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Topological structure of the SU„3… vacuum
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We investigate the topological structure of the vacuum in SU~3! lattice gauge theory. We use under-relaxed
cooling to remove the high-frequency fluctuations and a variety of ‘‘filters’’ to identify the topological charges
in the resulting smoothened field configurations. We find a densely packed vacuum with an average instanton

size, in the continuum limit, ofr̄;0.5 fm. The density at larger decreases rapidly as 1/r;11. At small sizes
we see some signs of a trend towards the asymptotic perturbative behavior ofD(r)}r6. We find that an
interesting polarization phenomenon occurs: the large topological charges tend to have, on the average, the
same sign and are over-screened by the smaller charges which tend to have, again on the average, the opposite
sign to the larger instantons. We also calculate the topological susceptibility,x t , for which we obtain a
continuum value ofx t

1/4;187 MeV. We perform the calculations for various volumes, lattice spacings and
numbers of cooling sweeps, so as to obtain some control over the associated systematic errors. The coupling
range is 6.0<b<6.4 and the lattice volumes range from 163348 to 323364. @S0556-2821~98!01813-X#

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

SU(N) gauge fields in four Euclidean dimensions poss
an integer topological chargeQ @1#. The topological fluctua-
tions of the gauge fields are important in QCD; for exam
they are the reason why theh8 has a mass;1 GeV rather
than being a Goldstone boson@2#. One can also argue tha
they have something to do with chiral symmetry break
@3–6# and that they may have a significant influence upon
hadron spectrum@4#. The reason why topology might be ab
to do all this is that an isolated instanton produces a ze
mode in the Dirac operator. In the real vacuum these mo
will mix with each other and shift away from zero. Just ho
they do so will determine their importance for the phys
described above. This mixing will be determined by the
pological structure of the vacuum; and in the first instance
how large and densely packed are the component topolog
charges. Although what one ultimately wants to know
what happens in the vacuum of QCD, the pure SU~3! gauge
theory is also interesting; not least because of its relevanc
the physics of quenched QCD, which seems to be a g
approximation to the real world@7#. Moreover in the case o
theh8 it turns out that it is the topological charge in the pu
gauge theory that is most relevant: one can use largeNc
arguments@8,9# to relate the strength of the topological flu
tuations,^Q2&, in the SU~3! gauge vacuum tomh8 :

x t[
^Q2&

volume
.

f p
2

2Nf
~mh8

2
1mh

222mK
2 !;~180 MeV!4.

~1!

Naturally this has long been a focus for lattice calculatio
@10# and indeed it appears that Eq.~1! is satisfied@10–12# as
well as one could expect.
0556-2821/98/58~1!/014505~21!/$15.00 58 0145
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In this paper we attempt to see what one can learn ab
the detailed topological structure of the SU~3! vacuum, using
simulations of the corresponding lattice theory. Some of
initial motivation was provided by an early work of this kin
@13# in the SU~2! theory. Recently, several more detaile
SU~2! studies have appeared@14–16# as well as preliminary
reports@17–19# of some SU~3! work ~including a brief sum-
mary of the work in this paper!. Most of these papers ap
peared too recently to influence our work. For this reason
shall not attempt to review them or to compare our results
detail with theirs. However the reader should be aware t
there are some quite sharp disagreements within the m
recent SU~2! calculations. In particular between those stud
that claim to find a relatively dilute gas of rather small i
stantons@15#, and those that find a dense gas of considera
larger instantons@16#. Naively, this difference would seem t
be important to the physics that one derives from the to
logical structure; in particular the former picture fits bett
with instanton liquid models@4#. This indicates that curren
lattice calculations of topological structure—including th
one—should be regarded as exploratory.

The work we do in this paper uses an ensemble of sto
SU~3! field configurations that were generated by UKQC
for other purposes. All were generated with a stand
plaquette action on periodic lattices. We shall analyze 1
163348 and 50 323364 lattice field configurations atb
56.0, 100 243348 configurations atb56.2, and 20
323364 configurations atb56.4. The field configurations
are typically separated by 800 to 2400 Monte Carlo swe
and therefore represent approximately independent snaps
of the vacuum. The lattice spacinga decreases by almost
factor of two over our range ofb and so this will allow us
some control over the continuum limit of the theory. At th
same time, the two quite different volumes atb56.0 will
allow us some control over the thermodynamic limit.
© 1998 The American Physical Society05-1
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
In the next section we discuss topology on the lattice a
introduce the cooling algorithm which we use to reveal
topological charge density,Q(x). Once we haveQ(x), we
then want to decompose it into a sum of instantons and a
instantons of various sizes. For the densely packed vac
that we find, this represents a difficult pattern recognit
problem. We shall provide a sequence of procedures—
might call them filters—which are designed to solve th
problem. These procedures are necessarily approximate
the details can be tedious, but they are essential for any
who wishes to reproduce our calculations. For this reason
shall relegate some of the technical details to the appen
There follow two sections describing the main results of o
investigation of the vacuum topological structure. This w
include the instanton size density,D(r), with a particular
emphasis on the mean instanton size, the functional form
the small-r tail, where asymptotic freedom make
asymptotic predictions, and the large-r tail, which is deter-
mined by analytically incalculable infrared effects. We th
investigate the correlations between topological charg
Here we find a quite striking long-distance polarization ph
nomenon which has not, as far as we are aware, been
marked upon before. The next section contains our calc
tion of the continuum topological susceptibility, somethi
which is free of the many uncertainties that adhere to
calculations of the vacuum structure. We finish with so
conclusions. Throughout the paper we attempt to point
how our study can and should be improved.

II. TOPOLOGY OF LATTICE GAUGE FIELDS

Two continuous gauge fields that have different topolo
cal charges cannot be continuously deformed into each o
When we discretize space-time, however, the fields are
longer continuous and the notion of topology becomes a
biguous. Nonetheless, because the theory is renormaliz
~and because the lattice is surely a good regulator! it must be
the case that we recover all the usual topological proper
as the lattice spacing vanishes,a→0. ~For a brief discussion
of this issue see@20#.! In this section we summarize som
relevant properties of continuum topology and some of
problems that arise when gauge fields are regularized on
space-time lattice. We focus on one approach to solv
these problems, ‘‘cooling’’@22,10#, and then motivate in
some detail the particular version of cooling that we shall
in this paper.

A. Topology of continuum fields

The topological charge,Q, of a gauge field can be ex
pressed as the integral over Euclidean space-time of a t
logical charge density,Q(x), where

Q~x!5
1

32p2 emnrs Tr$Fmn~x!Frs~x!%. ~2!

The minimum action field configuration withQ51 is the
instanton. The action and topological charge density are
calized within a core of sizer. At the classical level the
theory is scale invariant and so all sizes are possible and
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action is independent ofr. The gauge potential of an instan
ton of sizer centered atx50 is given by

Am
I ~x!5

x2

x21r2 g21~x!]mg~x! ~3!

where

g~x!5
x01 ix js j

~xmxm!1/2 ~4!

up to a gauge transformation. These expressions are
SU~2!; they can be trivially extended to SU~3! by embedding
the SU~2! fields into SU~3! fields.

In the semiclassical limit a field of chargeQ will typically
containnI instantons andnĪ 5nI2Q anti-instantons, all of
which are well separated. In this dilute gas approximati
the average density of instantons will depend onr as

D~r!dr5
dr

r

1

r4 e28p2/g2~r! . . . ~5!

where the ellipsis represents factors varying weakly withr.
We recognize in this equation the scale-invariant integrat
measure; also a factor to account for the fact that a bal
volume r4 can be placed in 1/r4 different ways in a unit
volume; and finally a factor arising from the classical insta
ton action,SI58p2/g2(r).

Note that at this point we have departed from the class
calculation: perturbative fluctuations around the instan
break scale-invariance, promoting the bareg2 to a running
g2(r) in the usual way. This is crucial. When we insert t
asymptotically free form of the coupling, we obtain

D~r!}S r

j D 6

, ~6!

wherej is the physical length scale of the theory.@The cor-
responding power in SU~2! would ber7/3.# We observe that
the number of instantons vanishes rapidly asr→0 ~rather
than diverging as it did in the classical theory!. This makes it
plausible that the introduction of a lattice will not affect th
physics oncea!j.

The behavior ofD(r) in Eq. ~6! is only valid for r!j
since only then isg2(r) small enough for perturbation theor
to be applicable. Forr>j the instantons will presumably
overlap and the density is not calculable analytically. One
the things we want to learn from lattice calculations is wh
actually happens at largerr. Note that the characterization o
the topological charge density in terms of charges of sizr
might not be possible, even to a first approximation, in
real vacuum. Although we shall use that language for c
venience in our discussions, we shall make some attemp
question its validity.

B. Topology of lattice fields and cooling

A lattice gauge field consists of group elements,Um(x),
on the links of the lattice. A lattice ‘‘instanton’’ can be con
structed straightforwardly by defining
5-2
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
Um
I ~x!5P expS E

x

x1am̂
Am

I ~x!dxD , ~7!

where the gauge potentialAm
I (x) is as in Eq.~3!, but with its

origin translated to the center of a hypercube.@On a compact
space, e.g. a hypertorus, we need to go to singular ga
using the translated version ofg(x) in Eq. ~4!, before impos-
ing the periodic boundary conditions.# As long asr@a any
reasonable definition of topological charge will assignQ
51 to this lattice field. If we are in a finite periodic volum
of length La, then thisQ51 lattice field will be close to
being a minimum action configuration as long asa!r
!La. ~Exactly how close will depend on the particular la
tice action being used.! If we now smoothly decreaser to
valuesr!a this lattice field will become indistinguishabl
from a gauge singularity and hence will haveQ50. Thus we
explicitly see the ambiguity in assigning a topological cha
to a lattice gauge field.

Note that this ambiguity disappears asa→0. Indeed sup-
pose a lattice field configuration is to be smoothly deform
from Q51 to Q50. This requires a topological fluctuatio
to be squeezed out of the lattice, as described above. W
we do not know much about the structure of the origin
fluctuation~it will typically be on a size scale;j which is
beyond the reach of our analytic techniques! we do know
that if the lattice spacing is sufficiently small then to rea
r;a the ‘‘instanton’’ will have to pass through sizesj@r
@a. In this region the density is calculable as we saw abo
with a probability that is very strongly suppressed; at leas
;(r/j)6 for SU~3!. So the changing ofQ is conditional
upon the involvement of field configurations who
probability→0 as a→0. Thus, as we approach the co
tinuum limit this lattice ambiguity vanishes very rapidl
@And much more rapidly in SU~3! than in SU~2!.# That is to
say, the situation is much as with the calculation of any ot
physical quantity: one can only trust one’s results after p
forming the appropriate scaling analysis.

Since we are interested in learning about the sizes of
topological charges we need a lattice version of the c
tinuum charge densityQ(x) defined in Eq.~2!. Let Umn(x)
be the ordered product of link matrices around the plaqu
labelled by the sitex and the plane$m,n%. ~For brevity we
will refer to this group element as a plaquette.! As is well
known, we can expandUmn(x)511a2Fmn(x)1¯ and so
we can define a lattice topological chargeQL(x) as follows
@21#:

QL~x![
1

32p2 emnrs Tr$Umn~x!Urs~x!%5a4Q~x!1O~a6!.

~8!

~In fact we employ the version of this that is symmetriz
with respect to forward and backward directions, so that
operator changes sign under reflection in any axis.! If we
apply this formula to a smooth gauge field then we find,
expected, that the corrections areO(a2); for example, in the
case of our instantonQL5*QL(x)dx511O(a2/r2).
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If we apply QL(x) to the real vacuum, however, we im
mediately encounter problems. The operator is dimension
and so O(a6) actually means terms such as;a6F3,
;a6FD2F etc. For smooth fields these are indeedO(a6).
However realistic fields~those that contribute to the pat
integral! have fluctuations all the way up to frequencies
O(1/a). The contribution of these high frequency modes
the O(a6) terms will bedQL(x);a631/a6;O(a0) ~up to
some powers ofb that can be calculated in perturbatio
theory!. Thus in the real worldQL(x) possesses interestin

topological contributions that are of ordera4}e2(16p2/33)b

~using the running coupling on scalea for g2! and uninter-
esting ultraviolet contributions that are of order 1/bn. So as
we approach the continuum limit,b→`, the ultraviolet fluc-
tuations dominate and completely mask the interesting ph
ics.

Actually things are somewhat worse than this. Like oth
composite lattice operators,QL(x) possesses a multiplicativ
lattice renormalization factor:Q̄L5ZQQ where ZQ.1
25.451/b1O(1/b2) @12#. This looks innocuous, and indee
in the continuum limit it obviously is. However in the rang
of values of b where current lattice calculations are pe
formed, typically b;6, we see thatZQ!1, rendering the
topological charge virtually invisible.

To deal with these problems we shall use the techniqu
‘‘cooling’’ @22# the fields. The idea rests on the observati
that the problems are all caused by the ultraviolet fluct
tions on wavelengths;a. By contrast, if we are close to th
continuum limit, the topology is on wavelengthsr@a. One
can therefore imagine taking the lattice fields and loca
smoothing them over distances@a but !r. Such a smooth-
ing would erase the unwanted ultraviolet fluctuations wh
not significantly disturbing the physical topological char
fluctuations. One could then apply the operatorQL(x) to
these ‘‘cooled’’ fields to reveal the topological charge dist
bution of the vacuum.

How do we cool a lattice gauge field? The simplest p
cedure is to take the field and generate from it a new field
the standard Monte Carlo heat bath algorithm subject to
important modification: we always choose the new link m
trix to locally minimize the plaquette action. Sinc
Tr Umn(x) measures the variations of the link matrices ov
a distancea, minimizing the plaquette action is a very effi
cient way to erase the ultraviolet fluctuations. Obvious
there are many possible variations on this theme and we s
return to that question shortly.

Thus the idea is that we take our ensemble ofN gauge
fields, $UI 51, . . . ,N%, perform a suitable number of coolin
sweeps on each one of these, and so obtain a correspon
ensemble$Uc

I 51, . . . ,N% of cooled fields. We then extract th
desired topological properties from these cooled fields. W
are the ambiguities? As we cool, topological charges of
posite sign will gradually annihilate. This changes the top
logical charge density but not the total value ofQ. Eventu-
ally this leads to a dilute gas of instantons. As we cool ev
further these isolated instantons will gradually shrink. Eve
tually they shrink within a hypercube and at this point ev
Q will change.~This will occur if we cool with a plaquette
5-3
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
action on a large enough volume: other actions may lea
other outcomes.! Of course when an instanton becomes n
row it has a very peaked charge density and is impossibl
miss. So we will certainly know when it disappears out
the lattice and can, if we think it appropriate, correct for th
So cooling provides a reliable method for calculating t
total topological charge of a lattice field. However the top
logical charge density changes continuously throughout
cooling process and so what we learn from it is far mo
ambiguous. For this reason we shall try to use as few coo
sweeps as possible and, in addition, we shall repeat the
culations for various numbers of cooling sweeps so as to
and disentangle any artifacts of the cooling procedure.

C. Under-relaxed cooling

Consider first the case of SU~2! and suppose we are usin
a plaquette action. The part of the action that involves

link matrix Um(x) is proportional to Tr$Um(x)Ŝ(x;m)%

whereŜ(x;m) is an SU~2! matrix proportional to the sum o
the ‘‘staples’’ around the link under consideration. So if w
were choosing a new link matrixUm8 (x) to locally minimize

the action, we would chooseUm8 (x)5Ŝ†(x;m). Repeating
this procedure for all the links of the lattice would constitu
the simplest type of cooling sweep. We might howev
imagine generalizing it to the choice

Um8 ~x!5c„aUm~x!1Ŝ†~x;m!… ~9!

where c is a normalization constant ensuring that the li
matrix is unitary anda is a free parameter.~This has been
called ‘‘under-relaxed’’ cooling@13#.! This will smoothen
the fields for a>0. We will use this freedom to try and
choose a form of cooling that is optimal for our purposes

To use this method in SU~3!, we simply apply it to the
SU~2! subgroups that arise in the standard Cabibbo-Marin
algorithm.

We shall use three criteria for deciding what is the op
mal choice ofa.

~a! We want to use as few cooling sweeps as possible
~b! We want to disturb the topological charge density

little as possible.
~c! We do not want instantons which initially haver;a

to broaden as we cool.
So the first thing we wish to do is to compare the differe

kinds of cooling sweeps. We calibrate them as follows. D
cretize an instanton of sizer52a as in Eq.~7!. Now cool it
until it disappears. Our criterion for disappearance is that
action drops below 10% of the continuum instanton acti
We find that the number of cools,nc , to do this varies with
a approximately as follows:

nc~a!523132a. ~10!

~One can easily show that, at largea, nc must increase lin-
early.! This is a measure of how effectively the differe
kinds of cooling erase high-frequency modes: and as
pected we need more sweeps as we increasea.
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Let us now ask how rapidly the topological structu
changes under cooling. To address this question we cons
classical instanton anti-instanton pairs of various widths a
various distances apart. We then cool them and see
many sweeps it takes to annihilate them. We express
number of sweeps in units of the corresponding calibra
sweeps, i.e. in units ofnc(a) in Eq. ~10!. An example is
shown in Fig. 1. In this plot we show how the action of a
instanton anti-instanton pair, withr53a and separation 9a,
varies with the number of cooling sweeps. We show se
rately what happens fora50 anda52. We observe that in
units of the calibrated sweeps, cooling witha52 alters the
topological structure more slowly thana50 cooling. This is
not a large effect but is characteristic of what we see w
other examples.

In addition to the above studies we have also compa
the effects of the different kind of cooling on thermalize
field configurations. To be specific, on five 163348 lattice
fields generated atb56.0. We cooled these witha50.0,
0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. In Fig. 2 we show how
action decreases with the number of~calibrated! sweeps. We

FIG. 1. Action of I Ī pair against number of calibrated coolin
sweeps, fora50 ~d! anda52 ~s!.

FIG. 2. Action against number of calibrated cooling sweeps,
a50 ~d! anda52 ~s!.
5-4
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
see that the curves corresponding toa50 anda52 almost
fall on top of each other. This confirms the fact that to a go
approximation a calibrated sweep has the same effect on
ultraviolet lattice modes for anya.

As an aside we note that the action drops much furthe
the firsta50 cooling sweep than in the firsta52 ~uncali-
brated! sweep. To the extent that there is a worry about w
might be happening at this early stage, there might be s
advantage in the smoother under-relaxed cooling proced

Finally we note that while the value ofQL after one cali-
brated cooling sweep is independent ofa on three of the five
configurations, it differed by 1 on two of them. To be pr
cise, the fields cooled witha>0.5 all agreed with each othe
and the disagreement was with thea50 case. It could be
readily traced to a single ‘‘instanton’’ that was narrow duri
the first few cooling sweeps, and which rapidly shrank ou
the lattice with furthera>0.5 cooling, but which broadene
undera50 cooling. This anomalous broadening must be
result of the non-trivial environment in which the narro
instanton is sitting. It is however something we would wi
to suppress as much as possible and this is an argumen
not usinga50.

We have seen that in appropriate units we can disturb
topological charge density less by usingaÞ0 and that we
simultaneously reduce the probability ofr;a artifacts sur-
viving the cooling. Our studies are far from definitive an
because of their low statistics might even be misleading;
they do serve to illustrate the criteria that it would ma
sense to use. Motivated by what we have found we shall
under-relaxed cooling witha51 for the remainder of this
paper.

III. PATTERN RECOGNITION

Since the cooling algorithm is local it will erase the hig
est frequency modes first. Ideally we would like to stop t
cooling once it has erased all the modes on scalesl!j but
before it has significantly affected the physically interest
modes on scalesl;O(j). Such a clean separation is n
possible in practice and by the time we have cooled eno
to reveal the long-distance structure ofQ(x) we have cer-
tainly deformed that structure. Thus one has to perform
calculations for various numbers of cooling sweeps and
tempt to identify those features that are relatively robust.

Because our cooling algorithm gradually deforms a fi
configuration towards the minimum of the action, the top
logical charge density will increasingly resemble a set
overlapping instantons and anti-instantons. As we cool
ther, those that are strongly overlapping will annihilate a
the vacuum will become less densely packed. So in orde
identify the structure ofQ(x) we shall assume that it is give
by an overlapping set of~anti!instantons of various sizes
This is of course a crude approximation. It also raises a f
damental question: how much of this structure is driven
the cooling and how much of it is intrinsic to the origin
uncooled field configuration? One way to try and answer
question is to increaseb so that the separation between t
physical and ultraviolet modes becomes better defined.
have therefore included calculations up tob56.4.
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In this section we describe how we extract and catego
the topological structure of the cooled field configurations

The first step is to use the peaks ofQ(x) to locate the
centres of the topological charges and to provide a first e
mate of their sizes. We then need to correct for the influe
of the charges on each other. The next step is designe
reduce the number of false identifications. These may ar
for example, from secondary ripples on very large insta
tons. We implement two filters for this purpose. That the
are in fact many mis-identifications is easy to show. We ha
nI candidate instantons andnĪ candidate anti-instantons. Th
total topological charge is therefore predicted to benI2nĪ .
At the same time we can calculateQ directly from
*QL(x)d4x. The quantity

dQ[uQ2~nI2nĪ !u ~11!

provides a direct measure of the mis-identification, and ty
cally turns out to be substantial. At the same time this p
vides us with a criterion for choosing the parameters in
filters: they are chosen so as to minimize the value of^dQ&.

Our discussion so far has been based upon the topolog
charge density. Clearly there is information carried by t
action density as well and one might ask whether it would
useful to incorporate that. We investigate this question in
last subsection and find that the action density has little n
to tell us about the smaller charges that are easy to iden
anyway, and is not able to resolve the larger charges wh
all the uncertainties lie. Thus for the remainder of the pa
our analysis will be entirely based upon the topologic
charge density.

A. Peaks and neighbors

Once we have cooled a field configuration we calcul
the topological charge density using Eq.~8!. The peaks in
this density are candidate locations of instantons. Howeve
is our experience in dealing with smooth discretised inst
tons that it is dangerous to define a peak only with respec
the sites that are6a away in any one direction. One instan
ton can readily produce peaks on sites across diagonals
hypercube.

We therefore defineQL(x) to have a peak atx0 if its
value atx5x0 is greater than at all the 34 sites belonging to
the corresponding hyperbox centered onx0 . ~With an obvi-
ous modification to account for negative maxima.! Of course
if two instantons happen to be close enough together, t
we will miss one of them by using this criterion. Howev
the probability of this occuring will decrease rapidly asa
decreases. So, once again, as long as we perform a sc
analysis there is no ambiguity.

At this stage we have candidate positive charges at$xi
1 ;

i 51, . . . ,n1% and candidate negative charges at$xi
2 ; i

51, . . . ,n2%. We shall make the customary assumption th
only charges withQ561 are present.~It is a non-trivial
matter to test this assumption and we do not attempt to d
in this paper.! To obtain a first estimate of the sizes of the
charges we can use the classical instanton relation betw
the topological charge density at the peak and the width
5-5
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Qp5
6

p2r4 . ~12!

This relation is for a continuum instanton. It applies equa
well for a large lattice instanton, but will become inaccura
for smaller instantons whereO(a2/r2) lattice corrections be-
come significant. In practice we use a lattice corrected v
sion of Eq.~12! as described in the Appendix.

We now have a first estimate for the positions,xi
6 , and

sizes,r i
6 , of the~anti!instantons. However we know that th

value ofQL(x) at x5xi
6 will receive contributions from the

tails of all the other~anti!instantons and so may not be a
accurate reflection of the peak value of the topologi
charge that is centered there. To correct for this we h
implemented the following iterative procedure.

We shall make two main approximations. First we sh
assume that the topological charge is additive. Secondly
shall only attempt to calculate the corrections to the siz
r i

6 , and not to the locations,xi
6 . These are approximation

that should be improved upon. Under these assumptions
can write

Q~xi
6!5Qp~r i

6!1 (
xj

6Þxi
6

QI~ uxj
62xi

6u;r j
6! ~13!

where Qp(r) is the peak value of a topological charge
radiusr @as given in Eq.~12! and with the lattice correction
as in the Appendix# andQI(ux2x0u;r) is the contribution to
the charge density atx from an instanton of sizer located at
x0 . We use the continuum expression for this

QI~ ux2x0u;r!5
6

p2

r4

~~x2x0!21r2!4 ~14!

with the opposite sign for anti-instantons. While one sho
improve upon this expression by including lattice correctio
at small-r, this is not necessary to a first approximatio
because the corrections tor that are embodied in Eq.~13!
turn out to be modest. Note that to avoid cluttering the eq
tions we have dropped the subscript onQL .

What we know in Eq.~13! are the values of theQ(xi
6)

and what we want to solve for are ther i
6 . One can attemp

to do this by iteration, using Eq.~12! andQp(r i
6)5Q(xi

6)
to provide us with our starting values ofr i

6 . We pick say the
charge atx1

1 and calculate the contribution of all the oth
peaks using Eqs.~13!,~14!. From the renormalized pea
value we extract a corrected value ofr1

1 to replace our first
guess. We go to the next charge and repeat the same p
dure there except that we use the updated value ofr1

1 in
calculating QI . Repeating this procedure at each relev
site constitutes one iteration. We perform as many iterati
as are required to reach convergence. Our criterion for c
vergence is that the change inr during the final iteration
should satisfydr<0.001r for all the charges.

In practice we have applied the above procedure wit
slight modification: if at any stage the apparent sign o
charge changes when we take into account the influenc
the other charges, then this charge is removed and play
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further part in the analysis. The reason for doing this is t
given the approximate nature of the correction, if it mak
such a large difference then we cannot be confident that t
is in fact a charge at that location. To throw the charge aw
is of course an arbitrary choice. Fortunately this arises v
infrequently. For example on 20 16348 lattices after 23 cool-
ing sweeps one peak was removed from 6 configurations
four peaks from one configuration; despite the fact that
average configuration contained 169 peaks. In this sense
modification is indeed slight.

We remark that the above procedure has always c
verged; presumably because our starting point is alw
close enough to the final solution. We have explici
checked that the final solution does not depend on the o
in which the peaks are considered, and, more to the po
that neither do the peaks that are thrown out because
change sign.

How much of a difference does it make to estimate
instanton sizes using Eq.~13! rather than just applying Eq
~12! to the observed peak heights? In Fig. 3 we show w
happens on a test sample of 20b56.0 163348 field con-
figurations after 23 cooling sweeps. On the x-axis we plot
quantity

dr

r
5Ur f inal2rorig

rorig
U ~15!

whererorig is the initial estimate of the size using Eq.~12!,
andr f inal is the value obtained after solving Eq.~13!. On the
y-axis we plot the average number of times a value ofdr/r
occurs per field configuration. We observe that the fractio
change inr is typically at the;5% level; that is to say,
small but significant.

We note from Eq.~13! that subtracting a small constan
dQ from the peak value ofQ(x), leads to a fractional
change in the widthdr/r}r4dQ. We would therefore ex-
pect that charges with smallr would be practically unaf-
fected by the corrections in Eq.~13!, but that the fractional
change would rapidly increase withr and, at some point
would cease to be reliable. In Fig. 4 we show how the av

FIG. 3. Number of times a given fractional change in wid
occurs when using Eq.~13!: at b56.0 after 23 cools.
5-6
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
age value of the fractional change inr depends on the fina
value ofr, in our test sample of configurations. We see t
^dr/r& is very small up tor;5, which, as we shall shortly
see, is roughly where the charge density,D(r), has its maxi-
mum at b56.0. It then grows rapidly withr but remains
small enough to be credible up tor;10. Thereafter it be-
comes large and our approximations are presumably in
equate. However, as we shall see, there are almost no in
tons forr>10 and so we believe that our procedure provid
a reasonable first approximation for the range ofr relevant to
our calculations.

B. Filtering the peaks

At this stage we have a set of candidate charges.
claim to know their positions and their widths. If this was a
that was needed then we would expect that the value ofdQ in
Eq. ~11! would be zero. We show in Table I what the avera
values of this quantity actually are for the 243348 configu-
rations atb56.2. We also show, for comparison, the val
of A^Q2& and the average number of charges,^Ntot&[^nI
1nĪ &. We do this for various numbers of cooling sweeps

We observe that there is a substantial mismatch betw
the value ofQ as calculated directly and that obtained fro
the peaks ofQ(x). The former is certainly reliable~up to
errors in the lattice corrections, which are negligible relat
to dQ!. So either some charges do not show up as peaks,
so we have missed them, or some of the peaks inQ(x) are
not topological charges. We cannot deal with the first po

FIG. 4. Fractional change in width, against the final width, af
using Eq.~13! to account for presence of other charges: atb56.0
after 23 cools.

TABLE I. Mismatch,dQ , typical total charge,A^Q2&, and total
number of charges: against number of cooling sweeps atb56.2.

cools ^dQ& A^Q2& ^Ntot&

23 12.45 4.1 493.8
32 10.39 4.0 273.6
46 7.08 4.0 151.1
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bility without a much more sophisticated correction proc
dure than that embodied in Eq.~13!. This is beyond the
scope of the present paper. To address the second possi
we shall calculate some further properties of the topolog
charge density around the peaks and use these to ‘‘filter o
the peaks that are most likely not to be instantons.

1. A width filter

For an instanton of sizer the charge within a radiusR is
given by

Q~ uxu<R!5123S 1

11
R2

r2
D 2

12S 1

11
R2

r2
D 3

. ~16!

~This will require significant lattice corrections for smallr,
as discussed in the Appendix.!

We can use Eq.~16! to calculater from Q(uxu<R). For
an isolated classical instanton we will get the same value
r whatever value ofR we choose. In an environment whe
instantons overlap this will not be the case. If we correct
this overlap by using an obvious generalization of Eq.~13!
then the extractedr should become independent ofR.

Our filter is therefore as follows. As described earlier, f
each peak inQ(x) we calculate a value of the width,r, using
the ~corrected! value of Q(x) at the peak. We then choos
some value ofR and calculate the corresponding widthsrR
from the ~corrected! values of Q(uxu<R), as described
above. If the peak represents a real instanton then we ex
that the valuesr and rR should be similar. We therefore
impose the condition

MaxS rR

r
,

r

rR
D21,eR , ~17!

whereeR is a small number that will be fixed by minimizin
the quantitydQ in Eq. ~11!. Only if a peak satisfies this
condition will it be counted as a genuine topological char
In practice we shall useR52 in our later calculations.~Note
that we shall switch between physical and lattice units
convenient, when there is no ambiguity.!

2. A distance filter

Very broad instantons are likely to be significantly di
torted and so one needs a reasonably generous value ofeR in
Eq. ~17! if one is not to run the risk of filtering out too man
genuine topological charges. It is therefore useful to supp
ment the previous filter with an additional one.

We choose to focus on the possibility that a very bro
instanton might possess a long-wavelength ripple acros
surface which then leads to a misidentification of the str
ture as containing two~or more! broad instantons.~This is a
possibility because the small number of cooling sweeps
we shall be using will not affect long-wavelength modes.!

Our filter consists of the following steps.
~1! Consider a randomly chosen peak ofQ(x) at positionx0
with width r0 .
~2! Identify the peak nearest to it. If this has the opposite s

r

5-7
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
accept the original peak. If it has the same sign, follow
steps below.
~3! Let rn ,xn be the width and position of the nearest neig
bor. Letrc be a cut-off value to be chosen. Then we acc
the original peak if either it or the nearest neighbor is n
rower thanrc i.e. if r0<rc or rn<rc .
~4! If both peaks are broader thanrc and if the distance
between them is small compared to their sizes then we re
the peak under consideration. The detailed criterion isux0
2xnu<ec(r01rn) whereec is a small number to be chose

We consider each peak on the lattice in this way. T
peaks are considered in a random order and therefore
choice of which of two broad nearby peaks gets thrown
is in reality random.

3. Using the filters

In practice we apply the distance filter first and apply t
width filter to those peaks that survive. We have the para
eterseR , rc andec to fix. This is done by minimizingdQ , in
Eq. ~11!, with respect to variations in all three paramete
simultaneously. This is a time-consuming calculation and
typically perform it on a subset of;20 of the configurations
and then use the parameters so determined to analyze
whole ensemble.

The quantitydQ will often have several minima that ar
not significantly higher than the absolute minimum. In su
situations we choose the minimum that leads to fewer pe
being rejected. This is to avoid loose cuts that lead to the
of too many real instantons along with the false peaks
Table II we list the filter values we use in the calculations
this paper.

TABLE II. The filter parameters used in this paper, with corr
sponding charge mismatch,dQ .

b cools e2 rc ec dQ

6.0 23 0.19 6.84 0.20 2.90
28 0.17 6.50 0.25 2.25
32 0.11 8.46 0.20 2.75
46 0.10 16.00 0.10 1.70

large 46 0.10 6.89 0.25 6.25
6.2 23 0.27 7.80 0.30 4.40

32 0.20 6.83 0.25 3.55
46 0.11 9.31 0.20 2.25

6.4 30 0.24 10.89 0.20 4.00
50 0.21 9.43 0.30 2.80
70 0.10 11.25 0.30 1.83
80 0.05 10.83 0.15 1.92

TABLE III. Filter parameters forb56.2, usingr3 in the filter.

cools e3 rc ec dQ

23 0.62 7.60 0.3 3.65
32 0.46 6.83 0.25 3.85
46 0.24 7.18 0.20 1.90
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We now give an example of the application of the abov
filters, using our 243348 lattice fields atb56.2. We con-
sider the three ensembles obtained after 23, 32 and 46 co
ing sweeps. In Table II we see the filter parameters and t
corresponding values ofdQ . We observe thatdQ is dramati-
cally reduced when compared to the unfiltered values
Table I. The width filter used here involvedR52. The cor-
responding values withR53 are shown in Table III. The
results are not dissimilar.

In order to achieve these acceptably small mismatch
betweenQ andnI2nĪ , how severely do we need to change
the distribution of charges? Not very much is the answer. I
Table IV we show the number of peaks before and after th
filters are applied. Even for the smallest number of coolin
sweeps, we only lose;10% of the peaks. In Fig. 5 we show
the number of instantons per configuration as a function o
the sizer, before and after applying the filters. Here we se
that the change is concentrated amongst the very largest
stantons. This is as it should be: it is these charges, with the
very small charge densities and their large overlaps wit
many other charges, that are the hardest to extract reliabl

Although the purpose of our filters is to reject false peaks
it is inevitable that occasionally they will reject real charges
This is especially so with the distance filter: two broad in
stantons may be close together just by chance. It would
useful to have some crude estimate of this. One could do th
by throwing the charges into our space-time box, with th
observed size density, and seeing how often they would
rejected by the distance filter. In throwing the charges int
the box, one should incorporate some broad features of t

TABLE IV. Number of peaks, atb56.2, before and after ap-
plying filters based onr2 andr3 respectively.

cools
No. peaks
~unfiltered!

No. peaks
(r2)

No. peaks
(r3)

23 540 495 489
32 302 271 267
46 164 158 148

FIG. 5. Filtered~3! and unfiltered~L! size distributions after
23 cooling sweeps atb56.2.
5-8
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correlations. As we shall see one such feature is that
nearest neighbor tends to be of the opposite sign; and a
ond is that there is a strong suppression of~anti!instantons
very close to each other. We have not implemented suc
realistic model, but have simply thrown the instantons in
the box entirely at random. In that case we find that
number of real rejected instantons is close to the actual n
ber we reject. It should be clear that the qualitative effec
modifying the random distribution to include the features
just described, will be to markedly reduce the number
mistaken rejections. Thus we anticipate that only a sm
fraction of the charges rejected are real ones. However th
only a qualitative argument and it is certainly no substit
for an explicit and careful ‘‘background’’ calculation: thi
still needs to be done.

We have seen that by the addition of two physically m
tivated filters we are able to reduce the discrepancy,dQ ,
quite dramatically and that this only involves the rejection
a small percentage of the peaks. Moreover the rejected p
are concentrated amongst the very broadest charges, as
should be. In the remainder of our work these are the filt
that we shall employ.

C. The action density

Before moving onto our results, we briefly ask wheth
there is much to be gained by using the action density,S(x),
in addition to or in place of the topological charge densit

What do we expect? GenerallyS(x)>uQ(x)u, if we use a
normalization whereS(x)5uQ(x)u for a self-dual field. As
we cool we shall eventually be driven to such a self-d
solution ~up to lattice corrections!. It is only when S(x)
.uQ(x)u that one can use analogues of Eq.~13! for the ac-
tion so as to estimate widths from the action densities. In F
6 we show how the ratio(S(x)/(uQ(x)u varies with the
number of cooling sweeps.~This comes from 5 163348 con-
figurations atb56.0.! We see that the fields are far from
being self-dual.

If we ignore the non-self-dual nature of the fields a
extract widths from the peaks in the action density, then
obtain the size distributions shown in Fig. 7 and Fig. 8. W

FIG. 6. (xS(x)/(xuQ(x)u against number of cooling sweeps,
b56.0.
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also show, for comparison, the corresponding distributions
that we obtain from the topological charge density.~Note
that both analyses simply use the peak height, with no adde
filters of the kind described above.! We observe that for
small r the distributions are essentially identical while at
large r the distribution from the action is suppressed, and
that this effect is stronger for fewer cools.

This can be qualitatively understood in the approximation
where we think of the extra non-self-dual action,dS
5(S(x)2(uQ(x)u, as being smoothly distributed over the
whole volume. If we calculater from the peak action den-
sity, then this increment will shift instanton sizes to smaller
values. Narrow instantons have large peaks that will be little
changed by this addition. On the other hand the action den
sity will never be smaller thanS(x)5dS/volume and this
provides an upper limit on ther that one extracts. This effect
should be weaker for a larger number of cooling sweeps
becausedS/volume decreases—see Fig. 6. This certainly
provides a first approximation to what we observe in Fig. 7
and Fig. 8. At smallr no change; at larger a quite sharp
cut-off; at mediumr an enhancement in the size density
from the action as one would expect if larger peaks had bee
shifted to smaller ones. The numbers roughly fit too, excep

FIG. 7. Size distributions fromS(x) ~s! and fromQ(x) ~d!
after 23 cooling sweeps atb56.0.

FIG. 8. Size distributions fromS(x) ~s! and fromQ(x) ~d!
after 46 cooling sweeps atb56.0.
5-9
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
it is clear that only a small fraction of the broad charges h
been shifted to smaller values: most of them have appare
disappeared. This is to be expected. If we have a very br
instanton overlapping with a very broad anti-instanton
can see two peaks inQ(x) because of the sign difference
S(x) however is always positive and is quite likely not
show two peaks—just a single broad peak covering the p

One can go a step further and ask whether the peak
S(x) are in fact associated with peaks inQ(x). In Table V
we show the number of peaks obtained fromS(x) andQ(x)
for 23 and 46 cooling sweeps. We also show how many
the peaks inS(x) are associated with peaks inQ(x): either
because they are at the same site or because they are w
2 lattice spacings. We observe that the latter accounts
nearly all the action peaks.

We conclude that as long as we work with a small num
of cooling sweeps the action density loses most of the in
mation about the larger topological charges, although it d
reproduce the narrower topological charges that we find
ing Q(x). Thus we shall ignore the action in the remaind
of this paper in the expectation that including it would yie
marginal benefits.

IV. SIZE DISTRIBUTION OF INSTANTONS

The size distribution of the topological charges,D(r), is
the simplest quantity characterizing the vacuum topolog
structure. In this section we shall explore it in some deta

A. General features

In Fig. 9 we show the size distribution as obtained on
163348 lattice fields atb56.0 for various number of cool
ing sweeps,nc . The quantity plotted is the average numb
of charges, N(r), in each bin, Dr of r. Thus N(r)
.VD(r)Dr, whereV is the space-time volume.

We see that there is a rapid decrease in the total num
of charges as we cool the fields. This is presumably the re
of nearby charges of opposite sign annihilating. Other f
tures, such as the location of the maximum of the distri
tion, appear to vary much more weakly which suggests
they are robust features of the fields prior to cooling.

It will be useful to choose a few quantities by which w
can characterize the size distributions. An obvious meas
is the average value of the size,r̄. Since the distributions are
not grossly asymmetric, this will nearly coincide with th
maximum. Another quantity we can use is the half-wid
sr , of the distribution. Finally there is the total number

TABLE V. Number of peaks inS(x) that can be identified with
a peak inQ(x).

cools
No. peaks
in Q(x)

No. peaks
in S(x) R

No. peaks with
uxaction2xchargeu<R

23 168 95 0 54
23 168 95 & 86
46 63 46 0 33
46 63 46 & 43
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charges,N̄tot . In Table VI we list the values of these quan
tities for all our values ofb andnc .

When discussing the scaling properties of these vari
quantities we will need to know how the lattice spacing v
ies over our range ofb. For this we need some physica
quantity expressed in lattice units. We choose the confin
string tension,s, because that has been calculated very
curately. The relevant values are@23#,

aAs5H 0.2187~12!, b56.0,

0.1608~10!, b56.2,

0.1216~11!, b56.4.

~18!

Wherever we discuss lengths or volumes in physical units
will be by using Eq.~18! to set the scale.

Occasionally it will be useful~or illuminating! to express
things in MeV units. There are, of course, all kinds of am
guities in introducing MeV units into a theory which, unlik
QCD, does not describe the real world. This is discusse
@20# where an analysis of the hadron spectrum in
quenched approximation is found to lead to an estimate

As5440615635 MeV. ~19!

FIG. 9. The number of charges of different sizes; atb56.0 for
23~3!, 28~d!, 32~s! and 46~L! cools.

TABLE VI. Average and width of size distribution; also th
total number of charges and the number per unit physical volu

b cools r̄ sr ^Ntot& ^Ntot&/V

6.0 23 5.25~1! 1.20~4! 147.5 0.328~8!

28 5.40~2! 1.29~5! 113.0 0.251~6!

32 5.43~2! 1.36~5! 86.2 0.192~5!

46 5.65~2! 1.51~6! 57.5 0.128~3!

large 46 5.63~1! 1.51~3! 613.6 0.128~3!

6.2 23 6.41~1! 1.17~3! 493.8 1.112~28!

32 6.94~1! 1.35~4! 273.6 0.616~15!

46 7.44~2! 1.57~5! 151.1 0.340~9!

6.4 30 7.86~1! 1.32~5! 1005.3 2.195~82!

50 9.00~2! 1.61~8! 369.7 0.807~30!

70 9.70~4! 1.92~11! 205.2 0.448~17!

80 9.84~5! 2.04~12! 156.6 0.342~13!
5-10
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
Here the first error is statistical and the second is a syst
atic error that reflects in part the fact that quenched Q
does not in fact represent the real world. Wherever
present quantities in MeV or fm units it will be through usin
Eq. ~19!.

Before moving to a detailed consideration of the size d
tribution there is at least one qualitative conclusion we c
immediately draw. We see from Fig. 9 and Eq.~18! that r̄
;5a;1/As;0.5 fm. Thus the typical instanton size
quite large. Given that the average charge has a diamet
2r̄.10a. and that there are about 180 charges at 23 coo
is clear that the 163348 lattice must be densely packed. Th
is so even after 46 cools. Thus our first qualitative conclus
is that instantons are large and strongly overlapping. Thi
a different picture to the one that apparently underlies typ
instanton liquid model calculations@4#.

B. Packing fraction

As we have just seen, our instanton gas is dense. Sinc
largest instantons are more difficult to identify unambig
ously, it is interesting to ask if the gas is dense even if
exclude such instantons.

To address this question we define a packing fract
f (r) by

f ~r!5
1

V E
0

r

n~r!v I~r!dr. ~20!

Heren(r) is the number of instantons of sizer, v I(r) is the
space-time volume occupied by an instanton of this size
V is the total space-time volume. That is to say,f (r) is the
fraction of space-time occupied by instantons of size<r.

Since the instanton core is smooth, there is some amb
ity about definingv I(r). We shall choose to define it as
4-sphere of radiusr: a conservative choice. Sov I(r)
5p2r4/2.

Using our calculated size distributions, and this definiti
of the instanton volume, we can calculatef (r). In Fig. 10
we plot f againstr/ r̄ as calculated atb56.4 afternc530,

FIG. 10. Packing fraction of instantons of size<r againstr in

units of r̄. For 30~d!, 50~L!, 70~!! and 80~s! cooling sweeps at
b56.4.
01450
-
D
e

-
n

of
it

n
is
l

the
-
e

n

d

u-

50, 70 and 80 cooling sweeps. We observe thatf (r5 r̄)
>1: so even if we include only those instantons that are
below average size, the gas is still dense. Moreover, e
though the average instanton size decreases asnc decreases
~see Table VI!, the total number of charges increases su
ciently rapidly that the packing fraction itself gets large
Thus it is difficult to avoid the conclusion that the ‘‘instanto
gas’’ in the real vacuum is a dense one, irrespective of
uncertainties concerning the identification of the larger
stantons.

C. Variation with volume

Given that our instantons are large, it is important
check if our size distribution is not distorted by finite volum
effects. In Fig. 11 we compare the size distributions as
tained on the 163348 lattices and on the very much larg
323364 lattices, both generated atb56.0 and both after 46
cooling sweeps.~The distribution on the larger lattice ha
been normalized to the volume of the smaller.! We observe
that there are no statistically compelling differences betw
the two distributions. In particular, at very larger, where any
differences should be most pronounced, the distributions
virtually identical. We conclude that our 163348 lattice at
b56.0 suffers from no significant finite volume effect
Since the 243348 lattice atb56.2 and the 323364 lattice at
b56.4 have approximately the same volume in physi
units as this lattice, we shall assume that none of our dis
butions suffer significant finite volume corrections.

D. Scaling with b

The next question, whether the size distribution scales
a→0, is less straightforward. The reason, seen in Fig. 9
that the number of charges varies rapidly with the numbe
cooling sweeps. However a cooling sweep is not a proced
that scales; 23 cooling sweeps atb56.0 are certainly not
equivalent to 23 cools atb56.2 or 6.4. So at what level o
cooling should we compare the size distributions at differ
values ofb?

Indeed we can start with a more basic question: is th
any evidence that one can choose the number of cools so

FIG. 11. Comparison of size distributions on 163348 ~3! and
323364 ~s! lattices atb56.0 after 46 cools.
5-11
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
the distributions scale? The answer to this question app
to be in the affirmative. In Fig. 12 we show the size dist
butions after 23 cools atb56.0, 46 cools atb56.2 and 80
cools atb56.4. The densities have been scaled by the ph
cal volume, andr is expressed in units of the string tensio
So exact scaling would imply that for some choice of t
number of cools the distributions should coincide. What
infer from Fig. 12 is that an approximate coincidence do
indeed appear to be possible.

To be more quantitative we need to set up an equivale
between the number of cooling sweeps atb56.0, 6.2 and
6.4. We do so as follows. If the distribution scales then
does the number density. Let the average number of cha
per unit physical volume beN(b;nc), wherenc is the num-
ber of cooling sweeps and Eq.~18! is used to define the uni
physical volume. Thennc cooling sweeps atb are defined to
be equivalent tonc8 cools atb8 if the number densities ar
equal:

N~b;nc!5N~b8;nc8!. ~21!

In Table VI we show how the total number of charges,Ntot

varies withb and nc . The volume of anLs
3Lt lattice is V

5$LsaAs%3LtaAs in physical units, and using the strin
tensions in Eq.~18! we can calculateN5Ntot /V in each case
and that is also given in Table VI.

At eachb we can interpolate between the values in Ta
VI, so as to obtain the number density as a function ofnc .
These interpolations can then be used in Eq.~21! to find
equivalent sets ofnc at different values ofb.

In fact we immediately see from Table VI that

nc5H 23, b56.0

46, b56.2

80, b56.4.

~22!

are, within errors, equivalent at the indicated values ofb.
~This is no accident of course: the number of cooling swe
was chosen after a preliminary study designed to prod
such an equivalence.! We note the corresponding values ofr̄

FIG. 12. Density of charges againstr: at b56.0 after 23 cools
~s!, at b56.2 after 46 cools~d! and atb56.4 after 80 cools~3!.
All in physical units of 1/As.
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andsr , form dimensionless ratios withaAs, and plot these
againsta2s in Fig. 13. The reason for plotting things this
way is that we expect the leading lattice corrections to su
dimensionless ratios of physical quantities to beO(a2). ~We
assume thatr̄ andsr are physical quantities in this sense.!
That is to say, for small enougha we can extrapolate to the
continuum limit using

r̄~a!As~a!5 r̄~0!As~0!1ca2s ~23!

with a similar expression forsr . These will be straight lines
in Fig. 13 and the best fits are shown there. As we can s
Eq. ~23! is compatible with our data. From these fits we
obtain the continuum predictions:

r̄51.235~20!
1

As
.0.56~5! fm ~24!

and

sr50.242~16!
1

As
.0.11~1! fm ~25!

where we have used Eq.~19! to introduce fermi units.
We note that we are not able to derive a continuum lim

for other ~equivalent! sets of cooling sweeps, because th
largest number of cools atb56.4 corresponds, roughly, to
the smallest number atb56.0.

As far as the density of charges is concerned, the co
tinuum limit is trivially obtained, because Eq.~21! ensures
that the number density at an equivalent number of coolin
sweeps will be independent ofb. Since this density varies so
rapidly with the number of cools, it is probably not useful to
attempt any conclusion other than the qualitative one that t
charges are densely packed.

E. Variation with cooling

As we have seen, most quantities that we calculate vary
some extent with the number of cooling sweeps. Since w
are interested in the physics of the uncooled vacuum, t

FIG. 13. Average,l 5 r̄(d), and full-width, l 52sr(s), of the
instanton size distributions. Lines are continuum extrapolations.
5-12
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
logical procedure would be to try and take thenc→0 limit of
our calculated values. However, to do so would be to ign
the fact that our procedures become increasingly unrelia
in that limit. For example, the way we correct the instant
peak height in Eq.~13! involves assumptions that will brea
down as the instanton gas becomes increasingly dense,
does whennc decreases. Thus it might be that the observ
decrease of, say,r̄ as nc decreases merely reflects this i
creasing unreliability.

In the face of this uncertainty, our approach is as follow
Where we wish to draw a qualitative conclusion, we che
whether the effect becomes more pronounced asnc de-
creases. If that is the case, we take it to be evidence tha
effect under consideration is indeed a property of the
cooled vacuum. An example of this is our conclusion that
instanton gas is dense. If, on the other hand, we wish to m
a statement that is quantitative, then we pick some sm
number of cooling sweeps at someb and then extrapolate to
the continuum limit at an ‘‘equivalent’’nc(b) as described
above. If the variation withnc of the quantity under consid
eration is small enough to be compatible with the errors
our pattern recognition algorithm, then there is some rea
to believe that our calculation is relevant to the uncoo
vacuum. An example is our calculation above of the aver
instanton width.

To illustrate the uncertainties, we show in Table VII ho
the properties of asingle configuration, taken from ourb
56.4 ensemble, vary with the number of cooling swee
nc . ~Note that this configuration has not been subjected
any filtering procedure.! The total number of charges,Ntot ,
varies so rapidly withnc that we cannot hazard any guess
all about the number in the uncooled vacuum. This is a
should be: perturbative fluctuations inFF̃ can always be
interpreted as a suitable ensemble of strongly overlapp
topological charges, rendering the question of the total nu
ber fundamentally ambiguous. The average width,r̄, and
typical fluctuations about this average,sr , vary much less
and one might feel entitled to infer, for example, that t
average width in the uncooled vacuum isr̄;961 in lattice
units. The decrease inr̄ as nc↓ is what one would naively
expect: perturbative fluctuations will, on the average,
crease the peak heights inuQ(x)u and this will translate into
smaller values ofr via Eq. ~12!. The ratiosr / r̄ shows little
variation with nc and it seems safe to infer a value
;0.2060.02 for it. Finally, the total packing fractionf is

TABLE VII. Variation with cooling, nc , of a single configura-
tion at b56.4 prior to any filtering.

cools r̄ sr ^Ntot& f

20 6.92 1.29 2177 15.6
30 7.96 1.52 1063 13.1
40 8.74 1.95 604 12.0
50 9.27 1.98 395 9.1
60 9.70 2.23 286 26.2
70 10.06 2.27 224 22.8
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always large and for smallnc increases with decreasingnc ,
suggesting that it is safe to infer that the instanton gas
dense in the uncooled vacuum.~Note that the increase off
for large nc is presumably an artifact of the lack o
filtering—compare with Fig. 10.!

F. Small r and large r

In addition to the global features ofD(r), such asr̄, the
tails of the distributions are also of interest. We recall tha
small r we have the prediction from Eqs.~5!, ~6! that N(r)
}r6. This simple form neglects powers of logr @there are
factors of 1/g2(r) in D(r) that arise from the symmetrie
and which are subsumed into the ‘‘ . . . ’’ in Eq. ~5!# so that it
is only atverysmallr that we would expect it to hold. And
of course, at very smallr the cooling will erase and alter th
distribution. So although we shall fit

N~r!}rgs:r, r̄ ~26!

we are only looking for a trend: that asa and the fitted range
are reduced, and the number of cooling sweeps beco
small,gs should approach the predicted value ofgs56.

Because there are no analytic predictions at large va
of r the behavior there is of particular interest. We have tr
both exponential and power like fits to the large-r tails of our
distributions. In practice the latter have significantly bet
x2 and are therefore the ones we present here. That is to
we fit

N~r!}
1

rg l
:r. r̄ ~27!

for the powerg l .
In Table VIII we present some power fits to the smallr

tails of our various size distributions. We show the ran
fitted ~in units of 1/As!. The x2 of the fit is generally rea-
sonable; indeed this served as one criterion for which ra
of r to fit. We observe that while the value ofgs does vary a
great deal, there does appear to be a trend that as we g
smaller a and to a smaller number of cooling sweeps t
value is closer to the asymptotic prediction ofgs56.

TABLE VIII. Fits to the small-r tails of the size distributions.
The range fitted is in units of 1/As.

b cools range gs

6.0 23 0.44–0.77 3.3~2!

6.0 28 0.44–0.99 3.1~1!

6.0 32 0.44–0.77 2.9~2!

6.0 46 0.44–0.99 2.6~1!

6.2 23 0.48–0.72 6.9~2!

6.2 32 0.48–0.88 5.4~2!

6.2 46 0.48–0.72 4.8~3!

6.4 30 0.55–0.73 9.2~4!

6.4 50 0.55–0.97 5.7~2!

6.4 70 0.55–0.97 4.7~3!

6.4 80 0.61–1.03 4.0~3!
5-13
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
In Table IX we present similar fits to the large-r tails. The
values seem quite consistent, suggesting a power that gr
ally decreases fromg l;12 to g l;10 as we increase th
number of cools over our range. We also find that th
appears to be a trend for this power to increase if we shift
fitting range to largerr—but we cannot be certain of thi
with our statistical accuracy. In any case, it is clear that
suppression at larger is much more severe than theD(r)
}1/r5 that one would obtain with a coupling that freezes
some constant value at large distances. This shows tha
full non-perturbative vacuum imposes a sharp infrared c
off on the sizes of instantons.

V. CORRELATIONS OF THE INSTANTONS

In this section we investigate the correlations between
topological charges in the vacuum. We shall begin with
simplest question: how close are nearest neighbor cha
and how does this depend on their relative signs. This
confirm our picture of a densely packed vacuum, and
naturally leads to the question whether these charges s
any aspects of a dilute gas. We shall see that the sma
charges do and the very large ones do not. However
medium-sized charges show an unexpected behavior w
leads us to investigate the charge correlations in m
greater detail. We find long range charge correlatio
amongst the smaller charges and, separately, amongs
larger charges, which is related to an anti-correlation
tween the smaller and the larger charges. This effect wea
as we increase the number of cooling sweeps, so sugge
that it reflects a property of the uncooled fields.

A. „Nearest… neighbors

We begin by calculating the number of charges that ar
distanceR from a given charge. We do so separately for t
case where the charges have the same sign~‘‘like’’ ! and
where they have the opposite sign~‘‘unlike’’ !. These distri-
butions are calculated by counting the number of~un!like
charges in the spherical shell of widthdR a distanceR away
from each charge. The distributions are then normalized
the volume of each shell~for the lattice under consideratio

TABLE IX. Fits to the large-r tails of the size distributions. The
range fitted is in units of 1/As.

b cools range g l

6.0 23 1.43–1.87 11.2~4!

6.0 28 1.54–2.20 10.8~4!

6.0 32 1.54–2.20 10.1~4!

6.0 46 1.65–2.31 10.0~5!

6.2 23 1.20–1.44 11.9~3!

6.2 32 1.36–1.68 11.9~3!

6.2 46 1.44–2.00 10.2~3!

6.4 30 1.09–1.46 11.0~3!

6.4 50 1.46–1.64 12.2~2!

6.4 70 1.52–1.64 10.0~2!

6.4 80 1.46–1.82 10.4~8!
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and taking the periodicity into account!. So at largerR, as
the correlations die away, we would expect each of these
distributions to go to a constant value and that this va
should be the same.

In Fig. 14 we show the distributions we obtain after 2
cooling sweeps atb56.2. These have been normalized
that they go to unity at largeR. There are three features on
immediately notes. At smallR there is a strong suppressio
Just after that there is a strong enhancement of un
charges and a slight enhancement of like charges. Finall
largeR the distributions are constant as expected.~The slight
enhancement of like charges at very smallR is likely to be
an artifact of our procedures.!

The suppression at short distances extends much too f
be related to the fact that our definition of a peak uses4

hypercubes. In addition, it also occurs on the unfiltered d
and so is not a product of our filtering procedure.

We note that the like distribution is suppressed to lar
distances than the unlike one. That is to say, the nea
neighbor is more likely to be a charge of the opposite si
This means that topological charges are ‘‘screened’’

neighboring charges. This is reasonable: anI Ī pair will usu-
ally have a lower action than anII pair. Not so expected is
the fact thatNunlike(R) shows a slight dip just after the en
hancement. This coincides with the enhancement inNlike(R)
as we see in Fig. 14. It indicates that there is a region oR
where we have ‘‘anti-screening.’’ We shall return to a mo
detailed investigation of this potentially interesting pheno
enon shortly.

The suppression at smallR and the immediate subseque
enhancement are best analyzed by focusing on the ne
neighbors to each charge. In Table X we list the avera
distances to the nearest charges of the same sign and o
opposite sign. These are presented in physical units using
~18!. We note that these distances increase with the num
of cooling sweeps. One might try to explain this by argui
that under cooling the nearest unlike charges should ann
late and disappear; while like charges should repel each o
since that lowers the action. Of course this argument dis

FIG. 14. Number of same sign~d! and opposite sign~s!
charges, per unit volume, as a function of distanceR from the
reference charge. Atb56.2 after 23 cooling sweeps.
5-14
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gards the complicated nature of the actual environm
around each charge.

If we look at an equivalent number of cooling sweeps,
given in Eq.~22!, we see that the distances look nearly
dependent ofa. This reassures us thata is small enough tha
we can extrapolate to the continuum limit using only t
leadingO(a2) correction just as we did in Eq.~23!. Doing so
we find that the distance to the nearest like and un
charges is

R̄like51.081~15!
1

As
;0.49 fm ~28!

and

R̄unlike50.993~13!
1

As
;0.45 fm ~29!

where we have used Eq.~19! to introduce fermi units.
From Eqs.~24!,~25! and Eqs.~28!,~29! we see that

r̄

R̄
;1.2 ~30!

and this confirms our previous conclusion that what we h
is certainly not a dilute gas.

Although we see from Table X that there is some var
tion of R̄ with the number of cooling sweeps, we note
similar variation forr̄ in Table VI. Thus Eq.~30! is robust
against cooling and is presumably also a property of
uncooled fields.

B. How dilute a gas?

The fact thatr̄/R̄;1 and that nearest neighbors are mu
more likely to be of the opposite sign tells us that the top
logical charges do not form a dilute gas. It is probable ho
ever that the smaller charges are dilute; if they are wea
correlated to the large instantons, then they might still lea
some physics that one would associate with a dilute gas

TABLE X. Average distance to nearest charge of the same
opposite sign; in units of 1/As.

b cools R̄likeAs R̄unlikeAs

6.0 23 1.072~6! 0.931~6!

6.0 28 1.152~7! 1.008~6!

6.0 32 1.233~8! 1.077~7!

6.0 46 1.359~9! 1.223~9!

6.2 23 0.791~5! 0.700~5!

6.2 32 0.935~6! 0.818~6!

6.2 46 1.075~7! 0.958~7!

6.4 30 0.667~6! 0.604~6!

6.4 50 0.884~7! 0.775~8!

6.4 70 1.013~11! 0.911~9!

6.4 80 1.080~12! 0.976~10!
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To investigate this possibility we note that in a dilute g
we have ^Q2&5Ntot , where Ntot is the total number of
charges. Thus a measure of how close we are to a dilute
is provided by seeing how close the quantity^Q2&/^Ntot&, or
the quantitŷ Q2/Ntot&, is to unity. Since we are interested
seeing whether the smaller instantons form such a dilute
we define the quantity

P~rc![ K Q2~r<rc!

Ntot~r<rc!
L . ~31!

Here Q(r<rc)5nI(r<rc)2nĪ (r<rc) is the total topo-
logical charge of those charges that have a size less thanrc ;
and Ntot(r<rc) is the corresponding total number o
charges. So how closeP is to unity, provides a measure o
how much these charges behave like a dilute gas.

In Fig. 15 we show howP(rc) varies withrc for the b
56.2 ensemble after 23 cooling sweeps. We observe th
we include charges with widths up tor.5 the value ofP
remains close to unity indicating a dilute gas structure.
we increaserc beyond this value,P begins to increase rap
idly, becoming much larger than unity. Aroundrc. r̄.6 the
value ofP begins to fall and continues falling to values!1.
The value forrc→` is the value one gets forP when one
includes all the charges.

The way P behaves at small and at largerc is not too
surprising. For sufficiently small instantons the combinati
of low density and small sizes would make them behave
a dilute gas. For large overlapping instantons, on the o
hand, we would expect a dominance of pairs of opposite s
which would suppress the fluctuations ofQ5nI2nĪ for a
given value ofnI1nĪ , thus leading toP,1. What is much
more puzzling is theP@1 peak forrc. r̄. One can only
have fluctuations ofQ that are larger than those of a dilu
gas if the charges tend to have the same sign. That is to
what we are seeing is some kind of charge coherence
nomenon: there is some interaction that ensures that cha
of a size just less thanr̄ tend to have the same sign. This
in contrast to the evidence we saw in the previous subsec

d

FIG. 15. P(rc), as defined in Eq.~31!, versusrc at b56.2 after
23 cools.
5-15
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
that on the average the nearest neighbor has the opp
sign. We shall examine and resolve this puzzle in the n
section.

Is this an artifact of cooling? In Fig. 16 we show ho
P(rc) varies withrc after 46 cooling sweeps. For large an
small rc things are much the same as after 23 cools. Ho
ever the peak nearr̄ has all but disappeared. This indicat
that cooling erases this interesting effect: it thus appears
this is a feature of the uncooled vacuum. By comparing co
parable plots at differentb we find that, as long as the com
parison is performed at equivalent numbers of cool
sweeps@in the sense of Eq.~21!#, this phemonenon seems
roughly scale.

C. Screening and polarization

As we have seen,P(`)!1; i.e. if we include all the
charges one findŝQ2&!^nI1nĪ &. However we have also
seen that if we take the;50% of the charges withr<r̄,
then one finds that̂Q2&.^nI1nĪ &. This suggests that if we
look at^Q2& as a function of instanton size we will see som
dramatic effects. In Fig. 17 we plot the value of^Q2(r
<rc)& versusrc , and indeed we do find a dramatic effect: t

FIG. 16. P(rc), as defined in Eq.~31!, versusrc at b56.2 after
46 cools.

FIG. 17. ^Q2(r,rc)& againstrc at b56.2 after 23 cools.
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charge fluctuations for charges withr<r̄ are huge compared
to the totalQ2; about 20 times as large, in the case shown
b56.2 after 23 cools.

What is the origin of this phenomenon? In Fig. 17 we s
that charges with widths up to;r̄ tend on the average to
have the same sign; that is to say their total charge is t
cally large. However as we include larger charges we
that the typical total charge rapidly becomes much smal
That is to say: the smaller instantons tend to have the op
site charge to the larger instantons—the former are scree
by the latter~and vice-versa!.

To highlight this effect we define the following quantity

C~r![ K Q

uQu
•

Q~r!

N~r! L . ~32!

whereQ(r) is the total topological charge of objects wit
widths in the bin centered onr, and N(r) is their corre-
sponding total number. WhatC(r) measures is the correla
tion of the average charge of instantons of sizer with the
sign of the total chargeQ. In Fig. 18 we show howC(r)
varies with r. We now see explicitly that the smaller an
larger charges tend to have opposite signs and, moreover
it is the smaller charges that tend to have the same sign aQ.
What the latter tells us is that the net charge of the sma
charges is greater~in modulus! than the net charge of th
larger charges. The large charges are over-screened b
smaller charges. The boundary between ‘‘large’’ a
‘‘small’’ is r. r̄, and scales roughly like a physical quanti
when we changeb.

To explore this phenomenon further, we calculate
each reference instanton, with widthr re f , the number of
charges within a distanceR that have the same sign as th
reference charge and whose widths fall into a prescri
range e.g.r.r0 . We call thisNsame(R;r.r0). Similarly
for opposite sign charges we haveNopp(R;r.r0). In Fig.
19 we show howNsame2Nopp varies withr re f in the case
when we include all the charges, i.e.R5` andr.0. This is
for the b56.2 ensemble after 23 cooling sweeps. We n
that total screening corresponds toNsame2Nopp521 and a
value,21 indicates over-screening.

FIG. 18. C(r), as defined in Eq.~32!, versusr at b56.2 after
23 cools.
5-16
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TOPOLOGICAL STRUCTURE OF THE SU~3! VACUUM PHYSICAL REVIEW D 58 014505
The first thing that we observe in Fig. 19 is that the small
est instantons are almost completely unscreened; this is wh
one would expect in a dilute gas and is consistent with th
fact that for these values ofr the quantityP(rc) defined in
Eq. ~31! also shows dilute gas behavior. As we increaser re f

we start to see screening. Atr re f. r̄ the screening is total
and for larger sizes the instantons are overscreened—qu
dramatically so for the very largest ones.

As always we have to ask ourselves whether what we s
might not be a product of the cooling rather than a propert
of the uncooled fields. In Fig. 20 we show the correspondin
plot after 46 cools. Although there is a significant remnant o
the under/overscreening that we saw in Fig. 19, there is
clear trend towards the much less interesting situation of to
tal screening at allr. We conclude that cooling erodes rather
than enhances the effect we have found, indicating that it
indeed a property of the original uncooled fields.

In Fig. 21 we show what happens when we include in
Nsame2Nopp only the smaller charges, i.e. those withr
<r̄, and if we only count those charges that lie within dis
tancesR57, 8, or 9 of the reference charge. Let us first focu
on small sizes; sayr re f;3 to 4. We observe from theR
57 data that there is some screening of small charges
other nearby small charges. This is not surprising: overlap

FIG. 19. Net screening charge around a reference charge of s
r re f : at b56.2 after 23 cools.

FIG. 20. As in Fig. 19 but after 46 cools.
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ping charges can reduce their total action if they can partia
annihilate. However we also observe that as we increaseR,
so including charges that do not significantly overlap wi
the reference instanton, the screening disappears. Thi
odd: it tells us that these more distant charges must tend
have the same charge as the reference charge, despite b
so far away that one would naively expect very little corr
lation. If we now turn to the large instantons, we observe th
the screening gets rapidly stronger as we increaseR; and
indeed that large charges are overscreened by the s
charges under consideration here.

Figure 22 is the complement of Fig. 21: nowNsame
2Nopp includes only the larger charges, i.e. those with widt
r>r̄. We observe that the screening of small charges
large charges increases asR↑; the ‘‘normal’’ screening be-
havior. Indeed if we go to largeR it is clear from these two
figures that the screening of small charges is entirely driv
by the large charges. For larger re f the situation is entirely
different: large charges are strongly antiscreened by ot
large charges i.e. these quite strongly overlapping la
charges tend to have the same sign.

Again we find that all these effects weaken with increa
ing cooling suggest that they are properties of the origin
uncooled fields.

ize FIG. 21. As in Fig. 19, but only including screening charge
with r,6 and within a distanceR57(3), 8~L! or 9~s! of the
reference charge.

FIG. 22. As in Fig. 21, but only including charges withr.6.
5-17
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DOUGLAS A. SMITH AND MICHAEL J. TEPER PHYSICAL REVIEW D58 014505
We now have enough information to hazard a model
the topological structure that embodies all these features.
think of the vacuum as being composed of small and la
charges. Small charges are superimposed on the broad b
of the large charges because the latter are everywhere:
densely pack Euclidean space-time. The small charges
tend to have the opposite sign to the large charge in wh
they are embedded and so, except when they are c
enough for their mutual overlap to outweigh this effect, w
tend to have the same sign as each other. At the same
broad charges overlap so these small charges will be sim
taneously embedded in more than one broad charge. T
will thus tend align the charges of such overlapping bro
charges. So we have a picture of the broad charges ten
on the average, to have the same sign throughout the vac
and the small charges also having the same sign as
other on the average but opposite to that of the br
charges. This is driven by the mutual interaction of the sm
mutually non-overlapping charges with the large, mutua
overlapping charges. The net charge is that of the sma
charges because, since they overlap less, their charge p
ization is stronger.

This picture of the charge structure of the vacuum g
somewhat beyond what our numerical evidence demands
seems plausible. Presumably some of the observed br
down of our naive screening intuition is not surprising:
arises from the fact that while the latter is based on a}1/r
potential between pointlike charges, the effective poten
here will have a more complicated form when the char
overlap, and will fall much more rapidly withr when they do
not.

Although it is not possible to simply guess at the con
quences of these non-trivial long-range charge correlat
for light quark physics, it would be surprising if there we
none.

VI. TOPOLOGICAL SUSCEPTIBILITY

While the identification of the topological structure of th
vacuum is, as we have seen, a complicated and somet
ambiguous task, the total topological charge,Q, is quite
straightforward to extract. Moreover as we saw in the Int
duction, this quantity is related to the masses of the pseu
scalar mesons via Eq.~1!. Although it was not the primary
purpose of our calculations, we have accumulated value
^Q2& and hence of the susceptibilityx t over the range 6.0
<b<6.4. Our statistics is not very high but we do get clos
to the continuum limit than any other calculation that we a
aware of. It is therefore worthwhile extracting a predicti
for x t in physical units.

There are various ways one can manipulate the raw, n
integer lattice topological charge so as to obtain an estim
of the ‘‘true’’ integer topological charge of the field configu
ration. These definitions will differ by lattice correction
which should vanish asa→0. In Table XI we show our
calculated values of the susceptibility using two such defi
tions. The first,QL , is simply the integral of the lattice to
pological charge density rounded to the nearest integer.
second,Q, is our best estimate of the integer topologic
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charge, obtained by applying lattice corrections as descri
in the Appendix and then rounding to the nearest~and usu-
ally nearby! integer. We obtain the susceptibility in lattic
units,a4x t , if we divide ^Q2& by the volume in lattice units;
and similarlya4x t,L from ^QL

2&. Since these quantities diffe
by lattice corrections, they should possess a common c
tinuum limit. This is something we shall investigate below

The first thing we observe is that if there is any variati
with the number of cooling sweeps it is much less than
statistical error and so can be ignored. We also note that
two lattice sizes atb56.0 give susceptibilities that ar
within 2s of each other. We take this as evidence of
significant finite-volume effects. Finally we remark that th
b56.4 ensemble consists of only 20, albeit well-separat
field configurations and so one should treat the correspo
ing error estimate with some caution.

Using the values for the string tension in Eq.~18! we can
form the dimensionless mass ratiox t

1/4/As. In Fig. 23 we
plot x t

1/4/As against the string tension in lattice units,a2s.
We expect the leading lattice corrections to this dimensi
less mass ratio to beO(a2) @24#, so we can attempt a con
tinuum extrapolation of the form

TABLE XI. Average values ofQ2 for corrected (Q) and uncor-
rected (QL) charges respectively.

b cools ^QL
2& ^Q2&

6.0 23 14.4~2.0! 18.8~2.8!
6.0 28 15.0~2.0! 18.6~2.6!
6.0 32 15.1~2.1! 18.5~2.6!
6.0 46 15.7~2.1! 17.9~2.6!
large 46 97.3~18.6! 120.2~23.1!
6.2 23 14.1~2.0! 17.1~2.6!
6.2 32 14.5~2.1! 16.1~2.4!
6.2 46 15.2~2.2! 16.0~2.4!
6.4 30 16.4~6.6! 17.4~7.1!
6.4 50 17.4~7.1! 17.4~7.1!
6.4 70 17.4~7.1! 17.4~7.1!
6.4 80 17.4~7.1! 17.4~7.1!

FIG. 23. Plots ofx t
1/4/As ~d! and x t,L

1/4/As ~s! againsta2s
with continuum extrapolations.
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x t
1/4~a!

As~a!
5

x t
1/4~0!

As~0!
1ca2s. ~33!

This will be a simple straight line in our figure. As we se
the calculated values are consistent with this functional fo
In addition to the susceptibility calculated from̂Q2& we
show the susceptibility calculated from̂QL

2&. In Table XII
we show the continuum values of the these ratios, toge
with earlier @20# results obtained over the range 5.7<b
<6.2. We see that all the results are entirely consistent w
each other.

To obtainx t in physical units, we use the value forAs in
Eq. ~19!. Substituting this value we obtain

x1/45187614616 MeV ~34!

where the second error reflects the uncertainty in assigni
value to the string tension in MeV units. This, we note, is
satisfactory agreement with our expectations from Eq.~1!.

VII. CONCLUSIONS

The influence of topological structure on the physics
QCD arises most directly from the near-zero modes tha
induces in the D” @A# quark operator. Without performing th
appropriate eigenvalue calculations on the fields it is not p
sible to be certain which aspects of that structure are ph
cally important and which are not. For example, suppose
the broader instantons belonged entirely to strongly over
ping I Ī pairs. In that case they would not contribute sm
modes to D” @A# and so would be essentially irrelevant. As w
have seen, the smaller instantons form an approximate d
gas. Such a dilute gas is what is assumed in the insta
liquid model @4# and so in that case our apparently ve
different topological structure would in fact be consiste
with that model.

Given that we do not, in this paper, calculate the con
bution of the topological structure to quark propagators a
hadron physics, it has seemed to us that the sensible
proach is to expose all the structure that is there without
prejudice as to what might be important or not.

Exposing the topological structure is a non-trivial tas
First one needs to separate the uninteresting high-frequ
modes from the interesting modes on physical length sca
We have chosen to use the ‘‘cooling’’ technique; and
performed some studies to find the variant which appeare
distort the interesting long-distance structure the least. Th
are other approaches@16,15# and the relationship between a
these methods needs to be better understood; particular
they appear to lead to significantly different results.

TABLE XII. Continuum limit of susceptibility in units of the
string tension: for corrected (x t) and uncorrected (x t,L) charges;
and a previous calculation@20# for comparison.

x t
1/4/As x t,L

1/4/As x t,old
1/4 /As

0.424~32! 0.437~34! 0.437~25!
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Secondly one needs to categorize the topological struc
in some useful way. We have decomposed it into topolog
charges of various sizes and locations. To do so require
rather complicated pattern-recognition algorithm. Althou
we have tested the robustness of this algorithm to sm
variations within the general scheme, this can only be a fi
step in exploring its reliability.

It is of course not at all certain that the topological stru
ture of the uncooled fields can be usefully described in te
of ~overlapping! charges that are localized within som
width r of a particular location. While there is some ev
dence from older calculations that instanton collective co
dinates are the appropriate degrees of freedom to use,
really needs a much more careful study. Cooling will,
course, deform the field into such a superposition of char
and so it makes sense to perform the analysis in these te
on the cooled fields. One might take the sophisticated p
of view that even if the uncooled topological structure is n
really a superposition of approximately classical charg
cooling provides us with the distribution of the latter charg
that most closely reproduces the true structure—and he
its physics as well. This would then be the appropriate w
to test the assumptions of instanton models.

In any case, it is clear that one must always check h
robust under cooling are any conclusions that one wishe
draw. This is something we have attempted to do. The fac
that there is indeed a significant variation under cooling
many quantities and this introduces some uncertainty
how one should interpret the calculated values. Unfor
nately our ‘‘pattern recognition’’ algorithms must brea
down asnc→0 ~because of the increase in the apparent d
sity! and so we are not able to attempt an extrapolation
nc50. In this paper we have focussed on developing te
niques to reveal the structure of the cooled fields: the pr
lem of how precisely this relates to the uncooled fields s
awaits a convincing resolution.

At the same time, because the separation between u
violet and physical frequencies is approximate, but impro
asa→0, it is important to perform scaling studies whenev
possible. This we have also done: the numbers we quote
for the mean size, density etc. are the values that one ob
after an extrapolation to the continuum limit. Finally, w
have explicitly checked that any finite-volume effects a
essentially within our statistical errors.

The simplest quantity to calculate, and one to which ma
of the above caveats do not apply, is the topological susc
tibility, x t . Our calculation goes to smaller values ofa than
any previous SU~3! calculation and confirms previous claim
that Eq.~1! is well satisfied; indeed, better than one cou
expect.

The topological charge distribution we obtain is chara
terized by a mean widthr̄.0.56(5) fm, which is signifi-
cantly larger than that which is typically assumed in insta
ton liquid model calculations@4#. The average separatio
between nearest neighbor charges is comparable to the
age width: so the vacuum is densely packed.

The distribution is quite broad: the full-width is 2sr

.0.22(2) fm. Our fits to the small-r tail of this distribution
do show some signs of a trend for it to approach the p
5-19
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dictedD(r)}r6 behavior whenb is increased and when th
number of cooling sweeps is reduced, but the evidence
this is rather rough. At large-r we find a rapid fall-off that
can be represented by something likeD(r)}1/r11. This is
much more severe than the 1/r5 behavior that one migh
argue on the basis of a coupling that freezes at large
tances.

The values ofr̄ andsr appear to become smaller as t
number of cooling sweeps is decreased. However it is
clear whether this is a real effect or whether it is a reflect
of the increasing unreliability of our pattern recognition a
gorithms in the denser vacuum at smallernc . Neither is it
clear how pronounced this effect would be after extrapo
tion to the continuum limit.

We have found an interesting pattern of correlatio
amongst the instantons. As expected, nearest neig
charges are more likely to have opposite signs. There se
to be, in addition, something like a ‘‘hard core’’ repulsio
instantons very close to each other are suppressed m
more than one would expect on the simple basis of ph
space. Very small instantons do behave like a dilute gas,
the bulk of charges withr, r̄ do not. Instead they seem t
have charges that are biased, on the average, towards
the same. Thus the fluctuations in topological charge, w
restricted to sizes less than the mean, are hugely ampli

^Q2(r, r̄)&@^Q2&. At the same time the very large charg
also tend to have the same sign, and this is opposite to th
the smaller instantons. It is the charge of the smaller ins
tons that is the greater~in modulus! and they determine the
sign of Q. So the smaller instantons are~under!screened by
the larger instantons; and the larger instantons
~over!screened by the smaller instantons. That is to say,
vacuum has a long-range charge coherence that depen
the scale. This effect becomes more pronounced as the n
ber of cools is decreased and so it seems reasonable to
that it is a real property of the uncooled vacuum.

We recall that topological charge fluctuations are phy
cally important; e.g they play an important role in generat
the h8 mass. For this reason the effect we have identifi
might well have an impact on the physics. In particular i
quantity were sensitive to fluctuations inQ but, for some
dynamical reason, was insensitive tor. r̄ ~or the reverse!,
then it would be affected far more strongly than if one si
ply used the totalQ2 as a measure of the relevant fluctu
tions. However to go further along these lines one rea
needs to consider the fermionic physics in the backgroun
these fields; a topic that lies beyond the scope of this pa
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APPENDIX A

In this appendix we go briefly into some of the details th
it would have been tedious to leave in the main body of
text.

1. Lattice corrections to QL

The lattice topological chargeQL5*QL(x)dx of an in-
stanton will not be exactly unity, but, as we see in Eq.~8!,
will suffer O(a2) corrections. The relevant scale isr and so
if this is expressed in lattice units, we have

QL511
c

r2 1OS 1

r4D . ~A1!

Such corrections are relevant in several parts of our
culations. For example, we tune our filters so as to minim
the discrepancydQ5uQ2(nI2nĪ )u. If we useQ5QL this
may introduce a significant error. Another example conce
the topological susceptibility:̂QL

2& will differ from ^Q2&
and it is the latter that we want. Since we determine
widths of all the charges in each field configuration, we c
easily correct for all the lattice artifacts once we have de
mined the coefficients in the expression in Eq.~A1!.

To determineQL(r) for a single instanton, we take
large discretized instanton on a very large lattice and coo
As we cool it, it will gradually shrink.~Recall that we use a
plaquette ‘‘action’’ to drive the cooling.! As it shrinks we
calculateQL and r; we then find that we can fit these wit
the simple form:

QL512
0.65

r2 2
5.344

r4 . ~A2!

This heuristic fit is in practice only needed down tor;2,
and for that it is adequate.

There is one important detail we have skated over. H
does one determine the value ofr that is used in Eq.~A2!?
This is intrinsically ambiguous since the shape of a sm
lattice instanton differs qualitatively from the continuu
shape. It should however be apparent that this ambig
does not matter; the role ofr is simply to act as a labe
parametrizing instantons of different sizes. What is import
is that once we pick some definition ofr, we then use it
consistently throughout our calculations.

A simple way to definer is to use a continuum relation
between some aspect of the instanton topological cha
density and its width. For example, we could use the relat
betweenQp and r as given in Eq.~12!. On the lattice we
would calculateQL,p and then use this relation to definer for
us. This might be improved by replacingQp with QL,p /QL
in Eq. ~12!. ~To avoid the double-valuedness that potentia
arises whenr;1.! In practice we have chosen to use a d
ferent relation. We recall that for a continuum instanton t
total topological charge within a distancer of the center is
1/2. We therefore definer for our lattice instanton to be the
distance within which it contains a topological charge
5-20
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QL/2. This is used throughout our calculations. Of course
discrete nature of the lattice means that one has to m
some particular choices as to how to implement this cr
rion. ~There are some unsatisfactory features in the cho
we actually made—but in practice, because really small
stantons are very rare, these do not matter.!

As we increaseb, the number of instantons small enoug
for these corrections to be important rapidly decreases
so, as long as one performs a scaling study, all methods
to equivalent results.

2. Lattice correction to Qp

The continuum expression forQp in Eq. ~12! will also
haveO(a2) lattice corrections. The scale for these is set br
and so, ifr is expressed in lattice units, such a correcti
corresponds to an extra term ofO(1/r6). To determine the
corrections we cooled a classical instanton, calculatingr as
described above. The resulting relationship between the p
lattice topological charge andr may be parameterized as

QL,p5
6

p2r4 S 12
1.962

r2 1
1.198

r3 D . ~A3!
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We have included a heuristic 1/r3 correction to mimic all the
higher ~even! powers that will become important at ver
small r. Equation~A3! has been used in this paper for ca
culatingr from the peaks.

3. Lattice correction to Q„zxz<R…

In our filters we have used the topological charge within
distanceR to define a width,rR . This is then compared to
the width calculated from the peak. The continuum expr
sion forQ(uxu<R) is given in Eq.~16!. For smallr this will
need lattice corrections and these can be found just as
Qp . For example, for the caseR52 which we use in prac-
tice in our filters, we find that one can parametrize the latt
corrections by

QL~ uxu<2!5Q~ uxu<2!S 12
1.66

r2 2
1.26

r4 D . ~A4!

This can then be used to extract a width,r2[r, for each
peak in the vacuum and this can be used in the filters.~In fact
we used a slightly different, but considerably less elega
functional form which is essentially the same for the valu
of r that arise in practice.!
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