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Monopole clusters in Abelian projected gauge theories
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We show that the monopole currents which one obtains in the maximally Abelian gauge of SU~2! fall into
two quite distinct classes~when the volume is large enough!. In each field configuration there is precisely one
cluster that permeates the whole lattice volume. It has a current density and a magnetic screening mass that
scale and it produces the whole of the string tension. The remaining clusters have a number density that follows
an approximate power law}1/l 3 where l is the length of the monopole world line in lattice units. These
clusters are localized in space-time with radii which vary asAl . In terms of the radiusr these ‘‘lumps’’ have
a scale-invariant distribution}dr/r 31/r 4. Moreover they appear not to contribute at all to the string tension.
The fact that they are scale invariant at small distances would seem to rule out an instanton origin.
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I. INTRODUCTION

Magnetic monopole currents are the crucial degrees
freedom in the dual superconducting vacuum hypothesis
confinement in non-Abelian gauge theories@1,2#. After Abe-
lian projection to the maximally Abelian gauge@2,3#, one
finds not only that the Abelian fields possess a string tens
s, that ~almost! equals the original SU~2! string tension
~‘‘Abelian dominance’’! @4#, but that this string tension is
almost entirely due to the monopoles in those Abelian fie
~‘‘monopole dominance’’! @5,6#. If the dual superconducto
hypothesis is indeed correct, then the magnetic monop
reflect that part of the infrared physics in the SU~2! vacuum
which drives confinement. It is therefore of great interest
analyze the structure of the monopole currents so as to
termine whether there are any simple or suggestive feat
present. This is our goal in this paper.

We shall focus on some simple properties of these mo
poles. Our basic tool is to decompose the total monop
current into non-intersecting clusters. An alternative wo
be to decompose the current into closed loops; for examp
monopole cluster might be decomposed into several clo
loops that intersect. There is no obvious reason why
monopole cluster spectrum should be more revealing t
the loop spectrum, and indeed in an earlier study@7# we have
found that this loop spectrum does possess some intere
features. As we shall see below, however, it turns out tha
is the cluster spectrum that possesses the simplest and
remarkable properties.

In the next section we briefly discuss the technical det
of the calculation, including the Abelian projection, the e
traction of the string tension and the parameters of the lat
simulations. Section III contains a simple analytic calcu
tion showing how monopoles can cause Abelian Wils
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loops to decay exponentially with their area. The purpose
this simplistic but useful picture is to give some orientati
as to what properties the monopoles must possess if they
to be confining. This enables us to motivate bounds on
type of monopole spectrum that can be confining.

In Sec. IV we present the evidence for our most striki
result: that the monopole current contains a single ‘‘per
lating’’ cluster that permeates the whole volume, togeth
with a collection of smaller clusters, whose number dens
as a function of length,l , is close to an inverse cubic powe
Such a spectrum decays slowly enough with increasingl that
it can in principle confine. Our explicit calculations show
however, that it makes no contribution to the string tensi
within errors, and that it is the single largest cluster th
provides the string tension. We then analyze the sca
properties of these clusters. We show that the length per
volume of the largest cluster is constant when expresse
physical units. This is not so for the remaining clusters. W
find that at large distances,r , from a monopole the magneti
flux falls exponentially withr and that the correspondin
screening mass is independent of the lattice spacing. If, h
ever, we calculate the flux at smaller values ofr , where the
flux is large enough to efficiently disorder appropriately p
sitioned Wilson loops, we find that scaling is violated exce
if we only include the monopoles that belong to the larg
cluster. As a further tool we introduce a method for loca
smoothing the monopole currents. This shows us that the
that we have asingle huge cluster must have a dynamic
origin rather than being a simple ‘‘percolation’’ phenom
enon. Also we see that the largest cluster possesses sub
tial fluctuations that do not add to its confining properties

The smaller clusters are typically localized within a
volume whose radiusr}Al . We find that these ‘‘4-balls’’
possess a scale invariant distribution,}dr/r 31/r 4. If the
scale-invariance of the gauge theory were not anomalo
then this is precisely the distribution one would have
instantons. Given that we know that instantons are associ
with monopole loops within their cores@8,9# this would have
© 1998 The American Physical Society04-1
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A. HART AND M. TEPER PHYSICAL REVIEW D58 014504
provided an elegant explanation. Unfortunately the anom
lous breaking of scale-invariance changes the instanton s
trum in a dramatic and calculable fashion for the small v
ues of r where the spectrum of the ‘‘4-balls’’ is mos
accurately determined. Thus this seems to rule out instan
as being relevant.

In Sec. VI we provide a summary of our results and so
conclusions. A brief summary of some of our results h
appeared in@10#. We draw the reader’s attention to som
related work that has appeared recently@11#.

II. METHODOLOGY

The first step in our calculation is to generate SU~2! lat-
tice field configurations. We use the standard Wils
plaquette action and a standard heat bath Monte Carlo a
rithm. The lattices have periodic boundary conditions. W
work with 84, 104, 124 and 164 lattices atb52.3, with 104,
124 , 144 and 164 lattices atb52.4, and with 164 lattices at
b52.5. The range of lattice sizes at fixedb is intended to
provide us with control over finite volume effects. For e
ample, 16a;631/As at b52.3: a very large length in units
of the physical length scale. The range ofb values is in-
tended to provide us with some control over finite-a correc-
tions (a decreases by about a factor of 2 betweenb52.3 and
b52.5). We typically analyze 500 configurations for eachL
and b. These configurations are typically some 25 to
Monte Carlo sweeps apart.

Once generated these SU~2! configurations are then fixe
to the maximally Abelian gauge in the standard way:
perform gauge transformations at each site, and iterate
procedure, so as to~locally! maximize the gauge depende
functional

R52(
n,m

Tr„Um~n!• is3•Um
† ~n!• is3…. ~1!

We then write the gauge fixed links in the factored form

Um~n!5S cm~n! wm~n!

2wm* ~n! cm~n!
D S eium~n! 0

0 e2 ium~n!D , ~2!

where cm(n) is real and theum(n) are our Abelian link
angles. We now identify the magnetic monopole currents
these Abelian fields using@12#. The currents are integer va
ued variables on the links of the dual lattice and they sat
a continuity equation. So the total current can be deco
posed into a number of closed current loops. In general s
a decomposition is not unique since loops may intersec
loops that intersect are concatenated into ‘‘clusters’’ th
these clusters form a unique set of mutually disconnec
networks and each current link may be unambiguously a
ciated with one of these clusters.

A standard way to calculate the SU~2! string tension is by
calculating Wilson loops,W(r ,t): i.e. the trace of the ori-
ented product of SU~2! matrices along the rectangularr 3t
contour. From these Wilson loops one can extract the st
potential,V(r ):
01450
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aV~r !5 lim
t→`

lnH ^W~r ,t !&

^W~r ,t1a!&J . ~3!

From the behavior ofV(r ) at larger , V(r );sr , we can then
extract the string tension,s. Clearly such a calculation, in
volving two limits, requires large lattices and small erro
An alternative procedure is to use Creutz ratios:

a2s5 lim
r→`

seff~r ![2 lim
r→`

lnH ^W~r ,r !&^W~r 1a,r 1a!&

^W~r 1a,r !&^W~r ,r 1a!&J .

~4!

In practice a useful estimate of the string tension can
extracted this way when the quality of the ‘‘data’’ does n
permit the preceding, more complete analysis.

Once we have gauge fixed and extracted our Abe
fields, we can obtain the Abelian string tension in exactly
same way. We simply calculate the Wilson loops using
Abelian fieldsum(n)5exp$ium(n)% rather than the SU~2! ma-
tricesUm(n). The fact that this Abelian string tension turn
out to be close to the full SU~2! string tension@4#, has pro-
vided much of the motivation for the current interest in t
maximally Abelian gauge.

To calculate the monopole contribution to a Wilson lo
let us consider contours that are purely space-like, e
W(x,y). ~Since space-time is Euclidean, this involves no lo
of generality.! The integral of the Abelian gauge potenti
around the contour will simply equal the magnetic flu
B(x,y), through a surface spanning the Wilson loop conto
so the value of the Abelian Wilson loop will be given by

W~x,y!5exp@ iB~x,y!#. ~5!

In principle the surface chosen should be one over which
Abelian potential is non-singular. But since the flux throu
any other surface will differ by an integer multiple of 2p
~Dirac strings!, we are free to choose whichever surface
the most convenient — which will usually be the minim
surface. The monopole Wilson loop is obtained by using t
part of the magnetic flux that is generated by the monop
charges. This is just the dual of the electric flux that wou
be generated by the corresponding electric charges. We
culate this flux by solving the dual Maxwell equations wi
the given monopole currents. This is done by an iterat
procedure and for the particular periodic four-volume und
consideration. Once one has the dual 4-potential, it is triv
to generalize the calculation to non-space-like Wilson loo
Calculating Wilson loops in this way we can extract t
monopole potential and string tension, using Eqs.~3! or ~4!.

In the same way one can, if one wishes, calculate
string tension due to some specified subset of monopole c
ters. One simply calculates the dual potential due to t
subset of monopole currents.

If we were working with a U~1! theory then we would
expect the whole of the Abelian string tension to be due
monopoles@13,14#. In the present case, however, the Abeli
fields are not generated by a~semi-!local Abelian action but
are obtained in a complicated way from the non-Abeli
fields. It is therefore possible that the resulting vacuum c
4-2
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tains confinement-inducing, disordering fluctuations ot
than monopoles. For example, if the vacuum were to con
finite-width tubes of magnetic flux, with the flux, say, equ
to p, and if these loops were to be arbitrarily long~a ‘‘con-
densate’’! then this would typically produce a non-ze
string tension. Thus it is important to ask whether it is t
case that within the ensemble of Abelian fields obtained
Abelian projection from the SU~2! fields, confinement is in-
deed generated entirely by monopoles. A first step is to
culate both the Abelian and monopole string tensions an
compare them. Several investigations of this type sugg
that they are indeed quite similar@5,6#. To go further than
this we need to directly compare the confining Abelian a
monopole fluctuations. To do this we calculate on each fi
configuration the difference between the total magnetic fl
and that due to the monopoles. Using this ‘‘difference’’ flu
we then calculate the corresponding Wilson loops and po
tials. If the string tension that we extract from this potent
is zero, then we will have shown that the confining fluctu
tions in the Abelian fields are entirely due to the monopol
We have performed such calculations and display a typ
set of results in Table I. The effective string tension,seff(r ),
has been obtained from Creutz ratios, as in Eq.~4!. We ob-
serve that within errors the ‘‘difference’’ string tension
indeed consistent with being zero. This provides direct e
dence that confinement is entirely driven by monopoles
these U~1! fields.

The reader will note something rather peculiar about
numbers in Table I. It is apparent that the monopole Cre
ratios show very much smaller statistical fluctuations th
those from the U~1! fields. We would therefore expect tha
the difference string tension should have statistical err
that are at least as large as those in the U~1! measurement. In
fact, as we see, they are much smaller. This clearly requ
a strong correlation between the fluctuations in the U~1!
fields and in the monopole currents: as we expect to be
case from monopole dominance. This is not in itself su
cient to explain the pattern of fluctuations, however. We n
also that the small-r , Coulombic deviation of the differenc
potential away from the purely linear asymptotic form
much greater than in the pure monopole calculation. Thi
actually something we can rather easily understand, as
shall see in Sec. IV.

Finally two cautionary asides. The first concerns Grib
copies. The gauge fixing described above is not unique.

TABLE I. The effective string tension obtained from Creu
ratios of sizer ; as obtained from the U~1! fields, the monopole
clusters and from the difference of the U~1! and monopole fluxes
All are obtained from an ensemble of 500 configurations on4

lattices atb52.4.

r sU(1)(r ) smon(r ) sdiff(r )

2 0.1561~18! 0.0673~5! 0.0894~14!

3 0.1103~28! 0.0651~6! 0.0348~20!

4 0.0983~132! 0.0649~12! 0.0132~41!

5 0.0259~354! 0.0628~21! 0.0040~80!

6 0.0621~37! 20.0056~172!
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gauge functional has many maxima: the well known Grib
copy problem. These copies are, of course, identical
gauge invariant quantities but differ for gauge variant qu
tities such as the Abelian fields and monopole currents. S
there is currently no convincing criterion for which max
mum is the ‘‘best,’’ we shall simply ignore this ambiguity. A
practical justification for doing so is the demonstration@15#
that while the monopole content of different Gribov copi
of the same SU~2! gauge field can be very different, the lon
distance monopole physics that produces confinement i
fact very similar for typical Gribov copies. Since confin
ment is what we are mainly interested in here, this reass
us that our qualitative conclusions should not be affected
the Gribov copy problem.

The second aside concerns positivity. Since the SU~2! ac-
tion is local ~i.e. it extends over only a fixed number o
lattice units! there is a corresponding positive-defini
Hamiltonian in the continuum limit and it makes sense
talk of masses, potentials etc.~For non-zero lattice spacing
there might be peculiar effects for masses on the order of
cut-off.! There is no guarantee, however, that the ensem
of Abelian fields possesses such an underlying Hamilton
— because the Abelian fields depend in a completely n
local manner on the original SU~2! fields — and so we can
not be certain that it makes sense to talk of Abelian pot
tials and string tensions. This applies even more so to
ensemble of monopole fields; and even more to situati
where we consider only subsets of monopole currents. H
ing said this, one finds in practice that the Abelian a
monopole Wilson loops usually do behave as if there w
an underlying transfer matrix, and the extraction of the p
tential seems to be largely unambiguous. So we will follo
previous work and ignore possible problems with positivi
That these problems do exist becomes immediately appa
if one tries to ‘‘modernize’’ the calculation using smearin
blocking techniques. The correlation functions of smea
operators badly break positivity. This undermines the us
variational approach and means that we can only be co
dent that we have obtained the lightest mass if we hav
clear, extended effective mass plateau. These problems
occasionally arisen in our calculations, but not in those t
are reported upon in this paper.

III. MONOPOLES AND CONFINEMENT

Before moving on to our results concerning the distrib
tion of monopole currents it is interesting to ask wheth
there are any restrictions or bounds that such a distribu
should satisfy if it is to have any possibility of producin
confinement. To do so it will first be useful to outline ho
monopoles produce confinement in Abelian theories. The
cus here will be on identifying the essential features of
phenomenon and will involve a variety of simplifying ap
proximations to the exact calculations@13,14#.

A. A simple picture

To begin with we consider the simpler case of the
dimensional U~1! theory. Here the monopoles are really i
stantons, but because the fields are identical to time-sl
4-3
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A. HART AND M. TEPER PHYSICAL REVIEW D58 014504
fields from the static 4-dimensional U~1! theory, it is custom-
ary and appropriate to refer to them as monopoles and to
of the fields as being magnetic. Suppose, then, that we
sider a Wilson loop on anR3T contour. The contribution of
the monopoles to the value of the Wilson loop is just

^W~R,T!&5^exp@ iBmon~R,T!#& ~6!

where the average is over all field configurations a
Bmon(R,T) is the total magnetic flux through theR3T rect-
angle that arises from the monopoles in each field confi
ration.

How do we calculateBmon(R,T)? One might try to ne-
glect the monopole interactions as a first approximation
that we just have a random gas of monopoles. This lead
arbitrarily large energy densities, however, and so the sys
prefers to trade off some entropy and form a screened pla
of magnetic charges instead. Let the screening length bj.
We shall treat our system as being, to a first approximat
a random gas of monopoles with a screened magnetic
that decreases with distancer as b6(r )562pexp(2r/j)
~the sign being chosen at random!. Consider now the tota
flux F through ourR3T contour. Given the exponentia
drop in the flux a reasonable approximation forR,T@j is to
assume that if a monopole lies within a ‘‘slab’’ of thickne
j either side of theR3T rectangle then half of its flux, i.e
F5p, will pass through the rectangle while if it is outsid
the slab then the flux is suppressed to zero. This obviou
neglects various perimeter effects, but we do not care
cause these will not contribute to the interesting area term
this approximation then

Bmon~R,T!5n1p2n2p ~7!

where n1 (n2) is the number of positively~negatively!
charged monopoles above the Wilson rectangle plus
number of negatively~positively! charged monopoles below
— counting only those within the slab of course. Clea
onceR,T@j the average number of monopoles within t
slab must be proportional to its volumên1&5^n2&
5cjRT[n̄. If the gas in the slab is random then^n6&
should be Poisson distributed with meann̄. We can now
calculate our Wilson loop average:

^W~R,T!&5^exp@ iBmon~R,T!#&

5 (
n150

ein1F
n̄n1

n1!
e2n̄

3 (
n250

e2 in2F
n̄n2

n2!
e2n̄

5e22n̄~12cosF!5e24cjRT ~8!

using F5p in the last line. Thus the monopole magne
flux causes the Wilson loops to decay exponentially with
loop area. This means that the monopoles lead to a non-
string tension:s54cj, in the above approximation.
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The mechanism here is very simple. Only a monop
within a distancej will significantly affect the Wilson loop
because of screening. Its contribution to the flux is abouF
;p and so it flips the sign of the loop:eip521. That is to
say, these monopoles maximally disorder the loop. Th
number is obviously proportional to the area and this imm
diately translates into an area decay and a correspon
string tension.

We can easily do a bit better. If we consider a monop
a distancer above a large Wilson loop, the screened fl
through that loop is

F~r !5pE
0

1

dy•e2r /yj. ~9!

This assumes thatj!R,T so that we are only interested i
r !R,T, in which case the flux through the Wilson loop
~almost! the same as the flux through the whole plane
which the loop lies. Using our previous expression for t
average screened flux, we readily obtain the aboveF(r ).
Multiplicatively combining the disordering effects of an in
finite tower of slabs, each infinitesimally thick, we obtain b
analogy to Eq.~8!:

^W~R,T!&5e22cjRT*0
`drH 12cosS pqE

0

1

dye2r /yD J . ~10!

We have now introduced a general electric chargeq for the
Wilson loop. Since we have chosen the magnetic charg
be unity the usual Dirac quantization relation tells us thaq
must be an integer~otherwise the Dirac strings become ‘‘vis
ible’’ !. For q561 Eq. ~10! is an inessential improvemen
For, say,q52, however, the argument of the previous pa
graph gives no confinement since a flux ofp does not dis-
order a doubly charged Wilson loop:e6 i2p51. So in this
case it is Eq.~10! that must used and we obtain a strin
tension

s~q!52cjE
0

`

drH 12cosS pqE
0

1

dye2r /yD J ~11!

for the potential between static sources of chargeq.
It is crucial, if we are to obtain confinement, that scree

ing is something that occurs only on the average — it i
statistical phenomenon. If, for example, we were to consi
a gas of magnetic dipoles — a non-statistical form of screen
ing — then we would get no confinement: the net fl
through our very large Wilson loop is essentially zero if t
dipole is well within the perimeter of the loop and a distan
!R,T from the surface of the loop. The fact that screening
statistical means that the fluctuations around the m
screened flux will be important. The Wilson loop is of cour
sensitive to all fluctuations — it is, after all, a phase — a
so we are making an uncontrolled approximation in repl
ing the monopole fluxes by their mean, screened values.
is the only serious approximation that we have made.
shall return to the link between the confining properties
the monopoles, the monopole current density and the scr
ing length in the next section.
4-4
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MONOPOLE CLUSTERS IN ABELIAN PROJECTED . . . PHYSICAL REVIEW D58 014504
Although our treatment of screening is very approxima
this does not undermine the simple picture we gave abov
how monopoles maximally disorder Wilson loops, and
maximize the interaction between electric charges. Ind
suppose we ignore screening entirely and calculate aR
3R Wilson loop, say, within a completely random gas
monopoles. The calculation is now actually much eas
since there is no screening length to bring in an extra sc
We can therefore just scale out the scaleR and we obtain

^W~R,R!&}e2cR3
~12!

where c is proportional to the density of monopoles. Th
cubic power ofR arises on simple dimensional grounds.
the potential grows faster than linearly: a random gas
monopoles over-confines. This is not possible in a quan
field theory: the associated unbounded energy densities
break down through particle production. Screening is
way the theory regulates itself and in the process weak
the over-confining potential to the linear form that is t
fastest growth possible for a proper field theory@16#.

The above simple and, no doubt, well-known picture co
tains the essential features of how monopoles drive lin
confinement in 3 dimensions and, for static monopoles, i
dimensions as well. Of course we are interested here in
non-static case. Since space-time is Euclidean we lose
generality by considering only space-like Wilson loops.
that case it continues to be the magnetic flux that disord
the Wilson loop, exactly as above. It is still the case that
net magnetic flux from a monopole will be 2p. Of course
this flux will no longer be spherically symmetric but wi
depend on the motion of the monopoles. The generic ef
of this asymmetry is to weaken the string tension but only
a finite factor that should not be far from unity on the av
age. Thus the qualitative physics is unchanged. If we tim
slice monopole loops that are much smaller than our Wil
loop, they will look like dipoles and will not disorder th
Wilson loop sufficiently to confine. The same should app
to Wilson loops that are long in one direction but short
another. The qualitative conclusion is that confinement o
scaleR, requires monopole loops that are large compare
the correspondingR3R Wilson loops.~A numerical confir-
mation of this may be found in@5#. where it is seen tha
small monopole loops do not contribute to the string te
sion.! One could try to go further but we shall stop here a
see what we can infer from this rather general constrain

B. Bounds on a confining monopole spectrum

So we now ask what conditionsN( l ), the number of clus-
ters of lengthl , must satisfy if we are to have confinemen
We shall take the lattice spacing to be fixed so that the o
quantity we vary is the lattice volume:L4 in lattice units.

We start with the simplifying assumption that the mon
pole cluster spectrum,N( l ), falls off as a power ofl :

N~ l !5
C~L !

l g
. ~13!
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Our arguments can be straightforwardly adapted to ot
functional forms but we choose to focus on a power l
because we already know that the spectrum of monop
loops decreases approximately as;1/l 3 @7#. Moreover, as
we shall see in the next section, the cluster spectrum
possesses such a component. Once the volume is large
pared to the physical length scale, we expect
L-dependence ofC(L) to be simplyC(L)5cL4. The first
bound then arises if we make the reasonable assumption
the density of monopole current must be finite, i.e.

lim
L→`

cL4E l
dl

l g

4L4 Þ`. ~14!

This equation immediately implies that

g>2 ~15!

as long as the maximum length of those clusters which
associated with the power law,l max(L), grows→` whenL
→`. In general this must be the case. Indeed simple rand
walk arguments would suggest thatl max(L)}L2.

We now have a lower bound ong. Confinement should
provide us with some upper bound: after all ifg is large
enough then there will be essentially no large monopole c
ters to disorder large Wilson loops. Let us be more spec
Consider Wilson loops of sizeeL3eL, on anL4 lattice. If
the theory is confining then it is reasonable to expect tha
should be confining on scaleseL where e can be chosen
arbitrarily small but is then fixed. This will require monopo
clusters that extend over distances of ordereL at least. LetL
be so large thateL is large compared to the physical leng
scale. Then we expect from random walk arguments that
length of such a cluster should be at least}(eL)2. This
should certainly apply to the coarse-grained length~the
length of the cluster after the smallest ultraviolet fluctuatio
in the current have been removed by smoothing or block
up to the physical length scale!. Now, let the fraction of
configurations with clusters that are this long, i.e.l>(eL)2,
be f ( l ). Clearly if f ( l )→0 asL→` then we will have lost
confinement on the size scale;eL. So we require

lim
L→`

f ~ l !} lim
L→`

cL4E
;~eL !2

dl

l g Þ0 ~16!

which immediately implies

g<3. ~17!

We note that our discussion assumes, as seems reason
that the clusters are essentially independent of each other
that there are no strong long-range correlations between
ferent clusters. Obviously a highly ordered set of small cl
ters can simulate the effects of a large cluster, and this wo
undermine our above arguments and bounds.

Thus as long as the monopoles possess some very ge
physical properties, the exponent characterizing the num
density is limited to the narrow range
4-5
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2<g<3 ~18!

if the monopoles are to provide the disordering fluctuatio
that drive confinement. By making more specific assum
tions one can try to narrow this range, but one then incre
ingly relies on arguments of decreasing plausibility. We sh
not pursue this here.

Our above arguments have thus led us to the conclu
that a spectrum of the formN( l )}1/l 3 might be confining.
This is intriguing: one finds just such a distribution f
monopole loops@7# and, as we shall shortly see, for mon
pole clusters as well. Moreover it has been suggested@17#
that for largel such a distribution could arise from insta
tons.

IV. INFRARED BEHAVIOR

As described above, for each field configuration we
tract the associated monopole current,$ j m(n)%. The current
is integer valued and conserved. Therefore it can be dec
posed into continuous closed loops of non-zero current. S
a decomposition is ambiguous when loops cross. If we n
form ‘‘clusters’’ of monopole currents by saying that tw
loops belong to the same cluster if and only if they interse
then the decomposition into clusters is clearly unique. In t
paper we shall focus on clusters rather than loops.~For an
investigation of the latter see@7#.! In addition to being con-
strained to form closed loops, the currents must satisf
further constraint due to the periodic boundary conditio
Periodicity demands that in any given time-slice the to
magnetic charge must be zero. Contractible monopole lo
automatically satisfy this requirement. A loop can also s
isfy current conservation, however, by closing through o
of the boundaries. Periodicity then requires that such wi
ing loops be matched by other non-contractible loops so
the net charge is zero however we time-slice the lattice.
mention this fact since it will become important when w
attempt to calculate the string tension that arises from a s
set of the clusters.

Suppose we have a particular clusterC. Then we define
the length of the cluster to be

l C5 (
$n,m%PC

u j m~n!u. ~19!

In practice, if one is outside the strong-coupling region of
SU~2! theory then the current is almost always61 when it is
non-zero. Thus our definition almost coincides with the nu
ber of links in the cluster.

A. Cluster decomposition

Our first step is to calculate the length of each clus
This reveals that the clusters fall into two quite distin
classes. First there is asinglecluster that is very much longe
than any of the other clusters~at least if the volume is large
enough!. For example, of the 5003164 configurations that
we analyzed atb52.3 there was not a single case where
observed two large clusters rather than just one. Seco
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there are the remaining, smaller clusters. These posse
spectrum which follows an approximate power-law,N( l )
5C(L)/ l g, with g.3.

That the very large cluster is not simply the largest clus
of a smooth distribution of clusters can be established
follows. First, simply at the qualitative level, we note that o
the 124 lattice atb52.3 ~for example! the average length o
the largest cluster is;3200, while the average length of th
second largest is only;49. Moreover on none of the 50
analyzed configurations is the second largest cluster e
larger than 220 or the largest cluster ever smaller than 23
On 164 the distinction is even more marked, with the avera
length of the largest cluster;10169, while that of the secon
largest is only;67. We can of course be less impressionis
than this. First we remark~see Table II! that the total length
of all the clusters,l tot , is proportional to the volume,L4, as is
the length of the largest cluster,l max. So, as one would ex
pect, the normalization of the spectrum isC(L)5cL4. ~One
would expect this, because the number of clusters of lengl
should be proportional to the volume once the volume
large enough.! On the average a field configuration will con
tain *N( l )dl clusters that belong to this spectrum. The lar
est of these clusters will, roughly speaking, be sampled fr
the tail of N( l ) that integrates to unity:

cL4E
l 0

dl

l g 51 ~20!

From this we can estimate the average length of this larg
cluster to be

^ l 1&5

E
l 0

ldl

l g

E
l 0

dl

l g

}L4/~g21!. ~21!

That is to say, because this largest cluster is sampled fro
falling spectrum its length increases much more slowly th
L4. This is in contrast to the observation in Table II that t
length of the largest cluster in fact increases asL4. Therefore
this cluster does not belong to the observed continuous s

TABLE II. The total length of the current,l tot , and its scaling
with the lattice volume. Ditto for the largest cluster,l max. The
length of the second largest cluster is also listed.

b L l tot l tot /L
4 l max l max/L4 l 2nd

2.3 8 840~4! 0.205~1! 624 ~5! 0.152~11! 35 ~10!

10 2054~5! 0.205~1! 1158 ~58! 0.156~6! 42 ~11!

12 4230~7! 0.204~1! 3200 ~110! 0.154~5! 49 ~10!

16 13394~18! 0.204~1! 10168~141! 0.155~2! 67 ~9!

2.4 10 1100~5! 0.110~1! 584 ~70! 0.058~7! 83 ~26!

12 2288~12! 0.110~1! 1277 ~104! 0.062~5! 116 ~39!

14 4228~10! 0.110~1! 2441 ~141! 0.064~4! 121 ~48!

16 7184~18! 0.110~1! 4187 ~177! 0.064~3! 125 ~38!

2.5 16 3583~16! 0.055~1! 1339 ~123! 0.020~2! 255 ~40!
4-6
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MONOPOLE CLUSTERS IN ABELIAN PROJECTED . . . PHYSICAL REVIEW D58 014504
trum of clusters. One can also analyze the probability
observing such a large cluster, if it is sampled from an
trapolation of our observed spectrum. This probability
negligibly small. Indeed it is the second largest cluster t
appears to be the largest cluster that is drawn from the c
tinuous part of the spectrum. We list its length as a funct
of L in Table II and we can see that it increases weakly w
L — just the behavior we argued for above.

B. Scaling and the largest cluster

We have seen that at fixeda the length of the larges
cluster increases linearly with the volume. This means tha
will spread throughout the space-time volume in the therm
dynamic limit. This is, qualitatively at least, exactly the kin
of monopole cluster that might give us confinement on a
trarily large scales. If it is to do so, however, then its stru
ture must encode the physical length scale and not just
lattice scale. Consider then the length of this largest clu
in physical units: this will bel maxAK, where l max is the
length in lattice units andK[a2s is the SU~2! lattice string
tension@18#. Similarly the lattice volume will be (LAK)4 in
these physical units. So the monopole current density
these nonperturbatively defined physical units, is

rmax5
l max•AK

~ L•AK!4
5

l max

L4~AK !3
~22!

for the largest cluster. Similarly we definer tot for the total
monopole current. We plot these densities against the ph
cal lattice size,LAK, in Fig. 1. We first note that the point
at fixed b are constant for bothr tot and rmax. This tells us
that for fixeda both the total current and that from the lar
est cluster increase linearly with the volume; something
have noted already. Comparing now the points correspo
ing to different values ofb we see thatrmax is independent
of the variation ina. That is to say, the length of the large
cluster is proportional to the volume if everything is e
pressed in physical units. By contrast we observe that th
certainly not the case for the total current. Since a large
of the total current resides in the largest cluster, this tells

FIG. 1. The total current density,r tot , and that of the larges
cluster,rmax, as functions of the physical lattice size and the latt
spacing; forb52.3, 2.4 and 2.5.
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that there are very strong scaling violations arising from
currents of the smaller clusters.

The simple scaling property of the largest cluster is qu
remarkable. Of course, it reassures us that the largest clu
does indeed encode the physical length scale, but it g
further than that. Realistically one could only hope for
suitably coarse-grained cluster length to satisfy scaling.
ively one would expect the length defined in terms of t
links to be an ultraviolet length whose relationship to t
physical coarse-grained length would involve anomalous
mensions that would lead to a violation of scaling. Th
would arise from the fact that the monopole world line h
fluctuations on all length scales. Instead what we infer is t
the largest monopole cluster does not really seem to enc
any information concerning the ultraviolet length scale.

C. The monopole potential and string tension

Having seen that the largest cluster fills space-time i
way that scales in physical units, we now ask whether it d
in fact contribute to confinement, i.e. does it generate a
tential between static sources that has a non-zero string
sion. As described previously, we can do this by first cal
lating the magnetic field arising from the largest monop
cluster and then, from this, calculating the values of spa
like Wilson loops. ~In practice we calculate the dual 4
potential and all orientations of Wilson loops.! From the
Wilson loops we extract the monopole potential,V(r ), as in
Eq. ~3!, and obtain the string tension by fitting it with th
generic formV(r )5a1b/r 1sr .

First an aside about theb/r term. It has been noted before
e.g. @7#, that b is very small for the full monopole curren
ensembles. We find that the potential from the largest clu
alone is even more linear in form. Naively we would expe
two contributions}1/r : a Coulomb interaction and the un
versal Lüscher correction to the flux tube energy. Are th
both absent or are they cancelling each other? The la
possibility is not as implausible as it might at first appe
We know that in the Villain model Wilson loops exactl
factorize into spin-wave and monopole pieces@13,14#. Hence
the total potential is a sum:V(r )5Vsw(r )1Vmon(r ), using
an obvious notation. Suppose we are in the confining ph
ThenV(r ) has a linear piecesr and, in addition, a Coulomb
piece, VC52a/r , at small r and a Lüscher term,VL5
2p/12r , at larger . These have the same sign and there is
possibility of a cancellation. In any case, since there is
massless gluon, the Coulomb piece will be screened at la
r , typically VC(r ).2(a/r )exp$2r/j%, and since the flux
tube has a finite width, the Lu¨scher term will be ‘‘screened’’
at small r , crudely VL(r );2(p/12r )(12exp$2r/j8%). We
expect the two scales,j andj8, to be similar, so in practice
the Coulomb and Lu¨scher terms will hardly overlap. In con
trast to this the spin-wave potential does possess a mas
photon and no linear piece, i.e.Vsw(r ).2a/r for all r .
ThereforeVmon(r )5V(r )2Vsw(r ) will have the form

Vmon~r !.c2
a

r
expF2

r

jG2
p

12r S 12expF2
r

j8G D1sr 1
a

r
.

~23!
4-7
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We note that at smallr the two Coulomb terms cancel an
the Lüscher term is negligible: so there is no significant 1r
piece. At larger the screened Coulomb term is negligib
and soVmon(r ) will be the difference of the Lu¨scher and
unscreened Coulomb terms. If these have a similar ma
tude, as in fact they do in typical SU~2! calculations, then
they will largely cancel. SoVmon(r ) has no significant 1/r
contribution at larger either. Of course all this has only bee
demonstrated in the Villain model. It seems plausible to
however, that an approximate version of this mechan
should hold more generally, and that it provides the exp
nation for the observed lack of a significant 1/r piece in the
monopole potentials.

In calculating the potential from the largest monopo
cluster there is one significant problem. As we remarked e
lier periodicity implies that the total magnetic charge in a
time-slice must be zero. So it needs to be the case tha
‘‘pruned’’ configurations formed by the removal of certa
clusters have no net winding number in any direction: e.

(
x,y,z

j 4~x,y,z,t51!50. ~24!

Without this, Gauss’ law and the magnetic flux are i
defined. In practice the largest cluster does sometimes ha
net winding in one or more directions. In these cases
implement the following ‘‘fix.’’ We manually correct the
winding number to zero by the addition of straight lines
magnetic current of appropriate charge that wrap around
lattice; structures analogous to the Polyakov line of ga
links. The position of such a static monopole world line
chosen randomly. In practice this problem is only significa
at b52.5. The reason is that the total current necessarily
zero winding. So the largest cluster will only wind if som
other smaller cluster has a compensating winding. To h
some chance of winding around a lattice this secondary c
ter cannot be too small. Only atb52.5 are the secondar
clusters large enough to make this a frequent occurre
~This in part arises because of their scaling properties—
discussed in the next section.! We estimate the bias induce
by our winding fix as follows. We place the same sta
monopole lines used to correct the winding number o
otherwise empty lattices. To each of these, we add a sim
number of oppositely charged lines, also at random p
tions, and calculate the string tension. One half of this is
estimate of the bias inherent in our correction method.~Of
course, as we showed earlier, a random monopole gas o
confines; here we are simply obtaining an effective str
tension at an appropriate distance.! This bias is found to be
completely negligible atb52.3 and 2.4. Atb52.5 it is
60.002 in lattice units. This is only an estimate, so the m
sage is that some caution should be attached to the s
tensions we calculate atb52.5.

In Table III we show the string tensions calculated usin
first the total current, second the largest cluster and third
the clusters except the largest. We also indicate the pro
tion of current in the largest cluster by quoting the value
the percolation parameter@19#
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wherenmax is the number of~dual! sites connected by curren
links from the largest cluster andntot the number connected
in all clusters. We note that atb52.3, where the volume is
largest in physical units, the string tension is given entir
by the largest cluster and there is no contribution from
secondary clusters, despite the fact that the latter carry s
25% of the total monopole current. Atb52.4 the secondary
clusters still do not provide any confining force even thou
their contribution to the current is now approaching half
the total. Atb52.5 the situation is not so clear-cut but that
not surprising: the volume is now becoming quite small
physical units, the distinction between the largest and sec
largest clusters begins to blur, and the winding correction
become important. There is also some indication thata2s tot
and a2smax — and indeeda2s tot1a2smax — are not quite
the same atb52.4. We believe that this is directly related
our observation that as the volume decreases~at fixed b)
there is a growing disparity betweena2s tot and a2smax
1a2srest. We are not at present sure whether this indicate
significant correlation between the largest and smaller c
ters on smaller volumes, or whether it is an artifact of t
difficulty of extracting extended effective mass plateaux
small lattices.

D. Smoothing the monopole fields

We have just seen that the largest cluster is the sourc
all the interesting confining physics. Given its importance
is worth probing its structure in more detail. In particular w
return to our earlier observation of scaling and the ques
of whether this cluster fluctuates on the scale of the lat
spacing or not. To address this question we loca
‘‘smooth’’ the monopole currents and see what effect t
has on the length of the cluster. We have employed t
methods. The first is simply to ‘‘cool’’ the Abelian fields b
locally changing the fields so as to maximize the value of
sum of plaquettes.~That is, we cool using a plaquette ‘‘ac
tion.’’ ! This directly smoothes the Abelian fields and the
fore, indirectly, the monopole currents as well. The seco
method involves ‘‘smoothing’’ the monopole currents d
rectly: we examine each~dual! plaquette in turn, and super
impose a 131 current loop with a charge chosen to min
mize the total magnetic current on the lattice. Th
constitutes one smoothing sweep. It directly removes
kinks ~‘‘staples’’! in the current. The two methods give sim

TABLE III. The monopole string tensions from all the cluster
the largest and from the remainder. The second error is the sys
atic bias from correcting the winding number.P is the percolation
parameter.

L516: a2s tot a2smax a2s rest P

b52.3: 0.128~5! 0.124~3! ~0! 0.000~1!~0! 0.75 ~1!

b52.4: 0.067~2! 0.058~2! ~0! 0.01 ~1!~0! 0.57 ~1!

b52.5: 0.034~2! 0.024~2! ~2! ,0.005~-!~2! 0.37 ~1!
4-8
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TABLE IV. The evolution unders monopole smoothing sweeps of the string tension, the proportio
current remaining, the percolation parameter, the length of the two largest clusters and the number of c
Also given are the last two quantities when the largest cluster is excluded from consideration. Results l
† are fromL516.

b52.3,L512

s a2s % curr. P lmax l 2nd nC l 2nd8 nC8

0 0.128† ~5! 100.0~0! 75.7 ~3! 3200 ~22! 49 ~10! 156.9~7! 49 ~10! 156.9~7!

1 0.124~6! 56.7 ~2! 78.5 ~4! 1882 ~65! 85 ~32! 56.5 ~3! 29 ~3! 36.2 ~3!

2 0.122~5! 40.7 ~1! 76.2 ~8! 1314 ~94! 141 ~48! 27.3 ~2! 22 ~3! 13.6 ~2!

3 0.124~5! 32.6 ~1! 74.0 ~8! 1021 ~74! 163 ~44! 16.3 ~2! 18 ~2! 6.8 ~1!

5 24.2~1! 70.8 ~9! 725 ~64! 160 ~39! 8.9 ~2! 11 ~2! 2.7 ~1!

10 15.5~1! 68.4 ~11! 449 ~50! 125 ~27! 4.4 ~1! 3 ~2! 1.2 ~1!

b52.4,L514

s a2s % curr. P lmax l 2nd nC l 2nd8 nC8

0 0.067† ~2! 100.0~0! 56.8 ~3! 2441 ~141! 121 ~48! 249.3~5! 121 ~48! 249.3~5!

1 0.064~2! 52.7 ~2! 59.6 ~6! 1345 ~107! 202 ~44! 75.1 ~4! 73 ~22! 61.8 ~4!

2 0.063~2! 37.6 ~2! 60.2 ~7! 965 ~90! 216 ~41! 34.2 ~2! 60 ~19! 24.9 ~3!

3 0.062~2! 30.3 ~2! 61.0 ~8! 788 ~84! 207 ~41! 19.6 ~2! 51 ~15! 12.1 ~2!

5 0.059~2! 22.9 ~1! 61.8~10! 603 ~75! 182 ~34! 9.9 ~2! 39 ~12! 5.4 ~1!

10 0.055~2! 15.5 ~1! 64.5 ~9! 423 ~50! 136 ~24! 4.9 ~1! 25 ~10! 2.2 ~1!
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lar results, but the latter one has the important advantage
us that, in addition to being more transparent, it enables u
smooth individual clusters if we so wish.

The result of smoothing the monopole fields, by the s
ond method, is summarized in Table IV. The first thing w
observe is that the string tension shows very little variat
with cooling. This is as it should be: the ultraviolet fluctu
tions of the monopole current should not affect its confin
properties. Secondly we note that, as we cool, there is a r
decrease in the total length of the largest cluster. This tell
that it does contain fluctuations on the size scale of the ‘‘c
off’’ even if these are not strong enough to destroy the sc
ing of the total length. We also find something else tha
very interesting: the largest cluster frequently breaks up
more than one cluster even after just one smoothing sw
To see this we display in Table IV not just the results
smoothing all the monopole clusters, but also what happ
if we exclude the original largest cluster from considerat
and smooth just the secondary clusters. We observe tha
ready after just one smoothing sweep the largest of the la
labeled l 2nd8 , is on average much smaller than the seco
largest cluster, labeledl 2nd, obtained when we smooth all th
clusters.~Note that for these quantities the numbers in bra
ets are not the errors but the one standard deviation va
tions.! Thus the second largest cluster must have hived
from the largest cluster. Sincel 2nd increases with smoothing
~initially ! it is clear that the largest cluster is hiving off
substantial number of clusters during the first few smooth
sweeps. This raises a puzzle. These hived-off clusters ar
we can see, typically much larger than the second larg
cluster that one observes prior to smoothing. This imp
that this hiving off never occurs during the Monte Car
generation. It certainly would occur if we were applying
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Monte Carlo directly to the U~1! or monopole fields — after
all the smoothing is just a particular move that would be p
of the Monte Carlo choice. The implication appears to
that there is something in the SU~2! dynamics that ensure
the presence of just one large monopole cluster. Despite
tial appearances this largest cluster cannot be understood
simple U~1! monopole percolation phenomenon.

E. Screening lengths

As we saw in Sec. III, a plasma of monopoles is confini
and the resulting string tension is proportional to the prod
of the monopole density and the screening length. Since
have found that the ensemble of monopole currents that
generate by going to the maximally Abelian gauge is con
ing, it would be interesting to show explicitly that thes
monopoles do form such a plasma. Indeed, since the con
ment is entirely driven by the largest cluster, it is the mon
poles in this cluster that should provide a realisation of o
simple picture in Sec. III. We should also be able to see
what way the monopoles belonging to the non-confining s
ondary clusters do not constitute such a plasma.

The fact that the string tension has a finite continuu
limit, means that both the screening length and the monop
density should also scale, i.e. that they should be cons
when expressed in physical units, up to lattice correctio
that vanish asa→0. @The reader may be aware that this
not what happens in the D5211 U~1! theory, but the pecu-
liarities of that theory are not relevant to us here.# In this
subsection we shall study the scaling properties of
screening length and we shall do so separately first for all
monopoles, then for the largest cluster alone, and finally
the secondary clusters alone.~We have already shown tha
4-9
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A. HART AND M. TEPER PHYSICAL REVIEW D58 014504
the monopole density of the largest cluster scales while
of the secondary clusters does not.! The more subtle questio
of whether we really have a plasma rather than, say, a
tribution of dipoles, is something we shall not touch up
here.

Before moving to the details of our calculations we ne
to reconsider how our simple monopole plasma pict
might be modified in a realistic context. First an aside:
shall calculate the screening length in an approximat
where we neglect the non-static character of our monopo
A more substantial point is that there will exist excitations
the lightest screening mass. Thus the magnetic flux from
monopole will not decay as a simple exponential inr . What
we call the screening mass,ms , will show up in the
asymptotic exponential decay, asr→`, of the flux:

B~r !}expH 2
r

l s
J , ~26!

wherel s51/ams is the screening length andr is the distance
from the monopole, all in lattice units. At very larger , how-
ever, this flux is very small and will have a negligible effe
upon Wilson loops. So what is relevant to confinement is
this asymptotic screening mass but rather the effec
screening mass that governs the decay of the flux at th
distances where the flux is still sufficiently large to ef
ciently disorder Wilson loops. This effective screening ma
will be some combination of the lightest screening mass
its excitations. It is this that we would like to see scale.

Another complication will arise when we consider th
screening properties of a subset of all the clusters. Altho
we have assumed that these clusters are independent,
unlikely that this is really the case. If we were in a U~1! field
theory then a monopole would, through the~dual! Coulomb
interaction, affect other monopoles whether they belonge
the same cluster or not. That is to say, all monopoles par
pate in the screening of all other monopoles. If we focus
the screening of the monopoles within some subset of c
ters, and if only the monopoles in that subset are allowe
participate in the screening, then we will in general obtain
incorrect screening length. And if the total fraction of th
monopoles that are excluded does not scale~as will be the
case, for example, when we consider only the largest clus!
then the extracted ‘‘screening length’’ might well not sca
either. This, as we shall shortly see, is what occurs in
case, despite the fact that we have no reason to think tha
U~1! fields are governed by a simple U~1! effective action.
Note that although the Coulomb interaction between in
vidual monopoles in different clusters might be important
screening, it is a weak high-order multipole interaction b
tween well separated clusters. Since the secondary clu
are compact objects~vide the next section! this interaction
should be weak enough not to affect our derivation of E
~18!.

Suppose, then, thatB(r ) is the flux from a monopole. We
expect that for large enoughr Eq. ~26! will hold. If we now
plot 2 ln B(r) againstrAK, then we expect to see a linear ris
at larger whose slope is just the inverse of the screen
length in physical units,js5 l sAK. Moreover if the screening
01450
at

is-

d
e
e
n
s.
f
a

t
e
se

s
d

h
t is

to
i-
n
s-
to
n

r

r
ur

i-
r
-
ers

.

g

length is constant in physical units, then this slope should
independent ofb. ~All this assumes we are in an infinit
volume. In a finite periodic volume one needs to make
obvious finite volume correction and this we shall do.!

In Fig. 2 we produce such a plot using all the monopo
on the lattice.~Note that we normalize the monopole flux
unity.! We see that indeed there is a linear rise at larger , and
that the slope is independent ofb, within statistical errors.
That is to say, we find a scaling screening mass. If we now
the combined data with a single scaling mass, we ob
ms.2.30(10)As.

As we can see in Fig. 2 this scaling screening mass o
governs the decay of the magnetic flux at large distan
where the flux is small. If instead we look at the effecti
screening mass in the range ofr where the flux is still large
enough to disorder Wilson loops, say 1/e<B(r )<1, then we
see that it does not scale. This should not be a great surp
given that we have seen that the total monopole density d
not scale either, and that there is a substantial numbe
monopoles, those in the secondary clusters, which do
appear to contribute to confinement.

Since we have found that it is the largest cluster that g
erates all of the string tension, and that the remaining clus
generate none of it, it is interesting to repeat the analy
separately for these two subsets of the total monopole
rent. This we do in Fig. 3. We first note that in both cases
screening mass does not scale—to the extent that one
identify a linear rise at larger . Moreover the large-r screen-
ing is much weaker than that obtained when we include
the clusters. This ‘‘under-screening’’ is what we would e
pect if there were Coulomb interactions between all
monopoles, as discussed previously. For the secondary
ters the lack of scaling persists down to the smaller value
r which are relevant for confinement. For the largest clus
on the other hand, the small-r effective screening masses d
scale and we extract a valuems52.5(1)As, which is similar
to the screening mass at larger from all the clusters. This
and the fact that the density of monopoles in the larg

FIG. 2. Screening of flux by all monopoles as a function
distance in physical units for monopoles atb52.3, 2.4 and 2.5:
with a linear fit shown.
4-10



s

MONOPOLE CLUSTERS IN ABELIAN PROJECTED . . . PHYSICAL REVIEW D58 014504
FIG. 3. Screening of flux as a function of distance in physical units for monopoles atb52.3, 2.4 and 2.5. The left hand plot use
monopoles from the largest cluster only; the right hand plot from the remaining, smaller clusters.
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cluster scales confirms that it is indeed the monopoles in
cluster that provide the confining monopole plasma.

Given the above discussion it would appear that the cle
est way to reveal the screening of the confining monopo
would be to consider only the flux from those monopo
that are in the largest cluster, but to include all monopole
the screening of that flux. This we do in Fig. 4. We no
observe a flux that scales at allr . Moreover it can almost be
described by a single exponential at allr . ~We should use a
lattice version of the Coulomb interaction at very smallr , but
we ignore this potential improvement here.! We extract a
screening mass ofms52.71(15)As, which is roughly con-
sistent with our other values.

Before leaving this topic, it is interesting to ask if th
screening mass has anything to do with the spectrum of
underlying SU~2! theory. Abelian dominance suggests th
this is just the effective gluon mass in the maximally Abeli
gauge. There have been speculations in the past that ga
fixed quark mass calculations~typically performed in the
Landau gauge! are telling us about the constituent qua

FIG. 4. Screening of flux from monopoles of the largest clus
by all other monopoles as a function of distance in physical u
for monopoles atb52.3, 2.4 and 2.5; with a linear fit shown.
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mass. So the analogous speculation here would be that
screening mass is related to a constituent gluon mass.
therefore amusing to note that the lightest glueballs in
SU~2! theory are the scalar and the tensor, with continu
masses ofm0153.87(12)As andm2155.63(11)As respec-
tively @18,20#. In a simple constituent gluon picture of th
low-lying glueball spectrum one would expect these state
arise from two gluons in anL50 state, with the spins
aligned to give the tensor and anti-aligned to give the sca
Thus to leading order in the spin-spin interaction the sca
and tensor masses will be equally split from the mass
they would possess if the spin-spin interaction were
present. The observed splitting from the average value is;
620% which is small enough for the leading order argum
to be plausible. The average mass value will then equal
of two constituent gluons, neglecting binding energ
~which have to be small if a constituent gluon picture is
have any chance of making sense!. We observe that our
screening mass is indeed in the right ball-park to be thou
of as such a ‘‘constituent gluon’’ mass.

To sum up this section, we have established that the la
est cluster is a quite different animal from all the other clu
ters. It permeates the entire volume, has a constant de
and screening length in physical units, and drives confi
ment. It would seem natural to think of this largest cluster
being a simple example of naive percolation at work. But,
we have seen, this is not the case. If percolation is at wor
is at work within the SU~2! field configurations of which our
monopoles are but a skeletal representation.

V. THE SMALLER CLUSTERS

A. The cluster spectrum

We have frequently stated that the number of second
clusters falls off approximately as a cubic power of the clu
ter lengthl . Some evidence for this is shown in Fig. 5 whe
we display the spectra for three different volumes atb
52.3. These spectra all fall roughly as 1/l 3 for the range ofl
where our calculations are accurate. There is also some
dence that at very largel there is a change in the functiona
form. There seem to be finite size effects there, and the

r
s
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FIG. 5. Monopole cluster spectra atb52.3 onL510, 12 and 16. The loop spectrum is shown for comparison onL516.
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dication is that on large enough volumes, the spectrum
very large values ofl might fall off more steeply. More
accurate calculations than ours are needed to determ
whether this is indeed so. In Figs. 5 and 6 we also display
spectra obtained on 164 lattices atb52.3, 2.4, and 2.5. This
shows that the;1/l 3 behavior does not depend ona. We
note that asa decreases, the very largel end of the spectrum
on the 164 lattices appears to show finite volume effec
perhaps not surprising since 16a(b52.5).8a(b52.3). The
slight curvature of the spectrum leads to the fit parameter
the power law depending weakly on the range ofl that we
choose to fit. Nevertheless, we are able to conclude tha
the fits to our data have an exponent in the rangeg
P@2.85,3.15#.

In Fig. 5 we also show for comparison the spectrum o
tained when the monopole currents are divided into loo
The main difference is in the normalization; there are m
loops of a given size than clusters. Some proportion of
small loops of a given size will be part of larger clusters, a
in particular the largest cluster on the lattice. It is interesti
nonetheless, to note that the exponent of the power law
the loop spectrum is in general slightly smaller than that
the more fundamental~we believe! cluster spectrum.

The simplest way to understand this cluster spectr
would be if there were, in essence, only the one current c
ter in each field configuration~the very large cluster that w
described in the previous section! and that the secondar
clusters then arose when small portions of this largest clu
were randomly ‘‘pinched’’ off. The power law spectrum
would then have to arise from the relative probability
pinching off portions of the largest cluster of differe
lengths. Were this the case, the number of clusters of a g
length on a configuration~particularly the smallest and mos
numerous! would be expected to be proportional to the~re-

FIG. 6. Monopole cluster spectra onL516 atb52.4 and 2.5.
The equivalent forb52.3 is given in Fig. 5.
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maining! length of the largest cluster from which they we
formed. Unfortunately this turns out not to be even appro
mately the case, there being no correlation, either positiv
negative.~We might also expect the smaller clusters to
preferentially located near current links of the largest clus
although we did not test this.!

B. Cluster sizes

What do we know about the sizes of these secondary c
ters? We can estimate the cluster radius using the first
ment of the current links about the centroid of the cluster
the cluster were composed ofn current links of charge
$ j i : i 51,n% with centers at$xm

i %, then the centroid is

x̄m5
1

l (i 51

n

xm
i u j i u ~27!

where the length is

l 5(
i 51

n

u j i u. ~28!

The distance of the center of a link from the centroid isdi ,
and the effective radius of the cluster is

r eff5
1

l (i 51

n

di u j i u. ~29!

We plot this as a function of length in Fig. 7, and find that
is well fitted by the functional formr eff( l )5s1tAl . This
suggests that the monopole is essentially performing a
dom walk. Is the step size of this walk fixed in lattice or
physical units? If it were fixed in lattice units we woul
expectt to be independent ofa. If the step size were fixed in
physical units then we would haver AK}Al AK, and so would
expect t2}1/AK. Our calculations, examples of which a
presented in Table V, show us that the coefficientt varies
very weakly witha if at all. There is some variation in ou
fitted value oft depending on the range ofl used. But our
overall conclusion is that if we insist on parametrizingt by a
power of a then that power is small:t2}(AK)21/861/8. So,
although there is some room for a residual weak depende
on a, the evidence is that the step size in the cluster rand
walk does not know about physical units.
4-12
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We note that the values ofl where we saw, in Figs. 5 an
6, evidence of finite size effects inN( l ), do indeed corre-
spond to cluster sizes,r eff , that might plausibly feel the
boundaries of our periodic lattices.

C. Scaling properties

We now turn to the normalization of the spectrum of the
secondary clusters and ask what scaling properties it
sesses. We have already seen that the total density doe
scale: that is, the total length of the secondary clusters is
proportional to the volume when both are expressed in ph
cal units. This in itself is no surprise, however. When w
decreasea by a factor of say 2, then the total current leng
acquires an additional contribution that is;*4

8lN( l )dl in
units of the smaller lattice spacing.~Since the smallest clus
ter has length 4a.! This will be a significant contribution
because the spectrum grows rapidly at smalll . So if nothing
else, we expect a significant scaling violation from the gro
ing tail of ultraviolet clusters and any test of scaling mu
take this into account. The simplest form of physical scal
would be to consider only those clusters whose length
larger than some fixed physical lengthl p , i.e. l> l p /AK, and
then to demand that the total length of these clusters is
portional to the volume when both are expressed in phys
units. We now see what this implies for the observed sp
trum

N~ l !5
C~L,a!

l g
~30!

FIG. 7. The cluster radii and a fitr eff5s1tAl at b52.3 onL
512.
01450
e
s-
not
ot
i-

-
t
g
is

o-
al
c-

with g;3. ~For these purposes any deviation at very largl
is negligible, and the deviations at the smalll ultraviolet
scale are irrelevant.! Scaling would imply

AKE
l p /AK

lN~ l !dl5AKE
l p /AK

l
C~L,a!

l g
dl}~LAK !4

~31!

which requires

C~L,a!}L4~AK !52g. ~32!

This is to be contrasted with what we should expect if the
secondary clusters only knew about the ultraviolet len
scale,a: C(L,a)}L4. As we have already seen, in Table I
the factor ofL4 is certainly there. What is at issue is th
dependence onAK. Scaling requires that the quantity

cp
15

C

L4
•~AK !52g

~33!

should be independent ofb. In Table VI we show the values
of cp

1 that we have obtained on ourL516 lattices both when
we use the value ofg obtained from the power law fit, and
when we impose a fixed valueg53 at all values ofb ~as our
above analysis assumes!. As we see, rather than being co
stantcp

1 increases roughly as 1/K. This is what one expects
~with g.3) if the clusters know only of the ultraviolet scale

We have tested a particular formulation of scaling whic
naively, would seem to be the most reasonable. It is
unique, however. A plausible alternative would be to foc
on the total number of clusters instead of their total length
we consider the total number of clusters whose length
greater than some constant in physical units, then in fact
find the same criterion as above. To get something differ
we might, for example, ask~as in @7#! whether perhaps it is
N( l ) itself that scales with the physical volume, whenl is
chosen fixed in physical units. This would requi
cp

25C/L4
•(AK)42g to be independent ofb. In Table VI we

show this, again forg from the power law fits at differentb
and with a single, imposed value ofg53. Using the fittedg,

TABLE V. Fitting r eff( l )5s1tAl to the clusters.

s t

(b52.3,L512): 20.150~3! 0.340~2!

(b52.4,L514): 20.175~3! 0.350~1!

(b52.5,L516): 20.191~2! 0.355~1!
that
TABLE VI. Power law fits and scaling behavior of the smaller clusters, including the assumption
scaling is controlled byg53.

L516: lnC g cp
1(g) cp

1(g53) cp
2(g) cp

2(g53)

b52.3: 10.38~21! 3.11 ~8! 3.52 ~80! 2.97 ~4! 1.24 ~28! 1.05 ~2!

b52.4: 9.72~11! 2.90 ~4! 4.45 ~60! 5.20 ~25! 1.14 ~15! 1.34 ~4!

b52.5: 9.30~12! 2.94 ~4! 6.30 ~90! 6.75 ~24! 1.10 ~15! 1.16 ~9!
4-13
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A. HART AND M. TEPER PHYSICAL REVIEW D58 014504
this quantity appears to scale much better. This result is
robust; imposing a fixedg, however, where the statistica
errors are less, this scaling appears less good. Without s
argument for keeping the measuredl in lattice units~which
is what we have just done!, however, it does not really mak
sense as a scaling criterion. It seems that if we take
secondary clusters at face value, they certainly do not h
the right scaling properties to be physical objects.

Given that the secondary clusters do not scale as ‘‘ph
cal objects,’’ we can ask whether they scale as purely lat
artifacts. If so we would expect the total current length to
}L4 but to be independent ofa. So if we focus on the
L516 lattices in Table II, we would expect (l tot2 l max) to be
independent ofb. In fact the values are 3226, 2997, an
2244 atb52.3, 2.4 and 2.5 respectively. We know that t
b52.5 value is suppressed below its true value because t
is some overlap between the largest cluster and the sec
ary spectrum: sol max is certainly overestimated. Nonethe
less, even allowing for that, there does appear to be s
significant a dependence,C(L,a)}L4(AK)0.221.0, but it is
quite weak suggesting that the spectrum is influenced m
by the ultraviolet than by the physical length scale.

D. Clusters as 4-balls

Of course the monopole currents are only images, thro
gauge-fixing, of some unknown structures in the SU~2!
gauge fields. It is the latter that one would hope to be ph
cal. In fact our observed cluster spectrum does provide s
intriguing hints as to what these structures might be. As
have seen, a monopole cluster of lengthl is localized within
a region in space-time of sizer .tAl . We call such an objec
a ‘‘4-ball’’ for obvious reasons. What is the spectrum
NB(r )dr, of these 4-balls? It is easy to see that if the rad
is related to the length byr}Al , the cluster spectrum
N( l )dl5C/ l 3 translates into the following 4-ball spectrum

NB~r !dr5CB

dr

r
3

1

r 4
. ~34!

We recognize this to be simply the general scale invar
distribution of objects of radiusr in four dimensions.~Such
an object takes up a volume;r 4 and hence there are;1/r 4

ways of placing it in a unit volume. Anddr/r is a scale-
invariant measure.! This is precisely the formula one has fo
the density of instantons, before one includes the effect
the scale anomaly through the running of the coupling. Si
we know that an isolated instanton, when projected to
maximally Abelian gauge, generates a monopole curr
loop of size comparable to its core size@8#, it would be
tempting to put forward the elegant hypothesis that th
4-balls are just SU~2! instantons and that the secondary clu
ters are simply the associated monopole loops. Unfortuna
things cannot be so simple. Although we do not know h
the scale-breaking affects the instanton density at large s
we do know what it does to the distribution at small siz
the dr/r 5 is transformed intor 7/3dr. This is nothing at all
like our 4-ball number density.
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It is interesting to repeat our previous scaling analysis,
this time assuming that it is the 4-balls that are physi
rather than the clusters themselves. That is to say, we imp
that the number of 4-balls of radius larger than some fix
length in physical units, should be proportional to the phy
cal volume. It is easy to see that this implies thatCB(L,a)
}L4. One obtains the same result, however, if one constra
the density to be constant in lattice units, or any other un
because the 4-ball density just reflects naive dimensio
counting. Thus we expect rather generally that

N~ l !dl5
C~L,a!dl

l 3
}

L4

t4

dl

l 3
~35!

where we have gone from the 4-ball density to the clus
spectrum usingr;tAl . This implies that

C~L,a!}
L4

t4
}L4~AK !0.2560.25 ~36!

using our results for thea-dependence oft. This weak
a-dependence is entirely consistent with what we observe
the cluster spectrum:C(L,a)}L4(AK)0.2→1.0. Thus the spec-
trum of secondary clusters is consistent, in every resp
with arising from a scale-invariant density of 4-balls.

As an aside, we note that the largest cluster from
distributionN( l ) has a lengthl 2nd}C(L,a)1/(g21). Putting in
g53 and the form forC(L,a) as in the previous paragraph
we see thatl 2nd}L2(AK)0.1→0.25. By contrast the length of
the largest cluster varies as:l max}L4(AK)3. From this we see
that if we wish to maintainl max@l2nd asa→0 then the lattice
size in physical units must grow roughly as (1/AK)1/2. Thus,
for example, the two types of clusters begin to overlap
our 164 lattice atb52.5 ~rendering some of the calculation
there ambiguous! despite the fact that they did not do so o
the 84 lattice at b52.3. This is something we did not, o
course, anticipate when originally choosing our lattice siz

VI. SUMMARY

In this paper we have shown that the magnetic monop
currents that we obtain, when gauge fixing SU~2! fields to
the maximally Abelian gauge, divide into two quite distin
classes~on large enough volumes!: a single very large cluste
and a distribution of very much smaller clusters.

The very large cluster has a length that is proportiona
the space-time volume when both are expressed in phys
units. Moreover we have shown that it is this cluster th
generates the string tension. We have also seen that, w
this largest cluster, the effective screening length relevan
confinement is constant in physical units. Thus it is this cl
ter that represents all the interesting infrared physics of
SU~2! fields.

That there is always just one very large cluster is a s
nificant fact since, as we saw, even under a minimal amo
of smoothing this cluster readily hives off secondary clust
that are much larger than those that we observe in the
smoothed fields.
4-14
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The secondary clusters are localized compact objects
tained by the monopole performing a random walk on
length of the lattice spacing. This is in contrast to the larg
cluster whose observed scaling demands that the step si
on the length of the physical length scale. These secon
clusters contribute nothing to the string tension even wh
they constitute a sizeable fraction of the total magnetic c
rent.

One might be tempted to ignore these secondary clus
as being of no physical importance. They do seem quite
markable in at least one respect, however. When one tr
them as localized objects in space-time~‘‘4-balls’’ !, one
finds that the number density is of the simplest sca
invariant form. This is reminiscent of classical instanto
but unfortunately incompatible with the real instanton de
sity at small distances.

The calculations of this paper can be improved upon
many ways. In particular better calculations could clar
what happens to the distribution of secondary clusters at v
large l and it would be useful to calculate the 4-ball numb
density directly~as we would have done if we had not d
duced their relevance after completing the simulations!.

The monopole content of the vacuum thus seems to s
e

,

er

-
ie
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up into two types of cluster. First there is the confining clu
ter that knows about the physical length scale~ultimately due
to the breaking of scale invariance! but does not seem to
know anything at all about the lattice length scale. Secon
there are the other, smaller clusters. These can be thoug
as compact objects that satisfy a scale invariant distribut
while they know about the lattice spacing, they apparen
know little about the breaking of scale invariance. This
unexpected and puzzling, because these clusters sh
somehow reflect fluctuations in the SU~2! fields. Of course,
because the gauge-fixing procedure is completely non-lo
it is possible that the monopoles we observe only reflect
effective theory that possesses the same infrared physic
the non-Abelian theory. To resolve this puzzle would be
interest.
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