side of £§.10 may be

simplified by using the linearized propagation and constraint
equations for the shear and the electric part of the Weyl

tensor. The harmonic expansions of E¢a20 and (2.21)

give
kK\2(. 1 1k
5 k+§0q)k +§§KP(70‘|<+Q|<)

1 )
+ ngﬁ(?)’y—l)Wk_ EKPWK:O’ (3.11
k(. 2
S 0'k+§ Oo—wWy |+ §) (Dk-l-z kpm=0,
(3.12

wherey is defined byp=(y—1)p, and the constraint equa-
tion (2.23 gives

4ol

In these equations, the scalar variabtgsand 7, are the
harmonic expansion coefficients of the total heat flux an

3K

F) (0 (313)

+ kpQq=0.

anisotropic stress. They are related to the component varg

ablesq() and 7" [defined by Eq(2.25] by

pa=2 pla, pm=2 pVm, (314

where the sums are over individual componédnts

Evaluating the integrand in Eq3.10 by differentiating
the shear propagation equatigh12), substituting fog, and
Z, from equations(3.11) and (3.13, and using the zero-
order Friedmann equation

K 1

H2+§=§Kp, (3.1

we find the result
S ,|" 1k
k 7k

S .
t3g( 20— we=—2d, (316

PHYSICAL REVIEW D 58 023001

1 S .
(5T(e))R:; ({Z X(k7)+ E (O'k_Wk):|Q(k))

A

— 2 ([0 + 011e*Q5")
3 (7) a8ab(K)
+1_62k(77k eEQab)A

AR .
N f "®,Q™ dx, 3.17

where we have dropped drame-dependejtdipole term
evaluated aR since such a term cannot be distinguished
from a first-order peculiar velocity of the observerRatThe
final term in Eq.(3.17) describes the Rees-Sciama effect,
which only makes a small contribution to the anisotropy in
K=0 models that are matter dominated at recombination
(for K=0, @, is approximately constant while a mode is
outside the horizon and during the matter dominated era on
all scale3. The third term on the right-hand side of Eq.
(3.17 represents a small contribution to the anisotropy from
photon anisotropic stress at last scattering. The sum of the
first and second terms dominates the CMB anisotropy in a
K=0 universe, with the relative importance of each term
being dependent o), andH,. Expression3.17) is a gen-
ralization of the result given by Dunsby in Sec. V|81
hich was valid only for universes that are fully baryon
ominated at last scattering and are spatially flat. We shall
see in Sec. IV how the result if®] (actually a corrected
version of i) may be obtained from E¢3.17) in the limit of
baryon domination at recombination. A similar result to Eq.
(3.17 is derived in[14] in terms of Bardeen's gauge-
invariant variables.

In deriving Eq. (3.17, we have not made an explicit
choice for the velocityu?. Each of the four terms on the
right-hand side is frame-independent, which follows from
the fact that under a change of framg—-u,+v,, wherev,

is a first-order relative velocitju®v ,= O(2)], &ap, Eab and
a0 are invariant, whileo v — v, and

(3.18

O'abHO'ab-F (3)V(avb)— §hab(3)V°vc .

The frame-invariance of the right-hand side of E8.17) is
necessary sincéy(e) is invariant in linear theory, up to the
dipole terms that we have dropped from E8.17).

The nonintegral terms on the right-hand side of 417
are evaluated at the poirt on the last scattering surface,
which lies on a null geodesic through the observation point
R. However, it is only necessary to locafeto zero-order
since the displacement from the “true” position is first-

which is true for scalar perturbations, independent of theorder, which leads to only a second-order error when evalu-
matter description and spatial curvature. With this, we obtairating a first-order variable. We shall return to this point in
our final result for the temperature anisotrdmhich is exact Sec. V where we discuss some of the gauge issues associated
in linear theory on angular scales where instantaneous revith the placement of the last-scattering surface in the stan-
combination is valigt dard calculations of the Sachs-Wolfe effect.
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IV. CMB ANISOTROPY IN A UNIVERSE DOMINATED

3 1
BY BARYONS AT RECOMBINATION SW=_—_0y p»_ W“)Vap(b). (4.6)

4p(v)
In cosmological models that are baryon dominated at re-
combination, the covariant result for the temperature anisoteqr adiabatic initial conditions, entropy perturbations vanish

ropy, Eq.(3.17, may be cast in a more familiar form, which 4t |ast scattering on large scales, where tight-coupling be-
aids direct comparison with other such results in the literayyeen the baryons and photons still holds. The second

ture (for example[9]) and physical interpretation.
Using the propagation equatio(3.12 and(3.11) for the

“monopole” term, —®,QW/3, is the usual Sachs-Wolfe
contribution to the temperature anisotroy, whose effect

shear and the electric part of the Weyl tensor, and the hafs mogified on small scales by the third and fourth “mono-

monic expansion of the constrait#.22:

k)3 3K K 3K
2 S l—F q)k—ng X+ 1—F | — kp6q,=0,
4.
we find in the limit
p—p®, p=0, X—X", q—ul, m—0,
4.2
at last scattering that
1 S . 1 1
7 W+ (o wo— 7 20— 2 A
1(1) 2(6K—k?)
3k 3kpS? k
+ 2 ha 4.3
(Y 4.3

where we have added and subtracgegl/3 making use of

Eq. (4.1), and

—(o +v<b>)H2—k(c'b +HDy) (4.4)
k k Kps k k/ - .

It follows that in a universe which is baryon dominated at
last scattering, the temperature anisotropy from scalar pertu
bations in the instantaneous recombination approximatior,[[ﬂ

becomes
1 1 1
(dr(€)r=2, ([Z XY =3 X0 -3 0
2K KD g 2 b Q¥
- 3KpS k K_p k Q A
2k .
_— ary (k)
> (Kps[q>k+H<I>k]e Qs )A

AR -
—2> | "d,Q® d. (4.5)
k

AA

pole” terms. As noted by Ellis and Dunsk¥], the third
term is rarely seen in analytic calculations of the Sachs-
Wolfe effect, although it is present in Panek’s requl@].
The omission arises from subtle gauge effects at the last
scattering surface which we discuss in Sec. V. The final
monopole term is a small correction arising from the nonsta-
tionarity of the potentialb,. The terms under the second
summation in Eq(4.5 make a “dipole” contribution to the
temperature anisotropy, and are important on small angular
scales.

In aK=0 universe, Eq(4.5 may be written in the form

1 1 1
(r(e))r=2, HZ XY -3 X - 3Py
2 2
+oH 1+ = H, 2D }Q“O
3 9 A

2 .
+2 (5 Hk1[<1>k+H1<I>k]eaQ;k>)
K A

-2 f )\R('DkQ(k) dX, (4.7)
k Jxp

where H,=SH/k is the ratio of proper wavelength to the
Hubble radius. This result corrects that given by Dunsby in
§ec. V of[9] [his equation(61); note also the difference in
etric signature from that adopted heridote, in particular,
at the dominant contribution to the CMB anisotropy from
adiabatic perturbations on large scales-i$,/3, which is a
factor of 3 smaller than the result [9].

In Fig. 1 we plot the first two summands in Eq8.17)
and (4.7) as a function ok, with S=1 at the present, in a
K =0 universe, in the limiQ),=1, where(},, is the present-
day baryon density in units of the critical density. We take
Ho=50 km s 1M pc ! and consider adiabatic perturbations
with only the fastest growing mode present. At early times,
we take®, to be independent &f. The actual conditions on
the last scattering surface are obtained from the transfer
functions of Fig. 1 by multiplying by the initial values df,
(which are Gaussian random variables in most inflationary
theorie$. The gauge-invariant variables on the last scattering
surface are obtained from an accurate Boltzmann code em-

The first set of terms in square brackets on the right-hang|oying covariant, gauge-invariant variables, with adiabatic

side of Eq.(4.5) give the “monopole” contribution(at last
scattering to the temperature anisotropy. The terdi{{)/4

initial conditions[7]. The agreement between the approxi-
mate expressiod.7) and the “exact” expressioii3.17) is

—xP13)Q™M arises from entropy perturbations, which may good over the full range df depicted. The small discrepancy

be characterized covariantly by a vect®y™ where

between the sets of curves is due to the small but nonzero
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FIG. 1. Contributions to the CMB temperature anisotropy from  FIG. 2. Approximate contributions to the CMB temperature an-

the conditions on the last scattering surfage-(050) in aK=0 isotropy from the conditions on the last scattering surfaze (
universe withQ,=1, andHy=50 km s *M pc 1. Only adiabatic = =1050) in a K=0 universe with Q,=1, and H,
scalar perturbations are considered, abd is independent ok =50 kms M pc. Only adiabatic scalar perturbations are con-

initially (so that we are plotting transfer functiond’he curves sidered. On large scales the usual Sachs-Wolfe telotted ling
should be multiplied by the initia®, to give the actual conditions —®,/3 dominates. For adiabatic initial conditions, the effect of
on the last scattering surface. The solid lines are calculated frorentropy perturbationgdashed-dotted lineis only important on

Eq. (3.17); the “monopole” contribution(negative on large scales small scales where the tight-coupling approximation ceases to hold
is 2x (" +(S/k) (o—Ww,), and the “dipole” contribution(positive ~ and adiabaticity is brokeg. The coherent sum of the entropy pertur-
on large scalgsis —ay—v(” . The dashed lines are given by the Pations and the terré?j[ ®, (solid ling), as well as the “dipole”
approximate expressia#.7); the “monopole” contribution(nega-  term 5+, *(®+H'®,) (dashed lingdetermine the structure of

tive on large scalgs is X —ix®—Lid+2ZH 1p,  the Doppler peaks.

+5H, 2@, and the “dipole” contribution is M, (P _

+H 1®,). The small discrepancy between the solid and dashe(gmﬁ'es arde Ssurr_lmed 0\)e_n tfr\]e_pO\_Ner spectrum, as shown

curves is due to the small but non-zero valuegp@t/p andp/p y Hu an uglyamél4] in their Fig. 4.

at last scattering. .In Fig. 2 we plot the |nd|V|du§I contrlputl_ons to the CMB
anisotropy in the baryon dominated limit from equation

Va|ues Ofp(y)/p and p(V)/p on the |ast scattering Surface (47) On Iarge Scale$ma”k), the dominant Contribution iS

(which is located az=1050 in this modsl from the usual Sachs-Wolfe term®,/3. The effect of en-

On large angular scalésmallk), the “monopole” terms ~ tropy perturbations is negligible on large scales since the
dominate the CMB anisotropy, giving the familiar Sachs-baryon-photon fluid is still tightly-coupled at last scattering
Wolfe plateau for a scale-invariant spectrum of initial condi-ON these scales, and our initial conditions are adiabatic. How-
tions. On smaller angular scales the “monopole” term oscil-€ver, on small scales the entropy perturbations add coher-
lates ink due to the coherent acoustic oscillations in theently with the term 2¢, *®,/9 to reduce the “monopole”
photon-baryon plasma that occur for modes inside th&ontribution to the anisotropy. These terms along with the
(sound horizon. These oscillations, along with the oscilla- “dipole” term determine the structure of the Doppler peaks.
tions in the “dipole” on small scales, determine the structure We introducedt(” into Eq. (4.3 to show explicitly the
of the Doppler peaks in the CMB power spectrum. For adiacontribution from entropy perturbations at last scattering,
batic perturbations in & =0 universe, the first zero in the and to facilitate comparison with other results in the litera-
“monopole” contribution to the anisotropythe initially  ture. However, this decomposition into an entropy perturba-
lower curves in Fig. L1occurs wheregH,~\/(2/3). This fol-  tion term and terms involving the potentid, is rather un-
lows from Eq.(4.7), the fact that initially adiabatic perturba- natural, and can be replaced by an expression which allows a
tions are still adiabatic at last scattering on such scaes  more physical interpretation of the temperature anisotropy on
Fig. 2), and the approximate stationarity of the poten@igl  intermediate and small scales. We use &) to eliminate
in the matter dominated era ofka=0 universe. This effect X(kb) and chooseau? to coincide with the baryon velocity
was noted recently by Ellis and Dunsb§], and was also (v =0; if the universe is not baryon dominated at recom-
discussed by Hu and Sugiyarfitd]. Ellis and Dunsby sug- bination, then the energy-frame should be employed instead
gested that this zero in the “monopole” contribution should of the baryon-frame
be observable as a zero in the CMB power spectrum on

angular scales=50". However, as noted by Hu and Sug- 1 S - 11—, 1

iyama and evident in Fig. 1, the “dipole” contribution is 4 X+ koW 7 A= 3 Pk

already significant on these angular scales, with its first

maximum occurring close to the zero in the “monopole.” _ 35 .+ 2_H o 4.8
This tends to wash out the zefactually a dip once thé& kp K kp KV
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Where;(k” is the harmonic expansion coefficient of the spa-Where Se=S(7r) is the background scale factor Btand
tial gradient of the photon energy density in the energy_5|m|IarIy for Sy, h,, is the metric perturbation in the co-
model that is matter dominated at last scattering, and so irld =1,2,3) is the direction of photon propagation in the back-
cludes standard CDM and variants. We see that k=0 ground model. Differencing the temperature between two di-
“monopole” contribution to the anisotropy consists of the AT AT AS
Sachs-Wolfe term;- ®,Q"/3, which is dominant on large 2O 2 22
T T S
R E E
radiation temperature in the energy-frame, which is impor- - o _
tant on intermediate and small scales, and the small term +—A[f (9,hije'e’+2d,hie")dn|,
e
at last scattering. Since the last scattering surface is well (5.3
approximated by a surface of constant radiation temperature, .
PP y P here AM)g=(M)s— (M)g. The (AS), term on the right-
energy frame, across the last scattering surface describe . i .
distortion of the last scattering surface relative to the surfacef@nsformations of the form— 7 +f(x)/S(#), which pre-
the average motion of all matter in the universne distor-  f1€ld S around in the real univergewhile the term QT)e is
tion of the last scattering surface causes photons to incuyauge-invariant. It follows that the sum of the first two terms
propagation from last scattering to the point of observation”* cCOmpensating gauge-dependence in the integral term pre-
Finally, if we consider initially adiabatic perturbations in SETVes the necessary gauge-invarianceAd)g -] This sum
that entropy perturbations may be neglected, we may replacd€nsity perturbations”), defined by
X{"/4 by the spatial gradient of the baryon energy density in T-TO
[from the constraint4.1) with K=0] and neglecting terms
involving @, , we obtain the covariant equivalent of Panek's Where T@=T(®)(z) is the background radiation tempera-

frame. This result actually holds in the energy-frame of anyM0ving gauge(with ho="0), 7 is conformal time, ance
universe, which is matter dominated at recombination, thd€ctions on the sky we find
scales, a term{”’Q"/4 arising from inhomogeneity of the

. 2
2H1®,QM/3 arising from nonstationarity of the potential
the spatial gradient of the radiation energy density, in th _ . .

P g 9y y gnd side of Eq(5.3) is gauge-dependeftirst-order gauge
of simultaneity of the energy-fram@vhich are defined by serve the gauge-conditions implicit in E¢5.2), move the
extra redshift, due to the expansion of the universe, durin@” the right-hand side of Eq5.3) is also gauge-dependent.
a K=0 baryon dominated universe on large enough scale®1@y be expressed in terms of the gauge-dependent photon

_ — 1 5(7 o
the baryon-frame X{”/3. Replacing®, with 3H2x/2 49 T 10O (5.4
result[10]: ture. Using the constancy ait®’s, we find

1 3 (E) +(A_S) :lA(g(V)) (5.5
(5T(e))R:Ek (g?ff(b){l—EHdQ(kﬁ T/, S| 4 E- .

A
— b ) The significance of this result is that it is a first-order quan-
+2k (A HE*QY) A (4.9 tity. To evaluateA (6)¢ to first-order, we need only locate
the last scattering surface to zero-order, since locating the
last scattering surface correctly amounts to a first-order dis-
V. COMPARISON WITH THE SACHS-WOLFE RESULT placement in a first-order quantity. The implicit choice made
o _ _ o by many authors is to evaluate E&.5 on the background
tis instructive to compare the preceding analysis with thelast scattering surface@ver which 7 is constant With this
original calculation of Sachs and Wolf&]. Assuming that choiceAS andAT(® are both equal to zero, and trivially we
the radiation is nearly isotropic in the frame of the baryons apptain the resultr (5") evaluated on the background last
last scattering, the temperature of the radiatioiRdtn the  scattering surface. Note that Sachs and Wifeexplicitly
baryon-framg s given in terms of the radiation temperature made this choice, although they also made thauge-

at the pointA in the last scattering surface as dependent assumption that the radiation temperature was
constant on the background last scattering surface. Although
Ta it is certainly necessary to locate last scattering correctly to

TR:m’ (5.1) calculateA (T)g andA(S)g separately, this is not true for the

difference A(TS)g, which is all that is required for CMB
calculations. Physically, this effect arises from the compen-
sation effect: the extra redshift along a given direction due to
the difference between the scale factor on the true last scat-
tering surface and at the point of intersection of the geodesic

1— } f”R(a h. eel+2d, hoel) dy with the backgroundzero-ordey last scattering surface can-
2 )y 710 ' cels out the difference in temperature between the same
(5.2 points on the real and true last scattering surface. Note that

where the redshifz along the null geodesic connectiny
andR is given by[1]

Sk
+z=—
1+z SA
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such problems do not arise in the kinetic theory calculatiorgauge-condition®®V,7=0 forcesf(x') to be a constaft

of Sec. lll, since the optical depttwhich determines the
position of the last scattering surfaceultiplies only first-
order variables, and so is needed only to zero-order.
The termA(8")g/4 is often omitted from Sachs-Wolfe
type analyses¢for example[15]), effectively being absorbed

into a (direction-dependept “expected” temperature,T
=T,S,/Sk (see[2,10] for alternative choices Along with
the observed temperatuiig, this defines a first-order tem-
perature variatiorST/T by

T

R

?

?

(5.6)

il

This should not be confused with the gauge-invariant tem
perature fluctuation from the meak(e), used in the rest of
this paper. The quantityT/T is gauge-dependent through
the gauge-arbitrariness in the scale fac®rDifferencing
between two directions on the sky, one finds

A(STIT)r=A

fﬂR(a,,hijeiei+2c7,,hi0e‘)d1; 57
e

Of course, this result is entirely equivalent to E§.3), one
needs only the result
) E

o[F A

which follows from the definition off. This appears to be

oT

T

AT
T

AT
(TSe ’

(5.9

with the result thatAS/S is gauge-invariant. Under these
conditions, we may express the first two terms on the right-
hand side of Eq(5.3) in terms of covariant, gauge-invariant
variables as follows:

(AT +(AS> 1JA(Vap(7)+4VaS>d .
R —_— —_— —_— —_— X
T/. '\ s/ 4)el p S
1 (A[Vap” 4
N — py(0)
_4J’B( R +30U; dx?

- zk: A(% }f(y)@k)) (5.9

E

where A and B are the points of intersection of the two
geodesics through the observation pdvith the last scat-
tering surface,dx? lies in the last scattering surface

[dx?ul®=((1)], and we have replacedssS by the cova-
riantly definedd which is correct to the required order. In

this manner, we recover th&{”’Q(/4 contribution to the
temperature anisotropy.

VI. CONCLUSION

Starting from a covariant and gauge-invariant formulation
of the Boltzmann equation, we have derived a new expres-
sion for the CMB temperature anisotropy under the instanta-
neous recombination approximation, valid for scalar pertur-
bations in open, closed and flat universes. Our expression
uses only covariantly defined variables, and is manifestly
gauge invariant. The result is more useful in multicomponent
models with scalar perturbations than earlier covariant re-
sults [6,8,9]. In the case of a universe which is baryon-

the step where confusion sometimes arises in Sachs-Wolfdominated at recombination, we find a simple expression for

type analyses, with authors comparing the g::luge-depende"rli\te

STIT with the results of observation, instead of the physi-
cally relevant AT/T)g [or 87(e) which is easily derived
from the formet. As noted in[2], it is not enough just to
difference §T/T; in general, the result will not be gauge-
invariant and will not include the contribution frod”) at
last scattering.

Finally, we demonstrate how the gauge-invariant contri

bution A{”QM/4 to the anisotropy arises in the Sachs-Wolfe
calculation. If we approximate thévorticity-free) baryon

anisotropy which corrects a similar result by Dungbly

By making use of numerical solutions to the perturbation
equations, we have discussed the conditions on the last scat-
tering surface and their contributions to the characteristic
features of the CMB power spectrum. We ended with a dis-
cussion of the original Sachs-Wolfe calculation for the tem-
perature anisotropy. We have discussed why it is not neces-
sary to locate accurately the last scattering surface in such
calculations(because of the compensation efje@nd how

the extra term in the Sachs-Wolfe calculation, reported re-
cently by Ellis and Dunshby6], is missed in many calcula-

motion as being geOdeSiC through recombination to thQions which emp|oy agauge_dependent “expected tempera-

present, we can choose a comoving gauge Wijgi+=0 (the
synchronous gauge, in which the surfaces of consteate
surfaces of simultaneity for the barygn¥he result given in

ture,” since the angular dependence of this temperature is
often overlooked. For a universe which is matter dominated
at recombination, but not necessarily adiabatic, the extra

Eq. (5.3) (with h;jo=0) still holds in this gauge, and the con- term is the spatial gradient of the radiation energy density in

formal time 7 satisfiesV,7=u/S(7), whereu? is the
baryon velocity. It follows that the background scale factor

satisfies ®V,S=0 and S= 9,5/S=0S/3+0O(1), where ¢

the energy-frame, XY’Q®/4),. For models with isother-

mal surfaces of last scattering, this inhomogeneity describes
a distortion of the last scattering surface relative to the sur-

=Vaugb) is the covariant expansion of the baryon-frame.faces of simultaneity of the energy-frame. The extra redshift
With this gauge-condition, we have removed the gaugeincurred by this distortion is a significant component of the
freedom to perform the transformatiop— 5+ f(x')/S [the  temperature anisotropy on intermediate and small scales.
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