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Effective action of N=1 supersymmetric Yang-Mills theory
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We propose a generalization of the Veneziano-Yankielowicz effective low-energy actidh=far SUSY
Yang-Mills theory which includes composite operators interpolating pure gluonic bound states. The chiral
supermultiplet of anomalies is embedded in a larger three-form multiplet and an extra term in the effective
action is introduced. The mass spectrum and mixing of the lowest-spin bound states are studied within the
effective Lagrangian approach. The physical mass eigenstates form two multiplets, each containing a scalar,
pseudoscalar, and Weyl fermion. The multiplet containing the states which are most closely related to glueballs
is the lighter one[S0556-282198)00215-X

PACS numbse(s): 11.30.Pb, 11.15.Tk, 12.60.Jv

[. INTRODUCTION dynamical variables. In Sec. | we briefly discuss the VY
approach and indicate why the interpolating operators of the
Non-Abelian supersymmetric gauge theories have atgluon-gluon bound states are not included in that action. We
tracted much attention since tremendous progress was ma&gow, in Sec. ll, that the problem can be cured by embedding
in understanding the ground state structure of some of thod&e chiral multiplet, which is used in the VY construction,
mode|s[1,2]_ And yet some puzz|es remain. In the presentinto a Ial’ger tensor multlplet Rewriting the VY action in
paper we consider the simplest non-Abelian supersymmetriterms of that tensor multiplet, and adding one extra term to
gauge modelN=1 SUSY Yang-Mills theory(SYM) with the action, one discovers that the low-energy theory includes

the SU(N,) gauge group. This model describes interactionsthe interpolating operators of all the lowest-spin bound states

of gluons and gluinos. In analogy with QCD, one expectsWhiCh are expected on the basis of the naive “valence” con-

that the spectrum of the model consists of colorless bounﬁtructIon including =0 andl=1 states. The spectrum is of

states of those fundamental excitations, namely glueball(é‘Ourse consistent with =1 SUSY _a_lgebra. In_Sec. I!I
Wwe study the mass spectrum and mixing of gluino-gluino,

(99), gluinoball mesonsdg), and “glueballinos” @g). gluon-gluino, and gluon-gluon composites. We briefly com-
Description of the color singlet bound states in terms ofpare our results with recent lattice gauge theory calculations

non-Abelian gauge fields is a complicated task. Howeverpf the spectrum oN=1 SUSY Yang-Mills theory.

one can use the effective field theory technique. Knowing all

global symmetries and anomalies of the model, one con-
structs an effective action in terms of colorless variables. For A. The VY effective action

the case ofN=1 SUSY Yang-Mills theory, the effective  The classical action dfil=1 SYM theory is invariant un-
action” was constructed by Veneziano and Yankielowiczder U(1)g, scale, and superconformal transformations. In
(VY) [3]. The VY action[3] involves interpolating operators the quantum theory these symmetries are broken by the chi-
for gluino-gluino and gluino-gluon bound states. However, itral, scale, and superconformal anomalies, respectively. Com-
does not include composite operators corresponding to pufigosite operators that appear in the expressions for the anoma-
gluonic compositegglueball$ and attempts to generalize the Jies can be thought of as component fields of a chiral
VY action to include them have failed up to now. This is supermultipletS [4]
perplexing since QCD is closely related to SYM. If there
were some fundamental impediment to constructing a super-
symmetric effective action representing the full set of ex- S=A(y)+ \/Ea\lf(y)Jr 6°F(y),
pected colorless field&lueballs as well as gluinoball me-
song, it could have important implications for our
understanding of the QCD spectrum.

In this paper we report that it is possible to extend the VYwhere the following notation for the composite operators is
action in a way that allows interpolating operators corre-introduced’
sponding to the gluon-gluon bound states to be included as

e , AE@)\“)\Q, ﬁwaz—@{—ian
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To what extent that action can be thought of as describing par-
ticles and can be called the effective action will be discussed in the
next section. 2We follow conventions of Wess and Bagdéi.
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B 1 , i 1, i 5 sumes that the effective action of the theory is defined as a
F=- T: = 2Cu Ao VA+ 5D =2G,,Gu,  functional of theS (andS*) field and its higher derivatives
only.
i Bringing Egs.(2) and (3) together, one writes down the
5 . . . .
59 (1) vy effective action in the following form

In these expressiond(g) stands for the SYM beta function Action=J d%x E(S+S)1/3|D+ y (Slog—sg—s +H.c.
for which the exact expression is knoW#], A, denotes a @ M F
two-component gluino fieldWeyl spinoy, D stands for the (4)

D component of the non-Abelian v r rfiel nd th . .
o po _e t of the non-Abelian vecto Sfjpe_ ed,~a dt eWhere the positive constants and y are introduced. The
normalization of the dual stress-tensor is given @y,

value of y can be fixed explicitly[8]. In our notation
=3&,,,,G"". All the composite operators in E41) have - [N g/)i67r2,8(g)]>0 plicitly{8] 4

. . c .
zero anomalous dimensions. Thus, they can be treated as The axialU(1)x symmetry is broken by the anomaly to a

interpolating operators for the lowest-spin colorless bounqjiscretez symmetry in theN=1 SU(N) SYM theory
states present in the spectrum of the model. Furthermore, on 2Ne is itself broken d d '
might argue that the effective action for those bound stated"atZan, Symmetry group is itself broken down I due to

can be specified in terms of ti&field [3]. the nonzero gluino condensdtE0]:

Following Ref.[3] one constructs an effective superpoten- 3 2mikIN B _
tial for the theory. The superpotential which reproduces cor- (ANM)ocu® e % k=0I1...N.~1 (5)
rectly al! the three anomalies of SYM theory is given by the once we havé\,
expressior 3]

physically inequivalent vacua, each char-
acterized by its own phase of the gaugino condenégte
The VY effective action of Eq.4) describes the theory

+Hec. (2)  around one of thentherek=0). It was conjectured in Ref.

[9] that the theory might contain a new vacuum which is in a

] ) Zon, chirally symmetric superconformal phase with zero

Here u is the dynamically generated scale of SYM theory: gaugino condensate. A number of arguments have been

= uoe~ 8™ "Ne3" where the running coupling is defined at given against the existence of such a phigise17. In any
some scalgug. case, we concentrate our attention on the conventional phase
In order to fix a complete effective Lagrangian descriptiongf the theory with nonzero gluino condensaté)].
of the lowest-spin states of the theory, one needs to define At this stage we would like to comment on the physical
also an effective Kialer potential in terms of théS field.  meaning of the effective actiof). This is not an effective
Since all the anomalies are already taken into account by thgction in the Wilsonian sensésee discussions in Refs.
superpotentia(2), the Kéhler potential should in its turn re- [7,13)). In Ref.[7] the action(4) was constructed as a gen-
spect thdJ(1)g, scale and superconformal symmetries. As aerating functional of one-particle-irreducibl@Pl) Green's
simplest expression satisfying those requirements one findginctions, an object first introduced in Quantum Field
(3] Theory in Ref.[14]. That means that the actigd), being
written in terms of composite colorless fields of SYM theory,
Kyy(S*,9)=(5"9)"". (3 can be used to calculate various Green's functions of those
. ) ) composite variable%.Performing those calculations, how-
The most general form of the iKéer potential as a function ever, one is not supposed to take into account diagrams with
of S, S+, and derivatives of these superfields was determineeomposite fields being propagating in virtual IOOpS. Loop
in Ref. [7]. It was shown[7] that the only expression that effects are already included in effective vertices and propa-
satisfies chiral, scale, and superconformal Ward identitiegators occurring in the actio@). Thus, all calculations with

S
W(S)M(S|Og;g—s

can be written in the following form: the expressior(4) are to be carried out in the tree level
(St S (SF S (v approxmatlorf‘. _ , _ _ _
(S7,9=(S"S)™f(x,x"), The simplest kind of Green’s function one might be inter-
o ested in is a two point correlator. As we mentioned above,
where y=SY(D?2s"13)~172 the composite operators entering the expres$rare the

Here f stands for an arbitrary function of two variables sat-

isfying the reality conditiorf* (x,y) =f(y,x) [7]. However,  3one should keep in mind that actual variables in this action are
the Kehler potentiakK, being combined with the superpoten- vEgvs of the composite operators calculated in a theory with non-
tial (2), yields a meaningful theory with a bounded-from- zero external sources for those operat@ee for instance discus-
below potential if and only if =1 [7]. Thus, the VY anzatz sjons in Ref.[7]). For the sake of simplicity of presentation, we
(3), being the simplest one, turns out to be the only physidenote those VEV's by the corresponding composite fields.

cally acceptable expression which could be combined with “For nonsupersymmetric gluodynamics, analogous actions were
the superpotentia(2) to define an effective action of the constructed in Refd15,16 for the CP even sector of the theory,
model. Let us stress again that the validity of assertion asand in Ref[17] for the CP odd sector of the model.
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interpolating fields for the bound states 6f=1 SYM In general, there is no reason to believe that in SYM
theory. Thus, a two point correlatéor simply a propagater theory, the spin-zero glueball states are heavier than the
of those fields can be used to determine the mass of thgluino containing mesons. Thus, at leaspriori, spin-zero
corresponding bound state. Hence, the effective a¢dpfor ~ glueballs have every right to be considered in the effective
more exactly the generating functional of 1PI diagracen  action of the model.

readily be used to deduce masses of composite bound statesOne can attempt to construct a new chiral superfield
of the theory. In what follows we concentrate our attentionYVh'Ch would include the interpolating operators for glueballs

on this aspect of the effective action approachNe-1 in a lowest supercompone[®0]. An appropriate superfield
SUSY YM theory. is proportional toD?S [20]. However, R-symmetry argu-

A great advantage of SUSY gauge theories is the fact th ents do not allow one to introduce a nontrivial coupling of

all physical states of the model are components of susyhat chiral multiplet to the VY supermultipl¢20]. Another

multiplets. That can be deduced directly from the Corre_approach is needed.

sponding SUSY algebra. Based on tHe=1 SUSY algebra
written in terms of generators with a definite space-time par-
ity [18], one expects the following lowest-spin multiplets of  In order to determine how glueballs can be included in the

B. Generalization of the VY effective action

spin-parity eigenstates:[0~ ", 3'*, 0t*] and [0"T, action (4), let us concentrate our attention on the expression
1(=D* 0~ *]. In SYM theory one expects these states to befor the F field. Using the equation of motion for the gluino
realized as the following composites: field and for theD component one gels
la A pseudoscalar, 0", |=0, s=0 gluino-gluino bound
state; .
Ib A spinor,3'", 1=1, s=1/2 gluon-gluino bound state; = @[GZ +iG,,G,,]-
Ic A scalar, 0", =1, s=1 gluino-gluino bound state; 4g = mr o TRVTH
lla A scalar, 0", 1=0, s=0 gluon-gluon bound state;
llb A spinor, 2% =0, s=1/2 gluon-gluino bound . _ _
state: Let us introduce the following notation:
lic A pseudoscalar, 0%, |=1, s=1 gluon-gluon bound
state®
In general, these states would be assigned to two different — @Gz _ @ 3
supermultiplets. Note that the complex fields ¥, andF, - 4g e -~ 4g TmrTer

introduced in Eq.(13), form linear combinations of the in-

terpolating operators for the states listed above. So, at least

formally, the above bound states are present in the supermuthus, the decomposition of thE field into its real and
tiplet S and, consequently, in the actigd). Hovewer, the imaginary parts isF=>+iQ. As we have already men-
gluon-gluon bound states, referred to hereafter as “gluetioned, theF field appears in the VY action without a kinetic
balls,” enter the actiori4) through theF term of the chiral term. The term bilinear in th& field is proportional to
multiplet. F terms generically appear as auxiliary fields of a

model and are usually integrated out. For instance in the VY FTF=32+Q2

approach, there is no kinetic term for tRecomponent of the

chiral superfield so thd- field can be integrated out by Besides that, there are terms linear in fhdield in the ex-
means of equations of motion. Having eliminated fthield,  pression for the effective action, thus, tRefield can easily
one is left with the effective Lagrangian description of thebe integrated out by means of its algebraic equations of mo-
gluino-containing bound states onfthe first three states in tion [3].

the list above Thus no glueballs are present in the VY  In order to reveal subtleties of this procedure, let us write
action® down the following relation

1
= — nvapB
SThough the spin-orbital decomposition is an intrinsically nonrel- Q 4! € urapt ' ©)
ativistic notion, it can be applicable to relativistic cageee the
discussion in Ref.19]). A “spin” in that case is defined as the rank Where H**%# is a field strength for a three-form potential
of the spinor which describes the corresponding wave function, an€ .z, H,,05=9,Crap=9,Cap—94Coup=95C1q, - The
an “orbital momentum” is set by the coordinate dependence of theC ,, field itself is defined as a composite operator of colored
relativistic wave functiorf19]. : a _ 29/pd 5 pd_ pdg pd
®&When the equations of motion are used the number of degrees g_quT_flealds A i‘”f; C[ﬁ(g)/64g7r ](A"a"A“ AP )
freedom of the fermionic fieldv also reduces. The off-mass-shell Aad ALt 2TapALAAL), With fape being structure con
spinor¥ has four real degrees of freedom, while it propagates only
two independent degrees of freedom, when the on-shell condition is
imposed. Those two degrees of freedom describe only(ouaeof ’In general, one is not allowed to use the equation of motion if the

two) gluino-gluon bound states given in the list above. vacuum expectation valu¢/EV) of the F field is considered.
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stants of the correspondir®U(N.) gauge group. The right- [22,24]. The easiest way to present this multiplet is to intro-
left derivative in this expression acts asdB=A(¢gB) duce the following real tensor superfigld
—(0A)B B 1

Using these definitions, one finds that the expression bi-  y=B+jgy—igy+ — #2A*

linear in theF field acquires the following form 16

Ny N A
1 1_6 ZS 0" Ve pap
tE_S2_ 142
FrR=3%— THl 05 RN

+§0 0 ?\If—i-o"‘é’ﬂ)(

The second term in this expression is a kinetic term for the 1, V2 — 1 (1 )

three-form potentialC,,,. As before, theS field can be +56%60| gV —atd,x |+ 76°6% 72—~ 0"B|. (7)

integrated out, however, one should be careful in dealing

with theC,,,, field. It is a matter of a straightforward calculation to check that

In Ref.[17] it was argued that the three-form fie@@,,,  the real superfield) satisfies the relatiof
plays an important role in the description of the pseudoscalar —, .
glueball. That glueball can be coupled to the QgDmeson D°U=-3S )

by means of the€ ,,, field [21]. In the case of SYM theory, . , .
the analog of the;’ meson is the gluino-gluino bound state Thus, the real tensor multiplét, defined by the expression

which acquires mass due to the anomaly in thel )g cur- (8), includes all the components of the chiral supermultiplet
rent within the V'Y approach. Thus, it is natural to attempt to> Besides that the multiplet has also an additional sdalar
couple the pseudoscalar glueball to the pseudoscalar gluin@nd fermiony. Thus, using the relatiof8) the VY action can
gluino bound state within the VY action using the three-formP€ rewritten in terms of the bigger multiplel. We will
potentialC show below that this alllows one to include glueball operators
uva - . . .
To elaborate this approach, let us rewrite the SUSY transi the effective actiort’

formations for the components of tiesuperfield in terms of First, let us notice some features of SUSY transformations
3 andC,,, (instead ofF andF*) [22,23: of the components of thd field. The components which are
mva ’ .

shared by the tensor multiplét and the chiral multipleS
(namely A, ¥, 3, and C) transform among themselves,
while other fields B and ) are connected by SUSY rota-
tions to the other four components. Furthermore, one can
define a “gauge” transformation of theg field as the fol-
lowing shift U—U+Y, where the superfield satisfies the

] — i relationD2Y=0. It is important to notice that by means of
8, ¥ =20+ L, A+ 27| S+ gsumﬁaﬂcmﬁ , this “gauge” transformation, one can get rid of tBeand y
fields in the expression for tHé multiplet. This is the analog
of the Wess-Zumino gauge for the tensor multipletThus,
) any Lagrangian written in terms of tt&field only, if reex-

_ = wq T pressed in terms of thid field, is necessarily invariant under
8= \/E(ga IV +E0t0, W), the “gauge” transformation defined above. As a result,Bhe
and y fields can always be “gauged” away from that La-
grangian. Thus in order to be able to retain Bhandy fields

S A=\20V,

8,C vapu(LTPV — LoPW).

1
Vaﬁ_ﬁs
%In this discussion we follow the conventions of REZ3].
1%Despite a seeming similarity, the tensor multiplétshould not
The set of fields given above forms an irreducible represenbe interpreted as a usual vector multiplet. The vector field which
tation of supersymmetry algebra. All these fields can be asmight be introduced in this approach as a Hodge dual of the three-
signed to a supermultiplet introduced in REZ2]. That su-  form potentialC,,,,, would give mass terms with the wrong sign in
permultiplet is called a constrained three-form supermultiplebur approachsee Sec. )| thus, the actual physical variable is the
three-form potentialC,,,, rather than its dual vector fielgthe
Chern-Simons current
8The quantityQ can also be expressed through the Chern-Simons 'This representation of SUSY was earlier used in the context of
currentk , asQ=4,K, . Using this equation one can deduce the SYM theory in Ref[25] to study the phenomenon of gaugino con-
relation between the Chern-Simons current and the three-form padensation with a field dependent gauge coupling. We thank J.-P.
tential C,, 5, these two quantities are Hodge dual to each otherDerendinger for bringing Ref25] to our attention. See also dis-
K#=(1/31)*"*FC, 5. cussions in Ref[26].
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as dynamical variables, one must include terms in the Lawherea and & are arbitrary positive constants. One obtains
grangian which breaks this “gauge” invariance. The sim-the VY Lagrangian in the limits—cc. In general, higher
plest term of this type is the quadratic terid?)|,. Once  powers ofU (and derivativescan also be added to this La-
such a term is included in the Lagrangian, the “gauge” sym-grangian. Those terms would introduce new quartic, quintic,
metry becomes explicitly broken and tiBeand y compo- and other higher interaction terms. However, the quadratic
nents of the superfield survive as dynamical variables. part of the action which defines masses will not be affected.
Let us now apply théJ field formalism to the VY action. In that respect, the effective Lagrangiéti) can be treated
In the case at hand, the chiral symmetry is spontaneouslgs the one describing small perturbations of fields about a
broken by the gluino condensate. In terms of the chiral suvacuum staté?
perfield, this corresponds to the existence of a nonzero VEV Let us determine the SUSY vacuum state defined by the
of the S field Lagrangian(11). The potential for the model is a compli-
cated function of the variables present in tesuperfield.
(S)=nb. After integration over the auxiliary. field, the bosonic part

. . ) . , of the potential is
With that in mind the appropriate relation between the

field and the chiral multiplet is 2 ||+ ub—2u3| |2 cos P
_ V= 2 2
D2U=-}(S—(S)). © 5(16) 4]
2 4
The only result of this modification is that the fieddin Eq. + 3 5 Chvr , 92l9| L 5 1
(7) gets replaced by the quantify—(A). o(48)° | ¢|? 4 1—(al5)(B%|¢])
Now use the relatioi9) to rewrite the actior{4) in terms B 3

) Els

2
)72
X 1+ coSs —3vlo , (12
24547\ 1 [P ¥ 7%4 (12

of the U field. In order to break the “gauge” invariance of
the VY action, we add a term proportional t to the VY
Lagrangian. An appropriate term with zeR-charge and
correct dimensionality is where we introduced the notatiogts= AY® and p=arge.
In order to find the vacuum state, one should find the
u? absolute minimum of the potentiél2). Since we are dealing
TS9P (100 with a supersymmetric model, the value of the potential in
D that minimum has to be zero. As a result of Lorentz invari-
) ) i ance, the VEV of the three-form field is zero, i4C,,,)
Below, we are going to show that once this term is added t&_§ The VEV ofQ is also zero due to the CP invariance of
the VY action(4), the following fields become dynamical. e model. Further calculations are tedious and we will not
TheB field propagates and it represents one massive redresent them here. After some algebra one finds that the only
scalar degree of freedortidentified later with the scalar global, CP invariant minimum of the potentidl?) is given
gluebal). _ _ _ by: (¢)=pu, (B)=(C)=(p)=0. The effective Lagrangian
The three-form potentieC,,,,, which becomes massive, (11) describes small perturbations of fields about the vacuum
a}lso propagates. It represents one physical degree of freedafflta gefined by these VEV's.
(identified with the pseudoscalar glueball o We would like to make a comment here. It deals with the
The complex fieldA, being decomposed into parity €igen- region of validity of the potentiall?) [i.e., of the Lagrangian
states, describes the massive gluino-gluino scalar and PSetr1)]. The expressiori12) can be a correct potential for a
doscalar mesons. _ _ .. supersymmetric model if| ¢|*> aB2. Since the fieldg and
x and ¥ describe the massive gluino-gluon fermionic g yescribe perturbations about the valugs x andB=0,
bound states. _ . respectively, the inequality above is satisfied for small per-
Relations between masses of these states will be given fypations of both fields. The singularity in the potential at
the next section. 8| ¢|*= aB? indicates that for large perturbations, the higher
dimensional terms omitted in E¢L1) should become impor-
C. The mass spectrum tant. As we mentioned above, we are mainly concerned with
Based on the arguments given in the previous section, ong€ Mass spectrum of the model which can be studied using
can write down the effective Lagrangian for the lowest-spinSMall perturbations about the ground state, so that the ap-
multiplets of theN=1 SUSY YM theory in the following Proximation given in Eq(11) is good enough for our goats.
form

_ 1 + )\ 1/3 S 2Notice that one can write the Lagrangiéid) in terms of theU
E_E(S S oty SlOgE -S F+ H.c. field alone. However, for clarity of gresgntation, we leave the VY
part of the Lagrangian in the original form.
1 u? 3The potential(12) describes a SUSY minimum in the field
5l (S+—S)1’3 ) (11 space. The potential well has infinitely high walls, at values of the
D fields satisfyings| ¢|*= aB2.
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The mass spectrum for the bosonic part of the model cain accordance with this expression, tBefield which is left
be calculated from the potentiél2). However, we find it in the effective Lagrangian describes a mixed state of the
more illuminating to write down the quadratic part of the scalar glueballformer field) and the scalar gluino-gluino
Lagrangian(11). Then physical masses can be computed a®ound states.
eigenvalues of the corresponding quadratic forms. If the VY superpotential were neglected for some reason
Let us rewrite the expression for the Lagrang{dd) in  in the expressiori11), then the two Weyl fermion fieldg
terms of component fields keeping only the quadratic termsand { would combine together to form one Dirac massive
bispinor. However, the presence of the VY superpotential
yields an additional contribution to the mass term of the
1 1 1 field. Thusy and{ cannot be treated as the components of
L=— Z&MS&MS > 3,pd,p+ 6CWT¢92C"” one Dirac spinor. Instead one is left with two Weyl fermions
describing two different spin 1/2 massive states. In general,
1 o 3 [a the form of the bilinear terms in the Lagrangi&h3) sug-
-59,Bd,B+i ﬁﬂgaﬂé'-i- i z?M)(O'M)(-FEZ— g\[g,uEB gests that all the physical states of this theory should occur as

M
2 mixed states of the initially pure bound states of the La-
9% ,, 9« ,, 2« ., grangian(13). . _
_5(16)2“ s°— 5(16)2’“ p —mu Clur Below, we deduce the masses of these mixed physical
states. Let us write down the mass and mixing terms of the
9ay , Y9ay —, Lagrangian(13) separately. Substituting the expression for
T = —,u§ the X field (15) into the Lagrangiar{13), one finds the fol-
lowing pairs of variables being mixed with one another:
i3V2 [a . i3y2 — o o1 o
TR ,ux * “
16 S 16 _ . 22,7 2.2 2.2 2
B ssystem.5(16) ,uS+2a7,uS+5(l6) w’B
+9\2ayusy —9\2ayupQ+- -, (13
2742
" T16 5“7“ “Bs,
where dots stand for cubic and higher dimensional interac-
tion terms. The fields which appear in E43) are related to 9a ,, 27a ,,
the original fields of Eq(7) C—p system: 5(1624°P +(48)25’U“ Clur
92
1/3 a . v +Ta7Mp8””‘T&MCWU
A= g=pt \(stin), L=

7—2 |3\/_

9ay 2, N
X—{ system: — M R TS 5Mx§

Besides that, in Eq.13) we performed the following rescal-
ing of the variables —i3\E\/§ _ 16
16V 3HX¢-

2 2 In order to find the physical masses, one must diagonalize
2_>3\/E,u ot Cﬁg\/z’“ C. the corresponding mass matrices. Concentrate, for instance,
on the first row of these expressions which describes the

mixed state of scalar mesas),and scalar meson-gluebaH,

x— \/S,ux, B— \/EMB. (14  The former gets mass both from the superpotential and
U2-term, while the latter gets mass only from tbié-term.
When the mixing term is switched on, the initially heavier
state €) gets even heavier, and the initially lighter staB) (
ﬁqecomes even lighter than they were originally. Performing

e diagonalization, one finds that the physical eigenstates
nilil'e mixed states with the following mass eigenvalues:

The s and p fields, as they stand in the Lagrangiét),

describe, respectively, the scalar and pseudoscalar gluin
gluino excitations. TheC field, being a massive three-form
potential that propagates one physical degree of freedo
describes the pseudoscalar glueball. Ehéeld can be inte- 1

) : 9 81
grated out by means of the equation of motion: 2 e 2,2,2

_ = 24 7
>MH= 512 T XYM

s= 3\/58 9\2 15 B e e ] 1
16V sHB~ 5 avus. (15 Za Yu 2883 (ay)? 17
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and bound states. Instead, the physical excitations are mixed
states of these composites. The heavier set of states contains
1, 9  , 81 ,,, a pseudoscalar meson, which without mixing reduces to the
2 M= 5162 TR 0~ " gluino-gluino bound statéthe analog of the QCDy’

meson, a scalar meson that without mixing is ks 1 0"

8L, ., , \/ﬁ gluino-gluino excitation, and a mixed fermionic gluino-gluon
Y 1+ 28835 W- (18 bound state.

These heavier states become the chiral supermultiplet de-
Here, the subscript “H” refers to the heavier statevhich scribed by the VY action in the limit that the additional term

without mixing, would have been a pure gluino-gluino boundWe have added to the effective Lagrangian is removed. The
state(the s particle). “L” refers to the lighter stateB (B in new states which appear as a result of our generalization

P 9 forms a lighter multiplet: a scalar meson, which for small
the absence of mixing

e : mixing becomes a0* (1=0) glueball; a pseudoscalar state,
e ey ol iih o small mixing s dentes s 3.0 (1-1) gl
] ) -~ = ! ' ' rl)all; a mixed fermionic gluino-gluon bound state.

heavier mass eigenstatgs { acquire the mass squared  \ye call the reader’s attention to an interesting feature of
eigenvalues given by the expression fof,, and the lighter  the effective action introduced here. Although the physical
eigenstate, y have mass squared eigenvalues equal tastates fall into multiplets whos# quantum numbers corre-
mf. Thus, as expected, the physical states form two multipspond to two chiral supermultiplets, the action is not written
lets, one with masmﬁ and the other with masmf. in terms of two chiral supermultiplets. Another representa-

Let us discuss various limits of Eq&l7) and (18). Sup-  tion of SUSY is used, as explained in Sec. II. In particular,
posea— 0. In that limit the superpotential and the terms  the pseudoscalar glueball in this approach is described by the
can be neglected in the Lagrangiéit). The Kzaler poten-  only physical component of the massive three-form potential
tial, which would be the only term left in the expressidd), = Cn... The field strength of that potential couples to the
would yield only kinetic terms for the excitations. Thus all Pseudoscalar gluino-gluino bound state as it would couple to
those states would be massless. This is in agreement with ttiée »" meson in QCD.
expressiong17) and (18) which turn into zero agr—0. Masses of the physical states depend on two independent

In the y—0 limit the superpotential disappears. Thus, themass parametef§a/ ) u and ayu] formed from constants
mass terms for the physical states come only fromWKe occurring in the effective Lagrangian. However the result
term in the Lagrangiamll)_ As a resuh:, all the masses are that the ||ghter mUltlplet contains the predominantly glueball
expected to be equal and there is no mixing between purxcitation is independent of the values of these parameters.
gluonic and fermionic states described above. Also, as notebhis prediction receives some support from recent lattice
ear”er, theX andé" Wey| fermions come together to form studies of SUSY YM theory. Although the lattice results for
one massive Dirac bispinor. The limit—0 is physically —the mass spectrum are available only away from the SUSY
equivalent to the limis—0; in both cases the superpotential POInt, the general tendency is that a state which is mostly a
can be neglected in comparison with & term. glueball is lighter than the state which is mostly a gluino-

Finally, let us consider thé—oc limit. One can neglect 9IUino composité’ [27]. More detailed lattice results would
the U? term in that case. As a result one rederives the Vyin principle permit fixing the combinationa/é and ay
Lagrangian with the spectrum given by the second term inwhich are undetermined within the effective Lagrangian ap-
Eqg. (17) [or Eq. (18)] multiplied by the factor of two. No Proach. However determining the masses of the two multip-

limit. degenerate and if mixing is large, they are in general both

excited by a given source.

Il. SUMMARY AND DISCUSSION
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sor supermultiplet and adding an extra term to the VY effec-

tive action. The extra term is necessary in order to retain the

variables_correspondi_ng to glueballs as dynamical fields in 14y refrain from using quenched approximation res[28] to

the effective Lagrangian. obtain information on the supersymmetric theory because in SUSY
Studying the potential of the model, we find that the yang-Mmills theory all composite masses are proportional to the

physical eigenstates fall into the two different “multiplets” gluino condensate, as can be seen explicitly from our results. In the

with masses given by Eq$l7) and (18). Neither of them absence of dynamical gluinos, masses can only be proportional to

contain pure gluino-gluino, gluino-gluon, or gluon-gluon the SUSY breaking condensat6,,G*").
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