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1/Nc corrections to the hadronic matrix elements ofQ6 and Q8 in K˜pp decays
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We calculate long-distance contributions to the amplitudesA(K0→2p, I ) induced by the gluon and the
electroweak penguin operatorsQ6 andQ8, respectively. We use the 1/Nc expansion within the effective chiral
Lagrangian for pseudoscalar mesons. In addition, we adopt a modified prescription for the identification of
meson momenta in the chiral loop corrections in order to achieve a consistent matching to the short-distance
part. Our approach leads to an explicit classification of the loop diagrams into non-factorizable and factoriz-
able, the scale dependence of the latter being absorbed in the low-energy coefficients of the effective theory.
Along these lines we calculate the one-loop corrections to theO(p0) term in the chiral expansion of both
operators. In the numerical results, we obtain moderate corrections toB6

(1/2) and a substantial reduction of
B8

(3/2) . @S0556-2821~98!06013-5#

PACS number~s!: 13.25.Es, 11.15.Pg, 12.39.Fe
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I. INTRODUCTION

In this article we study long-distance contributions to t
K→pp decay amplitudes using the 1/Nc expansion (Nc be-
ing the number of colors! within the framework of the chira
effective Lagrangian for pseudoscalar mesons.

The calculation of chiral loop effects motivated by th
1/Nc expansion was introduced in Ref.@1# to investigate the
DI 51/2 selection rule. These articles considered loop c
rections to the current3current operatorsQ1 and Q2. The
gluon penguin operatorQ6 was included at the tree leve
consistent with the 1/Nc expansion since the short-distan
~Wilson! coefficient is subleading inNc . Following the same
lines of thought the authors of Ref.@2# performed a detailed
analysis of the ratio«8/«, which measures the directCP
violation in K→pp decays. They included the matrix ele
ments ofQ6 andQ8 at the tree level in the 1/Nc expansion,
arguing that their quadratic dependence on the running m
ms cancels, in the large-Nc limit, the evolution of the coef-
ficient functions in the absence of chiral loops.

In contrast with theDI 51/2 rule, which is governed by
Q1 and Q2, «8/« is dominated by the density3density op-
eratorsQ6 and Q8. Therefore it is important to investigat
the 1/Nc corrections to the matrix elements of the last tw
operators. In particular, it must be examined whether
1/Nc corrections significantly affect the large cancellati
between the gluon and the electroweak penguin contribut
obtained at the tree level in Ref.@2#. In Ref. @3# the analysis
of «8/« was extended by incorporating in part chiral loo
for the density3density operators, i.e., 1/Nc corrections to
the matrix elements ofQ6 and Q8. The final result was an
enhancement of̂Q6& I 50 and a decrease for^Q8& I 52, which
introduces a smaller cancellation between these two op
tors. As a consequence, the authors found a large pos
value for«8/« @4#.

In this paper we present a new analysis of the hadro
matrix elements of the gluon and the electroweak peng
operators in which we include, in the isospin limit, the fir
0556-2821/98/58~1!/014017~15!/$15.00 58 0140
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order corrections in the twofold expansion in powers of e
ternal momenta,p, and the ratio 1/Nc , i.e., we present a
complete investigation of the matrix elements up to the
dersp2 andp0/Nc .1 One improvement concerns the matc
ing of short- and long-distance contributions to the dec
amplitudes, by adopting a modified identification of virtu
momenta in the integrals of the chiral loops. To be explic
we consider the two densities in density3density operators
to be connected to each other through the exchange o
effective color singlet boson, and identify its momentu
with the loop integration variable. The effect of this proc
dure is to modify the loop integrals, which introduces notic
able effects in the final results. More important it provides
unambiguous matching of the 1/Nc expansion in terms of
mesons to the QCD expansion in terms of quarks and glu
The approach followed here leads to an explicit classificat
of the diagrams into factorizable and non-factorizable. F
torizable loop diagrams refer to the strong sector of
theory and give corrections whose scale dependence is
sorbed in the renormalization of the chiral effective Lagran
ian. The non-factorizable loop diagrams have to be matc
to the Wilson coefficients and should cancel scale dep
dences which arise from the short-distance expansion.

The disentanglement of factorizable and non-factoriza
contributions is especially important for the calculation
the O(p0/Nc) matrix elements ofQ6: although theO(p0)
term vanishes forQ6, the non-factorizable loop correction
to this term remain and have to be matched to the sh
distance part of the amplitudes. TheseO(p0/Nc) non-
factorizable corrections must be considered at the same le
in the twofold expansion, as theO(p2) tree contribution and
have not previously been calculated. The same procedu
followed for investigating the matrix elements ofQ8. As a
final result, we present the numerical values for the ma

1A comprehensive analysis of chiral loop corrections to theO(p2)
matrix elements will be presented elsewhere.
© 1998 The American Physical Society17-1
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elementŝ Q6&0 and ^Q8&2 to ordersp2 andp0/Nc .
Another improvement is the enlargement of the Lagra

ian, that is to say, we use the complete chiral effective
grangian up toO(p4). Finally, we include effects of the sin
glet h0, which is necessary for the investigation of isosp
breaking terms. The latter generate the matrix element^Q6&2
which is important for«8/« @5#. Isospin violating terms will
be studied in the future. For consistency, and to introduce
general lines of thought, we include here theh0 also for the
computation of the matrix elements^Q6&0 and ^Q8&2 in the
isospin limit, where its effect is expected to be small.

This paper includes several improvements which are n
essary for a complete calculation to ordersp2 andp0/Nc , as
was defined above. It is still necessary to include these
provements for the isospin violating terms, but this will n
affect the results for̂Q6&0 and ^Q8&2 presented here. Fur
thermore, we can contemplate still higher order correcti
which, at present, are beyond the scope of this analysis.

The paper is organized as follows. In Sec. II we revi
the general framework of the effective low-energy calcu
tion. In Sec. III we discuss the matching of short- and lon
distance contributions to the decay amplitudes. Then, in S
IV we investigate the factorizable 1/Nc corrections to the
hadronic matrix elements ofQ6 and Q8, where we show
explicitly that the scale dependence resulting from the ch
loop corrections is absorbed in the renormalization of
bare couplings, the mesonic wave functions and masses.
we do on the particle level, as well as, on the level of
operator evolution for which we apply the background fie
method. In Sec. V we calculate the non-factorizable lo
corrections to the hadronic matrix elements and the co
sponding non-factorizable evolution of the density3density
operators. In Sec. VI we give the numerical values for
matrix elements and the parametersB6

(1/2) and B8
(3/2) . The

latter quantify the deviation of the matrix elements fro
those obtained in the vacuum saturation approximation.
nally, we summarize and compare our results with those
the existing analyses.

II. GENERAL FRAMEWORK

Within the standard model the calculation of theK
→pp decay amplitudes is based on the effective low-ene
Hamiltonian forDS51 transitions@6#:

H e f f
DS515

GF

A2
ju(

i 51

8

ci~m!Qi~m! ~m,mc!, ~1!

ci~m!5zi~m!1tyi~m!, t52j t /ju , jq5Vqs* Vqd ,
~2!

where the Wilson coefficient functionsci(m) of the local
four-fermion operatorsQi(m) are obtained by means of th
renormalization group equation. They were computed in
extensive next-to-leading logarithm analysis by two grou
@7,8#. Long-distance contributions to the isospin amplitud
AI are contained in the hadronic matrix elements of
bosonized operators,
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^Qi~m!& I[^pp,I uQi~m!uK0&, ~3!

which are related to thep1p2 andp0p0 final states through
the isospin decomposition

^Qi~m!&05
1

A6
~2^p1p2uQi~m!uK0&1^p0p0uQi~m!uK0&!,

~4!

^Qi~m!&25
1

A3
~^p1p2uQi~m!uK0&2^p0p0uQi~m!uK0&!.

~5!

Direct CP violation in K→pp decays is dominated by
the gluon and the electroweak penguin operators, i.e.,
^Q6&0 and ^Q8&2, respectively, where

Q6522 (
q5u,d,s

s̄~11g5!qq̄~12g5!d,

Q8523 (
q5u,d,s

eqs̄~11g5!qq̄~12g5!d, ~6!

and eq5(2/3,21/3,21/3). This property follows from the
large imaginary parts of their coefficient functions. It is th
cancellation between the two penguin contributions wh
gives rise to a small value of the ratio«8/«. Consequently, it
is important to investigate whether the degree of cancella
is affected by corrections to the hadronic matrix eleme
beyond the vacuum saturation approximation~VSA! @9#.

There are several realizations of non-perturbative Q
@1,10–12#. A recent development is the calculation ofK
→pp from off-shell K→p amplitudes within chiral pertur-
bation theory@36#. We will perform our analysis using the
1/Nc approach. To this end we start from the chiral effecti
Lagrangian for pseudoscalar mesons which involves an
pansion in momenta where terms up toO(p4) are included
@13#:

Le f f5
f 2

4 S ^]mU†]mU&1
a

4Nc
^ lnU†2 lnU&2

1r ^MU†1UM †& D1r 2H2^M †M&

1rL 5^]mU†]mU~M †U1U†M!&

1rL 8^M †UM †U1MU†MU†&, ~7!

with ^A& denoting the trace of A and M
5diag(mu ,md ,ms). f and r are free parameters related
the pion decay constantFp and to the quark condensat
respectively, withr 522^q̄q&/ f 2. In obtaining Eq.~7! we
used the general form of the Lagrangian@13# and omitted
terms ofO(p4) which do not contribute to theK→pp ma-
trix elements ofQ6 and Q8 or are subleading in the 1/Nc
expansion.2 The fields of the complex matrixU are identified
with the pseudoscalar meson nonet defined in a non-lin
representation:

2In addition, one might note that the contribution of the conta
term }^M †M& vanishes in the isospin limit (mu5md).
7-2
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U5exp
i

f
P, P5pala , ^lalb&52dab , ~8!

where, in terms of the physical states,

P5S p01
1

A3
ah1A2

3
bh8 A2p1 A2K1

A2p2 2p01
1

A3
ah1A2

3
bh8 A2K0

A2K2 A2K̄0 2
2

A3
bh1A2

3
ah8

D , ~9!

and

a5cosu2A2sinu, A2b5sinu1A2cosu. ~10!

u is theh2h8 mixing angle. Note that we treat the singlet as a dynamical degree of freedom and include in Eq.~7! a term for
the strong anomaly proportional to the instanton parametera. This term gives a non-vanishing mass of theh0 in the chiral
limit ( mq50) reflecting the explicit breaking of the axial U(1) symmetry. We shall keep the singlet term througho
calculation and will discuss its effects in Sec. VI.

The bosonic representation of the quark densities is defined in terms of~functional! derivatives:

~DL! i j 5q̄i

1

2
~12g5!qj

[2
dLe f f

dMi j
52r S f 2

4
U†1L5]mU†]mUU†12rL 8U†MU†1rH 2M †D

j i

, ~11!

and the right-handed density (DR) i j is obtained by Hermitian conjugation. Equation~11! allows us to express the operatorsQ6
andQ8 in terms of the meson fields:

Q6522 f 2r 2(
q

F1

4
f 2~U†!dq~U !qs1~U†!dq~L5U]mU†]mU12rL 8UM †U1rH 2M!qs

1~L5U†]mU]mU†12rL 8U†MU†1rH 2M †!dq~U !qsG1O~p4!, ~12!

Q8523 f 2r 2(
q

eqF1

4
f 2~U†!dq~U !qs1~U†!dq~L5U]mU†]mU12rL 8UM †U1rH 2M!qs

1~L5U†]mU]mU†12rL 8U†MU†1rH 2M †!dq~U !qsG1O~p4!. ~13!
he
c-
a

ol

tra
is

o
a

low
e
t do

in
e

-
ure.
y
r

For the operatorQ6 the (U†)dq(U)qs term which is ofO(p0)
vanishes at the tree level. This property follows from t
unitarity of U. However, when investigating off-shell corre
tions it must be included. This important aspect, which w
not studied previously, will be discussed in detail in the f
lowing sections.

The 1/Nc corrections to the matrix elements^Qi& I are
calculated by chiral loop diagrams. The diagrams are ul
violet divergent and are regularized by a finite cutoff. Th
procedure, which was introduced in Ref.@1#, is necessary in
order to restrict the chiral Lagrangian to the low-energy d
main. Since we truncate the effective theory to pseudosc
01401
s
-

-

-
lar

mesons, the cutoff has to be taken at or, preferably, be
theO(1 GeV). This limitation is a common feature of th
various phenomenological approaches, which at presen
not include higher resonances.

The loop expansion of the matrix elements is a series
1/f 2;1/Nc , which is in direct correspondence with th
short-distance expansion in terms ofas /p;1/Nc : the large-
Nc behavior of SU(Nc) quantum chromodynamics is repre
sented by diagrams which have a planar gluon struct
Subleading terms in the 1/Nc expansion are included b
means of internal fermion loops~suppressed by a facto
7-3
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HAMBYE, KÖHLER, PASCHOS, SOLDAN, AND BARDEEN PHYSICAL REVIEW D58 014017
1/Nc) or non-planar gluon interactions~suppressed by 1/Nc
2)

@15#. These corrections actually generate the multimeson
termediate states which constitute the loop diagrams of
effective theory.3

Finally, we note that the meson loop corrections a
needed not only for improving the matching of the mat
elements to the short-distance coefficient functions but a
for obtaining the correct infrared structure, which is requir
to maintain the unitarity relations at low energy@16,17#.

III. MATCHING OF LONG AND SHORT DISTANCE

To calculate the amplitudes we follow the lines of Ref.@1#
and identify the ultraviolet cutoff of the long-distance term
with the short-distance renormalization scalem. In carrying
out this matching we pay special attention to the definition
the momenta inside the loop. This question must be
dressed because the loop integrals, within the cutoff regu
ization, are not momentum translation invariant.

In the existing studies of the hadronic matrix elements
color singlet boson connecting the two densities~or currents!
was integrated out from the beginning@1–4#. Thus the inte-
gration variable was taken to be the momentum of the me
in the loop, and the cutoff was the upper limit of its mome
tum. As there is no corresponding quantity in the sho
distance part, in this treatment of the integrals there is
clear matching with QCD.

The ambiguity is removed, for non-factorizable diagram
by considering the two densities to be connected to e
other through the exchange of the color singlet boson, as
already discussed in Ref.@17#. A consistent matching is the
obtained by assigning the same momentum to the color
glet boson at long and short distances and by identifying
momentum with the loop integration variable. This importa
feature of the modified approach is illustrated in Fig. 1. T
momentum of the virtual meson is shifted by the exter
momentum, which affects both the ultraviolet, as well as,
infrared structure of the 1/Nc corrections. The same metho
was used in studies of theKL2KS mass difference@18# and
the evolution of current3current operators in the chiral limi
@20#.

Obviously, the modified procedure described above is
applicable to the factorizable part of the interaction. Ho
ever, in the next section we will show explicitly that a
factorizable terms quadratic and logarithmic in the cutoff
independent of the momentum prescription in the lo

3A pedagogical introduction to the 1/Nc expansion in terms of
mesonic degrees of freedom can be found in Ref.@14#.

FIG. 1. Matching of short- and long-distance contributions
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Moreover, they are absorbed in the renormalization of
bare low-energy coefficients, as well as the mesonic w
functions and masses. Consequently, the factorizable 1Nc
corrections are not to be matched to any short-distance
tribution, i.e., they refer to the strong sector of the theo
Therefore there is no need for a momentum cutoff, and
will calculate the remaining finite corrections using dime
sional regularization, which constitutes a momentum inva
ant procedure.

IV. FACTORIZABLE 1/ Nc CORRECTIONS

Since factorizable and non-factorizable corrections re
to disconnected sectors of the theory~strong and weak sec
tors!, we introduce two different scales:lc is the cutoff for
the factorizable diagrams andLc for the non-factorizable.
We will refer to them as the factorizable and the no
factorizable scales, respectively. A similar analysis of ch
loop corrections was performed to determine theBK param-
eter @21#.

We shall prove in this section, within the cutoff regula
ization, that the quadratic and logarithmic dependence onlc
which arises from the factorizable loop diagrams is absor
in the renormalization of the low-energy Lagrangian. Con
quently, in the factorizable sector the chiral loop correctio
do not induce ultraviolet divergent terms, i.e., the only
maining ultraviolet structure of the matrix elements is co
tained in the overall factor;1/ms

2 . This is to be expected a
the evolution ofms , which already appears at leadingNc , is
the inverse of the evolution of a quark density. Therefo
except for the scale of 1/ms

2 which exactly cancels the fac
torizable evolution of the density3density operators at shor
distances, the only scale remaining in the matrix element
the non-factorizable scaleLc . It represents the non-trivia
part of the factorization scale in the operator product exp
sion. Since the cutofflc disappears through renormalizatio
the only matching between long- and short-distance con
butions is obtained by identifying the cutoff scaleLc of the
non-factorizable diagrams with the QCD renormalizati
scalem.

The proof of the absorption of the factorizable scalelc
will be carried out in the isospin limit. This explicit demon
stration is instructive for several reasons. First, we verify
validity of the general concept in the case of bosonized d
sities which, contrary to the currents, do not obey conser
tion laws. Second, we check, within the cutoff formalism
whether there is a dependence on a given momentum
(q→q6p). Thirdly, including theh0 as a dynamical degre
of freedom we examine the corresponding modifications
the renormalization procedure. Finally, there remain fin
terms from the factorizable 1/Nc corrections which explicitly
enter the numerical analysis of the matrix elements. T
point will be discussed at the end of this section.

A. Calculation of the matrix elements

Due to the unitarity of the matrix fieldU the tree level
expansion ofQ6 starts at theO(p2). Consequently, including
only the first order corrections in the twofold expansion
7-4



n

no

th

d
ca
th
ta

th
qs
he

t

e

es

of

1/Nc CORRECTIONS TO THE HADRONIC MATRIX . . . PHYSICAL REVIEW D 58 014017
external momenta and the ratio 1/Nc , no additional terms
arise from the renormalization of the wave functions a
masses, as well as, the bare decay constantf since these
corrections will be of higher order. This statement does
hold for the electroweak operatorQ8 which, for K0

→p1p2, induces a non-vanishing tree matrix element at
O(p0).

The wave function and mass renormalizations can be
duced from the pion and kaon self-energies, i.e., from a
culation of the propagators at next-to-leading order in
double series expansion. For the wave functions we ob
~definingp r[Zp

1/2p0)

Zp511
8L5

f 2
mp

2 2
lc

2

~4p!2f 2
1

mK
2

3~4p!2f 2

3 logS 11
lc

2

mK
2 D 1

2mp
2

3~4p!2f 2
logS 11

lc
2

mp
2 D ~14!

511
8L5

f 2
mp

2 2
lc

2

~4p!2f 2

1
loglc

2

~4p!2f 2

1

3
~mK

2 12mp
2 !1•••, ~15!

ZK511
8L5

f 2
mK

2 2
lc

2

~4p!2f 2
1

1

4~4p!2f 2

3Fmp
2 logS 11

lc
2

mp
2 D 12mK

2 logS 11
lc

2

mK
2 D

1cos2umh
2 logS 11

lc
2

mh
2 D 1sin2umh8

2 logS 11
lc

2

mh8
2 D G

~16!

511
8L5

f 2
mK

2 2
lc

2

~4p!2f 2

1
loglc

2

~4p!2f 2

1

6
~5mK

2 1mp
2 !1•••, ~17!

where the ellipses denote finite terms we omit here for
analysis of the ultraviolet behavior. One might note that E
~14! and~16! are exact only if the cutoff is associated to t
virtual meson. However, any momentum shift (q→q6p)
modifies only the finite corrections@compare Eq.~B6! of
Appendix B#.

In specifying Eq. ~17! we applied the octet-single
squared mass matrix,

m25
1

3S 4mK
2 2mp

2 22A2~mK
2 2mp

2 !

22A2~mK
2 2mp

2 ! 2mK
2 1mp

2 13a
D , ~18!
01401
d
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with a5mh
21mh8

2
22mK

2 and the corresponding mixing
angle@22#

tan2u5
2m80

2

m00
2 2m88

2
52A2F12

3a

2~mK
2 2mp

2 !
G21

. ~19!

The mass renormalization is found to be

mp
2 5rm̂F12

8mp
2

f 2
~L522L8!1

1

3
a

loglc
2

~4p!2f 2G1•••, ~20!

mK
2 5r

m̂1ms

2 F12
8mK

2

f 2
~L522L8!1

1

3
a

loglc
2

~4p!2f 2G1•••,

~21!

wherem̂5(mu1md)/2. The ratio of Eqs.~20! and ~21!, to
one-loop order, determines the differenceL522L8 of the
low-energy couplings:

mK
2

mp
2

5
m̂1ms

2m̂
F12

8~mK
2 2mp

2 !

f 2
~L522L8!G1•••, ~22!

[
m̂1ms

2m̂
F12

8~mK
2 2mp

2 !

Fp
2 ~ L̂5

r 22L̂8
r !G . ~23!

Note that Eq.~22! exhibits no explicit dependence on th
scalelc ; i.e., the chiral loop corrections of Eqs.~20! and
~21! do not contribute to the SU(3) breaking in the mass
and, consequently, can be absorbed inr . This implies
~modulo finite terms!

L522L85L̂5
r 22L̂8

r . ~24!

Finally, f and L5 are obtained from the decay constants
pions and kaons@1#,

Fp5 f F11
4L5

f 2
mp

2 2
3

2

lc
2

~4p!2f 2

1
loglc

2

~4p!2f 2

1

2
~mK

2 12mp
2 !G1•••, ~25!

FK5 f F11
4L5

f 2
mK

2 2
3

2

lc
2

~4p!2f 2

1
loglc

2

~4p!2f 2

1

4
~5mK

2 1mp
2 !G1•••. ~26!

Defining the constantL̂5
r through the relation

FK

Fp
[11

4L̂5
r

Fp
2 ~mK

2 2mp
2 !, ~27!

from Eqs.~25! and ~26! we find, to one-loop order,
7-5
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FIG. 2. Tree plus factorizable
loop diagrams for theK→pp
matrix elements ofQ6 andQ8; the
crossed circles denote th
bosonized densities, the blac
circles the strong interaction verti
ces. The external lines represe
all possible configurations of the
kaon and pion fields.
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L55L̂5
r 2

3

16

loglc
2

~4p!2
1•••, ~28!

which is in accordance with the result from chiral perturb
tion theory@13#. Then, from Eq.~24! we get

L85L̂8
r 2

3

32

loglc
2

~4p!2
1•••. ~29!

One might note that the coefficient in front of the logarith
in Eq. ~29! differs from the one given in Ref.@13#. This
property follows from the presence of the singleth0 in the
calculation. Equations~22! and ~23! define the renormaliza
tion conditions because the termL̂5

r 22L̂8
r plus the constan

terms which appear in the ratio of the masses in Eq.~22!
determine the bare constantL522L8. Similarly Eqs.~25!–
~27! with the associated finite terms determine the coupl
constantL5. As we focus in this section on the ultraviole
behavior we omit the finite contributions. Full expressio
relevant for the numerical analysis are given in terms of
tegrals in Appendix A.

Next we investigate the~bare! tree level of theK0→pp
matrix elements, up toO(p2) in the chiral expansion, as we
as, the factorizable 1/Nc corrections to theO(p0). The latter
corrections refer to the first term on the right-hand side
Eqs.~12! and~13!. Both contributions can be calculated fro
the diagrams depicted in Fig. 2. From the sum of these
grams we obtain

i ^p0p0uQ6uK0&~0!
F

52
4A2

f
r 2~mK

2 2mp
2 !FL51

3

16

loglc
2

~4p!2G1•••, ~30!

i ^p1p2uQ6uK0&~0!
F

52
4A2

f
r 2~mK

2 2mp
2 !FL51

3

16

loglc
2

~4p!2G1•••, ~31!

i ^p0p0uQ8uK0&~0!
F

5
2A2

f
r 2~mK

2 2mp
2 !FL51

3

16

loglc
2

~4p!2G1•••, ~32!
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i ^p1p2uQ8uK0&~0!
F

5
3

4
A2r 2f F12

4

3 f 2
~mK

2 12mp
2 !~L5212L8!2

3lc
2

~4p!2f 2

1
1

12

loglc
2

~4p!2f 2
~21mK

2 124mp
2 18a!G1•••. ~33!

The structure of Eqs.~30!–~32! guarantees that the renorma
ization ofL5 renders them finite. The situation is more com
plicated for the matrix element in Eq.~33! as we will remark
below.

If we use Eqs.~15!–~29!, including only the first order
corrections in the parameter expansion, we arrive at
renormalized~factorizable! matrix elements of theQ6 and
Q8 operators:4

i ^p0p0uQ6uK0&~r !
F 52

4A2

Fp
S 2mK

2

m̂1ms
D 2

~mK
2 2mp

2 !L̂5
r 1•••,

~34!

i ^p1p2uQ6uK0&~r !
F 52

4A2

Fp
S 2mK

2

m̂1ms
D 2

~mK
2 2mp

2 !L̂5
r 1•••,

~35!

i ^p0p0uQ8uK0&~r !
F 5

2A2

Fp
S 2mK

2

m̂1ms
D 2

~mK
2 2mp

2 !L̂5
r 1•••,

~36!

i ^p1p2uQ8uK0&~r !
F

4L8 does not appear in the matrix elements ofQ6 because its
contributions to the first and second diagram of Fig. 2 are canc
by a tadpole~third diagram of Fig. 2!.
7-6
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TABLE I. Hadronic matrix elements ofQ6 andQ8 ~in units of R2
•MeV), shown for various values o

Lc . The numbers in the parentheses are obtained by replacingFp by FK in the next-to-leading order
expressions.

Lc50.6 GeV Lc50.7 GeV Lc50.8 GeV Lc50.9 GeV

i ^Q6&0
tree 235.2 235.2 235.2 235.2

i ^Q6&0
tree1 F loops 268.4237.0i 268.4237.0i 268.4237.0i 268.4237.0i

i ^Q6&0
NF loops 29.8137.0i 34.6137.0i 39.0137.0i 42.9137.0i

u^Q6&0u total 38.6 33.7 29.4 25.5
~45.8! ~41.8! ~38.2! ~35.0!

i ^Q8&2
tree 56.4 56.4 56.4 56.4

i ^Q8&2
tree1 F loops 56.020.1i 56.020.1i 56.020.1i 56.020.1i

i ^Q8&2
NF loops 220.7211.5i 224.8211.5i 228.8211.5i 232.8211.5i

u^Q8&2u total 37.2 33.2 29.5 25.9
~40.2! ~37.0! ~33.8! ~30.7!
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5
3

4
A2S 2mK

2

m̂1ms
D 2FFp1

4

3Fp
~8mK

2 211mp
2 !L̂5

r

2
16

Fp
~mK

2 22mp
2 !L̂8

r G1•••. ~37!

Equations~34!–~37! are unambiguous, as the quadratic a
logarithmic terms in Eqs.~15!–~33! were found to be inde-
pendent of the momentum prescription inside the loops.

Note that the factorizable scalelc is absent in Eqs.~34!–
~37! @except for the running of 1/(m̂1ms)

2.1/ms
2#. Residual

scale dependences could nevertheless unfold at the o
p0/Nc

2 or p2/Nc . The latter would arise, e.g., if we usedf
rather thanFp in theO(p2) tree level expressions of Eqs
~23! and~27! or Eqs.~34!–~37!. This would be consistent a
the level of the first order corrections in the twofold ser
expansion, as the difference concerns higher order effe
However, the scale dependence off ~which is mainly qua-
dratic! will be absorbed by factorizable loop corrections
the matrix elements at the next order in the parameter ex
sion and has not to be matched to any short-distance co
bution. Consequently, it is a more adequate choice to use
physical decay constant in the expressions under cons
ation. Instead ofFp the kaon decay constantFK could be
used as well. Both choices will be considered in the num
cal analysis, which gives a rough estimate of higher or
corrections. At the same level of accuracy, in theO(p2)
terms of Eqs. ~34!–~37! the prefactor @2mK

2 /(m̂1ms)#2

could be replaced by (mp
2 /m̂)2. However, this choice is un

suitable asm̂ suffers from larger uncertainties.
We note that the coefficients in front ofL̂5

r and L̂8
r in the

matrix element of Eq.~37! are different from those of the
bare couplingsL5 and L8 in Eq. ~33!. The change of the
coefficients comes about as the quantities in Eq.~33! are
replaced by renormalized quantities. In particular, the q
dratic term inlc is absorbed in the renormalization of th
decay constantf and the mesonic wave functions. Finall
omitting the constant terms which refer to the factoriza
01401
d

ers

ts.

n-
ri-
he
er-

i-
r

-

e

loop corrections, Eqs.~36! and ~37! are combined to obtain
the isospin-two tree level matrix element ofQ8 up toO(p2)
in the chiral expansion:

i ^Q8&2
tree5

A3

2A2
S 2mK

2

m̂1ms
D 2FFp1

4

Fp
~2mK

2 23mp
2 !L̂5

r

2
16

Fp
~mK

2 22mp
2 !L̂8

r G . ~38!

The numerical value for this term is given in Table I. In Re
@23# only the bare matrix elements were included in the c
responding tree level analysis of^Q8&2. Consequently, the
new contribution of Ref.@23#, i.e., the contribution of theL8
coupling, was found with a sign opposite to that in Eq.~38!.
This was corrected in Ref.@24# in the framework of the
chiral quark model.

B. Operator evolution

The results of the previous section can also be seen
rectly at the operator level, in particular at the level of t
density operator. To demonstrate this we apply the ba
ground field method as used in Refs.@19# and @20# for cur-
rent3current operators. This approach is powerful as
keeps track of the chiral structure in the loop corrections. I
particularly useful to study the ultraviolet behavior of th
theory.

In order to calculate the evolution of the density opera
we decompose the matrixU in the classical fieldŪ and the
quantum fluctuationj,

U5exp~ i j/ f !Ū, j5jala , ~39!

with Ū satisfying the equation of motion

Ū]2Ū†2]2ŪŪ†1rŪM †2rMŪ†5
a

Nc
^ lnŪ2 lnŪ†&•1,

Ū5exp~ ipala / f !.
~40!
7-7
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The Lagrangian of Eq.~7! thus reads

L5L̄1
1

2
~]mja]mja!1

1

4
^@]mj,j#]mŪŪ†&

2
r

8
^j2ŪM †1Ū†j2M&2

1

2
aj0j01O~j3!. ~41!

The corresponding expansion of the meson density aro
the classical field yields

~DL! i j 5~D̄L! i j 1 i f
r

4
~Ū†j! j i 1

r

8
~Ū†j2! j i 1O~j3!.

~42!

The evolution of (DL) i j is determined by the diagrams o
Fig. 3, and we obtain

~DL! i j ~lc!52
f 2

4
r ~Ū†! j i ~0!1

3

4
r ~Ū†! j i ~0!

lc
2

~4p!2

2
r

12
~Ū†! j i ~0!a

loglc
2

~4p!2

2r 2~M †! j i ~0!FH21
3

16

loglc
2

~4p!2G
22r 2~Ū†MŪ†! j i ~0!FL81

3

32

loglc
2

~4p!2G
2r ~]mŪ†]mŪŪ†! j i ~0!FL51

3

16

loglc
2

~4p!2G .

~43!

The quadratic and logarithmic terms for the wave funct
and mass renormalizations can be calculated from the
grams of Figs. 4 and 5, i.e., from the off-shell corrections
the kinetic and the mass operator, respectively, second
third term of Eq.~41!. The resulting expressions formp

2 and
mK

2 turn out to be identical to those found in the explic
calculation of the pion and kaon self-energies, Eqs.~20! and
~21!. For the wave functions we get

Zp511
8L5

f 2
mp

2 23
lc

2

~4p!2f 2
1

3

2
mp

2
loglc

2

~4p!2f 2
, ~44!

ZK511
8L5

f 2
mK

2 23
lc

2

~4p!2f 2
1

3

2
mK

2
loglc

2

~4p!2f 2
. ~45!

FIG. 3. Evolution of the density operator; the black circ
square and triangle denote the kinetic, mass andUA(1) breaking
terms in Eq.~41!, the crossed circle the density of Eq.~42!. The
lines represent thej propagators.
01401
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Along the same linesFp and FK can be calculated, to
one-loop order, from the diagrams of Fig. 6, and we obta5

Fp5 f F11
4L5

f 2
mp

2 2
3

2

lc
2

~4p!2f 2
1

3

4
mp

2
loglc

2

~4p!2f 2G ,

~46!

FK5 f F11
4L5

f 2
mK

2 2
3

2

lc
2

~4p!2f 2
1

3

4
mK

2
loglc

2

~4p!2f 2G .

~47!

In accordance with Eqs.~15!–~33! both the quadratic and
the logarithmic terms of Eqs.~43!–~47! prove to be indepen-
dent of the way we define the integration variable inside
loops. This is due to the fact that the quadratically diverg
integrals resulting from the diagrams of Figs. 3–6@i.e., those
of the form d4q/(q6p)2# do not induce subleading loga
rithms, that is to say, all quadratic and logarithmic depe
dence on the scalelc originates from the leading divergenc
of a given integral.

Now looking at Eqs.~44!–~47! we observe that the ratio
P/ f and, consequently, the matrix fieldU are not renormal-
ized ~i.e., p0 / f 5p r /Fp and K0 / f 5Kr /FK). Then, by
means of Eqs.~21! and ~46!, we can rewrite the density o
Eq. ~43! as

~DL! i j ~lc!52
2mK

2

~m̂1ms!
FFp

2

4 S 11
8L̂5

r

Fp
2 ~mK

2 2mp
2 !

2
16L̂8

r

Fp
2

mK
2 D ~Ū†! j i 1~]mŪ†]mŪŪ†! j i L̂5

r

12~Ū†xŪ†! j i L̂8
r 1~x†! j i Ĥ2

r G , ~48!

with x5diag(mp
2 ,mp

2 ,2mK
2 2mp

2 ). In obtaining Eq.~48! we
used the renormalized couplings of Eqs.~28! and ~29!. In
addition, we introduced

Ĥ2
r 5H21

3

16

loglc
2

~4p!2
1•••. ~49!

Note that the renormalized density exhibits no dep
dence on the scalelc , except for the scale of 1/(m̂1ms).
Note also that in Eqs.~43! and~48! we did not specify loga-
rithmic terms induced at the one-loop order which cor
spond to theL4, L6 andL7 operators in the chiral effective
Lagrangian of Ref.@13#. An explicit calculation of these
terms shows that they give no contribution to theK→pp
matrix elements ofQ6 andQ8.

In conclusion, using a cutoff regularization the factori
able contributions to theQ6 andQ8 operators up to the or

5The representation of the bosonized current in terms of the b
ground field can be found in Ref.@20#.
7-8
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FIG. 4. Evolution of the kinetic operato
~wave function renormalization!.
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dersp2 andp0/Nc are given, modulo finite loop correction
in terms of theK→pp matrix elements by Eqs.~34!–~37! or
in terms of a single density by Eq.~48!. Our results exhibit
no explicit scale dependence. Moreover, they do not dep
on the momentum prescription inside the loops. The fin
terms, on the other hand, will not be absorbed completel
the renormalization of the various parameters. This can
seen, e.g., from the fact that the rescattering diagrams of
2 contain a non-vanishing imaginary part. As the renorm
ized parameters are defined to be real, the latter will rem

In addition, the real part of the finite corrections carrie
dependence on the momentum prescription used to defin
cutoff. However, we proved that the chiral loop diagrams
not induce ultraviolet divergent terms. Therefore we are
lowed to calculate the remaining finite corrections in dime
sional regularization, which is momentum translation inva
ant ~i.e., we are allowed to take the limitlc→`). This
procedure implies an extrapolation of the low-energy eff
tive theory for terms ofO(mp,K

2 /lc
2 ;mp,K

4 /lc
4 ; . . . ) up to

scales where these terms are negligible. This is the u
assumption made in chiral perturbation theory for three
vors.

V. NON-FACTORIZABLE 1/ Nc CORRECTIONS

The non-factorizable 1/Nc corrections to the hadronic ma
trix elements constitute the part to be matched to the sh
distance Wilson coefficient functions; i.e., the correspond
scaleLc has to be identified with the renormalization scalem
of QCD. We perform this identification, as we argued in S
III, by associating the cutoff to the effective color singl
boson. Then, at theO(p0) in the chiral expansion of theQ6
andQ8 operators, from the diagrams of Fig. 7 we obtain

i ^p0p0uQ6uK0&NF

5A2
3

4S 2mK
2

m̂1ms
D 2

1

Fp

logLc
2

~4p!2
~mK

2 2mp
2 !1•••, ~50!

i ^p1p2uQ6uK0&NF

5A2
3

4S 2mK
2

m̂1ms
D 2

1

Fp

logLc
2

~4p!2
~mK

2 2mp
2 !1•••, ~51!

i ^p0p0uQ8uK0&NF

5A2
3

4S 2mK
2

m̂1ms
D 2

1

Fp

logLc
2

~4p!2
~mK

2 2mp
2 !1•••, ~52!

FIG. 5. Evolution of the mass operator~mass renormalization!.
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i ^p1p2uQ8uK0&NF52
A2

2 S 2mK
2

m̂1ms
D 2

1

Fp

logLc
2

~4p!2
a1•••.

~53!

Again, for the reason of brevity in Eqs.~50!–~53! we did not
specify the finite terms which must be included in the n
merical analysis~in particular, they provide the referenc
scale for the logarithms!. In addition, we replacedmh

2 , mh8
2

and the mixing angleu by mp
2 , mK

2 and the instanton param
etera using the octet-singlet mass matrix of Eq.~18!.

Note that in Eqs.~50!–~53! we used 1/Fp and 2mK
2 /(m̂

1ms) rather than the bare parameters 1/f and r . Again the
difference represents higher order effects. However, the
pearance off or r in Eqs.~50!–~53! would induce a depen
dence on the factorizable scalelc , which has no counterpar
in the short-distance domain~compare the discussion at th
end of Sec. IV A!. As for the factorizable contributions th
choice ofFK instead ofFp would be also appropriate.

The results presented above are in accordance with
non-factorizable evolution ofQ6 and Q8 we obtain in the
background field approach by calculating the diagrams
Fig. 8:

Q6
NF~Lc

2!5Fp
2 S 2mK

2

m̂1ms
D 2

logLc
2

~4p!2F3

4
~]mŪ†]mŪ !ds

1
1

2
~]mŪ†Ū !ds(

q
~Ū]mŪ†!qq

1
3

4
~Ū†x1x†Ū !dsG , ~54!

Q8
NF~Lc

2!5
3

2
Fp

2 S 2mK
2

m̂1ms
D 2

logLc
2

~4p!2

3(
q

eqF1

4
~]mŪ†]mŪ !dsdqq

1
1

2
~]mŪ†Ū !ds~Ū]mŪ†!qq1

1

4
~Ū†x

1x†Ū !dsdqq1
1

3
a~Ū†!dq~Ū !qsG . ~55!

Only the diagonal evolution ofQ6, i.e., the first term on
the right-hand side of Eq.~54!, gives a non-zero contribution
to the matrix elements of Eqs.~50! and ~51!. In particular,
the mass term which is of theL8 andH2 form vanishes for
K→pp decays, as do theL8 andH2 contributions at the tree
level ~see Sec. IV!. In Eq. ~55! for completeness we kept th
terms proportional todqq which, however, cancel throug
the summation over the flavor index.
7-9
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FIG. 6. Evolution of the current operator. Th
crossed circle here denotes the bosonized curr
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Note that Eqs.~54! and ~55! are given in terms of opera
tors and, consequently, can be applied toK→3p decays,
too. Note also that our results, Eqs.~50!–~55!, exhibit no
quadratic dependence on the scaleLc ; i.e., up to the first
order corrections in the twofold series expansion the ma
ing involves only logarithmic terms from both the short-and
the long-distance evolution of the four-quark operators. T
is due to the fact that there is no quadratically diverg
diagram in Fig. 8 apart from the first one which vanish
for the Q6 and Q8 operators. Moreover, for a gener
density3density operator there are no logarithms which
the subleading logs of quadratically divergent terms. The
fore, all the logarithms appearing in Eqs.~50!–~55! are lead-
ing divergences, which are independent of the momen
prescription. The finite terms calculated along with the
oo

bl
he
ite
e
n
he
ra
ff

01401
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e

logarithms depend on the momentum prescription. They
however, uniquely determined through the matching con
tion with QCD ~see Fig. 1!.

One might note that the statements we made above do
hold for current3current operators: the 1/Nc corrections to
these operators, performed in the first non-vanishing orde
their chiral expansion, exhibit terms which are quadratic
Lc . Furthermore, already these terms were shown to dep
on the momentum prescription@20#.

We close this section by giving the long-distance evo
tion, at theO(p0), of a general density3density operator
QD

abcd[28(DR)ab(DL)cd . As we showed in Sec. IV B, the
factorizable 1/Nc corrections do not affect its ultraviolet be
havior. Then, from the non-factorizable diagrams of Fig
we find
QD
abcd~Lc

2!5QD
abcd~0!F12

2

3

a

Fp
2

logLc
2

~4p!2G2Fp
2 S 2mK

2

m̂1ms
D 2

Lc
2

~4p!2
ddadbc1

Fp
2

4 S 2mK
2

m̂1ms
D 2

logLc
2

~4p!2

3@~Ū†x1x†Ū !dadbc1dda~xŪ†1Ūx†!bc1~]mŪ†]mŪ !dadbc1dda~]mŪ]mŪ†!bc

12~]mŪ†Ū !da~Ū]mŪ†!bc#. ~56!
to
a

2,
ns,

us-
of

m-
The corresponding expressions for the non-factorizable l
corrections to operatorsQ6 andQ8, Eqs.~54! and ~55!, can
be obtained directly from Eq.~56!.

VI. NUMERICAL ANALYSIS AND DISCUSSION
OF RESULTS

To compute the hadronic matrix elements ofQ6 andQ8
we pursued the following strategy. First, the non-factoriza
contributions were calculated, in the isospin limit, from t
diagrams of Fig. 7. In this part of the analysis the fin
terms, which are systematically determined by the mom
tum prescription of Fig. 1, are completely taken into accou
By using algebraic relations all integrals resulting from t
diagrams of Fig. 7 can be reduced to three basic integ
which are given explicitly, in the framework of the cuto
p

e

n-
t.

ls

regularization, in Appendix B. They were computed up
terms of the orderp4 andp6, respectively, that is to say, to
relative precision of approximately 1022. Second, the finite
terms arising from the factorizable loop diagrams of Fig.
as well as, from the renormalization of the wave functio
the masses and the low-energy couplings were estimated
ing dimensional regularization, as discussed at the end
Sec. IV B.

We use the following numerical values for the para
eters:

mp[~mp01mp1!/25137.3 MeV,

Fp592.4 MeV,

mK[~mK01mK1!/25495.7 MeV,
-
FIG. 7. Same as in Fig. 2, now for the non
factorizable loop diagrams.
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FK5113 MeV,

mh5547.5 MeV, u5219°,

mh85957.8 MeV.

Substituting them in Eqs.~23! and ~27! we computeL̂5
r

52.0731023 and L̂8
r 51.0931023. For the numerical val-

ues given above,L̂5
r is close to 2L̂8

r , and we find theO(p2)
tree level contribution tôQ8&2 to be small, because the ter
proportional tomK

2 in Eq. ~38! approximately vanishes. Thi
result is different from the statements made in Ref.@23#. The
full expressions needed for the renormalization of the par
eters f , L5 and L8 in terms of integrals are presented
Appendix A. In the octet limit the results in the Appendix a
the same as in Refs.@13# and@25#.6 Finally, we used the ratio
ms /m̂524.461.5 @26# which enters in the calculation ofL̂8

r .
The values we obtain for the matrix elements ofQ6 and

Q8 are presented in Table I, where we also specify the v
ous contributions coming from the factorizable and the n
factorizable diagrams, respectively. In these matrix eleme
we have extracted the factorR25@2mK

2 /(m̂1ms)#2, whose
dependence on the factorizable scale will be canceled
actly, for a general density3density operator, by the diago
nal evolution of the Wilson coefficients. Finally, for com
parison, we present in Table I also the numerical val
obtained by replacingFp by FK in theO(p2) andO(p0/Nc)
factorizable and non-factorizable contributions, that is to s
in the corresponding terms of Eqs.~23!,~27! @or Eqs.~A3!–
~A6! of Appendix A#, ~34!–~37! and ~50!–~53!, and in the
finite terms. The difference gives a rough estimate of
higher order corrections.

In Table II we list the corresponding values for theBi
factors, which quantify the deviation of the hadronic mat
elements from the VSA results:

B6
~1/2!5u^Q6&0 /^Q6&0

VSAu,

B8
~3/2!5u^Q8&2 /^Q8&2

VSAu. ~57!

The VSA expressions for the matrix elements we
taken from Eqs.~XIX.16! and ~XIX.24! of Ref. @27#. Nu-
merically, they areu^Q6&0u535.2•R2 MeV and u^Q8&2u
556.6 MeV•@R22(0.389 GeV)2#. The second term in the
expression forQ8 contributes at the 2% level and has be
neglected in Table II.

6Note that our constantsL̂5
r and L̂8

r should not be confused with
the scale dependent coefficientsL5

r andL8
r in Refs.@13# and @25#.

FIG. 8. Non-factorizable loop diagrams for the evolution of
density3density operator.
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We discuss next the corrections to the matrix eleme
^Q6&0 and ^Q8&2. As already mentioned, the operatorQ6 is
special because theO(p0) tree level matrix element is zer
due to the unitarity of the matrixU. Nevertheless the one
loop corrections to this matrix element must be comput
These corrections are ofO(p0/Nc) and are non-vanishing
We have shown in Eqs.~50! and~51! that the explicit calcu-
lation of the loops yields a cutoff dependence~i.e., a non-
trivial scale dependence! from the non-factorizable diagram
which has to be matched to the short-distance contribut
In addition, the logarithms of Eqs.~34! and ~35! are needed
in order to cancel the scale dependence of various bare
rameters in the tree level expressions, as was checked ex
itly in Sec. IV. We note that in the twofold expansion inp2

andp0/Nc the contribution of the loops over theO(p0) ma-
trix element must be treated at the same level as the lea
non-vanishing tree contribution proportional toL5. This is
revealed by the large size of the non-factorizableO(p0/Nc)
corrections presented in Table I. It is the sum of both,
factorizable and the non-factorizable contributions, wh
renders the numerical values for^Q6&0 close to the VSA
value. For the imaginary part, which is due to on-shell
scattering effects and does not depend on the matching
dition with QCD ~see Fig. 1!, the cancellation is complete
This property follows from the (U†)dq(U)qs structure of the
operator. The main effect of the loop corrections is to chan
the dependence of^Q6&0 on Lc , from a flat behavior at the
tree level to the dependence presented in Tables I and
which is important for the matching. We note that atLc
.700 MeV the value for the matrix element ofQ6 is very
close to the VSA result leading toB6.1.

TheQ8 operator is not chirally suppressed, i.e., itsO(p0)
tree level matrix element is non-zero. In this article we
clude the tree level contribution up toO(p2), as well as, the
loop corrections ofO(p0/Nc), that is to say, corrections to
the first term of Eq.~13!. This is a full leading plus next-to-
leading order analysis of theQ8 matrix element. The one
loop corrections, even though suppressed by a factor 1Nc
with respect to the leading tree level, are found to be la
and negative, leading to the small values forB8 presented in
Table II. These large corrections persist in the octet lim
@i.e., in the absence of theh0, with a5b51 and mh

2

5(4mK
2 2mp

2 )/3]. Therefore, they are not due to the pre
ence of theh0 which brings in a small change. One mig
note that the numbers in Table II are specified for the cen
value of ms /m̂524.461.5 @26#. Including the error of this
mass ratio changes theB8 parameter by60.06.

In comparison with^Q6&0, the non-factorizable correc

TABLE II. B6 and B8 factors for various values of the cutof
Lc .

Lc50.6 GeV Lc50.7 GeV Lc50.8 GeV Lc50.9 GeV

B6
(1/2) 1.10 0.96 0.84 0.72

~1.30! ~1.19! ~1.09! ~0.99!
B8

(3/2) 0.66 0.59 0.52 0.46
~0.71! ~0.65! ~0.60! ~0.54!
7-11
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tions to ^Q8&2 are less pronounced, as expected from
power counting scheme inp2 and 1/Nc . However, because
the factorizableO(p2) andO(p0/Nc) corrections are smal
~and negative!, the non-factorizable terms produce a sign
cant reduction of̂ Q8&2. The size of the higher order term
indicates that the leading-Nc calculation or the closely re
lated VSA are not sufficient for the matrix elements of t
Q8 operator.7

In view of the large corrections one might question t
convergence of the 1/Nc expansion. However, there is n
strong reason for such doubts because the non-factoriz
contribution we consider in this paper represents the
term in a new type of a series absent in the large-Nc limit. It
is reasonable to assume that this leading non-factoriz
term carries a large fraction of the whole contribution.

As a general result, we note that our study indicate
significant reduction ofB8

(3/2) . By comparison the correc
tions to B6

(1/2) are moderate, i.e., there is no clear tenden
for values much larger or smaller than one. Our results
^Q6&0 and^Q8&2 can still be improved by calculating highe
order terms inp2 and 1/Nc , like for instance those o
O(p2/Nc) which will be along the lines of this work. The
O(p2/Nc) will bring in a quadratic dependence onLc @28#
and even though suppressed by a factor ofp2 relative to the
O(p0/Nc) may compensate, to a large extent, the scale
pendence of the logarithmic terms of this paper. Anot
improvement would be to include the vector mesons whic
a new calculation beyond the scope of this work.

It is interesting to compare our results with those of oth
calculations. References@3# and@4# investigated 1/Nc correc-
tions to the matrix elements ofQ6 andQ8. This calculation
considered the product of the two densities without the co
singlet boson and the matching of short- and long-dista
contributions was not explicit as in the present article. T
O(p0/Nc) contribution toQ6 was not included, but terms o
O(p2/Nc) were included inQ6 and Q8. In this study the
parametrization of theO(p4) Lagrangian was not general a
only one coupling constant was introduced. The numer
results showed also a tendency of reducing^Q8&2 substan-
tially, whereaŝ Q6&0 was found to be enhanced compared
the VSA result. Calculations in lattice QCD obtain values
B6 close to the VSA,B6

(1/2)(2 GeV)51.060.2 @29,30# and
0.76~3!~5! @31#. Recent values reported forB8 are
B8

(3/2)(2 GeV)50.81(3)(3) @32#, 0.77~4!~4! @33#, and
1.03~3! @34#. These studies use tree level chiral perturbat
theory to relate the matrix elements^ppuQi uK& to ^puQi uK&
which are calculated on the lattice. The chiral quark mo
@24# yields a range forB6 which is above the VSA value
B6

(1/2)(0.8 GeV)51.2–1.9, and predicts a small reduction
the B8 factor, B8

(3/2)(0.8 GeV)50.91–0.94. Although the
scales used in the lattice calculations and the phenom
logical approaches are different, the various results can
compared as theB6 andB8 parameters were shown in QC
to depend only very weakly on the renormalization scale

7This has already been observed for the matrix elements ofQ1

andQ2 which are relevant for theDI 51/2 selection rule@1#.
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values above 1 GeV@7#. Finally, in their analysis of«8/«
the authors of Ref.@35# consideredB6 andB8 as free param-
eters to be varied around the VSA valuesB6

(1/2)5B8
(3/2)51.

We note that our result forB6
(1/2) is in rough agreemen

with those of the various studies quoted above, whereas
value we obtain forB8

(3/2) lies below the values reported pre
viously. It is desirable to investigate whether this substan
reduction of̂ Q8&2, which is due to the non-factorizable 1/Nc
corrections to the leading term in the chiral expansion ofQ8,
will be affected by higher order corrections. This point is
great phenomenological interest because a less effective
cellation between theQ6 andQ8 operators, in the range ob
tained in the present analysis, will lead to a large value
«8/« in the ball park of;1023. This can be confirmed o
disproved by the forthcoming experiments at CERN~NA48!,
Fermilab~E832! and Frascati~KLOE!.

VII. SUMMARY

It was recognized, long ago, that the operatorsQ6 andQ8
are of central importance for the determination of theCP
parameter«8/«. This makes the calculation of their matri
elements imperative as the Wilson coefficients are known
a good degree of accuracy. We carried out this calculatio
the 1/Nc expansion, where we included terms up toO(p2)
andO(p0/Nc). In doing so we introduced several improv
ments. First we used the complete pseudoscalar Lagran
relevant to these orders and included effects of the sin
h0, which we found to be small. At the same time we pa
special attention on the definition of the momenta in t
chiral loop corrections. To this end, we considered the
change of a bosonic field between the quark densities wh
momentum is taken to be the same at long and short
tances. In this approach we set up the identification of
ultraviolet cutoff of the long-distance terms with the QC
renormalization scale. This procedure leads naturally to
classification of the diagrams into factorizable and no
factorizable.

We showed explicitly, toO(p0/Nc), that the factorizable
scale of the chiral loop corrections is absorbed in the ren
malization of the low-energy Lagrangian. Thus for the fa
torizable terms the matching of long- and short-distance c
tributions is between the running quark masses and qu
densities where the matching is exact, i.e., the scale de
dence drops out. There remain the non-factorizable te
where we showed explicitly that the dependence on the
off, to the order of our calculation, is only logarithmic. Ou
analysis was carried through using two different techniqu
The first one is an explicit calculation of the matrix elemen
at the particle level which involves a large number of d
grams. The second is the background field method. It le
to operator relations which can be applied also toK→3p
decays. We verified that both techniques give the same
sults for the quadratic and logarithmic terms. The full fin
corrections were calculated at the particle level.

Finally, we determined the numerical values of the mat
elements. We obtained moderate corrections to^Q6&0 and a
large decrease of̂Q8&2. Each of these matrix elements d
7-12
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pends on the renormalization scale, but it is significant
emphasize that their ratio is fairly stable. The numerical
sults indicate that loop corrections are important and mus
included. We note that the terms ofO(p0/Nc) we calculated
here are lowest order corrections to the well establis
O(p2) chiral Lagrangian and do not contain any large am
guity. It remains to be seen whether the results of Table
and II will be affected by higher order corrections. This po
is important because a cancellation between the gluon
the electroweak penguins in the range obtained in the pre
analysis will lead to a large value of«8/«;1023.
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APPENDIX A: BARE PARAMETERS

In terms of the basic integrals, the full expressions nee
for the renormalization procedure read

Zp511
8L5

f 2
mp

2 2
1

3 f 2
~2I 1@mp#1I 1@mK# !, ~A1!

ZK511
8L5

f 2
mK

2 2
1

4 f 2
~ I 1@mp#12I 1@mK#

1cos2uI 1@mh#1sin2uI 1@mh8# !, ~A2!

mp
2 5rm̂F12

8mp
2

f 2
~L522L8!

1
1

6 f 2
~3I 1@mp#2a2I 1@mh#22b2I 1@mh8# !G ,

~A3!

mK
2 5r

m̂1ms

2 F12
8mK

2

f 2
~L522L8!2

1

36f 2mK
2
†I 1@mh#

3„mp
2 ~a224b2!28mK

2 ~a2b!b2mh
2~a12b!2

…

12I 1@mh8#„2mK
2 a~a12b!2mp

2 ~a22b2!

2mh8
2

~a2b!2
…‡G , ~A4!

Fp5 f F11
4L5

f 2
mp

2 2
1

2 f 2
~2I 1@mp#1I 1@mK# !G , ~A5!
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FK5 f F11
4L5

f 2
mK

2 2
3

8 f 2
~ I 1@mp#12I 1@mK#

1cos2uI 1@mh#1sin2uI 1@mh8# !G . ~A6!

a, b and u are defined in Eqs.~10! and ~19!, the integral
I 1@m# in Eq. ~B1! of Appendix B. Equations~A2!–~A4! and
~A6! differ from the corresponding expressions in Ref.@13#
on account of the presence of theh0 state. In the octet limit
@u50, mh

25(4mK
2 2mp

2 )/3# Eqs. ~A1!–~A6! are in agree-
ment with Ref.@13#.8 We note that theh0 state modifies the
logarithmic dependence of theL8 coefficient on the renor-
malization scale, whereas it does not affect the correspo
ing term inL5.

In the cutoff regularization scheme Eqs.~A1!–~A6! to-
gether with the explicit form of the integralI 1 given in Eq.
~B4! of Appendix B lead to the formulas listed in Sec. IV A
in which the finite terms have been omitted.

In the numerical analysis of the matrix elements dime
sional regularization has been used for the factorizable p
as argued at the end of Sec. IV B, and the integralI 1 has
been calculated in the standard way. The full expressions
the ~renormalized! parametersf , L5 and L8 have been ob-
tained from Eqs.~A3!–~A6! by replacingf byFp ~or FK) in
theO(p2) andO(p0/Nc) terms, as discussed at the end
Sec. IV A.

APPENDIX B: BASIC INTEGRALS

Using algebraic relations the complex structures of
four-dimensional integration can be reduced to three ba
components:

I 1@m#5
i

~2p!4E d4q
1

q22m2
, ~B1!

I 2@m,p#5
i

~2p!4E d4q
1

~q2p!22m2
, ~B2!

I 3@m1 ,m2 ,p#5
i

~2p!4E d4q
1

~q22m1
2!@~q2p!22m2

2#
.

~B3!

Performing a Wick-rotation to Euclidian space-time the
traviolet cutoff may be implemented through the ste
function u(Lc

22qE
2). A straightforward calculation then

yields

I 1@m#5
1

16p2FLc
22m2logS 11

Lc
2

m2D G . ~B4!

In order to determineI 2 and I 3 analytically we shift the
variableq by the external momentum. Properly taking in

8The comparison is carried out by omitting theL4 and L6 terms
which are subleading inNc .
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account the resulting modification of the upper bound
introduce an angular-dependent argument of the s
function. However, we omit the explicit angular-integratio
writing the latter function in terms of a Taylor-series:

u~Lc
22qE8

21a!5u~Lc
22qE8

2!1 (
m50

`

~21!m
dmd~Lc

22qE8
2!

d~qE8
2!m

3
am11

~m11!!
. ~B5!

The corresponding solution of the integralI 2 reads

I 2@m,p#5
1

16p2H Lc
22m2logS 11

Lc
2

m2D
1

p2Lc
4

2~Lc
21m2!2

1
p4Lc

4m2

2~Lc
21m2!4

2
p6Lc

4m2

3~Lc
21m2!6

3S Lc
22

3
m2D J 1O~p8!. ~B6!
2

01401
e
p-
The computation ofI 3 requires a Feynman-parametrizatio

I 3@m1 ,m2 ,p#5E
0

1

dxE id4q

16p2
$~q2xp!2

2@x2p22x~p21m1
22m2

2!1m1
2#%22.

~B7!

Performing the Wick-rotation and introducing the variab
qE85qE2xpE we obtain

I 3@m1 ,m2 ,pE#52
1

16p2E0

1

dxE d4qE8
1

@qE8
21M2~x!#2

3u@Lc
22qE8

222x~q8p!E2x2pE
2 #, ~B8!

with

M2~x!52x2pE
21x~pE

22m1
21m2

2!1m1
2 . ~B9!

For distinct massesm1 andm2 Eq. ~B8! yields
the

e
on
I 3@m1 ,m2 ,p#5
1

16p2H A2w

p2 S arctanFm1
22m2

21p2

A2w
G1arctanFm2

22m1
21p2

A2w
G D 1

1

p2
~m2

22m1
2!logS m2

m1
D211 logS m1m2

Lc
21m2

2D
1

m1
2

m1
22m2

2
logS Lc

21m2
2

Lc
21m1

2D 1
p2m2

2

2~m1
22m2

2!2F 1

~Lc
21m2

2!2
~2Lc

2m1
21m1

2m2
21m2

4!1
2m1

2

m1
22m2

2
logS Lc

21m2
2

Lc
21m1

2D G
1

p4m2
2

~m1
22m2

2!4F 1

6~Lc
21m2

2!4
@6Lc

6m1
2~m1

21m2
2!13Lc

4m1
2~2m1

416m1
2m2

217m2
4!12Lc

2m2
2~2m1

4m2
2

117m1
2m2

42m2
6!1m2

6~m1
4110m1

2m2
21m2

4!#1
m1

2~m1
21m2

2!

~m1
22m2

2!
logS Lc

21m2
2

Lc
21m1

2D G J 1O~p6!, ~B10!

where we defined

w5~m1
21m2

22p2!224m1
2m2

2 . ~B11!

As I 3 starts only logarithmically in the cutoff dependence, in Eq.~B10! we truncated the series including only terms up to
orderp4.

In the case of equal masses we perform a power series expansion with respect to the parameterdm25m1
22m2

2. Then putting
dm2 to zero we find

I 3@m15m2 ,p#5
1

16p2H 2A2w

p2
arctanS p2

A2w
D 212

m1
2

Lc
21m1

2
1 logS m1

2

Lc
21m1

2D 1p2
~3Lc

21m1
2!m1

2

6~Lc
21m1

2!3

1p4
~220Lc

415Lc
2m1

21m1
4!m1

2

60~Lc
21m1

2!5 J 1O~p6!. ~B12!

with w being reduced tow5p424p2m1
2.

Through analytic continuation, Eqs.~B10! and ~B12! provide complex solutions. These appear forAp2.m11m2. In the
process under consideration, the latter relation can only be satisfied form15m25mp ,p5pK . Thus our analysis gives th
physical threshold condition forp2p rescattering, the imaginary part ofI 3 being attributed to the strong final state interacti
phase.
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