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We show that the monopole currents which one obtains in the maximally Abelian gaugg2ffallinto
two quite distinct classe@vhen the volume is large enougtin each field configuration there is precisely one
cluster that permeates the whole lattice volume. It has a current density and a magnetic screening mass that
scale and it produces the whole of the string tension. The remaining clusters have a number density that follows
an approximate power law 1/° wherel is the length of the monopole world line in lattice units. These
clusters are localized in space-time with radii which varyhsin terms of the radius these “lumps” have
a scale-invariant distributiomdr/r X 1/r*. Moreover they appear not to contribute at all to the string tension.
The fact that they are scale invariant at small distances would seem to rule out an instanton origin.
[S0556-282(198)02913-0

PACS numbsd(s): 11.15.Ha, 12.38.Aw, 14.80.Hv

[. INTRODUCTION loops to decay exponentially with their area. The purpose of
this simplistic but useful picture is to give some orientation
Magnetic monopole currents are the crucial degrees o&s to what properties the monopoles must possess if they are
freedom in the dual superconducting vacuum hypothesis foto be confining. This enables us to motivate bounds on the
confinement in non-Abelian gauge theorjés?]. After Abe-  type of monopole spectrum that can be confining.
lian projection to the maximally Abelian gaud&,3], one In Sec. IV we present the evidence for our most striking
finds not only that the Abelian fields possess a string tensiorfesult: that the monopole current contains a single “perco-
o, that (almos} equals the original S(2) string tension lating” cluster that permeates the whole volume, together
(“Abelian dominance’) [4], but that this string tension is Wwith a collection of smaller clusters, whose number density,
almost entirely due to the monopoles in those Abelian fieldsis a function of length,, is close to an inverse cubic power.
(“monopole dominance) [5,6]. If the dual superconductor Such a spectrum decays slowly enough with increaksihet
hypothesis is indeed correct, then the magnetic monopolds can in principle confine. Our explicit calculations show,
reflect that part of the infrared physics in the @Uvacuum  however, that it makes no contribution to the string tension,
which drives confinement. It is therefore of great interest towithin errors, and that it is the single largest cluster that
analyze the structure of the monopole currents so as to dgrovides the string tension. We then analyze the scaling
termine whether there are any simple or suggestive featurgwoperties of these clusters. We show that the length per unit
present. This is our goal in this paper. volume of the largest cluster is constant when expressed in
We shall focus on some simple properties of these monophysical units. This is not so for the remaining clusters. We
poles. Our basic tool is to decompose the total monopoldind that at large distances, from a monopole the magnetic
current into non-intersecting clusters. An alternative wouldflux falls exponentially withr and that the corresponding
be to decompose the current into closed loops; for example screening mass is independent of the lattice spacing. If, how-
monopole cluster might be decomposed into several closeever, we calculate the flux at smaller values pfvhere the
loops that intersect. There is no obvious reason why thdlux is large enough to efficiently disorder appropriately po-
monopole cluster spectrum should be more revealing thasitioned Wilson loops, we find that scaling is violated except
the loop spectrum, and indeed in an earlier stilywe have if we only include the monopoles that belong to the largest
found that this loop spectrum does possess some interestimfuster. As a further tool we introduce a method for locally
features. As we shall see below, however, it turns out that ismoothing the monopole currents. This shows us that the fact
is the cluster spectrum that possesses the simplest and mdisat we have aingle huge cluster must have a dynamical
remarkable properties. origin rather than being a simple “percolation” phenom-
In the next section we briefly discuss the technical detailenon. Also we see that the largest cluster possesses substan-
of the calculation, including the Abelian projection, the ex-tial fluctuations that do not add to its confining properties.
traction of the string tension and the parameters of the lattice The smaller clusters are typically localized within a 4-
simulations. Section Il contains a simple analytic calcula-volume whose radius= 1. We find that these “4-balls”
tion showing how monopoles can cause Abelian Wilsonpossess a scale invariant distributiondr/r X 1/r4. If the
scale-invariance of the gauge theory were not anomalous,
then this is precisely the distribution one would have for
*Email address: hart@rouge.phys.Isu.edu instantons. Given that we know that instantons are associated
TEmail address: teper@thphys.ox.ac.uk with monopole loops within their corg8,9] this would have
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provided an elegant explanation. Unfortunately the anoma- _ (W(r,t))

lous breaking of scale-invariance changes the instanton spec- av(r)=Ilimin Wirtra)y)- (©))
. . . t—oo il

trum in a dramatic and calculable fashion for the small val-

ues of r where the spectrum of the “4-balls” is most Erom the behavior o¥(r) at larger, V(r)~ o, we can then
accurately determined. Thus this seems to rule out instantons ger, ot

as being relevant. exltrgct the slt.rir)g tensiqm. (lilearlyI sgch a c?jlculatilcl)n, in-
In Sec. VI we provide a summary of our results and somexO V'Tg two limits, redquwgs arge acttlces and sma errors.
conclusions. A brief summary of some of our results has n alternative procedure is to use Creutz ratios:
appeared irf10]. We draw the reader’s attention to some ((W(r,r))(W(r+a,r+a))
I

2 __ | =i
related work that has appeared receil§]. aco=lim ogx(r) limin (W(r +a,0))(W(r,r +a))

r—o r—oo

IIl. METHODOLOGY @

In practice a useful estimate of the string tension can be

The first step in our calculation is to generate(3Uat- . . " »
tice field configurations. We use the standard Wilsone)(tra?ted this way when the quality of the c_iata does not
ermit the preceding, more complete analysis.

plaquette action and a standard heat bath Monte Carlo algcﬁ’— 0 h fixed and extracted Abell
rithm. The lattices have periodic boundary conditions. We,_. nce we have gauge hixeéd and exiracted our Abelian
fields, we can obtain the Abelian string tension in exactly the

work with 8%, 10%, 12* and 16 lattices at3=2.3, with 1d, ; , ,

12* | 14* and 14 lattices atg=2.4, and with 16 lattices at ~ S2M€ Way. We simply c;?lculage the Wilson Ioopa)usmg the
. . ) o Abelian fieldsu ,(n) =exgig,(n)} rather than the S(2) ma-
= Iz ,u

$=2.5. The range of lattice sizes at fix@lis intended to tricesU ,(n). The fact that this Abelian string tension turns

provide us with control over finite volume effects. For ex- X .
N . . . out to be close to the full S@) string tension4], has pro-
ample, 16 6x 1o atp=2.3: avery large length in units vided much of the motivation for the current interest in the

fendeclto provide L with same contro over fiiteorrec. MMl Abelian gauge. |

tions (a decreases by about a factor of 2 betwgen2.3 and To calculqte the monopole contribution to a W|Is_on loop

5=2.5). We typically analyze 500 configuratioﬁnesllfér edch let us con5|der contours _that are purely _space—hke, e.g.,
e W(X,y). (Since space-time is Euclidean, this involves no loss

and 8. These configurations are typically some 25 to 50of generality) The integral of the Abelian gauge potential

Mo(gt]ecgag(r)lesr\gtegjptshzgzré))confi urations are then fixed around the contour will simply equal the magnetic flux,
9 9 B(x,y), through a surface spanning the Wilson loop contour,

to the maximally Abelian gauge in the s_tandard way: Weso the value of the Abelian Wilson loop will be given by
perform gauge transformations at each site, and iterate the

procgdure, so as t@ocally) maximize the gauge dependent W(x,y) =exfdiB(x,y)]. (5)
functional
In principle the surface chosen should be one over which the
. . + . Abelian potential is non-singular. But since the flux through
R__% Tr(Uu(n)-io3-Uy(n)-io). @ any other surface will differ by an integer multiple ofr2
(Dirac strings, we are free to choose whichever surface is
We then write the gauge fixed links in the factored form  the most convenient — which will usually be the minimal
surface. The monopole Wilson loop is obtained by using that
part of the magnetic flux that is generated by the monopole
(2)  charges. This is just the dual of the electric flux that would
be generated by the corresponding electric charges. We cal-
culate this flux by solving the dual Maxwell equations with
where c,(n) is real and thed,(n) are our Abelian link the given monopole currents. This is done by an iterative
angles. We now identify the magnetic monopole currents irprocedure and for the particular periodic four-volume under
these Abelian fields usind2]. The currents are integer val- consideration. Once one has the dual 4-potential, it is trivial
ued variables on the links of the dual lattice and they satisf{to generalize the calculation to non-space-like Wilson loops.
a continuity equation. So the total current can be decom€alculating Wilson loops in this way we can extract the
posed into a number of closed current loops. In general sucimonopole potential and string tension, using Egs.or (4).
a decomposition is not unique since loops may intersect. If In the same way one can, if one wishes, calculate the
loops that intersect are concatenated into “clusters” therstring tension due to some specified subset of monopole clus-
these clusters form a unique set of mutually disconnecteters. One simply calculates the dual potential due to that
networks and each current link may be unambiguously ass@ubset of monopole currents.
ciated with one of these clusters. If we were working with a W1) theory then we would
A standard way to calculate the 82 string tension is by  expect the whole of the Abelian string tension to be due to
calculating Wilson loopsW(r,t): i.e. the trace of the ori- monopole§13,14. In the present case, however, the Abelian
ented product of S(2) matrices along the rectangulaxt fields are not generated by(semijlocal Abelian action but
contour. From these Wilson loops one can extract the statiare obtained in a complicated way from the non-Abelian
potential,V(r): fields. It is therefore possible that the resulting vacuum con-

_ c,(n)  w,(n) (ei%(n) 0
Uﬂ(n)— _WZ(”) C,u,(n) 0 e 10,(n)
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TABLE |. The effective string tension obtained from Creutz gauge functional has many maxima: the well known Gribov
ratios of sizer; as obtained from the (@) fields, the monopole copy problem. These copies are, of course, identical for
clusters and from the difference of thely and monopole fluxes. gauge invariant quantities but differ for gauge variant quan-
All are obtained from an ensemble of 500 configurations oh 16 tjties such as the Abelian fields and monopole currents. Since

lattices atg=2.4. there is currently no convincing criterion for which maxi-
mum is the “best,” we shall simply ignore this ambiguity. A

r oy (r) Tmor(") L) practical justification for doing so is the demonstrat[ds]

2 0.1561(18) 0.0673(5) 0.0894(14) that while the monopole content of different Gribov copies

3 0.1103(28) 0.0651(6) 0.0348(20) o_f the same S(2) gauge f!eld can be very dlfferent, the Iong .

4 0.0983(132 0.0649(12) 0.0132(41) distance m_on_opole physlcs thgt produc_es co_nﬂnemen_t is in

5 0.0259(354) 0.0628(21) 0.0040(80) fact very similar for typl_cal _Grlbov copies. Slnce_z confine-

6 0.0621(37) —0.0056(172) ment is what we are mainly interested in here, this reassures

us that our qualitative conclusions should not be affected by
the Gribov copy problem.

tains confinement-inducing, disordering fluctuations other 1Nhe second aside concerns positivity. Since th¢2peic-

than monopoles. For example, if the vacuum were to contaiffon is local (i.e. it extends over only a fixed number of

finite-width tubes of magnetic flux, with the flux, say, equal lattice units there is a corresponding positive-definite
to 7, and if these loops were to be arbitrarily lofe“con- Hamiltonian in the continuum limit and it makes sense to

densate’} then this would typically produce a non-zero talk of masses, poteptials etd-or non-zero lattice spacing
string tension. Thus it is important to ask whether it is thethere might be pecullar effects for masses on the order of the
case that within the ensemble of Abelian fields obtained byut-0ff.) There is no guarantee, however, that the ensemble
Abelian projection from the S(2) fields, confinement is in- of Abelian fields possesses such an un_derlymg Hamiltonian
deed generated entirely by monopoles. A first step is to cal=— Pecause the Abelian fields depend in a completely non-
culate both the Abelian and monopole string tensions and t#¢& manner on the original Sp) fields — and so we can-
compare them. Several investigations of this type suggeé,}Ot be certa!n that |t. makes sense 'to talk of Abelian poten-
that they are indeed quite simil&5,6]. To go further than tials and string tensmns._Thls applies even more SO to_ the
this we need to directly compare the confining Abelian andg€nsémble of monopole fields; and even more to situations
monopole fluctuations. To do this we calculate on each field?heré we consider only subsets of monopole currents. Hav-
configuration the difference between the total magnetic fluiNd Said this, one finds in practice that the Abelian and
and that due to the monopoles. Using this “difference” flux Monopole Wilson loops usually do behave as if there were
we then calculate the corresponding Wilson loops and poterf? underlying transfer matrix, and the extraction of the po-
tials. If the string tension that we extract from this potentialténtial seems to be largely unambiguous. So we will follow
is zero, then we will have shown that the confining fluctua-Prévious work and ignore possible problems with positivity.
tions in the Abelian fields are entirely due to the monopoles] Nat these problems do exist becomes immediately apparent
We have performed such calculations and display a typicaf One tries to “modernize” the calculation using smearing/
set of results in Table I. The effective string tensiogg(r), blocking techniques. The _c_or_relatlo_n functlon_s of smeared
has been obtained from Creutz ratios, as in @y. We ob- operators badly break positivity. This undermines the usual

serve that within errors the “difference” string tension is vVariational approach and means that we can only be confi-

indeed consistent with being zero. This provides direct evident that we have obtained the lightest mass if we have a

dence that confinement is entirely driven by monopoles irf/€ar, extended effective mass plateau. These problems have
these W1) fields. occasionally arisen in our calculations, but not in those that

The reader will note something rather peculiar about thé?™® reported upon in this paper.
numbers in Table I. It is apparent that the monopole Creutz
ratios show very much smaller statistical fluctuations than . MONOPOLES AND CONFINEMENT
those from the (1) fields. We would therefore expect that
the difference string tension should have statistical errorg,,
that are at least as large as those in tlig) theasurement. In
fact, as we see, they are much smaller. This clearly requir
a strong correlation between the fluctuations in the)U
fields and in the monopole currents: as we expect to be th
case from monopole dominance. This is not in itself suffi-
cient to explain the pattern of fluctuations, however. We not
also that the small; Coulombic deviation of the difference
potential away from the purely linear asymptotic form is
much greater than in the pure monopole calculation. This is
actually something we can rather easily understand, as we
shall see in Sec. IV. To begin with we consider the simpler case of the 3-

Finally two cautionary asides. The first concerns Gribovdimensional W1) theory. Here the monopoles are really in-
copies. The gauge fixing described above is not unique. Thetantons, but because the fields are identical to time-sliced

Before moving on to our results concerning the distribu-
n of monopole currents it is interesting to ask whether
there are any restrictions or bounds that such a distribution
€hould satisfy if it is to have any possibility of producing
confinement. To do so it will first be useful to outline how
ﬁwonopoles produce confinement in Abelian theories. The fo-
cus here will be on identifying the essential features of the
E‘phenomenon and will involve a variety of simplifying ap-
proximations to the exact calculatiofis3,14].

A. A simple picture
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fields from the static 4-dimensionall) theory, it is custom- The mechanism here is very simple. Only a monopole
ary and appropriate to refer to them as monopoles and to talwithin a distancef will significantly affect the Wilson loop

of the fields as being magnetic. Suppose, then, that we comecause of screening. Its contribution to the flux is alibut
sider a Wilson loop on aRx T contour. The contribution of ~ 7 and so it flips the sign of the loog! "= —1. That is to

the monopoles to the value of the Wilson loop is just say, these monopoles maximally disorder the loop. Their
. number is obviously proportional to the area and this imme-
(W(R,T))=(exfliBmor(R.T)]) (6)  diately translates into an area decay and a corresponding

string tension.

where the average is over all field configurations and We can easily do a bit better. If we consider a monopole
Bmon(R, T) is the total magnetic flux through tHeXT rect-  a distancer above a large Wilson loop, the screened flux
angle that arises from the monopoles in each field configuthrough that loop is
ration.

How do we calculateB,,,{(R,T)? One might try to ne- 1 _
glect the monopole interactions as a first approximation, so ®(r)= Wfo dy-e”"%, ©
that we just have a random gas of monopoles. This leads to

arbitrarily large energy densities, however, and so the systemhjs assumes that<R,T so that we are only interested in
prefers to trade off some entropy and form a screened plasma<Rr T, in which case the flux through the Wilson loop is
of magnetic charges instead. Let the screening lengthi. be (aimosj the same as the flux through the whole plane in
We shall treat our system as being, to a first approximationyhich the loop lies. Using our previous expression for the
a random gas of mOﬂOpOleS with a screened magnetic ﬂUéverage screened ﬂUX, we read“y obtain the ab@(e)_
that decreases with distanceas b.(r)==2mexp(-r/§)  Multiplicatively combining the disordering effects of an in-

(the sign being chosen at randpnConsider now the total finite tower of slabs, each infinitesimally thick, we obtain by
flux @ through ourRXT contour. Given the exponential analogy to Eq(8):

drop in the flux a reasonable approximation RyT> ¢ is to

assume that if a monopole lies within a “slab” of thickness P 1d ey

¢ either side of theRX T rectangle then half of its flux, i.e. (W(R,T))=e 2Tl r[ COS( i e )] (19
&=, will pass through the rectangle while if it is outside

the slab then the flux is suppressed to zero. This obviouslWe have now introduced a general electric chagder the
neglects various perimeter effects, but we do not care bewilson loop. Since we have chosen the magnetic charge to
cause these will not contribute to the interesting area term. Iidbe unity the usual Dirac quantization relation tells us tat

this approximation then must be an integdiotherwise the Dirac strings become “vis-
ible”). Forq==*=1 Eg. (10) is an inessential improvement.
BroR,T)=n,m—n_m (7) For, say,q=2, however, the argument of the previous para-

graph gives no confinement since a fluxm®fdoes not dis-
where n, (n_) is the number of positivelynegatively ~ order a doubly charged Wilson loop='?"=1. So in this
charged monopoles above the Wilson rectangle plus thease it is Eq.(10) that must used and we obtain a string
number of negativelypositively) charged monopoles below tension
— counting only those within the slab of course. Clearly

onceR, T>¢ the average number of monopoles within the _ fm _ fl —rly 11
slab must be proportional to its volumén,)=(n_) olq)=2c¢ Odr 1=cog mq Odye D

=c¢{RT=n. If the gas in the slab is random them. )

should be Poisson distributed with mean We can now
calculate our Wilson loop average:

for the potential between static sources of chayge
It is crucial, if we are to obtain confinement, that screen-
ing is something that occurs only on the average — it is a
_ . statistical phenomenon. If, for example, we were to consider
(WR,T))=(exdiBmoi( R T)]) a gas of magnetic dipade— a non-statistical form of screen-
e - ing — then we would get no confinement: the net flux
= E gn+® e " through our very large Wilson loop is essentially zero if the
n.=0 n,! dipole is well within the perimeter of the loop and a distance
PO < R_,T_from the surface of the loop. The fact that screening is
% Z e in-®__g-n statistical means that the fluctuations around the mean
n"=0 n-! screened flux will be important. The Wilson loop is of course
sensitive to all fluctuations — it is, after all, a phase — and
so we are making an uncontrolled approximation in replac-
ing the monopole fluxes by their mean, screened values. This
using = in the last line. Thus the monopole magneticis the only serious approximation that we have made. We
flux causes the Wilson loops to decay exponentially with theshall return to the link between the confining properties of
loop area. This means that the monopoles lead to a non-zethe monopoles, the monopole current density and the screen-
string tensionioc=4c¢, in the above approximation. ing length in the next section.

=e- n(lfcosb)=e74c§RT (8)
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Although our treatment of screening is very approximate Our arguments can be straightforwardly adapted to other
this does not undermine the simple picture we gave above dfinctional forms but we choose to focus on a power law
how monopoles maximally disorder Wilson loops, and sobecause we already know that the spectrum of monopole
maximize the interaction between electric charges. Indeetbops decreases approximately ad/1® [7]. Moreover, as
suppose we ignore screening entirely and calculateRan we shall see in the next section, the cluster spectrum also
X R Wilson loop, say, within a completely random gas of possesses such a component. Once the volume is large com-
monopoles. The calculation is now actually much easiepared to the physical length scale, we expect the
since there is no screening length to bring in an extra scald.-dependence o€(L) to be simplyC(L)=cL*. The first
We can therefore just scale out the scBland we obtain bound then arises if we make the reasonable assumption that

the density of monopole current must be finite, i.e.

(W(R,R))oce™ R (12) L[ di
cL | |_y
where ¢ is proportional to the density of monopoles. The |imT¢°C- (14
cubic power ofR arises on simple dimensional grounds. So Lo

the potential grows faster than linearly: a random gas o
monopoles over-confines. This is not possible in a quantu
field theory: the associated unbounded energy densities will y=2 (15)
break down through particle production. Screening is the

way the theory regulates itself and in the process weakengs |ong as the maximum length of those clusters which are

the over-confining potential to the linear form that is the associated with the power law, (L), grows —o whenL

fastest growth possible for a proper field theptg]. — . In general this must be the case. Indeed simple random
The above simple and, no doubt, well-known picture con-,5 1k arguments would suggest tHat,(L)<L2.

tains the essential features of how monopoles drive linear \ye now have a lower bound op. Confinement should

confinement in 3 dimensions and, for static monopoles, in ‘brovide us with some upper bound: after allyifis large
dimensions as well. Of course we are interested here in th@nough then there will be essentially no large monopole clus-

non-static case. Since space-time is Euclidean we lose n@q 15 gisorder large Wilson loops. Let us be more specific.
generality by considering only space-like Wilson loops. InConSider Wilson loops of sizel X eL, on anL* lattice. If

that case it continues to be the magnetic flux that disorderg,q theory is confining then it is reasonable to expect that it
the Wilson loop, exactly as above. It is still the case that theshould be confining on scaled. where ¢ can be chosen

net magnetic flux from a monopole will ben2 Of course g hirarily small but is then fixed. This will require monopole
this flux will no longer be spherically symmetric but will o ters that extend over distances of orelerat least. Let.
depend on the motion of the monopoles. The generic effeclge so large thatL is large compared to the physical length

of this asymmetry is to weaken the string tension but only byse.» 0 Then we expect from random walk arguments that the
a finite factor that should not be far from unity on the aver'length of such a cluster should be at leastteL)?. This

age. Thus the qualitative physics is unchanged. If we time-should certainly apply to the coarse-grained lengthe

slice monopqle Ioops_ that are much sm_aller tha}n our W'lsorfength of the cluster after the smallest ultraviolet fluctuations
loop, they will look like dipoles and will not disorder the

; e ; in the current have been removed by smoothing or blocking
Wilson loop sufficiently to confine. The same should applyUIO to the physical length scaleNow, let the fraction of
to Wilson loops that are long in one direction but short in '

o L : configurations with clusters that are this long, 1.2.(eL)?,
another. The qualitative conclusion is that confinement on ?)ef(l) Clearly if f(1)—0 asL—oc then we will have lost

scaleR, requires monopole loops that are large compared t%onfinement on the size scaleel. So we require
the correspondin@Rx R Wilson loops.(A numerical confir- '

his equation immediately implies that

mation of this may be found if5]. where it is seen that dl
small monopole loops do not contribute to the string ten- lim f(l)ec lim cL4f I—ﬁo (16)
sion) One could try to go further but we shall stop here and Lo L ~(el)?
see what we can infer from this rather general constraint. o ) o
which immediately implies
B. Bounds on a confining monopole spectrum y=3. a7

So we now ask what conditiodé(l), the number of clus-
ters of lengthl, must satisfy if we are to have confinement.
We shall take the lattice spacing to be fixed so that the onl
quantity we vary is the lattice volumé:# in lattice units.

We start with the simplifying assumption that the mono-
pole cluster spectrumi(l), falls off as a power of:

We note that our discussion assumes, as seems reasonable,
that the clusters are essentially independent of each other, i.e.
¥hat there are no strong long-range correlations between dif-
ferent clusters. Obviously a highly ordered set of small clus-
ters can simulate the effects of a large cluster, and this would
undermine our above arguments and bounds.

c Thus as long as the monopoles possess some very general
N()= (L)_ (13 physical properties, the exponent characterizing the number

4 density is limited to the narrow range
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2<y=<3 (18 TABLE II. The total length of the current,y, and its scaling
with the lattice volume. Ditto for the largest clustéf,,,. The

if the monopoles are to provide the disordering fluctuationd€9th of the second largest cluster is also listed.
that drive confinement. By making more specific assump-

tions one can try to narrow this range, but one then incread® - o lio/L* ! max L '2nd
ingly relies on arguments of decreasing plausibility. We shalp 3 8  840(4) 0.205(1) 624(5) 0.152(11) 35 (10
not pursue this here. 10 2054(5) 0.205(1) 1158(58) 0.156(6) 42 (11)
Our above arguments have thus led us to the conclusion 15 4230(7) 0.204(1) 3200(110 0.154(5) 49 (10)
that a Spectrum of the forml(l)OC1/|3 mlght be Confining. 16 13394(18) 0204(1) 10168(141) 0155(2) 67 (9)

This is intriguing: one finds just such a distribution for
monopole loopg7] and, as we shall shortly see, for mono- 2.4 10 11005) 0.110(1) 584(70) 0.058(7) 83(26)

pole clusters as well. Moreover it has been suggegi&d 12 2288(12) 0.110(1) 1277(104 0.062(5 116(39
that for largel such a distribution could arise from instan- 14 4228(10) 0.110(1) 2441(141) 0.064(4) 121(49
tons. 16 7184(18 0.110(1) 4187(177 0.064(3) 125(38)

25 16 3583(16) 0.055(1) 1339(123 0.020(2) 255(40
IV. INFRARED BEHAVIOR

; Atsﬂ?escnbeq fll:()jove, for elach flelc_i conﬁg_?rr]atmn Wetex'there are the remaining, smaller clusters. These possess a
tract the assoclated monopole curre{r];L(n)}._ € curren spectrum which follows an approximate power-lai(l)

is integer valued and conserved. Therefore it can be decom- C(L)/I7, with y=3
posed into continuous closed loops of non-zero current. Such That the very large cluster is not simply the largest cluster

z)grﬁc‘(‘)cr?ups?glrgenolfs rirc:]r?cggbtl)cl); Scm\:\;?::tslogpssg?is' tlr]:getvcg%f a smooth distribution of clusters can be established as
P . y saying t follows. First, simply at the qualitative level, we note that on
loops belong to the_s_am_e cluster if ar_1d only if they INtersecty, o 1% |attice atB=2.3 (for example the average length of
then the decomposition into clusters is clearly unique. In thls[he largest cluster is-3200, while the average length of the
paper we shall focus on clusters rathgr_ than IOCQ.EW an  second largest is onlyb49.’ Moreover on none of the 500
'sr;\rlsiité%att'gr}oﬁhgiggr Izi{g]s') mea(cj:ﬂlrt;gzt;orgﬁggs;?irs];‘y analyzed configurations is the second largest cluster ever
: ps, the " "flarger than 220 or the largest cluster ever smaller than 2300.
further constraint due to the periodic boundary condltlonsOn 16 the distinction is even more marked, with the average

Periodicity demands that in any given time-slice the total :
magnetic charge must be zero. Contractible monopole Ioop:§"ngth of the largest cluster 10169, while that of the second

automatically satisfy this requirement. A loop can also Sat_argest is only~67. We can of course be less impressionistic

isfy current conservation, however, by closing through Onethan this. First we remarksee Table |l that the total length

of the boundaries. Periodicity then requires that such Wind9f all the clusterslyy, is proportional to the volumd,”, as is

ina | b tched by oth _contractible | th tpe length of the_ Iargest clustdr,.. S0, as one would ex-
"9 100ps be Matcned by Other NON-contractivie ‘oops So e ect, the normalization of the spectrum@¢L)=cL*. (One

the net charge is zero however we time-slice the lattice. wé X
mention this fact since it will become important when we WoUld expect this, because the number of clusters of length

attempt to calculate the string tension that arises from a su should be proportional to the vplume once the vo_Iume IS
set of the clusters. arge enough.On the average a field configuration will con-

Suppose we have a particular clus@r Then we define tain fN(1)dI clusters that belong to this_spectrum. The larg-
the length of the cluster to be est of these clusters will, roughly speaking, be sampled from
the tail of N(I) that integrates to unity:

o= 3 il (19 ae [ Aoy 20

{n,u}e | |_7_
0

In practice, if one is outside the strong-coupling region of therrom this we can estimate the average length of this largest
SU(2) theory then the current is almost alwayd whenitis  cluster to be

non-zero. Thus our definition almost coincides with the num-

ber of links in the cluster. Idl
o I af(y—1
A. Cluster decomposition (l)= dl o LY, (21)
Our first step is to calculate the length of each cluster. ,Ol_y

This reveals that the clusters fall into two quite distinct

classes. First there issinglecluster that is very much longer That is to say, because this largest cluster is sampled from a
than any of the other clustefat least if the volume is large falling spectrum its length increases much more slowly than
enough. For example, of the 50016* configurations that L“. This is in contrast to the observation in Table Il that the
we analyzed aB= 2.3 there was not a single case where welength of the largest cluster in fact increases 4sTherefore
observed two large clusters rather than just one. Secondlhis cluster does not belong to the observed continuous spec-

014504-6



MONOPOLE CLUSTERS IN ABELIAN PROJECTED ... PHYSICAL REVIEW B8 014504

nlb- ' ' ' 2'3. n'lax ] that there are very strong scaling violations arising from the
{ T ot e currents of the smaller clusters.

107 24: max —— | The simple scaling property of the largest cluster is quite
o 9T )5 tot == remarkable. Of course, it reassures us that the largest cluster
= D max . . .
Z gl tot —— | does indeed encode the physical length scale, but it goes
ﬁ further than that. Realistically one could only hope for a
§ T % % % % ] suitably coarse-grained cluster length to satisfy scaling. Na-
2 6t T ively one would expect the length defined in terms of the

51 links to be an ultraviolet length whose relationship to the

Al % * : * physical coarse-grained length would involve anomalous di-

% I % & b, : mensions that would lead to a violation of scaling. This
3 . . .

would arise from the fact that the monopole world line has

fluctuations on all length scales. Instead what we infer is that

the largest monopole cluster does not really seem to encode
FIG. 1. The total current densityy,;, and that of the largest any information concerning the ultraviolet length scale.

cluster,pmax, as functions of the physical lattice size and the lattice

spacing; for3=2.3, 2.4 and 2.5.

2.5 3 35 4 4.5 5 5.5
L.sqrt(K)

C. The monopole potential and string tension

trum of clusters. One can also analyze the probability of aying seen that the largest cluster fills space-time in a
observing such a large cluster, if it is sampled from an exyay that scales in physical units, we now ask whether it does
trapolation of our observed spectrum. This probability isiy fact contribute to confinement, i.e. does it generate a po-
negligibly small. Indeed it is the second largest cluster thatenia| between static sources that has a non-zero string ten-
appears to be the largest cluster that is drawn from the consion As described previously, we can do this by first calcu-
tinuous part of the spectrum. We list its length as a functiongting the magnetic field arising from the largest monopole
of L in Table Il and we can see that it increases weakly Withe|,ster and then, from this, calculating the values of space-

L — just the behavior we argued for above. like Wilson loops. (In practice we calculate the dual 4-
_ potential and all orientations of Wilson loops$rom the
B. Scaling and the largest cluster Wilson loops we extract the monopole potenti(y), as in

We have seen that at fixea the length of the largest Ed- (3_), and obtain the string tension by fitting it with the
cluster increases linearly with the volume. This means that i#€neric formV(r)=a-+b/r +or.
will spread throughout the space-time volume in the thermo-  First an aside about th#r term. It has been noted before,
dynamic limit. This is, qualitatively at least, exactly the kind €-9-[7], thatb is very small for the full monopole current
of monopole cluster that might give us confinement on arbi_ensern_bles. We find Fhat the potential .from the largest cluster
trarily large scales. If it is to do so, however, then its struc-@lone is even more linear in form. Naively we would expect
ture must encode the physical length scale and not just th&/o contributionsx 1/r:_a Coulomb interaction and the uni-
lattice scale. Consider then the length of this largest clusteYersal Lischer correction to the flux tube energy. Are they
in physical units: this will bel ,,/K, Where . is the both_a_psent or are _they ca.ncelllng. eagh othe(? The latter
length in lattice units ané =a2o is the SUY) lattice string possibility is not as implausible as it might at first appear.
tension[18]. Similarly the lattice volume will bel(\K)*in W€ know that in the Villain model Wilson loops exactly
these physical units. So the monopole current density, ifactorize into spin-wave and monopole pief&3,14. Hence

these nonperturbatively defined physical units, is the tote}I potential is a surN(r)=VsW(r.)+Vmon(r)., _using
an obvious notation. Suppose we are in the confining phase.

[ \/E | ThenV(r) has a linear piecer and, in addition, a Coulomb
P —_ M (22)  piece,Vc=—alr, at smallr and a Lischer term,V, =
( L- \/E)4 L4 \/E)3 —/12r, at larger. These have the same sign and there is no

possibility of a cancellation. In any case, since there is no
for the largest cluster. Similarly we defing, for the total massless gluon, the Coulomb piece will be screened at large
monopole current. We plot these densities against the physi- typically V(r)=—(a/r)exp(—r/&, and since the flux
cal lattice sizel K, in Fig. 1. We first note that the points tube has a finite width, the lsaher term will be “screened”
at fixed 8 are constant for botlp,,; and pac- This tells us  at smallr, crudely V (r)~—(7/12r)(1—exp{—r/£'}). We
that for fixeda both the total current and that from the larg- expect the two scaleg, and¢’, to be similar, so in practice
est cluster increase linearly with the volume; something wehe Coulomb and Lscher terms will hardly overlap. In con-
have noted already. Comparing now the points correspondrast to this the spin-wave potential does possess a massless
ing to different values of3 we see thap,. is independent photon and no linear piece, i.&/,(r)=—a/r for all r.
of the variation ina. That is to say, the length of the largest ThereforeV,,o(r)=V(r) —Vg{r) will have the form
cluster is proportional to the volume if everything is ex-
pressed in physical units. By contrast we observe that this i (N=c— gex;{ _ [} _ i( 1—exp{ 0
certainly not the case for the total current. Since a large part ™ r &l 12 &'
of the total current resides in the largest cluster, this tells us

o
+0‘I’+?.
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We note that at smal the two Coulomb terms cancel and TABLE lll. The monopole string tensions from all the clusters,
the Lischer term is negligible: so there is no significant 1/ the largest and from the remainder. The second error is the system-
piece. At larger the screened Coulomb term is negligible atic bias from correcting the winding numbé?.is the percolation
and soV,o{(r) will be the difference of the Lscher and Parameter.
unscreened Coulomb terms. If these have a similar magni-
tude, as in fact they do in typical $2) calculations, then -~
they -vviII-Iarger cancgl. S&mor(r) has no.significant /' g=23 012805 01243 (00 0.000(1)(0) 0.75(1)
contribution at large either. Of course all this has only been g_5 4. 0.067(2) 0.058(2) (0) 0.01(1)(0) 0.57(1)
demonstrated in the V|IIa|n model. It'seems p!au3|ble to USp_25 00342 0.024(2 (2 <0.005(-)2) 0.37(1)
however, that an approximate version of this mechanism
should hold more generally, and that it provides the expla-
nation for the observed lack of a significant Jiece in the
monopole potentials. P= ,
In calculating the potential from the largest monopole Miot

cluster there is one significant problem. As we remarked ear\?\/herenmaxis the number ofdua) sites connected by current

lier periodicity implies that the total magnetic charge in any|inis from the largest cluster ant,, the number connected

time-slice must be ZEr0. S0 it needs to be the case that. tqﬁ all clusters. We note that ##=2.3, where the volume is
clpurgtr:aerg h;\cljgﬂr?;rnaetltovr\]/isn;ci)rzgiin%etrh?n rae:;/o&/iarllegozgr;aén largest in physical units, the strin_g tension i_s gi_ven entirely
* 79" by the largest cluster and there is no contribution from the
secondary clusters, despite the fact that the latter carry some
E Ja(xy.2t=1)=0 (24 25% of the; total monopqle current. /;le 2.4 the secondary
&z alX.y.z, ’ clusters still do not provide any confining force even though
their contribution to the current is now approaching half of
, , , , . the total. AtB=2.5 the situation is not so clear-cut but that is
Without this, Gauss’ law and the magnetic flux are ill- hot gurprising: the volume is now becoming quite small in
defined. In practice the largest cluster does sometimes havegy sical units, the distinction between the largest and second
net winding in one or more directions. In these Cases Wy gest clusters begins to blur, and the winding correction has
implement the following “fix.” We manually correct the pocome important. There is also some indication #at,
winding number to zero by the addition of straight lines of ;452, " ang indeeda2o o+ 220, — are not quite
magnetic current of appropriate charge that wrap around thg, samgaéB:2.4. We believe that this is directly related to
lattice; structures analogous to the Polyakov line of 9augRyr observation that as the volume decreasesfixed B)

links. The position of such a static monopole world line ISthere is a growing disparity betweeafa,,, and a2o .

chosen randomly. In practice this problem is only significant, >

t8=25. Th ic that the total i iv h a°o.qr- We are not at present sure whether this indicates a
atp=2.5. The reason is that the total current necessarily hagnificant correlation between the largest and smaller clus-

zero winding. So the largest cluster will only wind if some yo¢ o gmaller volumes, or whether it is an artifact of the

other smaller cIusFer_has a compensating _wmdlng. I havﬂifficulty of extracting extended effective mass plateaux on
some chance of winding around a lattice this secondary Cluss'mall lattices

ter cannot be too small. Only @8=2.5 are the secondary
clusters large enough to make this a frequent occurrence.
(This in part arises because of their scaling properties—as
discussed in the next sectipWe estimate the bias induced  We have just seen that the largest cluster is the source of
by our winding fix as follows. We place the same staticall the interesting confining physics. Given its importance it
monopole lines used to correct the winding number ontds worth probing its structure in more detail. In particular we
otherwise empty lattices. To each of these, we add a similareturn to our earlier observation of scaling and the question
number of oppositely charged lines, also at random posief whether this cluster fluctuates on the scale of the lattice
tions, and calculate the string tension. One half of this is arspacing or not. To address this question we locally
estimate of the bias inherent in our correction meth@f.  “smooth” the monopole currents and see what effect this
course, as we showed earlier, a random monopole gas ovdras on the length of the cluster. We have employed two
confines; here we are simply obtaining an effective stringnethods. The first is simply to “cool” the Abelian fields by
tension at an appropriate distance€his bias is found to be locally changing the fields so as to maximize the value of the
completely negligible a{3=2.3 and 2.4. AtB=2.5 it is  sum of plaguetteg;That is, we cool using a plaquette “ac-
+0.002 in lattice units. This is only an estimate, so the mestion.”) This directly smoothes the Abelian fields and there-
sage is that some caution should be attached to the strirfgre, indirectly, the monopole currents as well. The second
tensions we calculate #=2.5. method involves ‘“smoothing” the monopole currents di-
In Table Il we show the string tensions calculated using:rectly: we examine eactdual plaquette in turn, and super-
first the total current, second the largest cluster and third alimpose a X1 current loop with a charge chosen to mini-
the clusters except the largest. We also indicate the propomize the total magnetic current on the lattice. This
tion of current in the largest cluster by quoting the value ofconstitutes one smoothing sweep. It directly removes the
the percolation parametgt9] kinks (“staples”) in the current. The two methods give simi-

2 2 2
a"0Oqot a" O max A" Orest P

nmax

(25

D. Smoothing the monopole fields
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TABLE IV. The evolution unders monopole smoothing sweeps of the string tension, the proportion of
current remaining, the percolation parameter, the length of the two largest clusters and the number of clusters.
Also given are the last two quantities when the largest cluster is excluded from consideration. Results labelled
T are fromL=16.

B=2.3,L=12
s do % curr. P Imax lond Ne [ 5nd ne
0 0.128 (5) 100.0(0) 75.7(3) 3200(22 49 (100 156.9(7) 49(100 156.9(7)
1 0.124(6) 56.7(2) 78.5(4) 1882 (65) 85 (32 56.5(3) 29(3) 36.2(3)
2 0.122(5) 40.7(1) 76.2(8) 1314(94) 141(48) 27.3(2 22 (3) 13.6(2)
3 0.124(5) 32.6(1) 74.0(8) 1021(74) 163(44) 16.3(2 18 (2 6.8 (1)
5 24.2(1) 70.8(9) 725 (64) 160 (39) 8.9(2 11 (2) 2.7(1)
10 15.5(1) 68.4(11) 449 (50 125(27) 4.4(1) 3(2) 1.2(1)

p=2.4,L=14

s o % curr. P Imax  ond N [ 9 ne
0 0.067 (2) 100.0(0) 56.8 (3) 2441(141) 121(48 249.3(5) 121(48) 249.3(5)
1 0.064(2) 52.7(2) 59.6 (6) 1345(107 202(44) 75.1(4) 73 (22 61.8(4)
2 0.063(2) 37.6(2) 60.2 (7) 965 (90) 216(41) 34.2(2) 60 (19 24.9(3)
3 0.062(2) 30.3(2) 61.0 (8) 788 (84) 207(41) 19.6(2) 51 (15 12.1(2)
5 0.059(2) 22.9(1)  61.8100 603(75 182(34 9.9(2) 39(12 54(1)

10 0.055(2) 15.5(1) 64.5(9)  423(50) 136(24 4.9(1) 25(10 2.2(1)

lar results, but the latter one has the important advantage fdvlonte Carlo directly to the (1) or monopole fields — after

us that, in addition to being more transparent, it enables us tall the smoothing is just a particular move that would be part

smooth individual clusters if we so wish. of the Monte Carlo choice. The implication appears to be
The result of smoothing the monopole fields, by the secthat there is something in the $2) dynamics that ensures

ond method, is summarized in Table IV. The first thing wethe presence of just one large monopole cluster. Despite ini-

observe is that the string tension shows very little variationia| appearances this largest cluster cannot be understood as a
with cooling. This is as it should be: the ultraviolet fluctua- simple U1) monopole percolation phenomenon.

tions of the monopole current should not affect its confining
properties. Secondly we note that, as we cool, there is a rapid
decrease in the total length of the largest cluster. This tells us
that it does contain fluctuations on the size scale of the “cut- As we saw in Sec. lll, a plasma of monopoles is confining
off” even if these are not strong enough to destroy the scaland the resulting string tension is proportional to the product
ing of the total length. We also find something else that isof the monopole density and the screening length. Since we
very interesting: the largest cluster frequently breaks up intthave found that the ensemble of monopole currents that we
more than one cluster even after just one smoothing sweegenerate by going to the maximally Abelian gauge is confin-
To see this we display in Table IV not just the results ofing, it would be interesting to show explicitly that these
smoothing all the monopole clusters, but also what happensionopoles do form such a plasma. Indeed, since the confine-
if we exclude the original largest cluster from considerationment is entirely driven by the largest cluster, it is the mono-
and smooth just the secondary clusters. We observe that gloles in this cluster that should provide a realisation of our
ready after just one smoothing sweep the largest of the lattegimple picture in Sec. Ill. We should also be able to see in
labeledl}, 4, is on average much smaller than the secondvhat way the monopoles belonging to the non-confining sec-
largest cluster, labeldd, 4, obtained when we smooth all the ondary clusters do not constitute such a plasma.
clusters(Note that for these quantities the numbers in brack- The fact that the string tension has a finite continuum
ets are not the errors but the one standard deviation varidimit, means that both the screening length and the monopole
tions) Thus the second largest cluster must have hived offlensity should also scale, i.e. that they should be constant
from the largest cluster. Sinde,q4 increases with smoothing when expressed in physical units, up to lattice corrections
(initially) it is clear that the largest cluster is hiving off a that vanish as—0. [The reader may be aware that this is
substantial number of clusters during the first few smoothingiot what happens in the92+1 U(1) theory, but the pecu-
sweeps. This raises a puzzle. These hived-off clusters are, harities of that theory are not relevant to us hére this

we can see, typically much larger than the second largesiubsection we shall study the scaling properties of the
cluster that one observes prior to smoothing. This impliescreening length and we shall do so separately first for all the
that this hiving off never occurs during the Monte Carlo monopoles, then for the largest cluster alone, and finally for
generation. It certainly would occur if we were applying athe secondary clusters alon@e have already shown that

E. Screening lengths
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the monopole density of the largest cluster scales while that self-screening by all clusters
of the secondary clusters does ndthe more subtle question 6 ' ' ' ' ' ' '
of whether we really have a plasma rather than, say, a dis-
tribution of dipoles, is something we shall not touch upon 51 beta=23 re— ]
here. beta =24 ~— % s
] ) ) eta =2.5 —=— i
Before moving to the details of our calculations we need 4t 3
to reconsider how our simple monopole plasma picture o Bs
might be modified in a realistic context. First an aside: we '
shall calculate the screening length in an approximation
where we neglect the non-static character of our monopoles. =
A more substantial point is that there will exist excitations of -
the lightest screening mass. Thus the magnetic flux from a |
monopole will not decay as a simple exponentiat inWhat Ipooex®
we call the screening massng, will show up in the
asymptotic exponential decay, Bs>«, of the flux: 0

-In B(r)
w
*g

.

0.2 0.4 0.6 0.8 1 12 1.4

r 1.8qri(K)
B(r)ocexp{ - —), (26)

ls FIG. 2. Screening of flux by all monopoles as a function of
distance in physical units for monopoles @t2.3, 2.4 and 2.5:
wherel = 1/am; is the screening length amds the distance with a linear fit shown.
from the monopole, all in lattice units. At very largehow-
ever, this flux is very small and will have a negligible effect length is constant in physical units, then this slope should be
upon Wilson loops. So what is relevant to confinement is notndependent of3. (All this assumes we are in an infinite
this asymptotic screening mass but rather the effectivéolume. In a finite periodic volume one needs to make an
screening mass that governs the decay of the flux at thoggbvious finite volume correction and this we shall)do.
distances where the flux is still sufficiently large to effi- In Fig. 2 we produce such a plot using all the monopoles
ciently disorder Wilson loops. This effective screening mas®n the lattice (Note that we normalize the monopole flux to
will be some combination of the lightest screening mass antinity.) We see that indeed there is a linear rise at lagend
its excitations. It is this that we would like to see scale.  that the slope is independent gf within statistical errors.
Another complication will arise when we consider the That is to say, we find a scaling screening mass. If we now fit
screening properties of a subset of all the clusters. Althougthe combined data with a single scaling mass, we obtain
we have assumed that these clusters are independent, itrig=2.30(10)o.
unlikely that this is really the case. If we were in &llJfield As we can see in Fig. 2 this scaling screening mass only
theory then a monopole would, through tfaial) Coulomb  governs the decay of the magnetic flux at large distances
interaction, affect other monopoles whether they belonged tavhere the flux is small. If instead we look at the effective
the same cluster or not. That is to say, all monopoles particiscreening mass in the rangerofvhere the flux is still large
pate in the screening of all other monopoles. If we focus orenough to disorder Wilson loops, sag#B(r)<1, then we
the screening of the monopoles within some subset of clussee that it does not scale. This should not be a great surprise
ters, and if only the monopoles in that subset are allowed tgiven that we have seen that the total monopole density does
participate in the screening, then we will in general obtain amot scale either, and that there is a substantial number of
incorrect screening length. And if the total fraction of the monopoles, those in the secondary clusters, which do not
monopoles that are excluded does not s¢akewill be the appear to contribute to confinement.
case, for example, when we consider only the largest cluster Since we have found that it is the largest cluster that gen-
then the extracted “screening length” might well not scale erates all of the string tension, and that the remaining clusters
either. This, as we shall shortly see, is what occurs in ougenerate none of it, it is interesting to repeat the analysis
case, despite the fact that we have no reason to think that ogseparately for these two subsets of the total monopole cur-
U(2) fields are governed by a simple(1) effective action.  rent. This we do in Fig. 3. We first note that in both cases the
Note that although the Coulomb interaction between indi-screening mass does not scale—to the extent that one can
vidual monopoles in different clusters might be important foridentify a linear rise at large. Moreover the large-screen-
screening, it is a weak high-order multipole interaction be-ing is much weaker than that obtained when we include all
tween well separated clusters. Since the secondary clustetise clusters. This “under-screening” is what we would ex-
are compact objectévide the next sectionthis interaction pect if there were Coulomb interactions between all the
should be weak enough not to affect our derivation of Eqmonopoles, as discussed previously. For the secondary clus-
(19). ters the lack of scaling persists down to the smaller values of
Suppose, then, th&(r) is the flux from a monopole. We r which are relevant for confinement. For the largest cluster,
expect that for large enoughEq. (26) will hold. If we now  on the other hand, the smalleffective screening masses do
plot —In B(r) against K, then we expect to see a linear rise scale and we extract a value,=2.5(1)\/o, which is similar
at larger whose slope is just the inverse of the screeningo the screening mass at largfrom all the clusters. This
length in physical unitsts=1/K. Moreover if the screening and the fact that the density of monopoles in the largest
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self-screening by smaller clusters
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FIG. 3. Screening of flux as a function of distance in physical units for monopolgs=&3, 2.4 and 2.5. The left hand plot uses
monopoles from the largest cluster only; the right hand plot from the remaining, smaller clusters.

cluster scales confirms that it is indeed the monopoles in thimass. So the analogous speculation here would be that our
cluster that provide the confining monopole plasma. screening mass is related to a constituent gluon mass. It is

Given the above discussion it would appear that the cleartherefore amusing to note that the lightest glueballs in the
est way to reveal the screening of the confining monopoleSU(2) theory are the scalar and the tensor, with continuum
would be to consider only the flux from those monopolesmasses ofn,+ = 3.87(12)\o andm,+ =5.63(11)/c respec-
that are in the largest cluster, but to include all monopoles inively [18,20. In a simple constituent gluon picture of the
the screening of that flux. This we do in Fig. 4. We now low-lying glueball spectrum one would expect these states to
observe a flux that scales at allMoreover it can almost be arise from two gluons in arL=0 state, with the spins
described by a single exponential at all(We should use a aligned to give the tensor and anti-aligned to give the scalar.
lattice version of the Coulomb interaction at very smmalbut ~ Thus to leading order in the spin-spin interaction the scalar
we ignore this potential improvement hgr&Ve extract a and tensor masses will be equally split from the mass that
screening mass ah=2.71(15)\/o, which is roughly con- they would possess if the spin-spin interaction were not
sistent with our other values. present. The observed splitting from the average value is

Before leaving this topic, it is interesting to ask if this *=20% which is small enough for the leading order argument
screening mass has anything to do with the spectrum of thi be plausible. The average mass value will then equal that
underlying SW2) theory. Abelian dominance suggests thatof two constituent gluons, neglecting binding energies
this is just the effective gluon mass in the maximally Abelian(which have to be small if a constituent gluon picture is to
gauge. There have been speculations in the past that gaudgeave any chance of making seps&Ve observe that our
fixed quark mass calculation@ypically performed in the screening mass is indeed in the right ball-park to be thought
Landau gaugeare telling us about the constituent quark of as such a “constituent gluon” mass.

To sum up this section, we have established that the larg-

largest cluster screened by all monopoles est cluster is a quite different animal from all the other clus-

6 . . . . : . . ters. It permeates the entire volume, has a constant density
and screening length in physical units, and drives confine-
51 beta =23 re—i | ment. It would seem natural to think of this largest cluster as
beta=2.4 —— H being a simple example of naive percolation at work. But, as
P ] we have seen, this is not the case. If percolation is at work, it
i iﬂ is at work within the SW2) field configurations of which our
g s @__;_,;--' monopoles are but a skeletal representation.
3r P 1
) - V. THE SMALLER CLUSTERS
L & |
',_;;"E' A. The cluster spectrum
Lr L° ) ] We have frequently stated that the number of secondary
: clusters falls off approximately as a cubic power of the clus-
0l ' ' ' : ' . . ter lengthl. Some evidence for this is shown in Fig. 5 where

0.4 0.6

0.8
1.8qri(K)

12

14

we display the spectra for three different volumes gt
=2.3. These spectra all fall roughly ag®for the range of

FIG. 4. Screening of flux from monopoles of the largest clusterwhere our calculations are accurate. There is also some evi-
by all other monopoles as a function of distance in physical unitsdence that at very largethere is a change in the functional
for monopoles a=2.3, 2.4 and 2.5; with a linear fit shown.

form. There seem to be finite size effects there, and the in-
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6 F 6 F 6
. * clusters ——
4 4 4 N loops ——
2 | 2t 2
Z of 4 Z o} . Z 0
= .. = - =
2t K 2t * 1 2
4 (23, 10) 423,12 %ﬁ‘m 1 4 | (23,16
-6t -6 , , , ,MUM, , 6

2 3 4 5 6 2
Inl Inl

FIG. 5. Monopole cluster spectra A=2.3 onL=10, 12 and 16. The loop spectrum is shown for comparisoh ©116.

dication is that on large enough volumes, the spectrum fomaining length of the largest cluster from which they were
very large values of might fall off more steeply. More formed. Unfortunately this turns out not to be even approxi-
accurate calculations than ours are needed to determimeately the case, there being no correlation, either positive or
whether this is indeed so. In Figs. 5 and 6 we also display theegative.(We might also expect the smaller clusters to be
spectra obtained on i6attices at3=2.3, 2.4, and 2.5. This preferentially located near current links of the largest cluster,
shows that the~1/1° behavior does not depend @n We  although we did not test this.
note that as decreases, the very larj@nd of the spectrum
on the 18 lattices appears to show finite volume effects; B. Cluster sizes
T e g, Yt do e know about e sizes o ese secondaryclu
) Yers? We can estimate the cluster radius using the first mo-
the power law depending weakly on the rangd dfat we

choose 1o fit. Nevertheless. we are able to conclude that &l ent of the current links about the centroid of the cluster. If
. ' ’ : 4he cluster were composed of current links of charge
the fits to our data have an exponent in the range

{jl:i=1,n} with centers ai{xiﬂ}, then the centroid is

e[2.85,3.15.
In Fig. 5 we also show for comparison the spectrum ob- 1.n
tained when the monopole currents are divided into loops. X, == XL|j| (27)
. . . B B & e
The main difference is in the normalization; there are more =1

loops of a given size than clusters. Some proportion of the
small loops of a given size will be part of larger clusters, andvhere the length is
in particular the largest cluster on the lattice. It is interesting,
nonetheless, to note that the exponent of the power law for . y
the loop spectrum is in general slightly smaller than that for Izzl JRE
the more fundamentdive believe cluster spectrum.

The simplest way to understand this cluster spectrumype gistance of the center of a link from the centroidtis
wogld be if there were, in essence, only the one current clussnq the effective radius of the cluster is
ter in each field configuratiotthe very large cluster that we
described in the previous sectjoand that the secondary 1.0
clusters then arose when small portions of this largest cluster reﬁ:_E dlj|. (29
were randomly “pinched” off. The power law spectrum =1
would then have to arise from the relative probability of
pinching off portions of the largest cluster of different We plot this as a function of length in Fig. 7, and find that it
lengths. Were this the case, the number of clusters of a giveis well fitted by the functional fornt o(1) =s+ty/I. This
length on a configuratiofparticularly the smallest and most suggests that the monopole is essentially performing a ran-
numerou$ would be expected to be proportional to tre-  dom walk. Is the step size of this walk fixed in lattice or in

physical units? If it were fixed in lattice units we would

(28)

6 6 expectt to be independent . If the step size were fixed in

4 4 physical units then we would haveK o VIVK, and so would
2 2 expectt?ec1/\K. Our calculations, examples of which are
Z 0 kS Z 0 presented in Table V, show us that the coefficiemaries
) b ) very weakly witha if at all. There is some variation in our

41416 4l 2516 fitted value oft depending on the range bfused. But our

6 6 overall conclusion is that if we insist on parametrizingy a

power ofa then that power is smalk2oc(\/K) =818 gq,
although there is some room for a residual weak dependence

FIG. 6. Monopole cluster spectra dan=16 atg=2.4 and 2.5. 0N a, the evidence is that the step size in the cluster random
The equivalent for3=2.3 is given in Fig. 5. walk does not know about physical units.
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25 ; . - - ]L { TABLE V. Fitting req(1)=s+t\l to the clusters.
s t
2 b ‘Il{ |
13T (B=2.3L=12): —-0.150(3) 0.340(2)
e (B=2.4L=14): —0.175(3) 0.350(1)
15 P . (B=2.5L=16): —0.191(2) 0.355(1)
é - * ’;"'
1} . with y~ 3. (For these purposes any deviation at very ldrge
s is negligible, and the deviations at the smhllltraviolet
scale are irrelevantScaling would imply
05 4 1
C(L.a
; Jﬁf IN(I)dI=\/RJ | ( )dloc(L\R)“
0 : ) L ) L |p/v‘R |p/\K |
0 10 20 30 40 (31
length
. ] which requires
FIG. 7. The cluster radii and a fity=s+t\l at 3=2.3 onL
~12. C(L,a)=L4(VK)5™. (32

We note that the values dfwhere we saw, in Figs. 5 and Thjs js to be contrasted with what we should expect if these
6, evidence of finite size effects iN(l), do indeed corre-  gecondary clusters only knew about the ultraviolet length
spond to cluster sizes,e, that might plausibly feel the gcalea: C(L,a)xL% As we have already seen, in Table I,
boundaries of our periodic lattices. the factor ofL? is certainly there. What is at issue is the

dependence oRK. Scaling requires that the quantity
C. Scaling properties

We now turn to the normalization of the spectrum of these 1 C
secondary clusters and ask what scaling properties it pos- CP_L4.(\/R)5—y
sesses. We have already seen that the total density does not
scale: that is, the total length of the secondary clusters is nGhould be independent @. In Table VI we show the values
proportional to the volume when both are expressed in physipf ¢! that we have obtained on olir= 16 lattices both when
cal units. This in itself is no surprise, however. When we,,¢ Ese the value of obtained from the power law fit, and
decrease by a factor of say 2, then the total current lengthynen we impose a fixed valug=3 at all values of3 (as our
acquires an additional contribution that isf§IN(I)dl in  apove analysis assume#\s we see, rather than being con-
units of the smaller lattice spacin¢ince the smallest clus- giantc! increases roughly as K/ This is what one expects
ter has length &.) This will be a significant contribution (yith ~3) if the clusters know only of the ultraviolet scale.
because the spectrum grows rapidly at sthafo if nothing We have tested a particular formulation of scaling which,
else, we expect a significant scaling violation from the grow-ngjvely, would seem to be the most reasonable. It is not
ing tail of ultraviolet clusters and any test of scaling mustynique, however. A plausible alternative would be to focus
take this into account. The simplest form of physical scalingy, the total number of clusters instead of their total length. If
would be to consider only those clusters whose length igye consider the total number of clusters whose length is
larger than some fixed physical lendth i.e.1=1,/\K,and  greater than some constant in physical units, then in fact we
then to demand that the total length of these clusters is prgind the same criterion as above. To get something different
portional to the volume when both are expressed in physicale might, for example, askas in[7]) whether perhaps it is
units. We now see what this implies for the observed SpecN(l) itself that scales with the physical volume, whielis

(33

trum chosen fixed in physical units. This would require
c5=CIL* (\K)*~” to be independent g8. In Table VI we
N(l)= C(L.a) (30) show this, again fory from the power law fits at differerns
4 and with a single, imposed value ¢f 3. Using the fittedy,

TABLE VI. Power law fits and scaling behavior of the smaller clusters, including the assumption that
scaling is controlled by=3.

L=16: InC 0% C%(y) Cllj(y: 3) Cg(y) CS(7:3)
B=2.3: 10.38(21) 3.11(8) 3.52(80) 2.97(4) 1.24(28) 1.05(2)
B=2.4: 9.72(11) 2.90(4) 4.45 (60) 5.20(25) 1.14(15 1.34(4)
B=25: 9.30(12 2.94(4) 6.30(90) 6.75(24) 1.10(15 1.16(9)
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this quantity appears to scale much better. This result is not It is interesting to repeat our previous scaling analysis, but

robust; imposing a fixedy, however, where the statistical this time assuming that it is the 4-balls that are physical

errors are less, this scaling appears less good. Without sommather than the clusters themselves. That is to say, we impose

argument for keeping the measutkin lattice units(which  that the number of 4-balls of radius larger than some fixed

is what we have just donehowever, it does not really make length in physical units, should be proportional to the physi-

sense as a scaling criterion. It seems that if we take theal volume. It is easy to see that this implies tai(L,a)

secondary clusters at face value, they certainly do not haveL*. One obtains the same result, however, if one constrains

the right scaling properties to be physical objects. the density to be constant in lattice units, or any other units,
Given that the secondary clusters do not scale as “physibecause the 4-ball density just reflects naive dimensional

cal objects,” we can ask whether they scale as purely latticeounting. Thus we expect rather generally that

artifacts. If so we would expect the total current length to be

«L* but to be independent ai. So if we focus on the C(L,a)dl L*dl

L =16 lattices in Table II, we would expedt{— | ms,) to be N(Ddl= T3 Cap (35

independent of. In fact the values are 3226, 2997, and

22_4;' Sﬁzzef’s szd?Jparzcsjsze.g t;ZISopvs(i:ttévt?gé \\:\:gleuznbogg::;zzte E{T}‘there we have gone from the 4-ball density to the cluster

is some overlap between the largest cluster and the secon%i?—)ewum using ~ . This implies that

ary spectrum: sd,,. is certainly overestimated. Nonethe- L4

less, even allowing for that, there does appear to be some C(L,a)x — o L4({/K)025:0-25 (36)

significanta dependenceC(L,a)<L*(VK)%% 10 but it is t4

guite weak suggesting that the spectrum is influenced more

by the ultraviolet than by the physical length scale. using our results for thea-dependence of. This weak
a-dependence is entirely consistent with what we observe for

the cluster spectrun€(L,a) = L*(yK)%2"10 Thus the spec-
trum of secondary clusters is consistent, in every respect,
Of course the monopole currents are only images, throughvith arising from a scale-invariant density of 4-balls.
gauge-fixing, of some unknown structures in the (3U As an aside, we note that the largest cluster from the
gauge fields. It is the latter that one would hope to be physidistributionN(l) has a length < C(L,a)*(*~ ). Putting in
cal. In fact our observed cluster spectrum does provide somg=3 and the form foIC(L,a) as in the previous paragraph,
intriguing hints as to what these structures might be. As wave see that < L?(1/K)%*~%25 By contrast the length of
have seen, a monopole cluster of lenpik localized within  the largest cluster varies ds;,,<L*\K)3. From this we see
a region in space-time of size=t\/I. We call such an object that if we wish to maintaith ;.. asa—0 then the lattice
a “4-ball” for obvious reasons. What is the spectrum, size in physical units must grow roughly as @)1/2_ Thus,
Ng(r)dr, of these 4-balls? It is easy to see that if the radiusor example, the two types of clusters begin to overlap on
is related to the length by=l, the cluster spectrum our 16' lattice at@=2.5 (rendering some of the calculations
N(1)dI=C/I® translates into the following 4-ball spectrum: there ambiguoysdespite the fact that they did not do so on
the 8 lattice at 3=2.3. This is something we did not, of
course, anticipate when originally choosing our lattice sizes.

D. Clusters as 4-balls

dr 1
NB(r)dI’=CBT><r—4. (34)
VI. SUMMARY

We recognize this to be simply the general scale invariant In this paper we have shown that the magnetic monopole
distribution of objects of radius in four dimensions(Such  currents that we obtain, when gauge fixing (8)fields to

an object takes up a volumer? and hence there are1/r*  the maximally Abelian gauge, divide into two quite distinct
ways of placing it in a unit volume. Andr/r is a scale- classegon large enough volumgsa single very large cluster
invariant measurg This is precisely the formula one has for and a distribution of very much smaller clusters.

the density of instantons, before one includes the effects of The very large cluster has a length that is proportional to
the scale anomaly through the running of the coupling. Sinc¢he space-time volume when both are expressed in physical
we know that an isolated instanton, when projected to theinits. Moreover we have shown that it is this cluster that
maximally Abelian gauge, generates a monopole currenjenerates the string tension. We have also seen that, within
loop of size comparable to its core sif8|, it would be this largest cluster, the effective screening length relevant to
tempting to put forward the elegant hypothesis that theseonfinement is constant in physical units. Thus it is this clus-
4-balls are just S(2) instantons and that the secondary clus-ter that represents all the interesting infrared physics of the
ters are simply the associated monopole loops. UnfortunatelgU(2) fields.

things cannot be so simple. Although we do not know how That there is always just one very large cluster is a sig-
the scale-breaking affects the instanton density at large sizesificant fact since, as we saw, even under a minimal amount
we do know what it does to the distribution at small sizes:of smoothing this cluster readily hives off secondary clusters
the dr/r® is transformed inta dr. This is nothing at all that are much larger than those that we observe in the un-
like our 4-ball number density. smoothed fields.
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The secondary clusters are localized compact objects olup into two types of cluster. First there is the confining clus-
tained by the monopole performing a random walk on theter that knows about the physical length sqailéimately due
length of the lattice spacing. This is in contrast to the largesto the breaking of scale invariancbut does not seem to
cluster whose observed scaling demands that the step size kgow anything at all about the lattice length scale. Secondly
on the length of the physical length scale. These secondatyiere are the other, smaller clusters. These can be thought of
clusters contribute nothing to the string tension even whergs compact objects that satisfy a scale invariant distribution:
they constitute a sizeable fraction of the total magnetic curyile they know about the lattice spacing, they apparently
rent. know little about the breaking of scale invariance. This is

One might be tempted to ignore these secondary clusteighexpected and puzzling, because these clusters should
as being of no physical importance. They do seem quite resomehow reflect fluctuations in the &Y fields. Of course,
markable in at least one respect, however. When one treaffecause the gauge-fixing procedure is completely non-local,
them as localized objects in space-tirtfel-balls” ), one it js possible that the monopoles we observe only reflect an
finds that the number density is of the simplest scalegffective theory that possesses the same infrared physics as

invariant form. This is reminiscent of classical inStantonS,the non-Abelian theory_ To resolve this puzz|e would be of
but unfortunately incompatible with the real instanton den-jnterest.

sity at small distances.

The calculations of this paper can be improved upon in
many ways. In particular better calculations could clarify
what happens to the distribution of secondary clusters at very
largel and it would be useful to calculate the 4-ball number The work of A.H. was supported in part by United States
density directly(as we would have done if we had not de- Department of Energy grant DE-FG05-91 ER 40617. M.T.
duced their relevance after completing the simulations was supported by United Kingdom PPARC grants GR/

The monopole content of the vacuum thus seems to spliK55752 and GR/K95338.
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