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We investigate the topological structure of the vacuum ir{3lattice gauge theory. We use under-relaxed
cooling to remove the high-frequency fluctuations and a variety of “filters” to identify the topological charges
in the resulting smoothened field configurations. We find a densely packed vacuum with an average instanton
size, in the continuum limit, op~0.5 fm. The density at large decreases rapidly asgl/*’. At small sizes
we see some signs of a trend towards the asymptotic perturbative behawiqppf p. We find that an
interesting polarization phenomenon occurs: the large topological charges tend to have, on the average, the
same sign and are over-screened by the smaller charges which tend to have, again on the average, the opposite
sign to the larger instantons. We also calculate the topological susceptilyilityfor which we obtain a
continuum value ofxtl/4~ 187 MeV. We perform the calculations for various volumes, lattice spacings and
numbers of cooling sweeps, so as to obtain some control over the associated systematic errors. The coupling
range is 6.8<3<6.4 and the lattice volumes range from*¥818 to 32X 64. [S0556-282(98)01813-X]

PACS numbegps): 12.38.Gc, 11.15.Ha

[. INTRODUCTION In this paper we attempt to see what one can learn about
the detailed topological structure of the @Jvacuum, using
SU(N) gauge fields in four Euclidean dimensions possessimulations of the corresponding lattice theory. Some of our
an integer topological charg@ [1]. The topological fluctua- initiall motivation was provided by an early work of this k[nd
tions of the gauge fields are important in QCD; for examplel13] in the SU2) theory. Recently, several more detailed
they are the reason why th¢’ has a mass-1 GeV rather SU(2) studies have appear¢i4—16 as well as preliminary
than being a Goldstone bos§2]. One can also argue that '€POrts[17—19 of some SUB) work (including a brief sum-
they have something to do with chiral symmetry breakingMa"y Of the work in this paper Most of these papers ap-
[3—6] and that they may have a significant influence upon thé)eared too recently to influence our work. For this reason we
hadron spectrurf]. The reason why topology might be able shall_ not attempt to review them or to compare our results in
to do all this is that an isolated instanton produces a Zeroc_ietall with theirs. However the reader should be aware that

mode in the Dirac operator. In the real vacuum these mode@ere are some quite sharp disagreements within the most

will mix with each other and shift away from zero. Just how recent SW2) calculations. In particular between those studies
they do so will determine their importance for the physicsthat claim to find a reIaﬂver dilute gas of rather S”.‘a” n-
described above. This mixing will be determined by the to_stanton:{lS], and those _that f|no_l a c_jense gas of considerably
pological structure of the vacuum; and in the first instance b larger instantonl6]. Naively, this difference would seem to

how large and densely packed are the component topologic oF .gﬁ)zrttrag t:)e_th.ﬁ p2¥t§écslatrh?r:eo?;gg've;frrzn}. ttsh%gt)tg?-
charges. Although what one ultimately wants to know iswi%rl1 instarlljtog |i’L:id pmo:jeulé4] This indicaFt)(Iasl{[hat Icurrent
what happens in the vacuum of QCD, the pure3lgauge d :

theory is also interesting; not least because of its relevance {8tt|ce calculations of topological structure—including this

; ; —should be regarded as exploratory.
the physics of quenched QCD, which seems to be a goo ne—s o
approximation to the real worlZ]. Moreover in the case of The work we do In this paper uses an ensemble of stored

the ' it turns out that it is the topological charge in the pureSU(3) field configurations that were generatgd by UKQCD
) ) for other purposes. All were generated with a standard
gauge theory that is most relevant: one can use Iakge-

. _ plaquette action on periodic lattices. We shall analyze 100
arggment$82,9].to relate the strength of the topo!ogmal fluc 16°x 48 and 50 32x64 lattice field configurations aB
tuations,(Q), in the SU3) gauge vacuum ten,, :

=6.0, 100 24x48 configurations at3=6.2, and 20

) 5 32°x 64 configurations ap=6.4. The field configurations

_ (Q9 _ f_w 2 2 52y 4 are typically separated by 800 to 2400 Monte Carlo sweeps

Xi=———= m’,+m;—2my)~ (180 MeV)*. : .
volume 2N; 7 K and therefore represent approximately independent snapshots
(1) of the vacuum. The lattice spacirgdecreases by almost a
factor of two over our range o8 and so this will allow us

Naturally this has long been a focus for lattice calculationssome control over the continuum limit of the theory. At the

[10] and indeed it appears that HG) is satisfied10—-13as same time, the two quite different volumes @t 6.0 will

well as one could expect. allow us some control over the thermodynamic limit.
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In the next section we discuss topology on the lattice andiction is independent gf. The gauge potential of an instan-
introduce the cooling algorithm which we use to reveal theton of sizep centered ak=0 is given by
topological charge densitfQ(x). Once we have(x), we

A g . 2
then want to decompose it into a sum of instantons and anti-

| _ -1
instantons of various sizes. For the densely packed vacuum Aul)= x2+p29 (X)9,9(x) 3
that we find, this represents a difficult pattern recognition
problem. We shall provide a sequence of procedures—on#here
might call them filters—which are designed to solve this .
problem. These procedures are necessarily approximate and g(x)= XotIX;0; 4)
the details can be tedious, but they are essential for anyone (XMX,L)“

who wishes to reproduce our calculations. For this reason we ) )

shall relegate some of the technical details to the appendixP 10 @ gauge transformation. These expressions are for
There follow two sections describing the main results of ourSU(2); they can be trivially extended to $8) by embedding
investigation of the vacuum topological structure. This will the SU2) fields into SU3) fields. o

include the instanton size densit(p), with a particular In the semiclassical limit a field of charggwill typically
emphasis on the mean instanton size, the functional form dgfontainn, instantons andy=n, —Q anti-instantons, all of
the smallp tail, where asymptotic freedom makes which are well separatgad. In this d|_Iute gas approximation,
asymptotic predictions, and the largdail, which is deter- the average density of instantons will dependpoas

mined by analytically incalculable infrared effects. We then do 1

investigate the correlations between topological charges. D(p)dp= hlid —4e*8"2’92(”). . (5)
Here we find a quite striking long-distance polarization phe- P

nomenon which has not, as far as we are aware, been re-

marked upon before. The next section contains our calculaVhere the ellipsis represents factors varying weakly with

tion of the continuum topological susceptibility, something We recognize in this equation the scale-invariant integration

which is free of the many uncertainties that adhere to ouf€&Sure; also a factor to account for the fact that a ball of

4 - . . .
calculations of the vacuum structure. We finish with somevelume p* can be placed in a# different ways in a unit

conclusions. Throughout the paper we attempt to point ouyolume; and finally a factor arising from the classical instan-

H — 21~2
how our study can and should be improved. ton action,S,=87°/g%(p). _
Note that at this point we have departed from the classical

calculation: perturbative fluctuations around the instanton

break scale-invariance, promoting the bafeto a running
Two continuous gauge fields that have different topologi-g°(p) in the usual way. This is crucial. When we insert the

cal charges cannot be continuously deformed into each otheasymptotically free form of the coupling, we obtain

When we discretize space-time, however, the fields are no 6

longer continuous and the notion of topology becomes am- D(p)oc(ﬁ) 6)

biguous. Nonetheless, because the theory is renormalizable &l

(and because the lattice is surely a good regulédtonust be _ _

the case that we recover all the usual topological propertie¢hereé is the physical length scale of the theofyhe cor-

as the lattice spacing vanishes 0. (For a brief discussion esponding power in S@) would bep”.] We observe that

of this issue se¢20].) In this section we summarize some the number of instantons vanishes rapidly@s 0 (rather

relevant properties of continuum topology and some of thdhan diverging as it did in the classical thepryhis makes it

prob|ems that arise when gauge fields are regu|arized onto maUSible that the introduction of a lattice will not affect the

space-time lattice. We focus on one approach to solvinghysics once<¢.

these problems, “cooling”[22,10, and then motivate in The behavior ofD(p) in Eq. (6) is only valid for p<§

some detail the particular version of cooling that we shall uséince only then ig*(p) small enough for perturbation theory

in this paper. to be applicable. Fop=¢ the instantons will presumably

overlap and the density is not calculable analytically. One of

the things we want to learn from lattice calculations is what

) ] actually happens at larger Note that the characterization of
The topological chargeQ, of a gauge field can be ex- tne topological charge density in terms of charges of pize

pressed as the integral over Euclidean space-time of a topeight not be possible, even to a first approximation, in the

Il. TOPOLOGY OF LATTICE GAUGE FIELDS

A. Topology of continuum fields

logical charge densityQ(x), where real vacuum. Although we shall use that language for con-
1 venience in our discussions, we shall make some attempt to
Q(x)= 352 Suvpo TH{F ,,(X)F ,o(X)}. (2)  Question its validity.

The minimum action field configuration wit=1 is the B. Topology of lattice fields and cooling

instanton. The action and topological charge density are lo- A lattice gauge field consists of group elemerts,(x),
calized within a core of size. At the classical level the on the links of the lattice. A lattice “instanton” can be con-
theory is scale invariant and so all sizes are possible and tharucted straightforwardly by defining
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If we apply Q,(x) to the real vacuum, however, we im-

: @) mediately encounter problems. The operator is dimensionless
and so O(a®) actually means terms such asa’F3,
~a®FD?F etc. For smooth fields these are inde@¢g®).

where the gauge potential,(x) is as in Eq(3), but with its  However realistic fieldsthose that contribute to the path

origin translated to the center of a hypercul@n a compact  jntegra) have fluctuations all the way up to frequencies of
space, e.g. a hypertorus, we need to go to singular gauggy(1/a). The contribution of these high frequency modes to
using the tr_an;lated version g(x) in Eq. (4), before impos- the O(a®) terms will be 6Q, (x) ~ax 1/a®~0(a% (up to

ing the periodic boundary conditiosAs long asp>a any  gome powers ofg that can be calculated in perturbation

reasonaple dgﬂmt;on of topolog.|cal pharge \.N'”. assign theory. Thus in the real world) (x) possesses interesting
=1 to this lattice field. If we are in a finite periodic volume _ I — (1672/33)
topological contributions that are of ordafoce™ (1677338

of length La, then thisQ=1 lattice field will be close to ) h ) ) )
being a minimum action configuration as long asp  (Using the running coupling on scagefor g°) and uninter-
<La. (Exactly how close will depend on the particular lat- €Sting ultraviolet cont_nbqun; t_hat are of ordeﬁfl/ So as
tice action being usedIf we now smoothly decreasgto ~ We approach the continuum limjg— <, the ultraviolet fluc-
valuesp<a this lattice field will become indistinguishable tuations dominate and completely mask the interesting phys-
from a gauge singularity and hence will ha@e=0. Thus we  !CS- _ o
explicitly see the ambiguity in assigning a topological charge Actually things are somewhat worse than this. Like other
to a lattice gauge field. composite lattice operator, (x) possesses a multiplicative
Note that this ambiguity disappearsas:0. Indeed sup- lattice renormalization factor:Q =ZoQ where Zg=1
pose a lattice field configuration is to be smoothly deformed-5.4518+O(1/8%) [12]. This looks innocuous, and indeed
from Q=1 to Q=0. This requires a topological fluctuation in the continuum limit it obviously is. However in the range
to be squeezed out of the lattice, as described above. Whilef values of 8 where current lattice calculations are per-
we do not know much about the structure of the originalformed, typically 3~6, we see thaZy<1, rendering the
fluctuation (it will typically be on a size scale- £ which is  topological charge virtually invisible.
beyond the reach of our analytic techniques do know To deal with these problems we shall use the technique of
that if the lattice spacing is sufficiently small then to reach“cooling” [22] the fields. The idea rests on the observation
p~a the “instanton” will have to pass through siz¢s>p  that the problems are all caused by the ultraviolet fluctua-
>a. In this region the density is calculable as we saw above{ions on wavelengths-a. By contrast, if we are close to the
with a probability that is very strongly suppressed; at least asontinuum limit, the topology is on wavelengths-a. One
~(pl&)® for SU3). So the changing oR is conditional can therefore imagine taking the lattice fields and locally
upon the involvement of field configurations whose smoothing them over distancesa but <p. Such a smooth-
probability—0 as a—0. Thus, as we approach the con-ing would erase the unwanted ultraviolet fluctuations while
tinuum limit this lattice ambiguity vanishes very rapidly. not significantly disturbing the physical topological charge
[And much more rapidly in S(8) than in SUW2).] Thatis to  fluctuations. One could then apply the opera@r(x) to
say, the situation is much as with the calculation of any othethese “cooled” fields to reveal the topological charge distri-
physical quantity: one can only trust one’s results after perbution of the vacuum.
forming the appropriate scaling analysis. How do we cool a lattice gauge field? The simplest pro-
Since we are interested in learning about the sizes of theedure is to take the field and generate from it a new field by
topological charges we need a lattice version of the conthe standard Monte Carlo heat bath algorithm subject to one
tinuum charge densit@(x) defined in Eq.(2). Let U ,,(x) important modification: we always choose the new link ma-
be the ordered product of link matrices around the plaquett&ix to locally minimize the plaquette action. Since
labelled by the sitex and the plangu,v}. (For brevity we  Tr U,,(X) measures the variations of the link matrices over
will refer to this group element as a plaquettds is well  a distancea, minimizing the plaquette action is a very effi-
known, we can expanww(x)=1+a2|:w(x)+--- and so cient way to erase the ultraviolet fluctuations. Obviously
we can define a lattice topological char@e(x) as follows there are many possible variations on this theme and we shall
[21]: return to that question shortly.
Thus the idea is that we take our ensembldNofjauge
1 fields, {U'=1--- N perform a suitable number of cooling
Q0= g2 e TV OOV b} =21Q00 O e B o cooted i, We then extract e
c .
® desired topological properties from these cooled fields. What
are the ambiguities? As we cool, topological charges of op-
(In fact we employ the version of this that is symmetrizedposite sign will gradually annihilate. This changes the topo-
with respect to forward and backward directions, so that théogical charge density but not the total value®@f Eventu-
operator changes sign under reflection in any gifswe  ally this leads to a dilute gas of instantons. As we cool even
apply this formula to a smooth gauge field then we find, adurther these isolated instantons will gradually shrink. Even-
expected, that the corrections @¢a?); for example, in the tually they shrink within a hypercube and at this point even
case of our instanto®, = [ Q, (x)dx=1+0(a?/p?). Q will change.(This will occur if we cool with a plaquette

UlL(x)="P exp( JXMZLA'M(X)dx
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action on a large enough volume: other actions may lead t 30 T T . .
other outcome$.Of course when an instanton becomes nar-
row it has a very peaked charge density and is impossible t "Ommmm%%o
miss. So we will certainly know when it disappears out of %0
the lattice and can, if we think it appropriate, correct for that. 20 o © .
So cooling provides a reliable method for calculating the °
total topological charge of a lattice field. However the topo-S; o
logical charge density changes continuously throughout thi * 0
cooling process and so what we learn from it is far more 10
ambiguous. For this reason we shall try to use as few cooling o

sweeps as possible and, in addition, we shall repeat the cs .
culations for various numbers of cooling sweeps so as to tn A

and disentangle any artifacts of the cooling procedure. , l , % ...

C. Under-relaxed cooling calibrated cools

Consider first the case of $2) and suppose we are using  FiG. 1. Action ofI1 pair against number of calibrated cooling
a plaquette action. The part of the action that involves th&weeps, fore=0 (®) anda=2 (O).

link matrix U,(x) is proportional to T{U#(x)i(x;,u)}

where3 (x; ) is an SU2) matrix proportional to the sum of ~ Let us now ask how rapidly the topological structure

the “staples” around the link under consideration. So if we changes under cooling. To address this question we construct
were choosing a new link matrid’,(x) to locally minimize ~ classical instanton anti-instanton pairs of various widths and
o

various distances apart. We then cool them and see how

B 12 _ T . B
the action, we would choosd (x)=X"(x;u). Repeating  many sweeps it takes to annihilate them. We express the
this procedure for all the links of the lattice would constitute , ,mber of sweeps in units of the corresponding calibrated

the simplest type of cooling sweep. We might howevergyeeps, ie. in units ofi,(«) in Eq. (10). An example is
imagine generalizing it to the choice shown in Fig. 1. In this plot we show how the action of an
instanton anti-instanton pair, wiih=3a and separation &,
varies with the number of cooling sweeps. We show sepa-
] o ] . rately what happens far=0 anda=2. We observe that in
Wher_e(_: is a normahzqﬂon constant ensuring that the link nits of the calibrated sweeps, cooling with=2 alters the
matrix is unitary andx is a free paramete(This has been  (qqogical structure more slowly than=0 cooling. This is

called “under-relaxed” cooling[13].) This will smoothen ot 5 |arge effect but is characteristic of what we see with
the fields fora=0. We will use this freedom to try and giper examples.

choose a form of cooling that is optimal for our purposes. |, addition to the above studies we have also compared
To use this method in SB), we simply apply it to the e effects of the different kind of cooling on thermalized
SU(2) subgroups that arise in the standard Cabibbo-Marinarjgq configurations. To be specific, on five 3648 lattice

algorithm. o . , _fields generated aB8=6.0. We cooled these witlx=0.0,
We shall use three criteria for deciding what is the opti-n5 10 15 2.0 2.5 and 3.0. In Fig. 2 we show how the

mal choice ofa. _ _ action decreases with the number(célibrated sweeps. We
(a) We want to use as few cooling sweeps as possible.

(b) We want to disturb the topological charge density as
little as possible. )

(c) We do not want instantons which initially haye-a
to broaden as we cool.

So the first thing we wish to do is to compare the different
kinds of cooling sweeps. We calibrate them as follows. Dis-
cretize an instanton of size=2a as in Eq.(7). Now cool it
until it disappears. Our criterion for disappearance is that the
action drops below 10% of the continuum instanton action.
We find that the number of cools., to do this varies with
« approximately as follows: 1000

U, (x)=c(aU,(x)+27(x;u)) 9

100000

10000 ¢

ne( @) =23+ 32a. (10)

100 1 | 1 1

(One can easily show that, at large n. must increase lin-
early) This is a measure of how effectively the different
kinds of cooling erase high-frequency modes: and as ex- FIG. 2. Action against number of calibrated cooling sweeps, for
pected we need more sweeps as we increase a=0 (@) anda=2 (O).

calibrated cools
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see that the curves correspondingate 0 anda=2 almost In this section we describe how we extract and categorise
fall on top of each other. This confirms the fact that to a goodhe topological structure of the cooled field configurations.
approximation a calibrated sweep has the same effect on the The first step is to use the peaks Qfx) to locate the

ultraviolet lattice modes for ang. centres of the topological charges and to provide a first esti-
As an aside we note that the action drops much further inmate of their sizes. We then need to correct for the influence
the firsta=0 cooling sweep than in the firgt=2 (uncali- of the charges on each other. The next step is designed to

brated sweep. To the extent that there is a worry about whateduce the number of false identifications. These may arise,

might be happening at this early stage, there might be somi@r example, from secondary ripples on very large instan-

advantage in the smoother under-relaxed cooling proceduréons. We implement two filters for this purpose. That there
Finally we note that while the value @, after one cali- are in fact many mis-identifications is easy to show. We have

brated cooling sweep is independentaodn three of the five n, candidate instantons amgt candidate anti-instantons. The

configurations, it differed by 1 on two of them. To be pre- total topological charge is therefore predicted torhe ny.

cise, the fields cooled with=0.5 all agreed with each other At the same time we can calculat® directly from

and the disagreement was with the=0 case. It could be [Q,(x)d*x. The quantity

readily traced to a single “instanton” that was narrow during

the first few cooling sweeps, and which rapidly shrank out of 50=|Q—(nj—ny)| 11

the lattice with furthere=0.5 cooling, but which broadened

undera=0 cooling. This anomalous broadening must be aprovides a direct measure of the mis-identification, and typi-

result of the non-trivial environment in which the narrow cally turns out to be substantial. At the same time this pro-

instanton is sitting. It is however something we would wishvides us with a criterion for choosing the parameters in our

to suppress as much as possible and this is an argument ffiters: they are chosen so as to minimize the valué&).

not usinga=0. Our discussion so far has been based upon the topological
We have seen that in appropriate units we can disturb theharge density. Clearly there is information carried by the

topological charge density less by usingt0 and that we action density as well and one might ask whether it would be

simultaneously reduce the probability pf-a artifacts sur-  useful to incorporate that. We investigate this question in the

viving the cooling. Our studies are far from definitive and last subsection and find that the action density has little new

because of their low statistics might even be misleading; buto tell us about the smaller charges that are easy to identify

they do serve to illustrate the criteria that it would makeanyway, and is not able to resolve the larger charges where

sense to use. Motivated by what we have found we shall usgll the uncertainties lie. Thus for the remainder of the paper

under-relaxed cooling witlk=1 for the remainder of this our analysis will be entirely based upon the topological

paper. charge density.

IIl. PATTERN RECOGNITION A. Peaks and neighbors

Since the cooling algorithm is local it will erase the high- ~Once we have cooled a field configuration we calculate
est frequency modes first. Ideally we would like to stop thethe topological charge density using H&). The peaks in
cooling once it has erased all the modes on scaleg but f[hls density are capdldate_ Iocatllons of instantons. However it
before it has significantly affected the physically interestingiS Our experience in dealing with smooth discretised instan-
modes on scales ~O(¢). Such a clean separation is not ©ONS 'Fhat it is dangerous to define a pe_ak qnly with respect to
possible in practice and by the time we have cooled enougH€ Sites that are-a away in any one direction. One instan-
to reveal the long-distance structure @{x) we have cer- ton can readily produce peaks on sites across diagonals of a
tainly deformed that structure. Thus one has to perform th&yPercube. . -
calculations for various numbers of cooling sweeps and at- We therefore defin®, (x) to have a peak ax, if its
tempt to identify those features that are relatively robust. Value atx=Xx, is greater than at all the*3sites belonging to

Because our cooling algorithm gradually deforms a fieldthe corresponding hyperbox centeredsgn (With an obvi-
configuration towards the minimum of the action, the topo-0us modification to account for negative maxiy@af course
logical charge density will increasingly resemble a set ofif two instantons happen to be close enough together, then
overlapping instantons and anti-instantons. As we cool furwe will miss one of them by using this criterion. However
ther, those that are strongly overlapping will annihilate andthe probability of this occuring will decrease rapidly as
the vacuum will become less densely packed. So in order tgecreases. So, once again, as long as we perform a scaling
identify the structure of(x) we shall assume that it is given analysis there is no ambiguity.
by an overlapping set ofantjinstantons of various sizes. At this stage we have candidate positive chargefat
This is of course a crude approximation. It also raises a funi=1,... n,} and candidate negative charges {af ; i
damental question: how much of this structure is driven by=1,... n_}. We shall make the customary assumption that
the cooling and how much of it is intrinsic to the original only charges withQ=*=1 are present(lt is a non-trivial
uncooled field configuration? One way to try and answer thignatter to test this assumption and we do not attempt to do so
guestion is to increasg@ so that the separation between thein this paper. To obtain a first estimate of the sizes of these
physical and ultraviolet modes becomes better defined. Weharges we can use the classical instanton relation between
have therefore included calculations upge-6.4. the topological charge density at the peak and the width:
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6 60 T T T T T
Qp:??. (12)
50 - -

This relation is for a continuum instanton. It applies equally
well for a large lattice instanton, but will become inaccurate 40 =
for smaller instantons whei@(a?/p?) lattice corrections be- N o
come significant. In practice we use a lattice corrected ver- 301 .
sion of Eq.(12) as described in the Appendix.

We now have a first estimate for the positiows,, and a0t © -
sizes,p; , of the (antjinstantons. However we know that the %
value of Q, (x) atx=x;" will receive contributions from the 10 <><> :
tails of all the other(antinstantons and so may not be an <><><><><>
accurate reflection of the peak value of the topological 0 ¥ 0'200 0/“3 0/A4 0/'\5 6
charge that is centered there. To correct for this we have ) ‘ ’ ‘ ’ )
implemented the following iterative procedure. op/p

We shall make two main approximations. First we shall FIG. 3. Number of i . fractional ch in width
assume that the topological charge is additive. Secondly we - 2. NUmber of imes a given Tractional change in wi

shall only attempt to calculate the corrections to the sizesc,)ccurs when using E13): at 5=6.0 after 23 cools.

pi , and not to .the locations; . These are approxmaﬁuons further part in the analysis. The reason for doing this is that
that Sh.OUId be improved upon. Under these assumptions W&ven the approximate nature of the correction, if it makes
can write such a large difference then we cannot be confident that there
is in fact a charge at that location. To throw the charge away
QX7 )=Qp(pi )+ > QI =x"l;p;j) (13 s of course an arbitrary choice. Fortunately this arises very
XEX infrequently. For example on 20 348 lattices after 23 cool-

) ) ing sweeps one peak was removed from 6 configurations and
where Qy(p) is the peak value of a topological charge of foyr peaks from one configuration; despite the fact that the
radiusp [as given in Eq(12) and with the lattice corrections  ayerage configuration contained 169 peaks. In this sense the
as in the AppendikandQ,(|x—Xq|;p) is the contribution to  mogification is indeed slight.

the charge density atfrom an instanton of sizp located at We remark that the above procedure has always con-
Xo. We use the continuum expression for this verged; presumably because our starting point is always
6 4 close enough to the final solution. We have explicitly
IX—Xo|:p) = —5 P (14) checked that the final solution does not depend on the order
Qi(IX=Xol;p)= =2 ro——~2 22 . ) : .
T ((X—Xg)“+p°) in which the peaks are considered, and, more to the point,

: L . ) that neither do the peaks that are thrown out because they
with the opposite sign for anti-instantons. While one Shomdchange sign.

improve upon this expression by including lattice corrections 5w much of a difference does it make to estimate the
at smallp, this is not necessary to a first approximation,jstanton sizes using E@13) rather than just applying Eq.
because the corrections fothat are embodied in Eq13) (1) {0 the observed peak heights? In Fig. 3 we show what
turn out to be modest. Note that to avoid cluttering the edUapappens on a test sample of B3-6.0 16x 48 field con-

tions we have dropped the subscript Qp. . figurations after 23 cooling sweeps. On the x-axis we plot the
What we know in Eq(13) are the values of th&(x;") quantity

and what we want to solve for are tp¢ . One can attempt

to do this by iteration, using Eq12) and Q,(p;") =Q(x;") Sp
to provide us with our starting values pf . We pick say the 7 -
charge atx; and calculate the contribution of all the other

peaks using Eqs(13),(14). From the renormalized peak wherep,,q is the initial estimate of the size using E32),
value we extract a corrected value @f to replace our first andpgina is the value obtained after solving Ed.3). On the
guess. We go to the next charge and repeat the same progeaxis we plot the average number of times a valuéafp
dure there except that we use the updated valug;ofin occurs per field configuration. We observe that the fractional
calculating Q,. Repeating this procedure at each relevanichange inp is typically at the~5% level; that is to say,
site constitutes one iteration. We perform as many iterationsmall but significant.

as are required to reach convergence. Our criterion for con- We note from Eq(13) that subtracting a small constant
vergence is that the change induring the final iteration JQ from the peak value ofQ(x), leads to a fractional
should satisfy6p=<0.00%p for all the charges. change in the widthsp/pp*5Q. We would therefore ex-

In practice we have applied the above procedure with gect that charges with small would be practically unaf-
slight modification: if at any stage the apparent sign of afected by the corrections in E¢L3), but that the fractional
charge changes when we take into account the influence ehange would rapidly increase wiil and, at some point,
the other charges, then this charge is removed and plays neould cease to be reliable. In Fig. 4 we show how the aver-

Pfinal — Porig (15)

Porig
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1.5 . . . bility without a much more sophisticated correction proce-
dure than that embodied in E@13). This is beyond the
scope of the present paper. To address the second possibility
we shall calculate some further properties of the topological
1.0k 4 charge density around the peaks and use these to “filter out”
the peaks that are most likely not to be instantons.

o
( P ) | © 1. A width filter
0.5+ : For an instanton of sizp the charge within a radiuR is
*© <& given by

<><><><><X> 1 2 1 3

<R)=1- .
O-WW . n Q(|x|=sR)=1-3 R? +2 R? (16)

5 10 TS 20 1+ — 1+ —
Pfinal P P

(This will require significant lattice corrections for small

FIG. 4. Fractional change in width, against the final width, afteraS discussed in the Appendix.
using Eq.(13) to account for presence of other chargesgat6.0 We can use Eq(16) to calculatep from Q(|x|<R). For
after 23 cools. an isolated classical instanton we will get the same value of
p Whatever value oR we choose. In an environment where
age value of the fractional change grdepends on the final instantons overlap this will not be the case. If we correct for
value ofp, in our test sample of configurations. We see thatthis overlap by using an obvious generalization of Ep)
(8plp) is very small up tgp~5, which, as we shall shortly then the extracted should become independent Rf
see, is roughly where the charge dendiyp), has its maxi- Our filter is therefore as follows. As described earlier, for
mum at3=6.0. It then grows rapidly withp but remains each peak ifQ(x) we calculate a value of the widt, using
small enough to be credible up jo~10. Thereafter it be- the (corrected value of Q(x) at the peak. We then choose
comes large and our approximations are presumably inadome value oR and calculate the corresponding wid{hs
equate. However, as we shall see, there are almost no instaffom the (corrected values of Q(|x|<R), as described
tons forp=10 and so we believe that our procedure providegbove. If the peak represents a real instanton then we expect
a reasonable first approximation for the range oélevantto  that the valuesp and pg should be similar. We therefore
our calculations. impose the condition

PrR P

PR

B. Filtering the peaks Max —1<eRg, 17)

At this stage we have a set of candidate charges. We

claim to know their positions and their widths. If this was all wheree is a small number that will be fixed by minimizing
that was needed then we would expect that the valugof  the quantity 6, in Eq. (11). Only if a peak satisfies this
Eq.(11) would be zero. We show in Table | what the averagecondition will it be counted as a genuine topological charge.
values of this quantity actually are for the®2448 configu-  |n practice we shall usR=2 in our later calculationgNote
rations at3=6.2. We also show, for comparison, the valuethat we shall switch between physical and lattice units as

of V(Q) and the average number of charge)=(n,  convenient, when there is no ambigujty.
+n7). We do this for various numbers of cooling sweeps.
We observe that there is a substantial mismatch between 2. A distance filter

the value ofQ as calculated directly and that obtained from Very broad instantons are likely to be significantly dis-

the peaks ofQ(x). The former is certainly reliabléup to torted and so one needs a reasonably generous vakieiof

errors in the lattice corrections, which are negligible relative if X he risk of filteri
to 8p). So either some charges do not show up as peaks anan' (1.7) I one Is not to run the risk of fitering out too many
o v(ae. have missed them, or some of the peak®(x) are, genuine topological charges. It is therefore useful to supple-

not topological charges. We cannot deal with the first possi—ment the previous filter with an adqur_\al one.

' We choose to focus on the possibility that a very broad
instanton might possess a long-wavelength ripple across its
surface which then leads to a misidentification of the struc-
ture as containing twgor more broad instantongThis is a
possibility because the small number of cooling sweeps that

TABLE I. Mismatch, 65, typical total charge{Q?), and total
number of charges: against number of cooling sweepg=a6.2.

cools (%) Q7 {Nioo we shall be using will not affect long-wavelength modles.
23 12.45 4.1 493.8 Our filter consists of the following steps.

32 10.39 4.0 273.6 (1) Consider a randomly chosen peak@fx) at positionx,
46 7.08 4.0 151.1 with width pq.

(2) Identify the peak nearest to it. If this has the opposite sign
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TABLE Il. The filter parameters used in this paper, with corre-

sponding charge mismatchg .

PHYSICAL REVIEW D58 014505

TABLE IV. Number of peaks, aB=6.2, before and after ap-
plying filters based om, and p; respectively.

B cools € Pe € dq No. peaks No. peaks No. peaks

6.0 23 0.19 684 020 200 0% (unfiltered (p2) (pa)
28 0.17 6.50 0.25 2.25 23 540 495 489
32 0.11 8.46 0.20 2.75 32 302 271 267
46 0.10 16.00 0.10 1.70 46 164 158 148

large 46 0.10 6.89 0.25 6.25

6.2 23 0.27 7.80 0.30 4.40
32 0.20 6.83 0.25 3.55 We now give an example of the application of the above
46 0.11 9.31 0.20 2.25 filters, using our 22x 48 lattice fields a{3=6.2. We con-

6.4 30 0.24 10.89 0.20 4.00 Sider the three ensembles obtained after 23, 32 and 46 cool-
50 0.21 9.43 0.30 2.80 ing sweeps. In Table Il we see the filter parameters and the
70 0.10 11.25 0.30 1.83  corresponding values af,. We observe thadg is dramati-
80 0.05 10.83 0.15 192  cally reduced when compared to the unfiltered values in

Table I. The width filter used here involvéRi=2. The cor-
responding values witlR=3 are shown in Table lll. The

accept the original peak. If it has the same sign, follow the©Sults are not dissimilar. .
steps below. In order to achieve these acceptably small mismatches

(3) Let p,,,x, be the width and position of the nearest neigh-°¢WeenQ andn, —ny, how severely do we need to change

bor. Letp, be a cut-off value to be chosen. Then we accep he distribution of charges? Not very much is the answer. In
the original peak if either it or the nearest neighbor is nar-l 2Ple IV we show the number of peaks before and after the

Co filters are applied. Even for the smallest number of cooling
rower thanp. i.e. if pg=<p. or p,<p;. :
Pe Po=Pec 2 Pn=Pe sweeps, we only lose 10% of the peaks. In Fig. 5 we show
. Elge number of instantons per configuration as a function of
the peak under consideration. The detailed criteriofixis the sizep, before_and after applying the filters. Here we see
that the change is concentrated amongst the very largest in-

—Xn| =< + wheree. is a small number to be chosen. 2 . o . .
\7\|/e Zf)(r?soidé)rn)each p;;k on the lattice in this way Thestantons. This is as it should be: it is these charges, with their

peaks are considered in a random order and therefore the"Y small charge densities and their large overlaps with

choice of which of two broad nearby peaks gets thrown ou any other charges, that are the hardest to extract reliably.
is in reality random Although the purpose of our filters is to reject false peaks,

it is inevitable that occasionally they will reject real charges.
This is especially so with the distance filter: two broad in-
stantons may be close together just by chance. It would be

In practice we apply the distance filter first and apply theuseful to have some crude estimate of this. One could do this
width filter to those peaks that survive. We have the paramby throwing the charges into our space-time box, with the
eterseg, p. ande, to fix. This is done by minimizing,, in  observed size density, and seeing how often they would be
Eq. (11), with respect to variations in all three parametersrejected by the distance filter. In throwing the charges into
simultaneously. This is a time-consuming calculation and weéhe box, one should incorporate some broad features of the
typically perform it on a subset of 20 of the configurations,
and then use the parameters so determined to analyze t" - 150 : : , ,
whole ensemble.

The quantityéy will often have several minima that are
not significantly higher than the absolute minimum. In such
situations we choose the minimum that leads to fewer peak 100+ @ 4
being rejected. This is to avoid loose cuts that lead to the los &
of too many real instantons along with the false peaks. Ir N(p)
Table 1l we list the filter values we use in the calculations of 2
this paper. '

3. Using the filters

TABLE lll. Filter parameters for3=6.2, usingp; in the filter. %

cools €3 Pec € da

23 0.62 7.60 0.3 3.65 P
32 0.46 6.83 0.25 3.85

46 0.24 7.18 0.20 1.90 FIG. 5. Filtered(X) and unfiltered( ) size distributions after

23 cooling sweeps 88=6.2.
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FIG. 6. 2,5(x)/Z4]Q(x)| against number of cooling sweeps, at  F|G. 7. Size distributions fron8(x) (O) and fromQ(x) (@)
B=6.0. after 23 cooling sweeps #=6.0.

correlations. As we shall see one such feature is that thgiso show, for comparison, the corresponding distributions
nearest neighbor tends to be of the opposite sign; and a segrat we obtain from the topological charge densityote
ond is that there is a strong suppression(@iftjinstantons  that both analyses simply use the peak height, with no added
very close to each other. We have not implemented such fiters of the kind described aboyeWe observe that for
realistic model, but have simply thrown the instantons intosmall p the distributions are essentially identical while at
the box entirely at random. In that case we find that thgarge p the distribution from the action is suppressed, and
number of real rejected instantons is close to the actual numnat this effect is stronger for fewer cools.
ber we reject. It should be clear that the qualitative effect of This can be qualitatively understood in the approximation
modifying the random distribution to include the features weyhere we think of the extra non-self-dual actiodS
just described, will be to markedly reduce the number ofzzs(x)_z|Q(X)|, as being smoothly distributed over the
mistaken rejections. Thus we anticipate that only a smaljyhole volume. If we calculatg from the peak action den-
fraction of the charges rejected are real ones. However this igity, then this increment will shift instanton sizes to smaller
only a qualitative argument and it is certainly no substitute,g|yes. Narrow instantons have large peaks that will be little
for an explicit and careful “background” calculation: this changed by this addition. On the other hand the action den-
still needs to be done. - _ sity will never be smaller thars(x) = 6S/volume and this
~ We have seen that by the addition of two physically mo-provides an upper limit on thethat one extracts. This effect
tivated filters we are able to reduce the discrepany,  should be weaker for a larger number of cooling sweeps
quite dramatically and that this only involves the rejection ofpecausesS/volume decreases—see Fig. 6. This certainly
a small percentage of the peaks. Moreover the rejected peab‘ﬁovides a first approximation to what we observe in Fig. 7
are concentrated amongst the very broadest charges, as thgyy Fig. 8. At smallp no change; at large a quite sharp
should be. In the remainder of our work these are the filtergt_off; at mediump an enhancement in the size density
that we shall employ. from the action as one would expect if larger peaks had been
shifted to smaller ones. The numbers roughly fit too, except

C. The action density

Before moving onto our results, we briefly ask whether - 15 . . . . . ,
there is much to be gained by using the action denSity),
in addition to or in place of the topological charge density.
What do we expect? Generalfx)=|Q(x)|, if we use a
normalization whereS(x) =|Q(x)| for a self-dual field. As 10r % i
we cool we shall eventually be driven to such a self-dual () %
solution (up to lattice corrections It is only when S(x) } 1 }
=|Q(x)| that one can use analogues of Etp) for the ac- sl } } 4
tion so as to estimate widths from the action densities. In Fig i E
6 we show how the rati@ S(x)/=|Q(x)| varies with the I
number of cooling sweep§This comes from 5 1%6x 48 con- 1
figurations at3=6.0.) We see that the fields are far from 08-e—e3-2 1 S
being self-dual. p
If we ignore the non-self-dual nature of the fields and
extract widths from the peaks in the action density, then we FIG. 8. Size distributions frons(x) (O) and fromQ(x) (®)
obtain the size distributions shown in Fig. 7 and Fig. 8. Weafter 46 cooling sweeps #=6.0.

.8
,«i gfi T W
8 10 12 14
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TABLE V. Number of peaks ir§(x) that can be identified with ' ' ' ' ' '
a peak inQ(x). ok |
No. peaks No. peaks No. peaks with 25 5 Tz .
cools in Q(x) in S(x) R |Xaction— Xcharg(leS R sl 1
23 168 95 0 54 N(p) . ez
15 = L] _
23 168 95 V2 86 2@
46 63 46 0 33 10k <" o 2 _
46 63 46 V2 43 LIPS & PN
51 e 3 1
58° i
¥ ' ' foas serenes
2 4 6 3 10 1

it is clear that only a small fraction of the broad charges have
been shifted to smaller values: most of them have apparently P
disappeared. This is to be expected. If we have a very broad
instanton overlapping with a very broad anti-instanton w
can see two peaks iQ(x) because of the sign difference.
S(x) however is always positive and is quite likely not to — .
show two peaks—ijust a single broad peak covering the pai€"2/98SNior. In Table VI we list the values of these quan-
One can go a step further and ask whether the peaks €S for all our values o3 andn,. . .

S(x) are in fact associated with peaks@(x). In Table V Wh_e_n d|scu§S|ng the scaling properties .Of thesg various
we show the number of peaks obtained fré(x) andQ(x) _quantltles we will need to know how the lattice spacing var-
for 23 and 46 cooling sweeps. We also show how many of®S OVer our range _Oﬁ' F_or th|§ we need some phys"?"’?‘
the peaks irS(x) are associated with peaks @(x): either quantity expressed in lattice units. We choose the confining

because they are at the same site or because they are witijjing tensiono, because that has been calculated very ac-

2 lattice spacings. We observe that the latter accounts fo(furately. The relevant values &3],

e FIG. 9. The number of charges of different sizespat6.0 for
23(X), 28@), 320) and 46 <) cools.

nearly all the action peaks. 0.218712), B=6.0,

We conclude that as long as we work with a small number
of cooling sweeps the action density loses most of the infor- ayJo=4 0.160810), B=6.2, (18)
mation about the larger topological charges, although it does 0.121611), B=6.4.

reproduce the narrower topological charges that we find us-
ing Q(x). Thus we shall ignore the action in the remainderWherever we discuss lengths or volumes in physical units, it
of this paper in the expectation that including it would yield will be by using Eq.(18) to set the scale.

marginal benefits. Occasionally it will be usefu(or illuminating) to express
things in MeV units. There are, of course, all kinds of ambi-
IV. SIZE DISTRIBUTION OF INSTANTONS guities in introducing MeV units into a theory which, unlike

) o . . QCD, does not describe the real world. This is discussed in
The size distribution of the topological charg€p), is  [20] where an analysis of the hadron spectrum in the
the simplest quantity characterizing the vacuum topological, ,enched approximation is found to lead to an estimate
structure. In this section we shall explore it in some detail.
Jo=440+15+35 MeV. (19
A. General features
TABLE VI. Average and width of size distribution; also the

In Fig. 9 we show the size distribution as obtained on th(:iotal number of charges and the number per unit physical volume.

16°x 48 lattice fields af3=6.0 for various number of cool-

ing sweepsn.. The quantity plotted is the average numberﬁ cools s o (Nioo) (N V
of charges,N(p), in each bin,Ap of p. Thus N(p) s
=VD(p)Ap, whereV is the space-time volume. 6.0 23 5.281) 1.204) 1475  0.3289)
We see that there is a rapid decrease in the total number 28 5.4@2) 1.295 113.0  0.2516)
of charges as we cool the fields. This is presumably the result 32 5.432) 1.365) 86.2  0.1975)
of nearby charges of opposite sign annihilating. Other fea- 46 5.6%2) 1.516) 575  0.1283)
tures, such as the location of the maximum of the distribuiarge 46 5.681) 1.51(3) 613.6 0.1283)
tion, appear to vary much more weakly which suggests thag.2 23 6.411) 1.173) 4938 1.1128)
they are robust features of the fields prior to cooling. 32 6.941)  1.354) 273.6  0.61615)
It will be useful to choose a few quantities by which we 46 7.442)  1.575) 151.1  0.34(9)
can characterize the size distributions. An obvious measurg 4 30 7.861)  1.325) 1005.3  2.19882)
is the average value of the size, Since the distributions are 50 9.0q2) 1.618) 369.7  0.80730
not grossly asymmetric, this will nearly coincide with the 70 9.7G4)  1.921)) 205.2  0.448L7)
maximum. Another quantity we can use is the half-width, 30 0.845) 2.0412) 156.6  0.34713)

a,, of the distribution. Finally there is the total number of
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FIG. 11. Comparison of size distributions on®¥&48 (x) and
FIG. 10. Packing fraction of instantons of siggp againstp in 32364 (O) lattices at3=6.0 after 46 cools.
units of p. For 30@), 50(<¢ ), 70(x) and 8QO) cooling sweeps at
=6.4. _ _
A 50, 70 and 80 cooling sweeps. We observe thgt=p)
Here the first error is statistical and the second is a systenfz 1+ SO even if we include only those instantons that are of

atic error that reflects in part the fact that quenched QCLPEIOW average size, the gas is still dense. Moreover, even
does not in fact represent the real world. Wherever wdnough the average instanton size decreaseg @ecreases

present quantities in MeV or fm units it will be through using (S€€ Table V), the total number of charges increases suffi-
Eq. (19). ciently rapidly that the packing fraction itself gets larger.

Before moving to a detailed consideration of the size dis-Thus it is difficult to avoid the conclusion that the “instanton

tribution there is at least one qualitative conclusion we car#@S” itn _”][? real vacuum itsha qdenst?f'onte’ irrefsi)r:actlive of any
) . ) — " uncertainties concerning the identification of the larger in-
immediately draw. We see from Fig. 9 and E@8) that p 9 g

~5a~1/\Jo~0.5 fm. Thus the typical instanton size is stantons.

quite large. Given that the average charge has a diameter of

2p=10a. and that there are about 180 charges at 23 cools, it C. Variation with volume

is clear that the 16< 48 lattice must be densely packed. This  Given that our instantons are large, it is important to
is so even after 46 cools. Thus our first qualitative conclusiorsheck if our size distribution is not distorted by finite volume

is that instantons are large and strongly overlapping. This igffects. In Fig. 11 we compare the size distributions as ob-
a different picture to the one that apparently underlies typicajained on the 16x 48 lattices and on the very much larger

instanton liquid model calculatiorig]. 322x 64 lattices, both generated At=6.0 and both after 46
cooling sweeps(The distribution on the larger lattice has
B. Packing fraction been normalized to the volume of the sma)léie observe

As we have just seen, our instanton gas is dense. Since tﬁl&at there are no statistically compelling differences between

largest instantons are more difficult to identify unambigu-tne Wwo distributions. In particular, at very largewhere any
ously, it is interesting to ask if the gas is dense even if wdlifferences should be most pronounced, the distributions are

exclude such instantons. virtually identical. We conclude that our 18 48 lattice at
To address this question we define a packing fractionB_ZG'O suffers from_ no significant finite volume _effects.
f(p) by Since the 22x 48 lattice at3=6.2 and the 32x 64 lattice at

B=6.4 have approximately the same volume in physical

1 (» units as this lattice, we shall assume that none of our distri-
flp)=§ fo n(p)v(p)dp. (200 putions suffer significant finite volume corrections.
Heren(p) is the number of instantons of sipev,(p) is the D. Scaling with g

space-time volume occupied by an instanton of this size and The next question, whether the size distribution scales as
V is the total space-time volume. That is to séfp) isthe 5.0, is less straightforward. The reason, seen in Fig. 9, is
fraction of space-time occupied by instantons of size. that the number of charges varies rapidly with the number of
Since the instanton core is smooth, there is some ambiglooling sweeps. However a cooling sweep is not a procedure
ity about definingv,(p). We shall choose to define it as a that scales; 23 cooling sweeps @t 6.0 are certainly not
4-sphere of radiusp: a conservative choice. So,(p)  equivalent to 23 cools g8=6.2 or 6.4. So at what level of

= 772/0_4/2- S _ ~ cooling should we compare the size distributions at different
Using our calculated size distributions, and this definitionyalues of?
of the instanton volume, we can calculdtg). In Fig. 10 Indeed we can start with a more basic question: is there

we plot f againstp/p as calculated aB=6.4 aftern,=30, any evidence that one can choose the number of cools so that
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FIG. 12. Density of charges againstat 8= 6.0 after 23 cools _ _
(O), at B=6.2 after 46 cool$®) and at3=6.4 after 80 cool§x). FIG. 13. Averagel=p(®), and full-width,| =20 ,(O), of the
All in physical units of 14/ instanton size distributions. Lines are continuum extrapolations.

the distributions scale? The answer to this question appeaf§!d, . form dimensionless ratios with o, and plot these
to be in the affirmative. In Fig. 12 we show the size distri- 2g@insta“o" in Fig. 13. The reason for plotting things this
butions after 23 cools g8=6.0, 46 cools ag=6.2 and 80 Way is Fhat we expect the Iegdmg Iatuge corrections to such
cools atB=6.4. The densities have been scaled by the physidimensionless ratios of physical quantities tod@?). (We
cal volume, ang is expressed in units of the string tension. assume thap and o, are physical quantities in this sense.
So exact scaling would imply that for some choice of theThat is to say, for small enoughwe can extrapolate to the
number of cools the distributions should coincide. What wecontinuum limit using
infer from Fig. 12 is that an approximate coincidence does _ _
indeed appear to be possible. p(a) \/;(a)=p(0)\/5(0)+ca20 (23

To be more quantitative we need to set up an equivalence o ) ) o
between the number of cooling sweepsBat 6.0, 6.2 and  With a similar expression faw, . These will be straight lines
6.4. We do so as follows. If the distribution scales then sdn Fig. 13 and the best fits are shown there. As we can see
does the number density. Let the average number of charg&fl- (23) is compatible with our data. From these fits we
per unit physical volume bbl(3;n.), wheren, is the num-  obtain the continuum predictions:
ber of cooling sweeps and E(.8) is used to define the unit

physical volume. Then, cooling sweeps g8 are defined to — i:

be equivalent tan cools atg’ if the number densities are p=123%20 Jo 0.565) fm (24

equal:

, and
N(B;nc):N(ﬁ,;nc)- (21)

1

In Table VI we show how the total number of charghig,; 0,,=0.242{16)T=0.1J(1) fm (25
g

varies with 8 andn.. The volume of ari_gLt lattice isV

_ 3 . . . . .

={LsaVo}°LiaVo in physical units, and using the string \yhere we have used E(L9) to introduce fermi units.
tensions in Eq(18) we can calculatél=N/V in each case  \ye note that we are not able to derive a continuum limit

and that is also given in Table VI. for other (equivalent sets of cooling sweeps, because the

At eachB we can interpolate between the values in Tablelargest number of cools @=6.4 corresponds, roughly, to
VI, so as to obtain the number density as a functiomof 4 "< allest number £=6.0.

These interpolations can then be used in E2{) to find As far as the density of charges is concerned, the con-

equivalent sets ofi; at different values ofs. tinuum limit is trivially obtained, because E¢R21) ensures
In fact we immediately see from Table VI that that the number density at an equivalent number of cooling
sweeps will be independent gf Since this density varies so

23, p=60 rapidly with the number of cools, it is probably not useful to
n.=4 46, B=6.2 (22 attempt any conclusion other than the qualitative one that the
80, B=6.4 charges are densely packed.
are, within errors, equivalent at the indicated valuesBof E. Variation with cooling

(This is no accident of course: the number of cooling sweeps As we have seen, most quantities that we calculate vary to
was chosen after a preliminary study designed to producgome extent with the number of cooling sweeps. Since we
such an equivalengeWe note the corresponding valuesgf are interested in the physics of the uncooled vacuum, the
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TABLE VII. Variation with cooling, n;, of a single configura- TABLE VIII. Fits to the smallp tails of the size distributions.
tion at 3=6.4 prior to any filtering. The range fitted is in units of ¥&.
cools P o, {Niop) f B cools range Vs
20 6.92 1.29 2177 15.6 6.0 23 0.44-0.77 3(2)
30 7.96 1.52 1063 13.1 6.0 28 0.44-0.99 3(1)
40 8.74 1.95 604 12.0 6.0 32 0.44-0.77 2(9)
50 9.27 1.98 395 9.1 6.0 46 0.44-0.99 2(8)
60 9.70 2.23 286 26.2 6.2 23 0.48-0.72 6(2)
70 10.06 2.27 224 22.8 6.2 32 0.48-0.88 52
6.2 46 0.48-0.72 4(8)
6.4 30 0.55-0.73 9(8)
logical procedure would be to try and take the—0 limitof 6.4 50 0.55-0.97 5(2)
our calculated values. However, to do so would be to ignoré.4 70 0.55-0.97 4(3)
the fact that our procedures become increasingly unreliablé.4 80 0.61-1.03 4@Q)

in that limit. For example, the way we correct the instanton
peak height in Eq(13) involves assumptions that will break _ ) _
down as the instanton gas becomes increasingly dense, aglvays large and for smail; increases with decreasimg,
does whem, decreases. Thus it might be that the observeduggesting that it is safe to infer that the instanton gas is
decrease of, saﬁ as n. decreases merely reflects this in- dense in the l_JncooIed vacuufiNote that the increase df
creasing unreliability. for large n; is presumably an artifact of the lack of

In the face of this uncertainty, our approach is as fonowslfiltering—compare with Fig. 10.

Where we wish to draw a qualitative conclusion, we check
whether the effect becomes more pronouncednasde- F. Small p and large p
creases. If that is the case, we take it to be evidence that the |, 5q4ition to the global features &f(p), such aS(T the

effect under consideration is indeed a property of the Uny,jiq of the distributions are also of interest. We recall that at
cooled vacuum. An example of this is our conclusion that thesmallp we have the prediction from Eqe5), (6) that N(p)
instanton gas is dense. If, on the other hand, we wish to make 6 Thig simple form neglects powers of lpgthere are

a statement that is quantitative, then we pick some Smapactors of 16%(p) in D(p) that arise from the symmetries
number of cooling sweeps at sorBeand then extrapolate to and which are subsumed into the.".” in Eq. (5)] so that it
the continuum limit at an “equivalenthe(p) as described s qnjy atvery small p that we would expect it to hold. And,

above. If the variation wit of the quantity under consid- ¢ corse, af very smafi the cooling will erase and alter the
eration is small enough to be compatible with the errors ofjistribution. So although we shall fit
n

our pattern recognition algorithm, then there is some reaso

to believe that our calculation is relevant to the uncooled N(p)xp?sip<p (26)
vacuum. An example is our calculation above of the average
instanton width. we are only looking for a trend: that asand the fitted range

To illustrate the uncertainties, we show in Table VII how are reduced, and the number of cooling sweeps becomes
the properties of aingle configuration, taken from ouB  small, v, should approach the predicted valueqf=6.
=6.4 ensemble, vary with the number of cooling sweeps, Because there are no analytic predictions at large values
ne. (Note that this configuration has not been subjected t®f p the behavior there is of particular interest. We have tried
any filtering procedur¢.The total number of chargebl,;, both exponential and power like fits to the largéails of our
varies so rapidly witm, that we cannot hazard any guess atdistributions. In practice the latter have significantly better
all about the number in the uncooled vacuum. This is as ify? and are therefore the ones we present here. That is to say
should be: perturbative fluctuations FF can always be Wwe fit
interpreted as a suitable ensemble of strongly overlapping 1
topological charges, ren_derlng the question of th_e_total num- N(p)e —5:p>p (27)
ber fundamentally ambiguous. The average wigih,and
typical fluctuations about this average,, vary much less for th
and one might feel entitled to infer, for example, that the or the powery, . i

) ) - i ) In Table VIII we present some power fits to the small-

average width in the uncooled vacuumpis 9+ 1 in lattice  (4jls of our various size distributions. We show the range
units. The decrease ip asn.| is what one would naively fitted (in units of 1A/c). The x? of the fit is generally rea-
expect: perturbative fluctuations will, on the average, in-sonable; indeed this served as one criterion for which range
crease the peak heights [Q@(x)| and this will translate into  of p to fit. We observe that while the value ¢f does vary a
smaller values op via Eq.(12). The ratioo,/p shows little  great deal, there does appear to be a trend that as we go to
variation with n. and it seems safe to infer a value of smallera and to a smaller number of cooling sweeps the
~0.20+0.02 for it. Finally, the total packing fractioh is  value is closer to the asymptotic prediction nf=6.
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TABLE IX. Fits to the largep tails of the size distributions. The ' ' ' ' i ' '
range fitted is in units of /o sk |
T
B cools range Y s
6.0 23 1.43-1.87 11(3) Lok . T EEzIsmessescnvessesd
6.0 28 1.54-2.20 10(8) N(R) =
6.0 32 1.54-2.20 10(3) =
6.0 46 1.65-2.31 10(B) 05k = i
6.2 23 1.20-1.44 11(9) .
6.2 32 1.36-1.68 11(9) et
6.2 46 1.44-2.00 10(3) v
6.4 30 1.09-1.46 11(9) 002 6 & 10 12 14 16
6.4 50 1.46-1.64 12(2) R
6.4 70 1.52-1.64 10(9)
6.4 80 1.46—1.82 10(8) FIG. 14. Number of same sigi®) and opposite sigO)

charges, per unit volume, as a function of distaftdrom the
reference charge. AB=6.2 after 23 cooling sweeps.

In Table IX we present similar fits to the largetails. The
values seem quite consistent, suggesting a power that gradiind taking the periodicity into accounsSo at largerR, as
ally decreases fromy~12 to %~10 as we increase the the correlations die away, we would expect each of these two
number of cools over our range. We also find that thergyistributions to go to a constant value and that this value
appears to be a trend for this power to increase if we shift oUgh5u1d be the same.
fitting range to largep—but we cannot be certain of this |, Fig 14 we show the distributions we obtain after 23

with our statistical accuracy. In any case, it is clear that th%ooling sweeps aB=6.2. These have been normalized so

suppsressmn at larg is mgch more severe than th(p) that they go to unity at largR. There are three features one
«1/p* that one would obtain with a coupling that freezes toimmediatel notes. At smaR there is a strond SUDDreSsion
some constant value at large distances. This shows that the y ' 9 supp )

full non-perturbative vacuum imposes a sharp infrared cut: Ust after that t.here IS @ strong enhancement Of. unlike
off on the sizes of instantons charges and a slight enhancement of like charges. Finally at

largeR the distributions are constant as expectéthe slight
enhancement of like charges at very snRilis likely to be
an artifact of our procedures.

In this section we investigate the correlations between the The suppression at short distances extends much too far to
topological charges in the vacuum. We shall begin with thebe related to the fact that our definition of a peak usés 3
simplest question: how close are nearest neighbor chargésypercubes. In addition, it also occurs on the unfiltered data
and how does this depend on their relative signs. This willand so is not a product of our filtering procedure.
confirm our picture of a densely packed vacuum, and so We note that the like distribution is suppressed to larger
naturally leads to the question whether these charges showistances than the unlike one. That is to say, the nearest
any aspects of a dilute gas. We shall see that the smallegkighbor is more likely to be a charge of the opposite sign.

charges do and the very large ones do not. However thepis means that topological charges are “screened” by
medium-sized charges show an unexpected behavior which . . - —

. : - . neighboring charges. This is reasonableilapair will usu-
leads us to investigate the charge correlations in mucsrgl
greater detail. We find long range charge correlation ! o
amongst the smaller charges and, separately, amongst t fact thatN,nike(R) shows a slight dip just after the en-
larger charges, which is related to an anti-correlation be: ancement. This coincides with the enhancemedta(R)
tween the smaller and the larger charges. This effect weake/@S W€ S€e in Fig. 14. It indicates that there is a regioR of

as we increase the number of cooling sweeps, so suggestiNg'€® We have “anti-screening.” We shall return to a more
that it reflects a property of the uncooled fields tailed investigation of this potentially interesting phenom-
' enon shortly.

The suppression at sm&l and the immediate subsequent
enhancement are best analyzed by focusing on the nearest

We begin by calculating the number of charges that are aeighbors to each charge. In Table X we list the average
distanceR from a given charge. We do so separately for thedistances to the nearest charges of the same sign and of the
case where the charges have the same 6iike” ) and  opposite sign. These are presented in physical units using Eq.
where they have the opposite siglunlike” ). These distri- (18). We note that these distances increase with the number
butions are calculated by counting the number(af)like  of cooling sweeps. One might try to explain this by arguing
charges in the spherical shell of widflR a distanceR away that under cooling the nearest unlike charges should annihi-
from each charge. The distributions are then normalized bjate and disappear; while like charges should repel each other
the volume of each sheffor the lattice under consideration since that lowers the action. Of course this argument disre-

V. CORRELATIONS OF THE INSTANTONS

lly have a lower action than dh pair. Not so expected is

A. (Neares) neighbors
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TABLE X. Average distance to nearest charge of the same and 3.0 T . | ; . .

opposite sign; in units of 1.
— — 251 :k 1

B cools RikeVor RuniikeV@ JE %
6.0 23 1.0726) 0.931(6) P(p.) #0
6.0 28 1.1527) 1.0086) L5k } 1
6.0 32 1.238) 1.0717) %Hﬁ %
6.0 46 1.3509) 1.2239) 1.0 x i
6.2 23 0.7915) 0.7005) %
6.2 32 0.93%) 0.8186) 050 s 1
6.2 46 1.07%7) 0.9587) X“*Xxxxxx
o4 30 06819 06040 I T S N
6.4 50 0.8847) 0.7758)
6.4 70 1.01811) 0.9119) pe
6.4 80 1.08012) 0.97610) FIG. 15. P(p.), as defined in E¢(31), versusp, at 3= 6.2 after

23 cools.

gards the complicated nature of the actual environment _ ) ) o _ )
around each charge. To investigate this possibility we note that in a dilute gas

If we look at an equivalent number of cooling sweeps, asve have(Q*) =Ny, where N, is the total number of
given in Eq.(22), we see that the distances look nearly in-charges. Thus a measure of how close we are to a dilute gas
dependent o&. This reassures us thatis small enough that S Provided by seeing how close the quan{i@?)/(Nqy), or
we can extrapolate to the continuum limit using only thethe quantit{Q?/Nyy), is to unity. Since we are interested in
leadingO(a?) correction just as we did in E¢23). Doing so seemg_whether the §mal|er instantons form such a dilute gas,
we find that the distance to the nearest like and unlikeve define the quantity

charges is o )E< Q% p=py) > -
— 1 Pe Niotlp=<pc)/"
Riike=1.08115 —~0.49 fm (28
Vo
and Here Qlp<pc)=n(p<p)—Mmlp=<p.) is the_ total topo-
logical charge of those charges that have a size lessghian
1 and N;,((p<p.) is the corresponding total number of
Runiike=0.99313) — ~0.45 fm (299  charges. So how close is to unity, provides a measure of
Jo how much these charges behave like a dilute gas.
. o In Fig. 15 we show howP(p.) varies withp. for the B
where we have used E(L9) to introduce fermi units. =6.2 ensemble after 23 cooling sweeps. We observe that if
From Eqs.(24),(25) and Egs(28),(29) we see that we include charges with widths up f@=5 the value ofP
. remains close to unity indicating a dilute gas structure. As
p we increase. beyond this valueP begins to increase rap-
§~1'2 (30) idly, becoming much larger than unity. Aroupgd=p=6 the

value of P begins to fall and continues falling to valuesl.

and this confirms our previous conclusion that what we havd he value forp.— is the value one gets fd? when one
is certainly not a dilute gas. includes all the charges. _
Although we see from Table X that there is some varia- T1he way P behaves at small and at large is not too

tion of R with the number of cooling sweeps, we note asurprising. For sufficiently small instantons the combination
. L —. | of low density and small sizes would make them behave like
similar variation forp in Table VI. Thus Eq.(30) is robust

. ; . a dilute gas. For large overlapping instantons, on the other
against cooling and is presumably also a property of thg,ng e would expect a dominance of pairs of opposite sign
uncooled fields. which would suppress the fluctuations Q=n,—n; for a
given value ofn,+ ny, thus leading td®<<1. What is much

more puzzling is theP>1 peak fOI‘pc:; One can only

The fact thatp/R~1 and that nearest neighbors are muchhave fluctuations 0@ that are larger than those of a dilute
more likely to be of the opposite sign tells us that the topo-9as if the charges tend to have the same sign. That is to say,
logical charges do not form a dilute gas. It is probable howWhat we are seeing is some kind of charge coherence phe-
ever that the smaller charges are dilute; if they are weakljpomenon: there is some interaction that ensures that charges
correlated to the large instantons, then they might still lead t@f a size just less thap tend to have the same sign. This is
some physics that one would associate with a dilute gas. in contrast to the evidence we saw in the previous subsection

B. How dilute a gas?
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FIG. 18. C(p), as defined in Eq(32), versusp at 8=6.2 after

FIG. 16.P(p.), as defined in Eq31), versusp. at 3=6.2 after 23 cools.

46 cools.

charge fluctuations for charges Widihs;are huge compared

that on the average the nearest neighbor has the oppos{ e totalQ?; about 20 times as large, in the case shown of
sign. We shall examine and resolve this puzzle in the ”eXB:G.Z after 23 cools.

section. What is the origin of this phenomenon? In Fig. 17 we see

Is this an artifact of cooling? In Fig. 16 we show how hat ch ith width tend h
P(p.) varies withp, after 46 cooling sweeps. For large andt at charges with widths up te-p tend on the average to
¢ ¢ ' have the same sign; that is to say their total charge is typi-

small p. things are much the same as after 23 cools. How-

- ) R cally large. However as we include larger charges we see
ever the peak negr has all but disappeared. This indicates thay the typical total charge rapidly becomes much smaller.

thgt _cooIing erases this interesting effect: it thus appears thathat is to say: the smaller instantons tend to have the oppo-
this is a feature of the uncooled vacuum. By comparing coms;jte charge to the larger instantons—the former are screened
parable plots at differens we find that, as long as the com- py the Jatter(and vice-versa

parison is performed at equivalent numbers of cooling * 1¢ highlight this effect we define the following quantity:
sweepgin the sense of Eq21)], this phemonenon seems to

roughly scale. < Q Q(p)>
Clp=\i=-——). 32
QNG (32
C. Screening and polarization where Q(p) is the total topological charge of objects with

As we have seenP(«)<1; i.e. if we include all the Widths in the bin centered op, and N(p) is their corre-
charges one findéQ?)<(n,+n;). However we have also Sponding total number. Whal(p) measures is the correla-
seen that if we take the-50% of the charges Wit|p$; t|pn of the average charge of.lnstantons of sizeith the
then one finds thatQ?)>(n,+n}). This suggests that if we sign of the total charg®. In Fig. 18 we show howC(p)

look at{Q?) as a function of instanton size we will see some;/a;”ef Whmr] P- V:/en;?whsse exphc::ly tih?]t thﬁdsmalrlervar:(:h ¢
dramatic effects. In Fig. 17 we plot the value (D?(p arger charges tend to have opposite signs and, moreover tha

< . . . . it is the smaller charges that tend to have the same sigh as
pd) versusp., and indeed we do find a dramatic effect: theWhat the latter tells us is that the net charge of the smaller

charges is greatglin modulug than the net charge of the
800 ' ' ' T ' T ' larger charges. The large charges are over-screened by the
smaller charges. The boundary between *“large” and
600 - J[ | “small” is p=p, and scales roughly like a physical quantity

when we change.

(Q*(p < pe)) % % To explore this phenomenon further, we calculate for
4001 4 each reference instanton, with widihe, the number of
% charges within a distanck that have the same sign as the
reference charge and whose widths fall into a prescribed
200 X ¥ g range e.gp>pq. We call thisNgamd R;p>po). Similarly
for opposite sign charges we hatg,,(R;p>po). In Fig.
x rxxzxxzxxxxxk 19 We Show howNgame Nopp Varies withp,ef in the case
OO T s 10 12 14 16 Whenwe include all the charges, iR=%= andp>0. This is
for the 8=6.2 ensemble after 23 cooling sweeps. We note
that total screening correspondsN@,me— Nopp=—1 and a
FIG. 17.(Q?*(p<p.)) againstp. at =6.2 after 23 cools. value <—1 indicates over-screening.
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FIG. 19. Net screening charge around a reference charge of size FIG. 21. As in Fig. 19, but only including screening charges
pref: at B=6.2 after 23 cools.

with p<6 and within a distanc&®=7(x), 8(<¢) or 9O) of the
reference charge.

The first thing that we observe in Fig. 19 is that the small-
est instantons are almost completely unscreened; this is whping charges can reduce their total action if they can partially
one would expect in a dilute gas and is consistent with thexnnihilate. However we also observe that as we incré&se

fact that for these values g@f the quantityP(p.) defined in
Eq. (31) also shows dilute gas behavior. As we increpse

so including charges that do not significantly overlap with
the reference instanton, the screening disappears. This is

we start to see screening. ptes=p the screening is total 0dd: it tells us that these more distant charges must tend to
and for larger sizes the instantons are overscreened—quit@ve the same charge as the reference charge, despite being
dramatically so for the very largest ones.
As always we have to ask ourselves whether what we seltion. If we now turn to the large instantons, we observe that
might not be a product of the cooling rather than a propertythe screening gets rapidly stronger as we incre@send
of the uncooled fields. In Fig. 20 we show the correspondingndeed that large charges are overscreened by the small
plot after 46 cools. Although there is a significant remnant ofcharges under consideration here.
the under/overscreening that we saw in Fig. 19, there is a Figure 22 is the complement of Fig. 21: noMs,me
clear trend towards the much less interesting situation of to=—Nypincludes only the larger charges, i.e. those with widths
tal screening at alp. We conclude that cooling erodes ratherp>; We observe that the screening of small charges by
than enhances the effect we have found, indicating that it ifarge charges increases R$; the “normal” screening be-
indeed a property of the original uncooled fields.
In Fig. 21 we show what happens when we include infigures that the screening of small charges is entirely driven

Nsame=Nopp ONly the smaller charges, i.e. those with

so far away that one would naively expect very little corre-

havior. Indeed if we go to largR it is clear from these two

by the large charges. For large,; the situation is entirely

<p, and if we only count those charges that lie within dis-different: large charges are strongly antiscreened by other
tancesR=7, 8, or 9 of the reference charge. Let us first focuslarge charges i.e. these quite strongly overlapping large

on small sizes; say,.s~3 to 4. We observe from th&

charges tend to have the same sign.

=7 data that there is some screening of small charges by Again we find that all these effects weaken with increas-
other nearby small charges. This is not surprising: overlaping cooling suggest that they are properties of the original

Nsame

- N opp

uncooled fields.

1
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FIG. 20
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Pref
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. As in Fig. 19 but after 46 cools.
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FIG. 22. As in Fig. 21, but only including charges wijth> 6.
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We now have enough information to hazard a model of TABLE XI. Average values ofQ? for corrected Q) and uncor-
the topological structure that embodies all these features. Wiected Q) charges respectively.
think of the vacuum as being composed of small and large . .
charges. Small charges are superimposed on the broad badks cools (QD (Q9)
of the large charges because the latter are everywhere: they
. ) B0 23 14.42.0 18.92.8
densely pack Euclidean space-time. The small charges wi €0 428

tend to have the opposite sign to the large charge in which’ gg 1201;% ig'gé'g
they are embedded and so, except when they are clos6é0 46 15'_(2'1) 17.£{2.6)
enough for their mutual overlap to outweigh this effect, will - N

tend to have the same sign as each other. At the same tinf&9¢ 46 97.818.9 120.223.3
broad charges overlap so these small charges will be simuf2 23 14.20 17.12.6
taneously embedded in more than one broad charge. Thé? 32 14.52.1) 16.12.4)
will thus tend align the charges of such overlapping broad-2 46 15.2.2) 16.02.4)
charges. So we have a picture of the broad charges tendin§# 30 16.46.6) 17.47.9)
on the average, to have the same sign throughout the vacuuerf 50 17.47.7) 17.47.7)
and the small charges also having the same sign as eaéH 70 17.47.) 17.47.7)
other on the average but opposite to that of the broa.4 80 17.47.7) 17.47.7)

charges. This is driven by the mutual interaction of the small;
mutually non-overlapping charges with the large, mutually
overlapping charges. The net charge is that of the smalletharge, obtained by applying lattice corrections as described
charges because, since they overlap less, their charge pola-the Appendix and then rounding to the nearn@std usu-
ization is stronger. ally nearby integer. We obtain the susceptibility in lattice

This picture of the charge structure of the vacuum goesinits,a*y,, if we divide (Q?) by the volume in lattice units;
somewhat beyond what our numerical evidence demands behd similarlya®y, | from (Q?). Since these quantities differ
seems plausible. Presumably some of the observed breaky lattice corrections, they should possess a common con-
down of our naive screening intuition is not surprising: it tinuum limit. This is something we shall investigate below.
arises from the fact that while the latter is based onl# The first thing we observe is that if there is any variation
potential between pointlike charges, the effective potentiayith the number of cooling sweeps it is much less than the
here will have a more complicated form when the chargessyatistical error and so can be ignored. We also note that the
overlap, and will fall much more rapidly withwhenthey do  two lattice sizes at8=6.0 give susceptibilities that are
not. within 20~ of each other. We take this as evidence of no

Although it is not possible to simply guess at the consesignificant finite-volume effects. Finally we remark that the
quences of these non-trivial long-range charge correlationg=6.4 ensemble consists of only 20, albeit well-separated,
for light quark physics, it would be surprising if there were field configurations and so one should treat the correspond-
none. ing error estimate with some caution.

Using the values for the string tension in Ef8) we can

V1. TOPOLOGICAL SUSCEPTIBILITY form tlr)Ae dimensionless mass rat,{&%"‘/\/;. In Fig. 23 we
plot x; 1\Jo against the string tension in lattice unigo-.
While the identification of the topological structure of the We expect the leading lattice corrections to this dimension-
vacuum is, as we have seen, a complicated and sometimggss mass ratio to b&(a?) [24], so we can attempt a con-
ambiguous task, the total topological char@®, is quite  tinuum extrapolation of the form
straightforward to extract. Moreover as we saw in the Intro-

duction, this quantity is related to the masses of the pseudo- , : , : :

scalar mesons via Eql). Although it was not the primary 0.6 8
purpose of our calculations, we have accumulated values ¢
(Q?) and hence of the susceptibility, over the range 6.0 051 i
< 3<6.4. Our statistics is not very high but we do get closer 1 ﬁ -------- gl
to the continuum limit than any other calculation that we are A 041 i
Z4

aware of. It is therefore worthwhile extracting a prediction 03l 1
for x; in physical units.

There are various ways one can manipulate the raw, non 0.2k i
integer lattice topological charge so as to obtain an estimat
of the “true” integer topological charge of the field configu- 0.1f .
ration. These definitions will differ by lattice corrections
which should vanish ags—0. In Table XI we show our % 00l 002 003 004 005 0.06
calculated values of the susceptibility using two such defini- oo

tions. The first,Q, , is simply the integral of the lattice to-
pological charge density rounded to the nearest integer. The FIG. 23. Plots ofx{"/\/o (@) and x{{/\o (O) againsta’s
second,Q, is our best estimate of the integer topologicalwith continuum extrapolations.
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TABLE XIl. Continuum limit of susceptibility in units of the Secondly one needs to categorize the topological structure
string tension: for correctedy{) and uncorrected(,) charges; in some useful way. We have decomposed it into topological
and a previous calculatiof20] for comparison. charges of various sizes and locations. To do so requires a

rather complicated pattern-recognition algorithm. Although

1/4, 1/4 1/4 . .
xt e xtiNo Xtod Vo we have tested the robustness of this algorithm to small
0.42432) 0.43134) 0.43725) variations within the general scheme, this can only be a first

step in exploring its reliability.
It is of course not at all certain that the topological struc-
1/4 1/4 ture of the uncooled fields can be usefully described in terms
Xi (@ x;(0) 2 f [ ; h ; i
- +calo. 33 of (overlapping charges thf_:lt are I_ocallzed _W|th|n some
\/;(a) \/c—r(O) width p of a particular location. While there is some evi-
dence from older calculations that instanton collective coor-
This will be a simple straight line in our figure. As we see dinates are the appropriate degrees of freedom to use, this
the calculated values are consistent with this functional formreally needs a much more careful study. Cooling will, of
In addition to the susceptibility calculated frotQ?) we  course, deform the field into such a superposition of charges
show the susceptibility calculated frof®@?). In Table XII  and so it makes sense to perform the analysis in these terms
we show the continuum values of the these ratios, togethen the cooled fields. One might take the sophisticated point
with earlier [20] results obtained over the range /8  of view that even if the uncooled topological structure is not
<6.2. We see that all the results are entirely consistent wittieally a superposition of approximately classical charges,

each other. cooling provides us with the distribution of the latter charges
To obtainy, in physical units, we use the value fgir in ~ that most closely reproduces the true structure—and hence
Eq. (19). Substituting this value we obtain its physics as well. This would then be the appropriate way
to test the assumptions of instanton models.
xY4=187+14+16 MeV (34) In any case, it is clear that one must always check how

robust under cooling are any conclusions that one wishes to
where the second error reflects the uncertainty in assigning@aw. This is something we have attempted to do. The fact is
value to the string tension in MeV units. This, we note, is inthat there is indeed a significant variation under cooling for

satisfactory agreement with our expectations from @&jj. many quantities and this introduces some uncertainty into
how one should interpret the calculated values. Unfortu-

nately our “pattern recognition” algorithms must break
down asn.— 0 (because of the increase in the apparent den-
The influence of topological structure on the physics ofsity) and so we are not able to attempt an extrapolation to
QCD arises most directly from the near-zero modes that ih,=0. In this paper we have focussed on developing tech-
induces in the/DA] quark operator. Without performing the niques to reveal the structure of the cooled fields: the prob-
appropriate eigenvalue calculations on the fields it is not posem of how precisely this relates to the uncooled fields still
sible to be certain which aspects of that structure are physawaits a convincing resolution.
cally important and which are not. For example, suppose that At the same time, because the separation between ultra-
the broader instantons belonged entirely to strongly overlapviolet and physical frequencies is approximate, but improves
ping Il pairs. In that case they would not contribute small@sa—0, it is important to perform scaling studies whenever
modes to/IPA] and so would be essentially irrelevant. As we Possible. This we have also done: the numbers we quote here
have seen, the smaller instantons form an approximate diluf@" the mean size, density etc. are the values that one obtains
gas. Such a dilute gas is what is assumed in the instantgifter an extrapolation to the continuum limit. Finally, we
liquid model [4] and so in that case our apparently veryhave explicitly checked that any finite-volume effects are

different topological structure would in fact be consistenteSsentially within our statistical errors. .
with that model. The simplest quantity to calculate, and one to which many

Given that we do not, in this paper, calculate the contri-Of the above caveats do not apply, is the topological suscep-
bution of the topological structure to quark propagators andiPility, x. Our calculation goes to smaller valuesaothan
hadron physics, it has seemed to us that the sensible apDy Previous S(B) calculation and confirms previous claims
proach is to expose all the structure that is there without anyhat Ed.(1) is well satisfied; indeed, better than one could
prejudice as to what might be important or not. expect. . o o

Exposing the topological structure is a non-trivial task. 1he topological charge distribution we obtain is charac-
First one needs to separate the uninteresting high-frequendgrized by a mean widtlp=0.56(5) fm, which is signifi-
modes from the interesting modes on physical length scalesantly larger than that which is typically assumed in instan-
We have chosen to use the “cooling” technique; and weton liquid model calculationg4]. The average separation
performed some studies to find the variant which appeared tbetween nearest neighbor charges is comparable to the aver-
distort the interesting long-distance structure the least. Therage width: so the vacuum is densely packed.
are other approach¢$6,15 and the relationship between all ~ The distribution is quite broad: the full-width iso2
these methods needs to be better understood; particularly &s0.22(2) fm. Our fits to the smaji-tail of this distribution
they appear to lead to significantly different results. do show some signs of a trend for it to approach the pre-

VIl. CONCLUSIONS
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dictedD(p) = p® behavior wherg is increased and when the its hospitality on various occasions.
number of cooling sweeps is reduced, but the evidence for
this is rather rough. At large-we find a rapid fall-off that APPENDIX A

can be represented by something liRép)>1/p't. This is _ , o _
much more severe than thep®/behavior that one might In this appendix we go briefly into some of the details that
argue on the basis of a coupling that freezes at large didt would have been tedious to leave in the main body of the

tances. text.

The values ofp and o, appear to become smaller as the
number of cooling sweeps is decreased. However it is not
clear whether this is a real effect or whether it is a reflection The lattice topological charg®, = fQ, (x)dx of an in-
of the increasing unreliability of our pattern recognition al- stanton will not be exactly unity, but, as we see in £,
gorithms in the denser vacuum at smaligr. Neither is it  will suffer O(a?) corrections. The relevant scaledsand so
clear how pronounced this effect would be after extrapolaif this is expressed in lattice units, we have
tion to the continuum limit.

We have found an interesting pattern of correlations _ c
amongst the instantons. As expected, nearest neighbor Q=1+ ,7+O
charges are more likely to have opposite signs. There seems
to be, in addition, something like a “hard core” repulsion: ~ Such corrections are relevant in several parts of our cal-
instantons very close to each other are suppressed muehlations. For example, we tune our filters so as to minimize
more than one would expect on the simple basis of phasthe discrepancyo=|Q—(n,—ny)|. If we useQ=Q_ this
space. Very small instantons do behave like a dilute gas, bumnay introduce a significant error. Another example concerns

the bulk of charges with<p do not. Instead they seem to the topological susceptibility(Qf) will differ from (Q?)

have charges that are biased, on the average, towards beidgd it is the latter that we want. Since we determine the
the same. Thus the fluctuations in topological charge, wheidths of all the charges in each field configuration, we can
restricted to sizes less than the mean, are hugely amplifie@asily correct for all the lattice artifacts once we have deter-

<Q2(p<;))><Q2>. At the same time the very large Chargesmined the coefficients in the expression in E41).

also tend to have the same sign, and this is opposite to that of To c_jetermmeQL(p) for a single Instanton, we take a
the smaller instantons. It is the charge of the smaller insta arge discretized instanton on a very large lattice and cool it.

tons that is the greatéin modulug and they determine the As we cool it, it will gradually shrink(Recall that we use a

sign of Q. So the smaller instantons afendejscreened by plaquette “action” to drive the cooling.As it ghrinks we
the larger instantons; and the larger instantons ar&aICUIateQL andp; we then find that we can fit these with

(ovenscreened by the smaller instantons. That is to say, thE'€ Simple form:

1. Lattice corrections to Q

. (A1)

P

vacuum has a long-range charge coherence that depends on 0.65 5.344
the scale. This effect becomes more pronounced as the num- Q. =1- '_2_ i —. (A2)
ber of cools is decreased and so it seems reasonable to infer P p

that it is a real property of the uncooled vacuum.
We recall that topological charge fluctuations are physi o
cally important; e.g they play an important role in generatingand for that it is adequate.

the ' mass. For this reason the effect we have identified doggirﬁelzeigfnmgotﬁzn\t, ;Ilﬁtea”tvr:/:t r:s\iles j(;(eil;[]eoEl (zx\ezr).oHow
might well have an impact on the physics. In particular if a ° q )

guantity were sensitive to fluctuations @ but, for some Th|§ |s.|ntr|nS|caIIy_ amblguoqs since the shape of a small
lattice instanton differs qualitatively from the continuum

dynamical reason, was insensitive gc-p (or the reverse  ghape. |t should however be apparent that this ambiguity
then it would be affzected far more strongly than if one sim-4qas ot matter; the role of is simply to act as a label
ply used the totaQ as a measure of the relevant fluctua- harametrizing instantons of different sizes. What is important
tions. However to go further along these lines one reallyis that once we pick some definition pf we then use it
needs to consider the fermionic physics in the background Oéonsistently throughout our calculations.
these fields; a topic that lies beyond the scope of this paper. A simple way to defing is to use a continuum relation
between some aspect of the instanton topological charge
density and its width. For example, we could use the relation
betweenQ, and p as given in Eq(12). On the lattice we
D.S. would like to thank Hubert Simma for many useful would calculateQ, , and then use this relation to defipéor
discussions. The work of D.S. was supported by the Carnus. This might be improved by replacirg@, with Q_ ,/Q
egie Trust, the UKQCD travel grant from PPARC, and byin Eqg.(12). (To avoid the double-valuedness that potentially
computing grants, for T3D and J90 time, from PPARC andarises wherp~1.) In practice we have chosen to use a dif-
the University of Edinburgh. M.T. was supported by PPARCferent relation. We recall that for a continuum instanton the
grants GR/K55752 and GR/K95338. Both D.S. and M.T.total topological charge within a distangeof the center is
thank the Newton Institute for hospitality during part of this 1/2. We therefore defing for our lattice instanton to be the
work, and D.S. also thanks Oxford Theoretical Physics fordistance within which it contains a topological charge of

This heuristic fit is in practice only needed down ge-2,
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Q,/2. This is used throughout our calculations. Of course thaVe have included a heuristicdl correction to mimic all the
discrete nature of the lattice means that one has to makaigher (ever) powers that will become important at very
some particular choices as to how to implement this critesmall p. Equation(A3) has been used in this paper for cal-
rion. (There are some unsatisfactory features in the choicegulatingp from the peaks.
we actually made—hbut in practice, because really small in- ) .
stantons are very rare, these do not matter. 3. Lattice correction to Q(|x|<R)

As we increases, the number of instantons small enough  In our filters we have used the topological charge within a
for these corrections to be important rapidly decreases andistanceR to define a widthpg. This is then compared to
s0, as long as one performs a scaling study, all methods ledtle width calculated from the peak. The continuum expres-

to equivalent results. sion forQ(|x|<R) is given in Eq.(16). For smallp this will
need lattice corrections and these can be found just as for
2. Lattice correction to Q, Qp . For example, for the cage=2 which we use in prac-

tice in our filters, we find that one can parametrize the lattice

The continuum expression fd@, in Eq. (12) will also . 1ections by

haveO(a?) lattice corrections. The scale for these is sepby
and so, ifp is expressed in lattice units, such a correction 1.66 1.26
corresponds to an extra term 6{1/p®). To determine the QL(|X|$2):Q(|X|$2)( 1= —~- —4)- (A4)
corrections we cooled a classical instanton, calculapiras P P
described above. The resulting relationship between the pedkhis can then be used to extract a width=p, for each
lattice topological charge anglmay be parameterized as  peak in the vacuum and this can be used in the filtémsact
we used a slightly different, but considerably less elegant,

QL .= 6 -~ 1-962+ 1.19 (A3) functional form which is essentially the same for the values

L m2pt p? p | of p that arise in practicg.
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