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We investigate light hadron spectroscopy with an improved quenched staggered quark action. We compare
the results obtained with an improved gauge plus an improved quark action, an improved gauge plus standard
guark action, and the standard gauge plus standard quark action. Most of the improvement in the spectroscopy
results is due to the improved gauge sector. However, the improved quark action substantially reduces viola-
tions of Lorentz invariance, as evidenced by the meson dispersion reldi&@%56-282(198)03513-9

PACS numbds): 12.38.Gc, 14.20-c, 14.40—n

I. INTRODUCTION mionic improvement, we compare the hadronic spectrum ob-
tained with both the unimproved and improved fermion ac-
The precision of numerical lattice QCD simulations with tions, using the same gauge configurations. An excellent
the standard lattice actions is constrained by the availablaseline for the evaluation of the improvement is provided
computational resources. In order to keep the duration of they our extensive standalgion-improved quenched Kogut-
calculation within manageable bounds, one is forced to us&usskind hadron spectroscopy calculafibf].
lattice spacings which may be too large to describe accu- As opposed to Wilson fermions, the improvement of the
rately the continuum physics. This problem has been adstaggered action has attracted relatively little attention. This
dressed by the development of improvild-3] and fixed- is partly due to the formal complexity of the staggered for-
point[4,5] actions. The promise of these actions is to yieldmulation, partly to the fact that the standard Wilson fermions
good approximations to the continuum physics with rela-have an erro¥(a), whereas the staggered action is already
tively coarse lattice spacingé-or a recent review, sgé].)  accurate to this ordérNevertheless, the improvement of the
In the Symanzik improvement schenig,2] the lattice  staggered action is highly desirable: the staggered action has
action and fields are improved in powers of the lattice spaca U(1)XU(1) chiral symmetry, remnant of the full continuum
ing a. This is achieved by introducing higher dimensional U(4)xU(4) symmetry(for 4 quark flavors This symmetry
terms into the action. In the continuum limit, these terms ards restored in the continuum limit; however, for practical
irrelevant, but at a finite cutoff the coefficients of these termsvalues of the lattice spacing a substantial flavor symmetry
can be tuned so that the discretization errors of spectral quatweaking remains. This is a lattice artifact, and it remains a
tities are diminished. The most straightforward method tomajor problem, when one studies the restoration of the spon-
determine the coefficients is to expand the action in a Taylotaneously broken chiral symmetry at finite temperature.
series ina, and to cancel the leading scaling violating termsMoreover, the very successfid?(a®) improvement of the
order by ordertree-level improvement This can be refined pure gauge action makes it very natural to try to bring the
by using perturbative analysis or non-perturbative numericafiuark action to the same accuracy.
methods to determine the coefficients. This paper is organized as follows: in Sec. Il we discuss
In this paper, we study the improvement of the staggerethe improvement of both the gauge and the fermion actions
(Kogut-Susskingl quark lattice QCD action with quenched and the properties of the free fermion actions. In Sec. Ill we
spectroscopy calculations. The improvement is implementefiresent the results of the simulations and the comparison of
by adding a third-nearest-neighbor term, first proposed by
Naik more than a decade agjd]. Some of the preliminary
results of this study have already been published8i9]. Because of this fact the combination of the non-improved gauge
The same improvement scheme has been applied to nonzesay improved quark actions is of interest primarily for Wilson
temperature calculations by Karsef al. [10]. The gauge quarks, because then one h@g?) -errors on both sectors of the
configurations used in this study are generated with amction. For the Kogut-Susskind quarks this is true already at the
O(a®) one-loop and tadpole-improved gauge act[@3]. non-improved level. Thus, we do not consider this combination
Since our main goal is to investigate the effects of the ferhere.
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the different actions. In particular, we study) the my/m, With these ingredients, the coefficients of the acti@n
mass ratios at several fixed valuesnef/m, as functions of  are related by the 1-loop expressidig]
the lattice spacing(b) the Lorentz invariance ofr and p

meson states, and) the restoration of the flavor symmetry _ B
; : =—— (1+0.
(as determined by the mass difference of the pseudo- Pr 20u(2) (1+0.480%) ©
Goldstone and non-Goldstorne mesons Our conclusions
are presented in Sec. IV. By
Bpg=— 2 0.0332% (6)
0

II. IMPROVEMENT OF THE ACTION . . .
where the strong coupling constant is determined through the

A. The gauge action 1-loop relation

We generate gauge configurations with the tadpole-

improved SU3) gauge actiori2,3,17: as= —4log(uo)/3.0684. @)

The leading errors of this action are of ord@¢a®a?,a%).

Se=Bp > (1-P,)+Bx 2 (1-R,,)
X, u<v X, u#F v

B. Tree-level improvement of the quark action

In this work, we study the following fermion action:
By X (1-Cpp) M Y °
M<v<o
— 1
Sv=a'2 7,00x(0 5{Ci[U (0 x(x+ )
whereP is the standard plaquette in thev -plane, andR NTE L X 2a CalULOOX 0
andC denote the real part of the trace of the ordered product

_tixv— _
of SU(3) link matrices along X2 rectangles and 4 1x1 U, (X=p)x(X=p)]
aths, respectively:
P P y +Co[U (U ,(x+ ) U ,(x+20) y(x+3p2)

P, = %ReTr @ —UL(x= U L(x=2m)U [ (x=3p) x(x—3p)]}
T 4 y,
R, = %Re Tr (3) ra quX: X)X, ®

where the phase factoy, (x) = (—1)***1-*:-1), The stan-
dard Kogut-Susskindstaggereplaction is obtained with co-

4) efficientsc,=1 andc,=0. At tree level, the action i®(a?)
accurate wher;=9/8 andc,= —1/24. In this case, thdif-
ferencefrom the Kogut-Susskind action is a discrete version
of the 3rd order derivative:

In general, the improvement conditions do not uniquely

specify the form of the action. For example, at tree-level, 1 f(x+u)—f(x—pm) 1 f(x+3m)—f(x—3u)

adding either the planar 6-link term or one of several 8-link 3 2a 24 2a
terms to the standard action would cancel @@?) errors.

1
Cuwo = 3 ReTry

2

However, when the quantum corrections are calculated with a® 5 4

the lattice perturbation theory, then at least two terms are ~ 6 g,f(x)+0(a"). ©)
required to canceD(g?"a?) errors[2]. The terms in Eq(1)

provide the most compact form of the action. The staggered action with a third nearest neighbor term was

Because of the UV divergence of the tadpole-type graphsriginally proposed by Naik7]. However, he was studying
in lattice perturbation theory, operators formally of ordér  the improvement of the Dirac-Kder action, which has a
in the expansion of the action are changed to ordedifferent coupling to the gauge fields than the action in Eq.
a"~2mg2M py quantum effects, depending on the number of(8). The Dirac-Kler action lacks the exact (W)xU(1)
tadpole graph contributions to that particular terfim the  -symmetry enjoyed by the actiof8), and the bare quark
tadpole contributions=2m, i.e., tadpoles do not introduce mass has to be additively renormalized. These properties
additional UV-divergenciesThe contribution of the tadpole make use of the Dirac-Kder action much less appealing
diagrams can be partially taken into account by absorbinghan the Kogut-Susskind action. Nevertheless, in the follow-
them in the lattice coupling constants. This is commonlying we shall call the actioi8) the Naik action.
achieved by the definition of the “average gauge link” from  The (one-componentGrassmann fielgy describes 4 fla-
the plaquetteuo=(P)¥* which is strongly dominated by vors of Dirac fermions in the continuum limit. This is not
tadpoles, and by replacing;(x) — U;(x)/ug in every lattice  transparent in E¢@8), nor can one easily identify the leading
operatoir{3,12]. This corresponds to a redefinition of the lat- irrelevant terms when the continuum limit is taken. At the
tice gauge coupling®— g?/ug. free fermion level, perhaps the easiest way to see this is to
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use the following transformatiofil3]: in momentum space,
we decompose the momentum veckor p+wA/a, A,=0 4.0 - ]
or 1, and we restrict &k<m/a. A new (16-component
fermion field ¢ is defined as &
30 | e |
&7
1 AB il
¥(p)=3 gB (= DA B ax(p+wBla) (10) aE(p) S
20 f
Y 1 A-Brt
y(p)=5 2 (~D*PTix(p+aBla). (11
AB Lo+
where
[ .= 1 0 1, A2, A 0'000 10 20 30 20
A=Yo Y1 Y2 Y3 (12 . k . X X

In terms of fieldy, the free actior(8) becomes FIG. 1. The dispersion relatioB(p) for massless free quarks

o with different fermion actions. The momentumis to the spatial
Sfree=2 W(p) direction (1,1,0, and the dispersion relations are plotted up to the
p end of the Brillouin zone.

X 2 Y,LI—(Clsi” pLa+Cysin 3p,a)+m| Y(p). As with the gauge action, we may improve the act{Bn
u a beyond the tree-level by taking into account the modifica-
(13) tions due to gluon tadpoles: with the replacement
U—U/ug, the coefficients; in action(8) become
This form of the action is flavor diagonal; however, if we
perform an inverse Fourier transform, the derivative term
becomes nonlocal. The Kogut-Susskind actioca=0) has
leading O(a?) errors. The coefficientc;=9/8 and c,

= —1/24 for the Naik action are readily recovered from Ed. |, this work we use the quark action defined by E®

(13) by expanding the trigonometric functions. (14). In the nonzero temperature calculation in H&D] the
When the gauge fields are included one cannot transformn tion (8) was used with the “tree-level” values.

the action(8) to the form in Eq.(13). It is not at all obvious
that the interacting Kogut-Susskind action is stiifi(a)
-accurate. In order to see the flavor structure more clearly,
one usually performs thélocal) transformation originally The free quark dispersion relatioB(p) can be found
proposed by Kluberg-Sterat al. [14]. It transforms the 1- from Eq. (13), by solving for the poles of the Euclidean
component staggered fiejdto a hypercubic 16-component propagator and using the identificati@= Reip,. In Fig. 1
“quark field” (4 flavors of 4-component Dirac spindss we show the massless quark dispersion relations for the stan-
which lives on a lattice with twice the original lattice spac- dard Kogut-Susskind and Naik actions. For comparison, we
ing. The quark field action cannot be written in a compactalso show the Wilson fermion action dispersion relation. The
form, but when expanded in powers of the lattice spaeiity  Naik action follows the continuum dispersion relatidh
has apparent dimension-5 terfiggving rise toO(a) errorg. =|p| much better than the standard Kogut-Susskind action
However, the Kogut-Susskind action doest have on-  up to|p|~ 1.8/, not to mention the Wilson actiofwith the
shell O(a) errors. This has been shown by Shaffg] and  Wilson parameter =1). Note that for massless free quarks
Luo [16,17 by a generalization of the Kluberg-Steetal.  both the Wilson and the Kogut-Susskind actions héa?)
transformation. The leading scaling violations staiéa?). leading errors. Because of the third nearest neighbor cou-
In order to cancel them, one has to add dimension-6 terms tpling in the imaginary time direction, unphysicghost
the action; these terms have been classified by[llih The  brancheswith complexip,) appear in the dispersion rela-
terms fall into two cIassea?D% terms, whereD® is a ge-  tion. These states will become infinitely massive when
neric combination of 3 covariant derivativgand to which —0.
class the “Naik term” in Eq.(8) belongg, and 4-fermion For free fermions, the thermal energy can be easily calcu-
terms. Unfortunately, even in the simplest form, the actionlated fromE=T29 log Z/JT. In the imaginary time formal-
has 15 dimension-6 terms with—so far—unknown coeffi-ism, the temperatur@=1/(Nta), the inverse temporal ex-
cients. Therefore, we limit ourselves here to a much mordent of the lattice. Under the assumption that the free energy
modest goal and study the degree of improvement possible is proportional to the volume, the pressure B
obtain with the action8), bearing in mind that this action =Td logZ/éV. In Fig. 2 we showE/T* and P/T* for free
cannot cancel all of the(a?) errors, but only the ones Kogut-Susskind, Wilson and Naik fermions as functions of
present already for free fermions. the inverse lattice spacing. Also shown are the results from

1

— . 14
24u3 (14

C]_: 02:_

9
8ug

C. Properties of the free quark action
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FIG. 2. The energyleft) and the pressurgight) per fermion degree of freedom for free Kogut-Susskind, Naik, Wilson and “P48]
fermions as a function dii;=1/(aT). The continuum values are shown with dashed lines.

the Bielefeld “P4” staggered actiofi8]: like the Naik ac- were measured with 5-6 bare quark masses
tion, it contains a 3rd nearest neighbor coupling, but in thisamq=0_005—0_32; the hadron masses are shown in Tables
case th_e neighbors are coupled along L-shaped fétles [—|V.
Naik  #(x)U ,(x)U ,(x+ [L)UM(X+ 2,&) P(x+ 3,&) -terms Throughout th_e analysis we quantify the perfor_mance of
are replaced with terms of forrﬁ(x)uﬂ(x)uv(xﬂl)uy(x f[he improved actions by comparing Fhe results against a non-
R+ D)X+ it 25), with v#u]. The P4 action yields improved benchmark—an extensive standard quenched

M M ) K . y Kogut-Susskind hadron spectroscopy study by the MILC
the same tree-level improvement as the Naik act{&or a llaborati icul — /02
comparison with a renormalization group improved freecc:3 g 405%“%5[171]2' @In gasrgc; &ar, Wg éj igﬂ ?‘)"{2?'501_,[?9

. =5, , 5. , 5. and 6. attices

staggered quark action, see the last paper of E@D. ﬁwith tfge s)patial E/ol Jme in p(are)ntheQ;eS (39

The energy 'and pressure of the 'Na|k fermions approac The Naik hadron propagator calculation requires about
the continuum ideal fermion gas limits much faster than thetw

standard Kogut-Susskind action. Indeed, the Bielefeld group 0 times more CPU time than the Kogut-Susskind one. The
' ' number of conjugate gradient iterations is very similar for

[10] reported an improved thermodynamic behavior eve ; . ; .
when the interacting gauge fields are included in a dynamicgpe Naik and the Kogut-Susskind quarks, but since the Naik

h i action(8) involves about twice as many terms, the computa-
quark Monte Carlo simulation. tional load is higher. For example, for the,=7.4, 16
X 32 lattices the number of the conjugate gradient iterations
for each source plane varies approximately from 18
A. Hadron spectrum =0.32) to 2050 4m;=0.02) for the Kogut-Susskind and
The parameters of the acti¢t) used in the generation of from 140 to 2400 for the.Nalk action, whereas the CPU time
per plane foram,=0.02 is about 260 seconds for K-S and

the quenched configurations are shown in Table I. 600 seconds for Naik on the Intel Paragon using 32 nodes.
We measure the masses of the nucleon, the Goldstone . :
In order to find the best confidence levels of the propaga-

pion , [corresponding to théspontaneously brokgrex- tor fits, we used one-, two- and three-particle fitting func-

plicit U(1) chiral symmetry of the actior(8)], the non- . . L o
e tions, varying both the beginning and the end of the fitting
Goldstone("SC" ) pion 5, and thep andp, mesons. The range. All of the fits use the full invariance matrix of the

masses were calculated both W!th the Naik and the Kogu é)ropagators. We block together all of the propagators on
Susskind actions. For each lattice and propagator, we use : . . ;
four wall source planes. In each case. the hadron propa atoeach lattice, then, in order to facilitate further analysis, we
P ' ' Propagalofz culate the masses using a single elimination jackknife pro-
TABLE I. The parameters of the rung, and 8,y can be ob- ced_ure. Wher) fitting each jackknife sample, we use the in-
, variance matrix of the entire ensemble, rather than recomput-
tained through Eqg5)—(7). . - . .
ing the invariance matrix for each sample.

A generic feature of the fits to the propagators is that one

Ill. THE SIMULATIONS AND THE RESULTS

Bl Ug Volume N cont. . I Lo

has to use considerably larger minimum fit distance from the
6.8 0.8261 18x 32 199 source with Naik fermions than with the Kogut-Susskind fer-
7.1 0.8441 12x 28 203 mions. The reason for this effect is probably the large extent
7.4 0.8629 18x 32 200 in the imaginary time direction of the Naik derivative opera-
7.6 0.8736 18x 32 100 tor in Eq.(8) [19]. The transfer matrix is well defined only at
7.75 0.8800 15x 32 200 imaginary time separations larger or equal to 3. The ghost
7.9 0.8848 18x 32 200 branch in the dispersion relation can also cause short dis-

tance effects in the correlation function.
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TABLE Il. Masses forB,=6.8, 16x 32, andg=7.1, 14 28 lattices. Entry “-” means no good mass
fits were possible.

Naik, 8,=6.8, 16x32

am, T Ty p P2 Nucleon
0.02 0.34343¢0) 1.4(2) 1.53715) 2.0618) 2.30150)
0.04 0.4844584) 1.533) 1.61124) 2.02172) 2.387119)
0.08 0.68269®82) 1.866) 1.696491) 2.09829) 2.73038)
0.16 0.96277@60) 2.123) 1.858175) - 3.03249
0.32 1.36562(61) - 2.06127) - 3.58914)

Kogut-SusskindB,=6.8, 16x 32

am, T Ty p P2 Nucleon
0.02 0.35054{81) 1.41%475) 1.40513) 1.7313 2.163293)
0.04 0.49287@0) 1.47435) 1.430861) 1.64248) 2.13464)
0.08 0.6899367) 1.52416) 1.481625) 1.66Q17) 2.328659)
0.16 0.9595483) 1.64Q10) 1.577237) 1.738956) 2.44733)
0.32 1.32565@/4) 1.889643) 1.7580252) 1.907825) 2.743479)

Naik, B,=7.1, 1£x 28

am; T Ty p P2 Nucleon
0.02 0.3563712) 1.28939) 1.57344) 1.59567) 2.1613

0.04 0.5007&0) 1.47359) 1.56818) 1.65138) 2.34251)
0.08 0.7026€L7) 1.58526) 1.618870) 1.82223) 2.45931)
0.16 0.98521®3) 1.96865) 1.82212) 2.008783) 2.75919
0.32 1.38935@1) 2.87480) 2.118839) 2.7216) 3.38474)

Kogut-SusskindBy=7.1, 14x28

am, T Ty p P2 Nucleon
0.02 0.36368L3) 1.41%77) 1.33814) 1.3731) 1.99Q37)
0.04 0.50958L3) 1.35632) 1.40318) 1.44316) 2.19059)
0.08 0.7093413) 1.361(25) 1.448169) 1.530%72) 2.27818)
0.16 0.97936aL1) 1.59217) 1.568076) 1.668153) 2.41411)
0.32 1.3425@10) 1.821389) 1.742315) 1.857416) 2.714225)

In Fig. 3 we summarize the nucleon apaneson masses Figure 5 shows the Edinburgh plots 6f=7.4—7.9. The
from Tables lll and IV forg,=7.4 and 7.9, and in Fig. 4 the my/m, -ratios from8,=6.8 and 7.1 exhibit typical strong
pion mass squared foB,=7.4. The masses of the Naik coupling behavior: the rationy/m, remains roughly con-
hadrons in lattice units tend to be larger than the Kogutstant at around 1.5 whemy—0 (m,/m,—0). Only when
Susskind masses, but the difference gets smaller with de3,=7.4 do the data show an approach to the vicinity of the
creasingam, (approaching the chiral limitand increasing physical value, and thus in the following we concentrate on
Bpi (continuum limiy. At 8,=7.9 the differences are barely these couplings. For comparison, we also plot fig/m,
discernible. mass ratio obtained with standard non-improved Kogut-
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TABLE Ill. Masses forg,=7.4, 14X 28, andB,=7.6, 16x 32 lattices.

Naik, Bp=7.4, 16x32

amy T P p P2 Nucleon
0.02 0.3731479) 1.03330) 1.26813) 1.29434) 1.76530)
0.04 0.5223870) 1.083496) 1.313989) 1.38314) 1.92q15)
0.08 0.7247@5) 1.251775) 1.428399) 1.503571) 2.132368)
0.16 1.008011) 1.559197) 1.624149) 1.76814) 2.54714)
0.32 1.41680@9) 2.14623) 1.971925 2.239679) 3.145976)

Kogut-Susskind8,=7.4, 16x 32

amy T Ty p P2 Nucleon
0.02 0.3808(074) 0.960366) 1.20714) 1.24733) 1.72429)
0.04 0.528(12) 1.041845) 1.244963) 1.337143 1.85513)
0.08 0.729710) 1.190566) 1.327(28) 1.407463) 2.028253)
0.16 0.999411) 1.4197298) 1.477425) 1.572%50) 2.317456)
0.32 1.36252(¥4) 1.730@16) 1.6963781) 1.797%31) 2.665635)

Naik, B,=7.6, 16x 32

amy T Ty p P> Nucleon
0.01 0.2729@3) - 0.94528) - 1.3615)
0.02 0.3815@4) 0.751389) 1.010687) 1.04611) 1.41152)
0.04 0.5312825) 0.862946) 1.091156) 1.142473) 1.59811)
0.08 0.736183) 1.055932) 1.242@53) 1.31211) 1.85240)
0.16 1.019224) 1.366735) 1.468231) 1.544156) 2.25615)
0.32 1.4250216) 1.903893) 1.867@34) 2.007269) 2.913761)

Kogut-Susskind8,=7.6, 16x 32

amy T Ty p P> Nucleon
0.01 0.2809@3) - 0.94529) - 1.2814)
0.02 0.3916822) 0.750890) 0.994386) 1.031(11) 1.37154)
0.04 0.5423R23) 0.864248) 1.062148) 1.19015) 1.577110)
0.08 0.7447@2) 1.046231) 1.203@44) 1.270591) 1.80433)
0.16 1.0132119 1.309227) 1.388222) 1.447439) 2.18720)
0.32 1.3689(12) 1.667732) 1.657310) 1.728719) 2.597852)

Susskind action aB=5.54, 5.7 and 5.8%11]; these cou- servable in all of the Edinburgh plots in Fig. 5.
plings correspond roughly to the same lattice spacing as the

improved action a3, =7.4, 7.75 and 7.9. B. The chiral function and the continuum limit
It is interesting to note that despite the large differences in A . hod itatively the d
the masses in lattice units in Fig.(8nd Table 11), in Fig. 5 convenient method to measure quantitatively the degree

the B,=7.4 Naik and Kogut-Susskind mass ratios lie praC_of improvement in hgdrop spectroscopy is to .study the lattice
tically on the same curve, with the Naik values displacedSPacing dependence units ofam,) of the ratiomy/m, at
slightly in the direction of smallem,,/m,. When the mass Some fixed value ofm,/m, . This requires interpolation or
of the p meson is used to set the scale, from Figs. 3 and 5 wéXtrapolation to the desireah,/m, ratio. We perform this
see that for a given set of bare parameters the lattice spacirfi@r €achgy, separately with chiral fit functions.

for the Naik fermions is slightly larger than for the Kogut- ~ The chiral fits are motivated by quenched chiral perturba-
Susskind fermions, while the mass ratios are closer to th#ion theory (QxPT), which givesmy and m, in a power
physical values. Conversely, if we want to investigate theseries ofm, (+ logarithmic termg Since in the leading
samephysical systenimass ratio and physical volupehe  orderm?Zc mg, these become power seriesmﬂi’z. For the
Naik action enables us to use a bit larger bare quark masstandard Kogut-Susskind action, the chiral extrapolations
and smaller latticegin lattice unitg. This effect becomes have been discussed in detail[ihl].

smaller as one gets closer to the chiral limig—0 and to Extrapolation of the rationy/m,, to the chiral limitm,

the continuum limit3,—o; nevertheless, it is clearly ob- —0 or even to the physical limin,/m,~0.1753 is sensi-
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TABLE IV. Masses forgy,=7.75 andB,=7.9, 16X 32 lattices.

PHYSICAL REVIEW D 58 014503

Naik, B, =7.75, 16x32

am; T P p P Nucleon
0.01 0.2694334) 0.537451) 0.82918) 0.86212) 1.14Q80)
0.02 0.3763830) 0.617%42) 0.895196) 0.90611) 1.26526)
0.04 0.5233@0) 0.742122) 0.970147) 1.01513 1.42910)
0.08 0.72718L8) 0.942814) 1.107122) 1.147977) 1.685535)
0.16 1.0118616) 1.258717) 1.357765) 1.396326) 2.101842)
Kogut-SusskindB,=7.75, 16x 32
amy T Ty p Do Nucleon
0.01 0.2779433) 0.5445%50) 0.83016) 0.86311) 1.17411)
0.02 0.387528) 0.618222) 0.889582) 0.889853) 1.28210)
0.04 0.5365621) 0.750421) 0.963241) 1.02511) 1.4225%90)
0.08 0.7383QL7) 0.946Q13) 1.098432) 1.135154) 1.686664)
0.16 1.0086(12) 1.232@16) 1.317332) 1.355@41) 2.057147)
Naik, B, =7.9, 16x32
am, T Ty p P> Nucleon
0.005 0.1848@32) 0.380667) 0.668199) 0.683175) 0.92012)
0.01 0.2590728) 0.428448) 0.76023) 0.72511) 1.01716)
0.02 0.3622@8) 0.505437) 0.787398) 0.767853) 1.097275)
0.04 0.50586) 0.640@20) 0.865%89) 0.854649) 1.263272)
0.08 0.7078624) 0.850616) 1.005633) 1.0104298) 1.523693)
0.16 0.9950(020) 1.171Q14) 1.264632) 1.279017) 1.956Q52)
Kogut-SusskindBy=7.9, 16x32
am; T Ty p Do Nucleon
0.005 0.1916(82) 0.384871) 0.670496) 0.675873) 0.911467)
0.01 0.2680@28) 0.433949) 0.72024) 0.75328) 1.00515)
0.02 0.3738&81) 0.514236) 0.776787) 0.79611) 1.096369)
0.04 0.5198829) 0.652520) 0.859944) 0.857@45) 1.270365)
0.08 0.7212826) 0.862415) 1.005123) 1.011526) 1.5376798)
0.16 0.9957R1) 1.164227) 1.240119) 1.263@37) 1.938854)
16°x32 B=74 16°x32 B,=7.9
| T T T T I T T T T I T T T T I T T T T l T T T T I T T T T | T T T T | T T T T
| 6 Naik Nuclgon | © Naik Nucleon 1
3| x k-8 — 27| x k-3 &
gl o B a
Sl x ] M ® R 1
I i a a
S N Y .
-Q Q . Q g -
[ 0 x ] ® ]
L o] x i L 4
98 * | |
1 1 'l 1 1 I 1 1 L 1 | 1 1 'l 1 I 1 1 1 1 o 1 'l 'l 1 | 1 1 1 'l | 'l 1 1 1 | 1 ' 1 1
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am,

q

amq

FIG. 3. Nucleon(uppe) and p (lower) masses as functions afm, for 8,=7.4 and 7.9.
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16°x32 B,=7.4

We exclude the “strong coupling” runs g,=6.8 and
7.1, and fitamy(am,) andam,(am,) for B,=7.4-7.9 to

21—

O Naik
X K-S

3

OIIII

0.0 0.1

0.2
am

0.3 0.4

q

FIG. 4. The pion mass squared as a functioraaf, for 8

=7.4.

the chiral ansatz

am=co+ciamg+ Cap(amg)¥?+c(amy)?. (15

This function gives good fits at all 4 couplin¢after exclud-
ing the anomalous smalleatm, value 0.005 fromg,=7.9).
QxPT for nucleons and vector mesof0] implies the
presence of an additional termam,., which corresponds to
(amy)*2in the continuum. If one includes a tera{am,)*2
in Eq. (15), the fits invariably prefer a positive sign for the
coefficient; whereas §PT gives a negative sign. However,
the appropriate pion mass in this term is actually the flavor
singlet pion mass, which is not proportional tang,)"/? at
fixed lattice spacing due to flavor symmetry breaking. When
this is taken into account, acceptable fits with a coefficient
compatible both in sign and magnitude with/@T are pos-
sible. This is studied in detail for our standard gauge Kogut-
Susskind hadrons in Ref11]. Since such fits do not appear

tive to the form of the selected chiral fit function ansatz. Theto change the extrap_olated/interpolated values significantly
value of the ratio is much less sensitive in the regionfrom Eq.(15), but do increase the errors, we prefer to leave
m,./m,~0.4—0.6, where the function interpolates betweerPut theam,. term.

measured mass valu¢see Fig. 5. Detailed comparison of

the different actions is feasible in this region.

The error propagation is taken into account by performing
the (fully correlated fits separately to each of the jackknife
blocks.

B.,=7.4 B.,=7.6
17— L7
1.6 - m - 1.6 -

- E Foeogk % ] : % ]

C x ] C @ ]

« 15— i O — « 15— E o —

g f 1 ¢ & ]

E L ] - [ ]

g 14— — B 14— —

130 X K-8, imp glue ] 1.3 X K-8, imp glue]

F D Naik, imp glue 1 - D Naik, imp glue-

L o & K-8, std glue $=5.54] [ o ]

P R BN T R S A SR B B
0.0 0.5 1.0 0.0 0.5 1.0

m,/m, m,/m,

B.=7.75 B.=7.9
L7 W—

F X K-S, imp glue 1 I X K-8, imp glue 1

[ O Naik, imp glue ] [ D Naik, imp glue ]

1.6 — & K-S, std glue §=5.7 — 1.6 — & K-8, std glue §=5.85 —

C ] C b ]

C g B ] - ag ]

o« 1.5 — p % o — « 1.5 0 —

B ] & i 1

= C ] z r ]

E 1.4 — % -] E 1.4 — iﬁ % =]

13 — 13 —

[ o ] [ o ]

142 C 1 1 1 1 | 1 1 1 1 | ] 1.2 C 1 1 1 1 | 1 1 1 1 | ]
0.0 0.5 1.0 0.0 0.5 1.0

m"/mp m,,/rnp

FIG. 5. The Edinburgh plots fo8,=7.4, 7.6, 7.75 and 7.9. The fancy crosses show the standard unimproved Kogut-Susskind data at
Bwison=6/0>=5.54, 5.7 and 5.8511]; these correspond roughly to the same lattice spaietermined byam,) as the improveds,
=7.4, 7.75 and 7.9. The small circles denote the physical limif{m,~0.18) and the infinite quark mass limitn( /m,=1).
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1.7 ——r

:_O K-8, imp glue 1.6
ro Naik, imp glue

F X K-8, std glue

1.6

m,,/mp =
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0.4

AL L
F© K-8, imp glue

[ O Naik, imp glue

F X K-8, std glue

A 15 - sl ]
E ] B 1.5 i i
S 13 0 ]
B 14 ] g [ ]

] 14— —
1.3 — i ]
physical my/m,] 7
1.2 1 1 1 1 'i'l_ 1 1 1 1 i 1 1 1 [} i 1 1 1 [} ] 1.3 1 I} 1 1 | 1 1 1 [} | 1 1 1 1 | 1 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
2 2
(am,) (am,)
m,/m, = 0.5 m,/m, = 0.7
16 ————— 165 T T
R ] 4 [0 K-8, imp glue ]
| © K_.S’ 1.1np glue i I O Naik, imp glue E
| O Naik, imp glue | 160 [ x K-S, std glue 4
X K-8, std glue ] UL 4

o 1o 45 ]
\z 1 \z 1.55 — ]
g 1 8B [ ]

T 1.50 |-, —
1.4 — B
C 1 1 1 i | 1 1 1 1 | ] 1'45 i 1 I} 1 I | 1 1 1 i | 1 1 1 1 | 1 1 1 1 ]
0 1 2 0 1 2 3 4
2 2
(am,) (am,)

FIG. 6. Themy/m, mass ratios as functions of the square of the lattice spaaingnits of (amp)z], for m,/m,=0.1753, 0.4, 0.5 and
0.7. From left to right, the Naik and thémproved gaugeKogut-Susskind points correspond 83,=7.9, 7.75, 7.6 and 7.4; the standard
Kogut-Susskind points t@wison=6.15, 5.85, 5.7 and 5.54. The straight lines are linear fits to(fileen top to bottom standard K-S,
improved K-S and Naik data, where the intercepaatO in the last two fits is fixed to the standard K-S value. Intthg/m,=0.7 plot, at
Buwiison=5.85 the ratiany /m, is shown from two volumes, 3mand 24 (third and second crosses from Jefthe smaller volume is not used
in the fit.

In most cases, it would be possible to obtain acceptabl&usskind action. Since we expect the leading errors to be
fits also with the simpler ansatz with eithey, or ¢, fixedto ~ O(a?), we plot the ratios againsa(np)z. Heream, is cal-
zero. However, while the full ansatd5) works quite well  culated at the quark mass which yields the indicated value of
for the standard Kogut-Susskind hadrgag], these simpli- ~ m_/m,. We make a linear fit with respect ttaump)2 of the
fied functions do not. In order to facilitate the comparisonsstandard Kogut-Susskind data, and, since in the continuum
between the different actions, we retain the full chiral ansatdimit all of the actions must yield equivalent results, we fit
(15) here. straight lines to the improved Kogut-Susskind and Naik data,

The results of the chiral extrapolation/interpolation towith the constraint that the=0 intercept is fixed to the
m,/m,=0.1753 (physica), 0.4, 0.5 and 0.7 are shown in standard Kogut-Susskind value. The slopes and the confi-
Fig. 6; both for improved actions and for the standard Kogut-dence levels of the fits are given in Table V.

TABLE V. The slopes and the confidence levels of the fits shown in Fig. 6. The second column contains
the extrapolatedny /m,(am,=0) from the standard gauge K-S fits; the improved K-S and Naik fits are
constrained to have this interceptam,=0.

K-S, std. gauge K-S, imp. gauge Naik
m./m, (my/mp)a—o slope CL slope CL slope CL
0.1753 1.2461L8) 0.222) 0.05 0.142) 0.51 0.122) 0.99
0.4 1.33410) 0.14410) 0.34 0.0983) 0.67 0.0747) 0.97
0.5 1.3916) 0.1015) 0.60 0.0744) 0.64 0.05%4) 0.74
0.7 1.4893) 0.04Q3) 5.3e-5 0.0382) 0.20 0.0292) 0.50
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We make the following observations: TABLE VI. The lattice spacing and the box size in physical
In the intermediatem,/m,=0.4 and 0.5 plots, the im- units.
proved gauge nucleon @ mass ratios are clearly closer to
the continuum values than the standard Kogut-Susskin&pi 6.8 7.1 7.4 7.6 7.75 7.9
ones. Indeed_, thgp,=7.9 value is very c!ose to the standard a (fm) 037 035 031 024 021 019
Kogu_t-Sussk_lndG_\,vnson= 6.15 one, but with twice the Ia_ttlce Size (fm) 59 50 50 38 3.4 30
spacing(albeit with larger statistical errorsAt large lattice
spacings fp=7.4) the Naik fermions show smaller scaling
violation than the improved gauge Kogut-Susskind fermions, We can also test whether the data would allowda®)
but this difference becomes very small when the lattice spacscaling violations for the Naik action. When,/m,=0.5 a
ing is reduced. constrained fit of formA+ B(amp)3 (where agaer is set to
The improvement is quantified by the slope of the linearthea=0 intercept of the standard Kogut-Susskind dldizes
fits in Table V. Wherm,/m,=0.4 and 0.5, there is a statis- not fit the Naik data well: the confidence level is only 0.15
tically significant dlfference between the slopes of the thredas opposed to 0.74 in Table).VThis disfavors the leading
different cases. However, for the improved Kogut-Susskind?(a3) errors. For smallem . /m,-ratios the statistical errors
and Naik cases the difference is largely due to the largedtecome larger and this analysis cannot distinguish the fits.
lattice spacing data point. If this point is excluded in the fits, To check consistency, we can relax the constraina at
the resulting slopes for the improved K-S and Naik data be=0 and fit independent straight lines to all data sets. When
come statistically compatible, but they still remain clearlym,/m,<0.5 the intercepts ofny/m, ata=0 are compat-
smaller than those in the non-improved case. ible for all cases: 1.39t0.006 for standard K-S, 1.378
At the physical ratiom,/m,=0.1753 the errors in *+0.015 for improved gauge K-S, and 1.390.016 for
my/m, increase dramatically due to the extrapolation inNaik. This remains true also for smallex,i/m, (with larger
amy. Nevertheless, we observe a pattern similar to that agrrors in the extrapolateehy /m,, value.
larger quark mass. The lattice spacing and the size of the system in physical
At m./m,=0.7, the linear fit to the standard Kogut- units can be obtained by extrapolatiagn, to the physical
Sussklnd data has a very small confidence level. This is most,. /m,-ratio and settingn,=770 MeV. These are given in
likely due to a statistical fluctuation of our benchmarlk’ 24 Table VI
lattice atByison="5-85. In the last panel of Fig. 6 we show  The numbers in Table VI have been calculated with the
the value ofmy/m, measured from Mand 20 lattices  Naik quark action; for the Kogut-Susskind action the lattice
(second and third crosses from )eftVhile the ratio from the spacings and the box sizes would be fractionally smaller.
smaller volume remains consistent with the linear behavioiThe box sizes are considerably larger than 2 (fmith the
in (amp)z, the result from the larger volume is anomalously possible exception g6, =7.9), so that we can safely ignore
large. Nevertheless, in order to avoid unnecessary clutter, wihe finite size effectf21]. For the weakest coupling and the
retain only the larger volume in our analysis. For smallersmallest quark mass, the produnt, X (Lattice size) is ap-
m_,/m, -ratios the 23 lattice gives results consistent with proximately 3.0.
other Bwiison -values. Note also the small range rof /m, Besides the mass of themeson, the square root of the
covered by then,/m,=0.7 plot, and that the error bars of string tension is commonly used to determine the lattice
the individual pomts are much smaller than at smallerspacing. In Fig. 7 the ration /\/_ is plotted againsa?o.
m,/m,. Heream, is evaluated at the physicat,/m,=0.1753 and
As the quark mass is lowered, the difference between that 0.7. The string tension for the standard gauge action is
two types of quarks in the improved gluonic fields is re-interpolated from the data in the literatyr2]; for the im-
duced. Thus, am,/m,=0.7 most of the improvement of proved gauge actiofll) it has been measured by the SCRI
my/m, is attributable to the Naik improvement, whereasgroup[23].
near the physical quark mass, most of the improvement Since the scale violations are expected to behave as
comes from the gluonic action. A large part of the Naik (’)(az) them /\/_rano should behave linearly as a function
improvement is due to the largeaifn,) and hence a larger of a‘o. Indeed the standard Kogut-Susskind data shows
lattice spacing. If one uses the string tension to set the scalgood linearity up tca?o=0.17 (Bwison="5.7). However, at
the difference between the Naik and the Kogut-Susskind acstronger coupling5.54) the ratio falls strongly off the linear
tions becomes smaller. behavior. We fit a straight line to the three weakest coupling
The linearity [against @m,)?] of the standard Kogut- data points, the interceptsat=0 are 1.73&5) at the physi-
Susskind(KS) my/m,-ratio clearly supports the notion that calm, /m,=0.1753 and 2.2381) at 0.7 (the errors quoted
the scaling V|olat|ons behave a®(a?). When m,_ /m, here are only statisticalThese results are consistent with the
<0.5, the constrained linear fits to the |mproved gaugFSCRI group(preliminary Wilson and clover fermion mass
Kogut-Susskind and Naik data have confidence levels betteatios[23].
than 0.5, certainly quite compatible with(a?) leading scal- The improved gauge Kogut-Susskind and Naik data still
ing violations(Table V). The magnitude of the violations— seem to reside completely in the “strong coupling region,”
the slope of the line—for the Naik data is only about 1/2 ofalthough there is some indication that at weaker couplings
the standard Kogut-Susskind value, whereas the improvethe ratios would bend to the direction of the line defined by
gauge Kogut-Susskind has a slightly larger slope than Naikhe standard Kogut-Susskind data. Extrapolation of the im-
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m,/m, = 0.1753 m,/m, = 0.7

2-4 T T T 7T | T :’ T IP | T T T T I T 7T T 7T 3-5 T 7T T 7T T T 1|r T ‘I’ T 7T T 7T | T 7T T 7T
L i o @ 1
22— — L 4
C % ] 3.0 —
N N § 1 g i 1
20 i 1% | x ]
g L ]l € L o i
i 1 25— —
18— 0 K-S, imp glue — r © K-8, imp glue 1
O Naik, imp glue 1 7 O Naik, imp glue -
i X K-8, std glue | r x K-8, std glue -
1.6 i 1 1 11 | 11 11 | 1 1 1 1 | 11 11 ] 2.0 [ 11 11 | 1 11 1 | 11 11 | 11 11 i

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
a®c a®o

FIG. 7. The ratiom, /o againsta®s atm,./m,=0.1753 and 0.7.

proved action ratios to the continuum limit is clearly not sion relation may be different along thkzeaxis direction and
justified. perpendicular to it. Therefore, fop we use kL/(2)

The non-linearity in mp/\/E is somewhat surprising, =(0,0,1),(0,1,0, (0,1, and(1,1,0. The signals for higher
when we compare it against the purely hadronic observablemomenta are too noisy to be useful. The results are listed in
in Fig. 6. This lends support to the view that a large part ofTable VII.
the scaling violations cancel in the hadronic ratios, and jus- The violation of Lorentz invariance can be quantified by
tifies the use ofam, as the scale factor in purely hadronic measuring the “speed of light” with the continuum disper-
observables. sion relation

) E2(k)—E2(0)
C. Lorentz symmetry c(k)= — e (16)
As discussed in Sec. Il C, the free quark continuum dis-
persion relation is approximated much better by the NaikThe deviation ofc” from unity directly measures the viola-
action than by the standard Kogut-Susskind action. At venjion of Lorentz invariance. The results are shown in Table
high temperatures, deep in the quark-gluon plasma phase, ti¥dl and in Fig. 8 (for pions. The Naik pions show a clear
quarks behave approximately as free particles, and the Naiknprovement ofc? over the Kogut-Susskind pions: the de-

action improves QCD thermodynamict0]. However,a pri- ~ Viation from unity is reduced approximately by half. The
ori it is not clear whether the dispersion relation of hadronicresults for thep-mesons seem to indicate a dependence on
states is improved. the direction of the momenturtparallel or perpendicular to

We test hadron dispersion relations by measuring the er®). Also, here thec? is closer to unity for the Naik mesons;
ergy of the 7 and p-meson states with finite spatial mo- however, the statistical errors are so large that we cannot
menta on 100 lattices wit3,=7.4, am,=0.04 and volume make definite statements about the improvement.
16°x32. We use 4finite momentur wall sources, sepa-
rated by 8 lattice units. D. Flavor symmetry

The source operators are constructed as follows: first, we The restoration of flavor symmetry can be discerned by

take a zero momentum wall source, which is 1 for a part'cu]nvestigating the mass differences betweerand 7, me-
lar source color at each spatial slice at the source time. Thi

Sons. The first particle is the Goldstone boson corresponding

is used as a source for the _conjugate graqlient to compute ttag the spontaneously broker{1)xU(1) chiral symmetry and
guark propagators. Then this wall source is multlpl|ed.by thqt becomes massless whemm,—0 even at a finite attice
momentum dependent phase factor ékp(), by the sign spacing(Fig. 4). In comparison, ther, mesons remain mas-

factors (depending on the _Iocation in the' Zlavor hyper- sive in the chiral limit, and become massless only when both
cubg to select the desired meson, and by an eX'3he chiral and the continuum limits are taken.

(— 1) corresponding toys. This is used as a source for We use the dimensionless quantity
the conjugate gradient to compute the antiquark propagator.

The sink operator is similar, except that the quark and anti- miz—mfr

quark propagators are multiplied together with the appropri- 5w=w 17

ate phase and sign factors before summing over spatial P

points, corresponding to a local sink. to measure flavor symmetry breaking. For the standard

For pions, we use momentum vectors pointing to 3 differ-kogut-Susskind quark action, this quantity is almost inde-
ent directionskL/(27)=(0,0,1),(0,1,1, (1,1,1, and these  pendent of the bare quark mass), at small lattice spacings.
multiplied by 2. For theo-meson, we uséhe lattice analog  |n Fig. 9, we shows, for 8,=7.4 improved gauge Naik and
of) the vector operatogy;i, and we expect that the disper- Kogut-Susskind hadrons, together with the unimproved glue
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TABLE VII. The energy of ther andp meson states at finite momentww n2#/L, and the “speed of
light squared”c?(k) =[ E*(k) —E?(0)]/k?, for B,=7.4,am,=0.04, 16x 32 lattice.

Kogut-Susskindr Naik 7
kL/(27) aE(k) c?(k) aE(k) c?(k)
(0,0,0 0.5352117) - 0.52625%15) -
(0,0, 0.6522356) 0.901@45) 0.6511150) 0.953239)
0,1, 0.7471063) 0.880930) 0.7547476) 0.948936)
(1,1, 0.8265%88) 0.857%31) 0.841111) 0.930540)
(0,0,2 0.881714) 0.795940) 0.908726) 0.889177)
0,2,2 1.092532) 0.735357) 1.154944) 0.856683)
2,2,2 1.27511) 0.72315) 1.39519) 0.90229)
Kogut-Susskingp Naik p
kL/(27) aE(k) c?(k) aE(k) c?(k)
(0,0,0 1.241169) - 1.306579) -
(0,0, 1.26227) 0.3444) 1.348980) 0.7315)
(0,1,0 1.28913 0.7921) 1.36216) 0.9728)
0,1, 1.29813 0.4711) 1.38519) 0.6816)
(1,2,0 1.320198) 0.6516) 1.38512) 0.6812)

Kogut-Susskind values, as functions m‘mp)z. The data is with smeared average links in the fermion hopping terms.
interpolated tom,./m,=0.5 (compare to the third panel in The averaging process improves the flavor symmetry dra-
Fig. 6). With this constraint, the flavor symmetry breaking matically, the improvement being roughly comparable both
parameter reduces @,=(m2,/m>—1)/3. for the standard Kogut-Susskind and the Naik action. These
At this value ofm, /m,, we observe that the flavor sym- observations indicate the importance of the coupling of fer-
metry violation at small is reduced by~45% due to the mions to the gauge fields for the flavor symmetry of the
improved gauge action. When the Naik fermions are usedstaggered action. The Naik acti¢8) can be interpreted na-
8, is slightly smaller than with the Kogut-Susskind fermi- ively as a straightforward improvement of ttfeee) fermion
ons. However, this situation would become reversed, if wedispersion relation.
useda./o instead ofam, to set the scale. The improvement in flavor symmetry from the Symanzik
Figure 9 clearly indicates that the leading flavor symmetryimproved gauge action, like the improvement from the fat
breaking terms are proportional & for all of the actions link quark action, can be understood as a suppression of the
studied. The region linear ira(np)2 extends to larger lattice

spacings with the improved gauge. Lo m,/m, = 0.5
A successful additional improvement of the Kogut- R A
Susskind flavor symmetry is the MILC “fat link” fermion LO K-S, imp glue 7
action[9]. That action substitutes the standard gauge links 0.8 [~ F slfjipglgi:e =
C o ol
16°x32 Bn=7.4 m dispersion relation 0.8 [ % _
1.0 or _
L [ I [ ] . i ]
- - © [ ]
L o g i 0.4 - ]
= m e ' C ]
o, 0.9 ) — r ]
<t o @ { 1 02 —
T r 0 g ] g :
| L . C ]
oM r T 0.0 Y 1 1 1 1 | 1 1 1 1 | ]
e 0.8 — ) — 0 1 2
[ ] (am,)*
| O Naik, imp. glue o i
| © K-S, 1|mP‘ gluel | - FIG. 9. Flavor symmetry breaking paramete:“i‘,,:(mfr2
0.7 - e e e —m2)/(m2—m2), interpolated tom_/m =0.5, as a function of
0 1 2 3 4 m pT .t

&/ (2 /L) (am,,)z. The data correspond to the same valueg @k in Fig. 6.
The straight lines are linear fits to &tandard gaugeor 3 (im-
FIG. 8. The “speed of light squared,” calculated from the pion proved gaugepoints with the smallest lattice spacings, constrained
dispersion relation, for Naik and K-S pions. to go through the origin.
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effects of high momentum gluons. Gluons with momentum IV. CONCLUSIONS
Qgﬁgﬁéaai%?ﬁg qvmrckﬁ ifsrorrguggﬁ/ Ce%rlr}i(\alglggtth[i E;'gg;:ggm We investigate improvement of the quenched light hadron

. : . ; ass spectrum using a tadpole-improved staggered Naik ac-
their flavor[24,25. The suppression of the high momentum ti P 9 P P 99

. o ion (8), which at the tree level does not haa?) errors.
gluons becomes evident when the gauge action is expand rrespondingly, we usé(a?) tadpole improved gauge ac-

to quadratic order in the vector potenti), {where the lat-  {jon to generate the gauge configurations. Using the same
tice variableU ,(x) =exqd —igaA,(x)]}. Using the shorthand gauge action for both the Kogut-Susskind and the Naik cal-
notation culations allows us to separate the effect of the fermionic
improvement from the improvement of the gauge action. The
k =2sint 2_ 2 latter is studied by comparing the results presented here to
Kp=2sinzak,, K % K (18) our standard Kogut-Susskind results, HéfL].
We find that improvement of the gauge action has a sig-
and nificant effect on the hadron spectrum: whex./m,~0.5,
R . the nucleon tg-meson mass ratio is roughly 50% closer to
f (K=K ALK —K,A LK), (190 the continuum value with the improved gauge than with the
) ) ) ) standard gauge action. Thus, the scale violations with the
[26] with the improved gauge at about 1.4 times the lattice spac-
ing. Using the improved gauge action, the Naik quark action
has smaller scaling violations than the Kogut-Susskind ac-
S?=3a% > f,,(Kf, (—K)[Cp+8Cyt16Cy tion, although the difference becomes small, when the quark
Kipsv mass is reduced. Similarly, improving the gauge action re-
PO o duces the amount of flavor symmetry breaking, but using the
— (€= Cpg) (K, +K;,) = Cpgk”]. (200 Naik action yields little further gains. For both of the actions
the flavor symmetry can be further improved with the “fat
Here the coefficientg; denote the relative strength of the link” procedure[9]. _ _ _
three terms in the action. They are related to coefficights ~ The biggest improvement provided by the Naik action
throughc;6/g2= 3; . As an overall normalization we require comes from the improved Lorentz invariance of the hadronic

that the constant term within the brackets equals to ope: states. This is best evidenced by treneson dispersion re-
+8C,+ 16c,,=1 lation, which is much closer to the continuum behavior,
; . . S ;
For the Wilson gauge action the coefficients ape=1 Whﬁn the .?‘a'k afct|0n is used. This property lmay be ehspe-
L . : ' cially significant for nonzero temperature simulations, where
C=Cpg=0, Whereas for the improved actior,>1 and ; X
Crt1Cog< 0. With the improved gauge, the non-constant term the hadronic and/or quark degrees of freedom typically have

L X . . sIarge momenta. Thus, when one strives for higher precision
within the brackets in Eq20) increase the action for modes i, staqgered quark simulations, an economical solution can
close to the edges of the Brillouin zoifle,~ * =/a, for at

be found from the combination of an improved Naik-like

least onew). _ quark action together with the fat links.
As a simple example we consider a momentum vector
parallel to one of the lattice axes and at the edge of the zone. ACKNOWLEDGMENTS
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