PHYSICAL REVIEW D, VOLUME 58, 016002

Global renormalization group

Jean Alexandre
Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de I'Unive6si@87 Strasbourg, Cedex, France

Vincenzo Branchina
Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de I'Univef&i87 Strasbourg, Cedex, France

Janos Polonyi
Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de I'UnivesiG87 Strasbourg, Cedex, France
and Department of Atomic Physics, L.t#os University, Puskin u. 5-7 1088 Budapest, Hungary
(Received 18 December 1997; published 20 May 1998

The motivation and the challenge in applying the renormalization group for systems with several scaling
regimes is briefly outlined. The four-dimensionaf model serves as an example where a nontrivial low-
energy scaling regime is identified in the vicinity of the spinodal instability region. It is pointed out that the
effective theory defined in the vicinity of the spinodal instability offers an amplification mechanism, a precur-
sor of the condensation, that can be used to explore nonuniversal forces at high energies.
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[. INTRODUCTION the onset of the spinodal instability. Our goal is to connect
the two scaling regimes and the global reconstruction of the
The idea of the renormalization gro{ip,2] is to view the  renormalized trajectory. A preliminary account of our results
different interactions in a hierarchical manner, by buildinghas already been given in R¢8].
up the more complex systems from their “elementary” con-  The possibility of the onset of a new scaling law has been
stituents. The renormalization group should describe theaised by the introduction of the “dangerously irrelevant pa-
manner the elementary particles rearrange themselves mameters”[4]. The usual classification of the operators in a
forming the composite particles captured by the detectorscaling regime with respect their response to the change of
with a given resolution, the complex structure of ordinarythe scale is based on the perturbation expansion and assumes
matter and finally the transition from the microscopic to thethe regular behavior of the system in the weak coupling re-
macroscopic physics. Because of the obvious technical diffigime. If the evolution equations develop singular behavior in
culties of such an ambitious project the realization of thisthe weak coupling limit then it may happen that a perturba-
idea is severely restricted. What is usually achieved by théively irrelevant coupling constant experiences new, nonper-
help of different analytical approximation methods is to ana-turbative scale dependence. This mechanism can be identi-
lyze the dependence on the observational scale in a scalirfggd in different systems with condensafés-7], where the
regime where the evolution equations are linearizable or asingular dependence of the saddle points in the coupling con-
least perturbative. The result is the renormalized trajectorystants provides the mechanism to turn a perturbatively irrel-
the scale dependence of the coupling constants in a regimevant coupling constant into an important one. It is conjec-
that is dominated by a given interaction. One may call this d@ured in this paper that the condensation might serve as a
local analysis of the renormalization group flow, performedquite general mechanism to generate new, important cou-
in the individual scaling regimes that usually but not necespling constants and the dynamical renormalization group that
sarily agree with the vicinities of the fixed points. A number addresses the question of the scale dependence in nonequi-
of important results have been derived in this manner. librium, time-dependent phenomena is well suited to the
The real challenge, we believe, is to describe the transmustudy of such a question.
tation of one set of scaling laws into another one as the scale We rely in this work on the renormalization group real-
of the observation is changed. This requires the constructioized by a sharp cutoff in momentum space, in the framework
of the renormalized trajectory connecting different scalingof the gradient expansion for the action. Such a realization of
regimes. Such a manifestly nonperturbative phenomenothe cutoff renders the systematic gradient expansion ques-
will be studied in this paper in the case of a simple modetiionable, so we restrict ourself to the lowest order, local-
with two scaling regimes, the single componefft scalar  potential approximatiori8,9]. But it should be mentioned
field theory in the spontaneously broken phase. This moddhat the usual remedies of the problem, the use of a smooth
supports an asymptotic UV scaling regime well above thecutoff or periodic Brillouin zone are not compatible with the
particle mass and an intermediate-energy scaling regime &op expansion for systems with a condensate at finite-
momentum scales. In fact, though the loop expansion pro-
duces the action of the effective theory as a power series in
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expansion before we compute the contributions of the un-
stable modes. Such a successive elimination of the degrees
of freedom introduces automatically the strategy of the
renormalization group with sharp cutoff, and renders the
smooth cutoff regularization inconsistent with the loop ex-
pansion.

The organization of the paper is the following. The pres-
ence of several scaling regimes is pointed out for the theory
of everything and for the BCS ground state in Sec. Il. The
role the Bose condensation plays in generating new scaling
laws is elucidated in Sec. lll. The infinitesimal, renormaliza-
tion group equation is derived for the* model in Sec. Il

QCD

T ; ; ; i FIG. 1. The renormalized trajectory of the theory of everything
The possibility of a new scaling regime in the vicinity of the
P y greg y I(TOE). It passes by the fixed points of the grand unified models

spinodal instability is pointed out in Sec. IV. The numerical " . .
results for the solution of the renormalization group equatioliGUT)' the unified electroweak theofW), the strong interactions

. . - . CD), the electromagnetic interactiof@ED), certain fixed points
arf presentgd in Sec. V, in the gase of the four-dimension ifgthe solid state and condensed matter phy&i), and finally
¢" model. Finally, Sec. VI contains the summary.

approaches the ultimate IR fixed point. The trajectory may be in-
fluenced by the environment and reach different thermodynamical
II. HIDDEN COUPLING CONSTANT phases in the IR regime.

The most fundamental and at the same time the modtosons. In a similar manner, the fixed points of all the other,
complex appearance of the multiple scaling laws can b&enormalizable, effective theories are approached by the
found in the renormalized trajectory of the theory of every-renormalized trajectory, but the higher-energy processes al-
thing (TOE). The simplest procedure to describe the manneways prevent convergence as the energy is increased, except
the TOE gives rise a chain of lower-energy effective theoriesat the last fixed point, at the TOE. In the regime of solid state
is the so-called matching. This method where we match twghysics, we can influence the evolution of the running cou-
theories at their crossover scale can not give an account @fing constants by the environmental variables, such as the
the change of the scaling laws in a dynamical manner, betemperature or chemical potentidts0]. In this manner the
cause different sets of coupling constants are used at the twenormalized trajectory may bifurcate and follow different
sides of the crossover. Instead, one should follow the origingbath in different environments and finally arrive in different
strategy of the Wilson-Kadanoff blocking, and put all cou-thermodynamical phases at the infrared fixed point.
pling constants in the lagrangian from the very beginning Facing such a complex system, the usual argument about
that will later be generated by the blocking. Thus the cou-universality appears as an oversimplification. In fact, at each
pling constant space of the TOE should contain not only thescaling regime we classify the operator algebra of the model
renormalizable parameters but any coupling constant we evén a local manner according to the appropriate scaling laws.
need in physics. For example the quark-gluon vertex or dt may happen that an operator possesses different local clas-
coupling constant of the Hubbard model of the condensedifications, and it is found relevant at one scaling regimes but
matter physics have to be considered as complicated conlbecomes irrelevant at another one. The importance or unim-
posite operators in terms of the fundamental particles of th@ortance of such a coupling constant must be decided in a
TOE. scaling-regime-independent, global manner.

The renormalized trajectory, depicted schematically in A simpler example where the global behavior is important
Fig. 1, approaches several fixed points in its way towards thean be found in QED containing the electron and a heavy
infrared limit. To understand this better consider the increaseointlike particle with charget+Z playing the role of a
of the observational energy in the regime 1-60 GeV. Thenucleus. Suppose that certain environment variables, such as
evolution of the coupling constants receive their dominanthe temperature and the baryon chemical potential are chosen
contributions from the strong interactions, from the radiativein such a manner that the vacuum is a solid state lattice in the
corrections of QCD, and the renormalized trajectory is in thesuperconducting phase. We can distinguish two asymptotic
scaling regime of QCD. Had our world contained the strongscaling regimes in this model:
interactions only, the renormalized trajectory would have Asymptotic UV scalingAt energies above the nucleus
converged to the fixed point of QCD with increasing energy.mass the evolution equation is given in terms of the minimal
But the weak interactions become important as we reach theoupling vertices and the vacuum can be considered pertur-
characteristic energy of the electroweak theory, and théative. As indicated above we do not require the existence of
renormalized trajectory turns away from the QCD fixeda fixed point for the identification of the asymptotic scaling
point. This happens because the running coupling constantaws. In this manner we can ignore the possible problems
of the nonrenormalizable quark vertices generated by the exarising from the nonasymptotically free character of QED,
change of the intermediate vector bosons increase with thend consider the scaling laws only up to the UV Landau
energy. They saturate at the crossover between the stromple. The relevant and the marginal operators are the usual
and the electroweak interactions where the guidance of theenormalizable ones, and are given in the framework of the
evolution is taken over by the exchange of iheand thezZ perturbation expansion by a power-counting argument. The
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TABLE I. The four classes of the coupling constants in QED. since their relevant coupling constants may influence the
physics in a strong manner. The four different possibilities

uv IR Fig. 2 Example with respect to these scaling laws are shown in Table | and in
O Fig. 2 for coupling constants whose dimension is removed
relevant relevant @ MeA deibe by the cutoffA. The electron mass is a relevant parameter of
relevant irrelevant (b) m Ay, ¥, the QED Lagrangian and remains relevant for the solid state
irrelevant relevant (c) GA2(Puthe)? lattice, too. The muon mass is relevant in the UV scaling
irrelevant irrelevant (d) EAS(Pt)? regime but the muon-induced processes are overwhelmed by

the electron-induced ones at low energy ang becomes
irrelevant in the IR. The four-fermion interaction is, at the
. . L same time, nonrenormalizable and represents the driving
size of the scaling regime is limited by the UV cutoff or the force to the BCS superconducting phase: it is marginal in the
Landau pole. _ _ IR regime[13,14. Recently other indications of the devia-
Asymptotic IR scaling-or energies below the scale of €V o from the Fermi-liquid behavior resulting from relevant
the collective phenomena of the solid state lattice dominatg marginal operators of the IR regime have been found for
the scaling laws. The inhomogeneity of the vacuum is a keyigh-T, cuprate§16], as well. Finally the six-fermion or any
element. No systematic classification of the scaling operatorgigher order vertex is irrelevant in the IR regime because its
is known, but because of the massless acoustic phonons, te€fect is reduced to the multiple application of the four-
existence of nontrivial relevant or marginal operators cannofermion vertex. The four-fermion interaction plays a special
be excluded. The lower edge of the scaling regime is limitedtole: On the one hand, it is usually left out from the micro-
by the loss of quantum coherence. scopic Lagrangian because it is suppressed in the UV scaling
The asymptotic scaling regimes can be extended by emegime. On the other hand, it has a key role at the IR regime
bedding the model into a higher-energy, more fundamentain controlling the attraction between the electrons.
renormalizable theory and by approaching absolute-zero The qualitative behavior shown in Fig(c raises the fol-
temperature. These asymptotic scaling laws are importaribwing possibility. The suppression of the irrelevant cou-
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FIG. 2. The qualitative dependence of the running coupling constant of Table | as a function of thaewaff A. The asymptotic UV
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and IR scaling regimes are shown. The coupling constant is supposed to be constant in between for simplicity.
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In Fig. 3(b) the value of the coupling constant at the cutoff
becomes numerically negligible at intermediate energies ac-
cording to universality. However the low-energy scaling
laws amplify the numerically small nonuniversal value. De-
pending on the critical exponents and the size of the scaling
regimes the amplification of the sensitivity at the IR side
may be comparable or even stronger than the suppression in
the UV regime. This is a hidden coupling constant because it
is undetectable at finite energies nevertheless its small value
influences the IR physics in a nonuniversal manner. By rear-
ranging a longer IR evolution we can in principle uncover
the presence of nonuniversal interactions at higher energies.

It was pointed out that a relevant operator of the IR scal-
ing regime may change the ground state either by generating

() bound states that condense or by driving the system to strong
g couplings until the growth of the coupling constants is cut
off by other quantum effectsl4]. Within the framework of
the saddle-point expansion these two possibilities coincide,
and the issue of the hidden coupling constant is that the
growing coupling constants might be slowed down in a man-
ner that contains information about the nonuniversal interac-
tions at the microscopic scale. In order to clarify this ques-
tion, namely, the sensitivity of the IR end of the
renormalized trajectory on the UV initial conditions, we
must obtain and solve the renormalization group equations
for sufficiently many coupling constants, globally.

The coexistence of several scaling regimes have already
been studied in condensed matter physics, where competing
) interactions are represented by the possibility of approaching

different IR fixed pointg15]. The difference between such

FIG. 3. Two possible behaviors of a nonrenormalizable couplingSystems and the TOE is that only one of the possible scaling
constant what is relevant at the low-energy scaling regime, @ase laws are realized in the former case. On the contrary, the
in Table 1. Each plot shows two curves what belong to initial con-Scaling regimes occur at different energy scales and the sys-
ditions at the cutoff what differ in the value of the irrelevant cou- tem visits each of them sequentially in the TOE.
pling constant only. The renormalized trajectory of TOE sketched in Fig. 1

reflects the usual conflict between the “fundamental” and
pling constants in the UV scaling regime is used to explain‘applied” physics. The fundamental, microscopic param-
the universal behavior of the models. It is certainly correct toeters should be determined with the help of the renormaliza-
expect that the renormalized trajectories whose initial condition conditions imposed at the energy scalg.q, that is,
tions in the ultraviolet differ only in the values of the irrel- within the scaling regime of the fundamental interactions,
evant coupling constants approach each other as we mowd is far from the complexity entering at lower energies. So
towards the infrared direction. But if there is another scalingong as the TOE is renormalizable or finite the perturbation
regime where an operator that was irrelevant in the UV scalexpansion can be used to show that the resulting renormal-
ing regime turns out to be relevant, then the resulting ampliized trajectory is independent of the choicewgf,q, and can
fication process may undo the suppression at the UV. Mayn a natural manner be characterized by the coupling con-
one find a “hidden coupling constant” in this manner that stants observed at high energies. In this sense the fundamen-
has to be put into the microscopic action of the UV regimetal laws of physics are determined by the high-energy experi-
but influences the dynamics only in the IR? The answer tonents and the description of the lower-energy, complex
this question is nontrivial even if we can identify a nonrenor-systems requires “only” the capacity to apply the funda-
malizable operator that is relevant in the low-energy scalingnental laws in a complicated situation.
regime. In fact, it may happen that the increasing value of But the fallacy of this view is clear: In the absence of
this coupling constant during the lowering of the observa-hidden coupling constants where the low-energy effective
tional energy happens to be independent of its initial value aparameters are determined in an autonomous manner, there
the UV cutoff. This possibility is shown schematically in is no need for the precise measurement of the high-energy
Fig. 3(@). The UV scaling laws suppress the dependence oparameters in order to reproduce the low-energy physics. In
the initial values of the nonrenormalizable coupling con-fact, according to the renormalized perturbation expansion
stants. If the evolution equations have no instability or otherand universality, the bare coupling constants are character-
nonanalytic features at low energies, then this suppressaded in a unique manner by the renormalized ones defined at
sensitivity and universality is observed down to zero energylow energies, ucomp<msund- When hidden coupling con-
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stants are present then the precision of the measurement wéive vacuuni11]. Depending on the initial conditions dif-

the high-energy parameters required to predict a low-energferent slower collective modes might be formed that distrib-
phenomenon with a reasonable accuracy might render thgte the energy and create time-dependent condensates in sev-
global determination of the renormalized trajectory illusory.eral other particle modes. After sufficiently long times, the

In other words, the specification of the initial conditions with energy of the excited modes get diffused by the friction

a reasonable accuracy might be unimportant for the nonlinterms over infinitely many modes, without creating macro-
ear evolution, sir_nilarly to the nonintggrable chaotic; SystéMSscopic population, and only the particles in the lowest lying
The challenge lies in comprehending the matching of thenode remain condensed. The large-amplitude, transient ex-

different scaling islands of Fig. 1. citations above the true vacuum are described by a large
number of modes with condensate. This is the realm of
IIl. RENORMALIZATION AND CONDENSATION nucleation and the spinodal decompositjaa].

The former refers to the metastability of the vacuum

In the perturbatively implemented renormalization groupwhich decays by large amplitude fluctuations. The simplest
we have to assume that the renormalized trajectory does n@ to assume that this takes place by the spontaneous forma-
leave the vicinity of the Gaussian fixed point. If there is ation of spherical droplets of the stable vacuum whose free
small parameter assuring this, as ir- 4 dimensions, then energy isF=47Ro—47R3AF/3, where o, AF, and R
the set of the relevant or marginal operators is the same atand for the surface tension, the free energy density differ-
each scaling regime, and the global behavior of the renorence between the metastable and the stable vacuum, and the
malized trajectory contains nothing new compared to the lodroplet radius, respectively. These droplets extend over the
cal analysis performed at the individual scaling regimes. Ifwhole volume if they are sufficiently larg&>R,,= o/AF.
the renormalized trajectory explores the nonperturbative rethe spinodal decomposition is observed when there is no
gions then the global analysis is very interesting, but we losenore finite threshold for the instability and the infinitesimal
the general, perturbative characterization of the flow. A win-fluctuations are enough to trigger the decay of the homoge-
dow of opportunity for the analytical studies opens if theneous vacuum. This can be recognized in the framework of
nonperturbative features of the evolution can be reproducethe static description by the appearance of the negative ei-
by the only known, systematic, analytical, nonperturbativegenvalues for the Euclidean propagator. The fast increase of
method, the semiclassical expansion. the corresponding elementary excitation amplitudes drives

A nontrivial saddle point corresponds to a coherent statén inhomogeneous separation of two stable values of the
formed by the condensate of bosons. The importance of thigcal dynamical variable.
condensate depends on the multiplicity of the coherent Returning to the long-time, low-energy excitations, they
statés). We shall demonstrate this from three different pointsexperience a single condensed mode; and the static nonper-
of view. turbative condensate is simpler to describe.

Euclidean quantum field theory for the vacuum.the Saddle points of the renormalization groughen the
semiclassical solution to the vacuum with ferromagnetic conrenormalization group is implemented then we eliminate the
densate only the lowest lying excitation level with vanishingmodes in descending order in the energy, and we may en-
momentum is populated macroscopicdlWhen the system counter nontrivial saddle points in the way. If we are inter-
is placed in a finite geometry then the lowest lying stateested in the effective theory for the low-energy fluctuations
might become inhomogeneous; nevertheless the particlegound the true vacuum in systems without a localized saddle
still condense in a single mode. The impact of the condensaigoint, then the condensate occurs only at the last mode, at the
is stronger if the particles form coherent states in a largenfrared fixed point. When the effective theory is sought for
number of modes. This is the case for solitons or instantongarge amplitude excitations, then the elimination of the
the localized saddle points with high entropy. Another, lessnodes in the presence of such a background field may in-
studied example is given by theories with higher-orderduce saddle points for the blocking procedure earlier, at fi-
derivative-terms in the actiof7]. When their coupling con- nite scales. The nonperturbative contribution of these saddle
stant is properly chosen then particles with nonvanishingoints may modify the direction of the renormalization group
momentum may condense and generate an inhomogeneoisw in a substantial manndi7]. As an example of this
vacuum. Since the density of modes with momentpris  mechanism, the emergence of an irrelevant coupling constant
proportional top? ™ in d dimensions there are more particle in the dynamics of domain walls has already been noted in
modes participating in the condensation at fimtdhan at  the two-dimensional nonlined®(2) model[18].
p=0. In short, the saddle points of the blocking procedure occur

Real time dynamicslhe condensation is triggered by the with higher multiplicity at finite energies, and may modify
wrong sign of the forces trying to restore the equilibriumthe scaling laws in a more substantial manner than the saddle
position. There are always several unstable modes whicpoints of the static system in the true vacuum. Such effects
compete in the condensation when the system starts with thepuld be seen by the proper implementation of the dynamical

renormalization group for large amplitude fluctuations. It is
worthwhile noting that the spinodal instability region starts
The degeneracy of the vacuum with spontaneously broken symjust at the vacuum in the presence of the Goldstone modes,
metries does not change the picture since there is only one vacuuand the saddle point contributions might influence the small
in each “world” containing the states connected by local operatorsquantum fluctuations around the true vacuum, as ).
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V. RENORMALIZATION GROUP EQUATION where tf denotes the summation within the sheglk

The study of the different scaling regimes requires the_Ak’k]' The positive semidefinite operator

handling of a large number of coupling constants which can S+ ']

be achieved by converting the evolution equations referring 5S(x,y)= 5b (X)0d (V)¢ (X)=84(x) 5)
to the individual coupling constants into a differential equa- $'(X)00°(y) °

tion for the generating function for the coupling constants, Y

i.e., the blocked action. We shall work with the four- and the saddle poing,,

dimensionakp? theory in Euclidean space-time. The cutkff 5S[d+ ']

in the momentum space will be changed infinitesimaly, W\(/,r(x):%(x):O, (6)

—k—Ak, which generates a new small paramet/M,

whereM is a quantity of dimension of mass made up by thegre computed by keeping the background fiedk) fixed.

dimensional parameters of the model and the cukoffhis _ Equation(4) reduces to the Wegner-Houghton equatih
small parameter will be used to show that the renormalizaghen the saddle point is triviathy=0.

tion group equation derived in the one-loop approximation
becomes exact ask/M — 0, because the higher loop contri-
butions are suppressed /M.

There are two limitations to bear in mind in turning this 2 7972
scheme into a feasible algorithm. The first is that even Qd:m- (7)
thought there is a new small parameter to suppress the higher
|00p contributions to the evolution equations the argumentrhe Contribution@(ﬁn) are given in terms 0h_fo|d |oop
presupposes the applicability of the loop expansion. Therentegrals. So long as the integrands are bounded in the do-
fore the use of the resulting “exact” equation is questionablemain of integration the contributior@(4") contain the mul-

in the strong coupling region, beyond the validity of the loopyjpjicative factor (Ak/M)". The integrands are the products

tion of the effective-action functiona{ ¢] with the cutoff  syhspace&— Ak<p<Kk. If the restoring force acting on the
k. It is usually done by relying on the gradient expansion: flyctuations is nonvanishing then the propagator is bounded
and the higher loop contributions drop from Ed) when

Observe that the loop integration is made in a region of
volume Q 4k% *Ak where

1 Ak/M—0. The formal argument showing the s i f
— | gd - 2 . g uppression o
Sd¢] fd X Zk[¢(x)]2[aﬂ¢(x)] UL A0] the higher loop contribution to the renormalization group
. equation is presented in the Appendix.
+0(5%). D

The only quantity needed in the local potential approxi-
] ) ) o mation, Eqs(1),(2), is the potential,(®) so it is natural to
The assumption that terms with higher order derivatives ar@ngose for its determination a homogeneous background
less important is equivalent with the belief that the action isgg|g #(x)=® for which the kinetic energy is vanishing. An

a local functional. This is reasonable at high energies beaqgitional bonus of this choice is that the saddle point is

cause all of the relevant operators of the short distance scalytrivial $4+0, just in the spinodal unstable phase. Out-
ing laws should be local. But there is no reason to exclud RN

operators which are nonlocal at the scale of the cutoff a :gﬁjgf the spinodal unstable phase one carsget0 which
low-energy, scaling regimes, and these terms of the actioh

may create nonlocal effects. By holding to the assumption of gy 5 |\ [d]=exp— LU, _ 4 (P)
locality we shall set

fi
Z(¢p)=1 2) =exp—S [P+ ¢yl — Etr’ln628+ O(h?)

in thi d

in this work. B q 3 g d%

We eliminate the modes with momentuk Ak<p<Kk =exp-L°Uy(®) - 5L f 2m)e
and find the blocked action
><In[p2+ UK(CD)]-‘rO(ﬁZ), (8)
e~ (MW)S-ad 9l = f D[¢']e” MMSLe+d'T, (3)  where the plane wave elementary excitations of the homoge-

neous vacuum were used to compute the trace in the third
line andf’d*p= [_ ak<p<kd*p. In this manner one arrives

The Fourier transforms of the variabd&(p) and ¢'(p) are at the finite difference equation

nonvanishing fop<k— Ak andk— Ak<<p<Kk, respectively.

The functional integration is carried out in the framework of f( d% 5
the loop expansion U(P) = Uy ak(®)=— Ef W'“[p +Up(P)]
h hAk
Sk-akl ¢1=Sd ¢+ dol + Etr’ln 8S+0(h%), (4 X1 1+0\ ] | 9
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where gular behavior of the differential equation made the numeri-
2 cal quadratures unstable and forced us to resort to methods
Ul(d)= g k(q)) (10) other than the discretization of th space. Instead of dis-
P2 cretizing the variableb we truncated the Taylor expansion

. - i ) _ ) of U,(¢) at finite order.
By taking the limitAk—0 we find the differential equation  Tg this end we introduce the coupling constants defined at

d O=P, by

Qqk
U(®)=—4 In[k?+ U (D 11 Uy (P
k(D) 20270 [ K(P)] (11 g.(K)= &gn o)_ 15
with the help of the polar coordinates in the momentumTne result is
space.
The evolution equatiorill) is actually the one-loop re- Uk(q)Jrq)o):E 9n(k) H" (16)
summation of the perturbation expansion. This can be seen nont

by expanding in the non-Gaussian pieces of the potential, The g functions are defined as
n

Qak® | o B K gy(K) = K Uy (@) (17)
In(k“+my) nT Rk En 3@” Ik DK P o=y

J
KoUK ®)=—fi50

where the analyticity of the potential ik and ® was as-

i 1)“”/ Up(®)—mz\" (12 sumed. They are obtained by taking the successive deriva-
= | K2+m2 ’ tives of Eq.(11),
d
wherem?(k) =U}(0). Theevolution equation for the effec- Y Qgk P(G G 18
tive vertices at zero momentum, i.e., the leading order of the A 2(2m)° n(Gur-- - G2, 18
gradient expansion is now the explicit sum of the one-loop
graphs defined by the free propaga@r(k)=k?+m2. If ~ where
we ignore thek dependence in the right hand side then G.— On 19
Uo(P) is the usual one-loop effective potential obtained in " k2+g, (19
the bare or the renormalized perturbation expansion for and
)\ n
m2(k)—m2, u;(’(qa)—mﬁ_>78c1>2 (13) Po= g INK?+ UK(@)] (20
is a polynom of orden/2 in the variabless;, j=2,...n
or +2.
N In order to exploit the simplification offered by the sym-
mz(k)—>m§, U’k’((b)—mﬁ_)7R¢>2, (14 metry U, (—®)=U,(P) we setd,=0, which cancels the
odd vertices and yields, for the even ones,

respectively. The evolution generated by the renormalization P,=G,
group provides a partial resummation of the perturbation ex- ’
pansion by piling up the effects of the modes which have )
already been eliminated in thedependence of the running Py=Ge—3Gy, (21)
coupling constantsy(®) in our case. In the usual renor- 3
malization group method, which is based on the renormal- Pe=Gg—15GeG,+30Gy, .. . .

ized perturbation expansion, only the renormalizable cou-
pling constantsd?U,(0)/d®?, d*U,(0)/ad* pile up the
effects of the elimination. In solving the differential equation
(12) the nonrenormalizable coupling constants, i.e.,
higher order derivatives are evolved, as well. Such an exte
sion of the usual scheme is necessary to find the eventu
hidden coupling constants. 4 FL
It is easy to perform the direct numerical integration of 3 =k—g, (k)= —=—k—=Uy(®),
Eq. (11) with an initial conditionU ,(®) given atk=A to- ak d K
wards the infrared direction after sufficient attention is paid d 0,
to the instabilities arising from the fini® andk resolution. = (__ )_ }” _ G, .. C
However, our goal is to arrive at a description of the modi- Nz~ djon=h Z(ZW)EPH(GZ’ Gna)
fication of the scaling laws which requires that the restoring (22)
force for the fluctuations, the argument of the logarithm
function in Eq.(11), be vanishing ak=ky(®)#0. The sin- where

One can verify diagrammatically that the system of equa-
tlons(20) (21) is a compact rewriting of the one-loop contri-
é:)utlon to theB functions of the effective vertices.

It is useful to obtain the evolution equations for the cou-
Q,lng constants whose dimension is removed by the cutoff:
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k=Ak, U=kiU, &=k¥2"1p, g,= kn(lfd/2)+d’én, with the cutoffk<k, with respect to small fluctuations and

(23) the presence of the spinodal instability. Thus new scaling
laws might be found as the precursor of the spinodal phase

and separation. We should bear in mind that within the spinodal-
5 unstable region the saddle point is nontrivigf,# 0, and we
~ On need a different renormalization group equation.
Gy=—=. (24
1+9g,

VI. RENORMALIZED TRAJECTORY

V. SCALING REGIMES We want to follow the renormalized trajectory of the cou-

4 . ) . ~ pling constants
The ¢* model has two scaling regimes in the symmetrical

phase, separated by a crossover at the r’késsgz(ké). For U\ (D)
k>Ke, Oan(k) = oo 1%0=0 (28)

Gﬁ% 1+0 %) , G,=0.[1+0(g,], (25 ind=4,ie., we seek solutions of the set of coupled equa-

tions
and the evolution of the coupling constants is that of a mass- d
less theory with the only scale of the cutoff. Below the cross- Ko In(K)=Bn(G1, - - - Gn+2), (29
over scale we have
5 where
On K\ =~ 0 ~ P
Gn—g— 1+0 % G,==-[1+0(g, )], (26 3 Ok 9 5
2 2 J- Bn——ﬁz(z—ﬂ_)L‘W'n[k +Uk(q))]|q)0:0, (30

and the evolution comes to a halt due to the fadtbrin

right-hand side of Eq.11). This is as expected since a theory

with mass gap has the quadratic mass term as relevant op- U, (D)=Ug(D) (31)

erator and all non-Gaussian coupling constants are irrelevant.

The B functions are always dominated by the highest ordein the stable region

coupling constant which is linear in the coupling constant in o 12 ,

question. In fact, this term contains the lowest power &f 1/ k“>ko(®)=—Uy (a)(P). (32

at high energies. At the IR side this term is the most impor-

tant because the others contain the product of more nolWe seth =1 in the numerical work. We truncated the poten-

Gaussian coupling constants which are supposed to be smdigl
Qualitatively new scaling proprieties can be established if

the B functions are dominated by other terms or receive U (@)= an(k)(Dzn

comparable contributions from different terms. This is cer- K(P) =1 (2n)! '

tainly the case when the restoring force

with the initial condition

N

(33

and solved the resulting equations numerically. Special care
D(k)=k?+g,(k), D(k)=1+0,(k) (27)  is needed in the vicinity of the spinodal line~ky(®),

where thegB functions are the sum of large numbers with
is vanishing. Suppose that a theory specified at the cutoff bdifferent sign. We used third and fourth order Runge-Kutta
U, (®) is in the symmetrical phase, i.g,(0)>0 for the  methods with a dynamically determined value/d. Qua-
choice®,=0. The mass gap decorrelates the field variableslruple precision numbers were used when necessary to make
which are well separated in the space-time, and the centralure that the roundoff errors in tifunctions were less than
limit theorem asserts that) (®) approaches a quadratic 102 times the actual value of the functions.
form andg,(k) is monotonically increasing ds—0. Pertur- The behavior of the restoring force for the fluctuations
bation expansion gives a more detailed pictugglk) is a  D(k) was found to be in qualitative agreement with the per-
monotonically decreasing3,<<0) andD(k)>0 is a mono- turbation expansion; two typical cases are shown in Fig. 4.
tonically increasing function for all values &t In order to  Such an agreement is expected in the UV scaling regime
find the new scaling laws we need either a massless or symwwhere the kinetic energy dominates the action. Our interest
metry broken theory, wher@ (k) reaches zero &=0 or at  will be to see the detailed behavior of the flow in the vicinity
k=Kky#0, respectively. In the former case the Coleman-of the critical curvek>ky(®). The curvesky(P) obtained
Weinberg mechanisni20] generates a different vacuum from the tree-level solution and the numerical integration of
where the theory manages to develop a mass gap, therellye renormalization group equations are shown in Fig. 5. The
preserving the usual IR scaling laws. In the latter case thguantum fluctuations help the disorder and drive the saddle
vanishing of the inverse propagato(k) indicates an insta- points to zero at the weakly unstable regime of the tree-level
bility of the homogeneous vacuum in the effective theoryscaling relations. As a result the curve obtained by solving
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tree singularity ©
renormalized singularity +
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02 |

06
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04 o1k

0.3
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02+

0.1

0 I L
1 -2 -1.5 -1 -0.5 ] 0.5 1 1.5 2

(a) FIG. 5. The line of singularity of the renormalized trajectory on

0o , . . , , . the plane k) for g,(1)=—0.1, 9,(1)=0.2. The diamond and
ok — the cross show the tree level and the renormalization group results.

0.8

The coupling constantg,(k) for n>4 produce large fluc-
tuations, but after a while start to all fall and the quadratic
06 | 1 potential(34) is approached. It is found that(k)—0" and

the higher order coupling constants drop after undergoing
large amplitude oscillations ak—ky. The evolution of

0.7 |

05 | b

oa b | In|g,o(K)| is depicted in Fig. 6. We find a cusp where the sign
of g,o(k) changes with finite altitude due to the finite reso-
03 7 lution of thek values. Note that the negative coefficient of

¢? causes no problem with the stability of the vacuum be-
cause the potentidl, (®) of the effective theory recovers
o1 f . the perturbative form for large values of the field, far away
from the spinodal-unstable region.

03 o4 05 05 07 o8 o8 1 The approach to the Gaussian potential can be made plau-

b) sible by inspectingP,. By assuming that the coupling con-
stants remain finite at the critical line we hagg[ky(0)]

FIG. 4. The evolution of the inverse propagaik) obtained =0, SinceB, diverges otherwise. Onog,=0 is accepted,
by 2N=22. (8 Symmetrical phaseg,(1)=0.1, g4(1)=0.01: (b) the vanishing of the higher order coupling constants is plau-
Symmetry broken phasgy(1)=—0.1,9,(1)=0.01. In both cases
Qon(1)=0, forn>2.

02 B

55 T

the renormalization group equations is inside of the spinodal-s |
unstable region of the tree-level solution, except for the
roundoff effect at smalk. It is remarkable that the radiative
corrections are rather small.

The numerical integration of the renormalization group
equations produces oscillation for the coupling constants#
gn(k) for n>4, with increasing amplitude as we approach
the instability. We found two qualitatively different behav- 4|
iors as far as the vicinity of the unstable line is concerned.

Focusing.When the potential is truncated up téN2 20
theng,(k) stays positive and approaches zero. The values of* |
the higher order coupling constants drop significantly after
several, large-amplitude oscillations and approach zero. Thiszs s s . - s : ' : s
|nd|Cates that the blocklng transformaﬂons has an attractlve 0.3161 0.31611 0.31612 0.31613 0.31614 0.31615 0.31616 0.31617 0.31618 0.316179 0.3162
fixed point,

FIG. 6. The evolution of the coupling constaﬁ;go(ﬁ) for 2N
~ ~ 1. =20, with the initial conditionsg,(1)=—0.1, g,(1)=0.01, and
Ui (0)(®)=— P2 39 7 2 e o

ko(o)( ) 2 (34) 0,n(1)=0.0 forn=3, .. .,10.
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+ - ' ' ' ' Py (34) in the whole unstable region that appears as a “fixed
sl ] region” [19].

DivergenceThis fixed point turned out to be an artifact of
r ] the truncation of the potential, a feature which has already
2L - been noted in other cases, as wWell]. When the truncation

is made beyond 8= 20 then the accumulation of the con-
tributions of the higher order vertices in th@ functions

ol § make the ternGg more important in3,, which in turn helps

g4 to decrease faster witk in the approach of the critical
line. Once the sign ofy, flips, the further decrease is not
s 1 limited by zero andy, quickly approaches-o. It is not then

so surprising that all of the other coupling constants start to
diverge at the same time. The typical flow is depicted in Fig.

i 1 7 for 2N=22; the further increase dfl makes no further
4 . . . . . . qualitative changes in the flow. The coupling constant under-
os 04 0% 08 o7 08 09 ! goes oscillations with increasing amplitude ggk)—0"
(a) and start to diverge ag4(k) flips sign. The loop expansion

naturally ceases to be applicable in the vicinity of the critical
95 — line, and all we can say is that the modes with momentum
st 1 slightly aboveky(®) appear strongly coupled, and our solu-
tion is no longer reliable. Though there is a marked differ-
ence in the behavior of the renormalization group flow for
s . 2N<22 and 2=22, we should not forget that this differ-
ence shows up after a strong coupling regime where the high
order non-Gaussian coupling constants develop extremely
5 1 large values. So it is not clear if the difference between two
cases in the vicinity of the unstable line is indeed so large.
Universality. The increase of the coupling constantkat
sy ] ~Ky(0) indicates the existence of new relevant opefator
ol ] in this scaling regime. One suspects that this operator is hon-
local since the value of the cutoff is finite. Can this operator
modify the usual universality argumef]? According to
0 . - : s . s universality, the introduction of the irrelevant operators at
o2 o o8 o8 o7 o8 *® ! the cutoff modify only the scale parameter of the theory. The
{b) dimensionless quantities, such as dunctions, are sup-
posed to be independent of the value of the irrelevant cou-
Toss — pling constants at the cutoff. To verify this scenario we com-
1 puted

-20 |

35 F

j IBa(k) -

wl ] J96(1)

numerically. The result, plotted in Fig. 8, shows clearly the
coexistence of two different scaling regimes, the UV one
where this quantity is suppressed and the precursor of the
spinodal instability where we find an increasing value.
(c) The comparison of Figs. 7 and 8 contains an important
o _ lesson confirmed by Fig. 9 where E@5) is plotted as the
FIG. 7. The evolution of(a) Infgs(K)|. (b) Infgs()|, and (c)  function of the appropriate coupling constant. Namely, the
Infg,(k)| at 2N=22, with the initial conditionsg,(1)=-0.1, violation of universality, the increase of E(35) already
94(1)=0.01, andg,,(1)=0.0 forn=3, .. .,11. The coupling con- takes place when the coupling constants are weak. It is rea-
stants oscillate fon>4 with increasing amplitude and changing sonable to assume the ansatz

sign so Ing,(K)| is plotted.

0.3 0.4 05 0.6 o7 0.8 0.9 1

Bak) _ FZ(P—“ROm)

- k%(0), 36
%(0) ) 0(0) (36)

sible. The only finite parameteg,[ky(0)], is fixed by the d96(1)
condition D[ky(0)]=0. The existence of a single fixed _
point, that all finite set of coupling constants runs into Eq.where the ternkS(O) that is proportional to\ ~? represents
(34), can be called focusing. The potential turns out to be Eqgthe suppression of the UV scaling laws, and the amplification
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 1 L 1 L L 1 1 L L
1 0.8 0.6 0.4 0.2 o 0.2 0.4 0.8 08 1
(b)
(b)
160 T T T T y T
betayy, —— 12 T T T
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100 | B

80 A

40 1

20 | E 4t N
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8} 4
20 L - L . . .
0.3 0.4 0.5 06 0.7 0.8 0.8 1 ) ) X )
© 0 02 04 0.6 08 1
C
. o~ ) (c)
FIG. 8. The evolution of I[#8,(K)/dge(1)| with 2N=22. (a): n o o
=4, (b): n=6, (C): n=22. FIG. 9. INdB,(K)/dge(1)| plotted againsg, (k) for (a): n=4, (b):

n=6, (c): n=22, 0.31Kk<1. As the scale parametkrdecreases
effect of the instability is manifest in the behavior B{x)  we move towards the left or right fdg) or (c), respectively. The
which is supposed to diverge after large oscillationsxas derivative of theB function shows the onset of the low-energy,
—0. For any finite value of the cutoff we can find a value of nonuniversal scaling already when the coupling constants are still
k sufficiently close to the instability where E6) is unity,  weak enough to rely on the loop expansion.
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A%mow(w),

J
3 m—Na()=BR(ND), (40)
Ko(0) 37 I

involving the renormalizegB functions.
and the cutoff effects of the nonrenormalizable coupling con- So long as the perturbation expansion is applicable we
stant become visible because the suppression of the UV scalan establish a one-to-one mapping between these schemes,
ing regime is compensated for by the amplification of the
instability region. In(K)=Np(k)+- -+, (41)

If the environment of the system, represented by the in- . . .
sertion of the constraint y P y where the terms omitted are higher orders in the supposedly

small coupling constants or af@(k/A). In this manner the
qualitative features of the renormalization group flow agree
5((1)_ EJ d4x¢(x)) (38) in the two schemes, i.e., the running coupling constant be-
\ ’ comes the bare one when the scale reaches the cutoff. How
can we reconcile the importance of certain nonrenormaliz-

whereV is the four volume into the path integration is cho- @P!€ coupling constants at low energy with the evolution of
sen in such a manner that the spinodal instability occurs, i.eth€ running coupling constanis,(x), which are introduced
@ is within the spinodal unstable region, then the amplifica-to keep_track of the renormalizable coupling constants qnly?
tion makes the effective coupling strength nonuniversal |he independence of the theory from the observational
around the instability. In other words, the coupling constant$¢a/€
of the effective theory for the system subject to this con- d
straint can pick up the values of certain nonrenormalizable ,ud—FB({)\B},A):o (42)
coupling constants at high energies, and allow us to investi- I

ate the nonuniversal interactions at high energy if the cutoff . :
cg)f the effective theory is brought closeg@ ko(dg)./ By this Is reached by the readjustment of the coupling constants

method one could in principle increase the energy regime wé”ﬁ’“)' ,;Ar?cordlng tof ﬂ:f Ttéllt'pl'cat've : renprma:iza}tmn
can access experimentally, and may get closer to the “qsp>CNeMe the number of adjustable parameters isyust . In

important scale, the onset of the asymptotic UV scaling ofparticular, one chooses +1 independent observablgs™,

the TOE. This mechanism can be called a “renormalizatiof™= 1+ - - - e+ 1,

group microscope” since the amplification offered by the A

instabilities is similar to the usual microscope, except that it 1“{3"‘>({)\B},A):z/m<{)\(ﬂ)},_)r§m>({)\(m},ﬂ),
is achieved by the renormalization group flow in the space of 1

the coupling constants.

According to the numerical results the strength of the sin
gularity and the value of Eq35) approach zero at the criti-
cal line, as® is increased towards the edge of the unstable d
region k=ko(®). This is the result of the factdk® in the OZMd—
renormalization group equations, the decreasing entropy of ”
the modes with weak restoring force las>0.

Renormalized perturbation expansidn.statistical phys- =
ics one usually follows the evolution of the bare coupling

(43

‘and imposes

“m é (m)
z <{)\(M)}1M)FR ({)\(M)}vﬂ)} (44)

dJ J
u@wﬁf)({g})a—gn+/my<R><{g}>)r<Rm>

constantgy, (k) as functions of the cutoff X AN )} ). (45)
9 The renormalized renormalization group functioff® and
kﬁgn(k)zﬁf)({g}), (39  B®P(A}) can be found by inverting
— d / A (m)
where the explicit dependence &ndrops from the bareg O—M@ Zm {7\(,“)}:; FRVEN ()b )| (46)

functions in the UV region. We studied the evolution of
these coupling constants in our work, too.

In particle physics one introduces the renormalized run- =
ning coupling constanta ,(«), n=1, ... n,, wheren, is
the number of renormalizable parameters in the theory. The XN ()}, i) (47)
irrelevant coupling constants are neglected because the cut-
off is sent sufficiently far from the observational energy ~ for the ¥(® and the® functions. The perturbative renor-
The running coupling constants are defined with the help ofmalization assures that these functions are well defined, i.e.,
the scattering amplitudes or Green functions and their scalere independent of the choice of the observabl&s
dependence is described by the renormalization group equa- Observe that there are two steps in this procedure which
tions prevent the detection of a hidden coupling constant. One is

d dJ
u@wﬁ)({g})ﬂ—gn+/my<R><{g}>)F&m>
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that we have already committed ourselves to use as margoncerning the whereabouts of nonuniversal phenomena.

coupling constants to compensate the modificatioppfis  The investigation of the renormalization group equation with

there are renormalizable operators in the system. The secomntrivial condensate within the spinodal phase separation

is that the cutoff is formally removed from the renormalized[19], and the search for the effects of the instability in the

perturbation expansion. The hidden coupling constant repreracuum with Goldstone modes, are in progress.

sents a coupling between the ultraviolet and the infrared

modes that can be seen by keeping the UV and IR cutoffs ACKNOWLEDGMENTS

finite. When the UV cutoff is removed, the contributions

O(u/A) are ignored. The renormalization group used in this We thank Daniel Boyanowski, Pino Falci, Rosario Fazio,

work resums these contributions which yield the new non-Peter Hasenfratz, David Jasnow, and Dario Zapfiaise-

trivial scaling laws. Thus the observables obtained by thdul discussions.

improved renormalized perturbation expansion using the

renormalization group fon, coupling constants will, by con- APPENDIX: WEGNER-HOUGHTON EQUATIONS

struction, never show any indication of the eventual, hidden o o o

parameters. What we have found is that our partial resum- 1he heuristic derivation of the renormalization group

mation of the perturbation expansion, which keeps track ofduation(1l) indicates that the higher loop contributions to

nonrenormalizable operators as well, indicates the presendB€ €quation are suppressed. This is not obvious from the

of hidden coupling constants and suggests that the lowderivation presented above because by placing the system

energy dynamics is parametrized by more tmarcoupling into a finite _quantlzatlon box the spegtrum of the momentum

constants. Consequently more thant 1 observables must P€comes discrete and we may eliminate the modes one-by-

be used in Eq(47) to obtain the evolution of the parameters ON€: What is the small parameter in this case?

that can compensate the change of the observational scale. 1h€ expansion of the action around the constant back-
In order to find the number of real parameters, we need g.roundfb_ in powers of the Fourier components of fluctua-

controllable method to study the low-energy scaling behaviions ¢ Is

ior. Because of the limitation of the gradient expansion based 25,

on local operators we cannot at the present stage clarify this S+ d)l]zsk[q)“% ¢Ff)_

point. (7¢p|¢
1 S,
IS B | (A
VIl. SUMMARY 22 Po%agg G0

The renormalization group is traditionally used to follow
the scale behavior in the vicinity of a fixed point of the We have
blocking transformation. We showed in the case of #fe

model that, after paying the price of following the mixing of ﬁ| —UW(D)LIS(p)
a large number of operators during the blocking, the investi- by ¢k P,
gation of the manner by which the different scaling regimes
give rise to each other is feasible. S,
A new finite energy scaling regime of th&* model with WMF[U&Z)(@H pZILY8(p1+pa),
1 2

spontaneously broken symmetry is generated by the spinodal
instability. It was found, by the numerical integration of the

Wegner-Houghton equation in the local-potential approxima- 9"Sx = UM(D)LIS(py+ - - - +py)
tion, that the spinodal instability generates new relevant op- Ipp, - dpp 1P K P1 P2),
erators, and may undo the suppression of the nonrenormal- (A2)

izable operators at the UV scaling regime. A

nonrenormalizable operator gives rise to a hidden couplingvhere the subscripts stand for the derivatives with respect to
constant if the operator in question is relevant in the low-®. Since k—Ak<|p|<k, the first derivative of the action
energy scaling regime, and the initial, high-energy value ofjoes not contribute,

its coupling constant influences the low-energy physics. This

raises the possibility of the eventual use of this instability as Ld

a renormalization group microscope to detect the nonuniverS{® + ¢']=S{P]+ 72 by’ [UP (D) +p?]+--- .

sal physics at high energy by going sufficiently close to the P (A3)
unstable region.

The instability studied in this work appears in the Euclid- ¢ the minimum value ofAk is 27/L . wherel is the length

ean effective theory at finite-momentum scales. It is conjeCy the quantization box, the number of modes to eliminate in
tured that the simplest manner to observe the effects of thg, . shellk— Ak<|p| <k is

instability is in the framework of the dynamical renormaliza-
tion group, applied for large amplitude fluctuations. The
saddle-point structure of the effective theory, for the real f

time dependence, is needed to make a more definite proposal C (2@/lL)e 27

Qgk?~ Ak Q4 k
2m\ 2

d-1
—) LIAK, (A4)
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where() 4 is the solid angle in dimensioth. The integration  which is proportional to the ratio of the number of degrees of
over degrees of freedom’ will be done after the expansion freedom eliminated in a blocking to those left in the effective
of the exponential around the free action. The only termgheory. We must keep in mind that first we have to take the
contributing in the integration are those for which the Fourierthermodynamical limitL —c, and afterAk—0, to make

components ofs’ are combined in pairg’ ¢’ _, sure that the higher loop contributions are small. In principle
PP Ak has a lower bound 2/L but we can imagine that we

d make an interpolation on the renormalized trajectory so that

exp- Z(kaAk(q))_Uk(q))) the value ofAk we use to derive the renormalization group
1 equation is as small as we wish. In this manA&randL are
:f D[ ¢’ Jexp— _2 [K?+ Uf)(q))]%(pgp independent and the small parameteAlgM. If we want to
2h“p keep the lower bound foAk nonvanishing then we must
U@ (@) assume that the derivatives of the potential are small enough
1- —dz Gt PqPl gt | (A5)  according to Eq(A7) and therefore the existence of another
2L bq small parameters hidden in the potential.

By assuming that EqA7) is valid and taking the loga-
rithm of both sides of Eq(A6) we obtain

U(P) = Uy ae(P)

where  D[¢']=1ly_sx<|p|<kd Re(@p)d Im(4)).  The
Gaussian integrations lead to
o~ (LUM[Uk 4k @)= Uy(®)]

C(k) Akmdkd_l| [K2+URP(D)]
= —Ak————In
2(27r)9 K

i\ LB U(®)
_ . S _1\ 2
K2+ Uf(Z)(q)) Ld [k2+ UE(Z)(Q:))]Z N (Ak)z/ ﬁQdkd 1) U(k4)(q)) . 8
N, 2 | @2m! | [@+Uu@(@)y
XNg| 5 +1[+-- (AB)  which finally yields the Wegner-Houghton equation
d-1 2 (2)
We now introduce the small variable - hQqk | K"+ U ()
AU (P) anl— 5 . (A9)
, 2(2m) k2+U(?(0)
1 U@ (V" o . . .
f TG > AT (A7) where the denominator in the logarithm function was in-
[k*+ U7 ()]° (LY serted to cancel the potential @t=0.
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