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Geometric reheating after inflation
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Inflationary reheating via resonant production of non-minimally coupled scalar particles with only gravita-
tional coupling is shown to be extremely strong, exhibiting a negative coupling instability forj,0 and a wide
resonance decay forj@1. Since non-minimal fields are generic after renormalization in curved spacetime, this
offers a new paradigm in reheating—one which naturally allows for efficient production of the massive bosons
needed for grand unified theory baryogenesis. We also show that both vector and tensor fields are produced
resonantly during reheating, extending the previously known correspondences between bosonic fields of dif-
ferent spin during preheating.@S0556-2821~98!50214-7#

PACS number~s!: 98.80.Cq, 04.62.1v
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I. INTRODUCTION

Typical modern incarnations of inflation arise within s
pergravity, string or grand unified theories~GUT! where the
inflaton, f, is only one of many fields. Studies of inflatio
including couplings to these other fields, as required to
heat the universe after inflation, yield extremely comp
dynamics@1# and are little investigated beyond hybrid mo
els @2#. Here we turn to a minimalist view in which prehea
ing @3–7# occurs with the inflaton coupled only gravitation
ally to other fields. We call thisgeometric reheatingto
emphasize its gravitational origin. The most powerful e
ample of this new mechanism is provided by non-minima
coupled fields~Sec. II B!, where the strength of the effect
due to the congruence of two facts:~1! the Ricci curvature
oscillates during preheating and~2! the non-minimal cou-
pling, j, is a free parameter. The first ensures that ther
resonance, the second that the effect is non-perturbative

The possible importance of this effect is motivated
renormalization group studies in curved-spacetime@8–10#,
which have shown that even if the bare coupling,j0 , is
minimal, after renormalizationjÞ0 generically. Since we
are particularly interested in the preheating realm which
curs when inflation ends near the Planck scale, we are
the ultraviolet ~UV! fixed points of the renormalization
group equations. While the UV fixed points may correspo
to a conformally invariant field (m50, j5 1

6 ), in different
GUT models the coupling may also diverge,uju→`, in the
UV limit @8,11#. In both cases the nature of geometric rehe
ing is very different from the standard models based on
plicit self-interactions or particle-physics couplings betwe
fields ~see, e.g.@3#!.

Further we shall study the gravitational production of sp
0, 1 and 2 particles due to the expansion of the unive
during preheating, and will show that a unified treatment
terms of parametric resonance exists. This is shown by
ducing the evolution equations to generalized Mathieu fo

x91@A~k!22q cos 2z#x50, ~1!
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with time-dependent parameters.1

The Mathieu equation has rapidly growing solutions co
trolled by the Floquet indexmk . In the case that 1@q.0,
the Floquet index in thefirst resonance band of the Mathie
equation is given bymk5@(q/2)22(2k/m21)2#1/2 @12,3#.
This can be extended to givemk

N in the Nth resonance band
@13# as long asA.0 and 2N3/2@q:

mk
N52

1

2N

sin 2d

@2N21~N21!#2 qN, ~2!

whered varies in the interval@2p/2,0# andmk
N!1.

WhenA(k),0 a qualitative change occurs and the dom
nant effect comes from the fact that one effectively has
inverted harmonic oscillator yielding thenegative coupling
instability @14#. In this case the Floquet index can be as lar
asmk;uqu1/2, there are no stability bands to speak of and
typical variances are larger by a factoruqu1/2 than in the
A(k).0 case.

To be concrete, consider the case of a scalar field i
Freidmann-Lamaitre-Robertson-Walker~FLRW! universe
@gmn5diag„21,a2(t)/(12Kr 2),a2(t)r 2,a2(t)r 2 sin2 u…, K
561,0 is the curvature constant#. We shall restrict2 our-
selves to the quadratic potential,

V~f!5
mf

2

2
f2. ~3!

For K50, the latter potential gives an oscillatory behavior
the field, f5F sin(mft), with F;1/mft. In what follows
we shall try to preserve maximal generality; we denote w

1While it is known that the Mathieu formulation is insufficient@6#
in some respects, and has lead to the introduction of o
approximations—principally that of stochastic resonance@3#—the
Mathieu equation remains a powerful diagnostic test for
strength of particle production.

2We note that application of stochastic resonance methods to
vector, tensor, and non-minimal scalar fields of this paper for
potentialV5 (l/4) f4requires an extension of the existing theo
to scattering in a quartic potential as opposed to the standard
dratic potential@3,7#.
© 1998 The American Physical Society02-1
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8 results which are derived specifically for the potential~3!.
We use natural units withk58p, G51.

The energy density and pressure for a minimally coup

scalar field, treated as a perfect fluid, arem5k„1
2 ḟ2

1V(f)…, p5k„1
2 ḟ22V(f)…. This breaks down if the field

is non-minimally coupled~an imperfect fluid treatment mus
be used!, if the effective potential is not adequate@6#, or if
large density gradients exist. The FLRW Ricci tensor is@15#

R0
053

ä

a

Ri
j5F ä

a
12S ȧ

a
D 2

1
2K

a2 Gd i
j , ~4!

wherei , j 51, . . . ,3. TheRicci scalar is

R56F ä

a
1S ȧ

a
D 2

1
K

a2G . ~5!

The Raychaudhuri equation for the evolution of the exp
sion Q53ȧ/a is3 given by

Q̇52
3k

2
ḟ21

3K

a2 , ~6!

while the Friedmann equation is

Q21
9K

a2 53km53kS 1

2
ḟ21V~f! D . ~7!

As an example, whenK50 and ȧ/(amf)!1, one may
solve Eq.~7! perturbatively@17#, to obtain

Q8
2

t S 12
sin 2mft

2mft D , ~8!

to first order inȧ/(amf). This is only valid after preheating
when F!1, but shows that the expansion oscillates ab
the mean Einstein–de Sitter~EDS! pressure-free solution
Equation~8! can be integrated to give the scale factor:

a~ t !8ā expS sin 2mft

3mft
2

2ci~2mft !

3 D ~9!

where ā5t2/3 is the background EDS evolution, an
ci(mft)52* t

` cos(mfz)/zdz. This example explicitly dem-

onstrates how temporal averaging~which yieldsā! removes
the resonance.

Via Eqs.~6!,~7! one can systematically replace all facto
of ȧ,ä with factors ofḟ andV(f) terms.4 In this way one

3The expansion is generally defined asQ[ua
;a whereua is the

4-velocity and ; denotes covariant derivative@16#.
4Indeed, a useful combination is 2Q̇1Q2523kp

8
3
2 kmf

2 F2 cos(2mft).
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can show that the vector and tensor wave equations take
form of Mathieu equations during reheating@18#.

II. SCALAR FIELDS

Consider now the effective potential

V~f,xn!5V~f!1
1

2 (
n

N

mn
2xn

21
1

2 (
n

N

jnxn
2R, ~10!

describing the inflaton with potentialV(f) coupled only via
gravity to N scalar fields, xn , which have no self-
interactions, massesmn and non-minimal couplingsjn . The
equation of motion for modes of thenth field is

ẍk
n1Qẋk

n1S k2

a2 1mn
21jnRDxk

n50. ~11!

From Eqs.~5!,~6!,~7! the Ricci scalar is given by5

R52kḟ214kV~f! ~K50!. ~12!

A. The minimally coupled case

Considerjn50. Then Eq.~11! reduces, on using Eqs
~6!, ~7!, to

d2~a3/2xk!

dt2

1S k2

a~ t !2 1mn
21k

3

8
ḟ22k

3

4
V~f!1

3

4

K

a2D ~a3/2xk!50.

~13!

There exists parametric resonance because the expansiQ
oscillates. The potential~3! yields Eq.~1! (K50) with time-
dependent parameters:

A~k,t !8
k2

a2mf
2 1

mn
2

mf
2 , q8

3

16
kF2. ~14!

From this we see that the production of particles is redu
asmn increases. Indeed, sinceA→mn

2/mf
2 , q→0 due to the

expansion, production of minimally coupled bosons is rat
weak and shuts off quickly due to horizontal motion on t
stability chart. We stress that the production is, howev
much stronger than that obtained in previous studies, wh
the scalar factor evolves monotonically@19#. This mild situ-
ation changes dramatically, when a non-minimal coupling
introduced.

B. Non-minimal preheating

Now include thearbitrary non-minimal couplingjn . Us-
ing Eq. ~12! one can reduce Eq.~11! to (K50):

5Assuming that at the start of reheating the inflaton is the do
nant contributor to the energy density of the universe.
2-2
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d2~a3/2xk!

dt2

1F k2

a~ t !2 1mn
21kS 3

8
2j D ḟ22kS 3

4
24j DV~f!G

3~a3/2xk!50. ~15!

Defining a new variablez5mft1p/2, Eq. ~15! takes the
form of Eq. ~1! with time-dependent parameters:

A~k,t !8
k2

a2mf
2 1

mn
2

mf
2 1

kj

2
F2

q~ t !8
3

4
kS 1

4
2j DF2. ~16!

The crucial observation is that sincej is initially free to take
on any value,6 A(k) is neither restricted to be positive no
small.

From Eq. ~16! it is clear thatA(k),0 for sufficiently
negativej. The possibility of negativeA was the thesis of the
work by Greeneet al. @14#. However, in their model, this
powerful negative coupling instability was only partially e
fective due to the non-zero vacuum expectation value
quired by thex field due to its coupling,g, with the inflaton.
Here we only have gravitational couplings and the same c
straint is removed.

NegativeA ~induced whenq,0! implies that the physica
region of the (A,q) plane is altered. Instead ofA>2uqu, we
haveA>pF222uqu/3. Now when 2uqu/3.uAu@1, we have
mk;uqu1/2.(6puju)1/2F along the physical separatrixA
5pF222uqu/3. Since the renormalizeduju may have very
large values, this opens the way to exceptionally effici
reheating—see Figs.~1!,~2!—via resonant production o
highly non-minimally coupled fields with important cons
quences for GUT baryogenesis@14# and non-thermal sym
metry restoration.

For example, let us considermf.231013 GeV as re-
quired to match cosmic microwave background~CMB!
anisotropiesDT/T;1025. Then GUT baryogenesis with
massive bosonsx with mx.1014 GeV simply requiresj
,2(pF2)21, with F in units of the Planck energy. Instea
if one requires the production of GUT-scale gauge bos
with massesmgb;1016 GeV, this is still possible if the as
sociated non-minimal coupling is of orderj;2103. Such
coupling values have been considered in, e.g.@20#. The mas-

6The only constraints that one might impose are that the effec
potential should be bounded from below and that the strong en
condition,Rabu

aub.0⇔Tabu
aub.2T/2, be satisfied. The first is

difficult to impose sinceR oscillates and the second since o
should use the renormalized stress-tensor,^Tab&.
02130
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sive bosons withmx;1014 GeV can be produced in th
usual manner via parametric resonance ifj.0, but this pro-
cess is weaker~cf. @21#!.

Since the coupling betweenf and x is purely gravita-
tional, back reaction effects in the standard sense~see@3,6#!
cannot shut off the resonance. The inflaton continues to
cillate and produce non-minimally coupled particles, rece
ing no corrections tomf,e f f

2 from ^dx2&.
To estimate the maximum variance^dx2& is therefore

rather difficult. The standard method is to establish the tim
when the resonance is shut off by the growth ofA(k) which
pushes thek50 mode out of the dominant first resonan
band. For this we must understand howA(k) changes as the
x-field gains energy and alters the Ricci curvature. If w
assume that most of the energy goes into thex0 mode, jus-

e
gy

FIG. 1. The evolution of thek50 mode (mn
2/mf

2 .1), as a
function of time and the non-minimal coupling parameterj. For
positivej the evolution is qualitatively that of the standard prehe
ing with resonance bands. However, for negativeA ~negativej! the
solution changes qualitatively and there is a negative coupling
stability. There are generically no stable bands and the Floq
index corresponding to2uju is much larger, scaling asmk;uju1/2.

FIG. 2. A slice of the spectrum in Fig.~1! at t55 as a function
of the non-minimal couplingj. The qualitative differences betwee
j,0 andj.0 are clear.
2-3
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tified in thej,0 case,7 then the change to the Ricci curva
ture isdRx58p(E2S), where@22#

E5Ge f fS ẋ0
2

2
1

mx
2x0

2

2
212jx0ẋ0

ȧ

a
D ~17!

is theT00 component of thex stress tensor,

S5
3Ge f f

11192pGe f fj
2x0

2 F ẋ0
2

2
2

mx
2x0

2

2

14jS ȧ2

a2 2x0ẋ0

ȧ

a
2mx

2x0
2D 164pj2x0

2EG , ~18!

is the spatial trace of the stress tensorTi
i corresponding to

3p in the perfect fluid case andGe f f5(1116pjx2)21 is the
effective gravitational constant. Sincex0 is rapidly growing,
the major contribution ofdRx will be to A(k), causing a
rapid vertical movement on the instability chart. OncedA
1A.2uqu1uqu1/2, the resonance is shut-off. Ifj,0, most of
the decayingf energy is pumped into the smallk modes~see
Fig. 2!. Subsequently, we expect the oscillations inx0 to
produce a secondary resonance due to the self-intera
and non-linearity of Eqs.~17!,~18!.

The case of alxx4/4 self-interaction provides anothe
mechanism that may be dominant in ending the resona
namelymf,e f f

2 , and henceA(k), gains corrections propor
tional tolx^dx2& which shuts off the resonance@14# leaving
a peak variance of order^dx2&.mf

2 (4uqu2mx
2)/lx ~assum-

ing that j,0!. If j.0 the variance is smaller by a facto
uqu1/2.

III. THE VECTOR CASE

Until now, reheating studies have been limited to mi
mally coupled scalar fields, fermions and gauge bosons@23#.
In the case of vector fields the minimum one can do to p
serve gauge-invariance is to couple to a complex scalar
via the current since real scalar fields carry no quantum n
bers. We consider here only vacuum vector resonances, h
ever.

A massive spin-1 vector field in curved spacetime satis
the equations

~2¹a¹a1mA
2 !A b1Rb

aA a50. ~19!

These equations are equivalent to the Maxwell-Proca eq
tions for the vector potentialAa only after an appropriate
gauge choice which removes one unphysical polarizatio
In our case we shall use the so-called tridimensional tra
versal gauge condition:

A050, ¹ iAi50. ~20!

This set is equivalent to the Lorentz gauge, although it d
not conserve the covariant form of the latter. Nonetheless

7In the casej@1 one needs to usêdx2& instead.
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either case, gauge-invariant quantities such as the radia
energy density, are unaffected.

In a FLRW background, the Ricci tensor is diagon
which together with the gauge choice~20! and expansion
over eigenfunctions, ensures the decoupling of the set of E
~19!. We can reduce the system to a set of decoup
Mathieu equations. The Ricci tensor is@see Eq.~4!#:

Ra
b5kV~f!da

b2kḟ2da
0d0

b , ~21!

which leads to the Mathieu parameters for the spatial co
ponents (a3/2A i):

A~k!8
k2

a2mf
2 1

mA
2

mf
2 12q, q8

kF2

8
~22!

showing that vector fields are also parametrically amplifi
albeit weakly, during reheating as in the scalar case.

IV. THE GRAVITON CASE

It has been shown using the electric and magnetic part
the Weyl tensor@18# that there exists a formal analogy b
tween the scalar field and graviton cases during resonan
heating. Here we will show that the correspondence a
holds in the Bardeen formalism. The gauge-invariant~at first
order! transverse-traceless~TT! metric perturbationshi j de-
scribe gravitational waves in the classical limit. In th
Heisenberg picture one expands over eigenfunctions,Yab of
the tensorLaplace-Beltrami operator with scalar mode fun
tions hk , which satisfy the equation of motion:

ḧk1Qḣk1S k212K

a2 Dhk50, ~23!

or equivalently

~a3/2hk! ¨ 1S k212K

a2 1
3

4
pD ~a3/2hk!50, ~24!

where p5k(ḟ2/22V) is the pressure. This gives a time
dependent Mathieu equation@cf. Eq. ~14!# with parameters:

A~k!8
k2

a2mf
2 , q82

3kF2

16
. ~25!

In this case, a negative coupling instability is impossible a
only for F;M pl is there significant graviton production
Note, however, that if temporal averaging is used, the av
age equation of state is that of dust,p̄50. Equation~24! then
predicts~falsely! that there is no resonant amplification
gravitational waves since the value ofq corresponding to the
temporarily averaged evolution vanishes.

V. CONCLUSIONS

We have described a new—geometric—reheating chan
after inflation, one which occurs solely due to gravitation
2-4
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couplings. While this is not very strong in the gravitation
wave and minimally coupled scalar field cases, it can be v
powerful in the non-minimally coupled case, either due
broad-resonance (j@1) or negative coupling (j,0) insta-
bilities. Particularly in the latter case, it is possible to pr
duce large numbers of bosons which are significantly m
massive than the inflaton, as required for GUT baryogene
It further gives rise to the possibility that the pos
inflationary universe may be dominated by non-minima
coupled fields. These must be treated as imperfect flu
which would thus alter both density perturbation and ba
ground spacetime evolution, which are known to be sign
cantly different@24# than in the simple perfect fluid case. W
tt.
n-

a

ys

. D
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have further presented a unified approach to resonant pro
tion of vector and tensor fields during reheating in analogy
the scalar case.

Future work should examine in greater detail back re
tion issues in the non-minimal case, and the situation in
tentials with self-interaction relevant to symmetry resto
tion.
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