
PHYSICAL REVIEW D, VOLUME 58, 016002
Global renormalization group

Jean Alexandre*
Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l’Universite´ 67087 Strasbourg, Cedex, France

Vincenzo Branchina†

Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l’Universite´ 67087 Strasbourg, Cedex, France

Janos Polonyi‡

Laboratory of Theoretical Physics, Louis Pasteur University, 3 rue de l’Universite´ 67087 Strasbourg, Cedex, France
and Department of Atomic Physics, L. Eo¨tvös University, Puskin u. 5-7 1088 Budapest, Hungary

~Received 18 December 1997; published 20 May 1998!

The motivation and the challenge in applying the renormalization group for systems with several scaling
regimes is briefly outlined. The four-dimensionalf4 model serves as an example where a nontrivial low-
energy scaling regime is identified in the vicinity of the spinodal instability region. It is pointed out that the
effective theory defined in the vicinity of the spinodal instability offers an amplification mechanism, a precur-
sor of the condensation, that can be used to explore nonuniversal forces at high energies.
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I. INTRODUCTION

The idea of the renormalization group@1,2# is to view the
different interactions in a hierarchical manner, by buildi
up the more complex systems from their ‘‘elementary’’ co
stituents. The renormalization group should describe
manner the elementary particles rearrange themselve
forming the composite particles captured by the detec
with a given resolution, the complex structure of ordina
matter and finally the transition from the microscopic to t
macroscopic physics. Because of the obvious technical d
culties of such an ambitious project the realization of t
idea is severely restricted. What is usually achieved by
help of different analytical approximation methods is to an
lyze the dependence on the observational scale in a sc
regime where the evolution equations are linearizable o
least perturbative. The result is the renormalized traject
the scale dependence of the coupling constants in a reg
that is dominated by a given interaction. One may call thi
local analysis of the renormalization group flow, perform
in the individual scaling regimes that usually but not nec
sarily agree with the vicinities of the fixed points. A numb
of important results have been derived in this manner.

The real challenge, we believe, is to describe the trans
tation of one set of scaling laws into another one as the s
of the observation is changed. This requires the construc
of the renormalized trajectory connecting different scal
regimes. Such a manifestly nonperturbative phenome
will be studied in this paper in the case of a simple mo
with two scaling regimes, the single componentf4 scalar
field theory in the spontaneously broken phase. This mo
supports an asymptotic UV scaling regime well above
particle mass and an intermediate-energy scaling regim
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the onset of the spinodal instability. Our goal is to conn
the two scaling regimes and the global reconstruction of
renormalized trajectory. A preliminary account of our resu
has already been given in Ref.@3#.

The possibility of the onset of a new scaling law has be
raised by the introduction of the ‘‘dangerously irrelevant p
rameters’’@4#. The usual classification of the operators in
scaling regime with respect their response to the chang
the scale is based on the perturbation expansion and ass
the regular behavior of the system in the weak coupling
gime. If the evolution equations develop singular behavior
the weak coupling limit then it may happen that a perturb
tively irrelevant coupling constant experiences new, nonp
turbative scale dependence. This mechanism can be id
fied in different systems with condensates@5–7#, where the
singular dependence of the saddle points in the coupling c
stants provides the mechanism to turn a perturbatively ir
evant coupling constant into an important one. It is conj
tured in this paper that the condensation might serve a
quite general mechanism to generate new, important c
pling constants and the dynamical renormalization group
addresses the question of the scale dependence in non
librium, time-dependent phenomena is well suited to
study of such a question.

We rely in this work on the renormalization group rea
ized by a sharp cutoff in momentum space, in the framew
of the gradient expansion for the action. Such a realization
the cutoff renders the systematic gradient expansion q
tionable, so we restrict ourself to the lowest order, loc
potential approximation@8,9#. But it should be mentioned
that the usual remedies of the problem, the use of a smo
cutoff or periodic Brillouin zone are not compatible with th
loop expansion for systems with a condensate at fin
momentum scales. In fact, though the loop expansion p
duces the action of the effective theory as a power serie
\, the saddle point, the minimum itself is not necessarily
polynom of\. In order to preserve\ as a small parameter
all of the stable modes have to be eliminated in the lo
© 1998 The American Physical Society02-1
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expansion before we compute the contributions of the
stable modes. Such a successive elimination of the deg
of freedom introduces automatically the strategy of
renormalization group with sharp cutoff, and renders
smooth cutoff regularization inconsistent with the loop e
pansion.

The organization of the paper is the following. The pre
ence of several scaling regimes is pointed out for the the
of everything and for the BCS ground state in Sec. II. T
role the Bose condensation plays in generating new sca
laws is elucidated in Sec. III. The infinitesimal, renormaliz
tion group equation is derived for thef4 model in Sec. III.
The possibility of a new scaling regime in the vicinity of th
spinodal instability is pointed out in Sec. IV. The numeric
results for the solution of the renormalization group equat
are presented in Sec. V, in the case of the four-dimensio
f4 model. Finally, Sec. VI contains the summary.

II. HIDDEN COUPLING CONSTANT

The most fundamental and at the same time the m
complex appearance of the multiple scaling laws can
found in the renormalized trajectory of the theory of eve
thing ~TOE!. The simplest procedure to describe the man
the TOE gives rise a chain of lower-energy effective theor
is the so-called matching. This method where we match
theories at their crossover scale can not give an accoun
the change of the scaling laws in a dynamical manner,
cause different sets of coupling constants are used at the
sides of the crossover. Instead, one should follow the orig
strategy of the Wilson-Kadanoff blocking, and put all co
pling constants in the lagrangian from the very beginn
that will later be generated by the blocking. Thus the co
pling constant space of the TOE should contain not only
renormalizable parameters but any coupling constant we
need in physics. For example the quark-gluon vertex o
coupling constant of the Hubbard model of the conden
matter physics have to be considered as complicated c
posite operators in terms of the fundamental particles of
TOE.

The renormalized trajectory, depicted schematically
Fig. 1, approaches several fixed points in its way towards
infrared limit. To understand this better consider the incre
of the observational energy in the regime 1–60 GeV. T
evolution of the coupling constants receive their domin
contributions from the strong interactions, from the radiat
corrections of QCD, and the renormalized trajectory is in
scaling regime of QCD. Had our world contained the stro
interactions only, the renormalized trajectory would ha
converged to the fixed point of QCD with increasing ener
But the weak interactions become important as we reach
characteristic energy of the electroweak theory, and
renormalized trajectory turns away from the QCD fix
point. This happens because the running coupling const
of the nonrenormalizable quark vertices generated by the
change of the intermediate vector bosons increase with
energy. They saturate at the crossover between the st
and the electroweak interactions where the guidance of
evolution is taken over by the exchange of theW and theZ
01600
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bosons. In a similar manner, the fixed points of all the oth
renormalizable, effective theories are approached by
renormalized trajectory, but the higher-energy processes
ways prevent convergence as the energy is increased, ex
at the last fixed point, at the TOE. In the regime of solid st
physics, we can influence the evolution of the running co
pling constants by the environmental variables, such as
temperature or chemical potentials@10#. In this manner the
renormalized trajectory may bifurcate and follow differe
path in different environments and finally arrive in differe
thermodynamical phases at the infrared fixed point.

Facing such a complex system, the usual argument a
universality appears as an oversimplification. In fact, at e
scaling regime we classify the operator algebra of the mo
in a local manner according to the appropriate scaling la
It may happen that an operator possesses different local
sifications, and it is found relevant at one scaling regimes
becomes irrelevant at another one. The importance or un
portance of such a coupling constant must be decided
scaling-regime-independent, global manner.

A simpler example where the global behavior is importa
can be found in QED containing the electron and a he
pointlike particle with charge1Z playing the role of a
nucleus. Suppose that certain environment variables, suc
the temperature and the baryon chemical potential are ch
in such a manner that the vacuum is a solid state lattice in
superconducting phase. We can distinguish two asympt
scaling regimes in this model:

Asymptotic UV scaling.At energies above the nucleu
mass the evolution equation is given in terms of the minim
coupling vertices and the vacuum can be considered pe
bative. As indicated above we do not require the existenc
a fixed point for the identification of the asymptotic scalin
laws. In this manner we can ignore the possible proble
arising from the nonasymptotically free character of QE
and consider the scaling laws only up to the UV Land
pole. The relevant and the marginal operators are the u
renormalizable ones, and are given in the framework of
perturbation expansion by a power-counting argument. T

FIG. 1. The renormalized trajectory of the theory of everythi
~TOE!. It passes by the fixed points of the grand unified mod
~GUT!, the unified electroweak theory~EW!, the strong interactions
~QCD!, the electromagnetic interactions~QED!, certain fixed points
of the solid state and condensed matter physics~CM!, and finally
approaches the ultimate IR fixed point. The trajectory may be
fluenced by the environment and reach different thermodynam
phases in the IR regime.
2-2
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GLOBAL RENORMALIZATION GROUP PHYSICAL REVIEW D58 016002
size of the scaling regime is limited by the UV cutoff or th
Landau pole.

Asymptotic IR scaling.For energies below the scale of e
the collective phenomena of the solid state lattice domin
the scaling laws. The inhomogeneity of the vacuum is a
element. No systematic classification of the scaling opera
is known, but because of the massless acoustic phonons
existence of nontrivial relevant or marginal operators can
be excluded. The lower edge of the scaling regime is limi
by the loss of quantum coherence.

The asymptotic scaling regimes can be extended by
bedding the model into a higher-energy, more fundamen
renormalizable theory and by approaching absolute-z
temperature. These asymptotic scaling laws are impor

TABLE I. The four classes of the coupling constants in QED

UV IR Fig. 2 Example

relevant relevant ~a! m̃eLc̄ece

relevant irrelevant ~b! m̃mLc̄mcm

irrelevant relevant ~c! G̃L22(c̄ece)
2

irrelevant irrelevant ~d! c̃L25(c̄ece)
3
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since their relevant coupling constants may influence
physics in a strong manner. The four different possibilit
with respect to these scaling laws are shown in Table I an
Fig. 2 for coupling constants whose dimension is remov
by the cutoffL. The electron mass is a relevant parameter
the QED Lagrangian and remains relevant for the solid s
lattice, too. The muon mass is relevant in the UV scal
regime but the muon-induced processes are overwhelme
the electron-induced ones at low energy andmm becomes
irrelevant in the IR. The four-fermion interaction is, at th
same time, nonrenormalizable and represents the driv
force to the BCS superconducting phase; it is marginal in
IR regime @13,14#. Recently other indications of the devia
tion from the Fermi-liquid behavior resulting from releva
or marginal operators of the IR regime have been found
high-Tc cuprates@16#, as well. Finally the six-fermion or any
higher order vertex is irrelevant in the IR regime because
effect is reduced to the multiple application of the fou
fermion vertex. The four-fermion interaction plays a spec
role: On the one hand, it is usually left out from the micr
scopic Lagrangian because it is suppressed in the UV sca
regime. On the other hand, it has a key role at the IR reg
in controlling the attraction between the electrons.

The qualitative behavior shown in Fig. 2~c! raises the fol-
lowing possibility. The suppression of the irrelevant co
FIG. 2. The qualitative dependence of the running coupling constant of Table I as a function of the cutoffa52p/L. The asymptotic UV
and IR scaling regimes are shown. The coupling constant is supposed to be constant in between for simplicity.
2-3
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ALEXANDRE, BRANCHINA, AND POLONYI PHYSICAL REVIEW D 58 016002
pling constants in the UV scaling regime is used to expl
the universal behavior of the models. It is certainly correc
expect that the renormalized trajectories whose initial con
tions in the ultraviolet differ only in the values of the irre
evant coupling constants approach each other as we m
towards the infrared direction. But if there is another scal
regime where an operator that was irrelevant in the UV s
ing regime turns out to be relevant, then the resulting am
fication process may undo the suppression at the UV. M
one find a ‘‘hidden coupling constant’’ in this manner th
has to be put into the microscopic action of the UV regim
but influences the dynamics only in the IR? The answe
this question is nontrivial even if we can identify a nonren
malizable operator that is relevant in the low-energy sca
regime. In fact, it may happen that the increasing value
this coupling constant during the lowering of the obser
tional energy happens to be independent of its initial valu
the UV cutoff. This possibility is shown schematically
Fig. 3~a!. The UV scaling laws suppress the dependence
the initial values of the nonrenormalizable coupling co
stants. If the evolution equations have no instability or ot
nonanalytic features at low energies, then this suppres
sensitivity and universality is observed down to zero ener

FIG. 3. Two possible behaviors of a nonrenormalizable coup
constant what is relevant at the low-energy scaling regime, cas~c!
in Table I. Each plot shows two curves what belong to initial co
ditions at the cutoff what differ in the value of the irrelevant co
pling constant only.
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In Fig. 3~b! the value of the coupling constant at the cuto
becomes numerically negligible at intermediate energies
cording to universality. However the low-energy scalin
laws amplify the numerically small nonuniversal value. D
pending on the critical exponents and the size of the sca
regimes the amplification of the sensitivity at the IR si
may be comparable or even stronger than the suppressio
the UV regime. This is a hidden coupling constant becaus
is undetectable at finite energies nevertheless its small v
influences the IR physics in a nonuniversal manner. By re
ranging a longer IR evolution we can in principle uncov
the presence of nonuniversal interactions at higher energ

It was pointed out that a relevant operator of the IR sc
ing regime may change the ground state either by genera
bound states that condense or by driving the system to st
couplings until the growth of the coupling constants is c
off by other quantum effects@14#. Within the framework of
the saddle-point expansion these two possibilities coinc
and the issue of the hidden coupling constant is that
growing coupling constants might be slowed down in a m
ner that contains information about the nonuniversal inter
tions at the microscopic scale. In order to clarify this que
tion, namely, the sensitivity of the IR end of th
renormalized trajectory on the UV initial conditions, w
must obtain and solve the renormalization group equati
for sufficiently many coupling constants, globally.

The coexistence of several scaling regimes have alre
been studied in condensed matter physics, where compe
interactions are represented by the possibility of approach
different IR fixed points@15#. The difference between suc
systems and the TOE is that only one of the possible sca
laws are realized in the former case. On the contrary,
scaling regimes occur at different energy scales and the
tem visits each of them sequentially in the TOE.

The renormalized trajectory of TOE sketched in Fig.
reflects the usual conflict between the ‘‘fundamental’’ a
‘‘applied’’ physics. The fundamental, microscopic param
eters should be determined with the help of the renormal
tion conditions imposed at the energy scalem fund, that is,
within the scaling regime of the fundamental interaction
and is far from the complexity entering at lower energies.
long as the TOE is renormalizable or finite the perturbat
expansion can be used to show that the resulting renorm
ized trajectory is independent of the choice ofm fund, and can
in a natural manner be characterized by the coupling c
stants observed at high energies. In this sense the funda
tal laws of physics are determined by the high-energy exp
ments and the description of the lower-energy, comp
systems requires ‘‘only’’ the capacity to apply the fund
mental laws in a complicated situation.

But the fallacy of this view is clear: In the absence
hidden coupling constants where the low-energy effect
parameters are determined in an autonomous manner,
is no need for the precise measurement of the high-ene
parameters in order to reproduce the low-energy physics
fact, according to the renormalized perturbation expans
and universality, the bare coupling constants are charac
ized in a unique manner by the renormalized ones define
low energies,mcompl!mfund. When hidden coupling con

g

-
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GLOBAL RENORMALIZATION GROUP PHYSICAL REVIEW D58 016002
stants are present then the precision of the measureme
the high-energy parameters required to predict a low-ene
phenomenon with a reasonable accuracy might render
global determination of the renormalized trajectory illuso
In other words, the specification of the initial conditions wi
a reasonable accuracy might be unimportant for the non
ear evolution, similarly to the nonintegrable chaotic syste
The challenge lies in comprehending the matching of
different scaling islands of Fig. 1.

III. RENORMALIZATION AND CONDENSATION

In the perturbatively implemented renormalization gro
we have to assume that the renormalized trajectory does
leave the vicinity of the Gaussian fixed point. If there is
small parameter assuring this, as in 42e dimensions, then
the set of the relevant or marginal operators is the sam
each scaling regime, and the global behavior of the ren
malized trajectory contains nothing new compared to the
cal analysis performed at the individual scaling regimes
the renormalized trajectory explores the nonperturbative
gions then the global analysis is very interesting, but we l
the general, perturbative characterization of the flow. A w
dow of opportunity for the analytical studies opens if t
nonperturbative features of the evolution can be reprodu
by the only known, systematic, analytical, nonperturbat
method, the semiclassical expansion.

A nontrivial saddle point corresponds to a coherent s
formed by the condensate of bosons. The importance of
condensate depends on the multiplicity of the coher
state~s!. We shall demonstrate this from three different poin
of view.

Euclidean quantum field theory for the vacuum.In the
semiclassical solution to the vacuum with ferromagnetic c
densate only the lowest lying excitation level with vanishi
momentum is populated macroscopically.1 When the system
is placed in a finite geometry then the lowest lying st
might become inhomogeneous; nevertheless the part
still condense in a single mode. The impact of the conden
is stronger if the particles form coherent states in a la
number of modes. This is the case for solitons or instanto
the localized saddle points with high entropy. Another, le
studied example is given by theories with higher-ord
derivative-terms in the action@7#. When their coupling con-
stant is properly chosen then particles with nonvanish
momentum may condense and generate an inhomogen
vacuum. Since the density of modes with momentump is
proportional topd21 in d dimensions there are more partic
modes participating in the condensation at finitep than at
p50.

Real time dynamics.The condensation is triggered by th
wrong sign of the forces trying to restore the equilibriu
position. There are always several unstable modes w
compete in the condensation when the system starts with

1The degeneracy of the vacuum with spontaneously broken s
metries does not change the picture since there is only one vac
in each ‘‘world’’ containing the states connected by local operato
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naive vacuum@11#. Depending on the initial conditions dif
ferent slower collective modes might be formed that distr
ute the energy and create time-dependent condensates in
eral other particle modes. After sufficiently long times, t
energy of the excited modes get diffused by the fricti
terms over infinitely many modes, without creating mac
scopic population, and only the particles in the lowest lyi
mode remain condensed. The large-amplitude, transient
citations above the true vacuum are described by a la
number of modes with condensate. This is the realm
nucleation and the spinodal decomposition@12#.

The former refers to the metastability of the vacuu
which decays by large amplitude fluctuations. The simpl
is to assume that this takes place by the spontaneous fo
tion of spherical droplets of the stable vacuum whose f
energy is F54pRs24pR3DF/3, where s, DF, and R
stand for the surface tension, the free energy density dif
ence between the metastable and the stable vacuum, an
droplet radius, respectively. These droplets extend over
whole volume if they are sufficiently large,R.Rcr5s/DF.
The spinodal decomposition is observed when there is
more finite threshold for the instability and the infinitesim
fluctuations are enough to trigger the decay of the homo
neous vacuum. This can be recognized in the framework
the static description by the appearance of the negative
genvalues for the Euclidean propagator. The fast increas
the corresponding elementary excitation amplitudes dri
an inhomogeneous separation of two stable values of
local dynamical variable.

Returning to the long-time, low-energy excitations, th
experience a single condensed mode; and the static non
turbative condensate is simpler to describe.

Saddle points of the renormalization group.When the
renormalization group is implemented then we eliminate
modes in descending order in the energy, and we may
counter nontrivial saddle points in the way. If we are inte
ested in the effective theory for the low-energy fluctuatio
around the true vacuum in systems without a localized sad
point, then the condensate occurs only at the last mode, a
infrared fixed point. When the effective theory is sought f
large amplitude excitations, then the elimination of t
modes in the presence of such a background field may
duce saddle points for the blocking procedure earlier, at
nite scales. The nonperturbative contribution of these sad
points may modify the direction of the renormalization gro
flow in a substantial manner@17#. As an example of this
mechanism, the emergence of an irrelevant coupling cons
in the dynamics of domain walls has already been noted
the two-dimensional nonlinearO(2) model@18#.

In short, the saddle points of the blocking procedure oc
with higher multiplicity at finite energies, and may modif
the scaling laws in a more substantial manner than the sa
points of the static system in the true vacuum. Such effe
could be seen by the proper implementation of the dynam
renormalization group for large amplitude fluctuations. It
worthwhile noting that the spinodal instability region sta
just at the vacuum in the presence of the Goldstone mo
and the saddle point contributions might influence the sm
quantum fluctuations around the true vacuum, as well@19#.
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IV. RENORMALIZATION GROUP EQUATION

The study of the different scaling regimes requires
handling of a large number of coupling constants which c
be achieved by converting the evolution equations referr
to the individual coupling constants into a differential equ
tion for the generating function for the coupling constan
i.e., the blocked action. We shall work with the fou
dimensionalf4 theory in Euclidean space-time. The cutoffk
in the momentum space will be changed infinitesimallyk
→k2Dk, which generates a new small parameterDk/M ,
whereM is a quantity of dimension of mass made up by t
dimensional parameters of the model and the cutoffk. This
small parameter will be used to show that the renormal
tion group equation derived in the one-loop approximat
becomes exact asDk/M→0, because the higher loop contr
butions are suppressed byDk/M .

There are two limitations to bear in mind in turning th
scheme into a feasible algorithm. The first is that ev
thought there is a new small parameter to suppress the hi
loop contributions to the evolution equations the argum
presupposes the applicability of the loop expansion. The
fore the use of the resulting ‘‘exact’’ equation is questiona
in the strong coupling region, beyond the validity of the lo
expansion. The other limitation comes from the parametr
tion of the effective-action functionalSk@f# with the cutoff
k. It is usually done by relying on the gradient expansion

Sk@f#5E ddxFZk@f~x!#
1

2
@]mf~x!#21Uk@f~x!#G

1O~]4!. ~1!

The assumption that terms with higher order derivatives
less important is equivalent with the belief that the action
a local functional. This is reasonable at high energies
cause all of the relevant operators of the short distance s
ing laws should be local. But there is no reason to exclu
operators which are nonlocal at the scale of the cutoff
low-energy, scaling regimes, and these terms of the ac
may create nonlocal effects. By holding to the assumption
locality we shall set

Zk~f!51 ~2!

in this work.
We eliminate the modes with momentumk2Dk,p,k

and find the blocked action

e2~1/\!Sk2Dk[f]5E D@f8#e2~1/\!Sk[f1f8] . ~3!

The Fourier transforms of the variablef(p) andf8(p) are
nonvanishing forp,k2Dk andk2Dk,p,k, respectively.
The functional integration is carried out in the framework
the loop expansion

Sk2Dk@f#5Sk@f1f08#1
\

2
tr8ln d2S1O~\2!, ~4!
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where tr8 denotes the summation within the shell@k
2Dk,k#. The positive semidefinite operator

d2S~x,y!5
d2Sk@f1f8#

df8~x!df8~y! uf8~x!5f
08~x! ~5!

and the saddle pointf08 ,

dSk@f1f8#

df8~x! uf8~x!5f
08~x!50, ~6!

are computed by keeping the background fieldf(x) fixed.
Equation~4! reduces to the Wegner-Houghton equation@8#
when the saddle point is trivial,f0850.

Observe that the loop integration is made in a region
volumeVdkd21Dk where

Vd5
2pd/2

G~d/2!
. ~7!

The contributionsO(\n) are given in terms ofn-fold loop
integrals. So long as the integrands are bounded in the
main of integration the contributionsO(\n) contain the mul-
tiplicative factor (Dk/M )n. The integrands are the produc
the propagator, the inverse of Eq.~5! evaluated within the
subspacek2Dk,p,k. If the restoring force acting on the
fluctuations is nonvanishing then the propagator is boun
and the higher loop contributions drop from Eq.~4! when
Dk/M→0. The formal argument showing the suppression
the higher loop contribution to the renormalization gro
equation is presented in the Appendix.

The only quantity needed in the local potential appro
mation, Eqs.~1!,~2!, is the potentialUk(F) so it is natural to
choose for its determination a homogeneous backgro
field f(x)5F for which the kinetic energy is vanishing. A
additional bonus of this choice is that the saddle point
nontrivial, f085” 0, just in the spinodal unstable phase. O
side of the spinodal unstable phase one can setf0850 which
yields

exp2Sk2Dk@F#5exp2LdUk2Dk~F!

5exp2Sk@F1f08#2
\

2
tr8lnd2S1O~\2!

5exp2LdUk~F!2
\

2
LdE8 ddp

~2p!d

3 ln@p21Uk9~F!#1O~\2!, ~8!

where the plane wave elementary excitations of the homo
neous vacuum were used to compute the trace in the t
line and*8d4p5*k2Dk,p,kd

4p. In this manner one arrives
at the finite difference equation

Uk~F!2Uk2Dk~F!52
\

2E ddp

~2p!d ln@p21Uk9~F!#

3F11OS \Dk

M D G , ~9!
2-6
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where

Uk9~F!5
]2Uk~F!

]F2 . ~10!

By taking the limitDk→0 we find the differential equation

k
]

]k
Uk~F!52\

Vdkd

2~2p!d ln@k21Uk9~F!# ~11!

with the help of the polar coordinates in the momentu
space.

The evolution equation~11! is actually the one-loop re
summation of the perturbation expansion. This can be s
by expanding in the non-Gaussian pieces of the potentia

k
]

]k
Uk~F!52\

Vdkd

2~2p!dF ln~k21mk
2!

1 (
n51

`
~21!n11

n S Uk9~F!2mk
2

k21mk
2 D nG , ~12!

wherem2(k)5Uk9(0). Theevolution equation for the effec
tive vertices at zero momentum, i.e., the leading order of
gradient expansion is now the explicit sum of the one-lo
graphs defined by the free propagatorG21(k)5k21mk

2 . If
we ignore thek dependence in the right hand side th
U0(F) is the usual one-loop effective potential obtained
the bare or the renormalized perturbation expansion for

m2~k!→mB
2, Uk9~F!2mk

2→
lB

2
F2 ~13!

or

m2~k!→mR
2, Uk9~F!2mk

2→
lR

2
F2, ~14!

respectively. The evolution generated by the renormaliza
group provides a partial resummation of the perturbation
pansion by piling up the effects of the modes which ha
already been eliminated in thek dependence of the runnin
coupling constants,Uk(F) in our case. In the usual reno
malization group method, which is based on the renorm
ized perturbation expansion, only the renormalizable c
pling constants]2Uk(0)/]F2, ]4Uk(0)/]F4 pile up the
effects of the elimination. In solving the differential equatio
~12! the nonrenormalizable coupling constants, i.e.,
higher order derivatives are evolved, as well. Such an ex
sion of the usual scheme is necessary to find the even
hidden coupling constants.

It is easy to perform the direct numerical integration
Eq. ~11! with an initial conditionUL(F) given atk5L to-
wards the infrared direction after sufficient attention is p
to the instabilities arising from the finiteF andk resolution.
However, our goal is to arrive at a description of the mo
fication of the scaling laws which requires that the restor
force for the fluctuations, the argument of the logarith
function in Eq.~11!, be vanishing atk5k0(F)5” 0. The sin-
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gular behavior of the differential equation made the nume
cal quadratures unstable and forced us to resort to meth
other than the discretization of theF space. Instead of dis
cretizing the variableF we truncated the Taylor expansio
of Uk(f) at finite order.

To this end we introduce the coupling constants define
F5F0 by

gn~k!5
]nUk~F0!

]Fn . ~15!

The result is

Uk~F1F0!5(
n

gn~k!

n!
Fn. ~16!

The b functions are defined as

bn5k
]

]k
gn~k!5

]n

]Fn k
]

]k
Uk~F! uF5F0

, ~17!

where the analyticity of the potential ink and F was as-
sumed. They are obtained by taking the successive der
tives of Eq.~11!,

bn52\
Vdkd

2~2p!dPn~G1 , . . . ,Gn12!, ~18!

where

Gn5
gn

k21g2
~19!

and

Pn5
]n

]Fn ln@k21Uk9~F!# ~20!

is a polynom of ordern/2 in the variablesGj , j 52, . . . ,n
12.

In order to exploit the simplification offered by the sym
metry Uk(2F)5Uk(F) we setF050, which cancels the
odd vertices and yields, for the even ones,

P25G4 ,

P45G623G4
2 , ~21!

P65G8215G6G4130G4
3 , . . . .

One can verify diagrammatically that the system of eq
tions ~20!,~21! is a compact rewriting of the one-loop contr
bution to theb functions of the effective vertices.

It is useful to obtain the evolution equations for the co
pling constants whose dimension is removed by the cuto

b̃n5 k̃
]

] k̃
g̃n~ k̃!5

]n

]F̃n
k̃

]

] k̃
Ũ k̃~F̃ !,

5FnS d

2
21D2dG g̃n2\

Vd

2~2p!dPn~G̃2 , . . . ,G̃n12!,

~22!

where
2-7
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k5L k̃, U5kdŨ, F5kd/221F̃, gn5kn~12d/2!1dg̃n ,
~23!

and

G̃n5
g̃n

11g̃2

. ~24!

V. SCALING REGIMES

Thef4 model has two scaling regimes in the symmetri
phase, separated by a crossover at the mass,kcr

2 5g2(kcr
2 ). For

k@kcr ,

Gn5
gn

k2F11OS g2

k2D G , G̃n5g̃n@11O~ g̃2!#, ~25!

and the evolution of the coupling constants is that of a ma
less theory with the only scale of the cutoff. Below the cro
over scale we have

Gn5
gn

g2
F11OS k2

g2
D G , G̃n5

g̃n

g̃2

@11O~ g̃2
21!#, ~26!

and the evolution comes to a halt due to the factorkd in
right-hand side of Eq.~11!. This is as expected since a theo
with mass gap has the quadratic mass term as relevan
erator and all non-Gaussian coupling constants are irrelev
The b functions are always dominated by the highest or
coupling constant which is linear in the coupling constant
question. In fact, this term contains the lowest power of 1k2

at high energies. At the IR side this term is the most imp
tant because the others contain the product of more n
Gaussian coupling constants which are supposed to be s

Qualitatively new scaling proprieties can be establishe
the b functions are dominated by other terms or rece
comparable contributions from different terms. This is c
tainly the case when the restoring force

D~k!5k21g2~k!, D̃~ k̃!511g̃2~ k̃! ~27!

is vanishing. Suppose that a theory specified at the cutof
UL(F) is in the symmetrical phase, i.e.,g2(0).0 for the
choiceF050. The mass gap decorrelates the field variab
which are well separated in the space-time, and the cen
limit theorem asserts thatUk(F) approaches a quadrat
form andg2(k) is monotonically increasing ask→0. Pertur-
bation expansion gives a more detailed picture:g2(k) is a
monotonically decreasing (b2,0) andD(k).0 is a mono-
tonically increasing function for all values ofk. In order to
find the new scaling laws we need either a massless or s
metry broken theory, whereD(k) reaches zero atk50 or at
k5k05” 0, respectively. In the former case the Colema
Weinberg mechanism@20# generates a different vacuum
where the theory manages to develop a mass gap, the
preserving the usual IR scaling laws. In the latter case
vanishing of the inverse propagatorD(k) indicates an insta-
bility of the homogeneous vacuum in the effective theo
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with the cutoffk<k0 with respect to small fluctuations an
the presence of the spinodal instability. Thus new scal
laws might be found as the precursor of the spinodal ph
separation. We should bear in mind that within the spinod
unstable region the saddle point is nontrivial,f085” 0, and we
need a different renormalization group equation.

VI. RENORMALIZED TRAJECTORY

We want to follow the renormalized trajectory of the co
pling constants

g2n~k!5
]2nUk~F0!

]F2n uF050 , ~28!

in d54, i.e., we seek solutions of the set of coupled eq
tions

k
]

]k
gn~k!5bn~g1 , . . . ,gn12!, ~29!

where

bn52\
V4k4

2~2p!4

]n

]Fn ln@k21Uk9~F!# uF050 , ~30!

with the initial condition

UL~F!5UB~F! ~31!

in the stable region

k2.k0
2~F!52Uk0~F!9 ~F!. ~32!

We set\51 in the numerical work. We truncated the pote
tial

Uk~F!5 (
n51

N
g2n~k!

~2n!!
F2n, ~33!

and solved the resulting equations numerically. Special c
is needed in the vicinity of the spinodal linek'k0(F),
where theb functions are the sum of large numbers wi
different sign. We used third and fourth order Runge-Ku
methods with a dynamically determined value ofDk. Qua-
druple precision numbers were used when necessary to m
sure that the roundoff errors in theb functions were less than
1028 times the actual value of theb functions.

The behavior of the restoring force for the fluctuatio
D(k) was found to be in qualitative agreement with the p
turbation expansion; two typical cases are shown in Fig
Such an agreement is expected in the UV scaling reg
where the kinetic energy dominates the action. Our inte
will be to see the detailed behavior of the flow in the vicini
of the critical curvek.k0(F). The curvesk0(F) obtained
from the tree-level solution and the numerical integration
the renormalization group equations are shown in Fig. 5. T
quantum fluctuations help the disorder and drive the sad
points to zero at the weakly unstable regime of the tree-le
scaling relations. As a result the curve obtained by solv
2-8
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the renormalization group equations is inside of the spino
unstable region of the tree-level solution, except for
roundoff effect at smallk. It is remarkable that the radiativ
corrections are rather small.

The numerical integration of the renormalization gro
equations produces oscillation for the coupling consta
gn(k) for n.4, with increasing amplitude as we approa
the instability. We found two qualitatively different beha
iors as far as the vicinity of the unstable line is concerne

Focusing.When the potential is truncated up to 2N520
theng4(k) stays positive and approaches zero. The value
the higher order coupling constants drop significantly a
several, large-amplitude oscillations and approach zero.
indicates that the blocking transformations has an attrac
fixed point,

Ũk̃0~0!~F̃ !52
1

2
F̃2. ~34!

FIG. 4. The evolution of the inverse propagatorD(k) obtained

by 2N522. ~a! Symmetrical phase,g̃2(1)50.1, g̃4(1)50.01; ~b!

Symmetry broken phase,g̃2(1)520.1, g̃4(1)50.01. In both cases

g̃2n(1)50, for n.2.
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The coupling constantsgn(k) for n.4 produce large fluc-
tuations, but after a while start to all fall and the quadra
potential~34! is approached. It is found thatg4(k)→01 and
the higher order coupling constants drop after undergo
large amplitude oscillations ask→k0. The evolution of
lnug20(k)u is depicted in Fig. 6. We find a cusp where the si
of g20(k) changes with finite altitude due to the finite res
lution of the k values. Note that the negative coefficient
f2 causes no problem with the stability of the vacuum b
cause the potentialUk(F) of the effective theory recover
the perturbative form for large values of the field, far aw
from the spinodal-unstable region.

The approach to the Gaussian potential can be made p
sible by inspectingP4. By assuming that the coupling con
stants remain finite at the critical line we haveg4@k0(0)#
50, sinceb4 diverges otherwise. Onceg450 is accepted,
the vanishing of the higher order coupling constants is pl

FIG. 5. The line of singularity of the renormalized trajectory o

the plane (F̃,k̃) for g̃2(1)520.1, g̃4(1)50.2. The diamond and
the cross show the tree level and the renormalization group res

FIG. 6. The evolution of the coupling constantg̃20( k̃) for 2N

520, with the initial conditionsg̃2(1)520.1, g̃4(1)50.01, and

g̃2n(1)50.0 for n53, . . .,10.
2-9
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ALEXANDRE, BRANCHINA, AND POLONYI PHYSICAL REVIEW D 58 016002
sible. The only finite parameter,g2@k0(0)#, is fixed by the
condition D@k0(0)#50. The existence of a single fixe
point, that all finite set of coupling constants runs into E
~34!, can be called focusing. The potential turns out to be

FIG. 7. The evolution of~a! lnug̃4(k̃)u, ~b! lnug̃6(k̃)u, and ~c!

lnug̃22( k̃)u at 2N522, with the initial conditionsg̃2(1)520.1,

g̃4(1)50.01, andg̃2n(1)50.0 for n53, . . .,11. The coupling con-
stants oscillate forn.4 with increasing amplitude and changin

sign so lnugn(k̃)u is plotted.
01600
.
.

~34! in the whole unstable region that appears as a ‘‘fix
region’’ @19#.

Divergence.This fixed point turned out to be an artifact o
the truncation of the potential, a feature which has alrea
been noted in other cases, as well@21#. When the truncation
is made beyond 2N520 then the accumulation of the con
tributions of the higher order vertices in theb functions
make the termG6 more important inb4, which in turn helps
g4 to decrease faster withk in the approach of the critica
line. Once the sign ofg4 flips, the further decrease is no
limited by zero andg4 quickly approaches2`. It is not then
so surprising that all of the other coupling constants star
diverge at the same time. The typical flow is depicted in F
7 for 2N522; the further increase ofN makes no further
qualitative changes in the flow. The coupling constant und
goes oscillations with increasing amplitude asg4(k)→01

and start to diverge asg4(k) flips sign. The loop expansion
naturally ceases to be applicable in the vicinity of the critic
line, and all we can say is that the modes with moment
slightly abovek0(F) appear strongly coupled, and our sol
tion is no longer reliable. Though there is a marked diffe
ence in the behavior of the renormalization group flow
2N,22 and 2N>22, we should not forget that this differ
ence shows up after a strong coupling regime where the h
order non-Gaussian coupling constants develop extrem
large values. So it is not clear if the difference between t
cases in the vicinity of the unstable line is indeed so larg

Universality.The increase of the coupling constants ak
'k0(0) indicates the existence of new relevant operato~s!
in this scaling regime. One suspects that this operator is n
local since the value of the cutoff is finite. Can this opera
modify the usual universality argument@5#? According to
universality, the introduction of the irrelevant operators
the cutoff modify only the scale parameter of the theory. T
dimensionless quantities, such as theb functions, are sup-
posed to be independent of the value of the irrelevant c
pling constants at the cutoff. To verify this scenario we co
puted

]b̃n~ k̃!

]g̃6~1!
~35!

numerically. The result, plotted in Fig. 8, shows clearly t
coexistence of two different scaling regimes, the UV o
where this quantity is suppressed and the precursor of
spinodal instability where we find an increasing value.

The comparison of Figs. 7 and 8 contains an import
lesson confirmed by Fig. 9 where Eq.~35! is plotted as the
function of the appropriate coupling constant. Namely,
violation of universality, the increase of Eq.~35! already
takes place when the coupling constants are weak. It is
sonable to assume the ansatz

]b̃n~ k̃!

]g̃6~1!
'F2S k̃2 k̃0~0!

k̃0~0!
D k̃0

2~0!, ~36!

where the termk̃ 0
2(0) that is proportional toL22 represents

the suppression of the UV scaling laws, and the amplificat
2-10
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effect of the instability is manifest in the behavior ofF(x)
which is supposed to diverge after large oscillations ax
→0. For any finite value of the cutoff we can find a value
k sufficiently close to the instability where Eq.~36! is unity,

FIG. 8. The evolution of lnu]b̃n(k̃)/]g̃6(1)u with 2N522. ~a!: n
54, ~b!: n56, ~c!: n522.
01600
f

FIG. 9. lnu]b̃n(k̃)/]g̃6(1)u plotted againstg̃n( k̃) for ~a!: n54, ~b!:

n56, ~c!: n522, 0.317, k̃,1. As the scale parameterk decreases
we move towards the left or right for~a! or ~c!, respectively. The
derivative of theb function shows the onset of the low-energ
nonuniversal scaling already when the coupling constants are
weak enough to rely on the loop expansion.
2-11
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L'k0~0!FS k̃2 k̃0~0!

k̃0~0!
D , ~37!

and the cutoff effects of the nonrenormalizable coupling c
stant become visible because the suppression of the UV
ing regime is compensated for by the amplification of t
instability region.

If the environment of the system, represented by the
sertion of the constraint

dS F2
1

VE d4xf~x! D , ~38!

whereV is the four volume into the path integration is ch
sen in such a manner that the spinodal instability occurs,
F is within the spinodal unstable region, then the amplific
tion makes the effective coupling strength nonuniver
around the instability. In other words, the coupling consta
of the effective theory for the system subject to this co
straint can pick up the values of certain nonrenormaliza
coupling constants at high energies, and allow us to inve
gate the nonuniversal interactions at high energy if the cu
of the effective theory is brought close tok5k0(F). By this
method one could in principle increase the energy regime
can access experimentally, and may get closer to the ‘‘la
important scale, the onset of the asymptotic UV scaling
the TOE. This mechanism can be called a ‘‘renormalizat
group microscope’’ since the amplification offered by t
instabilities is similar to the usual microscope, except tha
is achieved by the renormalization group flow in the space
the coupling constants.

According to the numerical results the strength of the s
gularity and the value of Eq.~35! approach zero at the criti
cal line, asF is increased towards the edge of the unsta
region k5k0(F). This is the result of the factorkd in the
renormalization group equations, the decreasing entrop
the modes with weak restoring force ask→0.

Renormalized perturbation expansion.In statistical phys-
ics one usually follows the evolution of the bare coupli
constantsgn(k) as functions of the cutoff

k
]

]k
gn~k!5bn

~B!~$g%!, ~39!

where the explicit dependence onk drops from the bareb
functions in the UV region. We studied the evolution
these coupling constants in our work, too.

In particle physics one introduces the renormalized r
ning coupling constantsln(m), n51, . . . ,nr , wherenr is
the number of renormalizable parameters in the theory.
irrelevant coupling constants are neglected because the
off is sent sufficiently far from the observational energym.
The running coupling constants are defined with the help
the scattering amplitudes or Green functions and their s
dependence is described by the renormalization group e
tions
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]

]m
ln~m!5bn

~R!~$l%!, ~40!

involving the renormalizedb functions.
So long as the perturbation expansion is applicable

can establish a one-to-one mapping between these sche

gn~k!5ln~k!1•••, ~41!

where the terms omitted are higher orders in the suppos
small coupling constants or areO(k/L). In this manner the
qualitative features of the renormalization group flow ag
in the two schemes, i.e., the running coupling constant
comes the bare one when the scale reaches the cutoff.
can we reconcile the importance of certain nonrenorma
able coupling constants at low energy with the evolution
the running coupling constantsln(m), which are introduced
to keep track of the renormalizable coupling constants on

The independence of the theory from the observatio
scale

m
d

dm
GB~$lB%,L!50 ~42!

is reached by the readjustment of the coupling consta
ln(m). According to the multiplicative renormalizatio
scheme the number of adjustable parameters is justnr11. In
particular, one choosesnr11 independent observablesG (m),
m51, . . . ,nr11,

GB
~m!~$lB%,L!5Zl mS $l~m!%,

L

m DGR
~m!

„$l~m!%,m…,

~43!

and imposes

05m
d

dmFZl mS $l~m!%,
L

m DGR
~m!

„$l~m!%,m…G ~44!

5S m
]

]m
1bn

~R!~$g%!
]

]gn
1l mg~R!~$g%! DGR

~m!

3„$l~m!%,m…. ~45!

The renormalized renormalization group functionsg (R) and
bn

(R)($l%) can be found by inverting

05m
d

dmFZl mS $l~m!%,
L

m DGR
~m!

„$l~m!%,m…G ~46!

5S m
]

]m
1bn

~R!~$g%!
]

]gn
1l mg~R!~$g%! DGR

~m!

3„$l~m!%,m… ~47!

for the g (R) and theb (R) functions. The perturbative renor
malization assures that these functions are well defined,
are independent of the choice of the observables$G%.

Observe that there are two steps in this procedure wh
prevent the detection of a hidden coupling constant. On
2-12
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that we have already committed ourselves to use as m
coupling constants to compensate the modification ofm, as
there are renormalizable operators in the system. The se
is that the cutoff is formally removed from the renormaliz
perturbation expansion. The hidden coupling constant re
sents a coupling between the ultraviolet and the infra
modes that can be seen by keeping the UV and IR cut
finite. When the UV cutoff is removed, the contribution
O(m/L) are ignored. The renormalization group used in t
work resums these contributions which yield the new n
trivial scaling laws. Thus the observables obtained by
improved renormalized perturbation expansion using
renormalization group fornr coupling constants will, by con
struction, never show any indication of the eventual, hidd
parameters. What we have found is that our partial res
mation of the perturbation expansion, which keeps track
nonrenormalizable operators as well, indicates the prese
of hidden coupling constants and suggests that the l
energy dynamics is parametrized by more thannr coupling
constants. Consequently more thannr11 observables mus
be used in Eq.~47! to obtain the evolution of the paramete
that can compensate the change of the observational sc

In order to find the number of real parameters, we nee
controllable method to study the low-energy scaling beh
ior. Because of the limitation of the gradient expansion ba
on local operators we cannot at the present stage clarify
point.

VII. SUMMARY

The renormalization group is traditionally used to follo
the scale behavior in the vicinity of a fixed point of th
blocking transformation. We showed in the case of thef4

model that, after paying the price of following the mixing
a large number of operators during the blocking, the inve
gation of the manner by which the different scaling regim
give rise to each other is feasible.

A new finite energy scaling regime of thef4 model with
spontaneously broken symmetry is generated by the spin
instability. It was found, by the numerical integration of th
Wegner-Houghton equation in the local-potential approxim
tion, that the spinodal instability generates new relevant
erators, and may undo the suppression of the nonrenor
izable operators at the UV scaling regime.
nonrenormalizable operator gives rise to a hidden coup
constant if the operator in question is relevant in the lo
energy scaling regime, and the initial, high-energy value
its coupling constant influences the low-energy physics. T
raises the possibility of the eventual use of this instability
a renormalization group microscope to detect the nonuni
sal physics at high energy by going sufficiently close to
unstable region.

The instability studied in this work appears in the Eucl
ean effective theory at finite-momentum scales. It is conj
tured that the simplest manner to observe the effects of
instability is in the framework of the dynamical renormaliz
tion group, applied for large amplitude fluctuations. T
saddle-point structure of the effective theory, for the r
time dependence, is needed to make a more definite prop
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concerning the whereabouts of nonuniversal phenome
The investigation of the renormalization group equation w
nontrivial condensate within the spinodal phase separa
@19#, and the search for the effects of the instability in t
vacuum with Goldstone modes, are in progress.
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APPENDIX: WEGNER-HOUGHTON EQUATIONS

The heuristic derivation of the renormalization grou
equation~11! indicates that the higher loop contributions
the equation are suppressed. This is not obvious from
derivation presented above because by placing the sys
into a finite quantization box the spectrum of the moment
becomes discrete and we may eliminate the modes one
one. What is the small parameter in this case?

The expansion of the action around the constant ba
groundF in powers of the Fourier components of fluctu
tions f8 is

Sk@F1f8#5Sk@F#1(
p

fp8
]Sk

]fp
uf

1
1

2(p,q
fp8fq8

]2Sk

]fp]fq
uf1••• . ~A1!

We have

]Sk

]fp
uf5Uk

~1!~F!Ldd~p!,

]2Sk

]fp1
]fp2

uf5@Uk
~2!~F!1p2#Ldd~p11p2!,

]nSk

]fp1
•••]fpn

uf5Uk
~n!~F!Ldd~p11•••1p2!,

~A2!

where the subscripts stand for the derivatives with respec
F. Sincek2Dk,upu,k, the first derivative of the action
does not contribute,

Sk@F1f8#5Sk@F#1
Ld

2 (
p

fp8f2p8 @Uk
~2!~F!1p2#1••• .

~A3!

If the minimum value ofDk is 2p/L, whereL is the length
of the quantization box, the number of modes to eliminate
the shellk2Dk,upu,k is

Nd5
Vdkd21Dk

~2p/L !d
5

Vd

2pS k

2p D d21

LdDk, ~A4!
2-13



n
m
ie

of
ve
the

ple

hat
p

t
ugh
er

in-

ALEXANDRE, BRANCHINA, AND POLONYI PHYSICAL REVIEW D 58 016002
whereVd is the solid angle in dimensiond. The integration
over degrees of freedomf8 will be done after the expansio
of the exponential around the free action. The only ter
contributing in the integration are those for which the Four
components off8 are combined in pairsfp8f2p8 ,

exp2
Ld

\
„Uk2Dk~F!2Uk~F!…

5E D@f8#exp2
1

2\(
p

@k21Uk
~2!~F!#fp8f2p8

3S 12
Uk

~4!~F!

2Ld\
(
p,q

fp8f2p8 fq8f2q8 1••• D , ~A5!

where D@f8#5)k2Dk,upu,kd Re(fp8)d Im(fp8). The
Gaussian integrations lead to

e2~Ld/\![Uk2Dk~F!2Uk~F!]

5S \p

k21Uk
~2!~F!

D Nd/2F12
\

Ld

Uk
~4!~F!

@k21Uk
~2!~f!#2

3NdSNd

2
11D1•••G . ~A6!

We now introduce the small variable

\n21
uUk

~2n!~f!u

@k21Uk
~2!~f!#2

~Nd!n

~Ld!n21
!1 ~A7!
te

a
ry
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10

et
s
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which is proportional to the ratio of the number of degrees
freedom eliminated in a blocking to those left in the effecti
theory. We must keep in mind that first we have to take
thermodynamical limitL→`, and afterDk→0, to make
sure that the higher loop contributions are small. In princi
Dk has a lower bound 2p/L but we can imagine that we
make an interpolation on the renormalized trajectory so t
the value ofDk we use to derive the renormalization grou
equation is as small as we wish. In this mannerDk andL are
independent and the small parameter isDk/M . If we want to
keep the lower bound forDk nonvanishing then we mus
assume that the derivatives of the potential are small eno
according to Eq.~A7! and therefore the existence of anoth
small parameters hidden in the potential.

By assuming that Eq.~A7! is valid and taking the loga-
rithm of both sides of Eq.~A6! we obtain

Uk~F!2Uk2Dk~F!

5C~k!2Dk
\Vdkd21

2~2p!d
ln@k21Uk

~2!~F!#

1
~Dk!2

2 S \Vdkd21

~2p!d D 2F Uk
~4!~F!

„k21Uk
~2!~F!…2

G1••• ~A8!

which finally yields the Wegner-Houghton equation

]kUk~F!52
\Vdkd21

2~2p!d
lnS k21Uk

~2!~F!

k21Uk
~2!~0!

D , ~A9!

where the denominator in the logarithm function was
serted to cancel the potential atF50.
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