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Effective action of N51 supersymmetric Yang-Mills theory

G. R. Farrar,* G. Gabadadze,† and M. Schwetz‡

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855
~Received 5 January 1998; published 8 June 1998!

We propose a generalization of the Veneziano-Yankielowicz effective low-energy action forN51 SUSY
Yang-Mills theory which includes composite operators interpolating pure gluonic bound states. The chiral
supermultiplet of anomalies is embedded in a larger three-form multiplet and an extra term in the effective
action is introduced. The mass spectrum and mixing of the lowest-spin bound states are studied within the
effective Lagrangian approach. The physical mass eigenstates form two multiplets, each containing a scalar,
pseudoscalar, and Weyl fermion. The multiplet containing the states which are most closely related to glueballs
is the lighter one.@S0556-2821~98!00215-X#

PACS number~s!: 11.30.Pb, 11.15.Tk, 12.60.Jv
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I. INTRODUCTION

Non-Abelian supersymmetric gauge theories have
tracted much attention since tremendous progress was m
in understanding the ground state structure of some of th
models@1,2#. And yet some puzzles remain. In the prese
paper we consider the simplest non-Abelian supersymme
gauge model,N51 SUSY Yang-Mills theory~SYM! with
the SU(Nc) gauge group. This model describes interactio
of gluons and gluinos. In analogy with QCD, one expe
that the spectrum of the model consists of colorless bo
states of those fundamental excitations, namely glueb

(gg), gluinoball mesons (g̃g̃), and ‘‘glueballinos’’ (gg̃).
Description of the color singlet bound states in terms

non-Abelian gauge fields is a complicated task. Howev
one can use the effective field theory technique. Knowing
global symmetries and anomalies of the model, one c
structs an effective action in terms of colorless variables.
the case ofN51 SUSY Yang-Mills theory, the effective
action1 was constructed by Veneziano and Yankielow
~VY ! @3#. The VY action@3# involves interpolating operator
for gluino-gluino and gluino-gluon bound states. However
does not include composite operators corresponding to
gluonic composites~glueballs! and attempts to generalize th
VY action to include them have failed up to now. This
perplexing since QCD is closely related to SYM. If the
were some fundamental impediment to constructing a su
symmetric effective action representing the full set of e
pected colorless fields~glueballs as well as gluinoball me
sons!, it could have important implications for ou
understanding of the QCD spectrum.

In this paper we report that it is possible to extend the V
action in a way that allows interpolating operators cor
sponding to the gluon-gluon bound states to be included

*Email address: farrar@physics.rutgers.edu
†Email address: gabad@physics.rutgers.edu
‡Email address: myckola@physics.rutgers.edu
1To what extent that action can be thought of as describing

ticles and can be called the effective action will be discussed in
next section.
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dynamical variables. In Sec. I we briefly discuss the V
approach and indicate why the interpolating operators of
gluon-gluon bound states are not included in that action.
show, in Sec. II, that the problem can be cured by embedd
the chiral multiplet, which is used in the VY constructio
into a larger tensor multiplet. Rewriting the VY action i
terms of that tensor multiplet, and adding one extra term
the action, one discovers that the low-energy theory inclu
the interpolating operators of all the lowest-spin bound sta
which are expected on the basis of the naive ‘‘valence’’ co
struction includingl 50 andl 51 states. The spectrum is o
course consistent with theN51 SUSY algebra. In Sec. III
we study the mass spectrum and mixing of gluino-gluin
gluon-gluino, and gluon-gluon composites. We briefly co
pare our results with recent lattice gauge theory calculati
of the spectrum ofN51 SUSY Yang-Mills theory.

A. The VY effective action

The classical action ofN51 SYM theory is invariant un-
der U(1)R , scale, and superconformal transformations.
the quantum theory these symmetries are broken by the
ral, scale, and superconformal anomalies, respectively. C
posite operators that appear in the expressions for the ano
lies can be thought of as component fields of a ch
supermultipletS @4#

S[A~y!1A2uC~y!1u2F~y!,

where the following notation for the composite operators
introduced:2

A[
b~g!

2g
lala , A2Ca[2

b~g!

2g
$2 ilaD

1~smnl!aGmn%,

r-
e

2We follow conventions of Wess and Bagger@5#.
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F[2
b~g!

g H 2
1

4
Gmn

2 2
i

2
l̄s̄¹̄l1

1

2
D22

i

4
GmnG̃mn

1
i

2
]mJm

5 J . ~1!

In these expressionsb(g) stands for the SYM beta functio
for which the exact expression is known@6#, la denotes a
two-component gluino field~Weyl spinor!, D stands for the
D component of the non-Abelian vector superfield, and
normalization of the dual stress-tensor is given byG̃mn

5 1
2 «mnltG

lt. All the composite operators in Eq.~1! have
zero anomalous dimensions. Thus, they can be treate
interpolating operators for the lowest-spin colorless bou
states present in the spectrum of the model. Furthermore,
might argue that the effective action for those bound sta
can be specified in terms of theS field @3#.

Following Ref.@3# one constructs an effective superpote
tial for the theory. The superpotential which reproduces c
rectly all the three anomalies of SYM theory is given by t
expression@3#

W~S!}S Slog
S

m3 2SD1H.c. ~2!

Here m is the dynamically generated scale of SYM theo
m5m0e28p2/3Ncg2

where the running couplingg is defined at
some scalem0.

In order to fix a complete effective Lagrangian descripti
of the lowest-spin states of the theory, one needs to de
also an effective Ka¨hler potential in terms of theS field.
Since all the anomalies are already taken into account by
superpotential~2!, the Kähler potential should in its turn re
spect theU(1)R , scale and superconformal symmetries. A
simplest expression satisfying those requirements one fi
@3#

KVY~S1,S![~S1S!1/3. ~3!

The most general form of the Ka¨hler potential as a function
of S, S1, and derivatives of these superfields was determi
in Ref. @7#. It was shown@7# that the only expression tha
satisfies chiral, scale, and superconformal Ward identi
can be written in the following form:

K~S1,S![~S1S!1/3f ~x,x1!,

where x[S1/3~D̄2S11/3!21/2.

Here f stands for an arbitrary function of two variables s
isfying the reality conditionf * (x,y)5 f (y,x) @7#. However,
the Kähler potentialK, being combined with the superpote
tial ~2!, yields a meaningful theory with a bounded-from
below potential if and only iff 51 @7#. Thus, the VY anzatz
~3!, being the simplest one, turns out to be the only phy
cally acceptable expression which could be combined w
the superpotential~2! to define an effective action of th
model. Let us stress again that the validity of assertion
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sumes that the effective action of the theory is defined a
functional of theS ~andS1) field and its higher derivatives
only.

Bringing Eqs.~2! and ~3! together, one writes down th
VY effective action in the following form

Action5E d4x
1

a
~S1S!1/3uD1gF S Slog

S

m3 2SD U
F

1H.c.G ,

~4!

where the positive constantsa and g are introduced. The
value of g can be fixed explicitly@8#. In our notationg
52@Ncg/16p2b(g)#.0.

The axialU(1)R symmetry is broken by the anomaly to
discreteZ2Nc

symmetry in theN51 SU(N) SYM theory.

ThatZ2Nc
symmetry group is itself broken down toZ2 due to

the nonzero gluino condensate@10#:

^ll&}m3 e2p ik/Nc, k50,1, . . . ,Nc21. ~5!

Hence we haveNc physically inequivalent vacua, each cha
acterized by its own phase of the gaugino condensate~5!.
The VY effective action of Eq.~4! describes the theory
around one of them~herek50). It was conjectured in Ref
@9# that the theory might contain a new vacuum which is in
Z2Nc

chirally symmetric superconformal phase with ze
gaugino condensate. A number of arguments have b
given against the existence of such a phase@11,12#. In any
case, we concentrate our attention on the conventional p
of the theory with nonzero gluino condensate@10#.

At this stage we would like to comment on the physic
meaning of the effective action~4!. This is not an effective
action in the Wilsonian sense~see discussions in Refs
@7,13#!. In Ref. @7# the action~4! was constructed as a gen
erating functional of one-particle-irreducible~1PI! Green’s
functions, an object first introduced in Quantum Fie
Theory in Ref.@14#. That means that the action~4!, being
written in terms of composite colorless fields of SYM theor
can be used to calculate various Green’s functions of th
composite variables.3 Performing those calculations, how
ever, one is not supposed to take into account diagrams
composite fields being propagating in virtual loops. Lo
effects are already included in effective vertices and pro
gators occurring in the action~4!. Thus, all calculations with
the expression~4! are to be carried out in the tree lev
approximation.4

The simplest kind of Green’s function one might be inte
ested in is a two point correlator. As we mentioned abo
the composite operators entering the expression~4! are the

3One should keep in mind that actual variables in this action
VEV’s of the composite operators calculated in a theory with no
zero external sources for those operators~see for instance discus
sions in Ref.@7#!. For the sake of simplicity of presentation, w
denote those VEV’s by the corresponding composite fields.

4For nonsupersymmetric gluodynamics, analogous actions w
constructed in Refs.@15,16# for the CP even sector of the theory
and in Ref.@17# for the CP odd sector of the model.
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EFFECTIVE ACTION OFN51 SUPERSYMMETRIC . . . PHYSICAL REVIEW D 58 015009
interpolating fields for the bound states ofN51 SYM
theory. Thus, a two point correlator~or simply a propagator!
of those fields can be used to determine the mass of
corresponding bound state. Hence, the effective action~4! ~or
more exactly the generating functional of 1PI diagrams! can
readily be used to deduce masses of composite bound s
of the theory. In what follows we concentrate our attenti
on this aspect of the effective action approach toN51
SUSY YM theory.

A great advantage of SUSY gauge theories is the fact
all physical states of the model are components of SU
multiplets. That can be deduced directly from the cor
sponding SUSY algebra. Based on theN51 SUSY algebra
written in terms of generators with a definite space-time p
ity @18#, one expects the following lowest-spin multiplets

spin-parity eigenstates:@021, 1
2

i 1, 011# and @011,
1
2

(2 i )1, 021]. In SYM theory one expects these states to
realized as the following composites:

Ia A pseudoscalar, 021, l 50, s50 gluino-gluino bound
state;

Ib A spinor, 1
2

i 1, l 51, s51/2 gluon-gluino bound state
Ic A scalar, 011, l 51, s51 gluino-gluino bound state;
IIa A scalar, 011, l 50, s50 gluon-gluon bound state;
IIb A spinor, 1

2
(2 i )1, l 50, s51/2 gluon-gluino bound

state;
IIc A pseudoscalar, 021, l 51, s51 gluon-gluon bound

state.5

In general, these states would be assigned to two diffe
supermultiplets. Note that the complex fieldsA, C, andF,
introduced in Eq.~13!, form linear combinations of the in
terpolating operators for the states listed above. So, at l
formally, the above bound states are present in the super
tiplet S and, consequently, in the action~4!. Hovewer, the
gluon-gluon bound states, referred to hereafter as ‘‘gl
balls,’’ enter the action~4! through theF term of the chiral
multiplet. F terms generically appear as auxiliary fields o
model and are usually integrated out. For instance in the
approach, there is no kinetic term for theF component of the
chiral superfield so theF field can be integrated out b
means of equations of motion. Having eliminated theF field,
one is left with the effective Lagrangian description of t
gluino-containing bound states only~the first three states in
the list above!. Thus no glueballs are present in the V
action.6

5Though the spin-orbital decomposition is an intrinsically nonr
ativistic notion, it can be applicable to relativistic cases~see the
discussion in Ref.@19#!. A ‘‘spin’’ in that case is defined as the ran
of the spinor which describes the corresponding wave function,
an ‘‘orbital momentum’’ is set by the coordinate dependence of
relativistic wave function@19#.

6When the equations of motion are used the number of degree
freedom of the fermionic fieldC also reduces. The off-mass-she
spinorC has four real degrees of freedom, while it propagates o
two independent degrees of freedom, when the on-shell conditio
imposed. Those two degrees of freedom describe only one~out of
two! gluino-gluon bound states given in the list above.
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In general, there is no reason to believe that in SY
theory, the spin-zero glueball states are heavier than
gluino containing mesons. Thus, at leasta priori, spin-zero
glueballs have every right to be considered in the effect
action of the model.

One can attempt to construct a new chiral superfi
which would include the interpolating operators for glueba
in a lowest supercomponent@20#. An appropriate superfield
is proportional toD2S @20#. However, R-symmetry argu-
ments do not allow one to introduce a nontrivial coupling
that chiral multiplet to the VY supermultiplet@20#. Another
approach is needed.

B. Generalization of the VY effective action

In order to determine how glueballs can be included in
action~4!, let us concentrate our attention on the express
for the F field. Using the equation of motion for the gluin
field and for theD component one gets7

F[
b~g!

4g
@Gmn

2 1 iGmnG̃mn#.

Let us introduce the following notation:

S[
b~g!

4g
Gmn

2 , Q[
b~g!

4g
GmnG̃mn .

Thus, the decomposition of theF field into its real and
imaginary parts isF5S1 iQ. As we have already men
tioned, theF field appears in the VY action without a kineti
term. The term bilinear in theF field is proportional to

F1F5S21Q2.

Besides that, there are terms linear in theF field in the ex-
pression for the effective action, thus, theF field can easily
be integrated out by means of its algebraic equations of
tion @3#.

In order to reveal subtleties of this procedure, let us wr
down the following relation

Q5
1

4!
«mnabHmnab, ~6!

where Hmnab is a field strength for a three-form potenti
Cnab , Hmnab5]mCnab2]nCmab2]aCnmb2]bCnam . The
Cmna field itself is defined as a composite operator of color
gluon fields Am

a , Cmna5@b(g)/64gp2#(Am
a ]̄nAa

a2An
a]̄mAa

a

2Aa
a ]̄nAm

a 12 f abcAm
a An

bAa
c ), with f abc being structure con-

-

d
e

of

y
is

7In general, one is not allowed to use the equation of motion if
vacuum expectation value~VEV! of the F field is considered.
9-3
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G. R. FARRAR, G. GABADADZE, AND M. SCHWETZ PHYSICAL REVIEW D58 015009
stants of the correspondingSU(Nc) gauge group. The right
left derivative in this expression acts asA]̄B[A(]B)
2(]A)B.8

Using these definitions, one finds that the expression
linear in theF field acquires the following form

F1F5S22
1

4!
Hmnab

2 .

The second term in this expression is a kinetic term for
three-form potentialCmna . As before, theS field can be
integrated out, however, one should be careful in dea
with the Cmna field.

In Ref. @17# it was argued that the three-form fieldCmna
plays an important role in the description of the pseudosc
glueball. That glueball can be coupled to the QCDh8 meson
by means of theCmna field @21#. In the case of SYM theory
the analog of theh8 meson is the gluino-gluino bound sta
which acquires mass due to the anomaly in theU(1)R cur-
rent within the VY approach. Thus, it is natural to attempt
couple the pseudoscalar glueball to the pseudoscalar glu
gluino bound state within the VY action using the three-fo
potentialCmna .

To elaborate this approach, let us rewrite the SUSY tra
formations for the components of theS superfield in terms of
S andCmna ~instead ofF andF1) @22,23# :

dzA5A2zC,

dzC5 iA2smz̄]mA1A2zS S1
i

6
«mnab]mCnabD ,

dzS5
i

A2
~ z̄s̄m]mC1zsm]mC̄!,

dzCnab5
1

A2
«nabm~ z̄s̄mC2zsmC̄!.

The set of fields given above forms an irreducible repres
tation of supersymmetry algebra. All these fields can be
signed to a supermultiplet introduced in Ref.@22#. That su-
permultiplet is called a constrained three-form supermultip

8The quantityQ can also be expressed through the Chern-Sim
currentKm as Q5]mKm . Using this equation one can deduce t
relation between the Chern-Simons current and the three-form
tential Cnab , these two quantities are Hodge dual to each oth
Km5(1/3!)«mnabCnab .
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@22,24#. The easiest way to present this multiplet is to intr
duce the following real tensor superfield9 U

U5B1 iux2 i ū x̄1
1

16
u2A*

1
1

16
ū2A1

1

48
usmū«mnabCnab

1
1

2
u2ūSA2

8
C̄1s̄m]mx D

1
1

2
ū2uSA2

8
C2sm]mx̄ D 1

1

4
u2ū2S 1

4
S2]2BD . ~7!

It is a matter of a straightforward calculation to check th
the real superfieldU satisfies the relation10

D̄2U52 1
4 S. ~8!

Thus, the real tensor multipletU, defined by the expressio
~8!, includes all the components of the chiral supermultip
S. Besides that the multiplet has also an additional scalaB
and fermionx. Thus, using the relation~8! the VY action can
be rewritten in terms of the bigger multipletU. We will
show below that this allows one to include glueball operat
in the effective action.11

First, let us notice some features of SUSY transformatio
of the components of theU field. The components which ar
shared by the tensor multipletU and the chiral multipletS
~namely A, C, S, and C) transform among themselves
while other fields (B and x) are connected by SUSY rota
tions to the other four components. Furthermore, one
define a ‘‘gauge’’ transformation of theU field as the fol-
lowing shift U→U1Y, where the superfieldY satisfies the
relation D̄2Y50. It is important to notice that by means o
this ‘‘gauge’’ transformation, one can get rid of theB andx
fields in the expression for theU multiplet. This is the analog
of the Wess-Zumino gauge for the tensor multipletU. Thus,
any Lagrangian written in terms of theS field only, if reex-
pressed in terms of theU field, is necessarily invariant unde
the ‘‘gauge’’ transformation defined above. As a result, theB
and x fields can always be ‘‘gauged’’ away from that La
grangian. Thus in order to be able to retain theB andx fields

s

o-
r:

9In this discussion we follow the conventions of Ref.@23#.
10Despite a seeming similarity, the tensor multipletU should not

be interpreted as a usual vector multiplet. The vector field wh
might be introduced in this approach as a Hodge dual of the th
form potentialCmna would give mass terms with the wrong sign
our approach~see Sec. II!, thus, the actual physical variable is th
three-form potentialCmna rather than its dual vector field~the
Chern-Simons current!.

11This representation of SUSY was earlier used in the contex
SYM theory in Ref.@25# to study the phenomenon of gaugino co
densation with a field dependent gauge coupling. We thank J
Derendinger for bringing Ref.@25# to our attention. See also dis
cussions in Ref.@26#.
9-4
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EFFECTIVE ACTION OFN51 SUPERSYMMETRIC . . . PHYSICAL REVIEW D 58 015009
as dynamical variables, one must include terms in the
grangian which breaks this ‘‘gauge’’ invariance. The sim
plest term of this type is the quadratic term (U2)uD . Once
such a term is included in the Lagrangian, the ‘‘gauge’’ sy
metry becomes explicitly broken and theB and x compo-
nents of the superfieldU survive as dynamical variables.

Let us now apply theU field formalism to the VY action.
In the case at hand, the chiral symmetry is spontaneo
broken by the gluino condensate. In terms of the chiral
perfield, this corresponds to the existence of a nonzero V
of the S field

^S&5m3.

With that in mind the appropriate relation between theU
field and the chiral multiplet is

D̄2U52 1
4 ~S2^S&!. ~9!

The only result of this modification is that the fieldA in Eq.
~7! gets replaced by the quantityA2^A&.

Now use the relation~9! to rewrite the action~4! in terms
of the U field. In order to break the ‘‘gauge’’ invariance o
the VY action, we add a term proportional toU2 to the VY
Lagrangian. An appropriate term with zeroR-charge and
correct dimensionality is

S 2
U2

~S1S!1/3D U
D

. ~10!

Below, we are going to show that once this term is added
the VY action~4!, the following fields become dynamical.

The B field propagates and it represents one massive
scalar degree of freedom~identified later with the scala
glueball!.

The three-form potentialCmna , which becomes massive
also propagates. It represents one physical degree of free
~identified with the pseudoscalar glueball!.

The complex fieldA, being decomposed into parity eige
states, describes the massive gluino-gluino scalar and p
doscalar mesons.

x and C describe the massive gluino-gluon fermion
bound states.

Relations between masses of these states will be give
the next section.

C. The mass spectrum

Based on the arguments given in the previous section,
can write down the effective Lagrangian for the lowest-s
multiplets of theN51 SUSY YM theory in the following
form

L5
1

a
~S1S!1/3uD1gF S Slog

S

m3 2SD U
F

1H.c.G
1

1

dS 2
U2

~S1S!1/3D U
D

, ~11!
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wherea and d are arbitrary positive constants. One obtai
the VY Lagrangian in the limitd→`. In general, higher
powers ofU ~and derivatives! can also be added to this La
grangian. Those terms would introduce new quartic, quin
and other higher interaction terms. However, the quadr
part of the action which defines masses will not be affect
In that respect, the effective Lagrangian~11! can be treated
as the one describing small perturbations of fields abou
vacuum state.12

Let us determine the SUSY vacuum state defined by
Lagrangian~11!. The potential for the model is a compl
cated function of the variables present in theU superfield.
After integration over the auxiliaryS field, the bosonic part
of the potential is

V5
2

d~16!2

ufu61m622m3ufu3 cos 3r

ufu2

1
3

d~48!2

Cmnt
2

ufu2
1

9aufu4

4

1

12~a/d!~B2/ufu!4

3F B

24dufu2S 11
2m3

ufu3cos 3r D23g log
ufu2

m2 G2

, ~12!

where we introduced the notationsf[A1/3 andr[argf.
In order to find the vacuum state, one should find t

absolute minimum of the potential~12!. Since we are dealing
with a supersymmetric model, the value of the potential
that minimum has to be zero. As a result of Lorentz inva
ance, the VEV of the three-form field is zero, i.e.^Cmnt&
50. The VEV ofQ is also zero due to the CP invariance
the model. Further calculations are tedious and we will
present them here. After some algebra one finds that the
global, CP invariant minimum of the potential~12! is given
by: ^f&5m, ^B&5^C&5^r&50. The effective Lagrangian
~11! describes small perturbations of fields about the vacu
state defined by these VEV’s.

We would like to make a comment here. It deals with t
region of validity of the potential~12! @i.e., of the Lagrangian
~11!#. The expression~12! can be a correct potential for
supersymmetric model ifdufu4.aB2. Since the fieldsf and
B describe perturbations about the valuesf5m and B50,
respectively, the inequality above is satisfied for small p
turbations of both fields. The singularity in the potential
dufu45aB2 indicates that for large perturbations, the high
dimensional terms omitted in Eq.~11! should become impor-
tant. As we mentioned above, we are mainly concerned w
the mass spectrum of the model which can be studied u
small perturbations about the ground state, so that the
proximation given in Eq.~11! is good enough for our goals.13

12Notice that one can write the Lagrangian~11! in terms of theU
field alone. However, for clarity of presentation, we leave the V
part of the Lagrangian in the original form.

13The potential~12! describes a SUSY minimum in the fiel
space. The potential well has infinitely high walls, at values of
fields satisfyingdufu45aB2.
9-5
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The mass spectrum for the bosonic part of the model
be calculated from the potential~12!. However, we find it
more illuminating to write down the quadratic part of th
Lagrangian~11!. Then physical masses can be computed
eigenvalues of the corresponding quadratic forms.

Let us rewrite the expression for the Lagrangian~11! in
terms of component fields keeping only the quadratic ter

L52
1

2
]ms]ms2

1

2
]mp]mp1

1

6
Cmnt]

2Cmnt

2
1

2
]mB]mB1 i ]mz̄s̄mz1 i ]mx̄s̄mx1S22

3

8
Aa

d
mSB

2
9a

d~16!2 m2s22
9a

d~16!2 m2p22
27a

~48!2d
m2Cmnt

2

2
9ag

2
mz22

9ag

2
mz̄2

2
i3A2

16
Aa

d
mxz1

i3A2

16
Aa

d
mx̄z̄

19A2agmsS29A2agmpQ1••• , ~13!

where dots stand for cubic and higher dimensional inter
tion terms. The fields which appear in Eq.~13! are related to
the original fields of Eq.~7!

A1/35f[m1Aa

2
~s1 ip !, z[

C

3AaA2/3
.

Besides that, in Eq.~13! we performed the following rescal
ing of the variables

S→3Aam2S, C→3Aam2C,

x→Admx, B→AdmB. ~14!

The s and p fields, as they stand in the Lagrangian~13!,
describe, respectively, the scalar and pseudoscalar glu
gluino excitations. TheC field, being a massive three-form
potential that propagates one physical degree of freed
describes the pseudoscalar glueball. TheS field can be inte-
grated out by means of the equation of motion:

S5
3

16
Aa

d
mB2

9A2

2
agms. ~15!
01500
n

s

s:

c-

o-

m,

In accordance with this expression, theB field which is left
in the effective Lagrangian describes a mixed state of
scalar glueball~former S field! and the scalar gluino-gluino
bound states.

If the VY superpotential were neglected for some reas
in the expression~11!, then the two Weyl fermion fieldsx
and z would combine together to form one Dirac massi
bispinor. However, the presence of the VY superpoten
yields an additional contribution to the mass term of thez
field. Thusx andz cannot be treated as the components
one Dirac spinor. Instead one is left with two Weyl fermio
describing two different spin 1/2 massive states. In gene
the form of the bilinear terms in the Lagrangian~13! sug-
gests that all the physical states of this theory should occu
mixed states of the initially pure bound states of the L
grangian~13!.

Below, we deduce the masses of these mixed phys
states. Let us write down the mass and mixing terms of
Lagrangian~13! separately. Substituting the expression f
the S field ~15! into the Lagrangian~13!, one finds the fol-
lowing pairs of variables being mixed with one another:

B2s system:
9a

d~16!2 m2s21
81

2
a2g2m2s21

9a

d~16!2 m2B2

2
27A2

16
Aa

d
agm2Bs;

C2p system:
9a

d~16!2 m2p21
27a

~48!2d
m2Cmnt

2

1
9A2

6
agmp«mnts]mCnts;

x2z system:
9ag

2
mz21

9ag

2
mz̄21

i3A2

16
Aa

d
mxz

2 i3A 2

16
Aa

d
mx̄z̄. ~16!

In order to find the physical masses, one must diagona
the corresponding mass matrices. Concentrate, for insta
on the first row of these expressions which describes
mixed state of scalar meson,s, and scalar meson-glueball,B.
The former gets mass both from the superpotential
U2-term, while the latter gets mass only from theU2-term.
When the mixing term is switched on, the initially heavi
state (s) gets even heavier, and the initially lighter state (B)
becomes even lighter than they were originally. Perform
the diagonalization, one finds that the physical eigensta
are mixed states with the following mass eigenvalues:

1

2
mH

2 5
9a

d~16!2 m21
81

4
a2g2m2

1
81

4
a2g2m2A11

1

288

a

d

1

~ag!2, ~17!
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and

1

2
mL

25
9a

d~16!2 m21
81

4
a2g2m2

2
81

4
a2g2m2A11

1

288

a

d

1

~ag!2. ~18!

Here, the subscript ‘‘H’’ refers to the heavier states̃ which,
without mixing, would have been a pure gluino-gluino bou
state~the s particle!. ‘‘L’’ refers to the lighter stateB̃ (B in
the absence of mixing!.

Explicit calculation shows that theC2p and x2z sys-
tems possess exactly the same properties. Namely,
heavier mass eigenstatesp̃, z̃ acquire the mass square
eigenvalues given by the expression formH

2 , and the lighter

eigenstatesC̃, x̃ have mass squared eigenvalues equa
mL

2 . Thus, as expected, the physical states form two mul
lets, one with massmH

2 and the other with massmL
2 .

Let us discuss various limits of Eqs.~17! and ~18!. Sup-
posea→0. In that limit the superpotential and theU2 terms
can be neglected in the Lagrangian~11!. The Kähler poten-
tial, which would be the only term left in the expression~11!,
would yield only kinetic terms for the excitations. Thus a
those states would be massless. This is in agreement with
expressions~17! and ~18! which turn into zero asa→0.

In theg→0 limit the superpotential disappears. Thus, t
mass terms for the physical states come only from theU2

term in the Lagrangian~11!. As a result, all the masses a
expected to be equal and there is no mixing between p
gluonic and fermionic states described above. Also, as n
earlier, thex and z Weyl fermions come together to form
one massive Dirac bispinor. The limitg→0 is physically
equivalent to the limitd→0; in both cases the superpotent
can be neglected in comparison with theU2 term.

Finally, let us consider thed→` limit. One can neglect
the U2 term in that case. As a result one rederives the
Lagrangian with the spectrum given by the second term
Eq. ~17! @or Eq. ~18!# multiplied by the factor of two. No
glueballs are incorporated in the effective theory in th
limit.

II. SUMMARY AND DISCUSSION

We have shown here how to generalize the Venezia
Yankielowicz effective action forN51 supersymmetric
Yang Mills theory to include composite operators cor
sponding to pure gluonic, and not exclusively gluin
containing, bound states. We accomplish this by embedd
the chiral multiplet of anomalies into a larger three-form te
sor supermultiplet and adding an extra term to the VY eff
tive action. The extra term is necessary in order to retain
variables corresponding to glueballs as dynamical fields
the effective Lagrangian.

Studying the potential of the model, we find that t
physical eigenstates fall into the two different ‘‘multiplets
with masses given by Eqs.~17! and ~18!. Neither of them
contain pure gluino-gluino, gluino-gluon, or gluon-gluo
01500
he

o
-

the

re
ed

n

t

o-

-

g
-
-
e

in

bound states. Instead, the physical excitations are m
states of these composites. The heavier set of states con
a pseudoscalar meson, which without mixing reduces to
021 gluino-gluino bound state~the analog of the QCDh8
meson!, a scalar meson that without mixing is anl 51 011

gluino-gluino excitation, and a mixed fermionic gluino-gluo
bound state.

These heavier states become the chiral supermultiplet
scribed by the VY action in the limit that the additional ter
we have added to the effective Lagrangian is removed.
new states which appear as a result of our generaliza
forms a lighter multiplet: a scalar meson, which for sm
mixing becomes a 011 ( l 50) glueball; a pseudoscalar stat
which for small mixing is identified as a 021 ( l 51) glue-
ball; a mixed fermionic gluino-gluon bound state.

We call the reader’s attention to an interesting feature
the effective action introduced here. Although the physi
states fall into multiplets whoseJP quantum numbers corre
spond to two chiral supermultiplets, the action is not writt
in terms of two chiral supermultiplets. Another represen
tion of SUSY is used, as explained in Sec. II. In particul
the pseudoscalar glueball in this approach is described by
only physical component of the massive three-form poten
Cmna . The field strength of that potential couples to t
pseudoscalar gluino-gluino bound state as it would coupl
the h8 meson in QCD.

Masses of the physical states depend on two indepen
mass parameters@(a/d)m andagm# formed from constants
occurring in the effective Lagrangian. However the res
that the lighter multiplet contains the predominantly glueb
excitation is independent of the values of these parame
This prediction receives some support from recent latt
studies of SUSY YM theory. Although the lattice results f
the mass spectrum are available only away from the SU
point, the general tendency is that a state which is most
glueball is lighter than the state which is mostly a gluin
gluino composite14 @27#. More detailed lattice results would
in principle permit fixing the combinationsa/d and ag
which are undetermined within the effective Lagrangian a
proach. However determining the masses of the two mul
lets is likely to be difficult: if mixing is small, they are nearl
degenerate and if mixing is large, they are in general b
excited by a given source.
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absence of dynamical gluinos, masses can only be proportion
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