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A systematic study is performed of the impact of the various resummed groalttributions to the anoma-
lous dimensions and coefficient functions on the evolution of unpolarized structure functions in deep-inelastic
scattering. The proton structure functid®sandF? as well as the photon structure functiBg are considered
together with the corresponding parton densities. The general analytic solution of the evolution equations in
Mellin-N space is derived, and different approximate solutions are compared. Potential effects of less singular
smallx terms in the anomalous dimension and coefficient functions are discliS&h6-282198)02413-9

PACS numbsg(s): 13.60.Hb, 12.38.Bx, 12.38.Cy

I. INTRODUCTION The x-range in which this representation is applicable can
only be determined by explicit calculation5] and depends
One of the central questions in the theory of deep-on both the behavior of the partonic input densities at a start-
inelastic scatteringDIS) structure functions is that of their ing scaIeQS and on the structure of the anomalous dimen-
behavior at small values of the Bjorken The experiments  sjons and coefficient functions. Note that the present picture
at the DESYep collider HERA[1] have performed detailed goes not necessarily yield a description of the structure func-
measurements of the structure functiE@(x,QZ) down t0  {ions as well in the Regge limi— Q2= const, since both
values of x=10"° and have presented first results onjimits jead in general to different results. This can be gédn

2y —4 ,

FLl(X'Q )f|n2the rangei</22 107° [2]. F2|r|ses even at IsmaII performing these limits in the Jost-Lehmann-Dyson repre-
va L:es 9 S Bzh Ge fapproxmzf;ttey_asx . At bOWd Isentatior{?] of the structure functions.

scalesQ” the behavior of structure functions cannot be dealt ¢ 'gjorken limit the ultraviolet and collinear diver-

with by means of perturbatlvze QCD due to_ the size of thegences emerging in the calculation of the higher-order cor-
strong coupling constank,(Q<). For large virtualities, on

the other hand, a perturbative description of the scaling Vio_rectlons can be dealt with applying the corresponding RGE-

lations is possible if a factorization can be achieved betweefPErators, which imply the evolution of the parton densities

the non-perturbative input distributions and the evolutionand the running of the.stron'g couphng constant. The re-
kernels which can be calculated perturbatively. summed smalk corrections in leading4] and next-to-

Throughout the present paper we will consider deep_leading orde8-1(Q] can thus be accounted for in a natural

inelastic scattering in the range where it is dominated by thavay- Since the impact of the resulting all-order anomalous
light-cone singularities in the Bjorken limitQ2,s— o, dimensions on the behavior of the DIS structure functions at
x=Q2/(sy)=const, with Q2 the 4-momentum transfer Smallx does as well depend on the non-perturbative input
squareds the center-of-mass energy=2P-q/s. The ultra-  parton densities at an initial scaﬂﬁ, the perturbative resum-
violet singularities of the operators emerging in the light-mation effects can only be studied via the evolution over
cone expansion(3] are associated with renormalization Some range i, This evolution probes also the anomalous
group equation$RGES which describe the evolution of the dimensions and coefficient functions at medium and large
structure functions. Under these conditions the evolution kervalues ofx due to the Mellin convolution between the evo-
nels are given by the anomalous dimensions of the light-conkition kernels and the parton densities; cf. Héfl]. Hence
operators. For the leading-twist contributions considered irthe smallx dominance of the leading terms over less singular
the following, the expectation values of the operators areontributions ax—0 in the anomalous dimensions and co-
related to the parton distribution functions. This pictureeéfficient functions does not necessarily imply the same effect
holds, in principle, down to the region of small valuesxof for the observables, such as the structure functions.
The anomalous dimensions and coefficient functions, how- In the present paper a systematic study is performed on
ever, may receive large low-contributions of the typ¢4] the impact of the different resummed smaltontributions
) 1 to the anomalous dimensions and coefficient functions on the
[as 1 ., I 5(1) evolution of the singlet contributions to the nucleon structure
YBIN—1] T xS k=1’ functions F,(x,Q?) and F (x,Q%). A brief summary of
some of our numerical results on the effects of the resummed
whereN denotes the index of the Mellin-transformation gluon anomalous dimension on the nucleon structure func-
) tions has already appeared[2]. We extend the analysis to
M[F(X)](N)= J' dx XNf(x). the photon _structure fu_ncndﬁzy(x,Qz), for which we derive
0 corresponding results in the DIS scheme.
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The paper is organized as follows. The general framework A(X,,ug)@ B(x,,uﬁ)
for the evolution of parton densities of the nucleon and the
photon is recalled in Sec. Il. In Sec. Il the presently known
smallx resummed anomalous dimensions and coefficient
functions[4,8—10 are summarized and the numerical coef-
ficients for their expansions iag are compiled for the sub-

sequent analysis. The issue of less singular terms is di§:-- e - . ;
. ; inall marks the initial-state mass singularities enterin
cussed in Sec. IV guided by the known 2-loop results. In ye 9 9

Sec. V different methods are derived for the solution of theth® Pare partonic structure functiog . These functions
evolution equations in the presence of all-order resumma@'€ then separated into the coefficients functiopsand the
tions for the smalk contributions. The numerical implica- transition functions;,, which contain the ¥ pole terms,
tions of the smallk resummations on the evolution of the 2ccording to

parton densities and the structure functidils FP and FJ
i,k(

1 1
= [, [ dootxox A0 1D BOG ).

(2.2

2 2
are worked out in detail in Sec. VI for typical sets of initial ¢ [ a(RY), = — 8)
L 1 2 1
)7

distribution. Section VII contains our conclusions. u?’
QZ 2 M2 M2
=C: 2y = . 2y
Il. THE EVOLUTION EQUATIONS Cij| xas(RO. T o5 | @ Tk X as(RY), 2R
The twist-2 contributions to the structure functions in in- (2.3

clusive deep-inelastic scattering can be described in terms of

the QCD-improved parton model. Their scaling violations The additional parametevl is the factorization scale. This
are governed by renormalization group equations which cageparation is not unique beyond the leading ofté€) of the
be formulated to all orders in the strong coupling constant. Irperturbative expansion; hendg; and C; , are also factor-
this section we briefly recall this general framework, whichization scheme dependent. Combining E@s1) and (2.3),
allows for a consistent introduction of the smalfesumma- the structure functiong,;(x,Q?) finally read

tions into the structure function evolution, and its specific

application to hadronic and photonic parton distributions. ~ Fi(x,Q%)

Q2 R2 M2 M2

=C. 2y = . 2y .

A. The renormalization group equations =Ci,j| X as(RY), M2 M2 ®fj| X as(R )’Mz ' R2
Among the singularities emerging in the calculation of (2.4

QCD radiative corrections, only the ultraviolet divergences

and the initial-state mass singularities require a special treain terms of the renormalized parton densitfegyiven by
ment in inclusive deep-inelastic scatterihghe former are

eliminated by the renormalization of the strong coupling M2 M2

constant. The remaining mass singularities, originating in fj<x,aS(R2),—2,—2

collinear emissions of massless partons off massless partons, ue R

are removed by mass factorization; i.e., these contributions M2 M2

are absorbed into the t_)are partozn dens_ltles. For this proce- :ij( Xvas(RZ):_21_218 @ (x). (2.5
dure the structure functiorfs;(x,Q*) are first written as ©° R

2 R2

o a 5 Q Two arbitrary scalesR andM, are thus introduced by the
Fi(x,Q9)=F x| X,as(R%), —,— &
neop

renormalization and mass factorization procedures. These
scales are not physical. Hence observables, such as the struc-
ture functionsF;(x,Q?) in Eq. (2.4), do not depend on them.

Hereay(R2) denotes the strong coupling constant, renormalSnce the ultraviolet and mass singularities are not related,

: : S ; h ndition
ized at the scal® in some renormalization scheme.is an the conditions
arbitrary mass scald, represents the bare momentum dis-

@f(x). (2.2

d
tribution of the parton specids and® stands for the Mellin R2—2Fi(x,Q2)=0, (2.6)
convolution in the first variable: dR
2 d 2
M2—F;(x,Q%)=0 2.7
The infrared divergences cancel between the virtual and Brems- d™m

strahlung contributions according to the Bloch-Nordsieck theorem

[13]. The final-state mass singularities vanish due to the Kinoshitahold separately and imply two independent renormalization
Lee-Nauenberg theorerfil4], as all degenerate final states are group equations. The first of these equations leads to the
summed over. scale dependence of the running coupling constant:
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das
dinR?

=/3(as)5—|=20 as 2B, (2.9

where the abbreviatioms= as(R?)/(47) has been intro-
duced for convenience. At next-to-leading orddt.O) only
the first two scheme independent terft§,16 of B(as) are
kept,

11 4
Bo= 3 AT §TF '

34 , 20
,31:§CA_§CATF_4CFTF- (29)

The QCD color factors ar€=(N2—1)/(2N)=4/3, C,
=N.=3, Tg=1/2, andTe=N;Tg, with N; denoting the

number of light quark flavors. To this approximation, the
solution of Eq.(2.8) can be expressed in terms of the QCD

scale parametek N, by

! —&In
Boas ,BS

(B;ﬂ

0ds B3

R2
=In| —|. (2.10
%

It turns out, moreover, that higher coefficiengs-,— B>
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torization scales aR?=M?=Q? from now on? The had-
ronic evolution equations can then be written as

a7 (x,Q% .
Wﬂ*(x,as)@q;(x,@%,
aq(x,Q%)

TQZI P(x,as) ®q(X,Q?).

(2.19

The evolution ofg*? is identical to that ofy~ up to NLO. As

our present analysis is confined to that approximation in the
non-singlet sectot the corresponding equation has been sup-
pressed in Eqg2.14. In general, the splitting functior®™,

P are given by the infinite series

Pf(x,as>=|§0 ag P (%),

qu(xaas)
Pgq(X,as)

_ Pqg(X,as) 3 11
P(x,aq)= —ZO aL" P (x).
(2.15

The expansion coefficien®, (x) andP"*%(x) are, in sen-
sible factorization schemes, subject to the sum rules

Pgg(X,as)

foldx P (x)=0, (2.16

and B3 have been calculated in the modified minimal sub-

traction (MS) scheme[17,18—are not required in connec-

tion with the presently available smadlresummations; see
Sec. V C. We will therefore employ the relati¢a 10 for all
our numerical calculations in Sec. VI.

B. Hadronic and photonic parton densities

The second renormalization group equati@rv) leads to

1
fo dxx; Pitrolx) =0, (2.17
which are due to fermion number and energy-momentum
conservation, respectively. By now all unpolarized and po-
larized entries in Eqg2.15 are completely known at NLO,
I=1. The full expressions for thei-dependences can be
found in Refs[24-28. Beyond this order a series of integer

the scale evolution of the renormalized parton densitieg/ellin moments ofP; (x) andP,(x) has been calculated so
f;(x,M?). Considering first the hadronic case, the relevantg, [29].

parton species are the quarks and antiqueqka,ndaj , and

We now turn to the parton densities of the real photon.

the gluong. It is convenient to introduce flavor non-singlet The photon is a genuine elementary particle, unlike the had-

combinations of the quark densities,

Ny
o =gj+a— - 2 [ar=a.]. (2.11)
fr=1
Ny
q"= 2, [dr =0y, (2.12
and the singlet quark/gluon vector
3 N —
q=(g), 3=2 [a-+arl. (213

This decomposition decouples thé2+1 evolution equa-

rons. Hence it can directly take part in hard scattering pro-
cesses, in addition to its quark and gluon distributions arising
from quantum fluctuationsy”(x,Q?) andg”(x,Q?). Denot-

ing the corresponding photon distribution in the photon by
I'?(x,Q?), the evolution equations for these parton densities
are generally given bj30]

2See Refs[19,2( for studies of the uncertainties in NLO analyses
due to the variation oR andM.

3The generating relations for the resummation of the anomalous
dimensiong21] of the = non-singlet combinations were derived in
Ref.[22]. Here the leading smaX-terms are ofO[ (asIn?X)"]. The
effect of these terms has turned out to be on the 1% level down to
very small values ok [21,23. As the non-singlet contributions are

tions as far as possible by symmetry considerations alonéurthermore suppressed compared to the singlet ones at,ltvese
For simplicity, we will choose the renormalization and fac- resummations are not included in the present treatment.
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N o
aq?/ D : B D + — Iy, +
WPT{ 23 Paa Bt Paeeg’l, K (xa)=2) axdk ().
N P, (x,as))\ <&
ag” — L — K _( g\ X es )_ |
= _ X,8q) = = D, AenK(X). 2.2
(9|nQ2_aemP97®Fy+a5[ 21(21 quk®qlz/+ ng@gy ' ( 5) ng(x,as) “h emfs I( ) ( 2
o Ny These splitting functions are presently also known up to
d — — — NLO (I=1); see Refs[30-32.
W:aemp«/v@w’Laem[ 2;::1 Py @kt Pyg®9”

(2.18 C. Factorization scheme transformations

. . . As stated above, the separation between the coefficient
Here aey=al(4m) with the electromagnetic coupling con- nctions and the splitting functions is not unique beyond the
stant «=1/137. The antiquark distributions do not occur |gading order. In this subsection, we derive the general
separately in Eqs(2.18, as q/(x,Q%)=q/(x,Q%) due to factorization-scheme invariants and specify the schemes for
charge conjugation invariance. The generalized splittingur subsequent numerical calculation. We study the photonic
functions read case, as the hadronic problem forms a subset hereof. In order
to specify the transformation matrices, it is convenient to
3 m _1Simi) introduce a fictitious second, “gluonic” structure function,
Pij(x,aem""‘s)_I mzzo AenfsPij (%), (219 \where the gluon density enters at or@dr, but the quarks
' only at orderaé, opposite to the situation with the real elec-
_— i tromagnetic current; see Ref83,34. This can be formally
with Pqq  being the average of the quark-quark and,chieved, e.g., by adding a color-neutral scalar-gluon cou-
antiquark-quark splitting functions. pling ¢F**F ,, to the QCD Lagrangian. The general singlet
Usually calculations involving the photon’s parton struc- structure functiorF, then reads
ture are restricted to the first order in<1. In this approxi-

mation allm#0 terms in Eq(2.19 can be neglected, since 2y )
q? andg” are already of ordet. This reduces the functions 27 Fay =(e)[Cx,a5)®q(x,as) + C,(x,a5)]
P;; to the usual QCD quantitie;j(x, ), andP ,, andP 4 ' (2.23

drop out completely. Moreover, one hRs, >« 5(1—x) to all )
orders inag, as real photon radiation from photons starts atwith
order ? only. Thus the last line of E¢2.18 can be inte-

grated immediately, at L@ =0), for example, resulting in C(x,a¢) = qu(x,as) gyg(x,ag)) 25" a,Gi(),
Nt 2 ¢q(x’as) ¢’9(X’a5) =
Y 2y = — - 2 )
I'o(x,Q%)=6(1-x)| 1 4a5( kgl eqkanS-i-COﬂSt) ) Coxan= C,,(x,as) ~ w e ®
(22() WA, dg) = C¢7(X,as) _|:0 erfls yl+1 .

(2.29
Whereeqk represents the quark charges, @@is some ref-
erence scale for the evolution. Only ti@(1) part of ¥  Here(e?) is the average squared charge of the light quark
affects the quark and gluon densities at orderas well as ~ flavors, andC, the unit matrix timesé(1—x). Using the
any observable involving hadronic final states likg.  Scale dependend@.2]) of the partons and Eq2.8) for the
Therefore, after decomposing into the singlet and non-singldti"ning coupling, the scaling violations B, can be written
parts as before, one obtains the inhomogeneous evolutid¥®

equations
ai (e?)[Cok+BC!
[R— e
a9’ (x,Q3) | N dinQ? i
————=k{ (x,a) +P*(x,a9® )" (x,Q?),
dInQ —(C®PRC '+ pC'®C 1)®C,]
-1 ’ -1
2q7(x,Q2) , +(CoPRC "+ BC'®C )®F,, (2.29
—————=k(x,a5) + P(x,a5) ®q"(x,Q7). (2.21
dInQ where the prime denotes the derivative with respecto

Both dF,/dInQ? and F, represent observables; hence the
Here we have switched to the conventional notation for thdollowing combinations of splitting functions and coefficient
photon-parton splitting functions functions are factorization scheme invariant:
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lhom=C®P®C 1+ BC'®@C 1, (226 with ag=Caas(Q?)/. In the discussion below we include
the LO[24] and NLO[27] anomalous dimensiong, and y;
linhom=C®k+ BC — l1,om®C, . (2.27)  completely, and account for the smalFesummed series in

the leading(Lx, m=0) and next-to-leadingNLx, m=1)
Putting back the perturbative expansions of all quantities insmallx approximations:
volved, these invariants are given order-by-order ap

[33,34,33 by ¥(N,ag) =asyo(N) +ain(N)
o0 —\ k+1
_ 2 _ _
|h0m—aSP0+aS{P1+C1®PO Po® Cy ,BOC1}+ . (2, 2& + 2 Ws ['y(ko)+Nyf<1)+O(N2)].
. =2

3.3

linhom= @enKo+ aemas{ ky+Ciko— Pocy,1} +. 33
(2.29

A. The leading series
The generalization to higher orders is straightforward if cum- The all-order resummation of thexLseries was per-
bersome. From these relations the changBsaandAk of the formed in Ref[4];
splitting functions induced by a modification of the coeffi-

cientsAC andAC,, can be easily determined. Recall, how- * (0) (0) \ [~ | k+1

Y . . gk,qq gk,qg Qg
ever, that a particular choice for the physical upper-row n(N,ag)=-2>, 0) o |\ N
(electromagnetic quantitiesC,q, C.,q and C,, does not k=0 \Okgq koo
fully fix the transformation, as is well-known for the had- 0 0
ronic DIS factorization schem@5]. In fact, we will use the = _2( c e 1) (N, ag) (3.9
DIS scheme for our subsequent numerical calculations in Frla

both the hadronic and the photonic cases. Starting from th\(/avith (N, ) being the solution of
usualMS scheme of fixed-order calculatiof86—-38,29, the YL s g
transformation reads

N
p= ;—:2'/’(1)_ P(y)—P(l—y)=xo(y). (3.9

o | TG0 ~Ciga
' C“f_;l(x) C';"_gfl(x) ' ¥(z) denotes the logarithmic derivative of Euler's
I'-function. y, is a multi-valued function for complex values
_cMs (x) of N. The perturbative branch of the solution is selected by
Ac'y,l:( Vg ! ) (2.30  the requiremenf39]
.
The lower-row choice in the hadronic part is the conven- }/._(N,as)—>ﬁs for |N|—co. (3.6

tional continuation of the sum-rule constraint to Bl that

one of the photonic part is taken over from the DE8heme  For small values ofy, (N, as) the asymptotic representation
of Ref.[32]; see also Sec. lll C. This concludes the general

all-order framework, and we can now turn to the resummed ZS * oli1

anomalous dimensions and coefficient functions. =yt 221 {21+ 1)yt (3.7

lll. SMALL- x RESUMMATIONS FOR THE ANOMALOUS  holds, from which the coefficientg’), in Eq. (3.4) can be
DIMENSIONS AND COEFFICIENT FUNCTIONS determined iteratively. Here/(n) denotes the Riemann

In this section we briefly summarize relations for the re-¢-function. Note that onh(-functions of odd integers con-
summed singlet anomalous dimensions in MeNinspace tribute, which is expected for physical quantities in four di-

. . . . i . i i (0)
which are used in the numerical analysis below. The anomdl'€nsions; cf. Refl40]. Analytic expressions fogj 4, were

lous dimension matrix is related to the corresponding single@iVen up tok=14 in Ref.[41]. Later both analytic represen-
splitting functions by tations and the numerical values of these coefficients were

determined to large values &fby various authorsgcf., e.g.,

1 Refs.[42,43). In fact, the serie$3.4) can be used as repre-
HN,as)=—2P(N,as)= —2f dxx'P(x,as). (3.1)  sentation ofy, (N,as) along typical integration contoursf.

0 Fig. 4 in Sec. V for the inverse Mellin transform, as shown
in Ref.[43]: 20 terms(or less in Eq. (3.4) are sufficient to
obtain an accuracy of better than 0.01%.

For the later numerical analysis, i.e., to perform the Mel-
= kel lin inversion of the solution of the evolution equations, it is

_ “s ~m,, (m) necessary to locate the singularitiesy{ N, ) in the com-
Yied N xs) kgo N) mZ:o ¥ Yk 32 plex N plane. The singularities of the resummed leading sin-

The general form of the small-resummed, unpolarized
anomalous dimension matrix reads
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0.6 —~—r———————+——————7— 12

LA N B s B B B B L s B B

02 - D v A - —
o k] ]
gt 1T ¥ : .

04 |- -1292- L 4 -
P R A 1 . A
[ eees 30 2 CTTTTTTTTT ] p= N/(l b

Y21 EP R RN N BN B B .|...|...|’...|...|._

4 2 0 2 4 4 2 0 2 4
Imp Imp

gular part of the anomalous dimensigp can be determined new singularities The energy-scale dependent contributions
to ’ygg « have still to be derived, and the terny‘glq , are also

by differentiating Eq(3.5 with respect top:
unknown so far in

dy, _
—— [ (yO)+¥ (1—y)]=1. (3.9 _ =
dp '}’NL(Naas)Easgo (
The condition
Ce
%} w1 =—2| Ca
[dp B erme U

yields the value of the resummed anomalous dimensgjoat
the branch points. The corresponding valuespaire then
determined by Eq(3.5. For the perturbative branch one . .
obtains is given by

YagnL(N, as)

1
=3 v23=—0.425214- 0.473898,

p1=41n2, p,=—141048-1.97212; (3.10

as

N

PHYSICAL REVIEW D 58 014020

FIG. 1. The real and imaginary
parts of the perturbative branch of
v, [4] as a function ofp=N/as.
The the dash-dotted lines are the
contours through the singularities,
Eqg. (3.10.

e

2
['}’quL gasTF Yqa,NL
Ygaq,NL YgaNL/ pig

(3.1)

In the DIS factorization scheme, the functiggg ni (N, as)

=70 (N, adR(%)
as 2+3y= 3% [B(1—y, 1+ n))?

cf. Refs.[43,44. The behavior of the real and imaginary For
parts of y, (p) is illustrated in Fig. 1. For Re—4In2, the

first branch point, Reg, (p), forms a “roof” at y, =1/2 for 2015
Imp=0, which remains stable over some distance ip.Re

The imaginary part becomes discontinuous. At smaller val-

ues of Re, Rey (p) develops two symmetric minima, and
for even smaller values two additional maxima. Both ex-
trema finally form the two other branch points, Eg.10. In

Imvy,_ these branch points manifest as single extrema of the

with

3_2’)/|_

FE gkqg(_)k

F(1=v)xo(y)

B(2+ 2y, ,2-2y) "

(3.12

12

corresponding curve for Re=const. R(y)=

B. Next-order corrections

The coefficientsy(y), and yi4, of the NLx series in Eq.
(3.3) were calculated in Ref8]. Recently also the first terms
for {3\ have been determing®,10]. All these quantities
are analytlc functions ofy,; hence they do not introduce
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L 1] - B .
— 1 —_— — — —
2 y Xqu(X,OLS— 02)1 8 [ X(qu@ f) ]
- Y . i xf(x) = x “X(1-x)° ]
15 L e LO — 6 -\ — FIG. 2. (a) The cumulative ef-
i N — NLO ] Y 1 fect of the available contributions
- \ . [ ] on the splitting functionxPy4(x)
1k Y\ - - - NLx i N N - for ag=0.2. The fixed-order re-
:\.\(C) N NLx €D ] - * . sults are supplemented by the
N AN i L AR T smallx resummed Nk correc-
05 D N N 1 b N ] tions [8] beyond NLO. Also
R NN . i RN i shown are the modifications in-
[ O \‘;‘.\ - S~ - ] e . duced by the subleading terr(®s)
r e T T A 1 and (D) of Sec. IV.(b) As in (a)
L 1 0 i i but for the convolution ofPgq
C ] L i with a typical shape of an had-
L i - . ronic gluon density.
05 (a) DIS scheme | 2 [ (b) DIS scheme ]
C_1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1ol 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII AN
10° 107" 107 107 10t 1 107 10 107 107 10 1
X X

Here B(x,y) denotes Euler's Beta-function, anqij?f’NL rep- g
resents the anomalous dimensions in @eschemg45], in 1= xoly+) +asxa(y+)l, (3.16
which the factoR(y,) does not appear.

The presently available contributions to the splitting func-\hich yields
tion XPy4(X) in the DIS scheme and their convolutions with

a typical gluon shape are shown in Fig. 2 fef=0.2, i.e., Y1(7)
Q2?=20 Ge\A. The LO splitting function vanishes like for Y =—a (3.17
x—0; their NLO counterpart is constant for—0. The Xo(L)

strongly rising NIx result[8] therefore dominates below i i i

~10"2. This dominance persists after the convolution belowAfter @ perturbative expansion. Finajly(y) reads

x~10"3, although here the differences are considerably — o n

smaller than for the splitting functions themselves. xiM=x1*" N+ X1 +x8¥%»), (318
The contributions<N; [9,46—48 and the energy-scale

independent termscCp [10,47) of ygqni(N,as) (cf. also with
[49]) have been calculated recently. As shown in Réf, _ 2 _
Ygg.NL(N, as) can be obtained from the larger eigenvajue agy 3= Niers &( i m codmy) 2+3y(1-7)
of the resummed anomalous dimension matrix m Calsin(my)] 3-2y (1-2y)(1+2y)
1 1 qa,na_ Nfasl 2 ’ _E
7/i:§(7’qq+7’9@1)ii\/wgg_7’qq)2+47’qg7’gqv 314  axi =g 5 XM T xe(V ]~ Fxe()
m  \?3cogmy) 2+3y(1—v)
where o — _
sin(my)) 2(1-2y) (1+2y)(3—2y)
Yag¥gq Cr 2¢, Caad 11 w2
=Ygt — =Yyt =— Vgt O(a:f(as/N)), = ZATS T2 ! —_———
Ve Yagt e 709t T, Yaot Olasf(as/N)) ax¥= | = TDEM X1+ | 5= 5 )m)
C 7T2 ~
Yag? F — P
Y-=Yaq— e == Yea~ o YagT O(@if(as/N)). |ee® 3y(1-v) +h(7))
Y99~ Yaqq Ca
(3.19 _( m )Zcosm) (m y(1-7) )}
sin(my)] 3(1=2y)\ "~ (1+2y)(3—=2y)/

These relations result from the fact that the quarkonic
(upper-row entries in Eq.(3.4) vanish, unlike the gluonic (3.19
ones. Furthermore, one has =—(Cr/Cu)(2a4)/(37) Tg _

due to Eq.(3.11). In the Q, scheme, the present contribu- The functionh(y) in Eq. (3.19, which contributes toy{"),
tions to y, are determined as the solution [&,10] only for k=2, is given by
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B 3 1 Using the transformation of, to the DIS schemg9], and
h(y)zz a — t+—— (3.20 employing Eqs(3.12 and(3.195 as well, one finally arrives
=1 I+y 1+1+y at
in approximate form, witha; =0.72a,=0.28 anda;=0.16 Bo ,dINR(y) Cr
[10]. From these results th@,-scheme anomalous dimen-  ygey = ngg wt el ————+ —[1-R( )1y
o : : : A7 da C qg.NL
sion is then inferred by9] s A
% —\k
~(1.Qo_ <1>_ﬁa2i|n[ NN = 255 INg gi% @4 gaad 4 Agag | 22
Ygg Y99 " 47 Ysda, 't Yo VT X0l Ygg 6y - Jkag k.99 kool | N/ -
c (3.22
—,_ZF 3.2 o
Y+ T, Y (329 The first terms foryggﬁﬁ read

_ - 21/ 7\ 2 —\3
e0Q__ Nias ) 23as 71 w0 fas) 1233 18 , o5 Crl( s
9g,NL 6 6 N 18 6|\ N 27 36 Cal\ N
(1276 71 , 79 o 7 4 52, . Ce PAR
a1 108" T3 10" 3PN
L[(8384 233 , 284 914+25432+432284315CFES5
223 " 1627 5 (@) 75gm +20(5)—3LB)™ 34@)m = —5=43) 65()C—A N
[ (45928 638 ) 65 3) 2 2£(3)? 497 4 125 5 2330 3 31 6
T 729 T 223" 18T 2603 g™ t g )T 57 L) a7
23— 25 - B3 80320F;SG+OZS7 3.2
9 ™ ¢8)~ 5 4(5)— 57 4(3)~804(3) Al N ~/ I (3.23
|
A similar expression can be derived f(ygg:gﬁ. Because of co_ % ( 1-y, )[B(l— v, 1+ )3 o
the yet approximate expression fbfy) and the missing [T 37 Fl3=2y/B2—2y  2+2y) "
energy-scale dependent terms, we only list the numerical val- 5 o —\ Kk
ues of those still preliminary expansion coefficients in = O‘ST CL(%) 3.2
Table I. 3m Fkgl KN (3.2
In Fig. 3 the different approximations to the splitting
function xPy4(x) are displayed. Here both the LO and the CE: & L_Z“STF _ (3.2
NLO terms are flat fox— 0, while the Lx contribution[4] Ca 37

causes a strong rise &s-0. Also shown are the presently the nymerical values of the first 20 expansion coefficients
known NLx terms just discussed. The addition of the ,(0) g(1) in the DIS andQ, schemesr Ck and coeffi-

. - ; k.ggJk,ag
quarkonic(NLx,g) contrlbutlo_n[g] reduces the resummation cients contributing tagd® and Ag%%_ are listed in Table |
effect almost down to the fixed-order results. The energy; 99 ~x.99 .

. . for completeness. These coefficients were calculated using
scale independent gluonic terrfi0] have an even stronger .
) o : _ 5 the MAPLE package [50]. The numerical values of
impact; in fact, they turrxPy4 negative already at~ 10 —

(1)
for @s~0.2. A similar, but milder pattern is observed for the gk,qg/(4|n2)k were tabulated before for the D[82] and MS

convolutionx(Py,® f) with a typical gluon shape which il- schemeg[51]. With a low number of digits the values of

lustrates theQ?-slope of the giuon density induced B, . g!lzlﬁé(l), M andpk were given in Ref[52] as well. Either the
Note that the energy-scale dependent contributions to thdirect expressiong3.4),(3.12 or relations based on the cor-
NLx terms inPy4 have still to be calculated. These terms Or_respondmg expansion coefficients have been previously used
yet unknown higher-ordgiNNLx) contributions may change N numerical studie$44,23,53.
the present behavior & 4(x).

The leading singular contributions to the gluonic and
pure-singlet quarkonic coefficient functions for the longitu- Finally we have to consider the smallhigher-order cor-
dinal structure function were also determined in Ré&f, rections to the inhomogeneous terks=P,, andk,=P

C. Photon-parton splitting functions

gy
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TABLE I. The numerical expansion coefficients in E¢3.4), (3.12, (3.13), (3.22 and(3.24).

PHYSICAL REVIEW B8 014020

L

k g(k(,)g);g g(k,lr)qg (Qo) g(k,lég (DIS) I Cx
0 1.00000x 1¢° 1.00000< 10° 1.00000< 10° 1.00000< 10° 1.00000x 10°
1 0.00000x 1¢° 2.16667% 10° 2.16667% 10° 0.00000x 1¢° —3.3333%10°?
2 0.00000x 1¢° 2.29951x 1¢° 2.29951x 10° 0.00000x 1¢° 2.13284x 10°
3 2.40411x 10 5.06561x 1¢° 8.2710% 10° 3.2054% 10° 2.27231x 1¢°
4 0.0000x 1¢° 8.79145¢ 10° 1.4924% 10" -8.1174X%10°* 4.34344¢10°1
5 2.07386< 10" 1.90521x 10 2.92268< 10 4.56248< 10 2.02643< 10"
6 1.7339% 10" 4.5848% 10" 1.02812% 10 3.27070< 10 2.30315< 10
7 2.01670x 1¢° 9.2415% 10" 1.94887% 107 —2.95476¢ 10 3.4644% 10
8 3.98863< 10 2.31063 107 4.85100< 107 1.08183< 107 2.65004x 107
9 1.6874K 107 5.59958 107 1.52444<10° 3.99588 107 3.3003% 107
10 6.9988Kk 10" 1.2482% 10° 3.11451x 10° 1.33228< 107 8.50371x 107
11 6.6125% 107 3.25381x 10° 8.58375< 10° 2.1024% 10° 3.9084% 10°
12 1.9453K 10° 7.9365% 10° 2.47571x 10¢ 551142 10° 5.6743% 10°
13 1.7176&% 10° 1.89275¢ 10* 5.47435¢ 10* 5.30316< 10° 1.77680x 10*
14 1.0643%10* 4.98520x 10* 1.56195< 10° 3.85296¢ 10* 6.2198 10
15 2.5566% 10° 1.23011x 10° 4.26980< 10° 8.49086< 10* 1.07028 10°
16 3.6781x 10¢¢ 3.06504x 10° 1.01112x 10° 1.40384x 10° 3.51475 10°
17 1.7168% 10° 8.0777X 10° 2.89398< 10° 6.94998< 10° 1.05058< 10°
18 3.7537% 10° 2.02210x 1¢° 7.69042 10° 1.4430% 10° 2.10341x 1¢°
19 7.36025% 10° 5.1787% 1(° 1.91919%< 10’ 3.2273% 1P 6.80747% 1¢°
k 9its (Q) 9ige (Q) gigs (DIS) gifg (DIS) AR
0 —1.00000x 10° 0.00000x 10° —1.0000x 1¢° 0.00000x 10° —1.65000¢ 10*
1 -3.8333x1¢° 0.00000x 10° -3.8333%1¢° 0.00000x 10° 0.00000x 10°
2 —-2.2995% 1¢° 0.00000x 10° —-2.2995X 10° 0.00000x 10° 1.48980x 10t
3 6.4207% 1¢° —1.19004 107 —6.04506< 10° 3.9667% 10" —2.2529K 107
4 —2.59764 10 0.00000x 10° —2.81814< 10 —5.3575(x 10 2.42631x 10°
5 5.7578K 1¢° —3.42186¢ 107 —2.60988 10 3.42186< 10" —2.0948K 107
6 1.21690 107 —2.2887%X 10° —9.4360% 10 4.40583< 107 —2.7821K 10°
7 —2.66365% 107 —6.98786< 107 —3.54981 107 —7.3952K 107 —2.7097(X 107
8 5.4380% 107 -1.1188% 10 —4.2782& 107 1.11801x 10° —7.5301% 10°
9 1.9685X 10° —4.1083% 10* -1.67366<10° 4.86665< 10° -3.8235% 10
10 —2.0499% 10° —-3.39345 10 -5.2139x 10° —-9.1019% 10° -1.5638% 10*
11 1.4930x 10" —2.7593% 10° —7.9907% 10° 2.40902 10¢ —1.7312X% 10°
12 3.3383% 10* —7.55104 10° —3.0560% 10* 5.32758 10¢ —5.6823X 10°
13 9.1957% 10° —1.1038% 10° —-8.3733%10* —9.5843% 10* —5.1339X 10°
14 3.35804 10° —6.1276X 10° —1.5717& 10° 446747 1P —3.5257K 10°
15 6.26484 10° —1.45966¢ 10" —5.6426X 10° 5.92510x 10° -9.1352% 10°
16 9.7289% 10° —3.0110X% 10’ —1.43675% 10° —6.8525& 10° -1.3617% 107
17 7.05626¢ 10° —1.3001& 10° —-3.1459X% 10° 7.71985¢ 10° —6.85495 10’
18 1.2950% 10’ —2.96814 10° —1.05144< 10’ 7.22515¢ 10° —1.5864& 10°
19 3.1856% 10’ —7.45406< 10° —2.5954& 10 2.95797% 10° —-3.23625% 10°
in the photonic evolution equatior{2.21). These quantities * kS

. . . S_ _ | 9.0
arise from a subset of the diagrams leading to the gluon- KS=aenkqo(N=0)+ 2, QenBs 1
parton splitting functions, with the incoming gluon replaced =1 N
by a photon. Purely gluonic graphs do obviously not belong " s
to that subset, as the photon can couple to the hadronic sys- KS— 2 a Wﬁ. @ (3.26
tem only throughqq emission. Hence, by comparing to the 9 = s N ’

hadronic results discussed above, one obtains the most sin-
gular (S) smallx terms as l.e., kq (up to its scheme-independent constant LO Yeisn
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L . r 1
— —_— — L. —
2 E Xng(X,OLS— 02)1 8 i X(ng@ f) ]
-\'\' . i "-‘ xf(x) = x “X(1-x)° ]
sE LO d 5 - Y - FIG. 3. (a) The cumulative ef-
roY 7 fL . fect of the available terms for
Y — NLO 1 ] o -
TN g ] splitting functionxPyq(x) for ag
1 N I.x _ | =0.2. The fixed-order results are
r \_ 1 g successively supplemented by the
C R "o NLxgg ] . higher-order smalk resummed
0s L \\.\' - NLx h N Lx correction[4], the qq contri-
- S . - bution to the NIx term [9], and
L o mTmm e TN /} 1 the gluonic NIx energy-scale in-
0 L S A ] dependent term§l0]. (b) As (a)
L ’ i ] but for the convolution ofPgyq
i ] . with a shape of an hadronic gluon
3 ; . N 1 density.
05 (a) DIS scheme | 2 [ (b) DIS scheme |
L1 IIIIIIII 1 II-iIIIII 1 IIIIIIII 1 IIIIIIII 111l .I IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 11
0° 10" 107 10? 1wt 1 107 10t 107 10 ot
X X

definitely beyond the current NLapproximation, whereas where only terms have been retained which can potentially
kq can receive contributions at this order. Likewise, the con-contribute toAky,, if an NLx contribution toAC,, occurs
stant but scheme-dependent teBy, is NLx, and all higher-  in the transformation. By choice of th@nphysical lower
order photonic coefficient functions are beyond that approxicomponent oAC,, ;, the NLx pieces ofk,, arising, for ex-
mation. A 1N-term is indeed present in the known NLO ample, in anMS calculation, can hence successively be
resultky ;. This term, however, vanishes after transforma-eliminated, without disturbing the vanishing of the upper
tion to the DIS or DIS schemes. In fact, this cancellation term. At NLO, e.g., the lower component of zero in Eq.
can always be achieved at all orders, as we will show now(2.30, as chosen in the DISschemg32] achieves this can-
We proceed in two steps. We start by a purely hadronicellation. Therefore, without any loss of generality, vanish-
transformation(like that one fromMS to DIS), where C ing resummed photon-parton splitting functions can be as-

—C=C+AC, andC, remains unchanged. Then E§.27) ~ sumed at the Nk level.
implies
0=A|inhom=~é‘Ak+AC~k. (3.27) IV. LESS SINGULAR CONTRIBUTIONS
The terms in the splitting functionB;; , which are less
singular by onéor more powers of In(1x) asx—0 than the
) ; leading contributions discussed in the previous section, are
cient functions. These are, however, of Norder, as th&  agently unknown in almost all cases. Such subleading con-
themselves, and hence one hak=0 on the Nix level: i tions, however, can potentially prove to be as important
pur_el_y hadror_uc scheme changes modify th? ph_oton-partoas the leading terms, as also noted in a similar context in Ref.
splitting functions only beyond the Nt.approximation. [54]. The splitting functions and coefficient functions enter
The second step is a purely photonic transformaton,  gpservable quantities always via Mellin convolutions with
—C,=C,+AC,, with C untouched. Here Ed2.27) yields  the parton distributions. Since the parton densities are steeply
rising towards smalk, but (at least in the hadronic case
small at largex, the structure functions probe the behavior of
splitting functions and coefficient functions at medium and
large values ok as well.
The unpolarized singlet splitting functions are constrained
AKy=lpom ¢ AC, 1 by energy-momentum conservation; see EZ:]l?}. Also in
other cases, however, as for the polarized singlet and the
Aky=—Cy- AKy + lpom, 0 ACy 2+ Inom, 1 AC, 1 non-singlet+ evolutions, where no conservation laws apply,
less singular terms with sizable coefficients exist, for ex-
ample in NLO; see, e.g., Ref23]. In order to evaluate the
possible impact of such terms in higher-order splitting func-
m—1 m—1 tions, their numerical coefficients need to be estimated. At

AK.= — C-Ak. + | ACL (a1, 3.29 present the almost only source of information is the fully
m ;1 e ;o hom,[" ==y m=l+1 (3.29 known LO and NLO splitting functions.

We consider only such transformation terms, which are mo
tivated in contributions to the actual electromagnetic coeffi

0=Aljnnom=C- Ak+ B-AC,—lpom AC,.  (3.28

Solving for the changeak,, up to the orden,,aJ therefore
leads to
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The dominant and subdominant terms in the small- of the DIS scheme, but is observed to a similar extent also in
1/N-expansion of the LO and NLO singlet anomalous di-other schemes. As an example we give the corresponding
mensions are recalled in Eqd4.1)—(4.3). In accordance with  coefficients also for th&1S-scheme :
the main part of our numerical studies in Sec. VI, the results

are listed for four light quark flavors. The first terms in the vs _ 94.8148
LO case are given by YqqNLO= ~ +253.026-337.18]

+623.25N%+ O(N3),
Yqq,L0= +10.879% — 6.8222N>+ O(N?),

s 213.333
Yagnio= ~ ——y T 461.449-889.68N
Yqg.L0= — 10.6667+ 11.5550N — 13.185N%+ O(N?),
+1501.168N%+ O(N3),
10.6667
Ygqro= — — g +8-00000-9.3333 - 62.8148
Yoanio= + —y— — 361.805- 658.108
+10.0000N%+ O(N3),
—1048.43°+ O(N?),
= 24'0000+ 27.3333-5.1883\ 216.889
Yogto N ' ' Yognio= + —— — 790.928 161658
+17.039%?+ O(N3). (4.1 5 5
—2423.7N?+O(N3). 4.3

The corresponding expansions of the NLO anomalous diry the structure function evolution, the difference between

mensions read, in the DIS scheme, Egs. (4.2 and (4.3 is compensated by the corresponding
smallx terms of the coefficient functions.

In the smallx resummation case, even partial results for

DIS 123.259 subdominant contributions are only available for the gluon-

YaaNLOT T Ty +405.863-684.830 gluon splitting function so far. The irreducible MLcontri-
) 5 butions toy4q [10] exhibit very large coefficients if com-
+1197.5N°+O(N%), pared to the k serieg4]; see Table | and the comparison in
Ref.[12]. The introduction of terms with prefactors up to 2
oIS 277.333 times larger than those of the leading contributions, there-
Yaghio= ~ Ty T 846.222-1706.1& fore, should provide conservative, non-exaggerating esti-
mates for the possible impact of subdominant corrections.
+2622.76d°+ O(N?), The following modifications of the resummed anomalous di-
mensions beyond two-loop ordel,(N,«s), have accord-
91.2593 ingly been studied within Ref$21,23,44,5%
YoqnLo= N 453512-809.03N
_134489\|2+O(N3), (A) F(NiaS)HF(N!as)_F(laaS)

(B): T'(N,ag)—T(N,ag)(1-N)
bis 245.333 s s
YggNLOo— T N 988.210+ 2093.2W

(©): T'(N,ad—T(N,as)(1-N)>?
—3109.08*+O(N°). “.2 (D): T(N,ag—T(N,ag)(1—2N+N3).
(4.9

One notices that the first subleading terms occur with a
sign opposite to that of the dominant one. Their prefactors The impact of the prescription&C) and (D) on the re-
are of the same order, but in most cases the subleading ceummed NI contribution to the splitting function
efficients are by a factor of about 2—4 larger. At leadingxPgq(X,as) is illustrated in Fig. 2. Atx=10* those terms
order the quarkonic terms are not singularNs-0. The  reducexPgq by factors larger than 3, indicating the potential
gg-term even starts proportional 9, as a consequence of importance of less singular contributions. Also displayed in
fermion-number conservation, E¢2.16. The alternating Fig. 2 is the convolution oP 4 with a typical hadronic gluon
structure continues towards higher powerdNinvith a simi-  shape. The enhancement of the importance of non-leading
lar pattern for the coefficients as observed for the first anderms by the Mellin convolution discussed above is obvious
second terms. Note that this behavior is not a special featufeom the comparison of the two plots.
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V. SOLUTION OF THE EVOLUTION EQUATIONS

In this section we derive the solution of the singlet evo-
lution equations presented above. For technical convenience
the analysis is performed in MelliN-space where the con-
volutions turn to simple products. Recall that a unique ana-
lytic continuation of the anomalous dimensions from the in-
teger moments to compleX exists[56]. Thus a coupled
system of two ordinary differential equations has to be
solved at fixed\. The x-space results are then obtained by a
contour integral around the singularities of the final moment
solutionsf(N) in the complexN-plane, e.g., that shown in
Fig. 4. Because of* (N)=f(N*), it yields [57]

PHYSICAL REVIEW D 58 014020

ImN

+ y,.1.0 GeV’
<y, 10° GeV?
X P

e ¢, ginput

FIG. 4. Integration contour in the complé¥-plane for the in-
verse Mellin transformatior{5.1) relative to the locations of the
singularities of typical initial parton distributior{solid circleg, and
those of the fixed-ordegicrossesand resummed anomalous dimen-

1~ .
xf(x)=—J dz Im[e'?x Cf(N=C)], (5.2
mJo sions(open and solid diamonds for different valuesQ@#).

; . A. Th I'h i luti
whereC=c+zd?. For all cases considered heres1 and e general hadronic solution

¢=3m/4 provide an efficient and numerically stable inver- It is convenient to recast the evolution equations in terms
sion. The latter choice of> /2 leads to a faster conver- of the running couplingi= a(Q?)/4 as independent vari-
gence of the integral5.1) asz—x; see also Ref[58]. At  able, by combining th&? evolution (2.14 of the hadronic
smallx, for example, a numerical accuracy better than®0 parton densities with Eq. (2.8) for ag. Sorting the resulting

is easily achieved for upper limits as low a§,,~=5. right-hand sidgRHS) in powers ofag, one obtains

dg(as,N)  agPo(N)+aZPy(N)+adPy(N)+ - - -

N
dag —aiﬂo—aiﬁl—aiﬂz—-“ a@s Ny
B B 2 B1 Bi\* B>
= Boas| PoN) | P1(N) = ZPo(N) | +ag) Po(N) = 5 Pa(N) + B—O) —B—JP0<N>]+-~ a(@s.N)
1 oo
:_a_[ RO(N)+IZ1 asR(N) |q(ag,N). (5.2

Here we have simplified the notation by introducing the re-This prevents, already at NLO, writing the solution of Eq.
cursive abbreviations (5.2) in a closed exponential form. Instead we proceed by
generalizing the NLO method of Ref33] to all order§ in

R.= ip (5.3 as. The corresponding\nsatzof a series expansion around
0T By O ' the lowest order solution,
k
1 Bi <\ ~Ro(N)
R=gP— 2 gRei B4 goa,,N)- a @M=L a.N)g@0.N),
5.6
for the splitting function combinations entering this expan- 8
sion. As in Egs(5.3) and (5.4), we will often suppress the reads

explicit reference to the Mellin variabld below.
The splitting function matriceB, of different ordersk do
generally not commute; especially one has

[Ri=1(N),Ro(N)]#0. (5.9

“The first three orders were treated in a very similar manner in
Ref.[59].
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q(as,N)=U(ag,N)L(ag,aq9,N)U Y(ay,N)g(ag,N) This relation completes the general structure of the hadronic
singlet evolution. Note that the poles U (N) at N-values

wherer _(N)—r . (N) =k vanishes are canceled by thie?
1+ 2 asU(N) |L(as,ao,N) term in the solutior(5.7). We are now ready to consider the
presently available fixed-order and smaliesummation ap-
o -1 proximations.

X 1+k21 asU(N) | g(ag,N). (5.7)

B. Fixed-order evolution

The third,as-independent factor in E45.7) has been intro- In fixed-order perturbative QCD the expansit¢hl5 of
duced to normalize the evolution operator to the unit matrixthe splitting functions in powers of the strong coupliagis
at Q3, instead of to the LO resul6.6) at infinitely highQ?.  truncated at some low ordér Practical smalk calculations
Inserting thisAnsatzinto the evolution equationt.2) and  are presently restricted to NLGk€ 1), as the NNLO split-
sorting in powers ohg anew, one arrives at a chain of com- ting functionsP,(N) are not yet known for arbitrary values

mutation relations for the expansion coefficiebtgN): of N, unlike the 2-loop coefficient functiori{87,38 and the
_ B-function coefficientB, [17]. Hence we confine ourselves
[U1,Ro]=Ry+ Uy, to the NLO evolution here, the generalization to higher fixed

orders being obvious. l.e., we keep the full results ugk to

[Us,Rp]=R,+RU;+2U,, =1 and put, in Eq(5.2),

P=2(N)=0, (5.19
k—1
[UoRo]=Ri+ D R Uj+kU,=R,+kU,. (5.8 PBr=2=0. (5.18
=1

The coefficientsB,-, are also removed, for only all three

These equations can be solved recursively by applying thguantitiesP,, C, and 3, together form a scheme indepen-
eigenvalue decomposition of the LO splitting function ma-dent set for the evolution of physical quantities like the struc-
trix, completely analogous to the truncated NLO solutionture functionsF,(x,Q?) or, in the case of polarized scatter-
with only U; [33]; see below. One writes ing, 91(x,Q?).

Two natural approaches have been widely adopted for the
solution of the resulting NLO evolution equations. First one
can solve Eq(5.2) as it stands after inserting Ed8.15 and
(5.16. Then still all orders imag contribute there and in the

Ro=r_e_+r, e, (5.9

wherer _ (r,) stands for the smallgiargen eigenvalue of

o solution (5.7), with the only simplification that the splitting
0) 0) o) S0 function combination$5.4) are now given by
ri:ZB PG+ Py = V(PGg — Pg) 2+ 4PLIPG]. k=1 p \ k-1
DT (Bt B
(5.10 RNLO— = (—1> (P P )l a1
BO BO ! Bo 0 ( 7)

The matricee. denote the corresponding projectors,
This procedure is equivalent to a simple iterative solution of
the system(2.14) and (2.8), truncated ak=1. That tech-

ei:rt—r; [Ro=r=1], (.19 nique is widely used in parton density analyses, e.g., in Refs.
with | being the 22 unit matrix. Hence the LO evolution [60Theeasecond approach uses power Countin@gjrat the
operator(5.6) can be represented as level of the evolution equatiofb.2). There thea2 term in the
ag| - A TN square brackets involvd®, and 8, and can Fhus be consid-
L(as,aq,N)=e_(N) _) +e+(N)( ) ered as beyond the pres.ent approxmanon. Co.nsequently
a only the constant and the linear termsaipare kept, instead

(512 of Eq. (5.17) leading to
Inserting the identity

, B1
NLO' _ pNLO _ =4 NLO
U=e_Ue_ +e_Ue, +te Ue +e,Ue, (5.13 Ry Ry Bo( P1- BOPO » Rie2 =0. 518
into the commutation relation&.8), one finally obtains the |n this approach it is furthermore natural to truncate also the
expansion coefficients in E¢5.7): evolution matrixU(as) after the linear term, since, would
- - enter the determination &f, in Eq. (5.8) as well. Recall also
1o ~ e, Ree_ e_Rye, that the final multiplication with the NLO Wilson coeffi-
U=—-[eRe_+e Re, ]+ . ; .
k r.—r,—k ryo—r_—k cients only cancels the scheme dependence of the lmgar

(5.149 term in the evolution of the structure functio(.25. Fi-
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nally one can expand aldd™ 1(ay) to first order in Eq(5.7),  Recall that only the upper row of the NLmatrix is com-

although this is not necessary, resulting in pletely known at prese8]. Results including that part only
will be marked by NIx, below.
ay-C(ag,N)=[L(as,aq,N)+asU;(N)L(ag,aq,N) With respect to the solution of the evolution equations,

the situation is analogous to the fixed-order case, with the
—aplL(as,a0,N)Us(N)Ja(ag,N), (5.19  expansion parameter, replaced byN at each ordek=2 of
_ the strong coupling. The first option is obviously again the
whereU; is given by Eq.(5.14 with R;=R; of Eq. (5.18.  direct solution of Eq(5.2), now after inserting Eqs(5.16)
This is the well-known truncated analytical NLO solution and(5.20. To elucidate the generalization of the NL@ro-
[33] which has been employed, for instance, in RE88,64.  cedure to the resummed evolution, consider the splitting
These two approaches obviously differ in NNLO termsfunctions contributionR,~,, Eq. (5.4), arising from Eq.
only. The former procedure introduces more scheme¢5.20:
dependent higher order terms into the evolution of structure
functions such af,(x,Q?) or g,(x,Q?) in a general factor- e
ization scheme. On the other hand, the latter method does nBk=2 N)
solve the evolution equatior{2.14) literally, but only in the
sense of a power expansion, i.e., up to terms of okdeR.
Therefore the first approach may be considered more in the
spirit of the parton model, whereas the second is closer to a
manifestly scheme independent expansion for physical ob- 1 1 [(,31)2_ ,3_

2
servables. " N1 8ol B/ Bo

1 1
- —O[PkXJriNLNPELX] - m%[Ptxﬁ i NPRES
0

][PkXZ—HNLNPELXZ]—F .

(5.23

C. Small-x resummed evolution

The resummed evolution of the parton distributions in-
cludes, to all orders i, the most singular smaX-contri-
butions to the splitting function®, . This inclusion is per-
formed in the orders beyond the known fixed-order results
Thus the complete expressions fBg(N) and P;(N) are
used also here, and the difference from the previous section

The omitted terms involving higher powers 8f and 3,, or
By=3, are obviously even less singular as the last line for
N— 0. Therefore, if the power-counting N is done on the
level of Eqg.(5.2), one immediately arrives at

is restricted to the higher-order matricég..,. Our notation ¢ 1 . B

in this section will directly apply to the evolution of unpo- RiZ2(N)= = —— P|IZX+|NLN< PELX——Pkﬁ”-
larized quark and gluon densities. Most of the subsequent PoN Po

discussion can, however, be easily transferred to the polar- (5.29

ized singlet evolution[55] by replacing 1< by 1/(N
+1)%*! with correspondingly modified coefficient matrices Note that in the Nk (Lx) case theg-function coefficients
in all expansions. By=2 (Bk=1) do not contribute any more, and thét occurs

In the present case the most singular smakrms in the only linearly in the former case. Thu®;, which does not
evolution equationg2.14) behave like ak*In“x [4] and  exhibit an Lx contribution, does not enter E¢6.24) in the
1/xa'§+1ln"‘1x [8] as discussed in Sec. Ill. In MelliN-space  present unpolarized case. All this is completely analogous to

these additional resummation contributions replacing Egthe R matrices(5.18 for the NLQ; evolution.
(5.19 read Before we turn to th&J matrix for this second procedure,

it is instructive to consider a smatl-approximation to the
s P PRYX unpolarized Ix evolution in this approach. Unlike in any
Pk;Z(N):W_HNLW- (5.20  other QCD singlet case, including the polarized leading
smallx resummation[55], the splitting function combina-
tions Ry =, do commute hereg:R,(N),R,,(N)]=0, due to

. . LX : .
In particular, the matriP " is related to the expansion co- simple structure of the matrigs.21). This is still not

efficientsg{(y, in Table | by sufficient for a closed solution of the evolution equation
(5.2), unless one also keeps the leading smalbntributions
PLx=(4C )k+1g(0) 0 0 (5.21) fto Po.1(N) or_1|y. _Then, however, one eigenvalue Bf van-
k A kad\co/c, 1) ' ishes, resulting in

iy indicates whether only these leading smalbieces are
taken into accounfLx resummatioh or whether also the pé—>0:

4CA< 0 0) _4Ca
next terms in Eq(5.20 are kept(NLx resummatiohn N

Coica 1)° N el . (5.25

(5.22 Using Eqgs.(3.4) one obtains with this additional approxima-

) 0 forLx resummation,
i .
N tion,

- 1 for NLx resummation.
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The final step analogous to the N|.@nethod is to keep the

1 as 1
qigproyaS,N):ex;{_z J’ da—zyL(a,N) g(ag,N) non-(N)Lx parts ofU, only linearly also in the inverse ma-
Bola;, & trix U~ ! of Eq. (5.7). This leads to
12L (as, 0 o 1
= g0 N
R BoN ) 2‘ ] %@ N), U Ya,N)= 1+an(N)+k22 akU[(N)

(5.26

analogous to the complete resummed non-singlet solution;

+a{U§<N>—U1(N>}

see Refs[21]. This simple approximate expression, how- _US —{1-au (N)}+1 aUy(N).

ever, does of course not lead to any quark evolution. Equa- (5.33

tion (5.26 can be completely transformed tospace(cf.

Ref. [43]), The last two terms represent the truncated NLO contribution.

Insertion of this decomposition into E¢5.7) finally yields
g as,x) =F(as,a0,X) @€ °q(ag,x), (5.27)  [with L=L(as,a0,N) for brevity]

with 0¥ as,N) =[L+agU;(N)L—agLU;(N)]q(a,N)
- 1{5 . 120 | +[Ug(as,N)LUg(ag,N)
80, X) =~ S(1=X)+ \| o
(8o:80 2075 P77 N glog( a0 ¥ —L—a,U(N)L+aLUS(N)]q(ao.N).
log(1/ (5.39
+2 di(as,a o)(w) || 1(2)},

The first line is the NL@ result(5.19; the second line rep-
(5.28 resents the resummation correction.

where D. Photonic solution
12L 1\ 12 a We now turn to the parton distributions of the photon. In
z=2|——log| _ || log (5.29  terms of the running coupling, the corresponding inhomoge-
0 neous evolution equatiof2.21) reads
and|,(z) denotes the Bessel functions of imaginary argu- 2
ment. Similar expressions, e.g. in the double-logarithmic ap- 99’(as,N) _ Bemi Ko(N) + agky(N) +askp(N) + - .}+had
proximations, were studied in detail long afi5] and were das —aZBy—aip,—alB, -

also considered recent[¥6]. As compared to the complete

Lx solution, however, the approximati@h.27) yields gluon " |

densities which are typically too large by a factor of 2 for an T2 Ko(N)+ 21 agKi(N) | +had
evolution from 4 to 100 Ge¥. Therefore we will not apply S

this approach in the following. =K(as,N)+had. (5.3

We now proceed with the general resummed solution cor-
responding to the truncated NLO treatment whelge,=0;  Here a.,= a/4m denotes the electromagnetic fine structure
see Eq.(5.19. The generalization to the present case is toconstant, and analogously to Ed5.3) and (5.4) we have
keep only those terms d&J,-., which arise from the k and  introduced
NLx pieces ofR; and ofR,-» in Eq. (5.23. Hence the NLO

coefficientU; = U, is supplemented by 1
Ko=7ko. (5.39

’ res Sy S ’ BO

[U3,Ro]=R5" + R{U7+2U;, (5.30
[
etc. HereRf denotes the smak-contribution ofR;, K= Bikl_z ﬁKl—i . (5.3
0 i=1 Po
S, 1 1 Lx , NLx__ Bl H 7] ” . .
RI(N)= Bo N2 P +in N[ Py Bo P |, Finally “had” stands for the RHS of the hadronic evolution

equation (5.2), with q replaced byq”. The homogeneous
(5.31 componentg,,m, Of the solution of Eq(5.35 is as derived
) ) el in Secs. VA-VC. Hence only the inhomogeneous part,
and the corresponding expansion coefﬂm@ﬁjtm given by Ginor= A" — Ghom With Ginnor(@0,N) =0, needs to be dis-
s s s cussed here. This solution can be represented in terms of the
[UT,Ro]=R7+ U7, (5.32  nhadronic evolution operatdb.7?) as
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Oinhom(@s,N) Inserting U@Llo,(aS,N)zl—asul(N) and the expansion
a (5.39 into the inhomogeneous solutigs.38), the ag inte-
=U(as,N)a, R0<N>f sdaaRO(N)Ufl(a,N)K(a,N). gration becomes obvious and one arrive$32{
ag

1 ,
(5.38 a—mthgm( as,N)

For the iterative solutions the remaining integral can be ©
performed numerically. In the truncated procedures, on the
other handlU~*(a,N) has been expanded in E¢5.19 and
(5.33. In these cases the NLO photonic splitting functions,

1 ag _
=—[1+asU1(N)]( 1- —L>[1—Ro(N)] Ko(N)
as ag

- . -1
ki=P}Y”, should be treated in the same way as their hadronic (1= DRy ((N)[K3(N) — U1(N)Ko(N) ]+ O(ay).
counterpartd!! previously, reducing Eq5.37) to (5.40

p, 1 B1 r_ In the resummed case a numerical integration remains over
Kl_Kl_E( ka %ko)’ Ki=2=0. (539 the all-order part o)’ ~* in Eq. (5.33. Defining

In the following we will confine ourselves to physical fac-
. . . AreiasaaOaN)
torization schemes like the DJSscheme[32] or the DIS
scheme, where the photonic coefficient functiGa, has asda . . S
been absorbed into the quark distributions. In these schemes = —j —L " (a,a0,N)[Ug “(a,N)—1+aUz(N) JKo(N)
K(as,N) does not receive anyx.and NLx resummation % a
corrections beyond the leading order, as discussed in Sec. Ill. (5.41
Thus Eq.(5.39 applies to the NLE photon evolution as
well as to the corresponding resummed case. the solution is, again using=L(as,a4,N), given by

1

_qirr?ﬁ,on{aS’N): _qmlﬁ(o)m aS’N)+Us(aS!N)Ares(aSyaOyN)
Aem ae

i _$ — -1 _ -1 S
+Us(,N)| 7 1 2L 1= Ro(N)THKo(N) + (1= LRy (N US(N) Ko(N)

1 s .
—[1+aSU§(N>]a—S(1—Z—OL)[1—R0<N)]—1K0<N>—<1—L>Ro1(N)Uf(N>Ko<N>. (5.42

This relation completes the MelliN-solutions of the fixed- on the smallx behavior of the gluon density, which are not
order and resummed, hadronic and photonic evolution equaet provided by current measurements at HERA. A thorough
tions. We are now prepared to investigate the quantitativémplementation of heavy flavgicharm mass effects in the
impact of the various approximations, for both the splittingresummation framework would be required as well. These
functions and the solutions, on the parton densities and strugnass effects are non-negligible at smalwhere the charm
ture functions. contribution toF, andF, is substantial, in spite of the very

large hadronic invariant masW2>4m§; cf. Ref.[67]. Both

of these issues lie beyond the scope of the present paper.

VI. NUMERICAL RESULTS Since some of the resummation corrections turn out to be

ery large, one would like to know as well the next-order

th;?i;r;?j-foorl(ljogglgg dWr?assslsr?%ézeer\]/l:)m?igﬁaliecr?]ﬁ:%%etr;]%ese\?o-esummed corrections to perform a detailed data analysis.
In the following, therefore, the impact of the various

lution of structure functions and some aspects related to P%nomalous dimensions and Wilson coefficients is instead il-

tential ‘uncertainties. Despite the impressive amount o ustrated for fixed initial parton densities of the proton and

F{n%"?hesm:g;uerri if#\l;]::t?nat(ijg;a dzggi%{ ;iﬂ]lzcttgioa;] H;;’che photon. Accordingly all calculations are performed using
T P 9 P fhe same values fawrg(Q2). Specifically, the NLO relation

data analysis. Such an effort would require quite some flex- . ; B PP
ibility in the non-perturbative initial distributions, especially (2.10 is employed W'thAfo“_lo'zs Ge\g aboyeQ ~Me
for the gluon density which is only rather indirectly con- =(1.5 GeV} and, by continuity ofas(Q?), with Ay, -3
strained by measurements Bf, and F| . A detailed data =0.30 GeV below that scale. Abovd®elow) Q2=m§ the
analysis requires rather precise and independent constrairggolution equations are solved for fo(three massless fla-
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x2P(x,Q%) § 10%F e xg"(x,Q%)

. 100=QX(GeV?)
FIG. 5. The smalk evolution
of the proton’s flavor-singlet
T quark and gluon distributions in
LO and NLO perturbative QCD.
Two approaches to the solution of
the evolution equations are com-
pared in the NLO case; cf. Sec. V.
Also shown is the result of a
smallx approximation (NLXg;
see the tejtof the LO splitting
functions. The behavior of non-
singlet quantities is illustrated by
the total valence quark distribu-
tion x(u,+d,).

71

102

10
10

NLO: x(u,+d,) - P

11 ||||||I 11 ||||||I 1 L‘(:Tllll 1 |J‘{;|||‘I 11 1 1 1 ||||||I 11 ||||||I 11 ||||||I 11 ||||||I
10° 107 107 107 10t 1 107 10* 107 107 10t
X X

vors, respectively, withc(x,m?)=c(x,m?)=0. The small density atQ?=100 Ge\f andx=10"“. Furthermore the nu-

effects of the bottom flavor are entirely neglected. All sub-merical differences between the expanded solut®i9

sequent results are derived in the DIS scheme discusseund the iterative approadb.17) to the NLO evolution equa-

above, with the truncated solutions of Sec. V chosen as ddions can be considered as absolute lower limits on the un-

fault. Only the singlet resummations described in Sec. Ill arecertainties due to the unknown higher-order splitting func-

taken into account, since the non-singlet contributions ar&ions. These offsets reach 3%at 10>, while amounting

suppressed at smafl in the present unpolarized caggee to less than 1% fox= 1073; see also Fig. 6 belowThus

Fig. 5, and its resummation correction is very small; cf. Sec.one may roughly expect a 5-10 % smalkffect from the

Il B. 3-loop anomalous dimensions, if fixed-order renormalization
group improved perturbation theory remains the appropriate

A. Proton structure: Fixed-order evolution framework down tax=10"°. Such an estimate is also cor-

, , . , roborated by studies of the factorization scale dependence of
Let us first consider the leading and next-to-leading 0rde§:2 at smallx [20].

evolution of hadronic parton densities, putting emphasis on It is conceivable, however, that the NLO contributions to

the smalix region. As the value of\y —, given above, the e smallx anomalous dimensions are untypically sniak,
initial distributions for our proton studies are adopted fromfor instance, IN? terms are absent i;; cf. Egs.(4.2) and
the Martin-Roberts-Stirling set AMRS(A") ] global fit[62]  Table ). In this context it is instructive to study the conver-
at a reference scal@j=4 Ge\’. For the present purpose, gence of(formal) smallx expansions of anomalous dimen-
the most relevant feature of these input densities is theigions and Wilson coefficients into the series

smallx behavior which has been constrained by previous
HERA data:

]

Lx NLX NNLXx

(] ] @
o(ag,N)=>, al s —
XgP(x,Q3)cxZP(x,Q3)cx %17 for x—0. (6.1 =S NN

+.--| (62

Recall that, unlike the gluon distribution, the DIS-scheme@lréady at the LO and NLO level, where the full results are
quark densities represent observables. available. Also shown in Fig. 5, therefore, is the Lap-
The LO and NLO smalk evolution ofx3P and xgP to proximation to the leading-order evolution, for which just the

Q?=10 and 100 Ge¥is shown in Fig. 5 together with the L/N terms ofygg and ygq are kept together with the leading

initial distributions. The LO curves have been calculated, a§d—0 constants iny;J and 55 ; see Egs(4.1). Note that
indicated above, using the NLO input densities agd/alues  this procedure is close to the well-known double-logarithmic
in Eqg. (5.6). Hence they do not represent results of an inde-

pendent leading-order analysis, but directly illustrate the im-

portance of the NLO terms relative to the LO contribution in 5|5 previous comparisonf20,6§ deviations of up to 8% were
Eq. (5.19. One notices that the perturbative stability of the found between these solutions. These large effects originated in the
presently available fixed-order evolution is theoretically sat-unfortunate choice of a traditional approximate NLO expression for
isfactory also at very low values of. For instance, the «(Q?), showing that the representation of the NLO solution of Eq.
NLO/LO ratio amounts to 1.280.87) for the singlet(gluon) (2.8) tends to be relevant at the current accuracy of the data.
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JE LO, Q" = 100 GeV” 1 LE NLO, Q* =100 GeV® 1
1.5 :_ """"""" _: 1.5 :: _____________ _:
o ooooooooeeo oo N R
e I .
T . e ] FIG. 6. The effects of the suc-
0.5 Foovememememem =TT L osE T . 11_ cessive smalk approximations
» TR R - Py (6.2) to the LO anomalous dimen-
0 C ool vl v vl v v il 0 C vovvvnnd vl v v vl v v v sions Yo (left) and to the NLO
L B I I LI R B B L B i L)) N B R Correctiongyl (nght) on the lowx
Lo T F - -- NLx ] evolution ofx2,P andxgP; cf. Egs.
2 ETTTT 3 2 Ee N"Lx 3 (4.1) and(4.2). All results are dis-
F L ] E N'Lx ] played atQ?=100 GeV relative
15 x 4 15 __._ N'Lx e to the respective full calculations
E NLx ] E T e ] b
1 . SUDUUUTUUIUNOTPeTs P 1 L e, ] presented in Fig. 5.
[ - - - NLx ] e T'___f
05F ...... NNLx -1 05| -
C gatppr. / gfull ] C gappr. / gfull 1
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approximation; cf. Sec. V C. As can be seen from the figureWithout any subtraction the sum rule would be violated by

this first approximation is very pooks, andxg exceed the about 1% and 6% aD?=100 Ge\ for the Lx and NLXq

full LO results by factors of about 1.7 and 2.2, respectively,resummed evolutions, respectively, of our MRSY) initial

rather uniformly inx at Q?=100 Ge\#, without any appre- distributions.

ciable sign of improvement for decreasing valuesof The resulting evolutions of the singlet quark and gluon
Hence the question arises as to how many terms in thgensities are compared to the NLO distributions in Fig. 7 for

smallx expansion are required for arriving at a reasonablyy2—10 and 100 Ge¥ The relative importance of the avail-

accurate representation of the complete fixed-order resultgye gluonic(lower row) anomalous dimensions is illustrated

A;:c%rdl?u%ly, Fig. 6 displays the rajuo§lapp_m)72fu”, and Fig. 8(@). Consider first the effect of thex_corrections

g**Pfg™" for the LO and NLO evolutions with an increas- 141 These terms exert an appreciable influence on the gluon

ing number of terms taken into account in the_ eXpansmr}avolution, but much less on the quark densities in the kine-
(6.2 of o andy, (in NLO the complete expression for, e region covered by the figure. A=10 * and Q2

has been employeq for all cur\)es)ne_flnds that_ in general ~100 Ge?, e.g., ratios ofg¥/gN-0=1.24 ands¥/3NO
three to four non-trivial smalbkterms, i.e., contributions up ; . . .
to N?Lx at LO and NLx at NLO, are needed to achieve an —1.Q7 are obtained. This pattern (?bwously arises from the
accuracy of better than 10%. The NLO situation is not amatrix structure of the k kernel(3.4); only at higher scales
peculiarity of the DIS scheme chosen here, as a correspon§©€S the quark effect fully approach the gluon enhancement.
ingM_S analysis using Eq$4.3) yields similar results. Note T_he |_nCIu5|0n of the Nk, terms|8], i.e. the_L_lpper row
that an interesting pattern emerges in both fixed-order case§Ntres n IZEq.(3.1J)_, leads to only a small add|t|onz;| effect
the approximate results alternate around the exact valug¥! X9(x,Q%). The impact of these terms o (x,Q%) s,
with decreasing amplitude. If such a pattern were to persighowever, exceedingly large, as already evident from Fig. 2.
to higher orders inxg, a first reliable estimate of their pos- These effects have been illustrated before, cf. Re#$,23,
sible impact could be derived once two more non-trivial partly using different parametrizations for the input distribu-
terms in all smallx expansions were known. This aspecttions at the starting scal®3. The resulting enhancement
may be of relevance for the resummed evolution addressedith respect to the NLO evolution amounts to a factor of 2.8,
in the following. for example, ak=10"% andQ?=100 Ge\*. This huge cor-
rection is indeed entirely driven by the quarkonic anomalous
dimensions, as also illustrated in Figa8 any “reasonable”
change of the gluonic splitting functions affecty by at

We now turn to the effects and the relative importance ofmost about 10%. Since only this one resummation contribu-
the Lx [4] and NLx [8—10Q] higher-order contributions to the tion is known for the dominant upper-row quantities, a
splitting functions discussed in Sec. Ill. In the present subtheory based estimate along the lines of Sec. VI A is not yet
section the momentum sum ru(@.17) is restored by pre- possible for the resummed quark distributions, and hence for
scription(A) of Eq. (4.4); i.e., P9 andP{9 are supplemented the most important structure functiof,. We will therefore
by appropriate’(1—x) terms at all order&=2. This proce- resort to the sum-rule prescriptions of Sec. IV in the next
dure is the one with the least impact on the smatkesults.  subsection.

B. Resummed evolution
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XZP(X,QZ) 103 - 100 = QX(Ge V) xg? (X,Qz) E

k.
. 100 = Q*(GeVH)

o N\

103

FIG. 7. The resummed small-
evolution of the singlet quark and
gluon densities as compared to the
NLO results. The k [4] and NLx
[8—10Q contributions are succes-
1 sively included, with the momen-
tum sum rule implemented via
prescription(A) of Sec. IV. The
results forQ?=10 and 100 Ge¥
have been multiplied by the fac-
tors indicated in the plots.
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In the gluonic sector, on the other hand, the theoreticaby the Lx and NLx, terms at allx in Fig. 7. As expected
situation has been improved recently by Rd®,10]; see from Fig. 3, these terms are so large that they even cause a
Sec. Ill. We remind the reader that the latter findings forsign change in the slope of the gluon evolution for
Yqg. although indicative, are not final yet, since the so-called< 104, It seems natural to expect that yet missing terms
energy-scale dependent Nlterms have still to be calcu- either in NLx or unknown terms emerging in higher orders
lated. The effects of the known next-to-leading contributionscorrect this behavior again. Thus a first uncertainty band of
are also presented in Figs. 7 an@8 The well-established the possible resummation effects Bg(x,Q?) seems close

qacontribution tO'yélg) [9], which is not expected to yield the tO completion. In this cqntext it ;hogld be recalled that the
largest subdominant terms, already removes more than ha¥Lx anomalous dimension matrix is not yet complete, as
of the Lx effects on the gluon density at=10"4 for Q2 .y still remains uncalculated. Note, however, th§}) has
=100 GeV; see Fig. 8). The energy-scale independent an impact of less than 10% on botB, andxg in the Lx and

gluonic contribution 10] overcompensates the enhancementNLx, evolutions; cf. Fig. &). Henceyélq) is presumably not

LOS F NLx, Q% = 100 GeV? @9 105 F g2 = 100 GeV? IR
1F —— ezt 3 1 oo e L
095 oo o7 J095F_---"". 3
E-- 3 E 3 FIG. 8. (a) The impact of the
09 F 4 09 R = ) o
E e NLx_, P, =0 3 2 ] resummed gluonic splitting func-
08 F ___ NLx P =0 F08 F E tions Pyq and Py, of Refs.[4,623,9]
08 F T 4 08 F - o on xxP and xg® at Q’=
o b NLx.Pyiad  soppry yiNLxg 3 o7s B iterd girune'd 3 100 GeV. The NLx, results of
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3] p A 3k 22 p 2y
1076 0= 0Gev?) x2(x,Q°) 7 10°F . 100=QGev?) xg (x,Q°) E
SRS —eo NI I — NLO ] FIG. 9. The possible effects of
._\ e NLx© T LT T . NLX(A) . subleading corrections _to the_ re-
RS 5l q summed anomalous dimensions,
107N "Ry, T 10 exemplified by the momentum

sum-rule prescription&C) and(D)
. of Eq. (6.3), on the smallx evolu-
ETSEREE S tion of the proton’s parton densi-
ties. The results using th&1—x)
subtractiong(A) are as in Fig. 7.
The MRSA') [62] initial distri-
butions (transformed to the DIS
schemg have been employed as
in all other proton figures.
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a major source of uncertainty, as one may expect a rathehe momentum sum-rule prescriptiof8) and (D) of Eq.

moderate effect of this quantity as well. (4.4) for all anomalous dimensions with only one all-order
As in the NLO case of Sec. VI A, the differences betweenterm known presently,

the iterative and the truncated solutions, E¢s23 and . . -

(5.34, of the evolution equations should yield a lower limit ¥k=2(N)—¥i=2(N)(1-2N+N®) for ij=0qq,q9,9.

on the uncertainty due to missing terms in the anomalous (6.3

dimensions. In fact, if the present smalkfesummations col-

lected the most relevant higher-order terms, a reduction oflere a=2 [3] for the prescriptiongC) [(D)]. In y4q we

these offsets should take place with respect to the NLO evcadopt the presently known NLcontributions, which are

lution. The corresponding results are depicted in Figp).8 taken from Table I. Hence only thd? or N® terms in this

While staying on the same level as in the NLO case for thejuantity are adjusted according to E8.17). In view of the

Lx evolution, the offsets increase significantly as soon as thetructure of theN-expansions of the LO and NLO terms

NLx terms are included, in particular for the singlet quarkestimates like Eq6.3) are conservative; i.e., they might un-

density: ratiosS fter'd/s trunc’d ¢ up to about 10% are found. derestimate the present uncertainties.

This decreased stability may point to a larger uncertainty of N Fig. 9 the resulting singlet quark and gluon densities
the huge Nix quark enhancement. are compared at NLaccuracy to distributions evolved with

prescription(A). The subleading terms of thnsatz(D) are
sufficient to overcompensate the huge leading resummation
effect onx3(x,Q?) slightly. E.g., the Nx(® result falls
Less singulassubleading contributions to the anomalous ahout 10% short of the NLO distribution at=10"% and
dimensions, i.e., terms which do not exhibit the IeadingQ2: 100 Ge\£. Note that even the difference between pre-
N—0O behavior, are vitally important for the LO and NLO scriptions(C) and(D), arising from the replacement of para-
evolution at smalk, as demonstrated in Fig. 6: three to four metrically small NLx by N*Lx terms in the quarkonic
terms in the expansio(6.2) are required for a good repre- anomalous dimensions, proves rather appreciable. This situ-
sentation. In higher orders afs the leadingN—0 poles  ation is similar forxg(xQ?), where the effects of the sum-
become more singular, but so do the subleading contriburyle induced terms are positive because of the very large
tions, and the number of singular pieces increases. There iﬁegativeygg entries; cf. Table I. The order of the curves is
therefore, no obvious reason to expect terms less singular iitferent here as compared %%, sincey, differs between
N to be unimportant at low in all-order approaches. At the casedA), (C), and(D) only in the third term of the smak-
present stage of theoretical development, however, one h%?(pansion, unlikey,, which dominates the quark evolution.
to rely on reasonable estimates for obtaining a first impresathough definite (q:%nclusions cannot be drawn from these
sion of their possible impact. For this purpose, we employyrescription-dependent results, they nevertheless indicate
clearly that the I expansion(6.2) behaves similar as in the
fixed-order cases.

C. Structure functions and less singular terms

®This expectation is also supported by the fact thg}f does not We now turn to the proton structure functiofig andF, .
contribute to the eigenvalues of the resummed anomalous dimerFheir smallx behavior, as obtained from the parton densities
sion matrix up to the Nk level; see Eq(3.15. just discussed, is displayed in Fig. 10. Since our calculations
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tions F, and F_ for the parton
evolutions shown in the previous
figure in comparison with the
NLO results. The uppef, curves
include the resummed coefficient
functions C, [8] [cf. Eq. (6.9];

2| SN 100 p 2 2 p 2
07 L, F,(x,Q7) { w¢ F(x,Q7)
] L 100=QXGeV?) ]
10 E 4 10 I lower curves © 3 FIG. 10. The smalk behavior
3 3 RN (o 7 of the resummed structure func-
. ] L ]

10 3 E 3 the lower ones illustrate the pos-
E ] ] sible impact of a subleading con-
[ ] ] tribution to C, .
2] - NLx —— NLO
10 F . NLx® ... NLX;A) E E
C 11 IIIIII| 11 IIIIIII 11 IIIIIII 11 IIIIIII 11 IIIIIT A A 11 IIIT
107 10?* 107 10?* 1w 1 107 1wt 1w’ 10?0t
X X

are performed in the DIS schente; is very closely related the smallx behavior ofF (x,Q?) the next-order smak-re-

to the quark singlet distribution at small Thus the left side summed corrections are required. On the other hand, direct
of Fig. 10 exhibits a pattern very similar to Fig. 9. The lon- measurements of | (x,Q?) by the HERA experiments
gitudinal structure function, on the other hand, in additioncould help to constrain the size of missing terms in the co-

involves the resummed coefficient functions efficient functions.
4 = e
CL(ast):asCL,O(N)+a§CL,1(N)+ §Nf asz CIIZ(WS) ) D. Photon structure at small x
k=2 ) .
(6.4) We now address, finally, the smallevolution of the par-

ton densities of the real photon. As outlined in Sec. Il, this

CioandCy ; represent the leading and next-to-leading order€volution includes a specific inhomogenedtipointlike” )
[69,37] coefficient functions, and the gluon and pure singletPiece in addition to the homogeneo(thadronic™) compo-

resummation coefficienf$] c- are given in Table | and Eq. Nent. Whereas the latter behaves rather similar to the pro-
(3.25. ton’s parton distribution considered in the preceding subsec-

tions, the former is completely calculable in perturbation

in fact, very large at the lowe®? values shown: even the theory up to its dependence on the starting s@fe As

cross-section positivity constraifit, <F, is violated forx ~ discussed in Sec. lll one may study the evolution of the
<3Xx10% at Q?>=4 Ge\? for the Martin-Roberts-Stirling photon structure function in a DIS scheme, where the inho-

set A [MRS(A')] initial distributions. At high Q2  Mmogeneous part does not involve any new resummed split-
=100 GeV? the effects of the coefficient functions and of ting functions at the present level of accuracy. It does, how-
the parton evolution become comparable due to the decreaS¥®" _prob_e the resummed hadronic evolution matrix in a
of ag in C_(as,N). The size of the lowd? effect shown in specific, different manneicf. Sec. \}, and thus provides an
Fig Slo (uppe? ,dotted and dash-dotted cuivdmwever, re- additional laboratory for studying the possible effects of the
quires sizable corrections by yet unknown higher-order term§Mallx resummations. 5 _
in the smallx resummation ofC, or a large adjustment of | he reference scal@, takes a somewnhat different char-
the input gluon density. In fact, also the coefficient functions2Cter in the photon case than in the pure hadronic evolution.
can be expected to receive relevant subleading correctiodss @ free parameter for the solution of tr;e evolution equa-
which are unknown at present. In order to derive a first estilions, still, but only for certain choices ®; can the sepa-
mate on their possible impact, tifg calculations have been ration between the homogeneous and inhomogeneous pieces
repeated with approximately reflect the physical decomposition into the
non-perturbative component, induced, e.g., by vector meson

The additional corrections due to the coefficiealsare,

Ci=p— Ci=n(1—2N). (6.5

The results of these calculations are shown in Fig(ld@er "The measurements &%, (x,Q?) [2] are “indirect” and corre-
curves. This moderate correction term leads to an even drasiated with theF, measurement. Their present experimental errors
tic overcompensation of the leading resummation effect aére still large. More precise results are expected from the data of the
low Q2. This shows that for a more detailed understanding ofl997 HERA run.
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100 = QX(GeV?) --- LO

FIG. 11. The smalk evolu-
tion of the photon’s singlet quark
and gluon distributions in leading
and next-to-leading order, starting
from the NLO parametrization of
[70] at Q=1 Ge\? as in all fol-
lowing figures. The hadronic
(vector-meson-dominance in-
duced components are compared
to the full results at NLO.

10 10
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1=0Q%GeV?

0* 107 107 10! 1o10* 107 107 10t 1
X X

dominance(VMD) and a perturbative contribution. In fact dominant sources of this greater enhancement are again the
this physical decomposition leads @<1 Ge\? [70,71]; larger a values implied by the lower choice @3. The
for a recent overview cf. Refl72]. We therefore choose inhomogeneous components are still suppressed, although
Q3=1 Ge\?in the following, unlike the proton case of Sec. they are even more affected by the resummation corrections,
VI A-VI C. At this scale we adopt the NLO photonic parton as factors of up to 15 and 8 are found for the d\LO
distributions of Glek, Reya and Vog(GRV) [70], as this is  ratios of 3 nom aNd Ginnom, respectively’ Recall that these
the only available NLO set with a HERA-like smallrise of  |atter results do not depend on any non-perturbative input
the hadronic component. The lawbehavior of these singlet distributions. Note also thatg;,nom is much less affected by
and gluon densities is not given by a simple power (8W),  the y{!) correctiong 9,10, since the main “driving term” of
however, but can approximately be written as the inhomogeneous solution is the purely quarkonic quantity
2y __y—0.22 2y _y—0.13---0.22 ko; cf. Eq. (5.42.

27(x,Qo)~x » 9706 Qo)X The possible effects of less singular terms, using the same
for 10 4<x<10 2. (6.6) momentum sum-rule prescription as in the proton evolution,
are illustrated in Fig. 13 foF} andxg”. The general pattern
for the total results is analogous to the purely hadronic case
of Figs. 9 and 10. The relevance of subleading corrections,
however, is even more enhanced than that of the leading
Fig. 11. As in the proton case, the LO solution has beerferms:FJ falls far below the NLO calculation fpr th_Ansatz
calculated using the NL@DIS schemginitial distributions (D), @nd the breakdown ojathe gluon evolution in K
and the NLO values for(Q?). The NLO-LO difference is  &lready takes place at<10"~. On the other hand, the less
slightly larger than in Fig. 5 due to the larger values of theSingular terms are much less effectiveRignnom at smallx.
coupling constant involved. Also shown in the figure is the!n hadron-like cases their importance is magnified by the
NLO hadronic VMD contribution which is suppresséa convolution with the(soft) parton densities; cf. Figs. 2 gnd 3.
particular in the quark casat largex, but dominant in the Here, however, the functiomkg o< x[1+(1—x)?], which
smallx regime: it still amounts to about 80% of the full Plays the role of an “input distribution,” is very hard. Hence
results forx<10~3 at Q?=100 Ge\?. Therefore one may F2innomCOMes closer to a local probe of the smabplitting
expect a similar rise ofJ as observed foFS at HERA[1]. ~ functions than any inclusive hadronic quantity.

We shall consider now how the resummation corrections af- Nevertheless, the inhomogeneous part remains much
fect this picture. smaller than that homogeneous pieceFRgf for most sce-

Figure 12 presents the effects of the various resummeBarios of Fig. 13. It should be noted, however, that the latter
smallx terms[4,8—10 on the evolution of the singlet quark Ccontribution may be suppressed down to about the NLO re-
and gluon distributions. The full results and the inhomoge-sults by a different choice atg”. It is conceivable, there-
neous contributions foB3=1 Ge\? are separately shown.

These effects are considerably larger than those in Fig. 7: the
NLx/NLO ratios reach factors of about 8 and 2 herexir” 8n contrast, the NLO/LO ratio not shown in the figure is on a
andxg?, respectively, ak=10"% andQ?=100 Ge\f. The  rather normal level.

Here the effective rising power ofg” decreases with de-
creasingx; cf. Ref.[64].
The fixed-order evolution ok ” andxg? is recalled in
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2| i 2y o102k Y 2Nty -
10 100 = Q%(GeV?) X2 (x,Q)/a 7 10 . 100=Q%(GeV?) xg'(x.Q)/o 3
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AN — o K% :
n '\.\\ """ Lx . L . FIG. 12. The resummed small-
N N e NLx .. x evolution of xX7 and xg” to
10 : 4 10 Fe = Q?=100 GeV as compared to
] E e ] the NLO results. The x [4] and
] L ] NLx [8—10] contributions are suc-
. r 1 cessively included, with the mo-
1 mentum sum rule implemented
via prescription(A) of Sec. IV.
1 3 L F E The effects on the photon-specific
. F ] inhomogeneous solution are dis-
_______ . - 1 played separately.
I i [ Ql=1GeV’ 1
o i i il g e i
0* 107 10?10 1t 10" 10?107 10! 1
X X
fore, thatF , ,nom iS Much more important in the resummed VIl. CONCLUSIONS

evolution than in the fixed-order case discussed above. In-

deed, a smalk FJ considerably greater than about 1.2 times  The effects of the resummation of theland the known
the VMD expectation could be considered as a signal for thélLx smallx contributions to the flavor-singlet anomalous
presence of large resummation corrections in the quarkonidimensions and coefficient functions have been investigated,
anomalous dimension. A measurementgfin the smallx ~ in a framework based on the renormalization group equa-
region will, however, presumably only be possible with thetions, for the DIS structure functiors) and Ff’ as well as

ey mode of a future e linear collider’ Another theoreti- for the photon structure functioR. In this approach direct
cally cleaner, but experimentally also very difficult probe comparisons are possible with studies of the scaling viola-
would be the structure of highly virtual photons, where thetions of these structure functions based on LO and NLO
non-perturbative VMD part is suppressed and the calculabléxed-order calculations. In order to allow for the most flex-
part becomes more important; cf. RET4]. ible comparison of different approximations to the all-order

e R Qo | 107 xg'(x.Q/or 5

10

e

.100= QX(GeVH)

T7T TTTrT

G - - - NLx®

-

EELELELLLI D

/
Ll

10

FIG. 13. The possible effects
of subleading corrections to the
resummed evolution kernels, ex-
emplified by the momentum sum-
rule prescriptiongC) and (D) of
Eq. (6.3, on the small evolution
of the photon structure function
FJ and the photon’s gluon distri-
bution.

Q3 =1GeV*

9The possible kinematic coverage and necessary detector requirements have been studigd 3 Ref.
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evolution equations, their general analytic moment-space s@orresponding results to those of future complete fixed-order
lution has been derived. calculations. There the medium and largéerms are fully
The largest smalk corrections to the quark densities and contained up to the respective orderdq. If extended to
F, are due to the resummed quarkonic)Ntorrectiong 8],  higher orders, in fact, also the RGE-improved fixed-order
whereas the effect of the gluonic terms is marginal here. Foperturbation theory still seems to remain a viable candidate
the gluon density, thex.correctiong4] are moderately posi- for the theoretical framework in the HERA regime.
tive. Both the quarkoni¢9] and the energy-scale indepen- The smallx evolutlon_of the real photon’s parton struc-
dent gluonic[10] parts of the Nix gluon-gluon anomalous (Ure has been analyzed in the DIS scheme. It has been shown
dimension, on the other hand, cause negative correctiof§at this scheme can be defined, without loss of generality, in
which are so large that they overcompensate théerms. In such a manner tha? the photon-parton sp_httmg funct!ons do
fact, the latter terms lead to negative values for the tota ot receive any higher-order resummation correct|ons_ at
splitting functionx Pyy(x, ag) for as=0.2 andx< 10"2. This Lx accuracy. Nevert'h.eless, the photon struct.ure function
behavior probably signals the presence of other large posfF2 €an provide an additional laboratory for studying the pos-

tive contributions, either due to the energy-scale dependeriiPl® effect of smalk resummations, as the characteristic,
NLx-terms or originating in terms of NNt or even higher calculable inhomogeneous solution of the evolution equa-
order. tions probes the low- hadronic anomalous dimensions in a

Contributions of NNIx order exhibiting a similar behay- Unique way: it comes closer to a local probe of the small-
ior can as well exist in the case of the quarkonic anomalouguarkonic splitting functions than any inclusive hadronic
dimensions and the coefficient functions. This is suggestedqua”“ty- Unfortunately, this particularly interesting contribu-

for example, by the expansion of the fixed-order anomaloudon is likely to be dominated by the hadron-like vector-
dimensions in powers of W which leads to a good approxi- meson-dominance part which behgves completely analogous
mation only after three to four terms. DiffereAnsaze for to the photon structure and hence introduces the same uncer-
potential less singular terms have been studied numericalljdnties and limitations due to the interplay of the anomalous
showing that even the exceedingly large corrections due tE.jlmensmn:s anc_j the non-perturbative |n.|t|al d|st(|but|ons.
the quarkonic Nk-corrections can easily be removed again. Note added in prooffter the completion of this paper, a
The longitudinal structure functioR, is in addition af-  fIrst calculation has been performed from which the com-
fected by the smalk contributions to the coefficient func- P!t NLx gluon-gluon anomalous dimension can be in-
tions C, [8]. For lower values of)? the corrections become ferred; cf. our discussion in Sec. Il B. While this new result
so large that the positivity constraiRf <F, can be violated has some quantitative impactRy turns negative even at a

for conventional input parton distributions. However, a|sosomewhat largex than in Fig. 3, our respective conclusions

this resummed coefficient function is very sensitive to Sub_remain unchanged. For further details, the reader is referred

leading corrections. to [75].
All these aspects show that also the next less singular
terms need to be calculated, despite the enormous work that
has been carried out so far to derive the resummed anoma- Our thanks are due to P."&ag for his constant support
lous dimensions and coefficient functiof4,8—10,48,49  of this project. We would also like to thank M. Ciafaloni, W.
before firm conclusions on the smallevolution of singlet van Neerven, D. Robaschik, G. Camici, and S. Riemersma
structure functions can be drawn. Since contributions whichor useful discussions. This work was supported in part by
are even less singular than these ones may even then caube German Federal Ministry for Research and Technology
relevant corrections, it appears indispensable to compare tiBMBF) under contract No. 05 7WZ91(@).
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