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The evolution of unpolarized singlet structure functions at smallx
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A systematic study is performed of the impact of the various resummed small-x contributions to the anoma-
lous dimensions and coefficient functions on the evolution of unpolarized structure functions in deep-inelastic
scattering. The proton structure functionsF2

p andFL
p as well as the photon structure functionF2

g are considered
together with the corresponding parton densities. The general analytic solution of the evolution equations in
Mellin-N space is derived, and different approximate solutions are compared. Potential effects of less singular
small-x terms in the anomalous dimension and coefficient functions are discussed.@S0556-2821~98!02413-8#

PACS number~s!: 13.60.Hb, 12.38.Bx, 12.38.Cy
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I. INTRODUCTION

One of the central questions in the theory of dee
inelastic scattering~DIS! structure functions is that of thei
behavior at small values of the Bjorkenx. The experiments
at the DESYep collider HERA @1# have performed detailed
measurements of the structure functionF2(x,Q2) down to
values of x.1025 and have presented first results
FL(x,Q2) in the rangex*1024 @2#. F2 rises even at smal
values of Q2;2 GeV2 approximately asx20.2. At low
scalesQ2 the behavior of structure functions cannot be de
with by means of perturbative QCD due to the size of
strong coupling constantas(Q

2). For large virtualities, on
the other hand, a perturbative description of the scaling v
lations is possible if a factorization can be achieved betw
the non-perturbative input distributions and the evolut
kernels which can be calculated perturbatively.

Throughout the present paper we will consider de
inelastic scattering in the range where it is dominated by
light-cone singularities in the Bjorken limit,Q2,s→`,
x5Q2/(sy)5const, with Q2 the 4-momentum transfe
squared,s the center-of-mass energy,y52P•q/s. The ultra-
violet singularities of the operators emerging in the lig
cone expansion@3# are associated with renormalizatio
group equations~RGEs! which describe the evolution of th
structure functions. Under these conditions the evolution k
nels are given by the anomalous dimensions of the light-c
operators. For the leading-twist contributions considered
the following, the expectation values of the operators
related to the parton distribution functions. This pictu
holds, in principle, down to the region of small values ofx.
The anomalous dimensions and coefficient functions, h
ever, may receive large low-x contributions of the type@4#

as
l S as

N21D k

↔
1

x
as

l 1k lnk21~1/x!

~k21!!
,

whereN denotes the index of the Mellin-transformation

M@ f ~x!#~N!5E
0

1

dx xNf ~x!.
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The x-range in which this representation is applicable c
only be determined by explicit calculations@5# and depends
on both the behavior of the partonic input densities at a st
ing scaleQ0

2 and on the structure of the anomalous dime
sions and coefficient functions. Note that the present pict
does not necessarily yield a description of the structure fu
tions as well in the Regge limits→`,Q25const, since both
limits lead in general to different results. This can be seen@6#
performing these limits in the Jost-Lehmann-Dyson rep
sentation@7# of the structure functions.

In the Bjorken limit the ultraviolet and collinear diver
gences emerging in the calculation of the higher-order c
rections can be dealt with applying the corresponding RG
operators, which imply the evolution of the parton densit
and the running of the strong coupling constant. The
summed small-x corrections in leading@4# and next-to-
leading order@8–10# can thus be accounted for in a natur
way. Since the impact of the resulting all-order anomalo
dimensions on the behavior of the DIS structure functions
small x does as well depend on the non-perturbative in
parton densities at an initial scaleQ0

2, the perturbative resum
mation effects can only be studied via the evolution ov
some range inQ2. This evolution probes also the anomalo
dimensions and coefficient functions at medium and la
values ofx due to the Mellin convolution between the ev
lution kernels and the parton densities; cf. Ref.@11#. Hence
the small-x dominance of the leading terms over less singu
contributions asx→0 in the anomalous dimensions and c
efficient functions does not necessarily imply the same ef
for the observables, such as the structure functions.

In the present paper a systematic study is performed
the impact of the different resummed small-x contributions
to the anomalous dimensions and coefficient functions on
evolution of the singlet contributions to the nucleon structu
functions F2(x,Q2) and FL(x,Q2). A brief summary of
some of our numerical results on the effects of the resumm
gluon anomalous dimension on the nucleon structure fu
tions has already appeared in@12#. We extend the analysis to
the photon structure functionF2

g(x,Q2), for which we derive
corresponding results in the DIS scheme.
© 1998 The American Physical Society20-1
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The paper is organized as follows. The general framew
for the evolution of parton densities of the nucleon and
photon is recalled in Sec. II. In Sec. III the presently know
small-x resummed anomalous dimensions and coeffic
functions@4,8–10# are summarized and the numerical co
ficients for their expansions inas are compiled for the sub
sequent analysis. The issue of less singular terms is
cussed in Sec. IV guided by the known 2-loop results.
Sec. V different methods are derived for the solution of
evolution equations in the presence of all-order resum
tions for the small-x contributions. The numerical implica
tions of the small-x resummations on the evolution of th
parton densities and the structure functionsF2

p , FL
p and F2

g

are worked out in detail in Sec. VI for typical sets of initi
distribution. Section VII contains our conclusions.

II. THE EVOLUTION EQUATIONS

The twist-2 contributions to the structure functions in i
clusive deep-inelastic scattering can be described in term
the QCD-improved parton model. Their scaling violatio
are governed by renormalization group equations which
be formulated to all orders in the strong coupling constant
this section we briefly recall this general framework, whi
allows for a consistent introduction of the small-x resumma-
tions into the structure function evolution, and its spec
application to hadronic and photonic parton distributions.

A. The renormalization group equations

Among the singularities emerging in the calculation
QCD radiative corrections, only the ultraviolet divergenc
and the initial-state mass singularities require a special tr
ment in inclusive deep-inelastic scattering.1 The former are
eliminated by the renormalization of the strong coupli
constant. The remaining mass singularities, originating
collinear emissions of massless partons off massless par
are removed by mass factorization; i.e., these contributi
are absorbed into the bare parton densities. For this pr
dure the structure functionsFi(x,Q2) are first written as

Fi~x,Q2!5F̂ i ,kS x,as~R2!,
Q2

m2
,
R2

m2
,« D ^ f̂ k~x!. ~2.1!

Hereas(R
2) denotes the strong coupling constant, renorm

ized at the scaleR in some renormalization scheme.m is an
arbitrary mass scale.f̂ k represents the bare momentum d
tribution of the parton speciesk, and^ stands for the Mellin
convolution in the first variable:

1The infrared divergences cancel between the virtual and Bre
strahlung contributions according to the Bloch-Nordsieck theor
@13#. The final-state mass singularities vanish due to the Kinosh
Lee-Nauenberg theorem@14#, as all degenerate final states a
summed over.
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A~x,ma
2! ^ B~x,mb

2!

5E
0

1

dx1E
0

1

dx2d~x2x1x2!A~x1 ,ma
2!B~x2 ,mb

2!.

~2.2!

Finally « marks the initial-state mass singularities enteri
the bare partonic structure functionsF̂ i ,k . These functions
are then separated into the coefficients functionsCi , j and the
transition functionsG jk , which contain the 1/« pole terms,
according to

F̂ i ,kS x,as~R2!,
Q2

m2
,
R2

m2
,« D

5Ci , j Sx,as~R2!,
Q2

M2
,

R2

M2D ^ G jkSx,as~R2!,
M2

m2
,
M2

R2
,«D.

~2.3!

The additional parameterM is the factorization scale. This
separation is not unique beyond the leading order~LO! of the
perturbative expansion; henceGk j and Ci ,k are also factor-
ization scheme dependent. Combining Eqs.~2.1! and ~2.3!,
the structure functionsFi(x,Q2) finally read

Fi~x,Q2!

5Ci , j S x,as~R2!,
Q2

M2
,
R2

M2D ^ f j S x,as~R2!,
M2

m2
,
M2

R2 D
~2.4!

in terms of the renormalized parton densitiesf j given by

f j S x,as~R2!,
M2

m2
,
M2

R2 D
5G jkS x,as~R2!,

M2

m2
,
M2

R2
,« D ^ f̂ k~x!. ~2.5!

Two arbitrary scales,R andM , are thus introduced by the
renormalization and mass factorization procedures. Th
scales are not physical. Hence observables, such as the s
ture functionsFi(x,Q2) in Eq. ~2.4!, do not depend on them
Since the ultraviolet and mass singularities are not rela
the conditions

R2
d

dR2
Fi~x,Q2!50, ~2.6!

M2
d

dM2
Fi~x,Q2!50 ~2.7!

hold separately and imply two independent renormalizat
group equations. The first of these equations leads to
scale dependence of the running coupling constant:

s-

-

0-2
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das

dlnR2
5b~as![2(

l 50

`

as
l 12b l , ~2.8!

where the abbreviationas5as(R
2)/(4p) has been intro-

duced for convenience. At next-to-leading order~NLO! only
the first two scheme independent terms@15,16# of b(as) are
kept,

b05
11

3
CA2

4

3
TF ,

b15
34

3
CA

22
20

3
CATF24CFTF . ~2.9!

The QCD color factors areCF5(Nc
221)/(2Nc)[4/3, CA

5Nc[3, TR51/2, and TF5NfTR , with Nf denoting the
number of light quark flavors. To this approximation, t
solution of Eq.~2.8! can be expressed in terms of the QC
scale parameterLNf

by

1

b0as
2

b1

b0
2

lnS 1

b0as
1

b1

b0
2D 5 lnS R2

LNf

2 D . ~2.10!

It turns out, moreover, that higher coefficientsb l>2— b2
and b3 have been calculated in the modified minimal su
traction (MS! scheme@17,18#—are not required in connec
tion with the presently available small-x resummations; see
Sec. V C. We will therefore employ the relation~2.10! for all
our numerical calculations in Sec. VI.

B. Hadronic and photonic parton densities

The second renormalization group equation~2.7! leads to
the scale evolution of the renormalized parton densi
f j (x,M2). Considering first the hadronic case, the relev
parton species are the quarks and antiquarks,qj andq̄ j , and
the gluong. It is convenient to introduce flavor non-singl
combinations of the quark densities,

qj
65qj6q̄ j2

1

Nf
(
r 51

Nf

@qr6q̄r #, ~2.11!

qval5(
r 51

Nf

@qr2q̄r #, ~2.12!

and the singlet quark/gluon vector

q5S S

g D , S[(
r 51

Nf

@qr1q̄r #. ~2.13!

This decomposition decouples the 2Nf11 evolution equa-
tions as far as possible by symmetry considerations alo
For simplicity, we will choose the renormalization and fa
01402
-

s
t

e.

torization scales asR25M25Q2 from now on.2 The had-
ronic evolution equations can then be written as

]qj
6~x,Q2!

] lnQ2
5P6~x,as! ^ qj

6~x,Q2!,

]q~x,Q2!

] lnQ2
5P~x,as! ^ q~x,Q2!. ~2.14!

The evolution ofqval is identical to that ofq2 up to NLO. As
our present analysis is confined to that approximation in
non-singlet sector,3 the corresponding equation has been s
pressed in Eqs.~2.14!. In general, the splitting functionsP6,
P are given by the infinite series

P6~x,as!5(
l 50

`

as
l 11Pl

6~x!,

P~x,as![S Pqq~x,as! Pqg~x,as!

Pgq~x,as! Pgg~x,as!
D 5(

l 50

`

as
l 11Pl~x!.

~2.15!

The expansion coefficientsPl
2(x) andPl

unpol(x) are, in sen-
sible factorization schemes, subject to the sum rules

E
0

1

dx Pl
2~x!50, ~2.16!

E
0

1

dxx(
j

Pjk,l
unpol~x!50, ~2.17!

which are due to fermion number and energy-moment
conservation, respectively. By now all unpolarized and p
larized entries in Eqs.~2.15! are completely known at NLO
l 51. The full expressions for theirx-dependences can b
found in Refs.@24–28#. Beyond this order a series of intege
Mellin moments ofP2

1(x) andP2(x) has been calculated s
far @29#.

We now turn to the parton densities of the real photo
The photon is a genuine elementary particle, unlike the h
rons. Hence it can directly take part in hard scattering p
cesses, in addition to its quark and gluon distributions aris
from quantum fluctuations,qg(x,Q2) andgg(x,Q2). Denot-
ing the corresponding photon distribution in the photon
Gg(x,Q2), the evolution equations for these parton densit
are generally given by@30#

2See Refs.@19,20# for studies of the uncertainties in NLO analys
due to the variation ofR andM .

3The generating relations for the resummation of the anoma
dimensions@21# of the6 non-singlet combinations were derived
Ref. @22#. Here the leading small-x terms are ofO@(asln

2x)n#. The
effect of these terms has turned out to be on the 1% level dow
very small values ofx @21,23#. As the non-singlet contributions ar
furthermore suppressed compared to the singlet ones at lowx, these
resummations are not included in the present treatment.
0-3
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]qi
g

] lnQ2
5aemP̄qig

^ Gg1asH 2(
k51

Nf

P̄qiqk
^ qk

g1 P̄qig
^ ggJ ,

]gg

] lnQ2
5aemP̄gg ^ Gg1asH 2(

k51

Nf

P̄gqk
^ qk

g1 P̄gg^ ggJ ,

]Gg

] lnQ2
5aemP̄gg ^ Gg1aemH 2(

k51

Nf

P̄gqk
^ qk

g1 P̄gg^ ggJ .

~2.18!

Here aem[a/(4p) with the electromagnetic coupling con
stant a.1/137. The antiquark distributions do not occ
separately in Eqs.~2.18!, as q̄i

g(x,Q2)5qi
g(x,Q2) due to

charge conjugation invariance. The generalized splitt
functions read

P̄i j ~x,aem,as!5 (
l ,m50

aem
m as

l P̄i j
~m,l !~x!, ~2.19!

with P̄qiqk
being the average of the quark-quark a

antiquark-quark splitting functions.
Usually calculations involving the photon’s parton stru

ture are restricted to the first order ina!1. In this approxi-
mation allmÞ0 terms in Eq.~2.19! can be neglected, sinc
qi

g andgg are already of ordera. This reduces the function

P̄i j to the usual QCD quantitiesPi j (x,as), andPgqi
andPgg

drop out completely. Moreover, one hasPgg}d(12x) to all
orders inas , as real photon radiation from photons starts
order a2 only. Thus the last line of Eq.~2.18! can be inte-
grated immediately, at LO~l 50!, for example, resulting in

GLO
g ~x,Q2!5d~12x!F124asS (

k51

Nf

eqk

2 ln
Q2

Q0
2

1constD G ,

~2.20!

whereeqk
represents the quark charges, andQ0

2 is some ref-

erence scale for the evolution. Only theO(1) part of Gg

affects the quark and gluon densities at ordera, as well as
any observable involving hadronic final states likeF2

g.
Therefore, after decomposing into the singlet and non-sin
parts as before, one obtains the inhomogeneous evolu
equations

]qj
g1~x,Q2!

] lnQ2
5kj

1~x,as!1P1~x,as! ^ qj
g1~x,Q2!,

]qg~x,Q2!

] lnQ2
5k~x,as!1P~x,as! ^ qg~x,Q2!. ~2.21!

Here we have switched to the conventional notation for
photon-parton splitting functions
01402
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k1~x,as!5(
l 50

`

aemas
l kl

1~x!,

k~x,as![S Pqg~x,as!

Pgg~x,as!
D 5(

l 50

`

aemas
l kl~x!. ~2.22!

These splitting functions are presently also known up
NLO ( l 51); see Refs.@30–32#.

C. Factorization scheme transformations

As stated above, the separation between the coeffic
functions and the splitting functions is not unique beyond
leading order. In this subsection, we derive the gene
factorization-scheme invariants and specify the schemes
our subsequent numerical calculation. We study the photo
case, as the hadronic problem forms a subset hereof. In o
to specify the transformation matrices, it is convenient
introduce a fictitious second, ‘‘gluonic’’ structure function
where the gluon density enters at orderas

0 , but the quarks
only at orderas

1 , opposite to the situation with the real ele
tromagnetic current; see Refs.@33,34#. This can be formally
achieved, e.g., by adding a color-neutral scalar-gluon c
pling fFmnFmn to the QCD Lagrangian. The general singl
structure functionF2 then reads

F25S F2,g

F2,f
D 5^e2&@C~x,as! ^ q~x,as!1Cg~x,as!#

~2.23!

with

C~x,as!5S Cgq~x,as! Cgg~x,as!

Cfq~x,as! Cfg~x,as!
D 5(

l 50

`

as
l Cl~x!,

Cg~x,as!5S Cgg~x,as!

Cfg~x,as!
D 5(

l 50

`

aemas
l Cg,l 11~x!.

~2.24!

Here ^e2& is the average squared charge of the light qu
flavors, andC0 the unit matrix timesd(12x). Using the
scale dependence~2.21! of the partons and Eq.~2.8! for the
running coupling, the scaling violations ofF2 can be written
as

dF2

dlnQ2
5^e2&@C^ k1bCg8

2~C^ P^ C211bC8^ C21! ^ Cg#

1~C^ P^ C211bC8^ C21! ^ F2 , ~2.25!

where the prime denotes the derivative with respect toas .
Both dF2 /dlnQ2 and F2 represent observables; hence t
following combinations of splitting functions and coefficie
functions are factorization scheme invariant:
0-4
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Ihom5C^ P^ C211bC8^ C21, ~2.26!

I inhom5C^ k1bCg82Ihom^ Cg . ~2.27!

Putting back the perturbative expansions of all quantities
volved, these invariants are given order-by-order inas
@33,34,32# by

Ihom5asP01as
2$P11C1^ P02P0^ C12b0C1%1•••,

~2.28!

I inhom5aemk01aemas$k11C1k02P0Cg,1%1•••.
~2.29!

The generalization to higher orders is straightforward if cu
bersome. From these relations the changesDP andDk of the
splitting functions induced by a modification of the coef
cientsDC and DCg can be easily determined. Recall, how
ever, that a particular choice for the physical upper-r
~electromagnetic! quantities Cgq , Cgg and Cgg does not
fully fix the transformation, as is well-known for the had
ronic DIS factorization scheme@35#. In fact, we will use the
DIS scheme for our subsequent numerical calculations
both the hadronic and the photonic cases. Starting from
usualMS scheme of fixed-order calculations@36–38,29#, the
transformation reads

DC15S 2Cgq,1
MS ~x! 2Cgg,1

MS ~x!

Cgg,1
MS ~x! Cgg,1

MS ~x!
D ,

DCg,15S 2Cgg,1
MS ~x!

0
D . ~2.30!

The lower-row choice in the hadronic part is the conve
tional continuation of the sum-rule constraint to allN, that
one of the photonic part is taken over from the DISg scheme
of Ref. @32#; see also Sec. III C. This concludes the gene
all-order framework, and we can now turn to the resumm
anomalous dimensions and coefficient functions.

III. SMALL- x RESUMMATIONS FOR THE ANOMALOUS
DIMENSIONS AND COEFFICIENT FUNCTIONS

In this section we briefly summarize relations for the
summed singlet anomalous dimensions in Mellin-N space
which are used in the numerical analysis below. The ano
lous dimension matrix is related to the corresponding sin
splitting functions by

g~N,as!522P~N,as![22E
0

1

dx xNP~x,as!. ~3.1!

The general form of the small-x resummed, unpolarized
anomalous dimension matrix reads

gres~N,as!5 (
k50

` S ās

N D k11

(
m50

ās
mg k

~m! , ~3.2!
01402
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with ās5CAas(Q
2)/p. In the discussion below we includ

the LO @24# and NLO@27# anomalous dimensionsg0 andg1
completely, and account for the small-x resummed series in
the leading~Lx, m50) and next-to-leading~NLx, m51)
small-x approximations:

g ~N,as!5asg0~N!1as
2g1~N!

1 (
k52

` S ās

N
D k11

@g k
~0!1Ng k

~1!1O~N2!#.

~3.3!

A. The leading series

The all-order resummation of the Lx series was per-
formed in Ref.@4#:

gL~N,as!522(
k50

` S gk,qq
~0! gk,qg

~0!

gk,gq
~0! gk,gg

~0! D S ās

N
D k11

522S 0 0

CF /CA 1D gL~N,as! ~3.4!

with gL(N,as) being the solution of

r[
N

ās

52c~1!2c~gL!2c~12gL![x0~gL!. ~3.5!

c(z) denotes the logarithmic derivative of Euler
G-function.gL is a multi-valued function for complex value
of N. The perturbative branch of the solution is selected
the requirement@39#

gL~N,as!→
ās

N
for uNu→`. ~3.6!

For small values ofgL(N,as) the asymptotic representatio

gL5
ās

N H 112(
l 51

`

z~2l 11!gL
2l 11J ~3.7!

holds, from which the coefficientsgk,gg
(0) in Eq. ~3.4! can be

determined iteratively. Herez(n) denotes the Riemann
z-function. Note that onlyz-functions of odd integers con
tribute, which is expected for physical quantities in four d
mensions; cf. Ref.@40#. Analytic expressions forgk,gg

(0) were
given up tok514 in Ref.@41#. Later both analytic represen
tations and the numerical values of these coefficients w
determined to large values ofk by various authors~cf., e.g.,
Refs.@42,43#!. In fact, the series~3.4! can be used as repre
sentation ofgL(N,as) along typical integration contours~cf.
Fig. 4 in Sec. V! for the inverse Mellin transform, as show
in Ref. @43#: 20 terms~or less! in Eq. ~3.4! are sufficient to
obtain an accuracy of better than 0.01%.

For the later numerical analysis, i.e., to perform the M
lin inversion of the solution of the evolution equations, it
necessary to locate the singularities ofgL(N,as) in the com-
plex N plane. The singularities of the resummed leading s
0-5
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FIG. 1. The real and imaginary
parts of the perturbative branch o

gL @4# as a function ofr5N/ās .
The the dash-dotted lines are th
contours through the singularities
Eq. ~3.10!.
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gular part of the anomalous dimensiongL can be determined
by differentiating Eq.~3.5! with respect tor:

dgL

dr
@2c8~gL!1c8~12gL!#51. ~3.8!

The condition

FdgL

dr G21

5c8~gL!2
p2

2

1

sin2~pgL!
50 ~3.9!

yields the value of the resummed anomalous dimensiongL at
the branch points. The corresponding values ofr are then
determined by Eq.~3.5!. For the perturbative branch on
obtains

g15
1

2
, g2,3.20.42521460.473898i ,

r154 ln 2, r2,3.21.4104861.97212i ; ~3.10!

cf. Refs. @43,44#. The behavior of the real and imagina
parts ofgL(r) is illustrated in Fig. 1. For Rer→4ln2, the
first branch point, RegL(r), forms a ‘‘roof’’ at gL51/2 for
Imr50, which remains stable over some distance in Rr.
The imaginary part becomes discontinuous. At smaller v
ues of Rer, RegL(r) develops two symmetric minima, an
for even smaller values two additional maxima. Both e
trema finally form the two other branch points, Eq.~3.10!. In
ImgL these branch points manifest as single extrema of
corresponding curve for Rer5const.

B. Next-order corrections

The coefficientsgqg,k
(1) andgqq,k

(1) of the NLx series in Eq.
~3.3! were calculated in Ref.@8#. Recently also the first term
for ggg,k

(1) have been determined@9,10#. All these quantities
are analytic functions ofgL; hence they do not introduc
01402
l-

-

e

new singularities. The energy-scale dependent contribut
to ggg,k

(1) have still to be derived, and the termsggq,k
(1) are also

unknown so far in

gNL~N,as![ās(
k50

` S ās

N
D k

gk
~1!

522S CF

CA
Fgqg,NL2

2

3p
asTFG gqg,NL

ggq,NL ggg,NL

D
DIS

.

~3.11!

In the DIS factorization scheme, the functiongqg,NL(N,as)
is given by

gqg,NL
DIS ~N,as!

5gqg,NL
Q0 ~N,as!R~gL!

5TF

as

6p

213gL23gL
2

322gL

@B~12gL ,11gL!#3

B~212gL ,222gL!
R~gL!

[
2as

3p
TF(

k50

`

gk,qg
~1! S ās

N
D k

~3.12!

with

R~g!5F G~12g!x0~g!

G~11g!$2gx08~g!%
G 1/2

3expFgc~1!1E
0

g

dz
c8~1!2c8~12z!

x0~z! G
[(

k50

`

r kS ās

N
D k

. ~3.13!
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FIG. 2. ~a! The cumulative ef-
fect of the available contributions
on the splitting functionxPqg(x)
for as50.2. The fixed-order re-
sults are supplemented by th
small-x resummed NLx correc-
tions @8# beyond NLO. Also
shown are the modifications in
duced by the subleading terms~C!
and ~D! of Sec. IV. ~b! As in ~a!
but for the convolution ofPqg

with a typical shape of an had
ronic gluon density.
c
th

ow
bl

e

ni

-

Here B(x,y) denotes Euler’s Beta-function, andg i j ,NL
Q0 rep-

resents the anomalous dimensions in theQ0-scheme@45#, in
which the factorR(gL) does not appear.

The presently available contributions to the splitting fun
tion xPqg(x) in the DIS scheme and their convolutions wi
a typical gluon shape are shown in Fig. 2 foras50.2, i.e.,
Q2.20 GeV2. The LO splitting function vanishes likex for
x→0; their NLO counterpart is constant forx→0. The
strongly rising NLx result @8# therefore dominates belowx
;1022. This dominance persists after the convolution bel
x;1023, although here the differences are considera
smaller than for the splitting functions themselves.

The contributions}Nf @9,46–48# and the energy-scal
independent terms}CA @10,47# of ggg,NL(N,as) ~cf. also
@49#! have been calculated recently. As shown in Ref.@9#,
ggg,NL(N,as) can be obtained from the larger eigenvalueg1

of the resummed anomalous dimension matrix

g65
1

2
~gqq1ggg!6

1

2
A~ggg2gqq!

214gqgggq, ~3.14!

where

g1.ggg1
gqgggq

ggg2gqq
5ggg1

CF

CA
gqg1O„as

2f ~ ās /N!…,

g2.gqq2
gqgggq

ggg2gqq
5gqq2

CF

CA
gqg1O„as

2f ~ ās /N!….

~3.15!

These relations result from the fact that the quarko
~upper-row! entries in Eq.~3.4! vanish, unlike the gluonic
ones. Furthermore, one hasg2.2(CF /CA)(2as)/(3p)TF
due to Eq.~3.11!. In the Q0 scheme, the present contribu
tions tog1 are determined as the solution of@9,10#
01402
-

y

c

15
ās

N
@x0~g1!1asx1~g1!#, ~3.16!

which yields

g1
~1!52as

x1~gL!

x08~gL!
~3.17!

after a perturbative expansion. Finallyx1(g) reads

x1~g!5x1
qq̄,a~g!1x1

qq̄,na~g!1x1
gg~g!, ~3.18!

with

asx1
qq̄,a5

Nfas

p

CF

CA
S p

sin~pg! D
2 cos~pg!

322g

213g~12g!

~122g!~112g!

asx1
qq̄,na5

Nfas

6p F1

2
@x0

2~g!1x08~g!#2
5

3
x0~g!

2S p

sin~pg! D
23cos~pg!

2~122g!

213g~12g!

~112g!~322g!G
asx1

gg5
CAas

4p F2
11

6
@x0

2~g!1x08~g!#1S 67

9
2

p2

3 Dx0~g!

1S 6z~3!1
p2

3g~12g!
1h̃~g! D

2S p

sin~pg! D
2 cos~pg!

3~122g! S111
g~12g!

~112g!~322g! DG.
~3.19!

The functionh̃(g) in Eq. ~3.19!, which contributes togk,gg
(1)

only for k>2, is given by
0-7
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h̃~g!.(
l 51

3

al S 1

l 1g
1

1

11 l 1g D ~3.20!

in approximate form, witha150.72,a250.28 anda350.16
@10#. From these results theQ0-scheme anomalous dimen
sion is then inferred by@9#

g̃gg
~1!,Q05ggg

~1!2
b0

4p
as

2 d

das
ln@ggg

~0!A2x08~ggg
~0!!#

5g1
~1!2

CF

CA
gqg

~1! . ~3.21!
va
in

g
e

y
e

n
gy
r

e
-

th
o

nd
u-

01402
Using the transformation ofg1 to the DIS scheme@9#, and
employing Eqs.~3.12! and~3.15! as well, one finally arrives
at

ggg,NL
DIS 5ggg,NL

Q0 1
b0

4p
as

2 dlnR~gL!

das
1

CF

CA
@12R~gL!#gqg,NL

Q0

[
as

6p(
k50

`

@Nf gk,gg
qq̄,~a!1gk,gg

qq̄,~b!1Dgk,gg
gg #S ās

N
D k

.

~3.22!

The first terms forg̃gg,NL
qq̄,Q0 read
g̃gg,NL
qq̄,Q052

Nfas

6p H 11
23

6

ās

N
1F71

18
2

p2

6 G S ās

N
D 2

1F233

27
2

13

36
p228z~3!

CF

CA
G S ās

N
D 3

1F1276

81
2

71

108
p21

79

3
z~3!2

7

120
p42

52

3
z~3!

CF

CA
G S ās

N
D 4

1F S 8384

243
2

233

162
p21

284

9
z~3!2

91

720
p412z~5!2

4

3
z~3!p2D1S 4

3
z~3!p22

284

9
z~3!216z~5! DCF

CA
G S ās

N
D 5

1F S 45928

729
2

638

243
p22

65

18
z~3!p222z~3!22

497

2160
p41

125

3
z~5!1

2330

27
z~3!2

31

3024
p6D

1S 26

9
p2z~3!2

104

3
z~5!2

1864

27
z~3!280z~3!2DCF

CA
G S ās

N
D 6

1OS ās

N
D 7J . ~3.23!
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A similar expression can be derived forggg,NL
gg,Q0. Because of

the yet approximate expression forh̃(g) and the missing
energy-scale dependent terms, we only list the numerical
ues of those still preliminary expansion coefficients
Table I.

In Fig. 3 the different approximations to the splittin
function xPgg(x) are displayed. Here both the LO and th
NLO terms are flat forx→0, while the Lx contribution@4#
causes a strong rise asx→0. Also shown are the presentl
known NLx terms just discussed. The addition of th
quarkonic~NLxqq̄) contribution@9# reduces the resummatio
effect almost down to the fixed-order results. The ener
scale independent gluonic terms@10# have an even stronge
impact; in fact, they turnxPgg negative already atx;1022

for as;0.2. A similar, but milder pattern is observed for th
convolutionx(Pgg^ f ) with a typical gluon shape which il
lustrates theQ2-slope of the gluon density induced byPgg .
Note that the energy-scale dependent contributions to
NLx terms inPgg have still to be calculated. These terms
yet unknown higher-order~NNLx) contributions may change
the present behavior ofPgg(x).

The leading singular contributions to the gluonic a
pure-singlet quarkonic coefficient functions for the longit
dinal structure function were also determined in Ref.@8#,
l-

-

e
r

CL
g5

as

3p
TFS 12gL

322gL
D @B~12gL ,11gL!#3

B~222gL ,212gL!
R~gL!

[
2as

3p
TF(

k51

`

ck
LS ās

N
D k

, ~3.24!

CL
S5

CF

CA
FCL

g2
2as

3p
TFG . ~3.25!

The numerical values of the first 20 expansion coefficie
gk,gg

(0) ,gk,qg
(1) in the DIS andQ0 schemes,r k ,ck

L, and coeffi-

cients contributing togk,gg
qq̄ and Dgk,gg

gg are listed in Table I
for completeness. These coefficients were calculated u
the MAPLE package @50#. The numerical values o
gk,qg

(1) /(4ln2)k were tabulated before for the DIS@42# and MS
schemes@51#. With a low number of digits the values o
gk,qg

MS,(1) , r k andck
L were given in Ref.@52# as well. Either the

direct expressions~3.4!,~3.12! or relations based on the co
responding expansion coefficients have been previously u
in numerical studies@44,23,53#.

C. Photon-parton splitting functions

Finally we have to consider the small-x higher-order cor-
rections to the inhomogeneous termskq[Pqg and kg[Pgg
0-8
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TABLE I. The numerical expansion coefficients in Eqs.~3.4!, ~3.12!, ~3.13!, ~3.22! and ~3.24!.

k gk,gg
(0) gk,qg

(1) (Q0) gk,qg
(1) ~DIS! r k ck

L

0 1.000003100 1.000003100 1.000003100 1.000003100 1.000003100

1 0.000003100 2.166673100 2.166673100 0.000003100 –3.3333331021

2 0.000003100 2.299513100 2.299513100 0.000003100 2.132843100

3 2.404113101 5.065613100 8.271093100 3.205493100 2.272313100

4 0.000003100 8.791453100 1.492493101 –8.1174231021 4.3434431021

5 2.073863101 1.905213101 2.922683101 4.562483101 2.026433101

6 1.733933101 4.584823101 1.028123102 3.270703101 2.303153101

7 2.016703100 9.241593101 1.948873102 –2.954763101 3.464493101

8 3.988633101 2.310633102 4.851003102 1.081833102 2.650043102

9 1.687473102 5.599583102 1.524443103 3.995883102 3.300383102

10 6.998813101 1.248223103 3.114513103 1.332283102 8.503713102

11 6.612533102 3.253813103 8.583753103 2.102433103 3.908493103

12 1.945313103 7.936533103 2.475713104 5.511423103 5.674333103

13 1.717683103 1.892753104 5.474353104 5.303163103 1.776803104

14 1.064333104 4.985203104 1.561953105 3.852963104 6.219823104

15 2.556683104 1.230113105 4.269803105 8.490863104 1.070283105

16 3.678133104 3.065043105 1.011113106 1.403843105 3.514753105

17 1.716853105 8.077713105 2.893983106 6.949983105 1.050583106

18 3.753793105 2.022103106 7.690423106 1.443073106 2.103413106

19 7.360253105 5.178733106 1.919193107 3.227383106 6.807473106

k gk,gg
qq̄(a) (Q0) gk,gg

qq̄(b) (Q0) gk,gg
qq̄(a) ~DIS! gk,gg

qq̄(b) ~DIS! Dgk,gg
gg

0 –1.000003100 0.000003100 –1.000003100 0.000003100 –1.650003101

1 –3.833333100 0.000003100 –3.833333100 0.000003100 0.000003100

2 –2.299513100 0.000003100 –2.299513100 0.000003100 1.489803101

3 6.420723100 –1.190043102 –6.045063100 3.966793101 –2.252913102

4 –2.597643101 0.000003100 –2.818143101 –5.357503101 2.426313100

5 5.757873100 –3.421863102 –2.609883101 3.421863101 –2.094813102

6 1.216903102 –2.288793103 –9.436073101 4.405833102 –2.782113103

7 –2.663653102 –6.987863102 –3.549813102 –7.395273102 –2.709703102

8 5.438073102 –1.118813104 –4.278283102 1.118013103 –7.530123103

9 1.968523103 –4.108353104 –1.673663103 4.866653103 –3.823513104

10 –2.049983103 –3.393453104 –5.213903103 –9.101953103 –1.563813104

11 1.493023104 –2.759333105 –7.990793103 2.409023104 –1.731223105

12 3.338373104 –7.551043105 –3.056073104 5.327583104 –5.682313105

13 9.195793103 –1.103873106 –8.373323104 –9.584373104 –5.133923105

14 3.358043105 –6.127633106 –1.571713105 4.467473105 –3.525773106

15 6.264843105 –1.459663107 –5.642623105 5.925103105 –9.135273106

16 9.728923105 –3.011023107 –1.436753106 –6.852583105 –1.361713107

17 7.056263106 –1.300183108 –3.145923106 7.719853106 –6.854953107

18 1.295073107 –2.968143108 –1.051443107 7.225153106 –1.586483108

19 3.185683107 –7.454063108 –2.595483107 2.957973106 –3.236253108
on
ed
n
s
e
s

in the photonic evolution equations~2.21!. These quantities
arise from a subset of the diagrams leading to the glu
parton splitting functions, with the incoming gluon replac
by a photon. Purely gluonic graphs do obviously not belo
to that subset, as the photon can couple to the hadronic
tem only throughqq̄ emission. Hence, by comparing to th
hadronic results discussed above, one obtains the most
gular (S) small-x terms as
01402
-

g
ys-

in-

kq
S5aemkq,0~N50!1(

l 51

`

aemas
l

kq,0
S

Nl 21
,

kg
S5(

l 51

`

aemas
l
kg,0

S

Nl
. ~3.26!

I.e., kq ~up to its scheme-independent constant LO term! is
0-9
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FIG. 3. ~a! The cumulative ef-
fect of the available terms for
splitting function xPgg(x) for as

50.2. The fixed-order results ar
successively supplemented by th
higher-order small-x resummed

Lx correction @4#, the qq̄ contri-
bution to the NLx term @9#, and
the gluonic NLx energy-scale in-
dependent terms@10#. ~b! As ~a!
but for the convolution ofPgg

with a shape of an hadronic gluo
density.
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definitely beyond the current NLx approximation, whereas
kg can receive contributions at this order. Likewise, the c
stant but scheme-dependent termCg,1 is NLx, and all higher-
order photonic coefficient functions are beyond that appro
mation. A 1/N-term is indeed present in the known NL
result kg,1 . This term, however, vanishes after transform
tion to the DIS or DISg schemes. In fact, this cancellatio
can always be achieved at all orders, as we will show no

We proceed in two steps. We start by a purely hadro
transformation~like that one fromMS to DIS!, where C
→C̃5C1DC, andCg remains unchanged. Then Eq.~2.27!
implies

05DI inhom5C̃•Dk1DC•k. ~3.27!

We consider only such transformation terms, which are m
tivated in contributions to the actual electromagnetic coe
cient functions. These are, however, of NLx order, as thek
themselves, and hence one hasDk50 on the NLx level:
purely hadronic scheme changes modify the photon-pa
splitting functions only beyond the NLx approximation.

The second step is a purely photonic transformation,Cg

→C̃g5Cg1DCg , with C untouched. Here Eq.~2.27! yields

05DI inhom5C•Dk1b•DCg82Ihom•DCg . ~3.28!

Solving for the changesDkm up to the orderaemas
m therefore

leads to

Dk15Ihom, 0•DCg,1

Dk252C1•Dk11Ihom, 0•DCg,21Ihom, 1•DCg,1

A

Dkm52 (
l 51

m21

Cl•Dkm2 l1 (
l 50

m21

Ihom,l•DCg,m2 l 11 , ~3.29!
01402
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where only terms have been retained which can potenti
contribute toDkNLx , if an NLx contribution toDCg occurs
in the transformation. By choice of the~unphysical! lower
component ofDCg,m the NLx pieces ofkm , arising, for ex-
ample, in anMS calculation, can hence successively
eliminated, without disturbing the vanishing of the upp
term. At NLO, e.g., the lower component of zero in E
~2.30!, as chosen in the DISg scheme@32# achieves this can-
cellation. Therefore, without any loss of generality, vanis
ing resummed photon-parton splitting functions can be
sumed at the NLx level.

IV. LESS SINGULAR CONTRIBUTIONS

The terms in the splitting functionsPi j , which are less
singular by one~or more! powers of ln(1/x) asx→0 than the
leading contributions discussed in the previous section,
presently unknown in almost all cases. Such subleading c
tributions, however, can potentially prove to be as import
as the leading terms, as also noted in a similar context in R
@54#. The splitting functions and coefficient functions ent
observable quantities always via Mellin convolutions w
the parton distributions. Since the parton densities are ste
rising towards smallx, but ~at least in the hadronic case!
small at largex, the structure functions probe the behavior
splitting functions and coefficient functions at medium a
large values ofx as well.

The unpolarized singlet splitting functions are constrain
by energy-momentum conservation; see Eq.~2.17!. Also in
other cases, however, as for the polarized singlet and
non-singlet1 evolutions, where no conservation laws app
less singular terms with sizable coefficients exist, for e
ample in NLO; see, e.g., Ref.@23#. In order to evaluate the
possible impact of such terms in higher-order splitting fun
tions, their numerical coefficients need to be estimated.
present the almost only source of information is the fu
known LO and NLO splitting functions.
0-10
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The dominant and subdominant terms in the smax
1/N-expansion of the LO and NLO singlet anomalous
mensions are recalled in Eqs.~4.1!–~4.3!. In accordance with
the main part of our numerical studies in Sec. VI, the res
are listed for four light quark flavors. The first terms in th
LO case are given by

gqq,LO5110.8793N26.82222N21O~N3!,

gqg,LO5210.6667111.5556N213.1852N21O~N3!,

ggq,LO52
10.6667

N
18.0000029.3333N

110.0000N21O~N3!,

ggg,LO52
24.0000

N
127.333325.1883N

117.0395N21O~N3!. ~4.1!

The corresponding expansions of the NLO anomalous
mensions read, in the DIS scheme,

gqq,NLO
DIS 52

123.259

N
1405.8632684.836N

11197.52N21O~N3!,

gqg,NLO
DIS 52

277.333

N
1846.22221706.18N

12622.76N21O~N3!,

ggq,NLO
DIS 51

91.2593

N
2453.5121809.030N

21344.89N21O~N3!,

ggg,NLO
DIS 51

245.333

N
2988.21012093.25N

23109.08N21O~N3!. ~4.2!

One notices that the first subleading terms occur wit
sign opposite to that of the dominant one. Their prefact
are of the same order, but in most cases the subleading
efficients are by a factor of about 2–4 larger. At leadi
order the quarkonic terms are not singular asN→0. The
qq-term even starts proportional toN, as a consequence o
fermion-number conservation, Eq.~2.16!. The alternating
structure continues towards higher powers inN with a simi-
lar pattern for the coefficients as observed for the first a
second terms. Note that this behavior is not a special fea
01402
-

s

i-

a
s
o-

d
re

of the DIS scheme, but is observed to a similar extent als
other schemes. As an example we give the correspon
coefficients also for theMS-scheme :

gqq,NLO
MS 52

94.8148

N
1253.0262337.185N

1623.259N21O~N3!,

gqg,NLO
MS 52

213.333

N
1461.4492889.687N

11501.16N21O~N3!,

ggq,NLO
MS 51

62.8148

N
2361.8051658.108N

21048.43N21O~N3!,

ggg,NLO
MS 51

216.889

N
2790.92811616.55N

22423.77N21O~N3!. ~4.3!

In the structure function evolution, the difference betwe
Eqs. ~4.2! and ~4.3! is compensated by the correspondi
small-x terms of the coefficient functions.

In the small-x resummation case, even partial results
subdominant contributions are only available for the gluo
gluon splitting function so far. The irreducible NLx contri-
butions toggg @10# exhibit very large coefficients if com
pared to the Lx series@4#; see Table I and the comparison
Ref. @12#. The introduction of terms with prefactors up to
times larger than those of the leading contributions, the
fore, should provide conservative, non-exaggerating e
mates for the possible impact of subdominant correctio
The following modifications of the resummed anomalous
mensions beyond two-loop order,G(N,as), have accord-
ingly been studied within Refs.@21,23,44,55#:

~A!: G~N,as!→G~N,as!2G~1,as!

~B!: G~N,as!→G~N,as!~12N!

~C!: G~N,as!→G~N,as!~12N!2

~D!: G~N,as!→G~N,as!~122N1N3!.
~4.4!

The impact of the prescriptions~C! and ~D! on the re-
summed NLx contribution to the splitting function
xPqg(x,as) is illustrated in Fig. 2. Atx51024 those terms
reducexPqg by factors larger than 3, indicating the potenti
importance of less singular contributions. Also displayed
Fig. 2 is the convolution ofPqg with a typical hadronic gluon
shape. The enhancement of the importance of non-lea
terms by the Mellin convolution discussed above is obvio
from the comparison of the two plots.
0-11
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JOHANNES BLÜMLEIN AND ANDREAS VOGT PHYSICAL REVIEW D 58 014020
V. SOLUTION OF THE EVOLUTION EQUATIONS

In this section we derive the solution of the singlet ev
lution equations presented above. For technical convenie
the analysis is performed in Mellin-N space where the con
volutions turn to simple products. Recall that a unique a
lytic continuation of the anomalous dimensions from the
teger moments to complexN exists @56#. Thus a coupled
system of two ordinary differential equations has to
solved at fixedN. Thex-space results are then obtained by
contour integral around the singularities of the final mom
solutions f (N) in the complexN-plane, e.g., that shown in
Fig. 4. Because off * (N)5 f (N* ), it yields @57#

x f~x!5
1

pE0

`

dz Im@eifx2Cf ~N5C!#, ~5.1!

whereC5c1zeif. For all cases considered here,c.1 and
f.3p/4 provide an efficient and numerically stable inve
sion. The latter choice off.p/2 leads to a faster conver
gence of the integral~5.1! as z→`; see also Ref.@58#. At
small-x, for example, a numerical accuracy better than 1025

is easily achieved for upper limits as low aszmax.5.
re

n

01402
-
ce

-
-

t

A. The general hadronic solution

It is convenient to recast the evolution equations in ter
of the running couplingas5as(Q

2)/4p as independent vari
able, by combining theQ2 evolution ~2.14! of the hadronic
parton densitiesq with Eq. ~2.8! for as . Sorting the resulting
right-hand side~RHS! in powers ofas , one obtains

FIG. 4. Integration contour in the complexN-plane for the in-
verse Mellin transformation~5.1! relative to the locations of the
singularities of typical initial parton distributions~solid circles!, and
those of the fixed-order~crosses! and resummed anomalous dime
sions~open and solid diamonds for different values ofQ2).
]q~as ,N!

]as
5

asP0~N!1as
2P1~N!1as

3P2~N!1•••

2as
2b02as

3b12as
4b22•••

q~as ,N!

52
1

b0as
S P0~N!1asS P1~N!2

b1

b0
P0~N! D1as

2H P2~N!2
b1

b0
P1~N!1F S b1

b0
D 2

2
b2

b0
GP0~N!J 1••• Dq~as ,N!

52
1

as
FR0~N!1 (

k51

`

as
kRk~N!Gq~as ,N!. ~5.2!
q.
by

d

r in
Here we have simplified the notation by introducing the
cursive abbreviations

R0[
1

b0
P0 , ~5.3!

Rk[
1

b0
Pk2(

i 51

k
b i

b0
Rk2 i ~5.4!

for the splitting function combinations entering this expa
sion. As in Eqs.~5.3! and ~5.4!, we will often suppress the
explicit reference to the Mellin variableN below.

The splitting function matricesPk of different ordersk do
generally not commute; especially one has

@Rk>1~N!,R0~N!#Þ0. ~5.5!
-

-

This prevents, already at NLO, writing the solution of E
~5.2! in a closed exponential form. Instead we proceed
generalizing the NLO method of Ref.@33# to all orders4 in
as . The correspondingAnsatzof a series expansion aroun
the lowest order solution,

qLO~as ,N!5S as

a0
D 2R0~N!

q~a0 ,N![L~as ,a0 ,N!q~a0 ,N!,

~5.6!

reads

4The first three orders were treated in a very similar manne
Ref. @59#.
0-12
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q~as ,N!5U~as ,N!L~as ,a0 ,N!U21~a0 ,N!q~a0 ,N!

5F11 (
k51

`

as
kUk~N!GL~as ,a0 ,N!

3F11 (
k51

`

a0
kUk~N!G21

q~a0 ,N!. ~5.7!

The third,as-independent factor in Eq.~5.7! has been intro-
duced to normalize the evolution operator to the unit ma
at Q0

2, instead of to the LO result~5.6! at infinitely highQ2.
Inserting thisAnsatzinto the evolution equations~5.2! and
sorting in powers ofas anew, one arrives at a chain of com
mutation relations for the expansion coefficientsUk(N):

@U1 ,R0#5R11U1 ,

@U2 ,R0#5R21R1U112U2 ,

A

@Uk ,R0#5Rk1 (
i 51

k21

Rk2 iUi1kUk[R̃k1kUk . ~5.8!

These equations can be solved recursively by applying
eigenvalue decomposition of the LO splitting function m
trix, completely analogous to the truncated NLO soluti
with only U1 @33#; see below. One writes

R05r 2e21r 1e1 , ~5.9!

wherer 2 (r 1) stands for the smaller~larger! eigenvalue of
R0,

r 65
1

2b0
@Pqq

~0!1Pgg
~0!6A~Pqq

~0!2Pgg
~0!!214Pqg

~0!Pgq
~0!#.

~5.10!

The matricese6 denote the corresponding projectors,

e65
1

r 62r 7
@R02r 7I #, ~5.11!

with I being the 232 unit matrix. Hence the LO evolution
operator~5.6! can be represented as

L~as ,a0 ,N!5e2~N!S as

a0
D 2r 2~N!

1e1~N!S as

a0
D 2r 1~N!

.

~5.12!

Inserting the identity

Uk5e2Uke21e2Uke11e1Uke21e1Uke1 ~5.13!

into the commutation relations~5.8!, one finally obtains the
expansion coefficients in Eq.~5.7!:

Uk52
1

k
@e2R̃ke21e1R̃ke1#1

e1R̃ke2

r 22r 12k
1

e2R̃ke1

r 12r 22k
.

~5.14!
01402
x

e
-

This relation completes the general structure of the hadro
singlet evolution. Note that the poles inUk(N) at N-values
wherer 2(N)2r 1(N)6k vanishes are canceled by theU21

term in the solution~5.7!. We are now ready to consider th
presently available fixed-order and small-x resummation ap-
proximations.

B. Fixed-order evolution

In fixed-order perturbative QCD the expansion~2.15! of
the splitting functions in powers of the strong couplingas is
truncated at some low orderk. Practical small-x calculations
are presently restricted to NLO (k51), as the NNLO split-
ting functionsP2(N) are not yet known for arbitrary value
of N, unlike the 2-loop coefficient functions@37,38# and the
b-function coefficientb2 @17#. Hence we confine ourselve
to the NLO evolution here, the generalization to higher fix
orders being obvious. I.e., we keep the full results up tok
51 and put, in Eq.~5.2!,

Pk>2~N!50, ~5.15!

bk>250. ~5.16!

The coefficientsbk>2 are also removed, for only all thre
quantitiesPk , Ck and bk together form a scheme indepe
dent set for the evolution of physical quantities like the stru
ture functionsF2(x,Q2) or, in the case of polarized scatte
ing, g1(x,Q2).

Two natural approaches have been widely adopted for
solution of the resulting NLO evolution equations. First o
can solve Eq.~5.2! as it stands after inserting Eqs.~5.15! and
~5.16!. Then still all orders inas contribute there and in the
solution ~5.7!, with the only simplification that the splitting
function combinations~5.4! are now given by

Rk
NLO5

~21!k21

b0
S b1

b0
D k21S P12

b1

b0
P0D . ~5.17!

This procedure is equivalent to a simple iterative solution
the system~2.14! and ~2.8!, truncated atk51. That tech-
nique is widely used in parton density analyses, e.g., in R
@60–62#.

The second approach uses power counting inas at the
level of the evolution equation~5.2!. There theas

2 term in the
square brackets involvesP2 andb2 and can thus be consid
ered as beyond the present approximation. Conseque
only the constant and the linear terms inas are kept, instead
of Eq. ~5.17! leading to

R1
NLO85R1

NLO5
1

b0
S P12

b1

b0
P0D , Rk>2

NLO850. ~5.18!

In this approach it is furthermore natural to truncate also
evolution matrixU(as) after the linear term, sinceP2 would
enter the determination ofU2 in Eq. ~5.8! as well. Recall also
that the final multiplication with the NLO Wilson coeffi
cients only cancels the scheme dependence of the lineaas
term in the evolution of the structure functions~2.25!. Fi-
0-13
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nally one can expand alsoU21(a0) to first order in Eq.~5.7!,
although this is not necessary, resulting in

qtr
NLO~as ,N!5@L~as ,a0 ,N!1asU1~N!L~as ,a0 ,N!

2a0L~as ,a0 ,N!U1~N!#q~a0 ,N!, ~5.19!

whereU1 is given by Eq.~5.14! with R̃15R1 of Eq. ~5.18!.
This is the well-known truncated analytical NLO solutio
@33# which has been employed, for instance, in Refs.@63,64#.

These two approaches obviously differ in NNLO term
only. The former procedure introduces more schem
dependent higher order terms into the evolution of struct
functions such asF2(x,Q2) or g1(x,Q2) in a general factor-
ization scheme. On the other hand, the latter method does
solve the evolution equations~2.14! literally, but only in the
sense of a power expansion, i.e., up to terms of orderk>2.
Therefore the first approach may be considered more in
spirit of the parton model, whereas the second is closer
manifestly scheme independent expansion for physical
servables.

C. Small-x resummed evolution

The resummed evolution of the parton distributions
cludes, to all orders inas , the most singular small-x contri-
butions to the splitting functionsPk . This inclusion is per-
formed in the orders beyond the known fixed-order resu
Thus the complete expressions forP0(N) and P1(N) are
used also here, and the difference from the previous sec
is restricted to the higher-order matricesPk>2. Our notation
in this section will directly apply to the evolution of unpo
larized quark and gluon densities. Most of the subsequ
discussion can, however, be easily transferred to the po
ized singlet evolution@55# by replacing 1/Nk1 l by 1/(N
11)2k1 l with correspondingly modified coefficient matrice
in all expansions.

In the present case the most singular small-x terms in the
evolution equations~2.14! behave like 1/xas

k11lnkx @4# and
1/xas

k11lnk21x @8# as discussed in Sec. III. In Mellin-N space
these additional resummation contributions replacing
~5.15! read

Pk>2
res ~N!5

Pk
Lx

Nk11
1 i NL

Pk
NLx

Nk
. ~5.20!

In particular, the matrixPk
Lx is related to the expansion co

efficientsgk,gg
(0) in Table I by

Pk
Lx5~4CA!k11gk,qq

~0! S 0 0

CF /CA 1D . ~5.21!

i NL indicates whether only these leading small-x pieces are
taken into account~Lx resummation!, or whether also the
next terms in Eq.~5.20! are kept~NLx resummation!:

i NL5H 0 for Lx resummation,

1 for NLx resummation.
~5.22!
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Recall that only the upper row of the NLx matrix is com-
pletely known at present@8#. Results including that part only
will be marked by NLxq below.

With respect to the solution of the evolution equation
the situation is analogous to the fixed-order case, with
expansion parameteras replaced byN at each orderk>2 of
the strong coupling. The first option is obviously again t
direct solution of Eq.~5.2!, now after inserting Eqs.~5.16!
and~5.20!. To elucidate the generalization of the NLOtr pro-
cedure to the resummed evolution, consider the splitt
functions contributionRk>2, Eq. ~5.4!, arising from Eq.
~5.20!:

Rk>2
res~N!

5
1

Nk11

1

b0
@Pk

Lx1iNLNPk
NLx#2

1

Nk

b1

b0
2 @Pk21

Lx 1 i NLNPk21
NLx #

1
1

Nk21

1

b0
H S b1

b0
D 2

2
b2

b0
J @Pk22

Lx 1 i NLNPk22
NLx #1•••.

~5.23!

The omitted terms involving higher powers ofb1 andb2, or
bk>3, are obviously even less singular as the last line
N→0. Therefore, if the power-counting inN is done on the
level of Eq.~5.2!, one immediately arrives at

Rk>2
res8 ~N!5

1

b0

1

Nk11FPk
Lx1 i NLNS Pk

NLx2
b1

b0
Pk21

Lx D G .
~5.24!

Note that in the NLx ~Lx) case theb-function coefficients
bk>2 (bk>1) do not contribute any more, and thatb1 occurs
only linearly in the former case. ThusP1, which does not
exhibit an Lx contribution, does not enter Eq.~5.24! in the
present unpolarized case. All this is completely analogou
the R matrices~5.18! for the NLOtr evolution.

Before we turn to theU matrix for this second procedure
it is instructive to consider a small-x approximation to the
unpolarized Lx evolution in this approach. Unlike in an
other QCD singlet case, including the polarized lead
small-x resummation@55#, the splitting function combina-
tions Rk,k8>2 do commute here:@Rk(N),Rk8(N)#50, due to
the simple structure of the matrix~5.21!. This is still not
sufficient for a closed solution of the evolution equati
~5.2!, unless one also keeps the leading small-x contributions
to P0,1(N) only. Then, however, one eigenvalue ofP0 van-
ishes, resulting in

P0
x→05

4CA

N S 0 0

CF /CA 1D 5
4CA

N
e1

x→0. ~5.25!

Using Eqs.~3.4! one obtains with this additional approxima
tion,
0-14
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qLx
approx~as ,N!5expF 1

2b0
E

a0

as
da

1

a2
gL~a,N!Gq~a0 ,N!

5expS 12L

b0ND F11(
l 51

`
dl~as ,a0!

Nl Ge1
x→0q~a0 ,N!,

~5.26!

analogous to the complete resummed non-singlet solut
see Refs.@21#. This simple approximate expression, ho
ever, does of course not lead to any quark evolution. Eq
tion ~5.26! can be completely transformed tox-space~cf.
Ref. @43#!,

qLx
approx~as ,x!5F~as ,a0 ,x! ^ e1

x→0q~a0 ,x!, ~5.27!

with

F~as ,a0 ,x!5
1

xFd~12x!1A 12L

b0log~1/x!
I 1~z!

1(
l 51

`

dl~as ,a0!S b0log~1/x!

12L D ~ l 21!/2

I l 21~z!G ,

~5.28!

where

z52F12L

b0
logS 1

xD G1/2

, L5 logS as

a0
D , ~5.29!

and I n(z) denotes the Bessel functions of imaginary arg
ment. Similar expressions, e.g. in the double-logarithmic
proximations, were studied in detail long ago@65# and were
also considered recently@66#. As compared to the complet
Lx solution, however, the approximation~5.27! yields gluon
densities which are typically too large by a factor of 2 for
evolution from 4 to 100 GeV2. Therefore we will not apply
this approach in the following.

We now proceed with the general resummed solution c
responding to the truncated NLO treatment whereUk>250;
see Eq.~5.19!. The generalization to the present case is
keep only those terms ofUk>2 which arise from the Lx and
NLx pieces ofR1 and ofRk>2 in Eq. ~5.23!. Hence the NLO
coefficientU185U1 is supplemented by

@U28 ,R0#5R2
res81R1

SU1
S12U28 ~5.30!

etc. HereR1
S denotes the small-x contribution ofR1,

R1
S~N!5

1

b0

1

N2FP1
Lx1 i NLNS P1

NLx2
b1

b0
P0

LxD G ,
~5.31!

and the corresponding expansion coefficientU1
S is given by

@U1
S,R0#5R1

S1U1
S. ~5.32!
01402
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The final step analogous to the NLOtr method is to keep the
non-(N)Lx parts ofU1 only linearly also in the inverse ma
trix U21 of Eq. ~5.7!. This leads to

U821~a,N!5F11aU1
S~N!1 (

k52

`

akUk8~N!G21

1a$U1
S~N!2U18~N!%

[US
21~a,N!2$12aU1

S~N!%112aU1~N!.

~5.33!

The last two terms represent the truncated NLO contributi
Insertion of this decomposition into Eq.~5.7! finally yields
@with L[L(as ,a0 ,N) for brevity#

qtr
res~as ,N!5@L1asU1~N!L2a0LU1~N!#q~a0 ,N!

1@US~as ,N!LUS
21~a0 ,N!

2L2asU1
S~N!L1a0LU1

S~N!#q~a0 ,N!.

~5.34!

The first line is the NLOtr result ~5.19!; the second line rep-
resents the resummation correction.

D. Photonic solution

We now turn to the parton distributions of the photon.
terms of the running coupling, the corresponding inhomo
neous evolution equation~2.21! reads

]qg~as ,N!

]as
5

aem$k0~N!1ask1~N!1as
2k2~N!1•••%

2as
2b02as

3b12as
4b2•••

1had

52
aem

as
2 FK0~N!1(

l 51

`

as
l Kl~N!G1had

[K~as ,N!1had. ~5.35!

Here aem5a/4p denotes the electromagnetic fine structu
constant, and analogously to Eqs.~5.3! and ~5.4! we have
introduced

K0[
1

b0
k0 , ~5.36!

Kl[
1

b0
kl2(

i 51

l
b i

b0
Kl 2 i . ~5.37!

Finally ‘‘had’’ stands for the RHS of the hadronic evolutio
equation ~5.2!, with q replaced byqg. The homogeneous
component,qhom, of the solution of Eq.~5.35! is as derived
in Secs. V A–V C. Hence only the inhomogeneous pa
qinhom5qg2qhom with qinhom(a0 ,N)50, needs to be dis-
cussed here. This solution can be represented in terms o
hadronic evolution operator~5.7! as
0-15
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qinhom~as ,N!

5U~as ,N!as
2R0~N!E

a0

as
daaR0~N!U21~a,N!K~a,N!.

~5.38!

For the iterative solutions the remaining integral can
performed numerically. In the truncated procedures, on
other hand,U21(a,N) has been expanded in Eqs.~5.19! and
~5.33!. In these cases the NLO photonic splitting function
k1

i [P1
ig, should be treated in the same way as their hadro

counterpartsP1
i j previously, reducing Eq.~5.37! to

K185K15
1

b0
S k12

b1

b0
k0D , Kl>28 50. ~5.39!

In the following we will confine ourselves to physical fa
torization schemes like the DISg scheme@32# or the DIS
scheme, where the photonic coefficient functionC2,g has
been absorbed into the quark distributions. In these sche
K(as ,N) does not receive any Lx and NLx resummation
corrections beyond the leading order, as discussed in Sec
Thus Eq.~5.39! applies to the NLOtr photon evolution as
well as to the corresponding resummed case.
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III.

InsertingUNLO8
21 (as ,N)512asU1(N) and the expansion

~5.39! into the inhomogeneous solution~5.38!, the as inte-
gration becomes obvious and one arrives at@32#

1

aem
qinhom

NLO8~as ,N!

5
1

as
@11asU1~N!#S 12

as

a0
LD @12R0~N!#21K0~N!

2~12L!R0
21~N!@K1~N!2U1~N!K0~N!#1O~as!.

~5.40!

In the resummed case a numerical integration remains o
the all-order part ofU821 in Eq. ~5.33!. Defining

D res~as ,a0 ,N!

52E
a0

as da

a2
L21~a,a0 ,N!@US

21~a,N!211aU1
S~N!#K0~N!

~5.41!

the solution is, again usingL[L(as ,a0 ,N), given by
1

aem
q inhom

res8 ~as ,N!5
1

ae
qinhom

NLO8~as ,N!1Us~as ,N!D res~as ,a0 ,N!

1Us~as ,N!F 1

as
S 12

as

a0
LD @12R0~N!#21K0~N!1~12L!R0

21~N!U1
S~N!K0~N!G

2@11asU1
S~N!#

1

as
S 12

as

a0
LD @12R0~N!#21K0~N!2~12L!R0

21~N!U1
S~N!K0~N!. ~5.42!
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This relation completes the Mellin-N solutions of the fixed-
order and resummed, hadronic and photonic evolution eq
tions. We are now prepared to investigate the quantita
impact of the various approximations, for both the splitti
functions and the solutions, on the parton densities and st
ture functions.

VI. NUMERICAL RESULTS

In the following we study the numerical consequences
the fixed-order and resummed evolution kernels on the e
lution of structure functions and some aspects related to
tential uncertainties. Despite the impressive amount
small-x structure function data already collected at HER
@1,2#, the present investigation does not aim at a compara
data analysis. Such an effort would require quite some fl
ibility in the non-perturbative initial distributions, especial
for the gluon density which is only rather indirectly co
strained by measurements ofF2 and FL . A detailed data
analysis requires rather precise and independent constr
a-
e

c-

f
o-
o-
f

e
x-

nts

on the small-x behavior of the gluon density, which are n
yet provided by current measurements at HERA. A thorou
implementation of heavy flavor~charm! mass effects in the
resummation framework would be required as well. The
mass effects are non-negligible at smallx, where the charm
contribution toF2 andFL is substantial, in spite of the ver
large hadronic invariant mass,W2@4mc

2 ; cf. Ref. @67#. Both
of these issues lie beyond the scope of the present pa
Since some of the resummation corrections turn out to
very large, one would like to know as well the next-ord
resummed corrections to perform a detailed data analysi

In the following, therefore, the impact of the variou
anomalous dimensions and Wilson coefficients is instead
lustrated for fixed initial parton densities of the proton a
the photon. Accordingly all calculations are performed us
the same values foras(Q

2). Specifically, the NLO relation
~2.10! is employed withLNf5450.23 GeV aboveQ25mc

2

5(1.5 GeV)2 and, by continuity ofas(Q
2), with LNf53

50.30 GeV below that scale. Above~below! Q25mc
2 the

evolution equations are solved for four~three! massless fla-
0-16



f
-
.

-

-

EVOLUTION OF UNPOLARIZED SINGLET STRUCTURE . . . PHYSICAL REVIEW D58 014020
FIG. 5. The small-x evolution
of the proton’s flavor-singlet
quark and gluon distributions in
LO and NLO perturbative QCD.
Two approaches to the solution o
the evolution equations are com
pared in the NLO case; cf. Sec. V
Also shown is the result of a
small-x approximation ~NLxq ;
see the text! of the LO splitting
functions. The behavior of non
singlet quantities is illustrated by
the total valence quark distribu
tion x(uv1dv).
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vors, respectively, withc(x,mc
2)5 c̄(x,mc

2)50. The small
effects of the bottom flavor are entirely neglected. All su
sequent results are derived in the DIS scheme discu
above, with the truncated solutions of Sec. V chosen as
fault. Only the singlet resummations described in Sec. III
taken into account, since the non-singlet contributions
suppressed at smallx in the present unpolarized case~see
Fig. 5!, and its resummation correction is very small; cf. S
II B.

A. Proton structure: Fixed-order evolution

Let us first consider the leading and next-to-leading or
evolution of hadronic parton densities, putting emphasis
the small-x region. As the value ofLNf54 given above, the
initial distributions for our proton studies are adopted fro
the Martin-Roberts-Stirling set A8 @MRS(A8)# global fit @62#
at a reference scaleQ0

254 GeV2. For the present purpose
the most relevant feature of these input densities is t
small-x behavior which has been constrained by previo
HERA data:

xgp~x,Q0
2!}xSp~x,Q0

2!}x20.17 for x→0. ~6.1!

Recall that, unlike the gluon distribution, the DIS-schem
quark densities represent observables.

The LO and NLO small-x evolution of xSp and xgp to
Q2510 and 100 GeV2 is shown in Fig. 5 together with the
initial distributions. The LO curves have been calculated,
indicated above, using the NLO input densities andas values
in Eq. ~5.6!. Hence they do not represent results of an in
pendent leading-order analysis, but directly illustrate the
portance of the NLO terms relative to the LO contribution
Eq. ~5.19!. One notices that the perturbative stability of t
presently available fixed-order evolution is theoretically s
isfactory also at very low values ofx. For instance, the
NLO/LO ratio amounts to 1.25~0.87! for the singlet~gluon!
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density atQ25100 GeV2 andx51024. Furthermore the nu-
merical differences between the expanded solution~5.19!
and the iterative approach~5.17! to the NLO evolution equa-
tions can be considered as absolute lower limits on the
certainties due to the unknown higher-order splitting fun
tions. These offsets reach 3% atx.1025, while amounting
to less than 1% forx>1023; see also Fig. 6 below.5 Thus
one may roughly expect a 5–10 % small-x effect from the
3-loop anomalous dimensions, if fixed-order renormalizat
group improved perturbation theory remains the appropr
framework down tox*1025. Such an estimate is also co
roborated by studies of the factorization scale dependenc
F2 at smallx @20#.

It is conceivable, however, that the NLO contributions
the small-x anomalous dimensions are untypically small@as,
for instance, 1/N2 terms are absent ing1; cf. Eqs.~4.2! and
Table I#. In this context it is instructive to study the conve
gence of~formal! small-x expansions of anomalous dimen
sions and Wilson coefficients into the series

w~as ,N!5(
l 51

`

as
l Fw l

Lx

Nl
1

w l
NLx

Nl 21
1

w l
NNLx

Nl 22
1•••G ~6.2!

already at the LO and NLO level, where the full results a
available. Also shown in Fig. 5, therefore, is the NLxq ap-
proximation to the leading-order evolution, for which just th
1/N terms ofggg

LO andggq
LO are kept together with the leadin

N→0 constants ingqg
LO and gqq

LO ; see Eqs.~4.1!. Note that
this procedure is close to the well-known double-logarithm

5In previous comparisons@20,68# deviations of up to 8% were
found between these solutions. These large effects originated in
unfortunate choice of a traditional approximate NLO expression
as(Q

2), showing that the representation of the NLO solution of E
~2.8! tends to be relevant at the current accuracy of the data.
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FIG. 6. The effects of the suc
cessive small-x approximations
~6.2! to the LO anomalous dimen
sions g0 ~left! and to the NLO
correctionsg1 ~right! on the low-x
evolution ofxSp andxgp; cf. Eqs.
~4.1! and~4.2!. All results are dis-
played atQ25100 GeV2 relative
to the respective full calculations
presented in Fig. 5.
re

ly

th
bl
ul

-
io

l

n
t
on

se
lu
si
-
ia
c
s

o
e
ub

by

on
for
l-
d

uon
ne-

the

ent.

t

. 2.

u-
t
.8,

us

bu-
a

yet
for

xt
approximation; cf. Sec. V C. As can be seen from the figu
this first approximation is very poor:xS andxg exceed the
full LO results by factors of about 1.7 and 2.2, respective
rather uniformly inx at Q25100 GeV2, without any appre-
ciable sign of improvement for decreasing values ofx.

Hence the question arises as to how many terms in
small-x expansion are required for arriving at a reasona
accurate representation of the complete fixed-order res
Accordingly, Fig. 6 displays the ratiosSapprox/S full and
gapprox/gfull for the LO and NLO evolutions with an increas
ing number of terms taken into account in the expans
~6.2! of g0 andg1 ~in NLO the complete expression forg0
has been employed for all curves!. One finds that in genera
three to four non-trivial small-x terms, i.e., contributions up
to N2Lx at LO and N3Lx at NLO, are needed to achieve a
accuracy of better than 10%. The NLO situation is no
peculiarity of the DIS scheme chosen here, as a corresp
ing MS analysis using Eqs.~4.3! yields similar results. Note
that an interesting pattern emerges in both fixed-order ca
the approximate results alternate around the exact va
with decreasing amplitude. If such a pattern were to per
to higher orders inas , a first reliable estimate of their pos
sible impact could be derived once two more non-triv
terms in all small-x expansions were known. This aspe
may be of relevance for the resummed evolution addres
in the following.

B. Resummed evolution

We now turn to the effects and the relative importance
the Lx @4# and NLx @8–10# higher-order contributions to th
splitting functions discussed in Sec. III. In the present s
section the momentum sum rule~2.17! is restored by pre-
scription~A! of Eq. ~4.4!; i.e., Pk

gg andPk
qq are supplemented

by appropriated(12x) terms at all ordersk>2. This proce-
dure is the one with the least impact on the small-x results.
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Without any subtraction the sum rule would be violated
about 1% and 6% atQ25100 GeV2 for the Lx and NLxq

resummed evolutions, respectively, of our MRS~A8) initial
distributions.

The resulting evolutions of the singlet quark and glu
densities are compared to the NLO distributions in Fig. 7
Q2510 and 100 GeV2. The relative importance of the avai
able gluonic~lower row! anomalous dimensions is illustrate
in Fig. 8~a!. Consider first the effect of the Lx corrections
@4#. These terms exert an appreciable influence on the gl
evolution, but much less on the quark densities in the ki
matic region covered by the figure. Atx51024 and Q2

5100 GeV2, e.g., ratios ofgLx/gNLO51.24 andSLx/SNLO

51.07 are obtained. This pattern obviously arises from
matrix structure of the Lx kernel~3.4!; only at higher scales
does the quark effect fully approach the gluon enhancem

The inclusion of the NLxq terms @8#, i.e. the upper row
entries in Eq.~3.11!, leads to only a small additional effec
on xg(x,Q2). The impact of these terms onxS(x,Q2) is,
however, exceedingly large, as already evident from Fig
These effects have been illustrated before, cf. Refs.@44,23#,
partly using different parametrizations for the input distrib
tions at the starting scaleQ0

2. The resulting enhancemen
with respect to the NLO evolution amounts to a factor of 2
for example, atx51024 andQ25100 GeV2. This huge cor-
rection is indeed entirely driven by the quarkonic anomalo
dimensions, as also illustrated in Fig. 8~a!: any ‘‘reasonable’’
change of the gluonic splitting functions affectsxS by at
most about 10%. Since only this one resummation contri
tion is known for the dominant upper-row quantities,
theory based estimate along the lines of Sec. VI A is not
possible for the resummed quark distributions, and hence
the most important structure function,F2. We will therefore
resort to the sum-rule prescriptions of Sec. IV in the ne
subsection.
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FIG. 7. The resummed small-x
evolution of the singlet quark and
gluon densities as compared to th
NLO results. The Lx @4# and NLx
@8–10# contributions are succes
sively included, with the momen-
tum sum rule implemented via
prescription~A! of Sec. IV. The
results forQ2510 and 100 GeV2

have been multiplied by the fac
tors indicated in the plots.
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In the gluonic sector, on the other hand, the theoret
situation has been improved recently by Refs.@9,10#; see
Sec. III. We remind the reader that the latter findings
ggg , although indicative, are not final yet, since the so-cal
energy-scale dependent NLx terms have still to be calcu
lated. The effects of the known next-to-leading contributio
are also presented in Figs. 7 and 8~a!. The well-established
qq̄ contribution toggg

(1) @9#, which is not expected to yield th
largest subdominant terms, already removes more than
of the Lx effects on the gluon density atx&1024 for Q2

5100 GeV2; see Fig. 8~a!. The energy-scale independe
gluonic contribution@10# overcompensates the enhancem
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by the Lx and NLxq terms at allx in Fig. 7. As expected
from Fig. 3, these terms are so large that they even cau
sign change in the slope of the gluon evolution forx
&1024. It seems natural to expect that yet missing ter
either in NLx or unknown terms emerging in higher orde
correct this behavior again. Thus a first uncertainty band
the possible resummation effects onxg(x,Q2) seems close
to completion. In this context it should be recalled that t
NLx anomalous dimension matrix is not yet complete,
ggq

(1) still remains uncalculated. Note, however, thatggq
(0) has

an impact of less than 10% on bothxS andxg in the Lx and
NLxq evolutions; cf. Fig. 8~a!. Henceggq

(1) is presumably not
-

r-

-

-
-
-

FIG. 8. ~a! The impact of the
resummed gluonic splitting func
tions Pgg andPgq of Refs.@4,8,9#
on xSp and xgp at Q25
100 GeV2. The NLxq results of
Fig. 7 have been chosen as refe
ence.~b! The offsets between the
iterated and the truncated solu
tions of the evolution equations
~see Sec. V! for the NLO case and
various resummation approxima
tions. In all other figures the trun
cated solutions have been em
ployed.
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JOHANNES BLÜMLEIN AND ANDREAS VOGT PHYSICAL REVIEW D 58 014020
FIG. 9. The possible effects o
subleading corrections to the re
summed anomalous dimension
exemplified by the momentum
sum-rule prescriptions~C! and~D!
of Eq. ~6.3!, on the small-x evolu-
tion of the proton’s parton densi
ties. The results using thed~12x)
subtractions~A! are as in Fig. 7.
The MRS~A8) @62# initial distri-
butions ~transformed to the DIS
scheme! have been employed a
in all other proton figures.
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a major source of uncertainty, as one may expect a ra
moderate effect of this quantity as well.6

As in the NLO case of Sec. VI A, the differences betwe
the iterative and the truncated solutions, Eqs.~5.23! and
~5.34!, of the evolution equations should yield a lower lim
on the uncertainty due to missing terms in the anomal
dimensions. In fact, if the present small-x resummations col-
lected the most relevant higher-order terms, a reduction
these offsets should take place with respect to the NLO e
lution. The corresponding results are depicted in Fig. 8~b!.
While staying on the same level as in the NLO case for
Lx evolution, the offsets increase significantly as soon as
NLx terms are included, in particular for the singlet qua
density: ratiosS iter8d/S trunc8d of up to about 10% are found
This decreased stability may point to a larger uncertainty
the huge NLx quark enhancement.

C. Structure functions and less singular terms

Less singular~subleading! contributions to the anomalou
dimensions, i.e., terms which do not exhibit the lead
N→0 behavior, are vitally important for the LO and NLO
evolution at smallx, as demonstrated in Fig. 6: three to fo
terms in the expansion~6.2! are required for a good repre
sentation. In higher orders ofas the leadingN→0 poles
become more singular, but so do the subleading contr
tions, and the number of singular pieces increases. Ther
therefore, no obvious reason to expect terms less singul
N to be unimportant at lowx in all-order approaches. At th
present stage of theoretical development, however, one
to rely on reasonable estimates for obtaining a first impr
sion of their possible impact. For this purpose, we emp

6This expectation is also supported by the fact thatggq
(1) does not

contribute to the eigenvalues of the resummed anomalous dim
sion matrix up to the NLx level; see Eq.~3.15!.
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the momentum sum-rule prescriptions~C! and ~D! of Eq.
~4.4! for all anomalous dimensions with only one all-ord
term known presently,

g k>2
i j ~N!→g k>2

i j ~N!~122N1Na! for i j 5qq,qg,gq.
~6.3!

Here a52 @3# for the prescriptions~C! @~D!#. In ggg we
adopt the presently known NLx contributions, which are
taken from Table I. Hence only theN2 or N3 terms in this
quantity are adjusted according to Eq.~2.17!. In view of the
structure of theN-expansions of the LO and NLO term
estimates like Eq.~6.3! are conservative; i.e., they might un
derestimate the present uncertainties.

In Fig. 9 the resulting singlet quark and gluon densit
are compared at NLx accuracy to distributions evolved wit
prescription~A!. The subleading terms of theAnsatz~D! are
sufficient to overcompensate the huge leading resumma
effect on xS(x,Q2) slightly. E.g., the NLx(D) result falls
about 10% short of the NLO distribution atx51024 and
Q25100 GeV2. Note that even the difference between pr
scriptions~C! and~D!, arising from the replacement of para
metrically small N3Lx by N4Lx terms in the quarkonic
anomalous dimensions, proves rather appreciable. This
ation is similar forxg(xQ2), where the effects of the sum
rule induced terms are positive because of the very la
negativeggg

(1) entries; cf. Table I. The order of the curves
different here as compared toxS, sinceggg differs between
cases~A!, ~C!, and~D! only in the third term of the small-x
expansion, unlikegqg which dominates the quark evolution
Although definite conclusions cannot be drawn from the
prescription-dependent results, they nevertheless indi
clearly that the 1/N expansion~6.2! behaves similar as in the
fixed-order cases.

We now turn to the proton structure functionsF2 andFL .
Their small-x behavior, as obtained from the parton densit
just discussed, is displayed in Fig. 10. Since our calculati
n-
0-20
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EVOLUTION OF UNPOLARIZED SINGLET STRUCTURE . . . PHYSICAL REVIEW D58 014020
FIG. 10. The small-x behavior
of the resummed structure func
tions F2 and FL for the parton
evolutions shown in the previou
figure in comparison with the
NLO results. The upperFL curves
include the resummed coefficien
functions CL @8# @cf. Eq. ~6.4!#;
the lower ones illustrate the pos
sible impact of a subleading con
tribution to CL .
n-
on

de
le
.

e

of
ea

rm
f
n
io
st
n

ra
t a

o

irect

co-

is

pro-
ec-
on

he
ho-
plit-
w-
a

he

r-
ion.
a-

ieces
he
son

ors
f the
are performed in the DIS scheme,F2 is very closely related
to the quark singlet distribution at smallx. Thus the left side
of Fig. 10 exhibits a pattern very similar to Fig. 9. The lo
gitudinal structure function, on the other hand, in additi
involves the resummed coefficient functions

CL~as ,N!5asCL,0~N!1as
2CL,1~N!1

4

3
Nf as(

k52

`

ck
LS ās

N
D k

.

~6.4!

CL,0 andCL,1 represent the leading and next-to-leading or
@69,37# coefficient functions, and the gluon and pure sing
resummation coefficients@8# ck

L are given in Table I and Eq
~3.25!.

The additional corrections due to the coefficientsck
L are,

in fact, very large at the lowerQ2 values shown: even th
cross-section positivity constraintFL,F2 is violated forx
&331024 at Q2.4 GeV2 for the Martin-Roberts-Stirling
set A8 @MRS(A8)# initial distributions. At high Q2

*100 GeV2 the effects of the coefficient functions and
the parton evolution become comparable due to the decr
of as in CL(as ,N). The size of the low-Q2 effect shown in
Fig. 10 ~upper dotted and dash-dotted curves!, however, re-
quires sizable corrections by yet unknown higher-order te
in the small-x resummation ofCL or a large adjustment o
the input gluon density. In fact, also the coefficient functio
can be expected to receive relevant subleading correct
which are unknown at present. In order to derive a first e
mate on their possible impact, theFL calculations have bee
repeated with

ck>2
L →ck>2

L ~122N!. ~6.5!

The results of these calculations are shown in Fig. 10~lower
curves!. This moderate correction term leads to an even d
tic overcompensation of the leading resummation effec
low Q2. This shows that for a more detailed understanding
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the small-x behavior ofFL(x,Q2) the next-order small-x re-
summed corrections are required. On the other hand, d
measurements ofFL(x,Q2) by the HERA experiments7

could help to constrain the size of missing terms in the
efficient functions.

D. Photon structure at small x

We now address, finally, the small-x evolution of the par-
ton densities of the real photon. As outlined in Sec. II, th
evolution includes a specific inhomogeneous~‘‘pointlike’’ !
piece in addition to the homogeneous~‘‘hadronic’’ ! compo-
nent. Whereas the latter behaves rather similar to the
ton’s parton distribution considered in the preceding subs
tions, the former is completely calculable in perturbati
theory up to its dependence on the starting scaleQ0

2. As
discussed in Sec. III one may study the evolution of t
photon structure function in a DIS scheme, where the in
mogeneous part does not involve any new resummed s
ting functions at the present level of accuracy. It does, ho
ever, probe the resummed hadronic evolution matrix in
specific, different manner~cf. Sec. V!, and thus provides an
additional laboratory for studying the possible effects of t
small-x resummations.

The reference scaleQ0
2 takes a somewhat different cha

acter in the photon case than in the pure hadronic evolut
It is a free parameter for the solution of the evolution equ
tions, still, but only for certain choices ofQ0

2 can the sepa-
ration between the homogeneous and inhomogeneous p
approximately reflect the physical decomposition into t
non-perturbative component, induced, e.g., by vector me

7The measurements ofFL(x,Q2) @2# are ‘‘indirect’’ and corre-
lated with theF2 measurement. Their present experimental err
are still large. More precise results are expected from the data o
1997 HERA run.
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FIG. 11. The small-x evolu-
tion of the photon’s singlet quark
and gluon distributions in leading
and next-to-leading order, startin
from the NLO parametrization of
@70# at Q0

251 GeV2 as in all fol-
lowing figures. The hadronic
~vector-meson-dominance in
duced! components are compare
to the full results at NLO.
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dominance~VMD ! and a perturbative contribution. In fac
this physical decomposition leads toQ0

2,1 GeV2 @70,71#;
for a recent overview cf. Ref.@72#. We therefore choose
Q0

251 GeV2 in the following, unlike the proton case of Se
VI A–VI C. At this scale we adopt the NLO photonic parto
distributions of Glu¨ck, Reya and Vogt~GRV! @70#, as this is
the only available NLO set with a HERA-like small-x rise of
the hadronic component. The low-x behavior of these single
and gluon densities is not given by a simple power law~6.1!,
however, but can approximately be written as

Sg~x,Q0
2!;x20.22, gg~x,Q0

2!;x20.13•••20.22

for 1024&x,1022. ~6.6!

Here the effective rising power ofxgg decreases with de
creasingx; cf. Ref. @64#.

The fixed-order evolution ofxSg and xgg is recalled in
Fig. 11. As in the proton case, the LO solution has be
calculated using the NLO~DIS scheme! initial distributions
and the NLO values foras(Q

2). The NLO-LO difference is
slightly larger than in Fig. 5 due to the larger values of t
coupling constant involved. Also shown in the figure is t
NLO hadronic VMD contribution which is suppressed~in
particular in the quark case! at largex, but dominant in the
small-x regime: it still amounts to about 80% of the fu
results forx,1023 at Q25100 GeV2. Therefore one may
expect a similar rise ofF2

g as observed forF2
p at HERA @1#.

We shall consider now how the resummation corrections
fect this picture.

Figure 12 presents the effects of the various resumm
small-x terms@4,8–10# on the evolution of the singlet quar
and gluon distributions. The full results and the inhomog
neous contributions forQ0

251 GeV2 are separately shown
These effects are considerably larger than those in Fig. 7
NLx/NLO ratios reach factors of about 8 and 2 here forxSg

andxgg, respectively, atx51024 andQ25100 GeV2. The
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dominant sources of this greater enhancement are again
larger as values implied by the lower choice ofQ0

2. The
inhomogeneous components are still suppressed, altho
they are even more affected by the resummation correcti
as factors of up to 15 and 8 are found for the NLx/NLO
ratios of S inhom and ginhom, respectively.8 Recall that these
latter results do not depend on any non-perturbative in
distributions. Note also thatxginhom is much less affected by
theggg

(1) corrections@9,10#, since the main ‘‘driving term’’ of
the inhomogeneous solution is the purely quarkonic quan
k0; cf. Eq. ~5.42!.

The possible effects of less singular terms, using the sa
momentum sum-rule prescription as in the proton evoluti
are illustrated in Fig. 13 forF2

g andxgg. The general pattern
for the total results is analogous to the purely hadronic c
of Figs. 9 and 10. The relevance of subleading correctio
however, is even more enhanced than that of the lead
terms:F2

g falls far below the NLO calculation for theAnsatz
~D!, and the breakdown of the gluon evolution in NLx(A)

already takes place atx&1023. On the other hand, the les
singular terms are much less effective inF2,inhom at smallx.
In hadron-like cases their importance is magnified by
convolution with the~soft! parton densities; cf. Figs. 2 and 3
Here, however, the functionxk0

q } x@11(12x)2#, which
plays the role of an ‘‘input distribution,’’ is very hard. Henc
F2,inhomcomes closer to a local probe of the small-x splitting
functions than any inclusive hadronic quantity.

Nevertheless, the inhomogeneous part remains m
smaller than that homogeneous piece ofF2

g for most sce-
narios of Fig. 13. It should be noted, however, that the la
contribution may be suppressed down to about the NLO
sults by a different choice ofxgg. It is conceivable, there-

8In contrast, the NLO/LO ratio not shown in the figure is on
rather normal level.
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FIG. 12. The resummed small
x evolution of xSg and xgg to
Q25100 GeV2 as compared to
the NLO results. The Lx @4# and
NLx @8–10# contributions are suc-
cessively included, with the mo
mentum sum rule implemented
via prescription~A! of Sec. IV.
The effects on the photon-specifi
inhomogeneous solution are dis
played separately.
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fore, thatF2,inhom is much more important in the resumme
evolution than in the fixed-order case discussed above.
deed, a small-x F2

g considerably greater than about 1.2 tim
the VMD expectation could be considered as a signal for
presence of large resummation corrections in the quark
anomalous dimension. A measurement ofF2

g in the small-x
region will, however, presumably only be possible with t
eg mode of a futuree1e2 linear collider.9 Another theoreti-
cally cleaner, but experimentally also very difficult prob
would be the structure of highly virtual photons, where t
non-perturbative VMD part is suppressed and the calcula
part becomes more important; cf. Ref.@74#.
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VII. CONCLUSIONS

The effects of the resummation of the Lx and the known
NLx small-x contributions to the flavor-singlet anomalou
dimensions and coefficient functions have been investiga
in a framework based on the renormalization group eq
tions, for the DIS structure functionsF2

p and FL
p as well as

for the photon structure functionF2
g. In this approach direct

comparisons are possible with studies of the scaling vio
tions of these structure functions based on LO and N
fixed-order calculations. In order to allow for the most fle
ible comparison of different approximations to the all-ord
e
-
-

FIG. 13. The possible effects
of subleading corrections to th
resummed evolution kernels, ex
emplified by the momentum sum
rule prescriptions~C! and ~D! of
Eq. ~6.3!, on the small-x evolution
of the photon structure function
F2

g and the photon’s gluon distri-
bution.

9The possible kinematic coverage and necessary detector requirements have been studied in Ref.@73#.
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JOHANNES BLÜMLEIN AND ANDREAS VOGT PHYSICAL REVIEW D 58 014020
evolution equations, their general analytic moment-space
lution has been derived.

The largest small-x corrections to the quark densities an
F2 are due to the resummed quarkonic NLx-corrections@8#,
whereas the effect of the gluonic terms is marginal here.
the gluon density, the Lx corrections@4# are moderately posi
tive. Both the quarkonic@9# and the energy-scale indepe
dent gluonic@10# parts of the NLx gluon-gluon anomalous
dimension, on the other hand, cause negative correct
which are so large that they overcompensate the Lx-terms. In
fact, the latter terms lead to negative values for the to
splitting functionxPgg(x,as) for as50.2 andx,1022. This
behavior probably signals the presence of other large p
tive contributions, either due to the energy-scale depend
NLx-terms or originating in terms of NNLx or even higher
order.

Contributions of NNLx order exhibiting a similar behav
ior can as well exist in the case of the quarkonic anomal
dimensions and the coefficient functions. This is sugges
for example, by the expansion of the fixed-order anomal
dimensions in powers of 1/N which leads to a good approx
mation only after three to four terms. DifferentAnsätze for
potential less singular terms have been studied numeric
showing that even the exceedingly large corrections du
the quarkonic NLx-corrections can easily be removed aga

The longitudinal structure functionFL is in addition af-
fected by the small-x contributions to the coefficient func
tionsCL @8#. For lower values ofQ2 the corrections becom
so large that the positivity constraintFL,F2 can be violated
for conventional input parton distributions. However, al
this resummed coefficient function is very sensitive to s
leading corrections.

All these aspects show that also the next less sing
terms need to be calculated, despite the enormous work
has been carried out so far to derive the resummed ano
lous dimensions and coefficient functions@4,8–10,48,49#,
before firm conclusions on the small-x evolution of singlet
structure functions can be drawn. Since contributions wh
are even less singular than these ones may even then c
relevant corrections, it appears indispensable to compare
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corresponding results to those of future complete fixed-or
calculations. There the medium and largex terms are fully
contained up to the respective order inas . If extended to
higher orders, in fact, also the RGE-improved fixed-ord
perturbation theory still seems to remain a viable candid
for the theoretical framework in the HERA regime.

The small-x evolution of the real photon’s parton struc
ture has been analyzed in the DIS scheme. It has been sh
that this scheme can be defined, without loss of generality
such a manner that the photon-parton splitting functions
not receive any higher-order resummation corrections
NLx accuracy. Nevertheless, the photon structure func
F2

g can provide an additional laboratory for studying the po
sible effect of small-x resummations, as the characterist
calculable inhomogeneous solution of the evolution eq
tions probes the low-x hadronic anomalous dimensions in
unique way: it comes closer to a local probe of the smax
quarkonic splitting functions than any inclusive hadron
quantity. Unfortunately, this particularly interesting contrib
tion is likely to be dominated by the hadron-like vecto
meson-dominance part which behaves completely analog
to the photon structure and hence introduces the same un
tainties and limitations due to the interplay of the anomalo
dimensions and the non-perturbative initial distributions.

Note added in proof.After the completion of this paper, a
first calculation has been performed from which the co
plete NLx gluon-gluon anomalous dimension can be
ferred; cf. our discussion in Sec. III B. While this new resu
has some quantitative impact (xPgg turns negative even at
somewhat largerx than in Fig. 3!, our respective conclusion
remain unchanged. For further details, the reader is refe
to @75#.
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