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Two body nonleptonic A, decays in the quark model with a factorization ansatz
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The two body nonleptonic\, decays are analyzed in the factorization approximation, using the quark
model, treatingé=1/N, as a free parameter. It is shown that the experimental branching ratid for
— AJly restricts ¢ and this ratio can be understood for a valueéofvhich lies in the range € ¢<0.5
suggested by two bodg meson decays. The branching ratios Agy— A D% (D) are predicted to be larger
than the previous estimates. Finally it is pointed that the CKM-Wolfenstein paraptetey?, wherey is the
CP phase, can be determined from the ratio of widthsé;g#AE andAp,— AJ/y or that of A,— p Dg and
Ap— A, Dg, independent of the paramet&r[S0556-282(98)05513-1

PACS numbgs): 13.30.Eg, 11.30.Hv, 12.39.Jh

I. INTRODUCTION the paramete€g in the above mentioned range. Its previous
estimates obtained either by extracting form factors at zero
Two body nonleptonic decays of bottom baryons providerecoil from experiment and using flavor symmetry of heavy
useful information for QCD effects in weak decays and in-quark effective theory(HQET) [3] or by extending the
direct CP asymmetries which involve Cabibbo-Kobayashi- Stech’s approach for form factors to baryoi§ were of
Maskawa- (CKM-)Wolfenstein parameterp and 5. The order 10 °, much smaller than its measured value. Our esti-
standard framework to study nonleptonic decays of bottoninates for the branching ratios fdr,— A D(Dg) are larger
baryons is provided by an effective Hamiltonian approachthan their previous estimat€s,6]. The decays\,— AD and
which allows a separation between short- and long-distancA,— p Ds can give information on the CKM-Wolfenstein
contributions in these decays. The latter involves the matriyparameter g2+ 5?) [7] or |V,,/V¢p| independent of.

elements MB’|O;|B) at a typical hadronic scale, whe@ We write the effective Hamiltoniaf8]

is an operator in the effective Hamiltonian. These matrix

elements cannot be calculated at present from first principles. .. _GCr * c c

Thus one has to resort to some approximate schemes. Such Het(AB=1)= 2 q;m VepVgs(C101+C,07)
schemes are often complicated by competing mechanisms,

such as factorization, baryon pole terms, aieexchange * u u

terms, each of which has uncertainties of its own. The pur- +q:2u,c VupVas(C1017C207) |, @

pose of this paper is to study a class of two body bottom

baryon nonleptonic decays in the framework of the factorizawhereC; are the Wilson coefficients evaluated at the renor-
tion scheme, where, neglecting final state interactions, hadnalization scaleu; the current-current operato6, , are

ronic matrix elements are factorized into a product of two

matrix elements of the forngB’[J,|B) and (0|J/|M) for 05 =(c%,)v-a(sPap)v-n,
which more information may be available.
Following the phenomenological success of factorization 05=(c*bg)y-a(sPAu)v-a, )

in the heavy to heavy nonleptoni& meson decaygl], this
framework has been extended to the domain of heavy to lighindO!" are obtained through replacingby u. Here« and8
transitions[2]. The factorization ansatz here introduces one

1 : are SU3) color indices while €%bg)y_a=c%y,(1
free parameter, calleg=1/N, (N, being number of colojs +vs)bg, etc. The related Wilson coefficients at=2.5

which is introduced to compensate fo_r the neglect .Of th("Gev in the next-to-leading logarithmig\NLL) precision are
color octet-octet contribution in evaluating the hadronic maTZ]

trix elements in the heavy to light sectors. The rangeé0

<0.5 has been founl®] to be consistent with the data on a C,=1.117,
number of measureB meson decays. We apply the factor-
ization to decayshp,— AJ/, Ap—ADg(D¥), Ay—AD, C,=—0.257. 3

andA,— p Ds. In addition, we use the quark model to fix

current coupling constants which appear in the matrix eleThese are not very different from thosegat5 GeV in the
ments(B’|J,,|B). We show that the measured branching ra-leading logarithmic approximationLLA) [9]: Cy(m})
tio for A,— A J/ ¢ can be accounted for in this approach with =1.11 andC,(my)= —0.26.
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In the factorization scheme we encounter matrix elements of the form

(B(P")[3,IBu(p))y=u(p" )T ,u(p)=u(p")i{[Gv(S) ~ Ia(S) Y517, + [Fu(S) +Na(S) Y6100, il hy(S) — Fa(S) Ys]qﬂ}u(pgzl)

whereBy, is a baryon, which containls quark whileB is any baryon not containing it. Hese= —g?=—(p—p’)?. In the
heavy quark spin symmetry limjtL0], the vector and axial vector form factors are relatetien B, belongs to the triplet

representation of flavor S8)] as follows:

gv(s)=ga(s)=fy,

fV: hV: hA: -

®)

(6)

fAZm—Bbfz.

For a decay of the typB,(p)—B(p') + X(px), the matrix elements are of the form

!

=% 03’ |X(px))u(p”)T ! \/m—m
—Iﬁ< LIX(px)yu(p”) ,Lu(p)(zﬁ)3 oop.

@)

0

In the rest frame oB,,, the decay rate oBy, and its polarization are given by

G12

1
r TWJ dsp (){p(s)I*(s)+ a(s)I"(s)},

whereq=py=p—p’, s=—0q?, and

)

I'?(s)={Q(s)(g5+93) —3mm's(gZ—gi) + 3s[(m+m’)(m—m")2=s)gyfy— (Mm—m")((M+m’')?=s)gafa]

+5[Q"(s)(f+h3) —3mm's(f5—h3)]—2mp’ (s)n- § (M?—m’'2) = 28)gagy + S((M—3m’)gyha

—(M+3m’)gafy) +sfyha(s—m2—5m’'?)]},

9

1
I7()=1Q"(s)(gy+gn) —sl(m—m")((m+m")2=s)gyfy+(m+m’)(m=—m")?=$)gafal + 57 (M+m"')?=s)h]

+((m=m')2=s)fz]—2mp’(s)n- g (M?—m'?)gyga—s((M+m’)gahy+(m—m")gyga) +s?hyfal ;.

(10

Here it is understood that the form factors are functions of scalar particle in the decéy— B'X, thereby taking into ac-

andp=py, pa, Or 0 withX as 17, 1%, or O™, while cor-
respondinglyoc=0, o5 Or 0.5 and

p'(s)= %{[(m% m'?)—s]?—4m’m'3}¥2 (1)
Q(s)=3[(m*—m'?)?+s(m*+m’?)—2s7],

(12)

Q'(s)=3[(m*~m’'?)?—s(m*+m’'?)], (13
QH(S): %[Z(mZ_er)Z_S(m2+er)_SZ:l_

(14

The form factors defined in Eq4) are calculated in the

quark model as= —g?= m>2( whereX is a vector or pseudo-

count recoil correction. This is in contrast to the use of the
nonrelativistic quark model for the evaluation of the form
factors at zero recoi=0 [11]. This latter approach also
necessitates the extrapolation of the form factors from maxi-
mum g% — g%=tm=(mg—mg)?] to the desireds=—g?
=mZ. We may point out that sincly|~1.75 GeV inA,
—A+J/¢, for example, the no recoil approximation does
not seem to be justified; in fa¢|>mg in A, making thes
quark inA relativistic. In our approach no recoil approxima-
tion, nor any extrapolation of the form factors at the physical
point are needed. Our quark model results do satisfy the
constraints imposed by the heavy quark spin symmetry.
The plan of the paper is as follows: Sec. || summarizes
the calculation of the baryonic form factors within the frame-
work of quark model at the desired valuest —qg?, rather
than at the zero recoil point, relegating the details in the
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Appendix. In Sec. Il we apply the results to some specific

nonleptonic decay modes af,. Section IV summarizes our
conclusions.

Il. BARYONIC FORM FACTORS
IN THE QUARK MODEL

In order to calculate the form factors we first reduce the

matrix elements in Eq(4) from four component Dirac

spinors to Pauli spinors without making any approximation

and do the same for the quark level current

i ,=107,(1+ v5)b.

We treat theb quark in B, extreme nonrelativistically

(pp/my~0) and setp,—p,=q=—p’, qux/q2+m2, E,
=mp=mg. Then, as shown in the Appendix,

PHYSICAL REVIEW D 58 014016

a(E',E3)=—
3 2 E3

1 [E'(E'+m')—(E5+m))
b(E',E)=>\/= ,
2 VE3 (B +m')(Es+my)

andE’=p;, E;=E4=Vp'?+m4? andmi=m,. Note the

explicit appearance of &Y corrections in the above formulas.
Here ¢y and &, are respectively the spin-unitary spin part of

the matrix elements of the current operaith); for example,
for By, belonging to the triplet representation of &Y &y
=¢a andl is the overlap integral

mo

P/) (P12, K)d3pyd3k.
(19

m;+
|:NfNiJ¢?(P121k_ =
m

ha=—fa, fy=hy, (16)
gv(s)=évla(E’,E),
1
fv(S)=E§v|b(E’,Eé),
ga(s)=é&ala(E’,Ey),
(15 1
fa(s)=——&alD(E',Ey), 17)
where
|
1\/E(E’+m’)(1—m’/m)+(E§+m§)(1+m’/m)
’ V(E"+m')(Ez+m)) |
(18)
|
We takeg or B’ as[12]
B?= ok, (21

where ug=[MyMy/(My+My)] is the reduced mass of
the bound systemM y being the nucleon mass ani, that
of B, D, K*, or p meson forAy,, A;, A, andp, respec-
tively. « is the spring constant and its value is taken to be
(440 MeV) [13].

We summarize in Table | the form factogg(s) =ga(s)
=f5, fy(s)=hy(s)=ha(s)=—Tfa(s)=f,/m for the transi-

The recoil correction is represented by momentum mismatcHons A,—pDs, Ap—AD, Ay—AJd/ ¢, Ay—AD5(Dy),

[(m;+m,)/m’]p’, which arises since the rest frameRyf is
not that of By baryon. Herem'=m,;+m,+ m; where m;
andm, are masses of the spectator quarks aids that of
g quark resulting from the decay &f. Note that the form
factorzs in Eq.(17) are determined at the desired valuesof

As already noted foB,, belonging to the triplet represen-
tation &,= &, and then the relationgl6) and (17) are con-
sistent with those given in Eq$5) and (6) obtained in the

2
for s=mg_, m3, mj,, andm (m3), my=m,, mg, and

m, respectively. For the numerical work we have taken the
relevant masse@n GeV) asm=m, =5.641,m,=1.1157,

m, =2.285, my=0.938, m,=3.097, mD§=2.112, mp
=1.864,mDs= 1.968,my=0.510,m.= 1.6, andm,=0.340.

lll. APPLICATIONS

We consider those decays af, for which baryon poles

heavy quark spin symmetry limit. To proceed further we usegjther do not contribute or their contribution is highly sup-

harmonic oscillator or Gaussian wave functions in Ek)
to obtain

3 12

2BB’
B2+BI2

_§(m1+m2)2 p

4 Fn/Z 2(B2+B/2) '
(20

pressed due to Okubo-Zweig-lizuK®ZI) rule and that it
scales as inverse (DfIAb.

For decays of the typ&(p) —By(p’)V(q), whereV is a
vector meson,

Pa(S)=0=0n(s), (22
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TABLE I. The quark model predictions for baryonic form factors fog transitions.3=0.51 GeV, B’
=0.44 GeV forp and A and =0.48 GeV for A,. fi=gy=0a, fo/f1=(fy/gy)m=(hy/gy)m
=(ha/ga)m=—(f5/ga)m. Note that only the last column depends on the overlap intégral

pD_s 2.376 1/@ 0.720 0.123 ~1 ~1 0.119 0.086
AD 2.374 —1/\/§ -0.558 0.129 ~1 ~1 0.215 -0.120
Al 1.756 — 1/\/§ -0.604 0.158 0.943 0.826 0.426 -0.257
ADg 1.766 1 1.052 0.134 0.978 0.983 0.791 0.829
A D} 1.850 1 1.048 0.137 0.949 0.908 0.810 0.852
pu(s)=Fyd(s—mj), (23 (013,Ip)=Feq,. (3D
where Then Egs.(8) and (10), on using the relationgs) and (6),
give
<0|J;|V)=FV6M. (29 ,
G _, Ipl
Then Eqgs(9), (17), and(18), on using the relation&s) and I'p= TF% 2Q’(m,%)[2f§(m§,)]}‘§’(m,2:.), (32
(6), give the decay rate 4mm
’ ’ P 2
G2 _, Ip —2m|p'[[(m°—m’?)] F5(mp)
_2 2 2 202\ 1V, 2 an= , (33
r 2 Fv47Tm2Q(mv)[Zfl(mv)]fl(mv) (29 P 2Q'(m2) FP(m2)
while the asymmetry where
’ 2 ’ 2
— 2m|p'|[(m?— m’?) - 2m3] F¥(m?) FP(m)= | 1 ™ MR M m) £
a= 2 Y (26) e m Q’(m3) fa
2Q(my) F1(mg) P
where m_% ma(m?+m’2—mg2) EJ 34
, , m* 2Q(md) i)
v, o m’ m&(m?—m'2+mg) f,
Fi(my)=11-3— > = ' 2
m Q(m?) fq P 2m mp fs
Fomp)=11-—————
2 A" (M2 2 (m —m ) 1
my Q"(mg) f3
+— N 27 mé £2
m* Q(my) f3 __r 2
T 2 2" (39
me(m—m’<) 1
V)2 m’ mg f2 . .
Fa(my)=11-6 - ———— + We are now ready to consider the specific decays. We
m"—m'“—2mj, 1 first considerA,— A J/ ¢, where the first part of the Hamil-
m\2/ m2+5m’2—m\2, f% o8 tonian (1) with g=c and the Fierz rearrangement give
m? m?—m’'2-2m 3] G'=GgVpVes(Cot£Cy), (36)
The prediction fora is independent of the value of the J;=?7#(1+ vs)C. (37

overlap integral and provides a test of the predicti¢h®)

and (17) with &,= ¢, through the presence df,/f;. The
corrections due to the form factors which scale as &fe

dumped intaF functions.

The constantFﬁ,w is determined fromI'(J/¢y—e*e™)
=(5.26-0.37) keV[14]:

If the vector mesorV is replaced by a pseudoscalar me- F2 _2 3 r .
sonP, then MW= gz (I p—e e )(myy)
pv(8)=0=pa(s), (29 =1.637X 10 * Ge\2. (39
oa(s)=F28(s—md), (300  Using Gp=1.16639% 10 °> GeV 2 and[14] |V.,|=0.0393

where

+0.0028,|V ¢ =1.01+0.18, we obtain, from Eqg23) and
(24),

014016-4
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FIG. 1. Branching ratio for\,— AJ/¢ as a function of. The solid line shows the central value of the CDF measurement; the dotted

lines show the one sigma limits.

I'=8.21X 10 *(C,+£Cy)?f5(m3,,) FY(m3,,), (39)

a=-0.2 f%(m‘j’ 2 (40
Fi(my,)
This gives the branching ratio
B(Ap,—AJ/y)=1.47X10 1(C,+ £Cy)?
X £3(m3,,) FY(m3,,), (42)

where we have usedl4] T'y =0.847x 10'° s =559
X 10" 13 GeV. Using Table | we finally obtain

B(A,—AJ/y)=9.14<10 3(C,+ £C,)?, (42)

a(Ap—AJly)=—0.18. (43
In Fig. 1, we show the branching rat®A,— AJ/¢) as a
function of §. This decay mode is sensitive foand com-
parison with the experimental valjé5] (3.7+2.4)x 10 4
shows that¢ is restricted to 6 £=<0.125 or 0.35:£<0.45,

which lie within the range & £<0.5 suggested by the com-
bined analysis of the present CLEO dataB®# -h;h, decay
[2]. We may remark thatt, /T, correction to the decay rate is
about 6% while that to the asymmetry parametes about
14%.

Other decays of interest for which the first part of the
Hamiltonian (1) with g=c is responsible are\,—AJDg
andA,— A . DX~ . For these decays

G'=GrVepVed(CitECy) (44)

and

J/ =sy,(1+ ys)C. (45)

Then Eqgs.(23), (24), (29), and (30) [on using the relations
(5) and(6)] give respectively

[(Ap—AJDE7)=2.12x10 4 C,+£C,)2

X ff(m;;)fy(m;:), (46)
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FH(mEe)
a(AbHA:D;‘_)=—0.42m, (47)
1 D:

I'(Ap—ASDg)=1.50x10 (C,+£C,)2

X t3(m ) FT(m3 ), (48)
FE(mB)
a(Ap—ADg=-098——". (49)
b cYs ff(szs)

Here we have useEDstD:=232 MeV [14] (in the nor-

malizationF =131 MeV). Using Table I, the above equa-

tions give

B(Ap—AD%)=2.61C,+£C,)%2X 1072, (50)

a(A,—AD¥)=-0.40, (52)
B(Ap,—ADg)=1.79C;+£C,)?X10 2,

(52)

a(A,—ADg)=—0.98. (53

The above branching ratios are not sensitive £t02.55
X 10 2<B(D?)<3.26x10%2 and 1.7%10 2<B(Dy)
<2.23x10 2 for 0.5=¢=0. Thef,/f, corrections are neg-

e ]

I'(Ap—AD%= T;vubvgs(cz+gcl)
Ge. .,

F(Ap—pDg)= Evubvcs(cl_l—fCZ)

2

12

PHYSICAL REVIEW D 58 014016

TABLE II. Predictions for the branching ratigBR) in % for
Ap,—AIDY ™ andAy,— A Dy in the largeN, limit (£§=0).

Decay processes Present BR calculation BR BR
(£€=0) Ref.[5] Ref.[6]

Ap—ASDE™ 3.26 1.739%  1.77

Ap—ASDS 2.23 2.30°3% 1.156

ligible when the meson in the final state@s  while for 1~

they are about 5% for the decay rate and for the asymmetry
parametera. Previously the above decays have been ana-
lyzed in the HQET with the factorization approximation in
the largeN, limit either by parametrizing the Isgure-Wise
form factor G,(v-v') [cf. Eg. (5) with f;=G;
+(my /my )Ga, f2=—Gy/m, , where sinceA., A,

form a multiplet, the absence of the second class currents
implies G,=0] [5] or by evaluating it in the larg®l, limit

[6]. In contrast we have used quark model to fix the baryonic
form factors as given in Eq$16) and(17). The comparison

of our predicted results with the previous results mentioned
above is presented in Table II.

Finally we consider the decay#,—AD° and A,
—pDg; the interest here is that the ratio of their decay
widths with A,— A J/¢ and A,— A D, respectively, can
fix the CKM-Wolfenstein parametepf+ %?) or |V p/Vep|,
independent o, where » indirectly determinesCP viola-
tion. For these decays the second part of the Hamiltofiian
with g=c (and the Fierz rearrangement for the foringive

2|p’|

> FaLfP(MR)2PFT(m3) Q" (m3), (54)
mmy,
2|p,|2PD522P2/2

> FDS[fl (mDs)] fl(mDS)Q (mDs)' (59
mmy,

Using Table |,F; =200 MeV and taking into consideration contribution in evaluating the hadronic matrix elememts a

differences in phase space factgrs Q, andQ’ we obtain

['(A,—AD®) | Van|? U
m—S.SBXlO V_Cb =2.8X10"°(p“+ 5%,
(56)
I'(Ap—p Ds) Vip|?
————=2X10 % =9.7X10 *(p2+ 7).
T[(A,—A, Do) Ver (p™+7)

(57)

IV. CONCLUSIONS

We have analyzed some two body nonleptakjcdecays
in the factorization approximation, treatifg=1/N. (which

free parameter. In addition we have used the quark model to
fix the baryonic form factors at the desired value s3f
—q? without making any recoil approximation. The form
factors obtained are consistent with the predictions of the
heavy quark symmetry and explicitly displayni/ correc-
tions. The experimental branching ratio fag,— AJ/y re-
stricts ¢ and can be understood for eithexx@<0.125 or
0.3<£<0.45. Our predictions for the branching ratids,
—A.Dg¢(D%) are larger than the previous estimates. Future
experimental data from colliders are expected to verify and
distinguish the various results. Finally the parameter
|Vup/Veol OF (p?+ 5%) can be determined independently of
the parameter¢ from the ratio of decay widths of\,

—AD and A,—A J/¢ or that of A,—p D and Ay

is supposed to compensate for the neglect of color octet-octet: A Dg, although the branching ratios expected for these

014016-6
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decays may be hard to measure. 2gv9
We want to emphasize that our derivation of E(ES) a=—-— Y /;.
and (17) does not depend on the details of the quark model. gvtda

The basic assumption is that in the heavy quark limit, the
velocity of heavy quark can be neglected. The details of the
quark model enter in the derivation of the overlap integral ACKNOWLEDGMENTS

It may be noted from the structure of Eq9) and (10),
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APPENDIX

We outline the derivation of relationd6) and(17). We first reduce the matrix elements in E4) from four component
Dirac-spinors to Pauli spinors. Thus in the rest framdgf

B(p')|J,|B (B —h—qu +| ha(s)+ —q,f
(B(p")[Jo|Bp(p))= E _gv(s) Bohv(s) = = fu(s) A8+ o 19a(9) = Qofa(s)]|o-ay
(A1)
B(p")|J[By(p)) = \ | u + +q—2h —|{1+ fu(s)+ iox
(B(p")J[Bu(p))= 2 || Oa(S)+| Aot o [Na(9) | o |V o av(s) fioxa
—| hv(s)+ =——T[9v(s) +dofv(s)]|a— = ,[hA(S)+fA(S)]qa'q], (A2)
E'+m E'+m

whereE’ (s)=p/(s), q=—p’, 4o= J[al?+s. It may be noted that no approximation has been made so far. On the other hand,
the Pauli reduction of the quark level current,

jM:iq_7#(1+75)Q! (A3)

is given by[with po=p3, pq=p3]

jo {(Ez+m3)(Eg+mg) +pg-pstio- (pgXps) —(Ez+mg)o-ps, —(Eg+mg)o-pal,

 2[E4E4(Eg+myg)(EL+ms) Y2

(A4)
j - {[—(E3+mg3)(Es+mg)+pg pslo+i(p3xps)—(o-p3)
= — m m . i — .
] 2[EEL(Eat my)(E+ my) ]2 31t M3)(E3z+TMg)+ P3-Pajo+1(P3X P3)— (0 P3)P3
— 0 PaPat (Eg+My)(ps—ioXpy) + (E3+ms)(patioxpy)}. (A5)

We now treat the quark) extreme nonrelativistically and where
thus put/ps|=0. Then

. E3=1p'3+my’= \(ps— )2+ my®= Vo + my’.
Jom—=—=—=—={(Estmy)—0o-p3g},  (AB)
V2E3(E3+mg) Suppose that the initial baryd® contains a heavy quark
Q (b in our casg and two light quarksy; and g, which
1 behave as spectators. The final bargdns composed of the
j=————{— (B}t my) o+ pitic pj, quarkq _[s_, coru quark] and the same spectators asBin
V2E;(E5+my) For the initial baryon composed of quar{=qs), q;, J.,

(A7) we introduce relative coordinates and momenta as

014016-7
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ot P2 P1 P2 I m;m;
LT my, o mpomy 2 my+my’
Myrq+myry
102=————, I3~ Trs,
Mo

k P12 P3
PL=pitpy, —=— o
12~ P11 P2 & mtm, mg

_ mg(mg+my)

Fn 1

- ms m;+m,
m=mg+my+mz, K=-—="Pyp———=—ps.

(A8)

PHYSICAL REVIEW D 58 014016

m;
m;+m,

K.

P2=—Pot (A9)

Denoting the relative momenta of quarks in the bargoérby
primes and noting thap;=p,;, p,=p, SO thatp;,=pi,
P1,=Pi5, giving p’3=—Py,+p’=—k—q and

m;+m,

m

k'=k— p'. (A10)

Calling ¢4 the spatial wave function in momentum space and
noting that wherp'; in Egs. (A6) and (A7) is replaced by
—k—q, the linear terms irk do not contribute in the spatial
integral and as such the right sides of E@6) and(A7) are

For the initial baryon, its rest frame is its center of massindependent of integration variablés p;,, and k’. The

frame so thatp;+p,+p3;=0 which impliesP;,= —ps;=k
and then

m;

—k,
m;+m,

P1=P1t

comparison of hadronic matrix elements in E¢al) and
(A2) with those of Eqs(A6) and(A7) give the relationg16)

and (17). The use of delta functions(p;—p’1), (p-

—p'2), (p1+p2+p3), and @'y +p’,+p'3—p’) reduce the
spatial integral to the form given in EQO).
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