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Quenched hadron spectroscopy with improved staggered quark action
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We investigate light hadron spectroscopy with an improved quenched staggered quark action. We compare
the results obtained with an improved gauge plus an improved quark action, an improved gauge plus standard
quark action, and the standard gauge plus standard quark action. Most of the improvement in the spectroscopy
results is due to the improved gauge sector. However, the improved quark action substantially reduces viola-
tions of Lorentz invariance, as evidenced by the meson dispersion relations.@S0556-2821~98!03513-9#

PACS number~s!: 12.38.Gc, 14.20.2c, 14.40.2n
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I. INTRODUCTION

The precision of numerical lattice QCD simulations wi
the standard lattice actions is constrained by the availa
computational resources. In order to keep the duration of
calculation within manageable bounds, one is forced to
lattice spacingsa which may be too large to describe acc
rately the continuum physics. This problem has been
dressed by the development of improved@1–3# and fixed-
point @4,5# actions. The promise of these actions is to yie
good approximations to the continuum physics with re
tively coarse lattice spacings.~For a recent review, see@6#.!

In the Symanzik improvement scheme@1,2# the lattice
action and fields are improved in powers of the lattice sp
ing a. This is achieved by introducing higher dimension
terms into the action. In the continuum limit, these terms
irrelevant, but at a finite cutoff the coefficients of these ter
can be tuned so that the discretization errors of spectral q
tities are diminished. The most straightforward method
determine the coefficients is to expand the action in a Ta
series ina, and to cancel the leading scaling violating term
order by order~tree-level improvement!. This can be refined
by using perturbative analysis or non-perturbative numer
methods to determine the coefficients.

In this paper, we study the improvement of the stagge
~Kogut-Susskind! quark lattice QCD action with quenche
spectroscopy calculations. The improvement is implemen
by adding a third-nearest-neighbor term, first proposed
Naik more than a decade ago@7#. Some of the preliminary
results of this study have already been published in@8,9#.
The same improvement scheme has been applied to non
temperature calculations by Karschet al. @10#. The gauge
configurations used in this study are generated with
O(a2) one-loop and tadpole-improved gauge action@2,3#.
Since our main goal is to investigate the effects of the f
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mionic improvement, we compare the hadronic spectrum
tained with both the unimproved and improved fermion a
tions, using the same gauge configurations. An excel
baseline for the evaluation of the improvement is provid
by our extensive standard~non-improved! quenched Kogut-
Susskind hadron spectroscopy calculation@11#.

As opposed to Wilson fermions, the improvement of t
staggered action has attracted relatively little attention. T
is partly due to the formal complexity of the staggered fo
mulation, partly to the fact that the standard Wilson fermio
have an errorO(a), whereas the staggered action is alrea
accurate to this order.1 Nevertheless, the improvement of th
staggered action is highly desirable: the staggered action
a U~1!3U~1! chiral symmetry, remnant of the full continuum
U~4!3U~4! symmetry~for 4 quark flavors!. This symmetry
is restored in the continuum limit; however, for practic
values of the lattice spacing a substantial flavor symme
breaking remains. This is a lattice artifact, and it remain
major problem, when one studies the restoration of the sp
taneously broken chiral symmetry at finite temperatu
Moreover, the very successfulO(a2) improvement of the
pure gauge action makes it very natural to try to bring
quark action to the same accuracy.

This paper is organized as follows: in Sec. II we discu
the improvement of both the gauge and the fermion acti
and the properties of the free fermion actions. In Sec. III
present the results of the simulations and the compariso

1Because of this fact the combination of the non-improved ga
and improved quark actions is of interest primarily for Wilso
quarks, because then one hasO(a2) -errors on both sectors of th
action. For the Kogut-Susskind quarks this is true already at
non-improved level. Thus, we do not consider this combinat
here.
© 1998 The American Physical Society03-1
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CLAUDE BERNARD et al. PHYSICAL REVIEW D 58 014503
the different actions. In particular, we study~a! the mN /mr

mass ratios at several fixed values ofmp /mr as functions of
the lattice spacing,~b! the Lorentz invariance ofp and r
meson states, and~c! the restoration of the flavor symmetr
~as determined by the mass difference of the pseu
Goldstone and non-Goldstonep mesons!. Our conclusions
are presented in Sec. IV.

II. IMPROVEMENT OF THE ACTION

A. The gauge action

We generate gauge configurations with the tadpo
improved SU~3! gauge action@2,3,12#:

SG5bpl (
x;m,n

~12Pmn!1b rt (
x;mÞn

~12Rmn!

1bpg (
x;m,n,s

~12Cmns! ~1!

whereP is the standard plaquette in them,n -plane, andR
andC denote the real part of the trace of the ordered prod
of SU~3! link matrices along 132 rectangles and 13131
paths, respectively:

~2!

~3!

~4!

In general, the improvement conditions do not uniqu
specify the form of the action. For example, at tree-lev
adding either the planar 6-link term or one of several 8-l
terms to the standard action would cancel theO(a2) errors.
However, when the quantum corrections are calculated w
the lattice perturbation theory, then at least two terms
required to cancelO(g2na2) errors@2#. The terms in Eq.~1!
provide the most compact form of the action.

Because of the UV divergence of the tadpole-type gra
in lattice perturbation theory, operators formally of orderan

in the expansion of the action are changed to or
an22mg2m by quantum effects, depending on the number
tadpole graph contributions to that particular term.~In the
tadpole contributionsn>2m, i.e., tadpoles do not introduc
additional UV-divergencies.! The contribution of the tadpole
diagrams can be partially taken into account by absorb
them in the lattice coupling constants. This is commo
achieved by the definition of the ‘‘average gauge link’’ fro
the plaquette,u0[^P&1/4, which is strongly dominated by
tadpoles, and by replacingUi(x)→Ui(x)/u0 in every lattice
operator@3,12#. This corresponds to a redefinition of the la
tice gauge couplingg2→g2/u0

4.
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With these ingredients, the coefficients of the action~1!
are related by the 1-loop expressions@12#

b rt52
bpl

20u0
2 ~110.4805as! ~5!

bpg52
bpl

u0
2 0.03325as ~6!

where the strong coupling constant is determined through
1-loop relation

as524 log~u0!/3.0684. ~7!

The leading errors of this action are of orderO(a2as
2 ,a4).

B. Tree-level improvement of the quark action

In this work, we study the following fermion action:

SN5a4(
x;m

hm~x!x̄~x!
1

2a
$c1@Um~x!x~x1m!

2Um
† ~x2m!x~x2m!#

1c2[Um~x!Um~x1m!Um~x12m!x~x13m!

2Um
† ~x2m!Um

† ~x22m!Um
† ~x23m!x~x23m!] %

1a4mq(
x

x̄~x!x~x!, ~8!

where the phase factorhm(x)5(21)(x01x1 ...xm21). The stan-
dard Kogut-Susskind~staggered! action is obtained with co-
efficientsc151 andc250. At tree level, the action isO(a2)
accurate whenc159/8 andc2521/24. In this case, thedif-
ferencefrom the Kogut-Susskind action is a discrete versi
of the 3rd order derivative:

1

8

f ~x1m̂ !2 f ~x2m̂ !

2a
2

1

24

f ~x13m̂ !2 f ~x23m̂ !

2a

52
a2

6
]m

3 f ~x!1O~a4!. ~9!

The staggered action with a third nearest neighbor term
originally proposed by Naik@7#. However, he was studying
the improvement of the Dirac-Ka¨hler action, which has a
different coupling to the gauge fields than the action in E
~8!. The Dirac-Kähler action lacks the exact U~1!3U~1!
-symmetry enjoyed by the action~8!, and the bare quark
mass has to be additively renormalized. These proper
make use of the Dirac-Ka¨hler action much less appealin
than the Kogut-Susskind action. Nevertheless, in the follo
ing we shall call the action~8! the Naik action.

The ~one-component! Grassmann fieldx describes 4 fla-
vors of Dirac fermions in the continuum limit. This is no
transparent in Eq.~8!, nor can one easily identify the leadin
irrelevant terms when the continuum limit is taken. At th
free fermion level, perhaps the easiest way to see this i
3-2
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QUENCHED HADRON SPECTROSCOPY WITH IMPROVED . . . PHYSICAL REVIEW D 58 014503
use the following transformation@13#: in momentum space
we decompose the momentum vectork5p1pA/a, Am50
or 1, and we restrict 0<k,p/a. A new ~16-component!
fermion fieldc is defined as

c~p!5
1

8 (
A,B

~21!A•BGAx~p1pB/a! ~10!

c̄~p!5
1

8 (
A,B

~21!A•BGA
† x̄~p1pB/a!. ~11!

where

GA5g0
A0g1

A1g2
A2g3

A3. ~12!

In terms of fieldc, the free action~8! becomes

Sfree5(
p

c̄~p!

3S (
m

gm

i

a
~c1sin pma1c2sin 3pma!1mDc~p!.

~13!

This form of the action is flavor diagonal; however, if w
perform an inverse Fourier transform, the derivative te
becomes nonlocal. The Kogut-Susskind action (c250) has
leading O(a2) errors. The coefficientsc159/8 and c2
521/24 for the Naik action are readily recovered from E
~13! by expanding the trigonometric functions.

When the gauge fields are included one cannot transf
the action~8! to the form in Eq.~13!. It is not at all obvious
that the interacting Kogut-Susskind action is stillO(a)
-accurate. In order to see the flavor structure more clea
one usually performs the~local! transformation originally
proposed by Kluberg-Sternet al. @14#. It transforms the 1-
component staggered fieldx to a hypercubic 16-componen
‘‘quark field’’ ~4 flavors of 4-component Dirac spinors!,
which lives on a lattice with twice the original lattice spa
ing. The quark field action cannot be written in a comp
form, but when expanded in powers of the lattice spacinga it
has apparent dimension-5 terms@giving rise toO(a) errors#.

However, the Kogut-Susskind action doesnot have on-
shellO(a) errors. This has been shown by Sharpe@15# and
Luo @16,17# by a generalization of the Kluberg-Sternet al.
transformation. The leading scaling violations start atO(a2).
In order to cancel them, one has to add dimension-6 term
the action; these terms have been classified by Luo@17#. The
terms fall into two classes:c̄D3c terms, whereD3 is a ge-
neric combination of 3 covariant derivatives@and to which
class the ‘‘Naik term’’ in Eq.~8! belongs#, and 4-fermion
terms. Unfortunately, even in the simplest form, the act
has 15 dimension-6 terms with—so far—unknown coe
cients. Therefore, we limit ourselves here to a much m
modest goal and study the degree of improvement possib
obtain with the action~8!, bearing in mind that this action
cannot cancel all of theO(a2) errors, but only the ones
present already for free fermions.
01450
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As with the gauge action, we may improve the action~8!
beyond the tree-level by taking into account the modific
tions due to gluon tadpoles: with the replaceme
U→U/u0 , the coefficientsci in action ~8! become

c15
9

8u0
c252

1

24u0
3 . ~14!

In this work we use the quark action defined by Eqs.~8!,
~14!. In the nonzero temperature calculation in Ref.@10# the
action ~8! was used with the ‘‘tree-level’’ values.

C. Properties of the free quark action

The free quark dispersion relationE(p) can be found
from Eq. ~13!, by solving for the poles of the Euclidea
propagator and using the identificationE5Re ip0. In Fig. 1
we show the massless quark dispersion relations for the s
dard Kogut-Susskind and Naik actions. For comparison,
also show the Wilson fermion action dispersion relation. T
Naik action follows the continuum dispersion relationE
5upu much better than the standard Kogut-Susskind ac
up to upu;1.8/a, not to mention the Wilson action~with the
Wilson parameterr 51!. Note that for massless free quark
both the Wilson and the Kogut-Susskind actions haveO(a2)
leading errors. Because of the third nearest neighbor c
pling in the imaginary time direction, unphysicalghost
branches~with complex ip0! appear in the dispersion rela
tion. These states will become infinitely massive whena
→0.

For free fermions, the thermal energy can be easily ca
lated fromE5T2] log Z/]T. In the imaginary time formal-
ism, the temperatureT51/(NTa), the inverse temporal ex
tent of the lattice. Under the assumption that the free ene
is proportional to the volume, the pressure isP
5T] log Z/]V. In Fig. 2 we showE/T4 and P/T4 for free
Kogut-Susskind, Wilson and Naik fermions as functions
the inverse lattice spacing. Also shown are the results fr

FIG. 1. The dispersion relationE(p) for massless free quark
with different fermion actions. The momentump is to the spatial
direction ~1,1,0!, and the dispersion relations are plotted up to t
end of the Brillouin zone.
3-3



CLAUDE BERNARD et al. PHYSICAL REVIEW D 58 014503
FIG. 2. The energy~left! and the pressure~right! per fermion degree of freedom for free Kogut-Susskind, Naik, Wilson and ‘‘P4’’@18#
fermions as a function ofNT51/(aT). The continuum values are shown with dashed lines.
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the Bielefeld ‘‘P4’’ staggered action@18#: like the Naik ac-
tion, it contains a 3rd nearest neighbor coupling, but in t
case the neighbors are coupled along L-shaped paths@the
Naik c̄(x)Um(x)Um(x1m̂)Um(x12m̂)c(x13m̂) -terms
are replaced with terms of formc̄(x)Um(x)Un(x1m̂)Un(x
1m̂1 n̂)c(x1m̂12n̂), with nÞm#. The P4 action yields
the same tree-level improvement as the Naik action.~For a
comparison with a renormalization group improved fr
staggered quark action, see the last paper of Ref.@5#.!

The energy and pressure of the Naik fermions appro
the continuum ideal fermion gas limits much faster than
standard Kogut-Susskind action. Indeed, the Bielefeld gr
@10# reported an improved thermodynamic behavior ev
when the interacting gauge fields are included in a dynam
quark Monte Carlo simulation.

III. THE SIMULATIONS AND THE RESULTS

A. Hadron spectrum

The parameters of the action~1! used in the generation o
the quenched configurations are shown in Table I.

We measure the masses of the nucleon, the Golds
pion p, @corresponding to the~spontaneously broken! ex-
plicit U~1! chiral symmetry of the action~8!#, the non-
Goldstone~‘‘SC’’ ! pion p2 , and ther andr2 mesons. The
masses were calculated both with the Naik and the Kog
Susskind actions. For each lattice and propagator, we
four wall source planes. In each case, the hadron propag

TABLE I. The parameters of the runs.b rt and bpg can be ob-
tained through Eqs.~5!–~7!.

bpl u0 Volume Nconf.

6.8 0.8261 163332 199
7.1 0.8441 143328 203
7.4 0.8629 163332 200
7.6 0.8736 163332 100
7.75 0.8800 163332 200
7.9 0.8848 163332 200
01450
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were measured with 5–6 bare quark mas
amq50.005–0.32; the hadron masses are shown in Ta
II–IV.

Throughout the analysis we quantify the performance
the improved actions by comparing the results against a n
improved benchmark—an extensive standard quenc
Kogut-Susskind hadron spectroscopy study by the MI
Collaboration @11#. In particular, we usebWilson56/g2

55.54(163), 5.7(243), 5.85(243) and 6.15(323) lattices
~with the spatial volume in parentheses!.

The Naik hadron propagator calculation requires ab
two times more CPU time than the Kogut-Susskind one. T
number of conjugate gradient iterations is very similar
the Naik and the Kogut-Susskind quarks, but since the N
action~8! involves about twice as many terms, the compu
tional load is higher. For example, for thebpl57.4, 163

332 lattices the number of the conjugate gradient iterati
for each source plane varies approximately from 130 (amq
50.32) to 2050 (amq50.02) for the Kogut-Susskind an
from 140 to 2400 for the Naik action, whereas the CPU tim
per plane foramq50.02 is about 260 seconds for K-S an
600 seconds for Naik on the Intel Paragon using 32 nod

In order to find the best confidence levels of the propa
tor fits, we used one-, two- and three-particle fitting fun
tions, varying both the beginning and the end of the fitti
range. All of the fits use the full invariance matrix of th
propagators. We block together all of the propagators
each lattice, then, in order to facilitate further analysis,
calculate the masses using a single elimination jackknife p
cedure. When fitting each jackknife sample, we use the
variance matrix of the entire ensemble, rather than recom
ing the invariance matrix for each sample.

A generic feature of the fits to the propagators is that o
has to use considerably larger minimum fit distance from
source with Naik fermions than with the Kogut-Susskind fe
mions. The reason for this effect is probably the large ext
in the imaginary time direction of the Naik derivative oper
tor in Eq.~8! @19#. The transfer matrix is well defined only a
imaginary time separations larger or equal to 3. The gh
branch in the dispersion relation can also cause short
tance effects in the correlation function.
3-4
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TABLE II. Masses forbpl56.8, 163332, andbpl57.1, 143328 lattices. Entry ‘‘-’’ means no good mas
fits were possible.

Naik, bpl56.8, 163332

amq p p2 r r2 Nucleon

0.02 0.343438~70! 1.4~2! 1.537~15! 2.06~18! 2.301~50!

0.04 0.484458~64! 1.53~3! 1.617~24! 2.021~72! 2.387~19!

0.08 0.682699~82! 1.86~6! 1.6964~91! 2.098~29! 2.730~38!

0.16 0.962771~60! 2.12~3! 1.8581~75! - 3.032~49!

0.32 1.365621~51! - 2.061~27! - 3.589~14!

Kogut-Susskind,bpl56.8, 163332

amq p p2 r r2 Nucleon

0.02 0.350547~81! 1.411~75! 1.405~13! 1.73~13! 2.1632~93!

0.04 0.492871~80! 1.474~35! 1.4308~61! 1.642~48! 2.134~64!

0.08 0.689935~67! 1.524~16! 1.4816~25! 1.660~17! 2.3286~59!

0.16 0.959548~63! 1.640~10! 1.5772~37! 1.7389~56! 2.447~33!

0.32 1.325654~74! 1.8896~43! 1.75802~52! 1.9078~25! 2.7434~79!

Naik, bpl57.1, 143328

amq p p2 r r2 Nucleon

0.02 0.35637~12! 1.289~39! 1.573~44! 1.595~67! 2.16~13!

0.04 0.50074~20! 1.473~59! 1.568~18! 1.651~38! 2.342~51!

0.08 0.70269~17! 1.585~26! 1.6188~70! 1.822~23! 2.459~31!

0.16 0.985219~93! 1.968~65! 1.822~12! 2.0087~83! 2.759~19!

0.32 1.389359~81! 2.874~80! 2.1188~39! 2.72~16! 3.384~74!

Kogut-Susskind,bpl57.1, 143328

amq p p2 r r2 Nucleon

0.02 0.36368~13! 1.411~77! 1.338~14! 1.376~31! 1.990~37!

0.04 0.50958~13! 1.356~32! 1.403~18! 1.443~16! 2.190~59!

0.08 0.70934~13! 1.361~25! 1.4481~69! 1.5301~72! 2.278~18!

0.16 0.97939~11! 1.592~17! 1.5680~76! 1.6681~53! 2.414~11!

0.32 1.34259~10! 1.8213~89! 1.7423~15! 1.8574~16! 2.7142~25!
s
e
k
u
d

y

he
on

ut-
In Fig. 3 we summarize the nucleon andr meson masse
from Tables III and IV forbpl57.4 and 7.9, and in Fig. 4 th
pion mass squared forbpl57.4. The masses of the Nai
hadrons in lattice units tend to be larger than the Kog
Susskind masses, but the difference gets smaller with
creasingamq ~approaching the chiral limit! and increasing
bpl ~continuum limit!. At bpl57.9 the differences are barel
discernible.
01450
t-
e-

Figure 5 shows the Edinburgh plots forbpl57.4– 7.9. The
mN /mr -ratios frombpl56.8 and 7.1 exhibit typical strong
coupling behavior: the ratiomN /mr remains roughly con-
stant at around 1.5 whenmq→0 (mp /mr→0). Only when
bpl>7.4 do the data show an approach to the vicinity of t
physical value, and thus in the following we concentrate
these couplings. For comparison, we also plot themN /mr

mass ratio obtained with standard non-improved Kog
3-5
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TABLE III. Masses forbpl57.4, 143328, andbpl57.6, 163332 lattices.

Naik, bpl57.4, 163332

amq p p2 r r2 Nucleon

0.02 0.37314~79! 1.033~30! 1.268~13! 1.294~34! 1.765~30!

0.04 0.52238~70! 1.0834~96! 1.3139~89! 1.383~14! 1.920~15!

0.08 0.72475~95! 1.2517~75! 1.4283~99! 1.5035~71! 2.1320~68!

0.16 1.0080~11! 1.5591~97! 1.6241~48! 1.768~14! 2.547~14!

0.32 1.416801~79! 2.146~23! 1.9719~25! 2.2396~79! 3.1459~76!

Kogut-Susskind,bpl57.4, 163332

amq p p2 r r2 Nucleon

0.02 0.38080~74! 0.9603~66! 1.207~14! 1.247~33! 1.724~29!

0.04 0.5280~12! 1.0418~45! 1.2449~63! 1.337~43! 1.855~13!

0.08 0.7297~10! 1.1905~66! 1.3270~28! 1.4074~63! 2.0282~53!

0.16 0.9994~11! 1.4197~28! 1.4774~25! 1.5725~50! 2.3174~56!

0.32 1.362520~74! 1.7300~16! 1.69637~81! 1.7975~31! 2.6656~35!

Naik, bpl57.6, 163332

amq p p2 r r2 Nucleon

0.01 0.27294~23! - 0.945~28! - 1.36~15!

0.02 0.38154~24! 0.7513~89! 1.0106~87! 1.046~11! 1.411~52!

0.04 0.53125~25! 0.8629~46! 1.0911~56! 1.1424~73! 1.598~11!

0.08 0.73613~23! 1.0559~32! 1.2420~53! 1.312~11! 1.852~40!

0.16 1.01922~24! 1.3667~35! 1.4682~31! 1.5441~56! 2.256~15!

0.32 1.42502~16! 1.9038~93! 1.8670~34! 2.0072~69! 2.9137~61!

Kogut-Susskind,bpl57.6, 163332

amq p p2 r r2 Nucleon

0.01 0.28090~23! - 0.945~29! - 1.28~14!

0.02 0.39165~22! 0.7508~90! 0.9943~86! 1.031~11! 1.377~54!

0.04 0.54237~23! 0.8642~48! 1.0621~48! 1.190~15! 1.577~10!

0.08 0.74470~22! 1.0462~31! 1.2030~44! 1.2705~91! 1.804~33!

0.16 1.01321~19! 1.3092~27! 1.3882~22! 1.4474~38! 2.187~20!

0.32 1.36891~12! 1.6677~32! 1.6573~10! 1.7287~19! 2.5975~52!
t
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Susskind action atb55.54, 5.7 and 5.85@11#; these cou-
plings correspond roughly to the same lattice spacing as
improved action atbpl57.4, 7.75 and 7.9.

It is interesting to note that despite the large difference
the masses in lattice units in Fig. 3~and Table III!, in Fig. 5
the bpl57.4 Naik and Kogut-Susskind mass ratios lie pra
tically on the same curve, with the Naik values displac
slightly in the direction of smallermp /mr . When the mass
of ther meson is used to set the scale, from Figs. 3 and 5
see that for a given set of bare parameters the lattice spa
for the Naik fermions is slightly larger than for the Kogu
Susskind fermions, while the mass ratios are closer to
physical values. Conversely, if we want to investigate
samephysical system~mass ratio and physical volume!, the
Naik action enables us to use a bit larger bare quark m
and smaller lattices~in lattice units!. This effect becomes
smaller as one gets closer to the chiral limitmq→0 and to
the continuum limitbpl→`; nevertheless, it is clearly ob
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e

ss

servable in all of the Edinburgh plots in Fig. 5.

B. The chiral function and the continuum limit

A convenient method to measure quantitatively the deg
of improvement in hadron spectroscopy is to study the lat
spacing dependence~in units of amr! of the ratiomN /mr at
some fixed value ofmp /mr . This requires interpolation o
extrapolation to the desiredmp /mr ratio. We perform this
for eachbpl separately with chiral fit functions.

The chiral fits are motivated by quenched chiral pertur
tion theory ~QxPT!, which givesmN and mr in a power
series ofmp ~1 logarithmic terms!. Since in the leading
ordermp

2 }mq , these become power series inmq
1/2. For the

standard Kogut-Susskind action, the chiral extrapolatio
have been discussed in detail in@11#.

Extrapolation of the ratiomN /mr to the chiral limit mp

→0 or even to the physical limitmp /mr'0.1753 is sensi-
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TABLE IV. Masses forbpl57.75 andbpl57.9, 163332 lattices.

Naik, bpl57.75, 163332

amq p p2 r r2 Nucleon

0.01 0.26943~34! 0.5374~51! 0.829~18! 0.862~12! 1.140~80!

0.02 0.37638~30! 0.6175~42! 0.8951~96! 0.906~11! 1.265~26!

0.04 0.52339~20! 0.7421~22! 0.9701~47! 1.015~13! 1.429~10!

0.08 0.72718~18! 0.9428~14! 1.1071~22! 1.1479~77! 1.6855~35!

0.16 1.01186~16! 1.2587~17! 1.3577~65! 1.3963~26! 2.1018~42!

Kogut-Susskind,bpl57.75, 163332

amq p p2 r r2 Nucleon

0.01 0.27794~33! 0.5445~50! 0.830~16! 0.863~11! 1.174~11!

0.02 0.38752~28! 0.6182~22! 0.8895~82! 0.8898~53! 1.282~10!

0.04 0.53656~21! 0.7504~21! 0.9632~41! 1.025~11! 1.4225~90!

0.08 0.73830~17! 0.9460~13! 1.0984~32! 1.1351~54! 1.6866~64!

0.16 1.00860~12! 1.2320~16! 1.3173~32! 1.3550~41! 2.0571~47!

Naik, bpl57.9, 163332

amq p p2 r r2 Nucleon

0.005 0.18486~32! 0.3806~67! 0.6681~99! 0.6831~75! 0.920~12!

0.01 0.25907~28! 0.4284~48! 0.760~23! 0.725~11! 1.017~16!

0.02 0.36229~28! 0.5054~37! 0.7873~98! 0.7678~53! 1.0972~75!

0.04 0.50589~26! 0.6400~20! 0.8655~89! 0.8546~49! 1.2632~72!

0.08 0.70786~24! 0.8506~16! 1.0056~33! 1.0104~28! 1.5236~93!

0.16 0.99501~20! 1.1710~14! 1.2646~32! 1.2790~17! 1.9560~52!

Kogut-Susskind,bpl57.9, 163332

amq p p2 r r2 Nucleon

0.005 0.19160~32! 0.3848~71! 0.6704~96! 0.6756~73! 0.9114~67!

0.01 0.26809~28! 0.4339~49! 0.720~24! 0.753~28! 1.005~15!

0.02 0.37383~31! 0.5142~36! 0.7767~87! 0.796~11! 1.0963~69!

0.04 0.51985~29! 0.6525~20! 0.8599~44! 0.8576~45! 1.2703~65!

0.08 0.72125~26! 0.8624~15! 1.0051~23! 1.0115~26! 1.5376~78!

0.16 0.99577~21! 1.1642~27! 1.2401~19! 1.2630~37! 1.9388~54!

FIG. 3. Nucleon~upper! andr ~lower! masses as functions ofamq for bpl57.4 and 7.9.
014503-7
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tive to the form of the selected chiral fit function ansatz. T
value of the ratio is much less sensitive in the reg
mp /mr'0.4– 0.6, where the function interpolates betwe
measured mass values~see Fig. 5!. Detailed comparison o
the different actions is feasible in this region.

FIG. 4. The pion mass squared as a function ofamq for bpl

57.4.
01450
e

n

We exclude the ‘‘strong coupling’’ runs atbpl56.8 and
7.1, and fitamN(amq) and amr(amq) for bpl57.4– 7.9 to
the chiral ansatz

am5c01c1amq1c3/2~amq!3/21c2~amq!2. ~15!

This function gives good fits at all 4 couplings~after exclud-
ing the anomalous smallestamq value 0.005 frombpl57.9!.

QxPT for nucleons and vector mesons@20# implies the
presence of an additional term}amp , which corresponds to
(amq)1/2 in the continuum. If one includes a term}(amq)1/2

in Eq. ~15!, the fits invariably prefer a positive sign for th
coefficient; whereas QxPT gives a negative sign. Howeve
the appropriate pion mass in this term is actually the fla
singlet pion mass, which is not proportional to (amq)1/2 at
fixed lattice spacing due to flavor symmetry breaking. Wh
this is taken into account, acceptable fits with a coeffici
compatible both in sign and magnitude with QxPT are pos-
sible. This is studied in detail for our standard gauge Kog
Susskind hadrons in Ref.@11#. Since such fits do not appea
to change the extrapolated/interpolated values significa
from Eq. ~15!, but do increase the errors, we prefer to lea
out theamp term.

The error propagation is taken into account by perform
the ~fully correlated! fits separately to each of the jackknif
blocks.
data at
FIG. 5. The Edinburgh plots forbpl57.4, 7.6, 7.75 and 7.9. The fancy crosses show the standard unimproved Kogut-Susskind
bWilson56/g255.54, 5.7 and 5.85@11#; these correspond roughly to the same lattice spacing~determined byamr! as the improvedbpl

57.4, 7.75 and 7.9. The small circles denote the physical limit (mp /mr'0.18) and the infinite quark mass limit (mp /mr51).
3-8
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FIG. 6. ThemN /mr mass ratios as functions of the square of the lattice spacing@in units of (amr)2#, for mp /mr50.1753, 0.4, 0.5 and
0.7. From left to right, the Naik and the~improved gauge! Kogut-Susskind points correspond tobpl57.9, 7.75, 7.6 and 7.4; the standa
Kogut-Susskind points tobWilson56.15, 5.85, 5.7 and 5.54. The straight lines are linear fits to the~from top to bottom! standard K-S,
improved K-S and Naik data, where the intercept ata50 in the last two fits is fixed to the standard K-S value. In themp /mr50.7 plot, at
bWilson55.85 the ratiomN /mr is shown from two volumes, 203 and 243 ~third and second crosses from left!. The smaller volume is not use
in the fit.
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In most cases, it would be possible to obtain accepta
fits also with the simpler ansatz with eitherc3/2 or c2 fixed to
zero. However, while the full ansatz~15! works quite well
for the standard Kogut-Susskind hadrons@11#, these simpli-
fied functions do not. In order to facilitate the compariso
between the different actions, we retain the full chiral ans
~15! here.

The results of the chiral extrapolation/interpolation
mp /mr50.1753 ~physical!, 0.4, 0.5 and 0.7 are shown i
Fig. 6; both for improved actions and for the standard Kog
01450
le

s
tz

t-

Susskind action. Since we expect the leading errors to
O(a2), we plot the ratios against (amr)2. Hereamr is cal-
culated at the quark mass which yields the indicated valu
mp /mr . We make a linear fit with respect to (amr)2 of the
standard Kogut-Susskind data, and, since in the continu
limit all of the actions must yield equivalent results, we
straight lines to the improved Kogut-Susskind and Naik da
with the constraint that thea50 intercept is fixed to the
standard Kogut-Susskind value. The slopes and the co
dence levels of the fits are given in Table V.
ntains
are
TABLE V. The slopes and the confidence levels of the fits shown in Fig. 6. The second column co
the extrapolatedmN /mr(amr50) from the standard gauge K-S fits; the improved K-S and Naik fits
constrained to have this intercept atamr50.

K-S, std. gauge K-S, imp. gauge Naik

mp /mr (mN /mr)a50 slope CL slope CL slope CL

0.1753 1.246~18! 0.22~2! 0.05 0.14~2! 0.51 0.12~2! 0.99
0.4 1.334~10! 0.144~10! 0.34 0.098~8! 0.67 0.074~7! 0.97
0.5 1.391~6! 0.101~5! 0.60 0.074~4! 0.64 0.053~4! 0.74
0.7 1.489~3! 0.040~3! 5.3e25 0.038~2! 0.20 0.029~2! 0.50
3-9
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We make the following observations:
In the intermediatemp /mr50.4 and 0.5 plots, the im

proved gauge nucleon tor mass ratios are clearly closer
the continuum values than the standard Kogut-Sussk
ones. Indeed, thebpl57.9 value is very close to the standa
Kogut-SusskindbWilson56.15 one, but with twice the lattice
spacing~albeit with larger statistical errors!. At large lattice
spacings (bpl57.4) the Naik fermions show smaller scalin
violation than the improved gauge Kogut-Susskind fermio
but this difference becomes very small when the lattice sp
ing is reduced.

The improvement is quantified by the slope of the line
fits in Table V. Whenmp /mr50.4 and 0.5, there is a statis
tically significant difference between the slopes of the th
different cases. However, for the improved Kogut-Sussk
and Naik cases the difference is largely due to the larg
lattice spacing data point. If this point is excluded in the fi
the resulting slopes for the improved K-S and Naik data
come statistically compatible, but they still remain clea
smaller than those in the non-improved case.

At the physical ratio mp /mr50.1753 the errors in
mN /mr increase dramatically due to the extrapolation
amq . Nevertheless, we observe a pattern similar to tha
larger quark mass.

At mp /mr50.7, the linear fit to the standard Kogu
Susskind data has a very small confidence level. This is m
likely due to a statistical fluctuation of our benchmark 23

lattice atbWilson55.85. In the last panel of Fig. 6 we sho
the value ofmN /mr measured from 243 and 203 lattices
~second and third crosses from left!. While the ratio from the
smaller volume remains consistent with the linear behav
in (amr)2, the result from the larger volume is anomalous
large. Nevertheless, in order to avoid unnecessary clutter
retain only the larger volume in our analysis. For smal
mp /mr -ratios the 243 lattice gives results consistent wit
other bWilson -values. Note also the small range ofmN /mr

covered by themp /mr50.7 plot, and that the error bars o
the individual points are much smaller than at sma
mp /mr .

As the quark mass is lowered, the difference between
two types of quarks in the improved gluonic fields is r
duced. Thus, atmp /mr50.7 most of the improvement o
mN /mr is attributable to the Naik improvement, where
near the physical quark mass, most of the improvem
comes from the gluonic action. A large part of the Na
improvement is due to the larger (amr) and hence a large
lattice spacing. If one uses the string tension to set the s
the difference between the Naik and the Kogut-Susskind
tions becomes smaller.

The linearity @against (amr)2# of the standard Kogut-
Susskind~KS! mN /mr-ratio clearly supports the notion tha
the scaling violations behave asO(a2). When mp /mr

<0.5, the constrained linear fits to the improved gau
Kogut-Susskind and Naik data have confidence levels be
than 0.5, certainly quite compatible withO(a2) leading scal-
ing violations ~Table V!. The magnitude of the violations–
the slope of the line—for the Naik data is only about 1/2
the standard Kogut-Susskind value, whereas the impro
gauge Kogut-Susskind has a slightly larger slope than N
01450
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We can also test whether the data would allow forO(a3)
scaling violations for the Naik action. Whenmp /mr50.5 a
constrained fit of formA1B(amr)3 ~where againA is set to
thea50 intercept of the standard Kogut-Susskind data! does
not fit the Naik data well: the confidence level is only 0.1
~as opposed to 0.74 in Table V!. This disfavors the leading
O(a3) errors. For smallermp /mr-ratios the statistical errors
become larger and this analysis cannot distinguish the fi

To check consistency, we can relax the constraint aa
50 and fit independent straight lines to all data sets. Wh
mp /mr<0.5 the intercepts ofmN /mr at a50 are compat-
ible for all cases: 1.39160.006 for standard K-S, 1.378
60.015 for improved gauge K-S, and 1.39160.016 for
Naik. This remains true also for smallermpi /mr ~with larger
errors in the extrapolatedmN /mr value!.

The lattice spacing and the size of the system in phys
units can be obtained by extrapolatingamr to the physical
mp /mr-ratio and settingmr5770 MeV. These are given in
Table VI.

The numbers in Table VI have been calculated with
Naik quark action; for the Kogut-Susskind action the latti
spacings and the box sizes would be fractionally smal
The box sizes are considerably larger than 2 fm~with the
possible exception ofbpl57.9!, so that we can safely ignor
the finite size effects@21#. For the weakest coupling and th
smallest quark mass, the productmp3(Lattice size) is ap-
proximately 3.0.

Besides the mass of ther-meson, the square root of th
string tension is commonly used to determine the latt
spacing. In Fig. 7 the ratiomr /As is plotted againsta2s.
Here amr is evaluated at the physicalmp /mr50.1753 and
at 0.7. The string tension for the standard gauge actio
interpolated from the data in the literature@22#; for the im-
proved gauge action~1! it has been measured by the SC
group @23#.

Since the scale violations are expected to behave
O(a2), themr /As ratio should behave linearly as a functio
of a2s. Indeed, the standard Kogut-Susskind data sho
good linearity up toa2s50.17 (bWilson55.7). However, at
stronger coupling~5.54! the ratio falls strongly off the linear
behavior. We fit a straight line to the three weakest coupl
data points, the intercepts ata50 are 1.738~25! at the physi-
cal mp /mr50.1753 and 2.238~11! at 0.7~the errors quoted
here are only statistical!. These results are consistent with th
SCRI group~preliminary! Wilson and clover fermion mas
ratios @23#.

The improved gauge Kogut-Susskind and Naik data s
seem to reside completely in the ‘‘strong coupling region
although there is some indication that at weaker coupli
the ratios would bend to the direction of the line defined
the standard Kogut-Susskind data. Extrapolation of the

TABLE VI. The lattice spacing and the box size in physic
units.

bpl 6.8 7.1 7.4 7.6 7.75 7.9

a ~fm! 0.37 0.35 0.31 0.24 0.21 0.19
Size ~fm! 5.9 5.0 5.0 3.8 3.4 3.0
3-10
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FIG. 7. The ratiomr /As againsta2s at mp /mr50.1753 and 0.7.
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proved action ratios to the continuum limit is clearly n
justified.

The non-linearity in mr /As is somewhat surprising
when we compare it against the purely hadronic observa
in Fig. 6. This lends support to the view that a large part
the scaling violations cancel in the hadronic ratios, and j
tifies the use ofamr as the scale factor in purely hadron
observables.

C. Lorentz symmetry

As discussed in Sec. II C, the free quark continuum d
persion relation is approximated much better by the N
action than by the standard Kogut-Susskind action. At v
high temperatures, deep in the quark-gluon plasma phase
quarks behave approximately as free particles, and the N
action improves QCD thermodynamics@10#. However,a pri-
ori it is not clear whether the dispersion relation of hadro
states is improved.

We test hadron dispersion relations by measuring the
ergy of thep- and r-meson states with finite spatial mo
menta on 100 lattices withbpl57.4, amq50.04 and volume
163332. We use 4~finite momentum! wall sources, sepa
rated by 8 lattice units.

The source operators are constructed as follows: first,
take a zero momentum wall source, which is 1 for a parti
lar source color at each spatial slice at the source time. T
is used as a source for the conjugate gradient to compute
quark propagators. Then this wall source is multiplied by
momentum dependent phase factor exp(ik•x), by the sign
factors ~depending on the location in the 24 flavor hyper-
cube! to select the desired meson, and by an ex
(21)(m

xm corresponding tog5 . This is used as a source fo
the conjugate gradient to compute the antiquark propaga
The sink operator is similar, except that the quark and a
quark propagators are multiplied together with the appro
ate phase and sign factors before summing over sp
points, corresponding to a local sink.

For pions, we use momentum vectors pointing to 3 diff
ent directions:kL/(2p)5(0,0,1), ~0,1,1!, ~1,1,1!, and these
multiplied by 2. For ther-meson, we use~the lattice analog
of! the vector operatorc̄g3c, and we expect that the dispe
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sion relation may be different along thez-axis direction and
perpendicular to it. Therefore, forr we use kL/(2p)
5(0,0,1), ~0,1,0!, ~0,1,1! and~1,1,0!. The signals for higher
momenta are too noisy to be useful. The results are liste
Table VII.

The violation of Lorentz invariance can be quantified
measuring the ‘‘speed of light’’ with the continuum dispe
sion relation

c2~k!5
E2~k!2E2~0!

k2 . ~16!

The deviation ofc2 from unity directly measures the viola
tion of Lorentz invariance. The results are shown in Ta
VII and in Fig. 8 ~for pions!. The Naik pions show a clea
improvement ofc2 over the Kogut-Susskind pions: the d
viation from unity is reduced approximately by half. Th
results for ther-mesons seem to indicate a dependence
the direction of the momentum~parallel or perpendicular to
z!. Also, here thec2 is closer to unity for the Naik mesons
however, the statistical errors are so large that we can
make definite statements about the improvement.

D. Flavor symmetry

The restoration of flavor symmetry can be discerned
investigating the mass differences betweenp and p2 me-
sons. The first particle is the Goldstone boson correspond
to the spontaneously broken U~1!3U~1! chiral symmetry and
it becomes massless whenamq→0 even at a finite lattice
spacing~Fig. 4!. In comparison, thep2 mesons remain mas
sive in the chiral limit, and become massless only when b
the chiral and the continuum limits are taken.

We use the dimensionless quantity

dp5
mp2

2 2mp
2

mr
22mp

2 ~17!

to measure flavor symmetry breaking. For the stand
Kogut-Susskind quark action, this quantity is almost ind
pendent of the bare quark massamq at small lattice spacings
In Fig. 9, we showdp for bpl>7.4 improved gauge Naik and
Kogut-Susskind hadrons, together with the unimproved g
3-11
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TABLE VII. The energy of thep andr meson states at finite momentumk5n2p/L, and the ‘‘speed of
light squared’’c2(k)5@E2(k)2E2(0)#/k2, for bpl57.4, amq50.04, 163332 lattice.

Kogut-Susskindp Naik p

kL/(2p) aE(k) c2(k) aE(k) c2(k)

~0,0,0! 0.53521~17! - 0.52625~15! -
~0,0,1! 0.65223~56! 0.9010~45! 0.65111~50! 0.9532~39!

~0,1,1! 0.74710~63! 0.8809~30! 0.75474~76! 0.9489~36!

~1,1,1! 0.82655~88! 0.8575~31! 0.8411~11! 0.9305~40!

~0,0,2! 0.8817~14! 0.7959~40! 0.9087~26! 0.8897~77!

~0,2,2! 1.0925~32! 0.7353~57! 1.1549~44! 0.8566~83!

~2,2,2! 1.275~11! 0.723~15! 1.395~19! 0.902~29!

Kogut-Susskindr Naik r

kL/(2p) aE(k) c2(k) aE(k) c2(k)

~0,0,0! 1.2411~69! - 1.3065~79! -
~0,0,1! 1.262~27! 0.34~44! 1.3489~80! 0.73~15!

~0,1,0! 1.289~13! 0.79~21! 1.362~16! 0.97~28!

~0,1,1! 1.298~13! 0.47~11! 1.385~19! 0.68~16!

~1,1,0! 1.320~18! 0.65~16! 1.385~12! 0.68~12!
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Kogut-Susskind values, as functions of (amr)2. The data is
interpolated tomp /mr50.5 ~compare to the third panel in
Fig. 6!. With this constraint, the flavor symmetry breakin
parameter reduces todp5(mp2

2 /mp
2 21)/3.

At this value ofmp /mr , we observe that the flavor sym
metry violation at smalla is reduced by'45% due to the
improved gauge action. When the Naik fermions are us
dp is slightly smaller than with the Kogut-Susskind ferm
ons. However, this situation would become reversed, if
usedaAs instead ofamr to set the scale.

Figure 9 clearly indicates that the leading flavor symme
breaking terms are proportional toa2 for all of the actions
studied. The region linear in (amr)2 extends to larger lattice
spacings with the improved gauge.

A successful additional improvement of the Kogu
Susskind flavor symmetry is the MILC ‘‘fat link’’ fermion
action @9#. That action substitutes the standard gauge li

FIG. 8. The ‘‘speed of light squared,’’ calculated from the pio
dispersion relation, for Naik and K-S pions.
01450
d,

e

y

s

with smeared average links in the fermion hopping term
The averaging process improves the flavor symmetry d
matically, the improvement being roughly comparable bo
for the standard Kogut-Susskind and the Naik action. Th
observations indicate the importance of the coupling of f
mions to the gauge fields for the flavor symmetry of t
staggered action. The Naik action~8! can be interpreted na
ively as a straightforward improvement of the~free! fermion
dispersion relation.

The improvement in flavor symmetry from the Symanz
improved gauge action, like the improvement from the
link quark action, can be understood as a suppression of

FIG. 9. Flavor symmetry breaking parameterdp5(mp2

2

2mp
2 )/(mr

22mp
2 ), interpolated tomp /mr50.5, as a function of

(amr)2. The data correspond to the same values ofb as in Fig. 6.
The straight lines are linear fits to 2~standard gauge! or 3 ~im-
proved gauge! points with the smallest lattice spacings, constrain
to go through the origin.
3-12



m
in
in
m
nd

e

e
:

m
s

to
on

(
th
in
n
h
ll

ron
ac-

-
me
al-
nic
he

e to

ig-

to
the
the
el as
ac-
ion
ac-
ark
re-
the
ns
at

on
nic
-
or,
pe-
re

ave
ion
can
e

l-
t of
2-
R-
E-
nal
SF-

on
ha
en-
go

QUENCHED HADRON SPECTROSCOPY WITH IMPROVED . . . PHYSICAL REVIEW D 58 014503
effects of high momentum gluons. Gluons with momentu
near p/a scatter quarks from one corner of the Brillou
zone to another, which is roughly equivalent to chang
their flavor @24,25#. The suppression of the high momentu
gluons becomes evident when the gauge action is expa
to quadratic order in the vector potentialAm $where the lat-
tice variableUm(x)5exp@2igaAm(x)#%. Using the shorthand
notation

k̂m52 sin 1
2 akm , k̂25(

m
k̂m

2 , ~18!

and

f m,n~k!5 k̂mAn~k!2 k̂nAm~k!, ~19!

the quadratic part of the action~1! can be written in the form
@26#

S~2!5 1
2 a2 (

k;m,n
f m,n~k! f m,n~2k!@cpl18crt116cpg

2~crt2cpg!~ k̂m
2 1 k̂n

2!2cpgk̂
2#. ~20!

Here the coefficientsci denote the relative strength of th
three terms in the action. They are related to coefficientsb i
throughci6/g25b i . As an overall normalization we requir
that the constant term within the brackets equals to onecpl
18crt116cpg51.

For the Wilson gauge action the coefficients arecpl51,
crt5cpg50, whereas for the improved actioncpl.1 and
crt ,cpg,0. With the improved gauge, the non-constant ter
within the brackets in Eq.~20! increase the action for mode
close to the edges of the Brillouin zone~km'6p/a, for at
least onem!.

As a simple example we consider a momentum vec
parallel to one of the lattice axes and at the edge of the z
In this case the term within the brackets in Eq.~20! reduces
to (124crt). At bpl57.4, using Eqs.~5!, ~6!, Table I and the
normalization condition above, the coefficientcrt has a value
'20.26. When compared to the Wilson gauge actioncrt
50), this more than doubles the action difference of
modes close to the edge of the zone and near the origk
50. When the lattice spacing is reduced, the suppressio
the modes near the edge of the zone increases rapidly, w
the relative difference between the actions becomes sma
At tree level, the coefficients assume valuescpl55/3, crt5
21/12 andcpg50, still yielding a 33% difference of the
action atkm5p/a.
,’
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IV. CONCLUSIONS

We investigate improvement of the quenched light had
mass spectrum using a tadpole-improved staggered Naik
tion ~8!, which at the tree level does not haveO(a2) errors.
Correspondingly, we useO(a2) tadpole improved gauge ac
tion to generate the gauge configurations. Using the sa
gauge action for both the Kogut-Susskind and the Naik c
culations allows us to separate the effect of the fermio
improvement from the improvement of the gauge action. T
latter is studied by comparing the results presented her
our standard Kogut-Susskind results, Ref.@11#.

We find that improvement of the gauge action has a s
nificant effect on the hadron spectrum: whenmp /mr;0.5,
the nucleon tor-meson mass ratio is roughly 50% closer
the continuum value with the improved gauge than with
standard gauge action. Thus, the scale violations with
standard gauge spectroscopy are at roughly the same lev
with the improved gauge at about 1.4 times the lattice sp
ing. Using the improved gauge action, the Naik quark act
has smaller scaling violations than the Kogut-Susskind
tion, although the difference becomes small, when the qu
mass is reduced. Similarly, improving the gauge action
duces the amount of flavor symmetry breaking, but using
Naik action yields little further gains. For both of the actio
the flavor symmetry can be further improved with the ‘‘f
link’’ procedure @9#.

The biggest improvement provided by the Naik acti
comes from the improved Lorentz invariance of the hadro
states. This is best evidenced by thep-meson dispersion re
lation, which is much closer to the continuum behavi
when the Naik action is used. This property may be es
cially significant for nonzero temperature simulations, whe
the hadronic and/or quark degrees of freedom typically h
large momenta. Thus, when one strives for higher precis
in staggered quark simulations, an economical solution
be found from the combination of an improved Naik-lik
quark action together with the fat links.
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