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We calculate long-distance contributions to the amplitudl¢€®— 27, 1) induced by the gluon and the
electroweak penguin operatd@g andQg, respectively. We use theN{/ expansion within the effective chiral
Lagrangian for pseudoscalar mesons. In addition, we adopt a modified prescription for the identification of
meson momenta in the chiral loop corrections in order to achieve a consistent matching to the short-distance
part. Our approach leads to an explicit classification of the loop diagrams into non-factorizable and factoriz-
able, the scale dependence of the latter being absorbed in the low-energy coefficients of the effective theory.
Along these lines we calculate the one-loop corrections toctg®) term in the chiral expansion of both
operators. In the numerical results, we obtain moderate correctioB§'® and a substantial reduction of
B . [S0556-282198)06013-5

PACS numbeps): 13.25.Es, 11.15.Pg, 12.39.Fe

I. INTRODUCTION order corrections in the twofold expansion in powers of ex-
ternal momentap, and the ratio M., i.e., we present a
In this article we study long-distance contributions to thecomplete investigation of the matrix elements up to the or-
K— 7o decay amplitudes using theNl/ expansion Kl be-  dersp? andp%N,.! One improvement concerns the match-
ing the number of coloyswithin the framework of the chiral ing of short- and long-distance contributions to the decay
effective Lagrangian for pseudoscalar mesons. amplitudes, by adopting a modified identification of virtual
The calculation of chiral loop effects motivated by the momenta in the integrals of the chiral loops. To be explicit,
1/N. expansion was introduced in R¢L] to investigate the we consider the two densities in densitgtensity operators
Al=1/2 selection rule. These articles considered loop corto be connected to each other through the exchange of an
rections to the curreitcurrent operator®), and Q,. The  effective color singlet boson, and identify its momentum
gluon penguin operato®g was included at the tree level, with the loop integration variable. The effect of this proce-
consistent with the N expansion since the short-distance dure is to modify the loop integrals, which introduces notice-
(Wilson) coefficient is subleading iN... Following the same able effects in the final results. More important it provides an
lines of thought the authors of Re2] performed a detailed unambiguous matching of theN{J expansion in terms of
analysis of the ratice’/e, which measures the dire@P  mesons to the QCD expansion in terms of quarks and gluons.
violation in K— 77 decays. They included the matrix ele- The approach followed here leads to an explicit classification
ments ofQg and Qg at the tree level in the I, expansion, ©f the diagrams into factorizable and non-factorizable. Fac-
arguing that their quadratic dependence on the running madgrizable loop diagrams refer to the strong sector of the

ms cancels, in the largdk; limit, the evolution of the coef- theory and give corrections whose scale dependence is ab-
ficient functions in the absence of chiral loops. sorbed in the renormalization of the chiral effective Lagrang-

In contrast with theAl =1/2 rule, which is governed by ian. The Qon—factori;a}ble loop diagrams have to be matched
Q, andQ,, ¢'/s is dominated by the densitydensity op- to the W|I§on cc_)eff|C|ents and shou_Id cancel scalg depen-
eratorsQg and Qg. Therefore it is important to investigate dences which arise from the short-distance expansion.
the 1N, corrections to the matrix elements of the last two ' N€ disentanglement of factorizable and non-factorizable
operators. In particular, it must be examined whether thé:ontnbu(t)mns is especially important for the calculan(())n of
1/N, corrections significantly affect the large cancellationth® O(P”/Nc) matrix elements 0Qg: although theO(p")
between the gluon and the electroweak penguin contribution&™ vanishes foQg, the non-factorizable loop corrections
obtained at the tree level in Ré®]. In Ref.[3] the analysis O this term remain and have to be matched to the short-

. . O
of &'/e was extended by incorporating in part chiral loopsdistance part of the amplitudes. Thes&(p~/Nc) non-
for the density density operators, i.e., NI, corrections to factorizable corrections must be considered at the same level,

the matrix elements o®, and Qg. The final result was an in the twofold gxpansion, as th@(p?) tree contribution and _
enhancement ofQq)_, and a decrease @), », which have not previously been calculated. The same procedure is
introduces a smaller cancellation between these two opera@/lowed for investigating the matrix elements Qf. As a
tors. As a consequence, the authors found a large positi\f@al result, we present the numerical values for the matrix
value fore’/e [4].

In this paper we present a new analysis of the hadronic
matrix elements of the gluon and the electroweak penguin A comprehensive analysis of chiral loop corrections toclg?)
operators in which we include, in the isospin limit, the first matrix elements will be presented elsewhere.
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elementg Qg)o and(Qg), to ordersp? andp%/N,. (Qi( )y ={mm,1|Qi(1)|K, (3)
Another improvement is the enlargement of the Lagrang- . 0 0+

ian, that is to say, we use the complete chiral effective LaWhich are related to the 7~ and= "7 final states through

grangian up ta@(p%). Finally, we include effects of the sin- the iSospin decomposition

glet 7, which is necessary for the investigation of isospin 1 . 0 0. 0 0

breaking terms. The latter generate the matrix eler\@gj. <Qi(ﬂ)>0:%(2<ﬂ' 7 Qi(w) [K?) +(m°m°|Qi(m) [K®)),

which is important fore'/e [5]. Isospin violating terms will

be studied in the future. For consistency, and to introduce the @

general lines of thought, we include here thgalso for the 1 . o 0.0 o

computation of the matrix element€s), and(Qg), in the <Qi(”)>2_ﬁ(<w T Qi) |K%) —(m o Qi) [KT)).

isospin limit, where its effect is expected to be small. (5)
This paper includes several improvements which are nec- o . _

essary for a complete calculation to ordpfsandp®/N,, as Direct CP violation in K— m decays is dominated by

was defined above. It is still necessary to include these imthe gluon and the electroweak penguin operators, i.e., by
provements for the isospin violating terms, but this will not {Qe)o and(Qg),, respectively, where
affect the results fofQg)g and(Qg), presented here. Fur-

thermore, we can contemplate still higher order corrections Q6= —2q:§d’s s(1+ys)qa(1= ys)d,
which, at present, are beyond the scope of this analysis.
The paper is organized as follows. In Sec. Il we review — —
the general framework of the effective low-energy calcula- Qs= _3q:§d’3 €S(1+vs5)qd(1-vs)d, (6)

tion. In Sec. Il we discuss the matching of short- and long-

distance contributions to the decay amplitudes. Then, in Se@nd eq=(2/3,—1/3,~1/3). This property follows from the

IV we investigate the factorizable N/ corrections to the large imaginary parts of their coefficient functions. It is the
hadronic matrix elements dg and Qg, where we show cancellation between the two penguin contributions which
explicitly that the scale dependence resulting from the chiragives rise to a small value of the ratid/=. Consequently, it
loop corrections is absorbed in the renormalization of thdS important to investigate whether the degree of.cancellatlon
bare couplings, the mesonic wave functions and masses. THE affected by corrections to the hadronic matrix elements
we do on the particle level, as well as, on the level of theP@yond the vacuum saturation approximatiSA) [9].
operator evolution for which we apply the background field There are several realizations of non-perturbative QCD

method. In Sec. V we calculate the non-factorizable Ioo&l’lo_la' A recent development is the calculation Kf

corrections to the hadronic matrix elements and the corre=” 7™ {rom off-shellK—a amplitudes within chiral pertur-

. ; X ) . bation theory[36]. We will perform our analysis using the
sponding non-factorizable ?VOIUt'On of the denzigensity 1/N. approach. To this end we start from the chiral effective
operators. In Sec. VI we give the numerical values for th

q_agrangian for pseudoscalar mesons which involves an ex-

matrix elements and the_parametcBg”Z) and BE¥. The pansion in momenta where terms up@p*) are included
latter quantify the deviation of the matrix elements from[y3].

those obtained in the vacuum saturation approximation. Fi- f2 o
nally, we summarize and compare our results with those of ‘Ceff:_(<a,uUT0wU>+ —(InUT=1InU)?2
the existing analyses. 4 4N¢
t t 2 t
Il. GENERAL FRAMEWORK HH{MUTHUMT) | +17H (M M)
Within the standard model the calculation of the +rLs(a,UToruMTu+UuT M)
— arar decay amplitudes is based on the effective low-energy + : : "
Hamiltonian forAS=1 transitiong6]: +rLg M UM U+ MUTMUT), (7

s 8 with  (A) denoting the trace of A and M
AS=1_ OF =diag(m,,myq,my). f andr are free parameters related to
Heri —Eéu;l Ci(m)Qi(k) (w=mc), @ the pion decay constarit, and to the quark condensate,
respectively, withr =—2(qq)/f2. In obtaining Eq.(7) we
— - —\* used the general form of the Lagrangi and omitted
Glw =zt myilw),  7==&l6, £a=VasVas, terms ofO%p“) which do not contr?butegt%?allﬁeww ma-
trix elements ofQg and Qg or are subleading in the N{
where the Wilson coefficient functions(x) of the local e>_<pansion2.The fields of the complex matr_lzd are identified_
four-fermion operator®;(x) are obtained by means of the with the pseudoscalar meson nonet defined in a non-linear
renormalization group equation. They were computed in af€Presentation:
extensive next-to-leading logarithm analysis by two groups
[7,8]. Long-distance contributions to the isospin amplitudes
A, are contained in the hadronic matrix elements of the 2In addition, one might note that the contribution of the contact
bosonized operators, term o<{ M T M) vanishes in the isospin limitng,=my).
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i
U=expf—l'[, O=7%N,, (Aahp)=264p, 8

where, in terms of the physical states,

1 \F
(O T ’ + +
T+ \/§a77+ 3b77 V2w V2K
= NP —770+ia77+ \ﬁbn' V2K© 9)
AR ’
VaK- J2K° ~ 2ot \ﬁan’
N 3
and
a=cos9—2sing, 2b=sind+ \2co. (10)

0 is the »— »' mixing angle. Note that we treat the singlet as a dynamical degree of freedom and includé€naEgrm for
the strong anomaly proportional to the instanton parametérhis term gives a non-vanishing mass of thgin the chiral
limit (my=0) reflecting the explicit breaking of the axial U(1) symmetry. We shall keep the singlet term throughout the
calculation and will discuss its effects in Sec. VI.
The bosonic representation of the quark densities is defined in ter(fisnctiona) derivatives:

-1
(DL)iJZQiE(l_Ys)qJ'

5Leff__r(ﬁ

_ — T Tou T T t T
S, 7 U+ Lsa,UTuuT2rL U MU T+ H M (11)

ji

and the right-handed densitpg);; is obtained by Hermitian conjugation. Equatidri) allows us to express the operatQg
and Qg in terms of the meson fields:

1
Q6= —2f2r2§ [ZfZ(UT)dq(U)qS+(UT)dq(L&—,UﬁMUTo"“U+2rL8UM TU+rH M) gs

+(LsUT9,U*UT+2rLgUT MUT+rH M 1) 4o(U) | + O(p%), (12

1
Zf2(UT)dq(U)qS+(UT)dq(L5Uo"MUT<9“U +2rLgUM TU+rH M) s

Q8=—3f2r2§ &

+(LsUT9,U*UT+2rLgUT MUT+rH M 1) 4o(U) | + O(p%). (13

For the operatoQg the (U T)dq(U)qsterm which is ofO(p°) mesons, the cutoff has to be taken at or, preferably, below
vanishes at the tree level. This property follows from thethe O(1 GeV). This limitation is a common feature of the

unitarity of U. However, when investigating off-shell correc- various phenomenological approaches, which at present do
tions it must be included. This important aspect, which wasyot include higher resonances.

not studied previously, will be discussed in detail in the fol-

. . The loop expansion of the matrix elements is a series in
lowing sections.

The 1N, corrections to the matrix element®;), are 1/f2~1./N°’ which is !N _d|rect correspondence with the
calculated by chiral loop diagrams. The diagrams are uItra-Short'd'St‘f’lnce expansion in termsaf/ w~ 1N, : _the_large-
violet divergent and are regularized by a finite cutoff. ThisNe behavior of SUNc) quantum chromodynamics is repre-
procedure, which was introduced in REf], is necessary in  Sented by diagrams which have a planar gluon structure.
order to restrict the chiral Lagrangian to the low-energy do-Subleading terms in the N expansion are included by
main. Since we truncate the effective theory to pseudoscalaneans of internal fermion loop&suppressed by a factor
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Moreover, they are absorbed in the renormalization of the
bare low-energy coefficients, as well as the mesonic wave
functions and masses. Consequently, the factorizate 1/
corrections are not to be matched to any short-distance con-
tribution, i.e., they refer to the strong sector of the theory.
Therefore there is no need for a momentum cutoff, and we
FIG. 1. Matching of short- and long-distance contributions. Will calculate the remaining finite corrections using dimen-
sional regularization, which constitutes a momentum invari-
ant procedure.

short-distance long-distance

1/N.) or non-planar gluon interactiofsuppressed by N/E)
[15]. These corrections actually generate the multimeson in-
termediate states which constitute the loop diagrams of the IV. FACTORIZABLE 1/ N, CORRECTIONS

effective theory°’. Since factorizable and non-factorizable corrections refer
Finally, we note that the meson loop corrections are,

needed not only for improving the matching of the matrix to disconnected sectors of the thegsgrong and weak sec-

elements to the short-distance coefficient functions but alsﬁzrs)‘ we introduce two different scales is the cutoff for

for obtaining the correct infrared structure, which is require e factorizable diagrams anll; for the non-factorizable.

to maintain the unitarity relations at low energs6,17] e will refer to them as the factorizable and the non-
e factorizable scales, respectively. A similar analysis of chiral

loop corrections was performed to determine Byeparam-
IIl. MATCHING OF LONG AND SHORT DISTANCE eter[21].
We shall prove in this section, within the cutoff regular-
To calculate the amplitudes we follow the lines of R&f.  jzation, that the quadratic and logarithmic dependenck on
and identify the ultraviolet cutoff of the long-distance termsyhich arises from the factorizable loop diagrams is absorbed
with the short-distance renormalization scaleln carrying i the renormalization of the low-energy Lagrangian. Conse-
out this matching we pay special attention to the definition ofyyently, in the factorizable sector the chiral loop corrections
the momenta inside the loop. This question must be adgo not induce ultraviolet divergent terms, i.e., the only re-
dressed because the loop integrals, within the cutoff regulainaining ultraviolet structure of the matrix elements is con-
ization, are not momentum translation invariant. tained in the overall factor- 1/m2. This is to be expected as
In the existing studies of the hadronic matrix elements thgna evolution ofm,, which already appears at leadiNg, is
color singlet boson connecting the two densitiescurrents ¢ inverse of the evolution of a quark density. Therefore,
was integrated out from the beginnipf—4]. Thus the inte- o, cant for the scale of i which exactly cancels the fac-

gration variable was taken to be the momentum of the MESOfrizable evolution of the densi®/density operators at short

Itn theAI\oo?r,] and.the cutoff was th:; upper I'T{[ O.f It?hmm?]ent'distances, the only scale remaining in the matrix elements is
um. AS there 1S no corresponding quantity In the Shorty, o 4 factorizable scala.. It represents the non-trivial
distance part, in this treatment of the integrals there is n

clear matching with QCD %art of the factorization scale in the operator product expan-

The ambiquity is removed. for non-factorizable diagram sion. Since the cutoff . disappears through renormalization,
by coer15iderfcr]1l:g ¥h2 t?/voodgn,sit(i)es ?0 l?; 2onneceted ?oaeasc he only matching between long- and short-distance contri-
other through the exchange of the color singlet boson, as w utions is obtained by identifying the cutoff scalg of the

already discussed in RdfL7]. A consistent matching is then Sggl-gictorlzable diagrams with the QCD renormalization

obtained by assigning the same momentum to the color sin- The proof of the absorption of the factorizable scale
glet boson at long and short distances and by identifying this . . ; . S ) - i
momentum with the loop integration variable. This importantWIII L'_Je cgrr|ed out in ;he |sosp|r|1 limit. This .eXpl'C't defT‘O”h

feature of the modified approach is illustrated in Fig. 1. Thes'tr"?\t'.On IS Instructive for several reasons. First, we \_/ern‘yt N
momentum of the virtual meson is shifted by the externalva“d'ty of the general concept in the case of bosonized den-

momentum, which affects both the ultraviolet, as well as, th sities which, contrary to the currents, do not obey conserva-

infrared structure of the N, corrections. The same methode[ion laws. Second, we check, within the cutoff formalism,
A . ) : .
was used in studies of the, — K mass differencé18] and whether there is a dependence on a given momentum shift

. . - - (g—q=xp). Thirdly, including therng as a dynamical degree
'Egg]evolutlon of current current operators in the chiral limit of freedom we examine the corresponding modifications in

Obviouslv. the modified procedure described above is no%he renormalization procedure. Finally, there remain finite
Y, P erms from the factorizable NI} corrections which explicitly

applicable to the factorizable part of the interaction. HOW'enter the numerical analysis of the matrix elements. This

ever, In the next section we will Sh(.)w e_pr|C|tIy that a”eooint will be discussed at the end of this section.
factorizable terms quadratic and logarithmic in the cutoff ar

independent of the momentum prescription in the loop.
A. Calculation of the matrix elements
Due to the unitarity of the matrix fieldd the tree level

3A pedagogical introduction to the Nl expansion in terms of expansion oRg starts at theé)(p?). Consequently, including
mesonic degrees of freedom can be found in R&f]. only the first order corrections in the twofold expansion in
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external momenta and the ratioNL/, no additional terms with a=m? +m77,—2mK and the corresponding mixing
arise from the renormalization of the wave functions andangle[22]
masses, as well as, the bare decay constasince these

corrections will be of higher order. This statement does not 3a -1

hold for the electroweak operato®g which, for K° tan20= ——— —2\/— 1——2 . (19
— ot 7, induces a non-vanishing tree matrix element at the moo— m88 2(mic—m2)

o(p°).

The mass renormalization is found to be
The wave function and mass renormalizations can be de-

duced from the pion and kaon self-energies, i.e., from a cal- 2 2
8am: logh g
culation of the propagators at next-to-leading order in than_rm 1——(L5 8)+ S+ (20
double series expansion. For the wave functions we obtain f2 ( a)?f
(defining m, =Z%z)
2 2
m-+m m 1 log\
2 2 2 _ Sl K hl c ..
Z _1+E 7ZT )\C n mK mK r 2 f2 (LS L8)+ 3a(4ﬂ')2f2 y
f2 (4m)%f2  3(4m)>f? (21)
«log| 1+ )\_§ 2m? log| 1+ )\_g (14) wherem= (m,+my)/2. The ratio of Eqs(20) and (21), to
m2)  3(4m)%f2 m?2 one-loop order, determines the difference—2Lg of the
low-energy couplings:
8Ls NG mz  m+m [ 8(m2—m?2)
=1+ —m2— K s| . K™ My _
207 (4m)2f2 m~ 2m ll 2 (Ls—2Lg) |+---, (22)
Iog)\2 1 ~ 2 2
~(mg+2me)+ - - (15) m+md  B(mE-m?)
47)22 3 =—F1——1- Lc—2Lg)|. 23
( ) o { F2 (Ls 8) (23)
8Ls , Ag 1 Note that Eq.(22) exhibits no explicit dependence on the
Zg=1+ f—me_ @ )2f2+ 4(4m)2f? scale\.; i.e., the chiral loop corrections of Eq&0) and
& Tr (21) do not contribute to the SU(3) breaking in the masses
2 A2 and, consequently, can be absorbed rin This implies
x| milog| 1+ — +2mﬁ|og( 1+ —Z) (modulo finite terms
T mK
5 \2 Ls—2Lg=LE{—2Lg. (24
2 . 2 c
+coggm’log| 1+ — | +sinfom log| 1+ e, Finally, f andLs are obtained from the decay constants of
K ” pions and kaon§l],
(16) ,
4l 3 A
F.=fl 1+ —m2— =
. 8Ls , A 27 2 (4m)2f2
o (am? logh2 1
+ mz +2m2 , 25
oo (5m2+m2)+ (17) (4m)’t? zimersm]t ®
(4m)2(26 KT T )
4Ls , 3 g
where the ellipses denote finite terms we omit here for the f2 2 (4)%f2
analysis of the ultraviolet behavior. One might note that Egs.
(14) and(16) are exact only if the cutoff is associated to the Iog)x2
virtual meson. However, any momentum shiti—¢q=+ p) +—(4 2r? 4(5mK+m )|+ (26)
modifies only the finite correctionecompare Eq.(B6) of
Appendix B]. - ) .
In specifying Eq. (17) we applied the octet-singlet Defining the constanit; through the relation
squared mass matrix, o
B=1+E(m2—m2) (27)
Fﬂ__ 2 K )

1/ Ami-mi —2\2(mi-md)

—22(m2-m2) 2mi+m2+3a |’ (

ks

18

from Eqgs.(25) and(26) we find, to one-loop order,
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> ®® >® ® >I ®® ® FIG. 2. Tree plus factorizable
dq) (gs) dq) (qs) (dq) (g9 (dq) (gs)

loop diagrams for theK—

matrix elements 0Qg andQg; the
crossed circles denote the
>® >® ® bosonized densities, the black
(d) @) da) @) ; @da) (@) ©@q) (@5) circles the strong interaction verti-

ces. The external lines represent

all possible configurations of the
kaon and pion fields.
® ® ® + @) «>(qs)
(da) (95 dq) (gs) @q) (@5)

.. 3 log2 (7" 77| QglKO)/
Le=LL— — Re ., (29 ©
16 (47)2
which is in accordance with the result from chiral perturba- 3 =, 4 ) 2
tion theory[13]. Then, from Eq(24) we get = Z\/Er fl1- ﬁ(mK_{—zmw)(LS_lZLB)_ am2f
3 logr? loa2
Le=LE— — 4.l 29 1 loghg 5 5
=87 32 402 (29 * T3 (apyepa 2t 24+ 8a) |+ (33

One might note that the coefficient in front of the logarithm
in Eq. (29 differs from the one given in Ref.13]. This
property follows from the presence of the singigt in the
calculation. Equation§22) and(23) define the renormaliza-

tion conditions because the tetifj— 2L} plus the constant
terms which appear in the ratio of the masses in €3) If we use Eqs.(15)—(29), including only the first order

determine the bare constabt—2Lg. Similarly Eqs.(29—  cqrrections in the parameter expansion, we arrive at the

(27) with the associated finite terms determine the CO“pIingrenormalized(factorizable) matrix elements of th&s and
constantLs. As we focus in this section on the ultraviolet Qg operators

behavior we omit the finite contributions. Full expressions
relevant for the numerical analysis are given in terms of in-

The structure of Eq$30)—(32) guarantees that the renormal-
ization of Lg renders them finite. The situation is more com-
plicated for the matrix element in E33) as we will remark
below.

tegrals in Appendix A. 42| 2m? 2

Next we investigate thébare tree level of theK®— 7o i(m070| Qg KO = — _( K ) (m2—m2)LE+- -
matrix elements, up t®(p?) in the chiral expansion, as well ® Fr\lm+mg o ’
as, the factorizable N, corrections to the(p®). The latter (34

corrections refer to the first term on the right-hand side of
Egs.(12) and(13). Both contributions can be calculated from

the diagrams depicted in Fig. 2. From the sum of these dia- . 42 Zmﬁ 2 ~
grams we obtain i<7T+7Tf|Q6|K°>(r)=—F— . (m—m2)LL+- -,
x \ m+ mg
i<7TO7TO|Q6|KO>FO) (39
4.2 [ 3 logh? ]
— 2 m2 2 c
=———r(mg—m2)| L+ — +..-, (30 2 \2
f K m 16 2 ) 242 2m -
- (4m’] (07 Qe KO = F—f( — ) (mg—m2)L+--,
. _ "’ s
i(m "t |Q6|KO>(FO) (39
4.2 [ 3 log\? ]
— 2 m2 2 c
=———r(mg—m2)| Ls+ 7= +... (31 . _
f K | 5 16 (41)2) (7t |Q8|Ko>z:r)
i<7TO7TO|Q8|KO>(FO)
2\/5 3 |Og)\2 4Lg does not appear in the matrix elements@§ because its
= _r2(m§_ mi) Lg+ — c - (32 contributions to the first and second diagram of Fig. 2 are canceled
f 16 (47)? by a tadpole(third diagram of Fig. 2
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TABLE I|. Hadronic matrix elements o®g and Qg (in units of R?- MeV), shown for various values of
A.. The numbers in the parentheses are obtained by repldejny F¢ in the next-to-leading order
expressions.

Ac=0.6 GeV A=0.7 GeV A.=0.8 GeV A.=0.9 GeV

m

i{Qg)oree —-35.2 —-35.2 —35.2 —-35.2
i(Qg)gree Floops —68.4-37.0 —68.4-37.0 —68.4-37.0 —68.4-37.0
i(Qg) g loops 29.8+37.0 34.6+37.0 39.0+37.0 42.9+37.0
[{Qg)o| & 38.6 33.7 29.4 25.5
(45.8 418 (38.2 (35.0
i{Qg) e 56.4 56.4 56.4 56.4
i(Qg) et Floops 56.0—0.1i 56.0—0.1i 56.0—0.1i 56.0-0.1i
i(Qg) T ooPs —20.7-11.5 —24.8-115 —28.8-11.5 —32.8-11.5
[(Qg),| & 37.2 33.2 29.5 25.9
(40.2 (37.0 (33.8 (30.7
3 2m§ 2 4 A loop corrections, Eq9.36) and (37) are combined to obtain
= _\/5( _ ) F,+=—(8mi—11m?)L the isospin-two tree level matrix element@f up to O(p?)
47\ m+mg 3F, in the chiral expansion:
16 A 2 \2
__(mﬁ_zmi)l—é T+ (37) : tree__ \/§ 2mK 4 2 2\ r
F. I =——| = F.+=—(2mg—3m,)L
<Q8>2 2\/5 m+ms Fﬂ.( K ) 5
16 N
Equations(34)—(37) are unambiguous, as the quadratic and - F—(mﬁ—me,)Lg} (38

logarithmic terms in Eqs(15)—(33) were found to be inde-
pendent of the momentum prescription inside the 100ps.  The numerical value for this term is given in Table I. In Ref.

Note that the factorizable scalg is absent in Eqs34)—~  [23] only the bare matrix elements were included in the cor-
(37) [except for the running of 1+ mg)?~1/mZ]. Residual  responding tree level analysis 6Qg),. Consequently, the
scale dependences could nevertheless unfold at the ordesew contribution of Ref[23], i.e., the contribution of th&g
pO/Ng or p?/N,. The latter would arise, e.g., if we uséd coupling, was found with a sign opposite to that in E2B).
rather thanF , in the O(p?) tree level expressions of Egs. This was corrected in Ref24] in the framework of the
(23) and(27) or Egs.(34)—(37). This would be consistent at chiral quark model.
the level of the first order corrections in the twofold series
expansion, as the difference concerns higher order effects. B. Operator evolution
However, the scale dependencefofwhich is mainly qua- The results of the previous section can also be seen di-
dratio will be absorbed by factorizable loop corrections to P : .

rIi(_—:'ctly at the operator level, in particular at the level of the

the matrix elements at the next order in the parameter eXpagensity operator. To demonstrate this we apply the back-
sion and has not to be matched to any short-distance contri- ound field method as used in Ref&9] and[20] for cur-

bution. Consequently, it is a more adequate choice to use t y i i Thi hi ful it
physical decay constant in the expressions under conside{fn current operators. IS approach 1S powerlul as 1
eeps track of the chiral structure in the loop corrections. Itis

ation. Instead of-, the kaon decay constaRi, could be ) ; .
used as well. Both choices will be glonsidereﬁtdKin the numeripartlcularly useful to study the ultraviolet behavior of the
’ heory.

cal analysis, which gives a rough estimate of higher orde} In order to calculate the evolution of the density operator

corrections. At the same level of accuracy, in tt¥ép?) q i bl in the classical field) and th
B 2,00 2 we decompose the matrlt in the classical fieldJ and the
terms of Egs.(34)—(37) the prefactor[2mg/(m+m)] quantum fluctuatior,

could be replaced byng>/m)2. However, this choice is un-

suitable agn suffers from larger uncertainties. U=exp(iélf)U, §&=£E\,, (39
We note that the coefficients in front &f andLj in the _

matrix element of Eq(37) are different from those of the With U satisfying the equation of motion

bare couplingd. s and Lg in Eq. (33). The change of the

coefficients comes about as the quantities in B are Us2UT— a20Ut+ruU M *—rMUEi(InU—InUT)-l,

replaced by renormalized quantities. In particular, the qua- N¢

dratic term in\. is absorbed in the renormalization of the .

decay constanf and the mesonic wave functions. Finally, U=exp(im®\,/f).

omitting the constant terms which refer to the factorizable (40
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Along the same line$ . and F¢x can be calculated, to
one-loop order, from the diagrams of Fig. 6, and we oBtain

4Ls , 3 Ao 3, log\Z
FIG. 3. Evolution of the density operator; the black circle, F,.=fl 1+ —me—i 5 2+ me 2:2 |
square and triangle denote the kinetic, mass dnp{l) breaking f (4m)°f (4m)f<]
terms in Eq.(41), the crossed circle the density of E42). The (46)
lines represent thé propagators. .
4dbs , 3 A 3 , loghg
The Lagrangian of Eq(7) thus reads FK:f_l“L T2 Mk (4m2f + 2 Mk (4m)2f2)
(47)

_ 1 1 _
= _ au _ “ T
L=L+ Z(a”§ I 4<[&“§’§]& uuy In accordance with Eq$15)—(33) both the quadratic and
the logarithmic terms of Eq$43)—(47) prove to be indepen-
dent of the way we define the integration variable inside the
loops. This is due to the fact that the quadratically divergent
. . . integrals resulting from the diagrams of Figs. 3+6., those
;}Zecfség?s;?géngieel)égans'on of the meson density aroungf the form d*q/(q=+ p)?] do not induce subleading loga-
y rithms, that is to say, all quadratic and logarithmic depen-
dence on the scale. originates from the leading divergence
of a given integral.

Now looking at Eqs(44)—(47) we observe that the ratio
I1/f and, consequently, the matrix fieldl are not renormal-
ized (i.e., mo/f=m,/F, and Ky/f=K,/Fg). Then, by
means of Eqs(21) and (46), we can rewrite the density of

- %(gZUM f+utem)— %a§0§0+ O(£%). (41)

(DU =By +if 7 (0T + 5 (0T82),+0(£).
@2

The evolution of D );; is determined by the diagrams of
Fig. 3, and we obtain

Eq. (43) as
2 2
(DL>i,-<xc>=—f—r<U*),-i<0)+§r<U*>,-i<0> o 2mz [F2 (L
2 K T 5
4 4 (4) (DLij(No)= o T( — (mg—m?)
2 s ™
r M.(0) logh ¢ R
_— .. o 16Lr o o o .
1207 0 (am)? _F_zgmﬁ)(UT)ji+(aMuTaﬂuuT),-iLg
3 log\2 "
_rZ(MT)ji(O) H2+E—c21 o .
(4) +2(UT UM+ (x DA |, (48)
J— 3 loghZ
—2r (U MUY);(0) L8+3_2(417)2 with y=diag(m?,m?,2mZ—m?). In obtaining Eq.(48) we
used the renormalized couplings of Eq28) and (29). In
. 3 log\Z addition, we introduced
—1(9,UT9*UUN;(0)| Ls+ x|
(4m) . 3 log\2

(43) 2+1_6(47T)2+ (49)

The quadratic and logarithmic terms for the wave function , . o

and mass renormalizations can be calculated from the dia- NOt€ that the renormalized density exhibits no depen-
grams of Figs. 4 and 5, i.e., from the off-shell corrections todence on the scalk., except for the scale of I{+m).

the kinetic and the mass operator, respectively, second arfdote also that in Eqg43) and(48) we did not specify loga-
third term of Eq.(41). The resulting expressions far>. and  fithmic terms induced at the one-loop order which corre-
mZ turn out to be identical to those found in the explicit SPONd 10 theL,, Le andL; operators in the chiral effective

calculation of the pion and kaon self-energies, E86) and Lagrangian of Ref[13]. An explicit calculation of these
(21). For the wave functions we get terms shows that they give no contribution to tke- 77

matrix elements 0f)g and Qg.

8L A2 3 log\ 2 In conclusion, using a cutoff regularization the factoriz-
5 2 [ 2 A ¢ . .
Z.=1+ f—zmﬂ— (am)2? §m”(4 22 (44 able contributions to th€g and Qg operators up to the or-
v ko
¥s logh 2
Z=1+ %mﬁ_ 3—° 4 §mﬁL (45 *The representation of the bosonized current in terms of the back-
f2 (4m)?f2 2 7 (4m)3f? ground field can be found in Reff20].
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FIG. 4. Evolution of the kinetic operator
(wave function renormalization

dersp? andp%N, are given, modulo finite loop corrections, 2[ 2m? 2 1 logA?2

: . S O\NF K A ¢

in terms of theK — 77 matrix elements by Eq$34)—(37) or (7" |Qg|KYNF=— -z 5 Sat
in terms of a single density by E¢48). Our results exhibit m+mg/ Fax (4m)

no explicit scale dependence. Moreover, they do not depend (53

on the momentum prescription inside the loops. The finite o )

terms, on the other hand, will not be absorbed completely if‘9@in; for the reason of brevity in Eq&0)—(53) we did not
the renormalization of the various parameters. This can b&PeCify the finite terms which must be included in the nu-
seen, e.g., from the fact that the rescattering diagrams of Figherical analysis(in particular, they provide the referzence
2 contain a non-vanishing imaginary part. As the renormalScale for the logarithms In addition, we replaced’,, m’,

ized parameters are defined to be real, the latter will remairand the mixing angl® by mfr, mﬁ and the instanton param-

In addition, the real part of the finite corrections carries aeter a using the octet-singlet mass matrix of Ed8).
dependence on the momentum prescription used to define the Note that in Eqs(50)—(53) we used ¥, and 2m2/(m
cutoff. However, we proved that the chiral loop diagrams do+ m,) rather than the bare parameter$ andr. Again the
not induce ultraviolet divergent terms. Therefore we are alqjfference represents higher order effects. However, the ap-
lowed to calculate the remaining finite corrections in dimen-pearance of or r in Egs.(50)—(53) would induce a depen-
sional regularization, which is momentum translation invari-gence on the factorizable scalg, which has no counterpart
ant (i.e., we are allowed to take the limk.—). This  in the short-distance domaizompare the discussion at the
procedure implies an extrapolation of the low-energy effecend of Sec. IV A. As for the factorizable contributions the
tive theory for terms ofO(m2 \/\Z;m7 (/N¢;...) Up 10 choice ofF instead ofF, would be also appropriate.
scales where these terms are negligible. This is the usual The results presented above are in accordance with the
assumption made in chiral perturbation theory for three flanon-factorizable evolution 0 and Qg we obtain in the

Vors. background field approach by calculating the diagrams of
Fig. 8:
V. NON-FACTORIZABLE 1/ N, CORRECTIONS X
: : . 2mg |\ “logA2[3 . _
The non-factorizable N, corrections to the hadronic ma- QNF(AZ)=F2| —=— Z(9,0T0*0) 4
trix elements constitute the part to be matched to the short- ¢ i s (4m)24 a

distance Wilson coefficient functions; i.e., the corresponding 1
scaleA . has to be identified with the renormalization scale + .Uty uorut
of QCD. We perform this identification, as we argued in Sec. 2 )dsé ( Jag
lll, by associating the cutoff to the effective color singlet
boson. Then, at th&(p°) in the chiral expansion of th®g

3 — —
+—(UTx+x"U) s, 54
and Qg operators, from the diagrams of Fig. 7 we obtain 4( XTX )ds} 54

i 0,0 O\NF
|<7T ™ |Q6|K > - , 3 , Zmi 2|OgA§
2 2 2 8 (AC)Z_FW =
3 2mg 1 logAg ) 2 m+mg/ (4m)2
= Z ~ F_ 2(mK_m77)+"'l (50)
m+mg/ Fx (47) 2 1
X 2, €ql7(3,U"9*U)4s84q
(' QeI @
2 \2 2 . 1
_ 3 2mg 1 logAg 5 5 +_(ﬁ#UTU)ds(U‘?MUT)qq_F_(UTX
=\25{ = o (mi-m)+e, (5D 2 2
m+ mg m (47r)
_ 1
i<7TO7TO|Q8|KO>NF +XTU)dS‘Sqq+ §a(UT)dq(U)qs}- (55
2 \2 2
_ 3 2my 1 logA ¢ (M2 —m2)+ - -- (52) Only the diagonal evolution oQg, i.e., the first term on
4 m+m,) Framz 7 ' the right-hand side of Eq54), gives a non-zero contribution

to the matrix elements of Eq$50) and (51). In particular,

the mass term which is of tHeg andH, form vanishes for

K— a7 decays, as do theg andH, contributions at the tree
O O O level (see Sec. IV. In Eq. (55) for completeness we kept the

terms proportional tas,q, which, however, cancel through
FIG. 5. Evolution of the mass operatonass renormalization ~ the summation over the flavor index.
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FIG. 6. Evolution of the current operator. The
crossed circle here denotes the bosonized current.

Note that Eqs(54) and(55) are given in terms of opera- logarithms depend on the momentum prescription. They are,
tors and, consequently, can be appliedkies37 decays, however, uniquely determined through the matching condi-
too. Note also that our results, Eq&0)—(55), exhibit no  tion with QCD (see Fig. 1
quadratic dependence on the scalg; i.e., up to the first One might note that the statements we made above do not
order corrections in the twofold series expansion the matchhold for currenk current operators: the N corrections to
ing involves only logarithmic terms from both the shaahd  these operators, performed in the first non-vanishing order of
the long-distance evolution of the four-quark operators. Thigheir chiral expansion, exhibit terms which are quadratic in
is due to the fact that there is no quadratically divergent\.. Furthermore, already these terms were shown to depend
diagram in Fig. 8 apart from the first one which vanisheson the momentum prescriptid20].
for the Q¢ and Qg operators. Moreover, for a general = We close this section by giving the long-distance evolu-
density<density operator there are no logarithms which aretion, at the O(p°), of a general densitydensity operator
the subleading logs of quadratically divergent terms. ThereQ3"°%= —8(DR)an(D1)cq- As we showed in Sec. IV B, the
fore, all the logarithms appearing in EqS0)—(55) are lead- factorizable 1N, corrections do not affect its ultraviolet be-
ing divergences, which are independent of the momenturhavior. Then, from the non-factorizable diagrams of Fig. 8
prescription. The finite terms calculated along with thesewe find

2 2 \2 2 2 2 \2 2
Qabcd(AZ): Qabcd(o) 1_ E i IogAC 2 2mK AC 5d35bc+ E 2mK |OgAC
° ¢ b 3 F2 (4m)? Tm+mg (4m)? 4\ m+mg) (4m)?

X[(UTx+xTU) 93820+ 693y UT+ U x )P+ (g,UTa#U) 925+ 5939, Ug#UT)PC

+2(a,UT0)% U guTPel. (56)

The corresponding expressions for the non-factorizable loopegularization, in Appendix B. They were computed up to
corrections to operatol®g and Qg, Egs.(54) and(55), can  terms of the ordep* andp®, respectively, that is to say, to a
be obtained directly from Eq56). relative precision of approximately 16. Second, the finite
terms arising from the factorizable loop diagrams of Fig. 2,
as well as, from the renormalization of the wave functions,
the masses and the low-energy couplings were estimated us-
ing dimensional regularization, as discussed at the end of
To compute the hadronic matrix elements@f andQg  Sec. IV B.
we pursued the following strategy. First, the non-factorizable We use the following numerical values for the param-
contributions were calculated, in the isospin limit, from the eters:
diagrams of Fig. 7. In this part of the analysis the finite
terms, which are systematically determined by the momen-
tum prescription of Fig. 1, are completely taken into account.

VI. NUMERICAL ANALYSIS AND DISCUSSION
OF RESULTS

m,=(m_o+m_+)/2=137.3 MeV,

By using algebraic relations all integrals resulting from the Fr=92.4 MeV,

diagrams of Fig. 7 can be reduced to three basic integrals

which are given explicitly, in the framework of the cutoff M= (Mgo+ Mg+)/2=495.7 MeV,
(dq) (as) dg) (@) (dq) (gs)

FIG. 7. Same as in Fig. 2, now for the non-
factorizable loop diagrams.

+ (dg) <> (g9
(dg) (gs)

014017-10
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Q Q Q Q Q TABLE Il. Bg andBg factors for various values of the cutoff
Ac.

A;=0.6 GeVA,=0.7 GeVA.=0.8 GeVA,=0.9 GeV

FIG. 8. Non-factorizable loop diagrams for the evolution of a B2
6

densityx density operator. 1.10 0.96 0.84 0.72
(1.30 (1.19 (1.09 (0.99
B2 0.66 0.59 0.52 0.46
Fc=113 MeV, 8
K 0.71 (0.65 (0.60 (0.54)

m,=547.5 MeV, 6=-19°,

We discuss next the corrections to the matrix elements
(Qe)o and{Qg),. As already mentioned, the operat@g is
A special because th@(p°) tree level matrix element is zero
Substituting them in Egs(23) and (27) we computeLf  due to the unitarity of the matrix). Nevertheless the one-
=2.07x10"% and L;=1.09x 10" 3. For the numerical val- loop corrections to this matrix element must be computed.
These corrections are @(p%N,) and are non-vanishing.
We have shown in Eq$50) and(51) that the explicit calcu-
lation of the loops yields a cutoff dependen@e., a non-

m,, =957.8 MeV.

ues given above.; is close to 2, and we find the)(p?)
tree level contribution t¢Qg), to be small, because the term

propl? r.tlo;{afl tothfm E?ﬁ(%z ?pproxtlmatecljy \{anlzges_.r;' his trivial scale dependengérom the non-factorizable diagrams
result Is difrerent from the statements made in RRE8]. The which has to be matched to the short-distance contribution.
full expressions needed for the renormalization of the paramp, - qdition. the logarithms of Eq¢34) and (35) are needed

2tersf,d'L5Aalnd :;S In terl.ms. Orf mtegTaIs. aLe ﬁresenctigd "M in order to cancel the scale dependence of various bare pa-
ppendix A. In the octet limit the results in the Appendix are , qer5 in the tree level expressions, as was checked explic-

the same as in Reffl3] and[25].” Finally, we used the ratio itly in Sec. IV. We note that in the twofold expansion pd

ms/m=24.4+1.5[26] which enters in the calculation &f;.  gng p%N, the contribution of the loops over t@(p®) ma-

The values we obtain for the matrix elements@f and  trix element must be treated at the same level as the leading
Qg are presented in Table |, where we also specify the varinon-vanishing tree contribution proportional tg. This is
ous contributions coming from the factorizable and the nonreyealed by the large size of the non-factorizabig®/ N.)
factorizable diagrams, respectively. In these matrix elementgorrections presented in Table I. It is the sum of both, the
we have extracted the fact&®=[2m2/(m+my)]?, whose factorizable and the non-factorizable contributions, which
dependence on the factorizable scale will be canceled exenders the numerical values f¢Qg)o close to the VSA
actly, for a general densitydensity operator, by the diago- value. For the imaginary part, which is due to on-shell re-
nal evolution of the Wilson coefficients. Finally, for com- scattering effects and does not depend on the matching con-
parison, we present in Table | also the numerical valueslition with QCD (see Fig. 1, the cancellation is complete.
obtained by replacing ,, by Fy in the O(p?) andO(p°/N,) This property follows from thelaJr)dq(U)qS structure of the
factorizable and non-factorizable contributions, that is to saypperator. The main effect of the loop corrections is to change
in the corresponding terms of Eq®3),(27) [or Egs.(A3)—  the dependence dfg)o on A, from a flat behavior at the
(A6) of Appendix A], (34)—(37) and (50)—(53), and in the tree level to the dependence presented in Tables | and I,
finite terms. The difference gives a rough estimate of thewvhich is important for the matching. We note that /at
higher order corrections. =700 MeV the value for the matrix element Qf is very

In Table Il we list the corresponding values for tBg  close to the VSA result leading s=1.
factors, which quantify the deviation of the hadronic matrix ~ The Qg operator is not chirally suppressed, i.e.,@6p°)

elements from the VSA results: tree level matrix element is non-zero. In this article we in-
clude the tree level contribution up t(p?), as well as, the
B'”=(Qs)0/(Qe)o . loop corrections of?(p°/N,), that is to say, corrections to
the first term of Eq(13). This is a full leading plus next-to-
B2 =1(Qg)»/(Qg)¥>". (570 leading order analysis of th@g matrix element. The one-

loop corrections, even though suppressed by a factdg 1/
The VSA expressions for the matrix elements werewith respect to the leading tree level, are found to be large
taken from Eqs(XIX.16) and (XIX.24) of Ref.[27]. Nu-  and negative, leading to the small values Barpresented in
merically, they are[(Qg)o/|=35.2R?* MeV and [(Qg),|  Table Il. These large corrections persist in the octet limit
=56.6 MeV-[R?—(0.389 GeV¥]. The second term inthe [ie., in the absence of they, with a=b=1 and m?
eXpI’eSSiOI’]. fO|Q8 contributes at the 2% level and has been:(4m§_mi)/3] ThereforE, they are not due to the pres-
neglected in Table II. ence of thez, which brings in a small change. One might

note that the numbers in Table Il are specified for the central

value of ms/rh=24.4t 1.5[26]. Including the error of this
®Note that our constants and L should not be confused with mass ratio changes ti& parameter by*+0.06.
the scale dependent coefficiemts andLj in Refs.[13] and[25]. In comparison with(Qg)o, the non-factorizable correc-
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tions to (Qg), are less pronounced, as expected from thesalues above 1 GeV7]. Finally, in their analysis ot'/e
power counting scheme ip? and 1N,. However, because the authors of Ref{35] considered3s andBg as free param-
the factorizableO(p?) and O(p°/N,) corrections are small eters to be varied around the VSA valugg’?=Bg?=1.
(and negativg the non-factorizable terms produce a signifi-  \we note that our result foB(M? is in rough agreement
cant reduction of Qg),. The size of the higher order terms it those of the various studies quoted above, whereas the
indicates that the Iead.m.lg'c calculation or the closely re- 5,6 we obtain foBg’z) lies below the values reported pre-
lated VSA are not sufficient for the matrix elements of theviously. It is desirable to investigate whether this substantial
Qs ope_rator7. . . . reduction of Qg),, which is due to the non-factorizableNy/

In view of the large corrections one might question thecorrections to the leading term in the chiral expansioQgf
convergence of the Rk, expansion. However, there is N0 will be affected by higher order corrections. This point is of
strong reason for such doubts because the non-factonzab%éeat phenomenological interest because a less effective can-

contribution we consider in this paper represents the firs ellation between th@, andQ, operators, in the range ob-

term in a new type of a series abs_ent In the lakgaimit. It. tained in the present analysis, will lead to a large value of
is reasonable to assume that this leading non-factorlzablg,/“3 in the ball park of~10-3. This can be confirmed or
term carries a large fraction of the whole contribution. disproved by the forthcoming éxperiments at CERM4S)
As a general result, we note that our study indicates ‘i”‘:ermilab(ESSZ) and FrascatiKLOE) '
significant reduction oB{®?. By comparison the correc- '

tions to B2 are moderate, i.e., there is no clear tendency

for values much Iarger or s'maller than one. Our resglts for VII. SUMMARY
(Qg)o and(Qg)» can still be improved by calculating higher .
order terms inp? and 1N, like for instance those of It was recognized, long ago, that the operat@gsandQg

O(p?/N,) which will be along the lines of this work. The are of central importance for the determination of @@
O(p?/N,) will bring in a quadratic dependence ax, [28] parameters’/e. This makes the calculation of their matrix
and even though suppressed by a factopdfelative to the ~ €lements imperative as the Wilson coefficients are known to
O(p°/N,) may compensate, to a large extent, the scale ded good degree of accuracy. We carried out this calculation in
pendence of the logarithmic terms of this paper. Anothethe 1N, expansion, where we included terms up(p?)
improvement would be to include the vector mesons which ignd O(p%N). In doing so we introduced several improve-
a new calculation beyond the scope of this work. ments. First we used the complete pseudoscalar Lagrangian
It is interesting to compare our results with those of otherrelevant to these orders and included effects of the singlet
calculations. Referenc¢8] and[4] investigated M. correc- 70, Which we found to be small. At the same time we paid
tions to the matrix elements @, and Q. This calculation special attention on the definition of the momenta in the
considered the product of the two densities without the cologhiral loop corrections. To this end, we considered the ex-
singlet boson and the matching of short- and long-distancehange of a bosonic field between the quark densities whose
contributions was not explicit as in the present article. Themomentum is taken to be the same at long and short dis-
O(p°N,) contribution toQg was not included, but terms of tances. In this approach we set up the identification of the
O(p?N,) were included inQg and Qg. In this study the ultraviolet cutoff of the long-distance terms with the QCD
parametrization of thé(p*) Lagrangian was not general as renormalization scale. This procedure leads naturally to the
only one coupling constant was introduced. The numericaflassification of the diagrams into factorizable and non-
results showed also a tendency of reduci@), substan- factorizable. o _
tially, whereas Qg)o was found to be enhanced compared to  We showed explicitly, ta)(p°/N¢), that the factorizable
the VSA result. Calculations in lattice QCD obtain values forScale of the chiral loop corrections is absorbed in the renor-
Bg close to the VSABgllz)(Z GeV)=1.0=0.2[29,30 and mallzatlon of the Iow—ene_rgy Lagrangian. Thus for the fac-
0.763)(5) [31]. Recent values reported foBg are torizable terms the matching of long- and short-distance con-

Bg?”z)(Z GeV)=0.81(3)(3) [32], 0.774)4) [33], and tributions is between the running quark masses and quark

1.033) [34]. These studies use tree level chiral perturbationdens'tIes where the malching is exact, i.e., the scale depen-

theory o elate he matx clemert Q) to Q) Se7CE CIope out Trere remaln he non facorizale e
which are calculated on the lattice. The chiral quark model" plicitly P

[24] yields a range foiBg which is above the VSA value off, to the order of our calculation, is only logarithmic. Our
6 . o lysi ied th h usi iff hni )
BU)(0.8 GeV)=1.2-1.9, and predicts a small reduction of analysis was carried through using two different techniques

32) N The first one is an explicit calculation of the matrix elements
the By factor, Bg"7(0.8 GeV)=0.91-0.94. Although the 4t the particle level which involves a large number of dia-

scales used in the lattice calculations and the phenomengiams. The second is the background field method. It leads
logical approaches are different, the various results can bg, operator relations which can be applied alsoktes 3
compared as thBg andBg parameters were shown in QCD gecays. We verified that both techniques give the same re-

to depend only very weakly on the renormalization scale foig|ts for the quadratic and logarithmic terms. The full finite
corrections were calculated at the particle level.
Finally, we determined the numerical values of the matrix
"This has already been observed for the matrix elemen®,0f €elements. We obtained moderate correctionéQg), and a
andQ, which are relevant for th& | =1/2 selection rulé1]. large decrease dfQg),. Each of these matrix elements de-
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pends on the renormalization scale, but it is significant to 4 3
emphasize that their ratio is fairly stable. The numerical ref,=f| 1+ —mK — (l[mg ]+ 21 mg]

sults indicate that loop corrections are important and must be 8f
included. We note that the terms 6{p%/N,.) we calculated
here are lowest order corrections to the well established +co2dl,[m,]+sir?6l,[m,,]) (AB)

O(p?) chiral Lagrangian and do not contain any large ambi-
guity. It remains to be seen whether the results of Tables |
and Il will be affected by higher order corrections. This pointa, b and ¢ are defined in Eqs(10) and (19), the integral
is important because a cancellation between the gluon arid[m] in Eq.(B1) of Appendix B. Equation$A2)—(A4) and
the electroweak penguins in the range obtained in the presefd6) differ from the corresponding expressions in Réf3]

analysis will lead to a large value &f /e ~10"3, on account of the presence of thyg state. In the octet limit
[6=0, m —(4mK m 2)13] Egs. (A1)—(A6) are in agree-
ACKNOWLEDGMENTS ment W|th Ref[13].2 We note that they, state modifies the

logarithmic dependence of tHey coefficient on the renor-
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tract no. DE-AC02-76CHO3000 with the United States De-(|34) of Appendix B lead to the formulas listed in Sec. IV A,
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FRG, and DFG Antrag PA-10-1. tained from Eqs(A3)—(A6) by replacingf byF . (or Fy) in
the O(p?) and O(p%N,) terms, as discussed at the end of
APPENDIX A: BARE PARAMETERS Sec. IV A.

In terms of the basic integrals, the full expressions needed

for the renormalization procedure read APPENDIX B: BASIC INTEGRALS

Using algebraic relations the complex structures of the

Z=1+ f_zm __(2|1[m7r]+|1[m|<]) (A1)  four-dimensional integration can be reduced to three basic
components:
Ze=1+5me_ L 21 i
K= +f_2mK_ﬁ( ilmz]+21[mg] l,[m]= AJ d4qq2—m2’ (B1)
+cos 6l y[m,]+sirfol[m,,]), (A2) i 1
I2[m,p]= J d*q : (B2)
) m; m*) " (q-p)?-m?
mz 8) .
l3[my,m,,p]= ! fd“q !
3 151112 - .
1 2m*)  (gP-md)(a—p)>-mj]
+@(m1[m77]—azll[mn]—szll[m,?,]) : (B3)
(A3) Performing a Wick-rotation to Euclidian space-time the ul-
- 8m 2 traviolet cutoff may be implemented through the step-
o_ MMy~ SMg function 6(A2—q2). A straightforward calculation then
mg=r ( 5—2Lg)— ———[lim,] ¢ HE
2 f2 36f2mg yields

X (m?(a®~ 4b%) ~8m(a~b)b—m’(a+2b)?)

1 A2
I, [m]= o A2— mzlog< 1+ m—;) 1 (B4)

+21,[m,, J(2mia(a+ 2b) —m?(a®—b?)

In order to determind, and I3 analytically we shift the
(A4) variableq by the external momentum. Properly taking into

—m’,(a=b)3)]|,

1+ _meT_ iz(ZI Im 1+ ImeD |, (A5) 8The comparison is carried out by omitting the and L4 terms
f which are subleading i, .
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account the resulting modification of the upper bound weThe computation of 3 requires a Feynman-parametrization:
introduce an angular-dependent argument of the step-

function. However, we omit the explicit angular-integration d
writing the latter function in terms of a Taylor-series: La[my,m,, X
- d™S(A2—-qt?) 22 (24 2 2y 4 27— 2
oNE-qtra)=B(AZ-ag)+ S, (e 9 DEp™=x(p™my = mg) + il
m=0 d(ge) (B7)
am+1 . . . . . .
><—) (B5) Performing the Wick-rotation and introducing the variable
(m+1)t d&=0ge— Xpg We obtain
The corresponding solution of the integtalreads
Is[my, My, pe]=—
1 2 3Ly, M2, Pe T2 12 12
IZ[m’p]:16qT2| AZ—m?log 1+—; [q Z+MA(x)]?
m
xemz —2x(q'p)e—x’pg, (B8)
p?A¢ p*Agm? peAgm? i
+ + - wi
2(A2+m?)?2  2(A2+m?* 3(A2+m?)8
(Rermi) 2(hermt Sthermd M?(x) = = x*pg+x(pg—mi+mp)+mi. (B9
3
X| A2— Emz +0O(p?). (B6)  For distinct masses), andm, Eq. (B8) yields
|
1 [ V-w m3—m3+ p? m5—m2+ p? 1 m, m;m
I3[my,my,p]= 16772{7< arcta{l?ivp +arctar{2?tvp +E(m2 ml)log( —1+log It 1;2
- - c 2
2 2 2 22 2 2 2
m Ag+m m 1 2m Ag+m
+— ! Slog| — ; p2 22 J 5 (2AZmE+ mimd+m3) + — ! Slog| — z
mi—mj As+mi)  2(mi—m3) [(Ac+m2) mi—mj As+mi
p4m§ [ 6,112/ 112 2 4.2 4 4 2.2 4.2
+ (mz— mz)ﬂ 6(A2+ m2)4[6Acm1(ml+ m3) + 3A;mi(—mj+ 6m1m2+ m;) +2A m5(2mim;
1 2 c 2
2 2 2 2 2
(m7+ms3) Af+m
T 17m2mé— mD) + mE(m-+ 10m2m2 + md) ]+ L —Zlog| ———| |} +O(p®), (B10)
(mz—m3) Ag+my
where we defined
w=(m+mi—p?)2—4mim3. (B11)

As | 5 starts only logarithmically in the cutoff dependence, in EBL0) we truncated the series including only terms up to the

orderp*.
In the case of equal masses we perform a power series expansion with respect to the péra?’nem%— m%. Then putting

8m? to zero we find

I3lm;=m p]:i 2 _Warcta P )—1— mi +log mi 2(3A§+m§)m§
ST q6m2| p2 J—w AZ4+m? AZ+m2 6(AZ+m3)3
—20A 44 5A2m?+ mHym?
+p4( . DM +0O(pb). (B12)
B60(A2+m?2)5

with w being reduced tov=p*—4p?m?Z.

Through analytic continuation, Eqg810) and (B12) provide complex solutions. These appear {@*>m;+m,. In the
process under consideration, the latter relation can only be satisfied;fem,=m_,p=pk. Thus our analysis gives the
physical threshold condition fatr — 7 rescattering, the imaginary part kof being attributed to the strong final state interaction
phase.
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