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Relativistic effects in the pionium lifetime
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The pionium decay width, the measurement of which allows determination of the scattering amplitude of the
processw 7~ — 77 near threshold, is evaluated in the framework of chiral perturbation theory and the
relativistic bound state formalism of constraint theory. Corrections of dbder) are calculated with respect
to the conventional lowest-order formula, in which the strong interaction scattering amplitude has been evalu-
ated to two-loop order with charged pion masses. Strong interaction corrections from second-order perturbation
theory of the bound state wave equation are found to be of the order of 0.4%. Electromagnetic radiative
corrections, due to pion-photon interactions, are estimated to be of the ordé.d¥%. Electromagnetic mass
shift insertions in internal propagators produce a correction of the order of 0.3%. The correction due to the
passage from the strong interaction scattering amplitude evaluated with the mass parameter fixed at the charged
pion mass to the amplitude evaluated with the mass parameter fixed at the neutral pion mass is found to be of
the order of 6.4%. The overall uncertainty to these corrections is estimated to be of the order of 1.5%. The
numerical prediction for the pionium lifetime in the standard scheme of chiral perturbation theory is presented.
[S0556-282(98)05413-1

PACS numbsgs): 12.39.Fe, 11.10.St, 11.30.Rd, 13.40.Ks

[. INTRODUCTION the charged pion mass, anfd. _(0) is the Is—state wave
function of the pionium at the origifin x spacé. Character-
The mrm scattering amplitudg1] represents one of the istics of the pionium have been discussed in R21] and
main quantities that allow confrontation of predictions of the relevance of its lifetime for determining chiral symmetry
chiral perturbation theory2—4] with experiment. Unfortu-  breaking parameters has been outlined in R22]. While
nately, the lack of direct low energy data forces one to rethe above formula provides a relationship between the pi-
construct the low energy scattering amplitude from extrapoonium lifetime and the pion scattering lengths, it is desirable,
lations [5—7] from high energy dat#8] and from indirect for a precise theoretical interpretation of the experimental
information coming fromK,, decay[9], at the price of in- result, to have a knowledge of the possible corrections to it.
creasing error bars on numerical values. The 20% uncerfhis question was addressed recently in REI8—24.
tainty of the experimental value of the isospin z&aevave The purpose of the present paper is to evaluate the cor-
scattering length, obtained in this Way9,8=0.26i0.05 rections to formulg1.1) in the framework of S(R)XSU(2)
[6,10—13, does not allow one to draw a clear-cut conclusionchiral perturbation theory. Apart from relativistic kinematic
when the latter is compared with the theoretical prediction ofand mass shift corrections, they can be grouped into four
standard chiral perturbation theotyPT), which is 0.20 to categories(i) Corrections coming from second-order pertur-
the one-loop ordef3] and 0.217 to the two-loop ordé¢t3]. bation theory in the bound state wave equati@in. Contri-
From this viewpoint, the DIRAC experiment, which will butions originating from the electromagnetic radiative cor-
be realized at CERN in the near future and which aims atections due to pion-photon interactiorgi) Contributions
measuring the pion scattering lengths from the lifetime ofcoming from the electromagnetic mass shift corrections, due
pionium (7* 7~ atom) decaying intor°#° [14,15, might  to quark-photon interactions and acting through insertions of
provide a decisive improvement for the above comparisonthe O(e?p®) mass shift Lagrangian term in pion internal
(Results on previous experiments are presented in[Réf)  propagators(iv) Mass shift corrections with respect to the
The lowest-order expression of the pionium lifetime wasstrong interaction amplitude evaluated with the charged pion
established long ago in the nonrelativistic limit by variousmass.
methodq 17-20: The evaluation of the pionium bound state energy shift is
0 22 done in the framework of the constraint the¢87] method
1 r _16m [2Am; (8~ ay) 012 of the resolution of the Bethe-Salpeter equation, which can
w ° 9 m,+ m?+ |4+~ ()%, be considered as a variant of the quasipotential approach
i [28,29 and has been shown to provide a means of a covari-
Am_=m_+—m_, (1.1) ant treatment of the QED bound state problg80]. The
above corrections to the bound state energy shift are evalu-
whereay, is the (dimensionlessS-wave scattering length in  ated to the relative leading ordéx( ), wherea is the QED
the isospinl channel, usually evaluated in the literature with fine structure constant, the calculations being done with the
0(e?p? andO(e?p?) terms of the chiral effective Lagrang-

ian.
*Email address: jallouli@ipno.in2p3.fr Our results are the following. The corrections of the first
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the second type are shown to be free of infra-red enhancexternal particles is eliminated by means of a constraint

ment and are estimated to be of the order-d9.1%. The equation. For a two-particle system this is generally chosen

corrections of the third type are estimated to be of the ordein the form:

of 0.3%. The corrections of the fourth type are found to be of

the order of 6.4%. The overall uncertainty to these correc- C(P,p)=(p3—p3)—(mf—m3)~0. (2.1

tions, coming essentially from the uncertainties in the values

of the low energy coupling constants, is estimated to be of The two-particle Green’s function is projected on this hy-

the order of 1.5%. The relative smallness of these correctiongersurface and then iterated around it. At its pole positions,

confirms the stability of the lowest-order prediction for the the latter not being affected by the projection operatiad),

decay width. one establishes a three-dimensional eigenvalue equation that
The plan of the paper is the following. In Sec. II, the takes the form

properties of the constrained Bethe-Salpeter equation are _ _

briefly sketched. In Sec. I, the latter formalism is adapted to 9o "W =-Vv, (2.2

the case of the coupled channels of thé =~ and 7°=°

systems. In Sec. IV, the pionium lifetime expression in firstwhereg, * is the wave equation operator defined for two-

order of perturbation theory with respect to the strong interspinless particle systems by

actions with pion mass shift is established. The validity of

this formula up to the two-loop level of the strong interac- ~ 1

tions is shown in the Appendix. In Sec. V, the corrections 9o=" Hotie’ 23

due to second-order perturbation theory in the bound state

equation are evaluated. In Sec. VI, the radiative correctiongiere,H, is the Klein-Gordon operator of particle 1 or 2 in

due to the pion-photon interaction are evaluated to one-looghe presence of constrai® (they become equal in this
order in the tree approximation of the strong interactions. Incase:

Sec. VI, the electromagnetic mass shift corrections are cal-
culated. A summary of the results and a comparison with Ho=(pi—m?)|c=(p3—m))|c
other work are presented in Sec. VIII.

P2 1 (mi—m3)°
=Z—§(mi+m§)+T+pT2. (2.4

Il. THE CONSTRAINT THEORY BOUND STATE

WAVE EQUATION We use the notationsP=p;+p,, p=(P1—P2)/2, X=X,

The Bethe-Salpeter equatidi3l], which is the basic —Xz and the decompositions of four-vectors into transverse
bound state equation in quantum field theory, has been r&@nd longitudinal vectors with respect Ra
vealed inadequate for quantitative calculations vativari-
antpropagators. Two typical drawbacks are the following. In ~ d.=4d- P/\P?, Q,TLZ%—QLP,L/\/PT, r=v-x"
the nonrelativistic limit, the one-photdior one-particle ex- (2.5
change diagram yields relativistic corrections of ordar, 1/ -
instead of 1¢? [32]. In spectroscopic calculations, two- The operatog, above is defined up to possible finite renor-
photon exchange diagrams y|e|d Spurious infra-red |Ogarithmalizati0ns related to the finite partS of the individual par-
mic singularitied'33]. These effects are cancelled only with ticle propagator renormalizations; they will not show up,
the inclusion of higher order diagrams, a feature that enorhowever, to the approximations used throughout this wdrk.
mously complicates the use of the equation in perturbatioms the potential, related to the renormalized off-mass shell
theory. scattering amplitud@ by a Lippmann-Schwinger type equa-
In practice, the Bethe-Salpeter equation has been used tion:
QED in the Coulomb gauge, which is a noncovariant gauge.
Because of the instantaneous nature of the dominant part of e - i
the photon propagator, one is able to transform the original V=T+Vgel, T= ﬁﬂc’ (2.6
four-dimensional equation into a three-dimensional one and S
to avoid th_e previous d|_ff|cult|e$34]. prever, ?he latter where the indexC denotes the use of constrai@tl) (on the
gauge has its own limitations. It necessitates a different treat-

. _ 2 . .
ment of exchanged photons and of photons entering in radiae-Xternal lines off) ands=(p;+p,)”. (T is defined as the

tive corrections. Furthermore, additional complications aris amputated four-point connected Green's function multiplied

when QED is mixed with other interactions, where alread y the wave function renormalization factors of the external

In this respect, the constraint thedi37] method applied 9rams, where the external particles are submitted to the con-
to the resolution of the Bethe-Salpeter equation has beefraintC. The second term in the right-hand side of the first
shown to provide a satisfactory answer to the requirement o?f EQs. (2.6) generates an iteration series, the diagrams of
a covariant treatment of perturbation theory in the boungvhich are called “constraint diagrams,” where the integra-
state problenj30]. tions, because of the presence of the fagigr are three-

In constraint theory the relative energy variable of thedimensional, taking into account constrait
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As long as perturbation theory is concerned, Efj2) is  interaction, as well as the interference part between strong
equivalent in content to the exact Bethe-Salpeter equatiorand electromagnetic interactions.

W|th, however, a different arrangement of the perturbation In generaL potentiﬂ/ being energy dependent, the scalar
series. The constraint theory wave functignis related to  product of wave functions has a more complicated kernel
the Bethe-Salpeter wave functidnby means of the projec- than in the energy independent cd86]. The perturbation
tion of the latter on the constraint hypersurfdgel), but the  theory formulation in the case of energy dependent potentials
explicit form of this relationship will not be needed in the can be found in Ref[29] (valid for four- and three-
present work. Once Eq2.2) is solved with the exact poten- dimensional equatiofjsHowever, since in the present work
tial V, the Bethe-Salpeter wave functich can be recon- the zeroth-order potential is the energy independent Cou-
structed, through the iteration procedure, in terms of the conftomb potential2.7), the scalar product that should be used in
straint theory wave functio and can be shown to satisfy the perturbative calculations is the usual nonrelativistic one.
the Bethe-Salpeter equation with the exact irreducible kerndtnergy factors, present in higher-order potentials, should
K and the same energy eigenvalue as that of(Eg) [30]. then be expanded around their zeroth-order values.
Equation(2.2) satisfies the following four propertie$) In the rest of this work we shall use, for the evaluation of
Correct nonrelativistic limitSchralinger equatiop (ii) Cor-  the importance of various terms, the infra-red counting rules
rect one-body limit. When one of the masses becomes infief the QED bound state system. Let, for a given process 1
nite, one recovers the Dirac or Klein-Gordon equation in thet 2—3+4, s,t,u be the Mandelstam variables=(p;
presence of the static potentiéii) Correct Hermiticity and  +p,)2, t=(p;—ps)2, u=(p;—ps)2. We also define the
unitarity properties. Potentid/ is an irreducible kernel, in (C.m) momentum operators:
the sense that it is free of singularities in thehannel, at

least in the elastic unitarity region: the constraint diagrams b2 (g)— s 1, 5, (P3—Pp)
cancel the singularities of the reducible diagrams of(iv) ab(8)= 7~ 5 (Pat P+ 4
Correct QED spectroscopy. In particular, the constraint dia- 12 _

gram contributions remove all spurious singularitias the =-p° (ab=12or 34,

bound state regioncoming from T. More generally, the

2 2
leading effect of the sum of ali-photon exchange diagrams b2 (s)= S (m T m? )+ (mwa'mwb)z
(in the absence of radiative corrections of orderO(a?"), ab 4 2" T A 4s
where« is the fine structure constant.
~ _ A2 2 _ .2 2
In QED, g, undergoes a finite multiplicative renormaliza- T Pa™Mza=PoL =Moo (2.8
tion by a constant factor (£ y,) due to the off-mass shell o . o

The constanty, appears from the requirement that the onlythreshold value m?, is of order O(a?). The quantities
O(1/r) terms in the QED potential come from the one-b?% _(s), b3(s), bgﬁ,(s), t andu are of orderO(«?). The
photon exchange diagram. Its presence amounts to multiplyguantity bgyoo of the 7%7° system at the same energy is of
ing the potentialV by (1+1v;) and continuing the use of orderO(Am_/m.).

expression(2.3) for gy, the constanty; allowing the cancel-
lation of a spuriouO(a>) term[30]. The use of this finite lll. WAVE EQUATIONS OF THE =wta~
multiplicative constant, which tends to improve the perturba- AND 7%#° SYSTEMS
tive expansion of the potential, should not, however, have an ) . _
influence on physical quantitieén analogy with the pres- 0Inoorder to deal with the specific sectors of thé 7~ and _
ence of wave function renormalization constants mm- systems, we have to enlarge the spaces of potentials
Since in the present work we are interested by correction&nd wave functions considered in Sec. Il and adopt a two-
of order O(«) to the pionium bound state energy, we canchannel dgscrlptlon. The two-channel form_ahsm was consis-
from the start consider the pure QED potential in its nonrel{€Ntly applied to the bound state problem in R&6].
ativistic limit (Coulomb potentialand use the corresponding Y€ introduce a two-component wave functighas:
nonrelativistic wave functions for the zeroth-order approxi-

mations. The pure QED corrections in the chanmélr~ \I,:(\I”— (3.1)
— a7, being of ordeiO(«?) [30,35, will not be consid- Woo '
ered further.
The nonrelativistic Coulomb potential is here and define the potentid in matrix form in the correspond-
ing space:
_ a o _ MM o (Vi V.
Veou = =2 r "= my+m,’ @7 V:( \J;oo’i \;oo’i)z). (32

The rest of the potential in E¢2.6) will be treated as a The constraint propagatfg}o [Egs.(2.2), (2.3) and(2.6)]
perturbation. It contains the strong interaction part of#the  is now
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Yoo O 5o 0 —iT" =M, =ACs|tu)+A(ts,),
~ ~ __ 0,+—
[Qol= 1. » [90] 1_( “‘1) QTS TSt — S — At
0 5 90,00 0 290,00 IS 00= —iToos - = MEL go=A(slt,u),
33 TSt o= Mt o= As|t,u) + Act]s,u)
where the subscripts — and 00 have been associated with +A(ult,s), (3.6

go, in order to take account, when necessary, of the specific
free masses of the systems' 7~ and #°#° in formula

(2.3. The factor 1/2 in front of"gjo,oo has been introduced

and in terms of the isospin invariant amplitude8, they are

because of the identity of the particles in the corresponding 1 1 1
sector. T, = ET(2)+ ET(1)+ §T(°),
Let T+,Y+,, T+,Y00, T00,+* and TOO,OO (W|th M=
—iT) designate the scattering amplitudes of the processes 1 1
mtan = ataT, 7%7%— w77, etc. We use for our calcu- TS o= Tol, _=2TO— 2T,
lations the chiral effective Lagrangiari3,4] in the T3 3
SU(2)XSU(2) case. The scattering amplitude is obtained
from the amputated four-point Green’s function of pseudo- TStr. _ 2T(2 )4 1-|-(0) 3.7)
scalar densities, multiplied by the corresponding wave func- 0000 3 3 '

tion renormalization factors. _ _
The conventionakr scattering amplitudé\(s|t,u) is at ~ The scattering lengths are defined as
lowest orderO(p?):

—iT(s=4m2)=327a]_,. (3.9
1 - . .
A(s|t,u)= ?(S—ZmBO), Equations(2.6) take now the explicit forms
0
Vi o=Tho o +Voo 4 Gor Ty 4o
_ 2 A mu+md
Bo=—(0lqa|0)o/F5, m=——. (3.9 1 - -
+ §V+—,oogo,ooToo,+— ,
F, is the pion decay constarft, in the chiral limit (F, Vi 0=T4 00tV + Gos Ti 00

=92.4 MeV), m, andmy are the masses of the quartkand
d. At this order, the quark condensate parameﬁaBg takes
the valuem?2 in the standard scheme ofPT [3]. In the
generalized version ofPT [37,3§ it may take values be-

1 - o~
+ §V+ ~,0090,007 00,00,

tween 0 andmf,. We shall stick in the following to the V00,+—:?00,+—+Voo,+—§o,+—7r+—,+—
standard scheme. 1
We shall use for the fieIdU of the chiral effective La- + EVoo,ocﬁo,ooﬁ_oo,+— ,
grangian the representation
U T /1 v 35 V00,06~ T00.00" Yoo+~ 9o+ T +— 00
oti—-7 o= - =7, .
Fo FS 1 ~ o~
+ EVoo,ocgo,ooToo,oo- (3.9

where 7 are the Pauli matrices ang the pion fields. The

pseudoscalar densities are defined R3=iqys72q (a We isolate from the potentia¥ , _ . _ the Coulomb po-
=1,2,3), whereg are the quark fields. Their Green's func- tential part[Eq. (2.7)]:

tions are obtained by deriving the generating functional with .

respect to the pseudoscalar sources. In the representation Vi 4-=VeoutVio 4. (3.10
(3.5 and for theO(p?) Lagrangian the pseudoscalar densi-

ties P? are proportional to the fieldsr® by the common The wave equation&.2) then become

constant factor BoFg. In the higher-order Lagrangian terms

more complicated differences arise and they should be taken — 9o+ ¥ +-=(Veou + Vi + )W _+V _ oW,

into account. We shall draw Feynman diagrams with respect (3.11
to the pion fields72.
In the strong interaction limit and in the absence of iso- Ly 1V v. + 1V ¥
spin breaking, the amplitud&sabove are related to the con- ~90,0¥00= 5 Voo - ¥ - 2 00,007 00
ventional amplitude#\(s|t,u), etc., with the relations (3.12
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These two wave equations are characterized by the same
eigenvalueP?. Whenever not specified, all potentials will be - s —
considered at the pionium ground state c.m. eneAgyze-
roth order(Coulomb potential only it is:

_ Mg+ FIG. 1. A loop diagram and its constraint diagram, denoted by a
Po=2m,+— 4 a. (3.13 cross, in thes channel. The sum of the two diagrams is free of
singularities in thes channel.

For this value ofP,, the operatog, o in Eq. (3.12 has , ) , )
values in the scattering region of th 70 system and there- f|rst term is the scattering amphtgde. The latter can be spllt
fore it gives rise to a scattering state for the wave functiodt© tWo parts, the strong interaction part and the rest, which
W,. The energy shift of the pionium is obtained by first represents the contributions containing _electromagnetlc ef-
eliminating ¥ oo from Eq. (3.1 in terms of ¥, _ through fects. Among the latter, there is one piece which plays a

Eq.(3.12, using there the boundary condition thig is an crucial role; it is the quark-photorfor massive hadron-
outgoing 'wave due entirely to the presencelof photon interaction term in the chiral limit, which is respon-

The wave function¥y, can be expressed in terms of sible for the main par2t %f the pion mass differer{@@]. It
¥, _ by iterating Eq.(3.12 with its last term(proportional corresponds to th®(e“p”) term of the chiral effective La-

to Vgo oo This iteration, where the dominant contribution grangian with the expressiafC(QUQU'), whereC is an

comes from the strong interaction sector, when treated gIoL-mkr'OWn constant anqQ is the quark charge matrp40,41.

bally as a first-order perturbation, yields in the pionium USing for the fieldU the representatio(8.5), one finds

decay width expression the unitarity fact¢i8,2q [1 262C

+(2/9)(Am,/m,)(2a2+ad)?]"1; the correction term to e’C(QUQUN=— ——7" 7", 4.2
0™ do =

one, being of the order of Id, will be neglected in the 0

following. We thus obtain the wave equation

which shows that this term induces for the charged pions the
_ mass shift:

_go,i—\l’+7: VCouI.+v+—,+—

(Am2)q,=2€? 4.2

=2
1 ~ Fo
~ 5 V- .0090.00V00+— [V - - o . o o
which is nonvanishing in the chiral limit. Otherwise, it has
(3.14  no effect on the scattering amplitude in lowest or@ér also
Ref.[42]). [We emphasize that expressi4) of the latter
To the order of approximations we are working, the po-is also valid off the mass shell and does not depend on any
tentialsV, _ ., V,_goandVy,, _ are, inx-space, three- mass-shell prescriptionTherefore, the quark-photon inter-
dimensional delta functions and hence they project all mulaction term(4.1) acts essentially through insertions in the

tiplicative quantities on their values at the origin. The valuepion loop propagators, where the charged pion masses are

at the origin of the functiorgo o is calculated by Fourier Teplaced by theitalmos) physical masses. Because the pi-

transformation to momentum space and dimensional regulafnium lifetime evaluation is sensitive to the pion mass dif-

ization. Designating byAm_. the pion mass differenciEq. ~ ference, it is natural to incorporate from the start the quark-
: . .

(1.1)], one finds(with dimensional regularization photon interaction term(4.1) and its counterterms of the
higher-order Lagrangian in the strong interaction Lagrang-

~ i ian. With this prescription, the amplitud® is split into two
Goodr=0)=z— VAmM,(m,++my0). (319  terms:

— tr.+
This term induces an imaginary part to the pionium en- M= M+ MET, (4.3

rgy. . .
ergy where MM contains all interference terms between electro-

magnetic and strong interaction effects, except the lowest-
IV. LOWEST-ORDER FORMULA WITH MASS SHIFT order quark-photon interaction term and its counterterms,

We shall determine a lowest-order expression for the piyvhich are included, together with the strong interaction
onium decay width with the inclusion in it of the main part terms, inMs"-=47. _ -
of the pion mass shift. This formula will prove useful for the W& now turn to the evaluation of the two constraint dia-
evaluation of the various types of correction. It is obtaineddrams corresponding to the last two terms of the expression
by treating the last term of E3.14) in first order of pertur-  Of the potentialVoo . - [Eq. (3.9]. The evaluation of these
bation theory and by keeping in the potenthdd,  _ its dlagramg is done by first considering the potentials and am-
dominant part, which comes essentially from the strong inplitudes TS at the tree levelFig. 1) and calculating the
teractions. The expression &fy._ [Eq. (3.9] contains loop integrals with the physical pion masses. the com-
three terms. The second and third terms are the constraiments above It is found that the terms in the amplitudes
diagram contributions, which will be considered below. Theproportional tot, u, b? and bé yield, after integration, terms
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that are again of the same order and hence can be neglectgd; =p, =P, /2, p3 . =pa =P, /2, with P, =2m_+ and the
The leading terms are directly obtained by ignoring thekinetic energy operatofg'?| and|p’"?| have, in the bound

above terms in the amplitudes and integrating ayerOne  State, values of the order of magnitude@fa?), the mass-
finds: shell conditions in the above amplitude are

2 2 2 2 2 2
~ ~ ~ p :p :p :p :mﬂ_ , S:4m7r , t:u:o
T+*,+790,+7T+7,+7:—E —boj,(TJr,’Jr,)z, 17 F2mFe—ha + +

. 4.8

- - i - - With respect to the lowest-order formu(a.1), formula
T+ - oddo,00l 004+ - =+ 4 \/bg,ooT+—,00Too,+— (4.7) contains two corrections. The first one, which has a
(4.4) kinematic origin, is included in the square-root term. The
second one is included iMS'™"*97, where now, because of
(there are no integrations in the right-hand sided so forth  the pion mass difference, a modification occurs from the ex-

for the other amplitudes, it being clear thg ., _ yields a  Pression involving the scattering lengths calculated with the
real contribution ancﬁovoo an imaginary one. By the very strong interaction amplitude.

, : pe : ] In the remaining part of this paper we shall evaluate the
choice of the constraint propagat@s, the imaginary lrms o,y _corrections to the formuléd.?) as well as the modifi-

that arise from the constraint diagrams cancel similar termstions contained ipStr-+ay

coming from loop diagrams contained in the amplitudes
[the first terms of the right-hand sides of E¢8.9)]. There-
fore, these amplitudes are replaced by their real parts. Con-
cerning the real part of the constraint diagram, it is of order In this section, we evaluate the effects coming from the
O(a) and has the opposite value of tlt{«) part of the second-order perturbation theory treatment of the strong in-
deviation of the scattering amplitude from theé 7~ thresh-  teraction potential. At this order, it is the interference of the
old down to the pionium energy; it comes from the finite last two potential terms of Eq3.14) that contributes to the
non-analytic part of the unitarity loop, the polynomial partsimaginary part of the energy. We have to distinguish here
giving only contributions of orde®(«?) to the above devia- between the contributions of the discrete and continuum
tion. Hence, the real part of the constraint diagram shifts thetates of the pionium spectrum. We first consider the discrete
real part of the scattering amplitude to its value attier spectrum contribution.

threshold. We thus obtain

V. SECOND-ORDER PERTURBATION THEORY

0 ~0 2 A. Contribution of the discrete spectrum
VO =ReTY | _(s=4m’,), - ,

' ' Designating by, _ , (n=1) the zeroth order radial ex-
citation wave functions of the ground stdigis the relative
motion part of¥) and byE, the corresponding nonrelativis-
tic energies, the shift in the decay width is:

0 (0 2
VE)O),+ -= ReTE)O),+ —(s=4m_,),

Vg)%),oo: Re:i{o%),od s= 4m727+) . (4.5
2
The above property can also be generalized to the two-(Al)giscr. = ~1+-— do,od " =0)
loop level of the strong interaction amplitude. The details of ”
the derivation are presented in the Appendix. _ * l//i— ,(0)
The part of the potentia¥q, . — that will contribute to the XVEos Vi 4 9% _(0) 2 m
lowest-order expression of the decay width is then provided n=1 =0T En
by the real part of\35," 9 throughReT), _ . Defining (5.7)
T Using the nonrelativistic formulas
Po=Por—17, (4.6
2 2 33
B m_.«a 2 B m_a -
one finds the modified lowest-order expression of the pi- En=-— 4(n+1)% i n(0)= 8m(n+1)3 (n=0),
onium decay width: 5.2
(5.2
1 = 1 finds:
— =To=———5 (ReM 9y, _(0)]2 one finds.
- 0 647Tmi_+( 00+ )%l —(0)]
o — o 0 2
\/ZAmw Am.. (AD)diser. = = 7-MaV+ - +-To=73(2a0+ag)l’,
X m |1 2m ) (4.7) (5.3

whereReMS}{fﬂ’ is calculated at ther™ v~ threshold.(y  where in the last expression we have neglected the pion mass
is the relative motion part of.) Furthermore, because the difference and introduced the strong interaction scattering
external particle momenta are subjected to the constrainiengths(3.8).
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B. Contribution of the continuous spectrum 7°, ot wt L ot wt

For the evaluation of the contribution of the continuum
states, we introduce the nonrelativistic wave vector modulus
k=+Em, and normalize wave functions as: 0 - 0 _ -

J d®xfi, 00 (%) = 2w S(k— k). (5.4 (a) (b)

The shift in the decay width is then

— dk  [¥(0)]?
(AD)cont = _2F0V+—,+—f 27 (K2t m2aZd)”
(5.9
()
with [43]:
FIG. 2. Constraint diagrams the dominant part of which cancel
) 47m_ak the ultra-violet divergence of the continuum contribution in second-
|¢k(0)| :E [1—exp — mm_alk)]’ (5.6) order perturbation theory. Wavy lines are photons.

It is easily seen thatAT)..,, diverges linearly in the [00PS,m to the number of exchanged photons gnib the

ultra-violet region. In dimensional regularization, linear di- number of the constraint factog, .

vergences being equivalent to zero, the divergence that sur- We first consider the constraint diagram of Figc.2The

vives in Eq.(5.5) is logarithmic: corresponding potential at leading order(iis arbitrary co-
variant gauges

_ m_« k
(AF)CO”tkjw_2F0V+7'+7 A1 In(m_w)' (6.2 Vcc)c(),%r’liz)z_mwavoo,+—v+f,+f

-
The origin of this divergence is related to the singularity XJ dk 1 1

of the three-dimensional delta function that characterizes the (2m)° mb—pf -k J—KT2

potentials inx space. In quantum mechanics, potentials that -

are proportional to three-dimensional delta functions must be % arctan k

regularized through a renormalization of the coupling con- —bé'

stant[44] or a self-adjoint extension of the Hamiltonipb].

In both cases, an additional unknown parameter appears in e next consider the two constraint diagraamandb of

the spectrum. On the other hand, a bound state equatiofjg. 2. Since the amplitud(s|t,u) + A(t|s,u) has been fac-
based on field theory, should not introduce new unknowngreq out of the integrals, the two diagrams give equal con-
parameters into the set of parameters already defined or fixqglhytions. The four-dimensional loop corresponds to the
by the field theory itself. This is why one should expect theglectromagnetic radiative correction of the scalar vertex. Its
cancellation of the divergence.7) by some other terms expression will be calculated in Sec. VI. The contribution

(5.8

present in the potential. . resulting from the sum of the two diagran@ and (b) of
The constraint diagrams corresponding to the procesgig, 2 is, at leading order,
at @ —7%7% with one photon exchange and two loops
(Fig. 2 play this role. They have overall logarithmic diver- VLD _ 9\/C(212) (5.9
00, +— 00,+— - .

gences that cancel the one appearing A1), . There-
fore, these two types of contribution should be considered
together.

We now consider the contributions of the above constrainf
diagrams. At the vertexr* 7~ — 797, the amplitude that

The contribution to the shift in the decay width resulting
rom the three constraint diagrams of Fig. 2 is then

contributes isA(s|t,u) [Egs.(3.6) and (3.4)]; in lowest or- (AT)CRLH2D—2m algV,

der, it depends only on the variabteand therefore can be 3

factored out of the integrals. At the vertexX' 7~ — o " 7™, x dk ! 1

it is the amplitudeA(s|t,u)+A(t,|s,u) that contributes. (2m)° (K*+mZa?/4) k
However, the contribution of the variablg present in oK

A(t|s,u), is of orderO(a?) when considered in the bound ><arctar6 ) (5.10
state domain; therefore, it can be omitted and the amplitude me

A(s|t,u)+A(t|s,u) can also be factored out. We use for the
potentials arising from the constraint diagrams the notatiowhere we have replacedtb3=m2—p? by its eigenvalue
V§{u™P) | C referring to “constraint,”n to the number of mZa?/4.
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(AT) has an ultra-violet divergence that is the opposite VI ELECTROMAGNETIC RADIATIVE CORRECTIONS

C
of that of (AT")cont [EQ. (5.7]. Therefore, the sumAT) In this section we calculate the electromagnetic radiative

+(AT)¢ont is finite. One obtains corrections arising from pion-photon interaction and contrib-
(AT)C2L12) 4 (AT) uting to the amplitudeM®™ of the decompositiori4.3).
cont The Lagrangian corresponding to the pion-photon interac-
tion is obtained by appropriately incorporating in the exter-
nal vector current of the chiral effective Lagrangian the pho-
ton field. Using for the fieldJ the representatiofB.5), the
corresponding Lagrangian becomes in lowest order:

©

— 1
=2mwaF0V+,v+,EL dx

X
x°+1

2 X 2

X —arCtanX‘f‘—_ﬁ—_
T T l—e 27

1
L= E&Mﬂoa’uﬂo-l-(&’u-i‘ieAﬂ)W+(5#—i8A#)7T7
o -

~ —1.7m7,—77r0v+,,+,:1.1a(2a8+ ad)Ty.

1 1
mi(mm0+ 27t ) — = F , FRY

(5.11) 2 4" mv
[We have subtracted fromA()..n: its linear divergence, 1 B
which is null in dimensional regularizatidnThe constraint T 21-9 (9-A)%+ 8_FC2)(7;L(7702+27T+7T ) o+ (m?

diagrams have played the role of an effective cut-off of the

divergence of AT').on: - Had we cut the integral in E@5.5) B 1 - 04 = 0.0
at the valuk=m,_«, we would have found a result close to t2mta) - 8_Fg(2mB°)(7T +tamt o mw
that of Eq.(5.17).
In the previous cancellation mechanism of divergences +472772), (6.1

we used dimensional regularization and hence ignored linear . ) ] )
divergences. The latter are present in conventional calcul2MBo being defined in Eq(3.4).
tions of integrals and for such type of calculation they should We next consider th®(e’p?) counterterms present in the
be taken into account. The point is that in this case the corchiral effective Lagrangian. The complete expression of the
straint diagrams themselves are linearly divergent and theggorresponding SIB)XSU(3) Lagrangian in the Feynman
divergences should be isolated and grouped essentially wit#auge is given in Refl41], where the coefficients of the
those coming from second-order perturbation theory. It is novarious terms are designated W (i=1,...,17). These
difficult to show that the linear divergences cancel outterms are of two categories: those which are counterterms to
among themselves and the physical results are not affectdfie O(e’p®) Lagrangian(4.1) and the infinite parts of which
by their presence. The cancellation mechanism of diverare proportional taC, and those which are counterterms to
gences is therefore regularization scheme independent.  the radiative corrections of the pion-photon interaction.
The total amount of the strong interaction corrections isSince theO(e*p°) term is included in the Lagrangian con-
given by the sum of £@)g, [EQ. (5.3] and tributing to the amplitudeM®"* 97, so must be done with

(AT)C@L1+2) 4 (AT) one [EQ. (5.1D]. One obtains: the corresponding counterterms. Therefore we have to select
from the O(e’p?) Lagrangian those terms the infinite parts
(AT)sr.= (AT ) giser. +[(AT) gong + (AT) 211 2)] of which are not proportional to the constadt
The O(e?p?) Lagrangian in the S[(2)XSU(2) case was
=1.5a(2ag+ag)lo. (5.12  recently presented in Ref6, 47 (in the Feynman gauge

_ _ o 0. 2 Since we are treating in the present work the(@¢ase, we
The relative correction is[with 1.5(2a5+a5)=0.55  yse for our subsequent calculations the latter Lagrangian,

[3,11]] indicating, when necessary, the correspondence between the
(AT) SU(2) and SU3) coefficients.(We use the notations of Ref.
St 0.55¢=0.004. (5.13  [46]) The relevant part of this Lagrangian for our problem is
Iy (in standard notation
|
L =F2{,(QUQU'Y(a,Ua*UT) +k5((UTd,UQ)UT9*UQ) +(4,UUTQ)(a*UUTQ))

+ky(UT9,UQ)(a*UUTQ) + k- (QUQUN(xUT+Ux ™) +kg((UTx— x"U)(UTQUQ-QUTQU))
+Kio{ Q3)(3,Ua*UT) +ky( QA (xUT+U XN}, (6.2

whereQ is the quark charge matrix. The coefficiekthiave the following decompositions:
k= kMK (1), 6.3
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where\ has a pole id=4 dimensions,

— 1 1 1
=162 \a—a  2In@m+T"(1)+1) ), (6.4
and the coefficients have the valuef48]:
3 1
KZ:ZZ’ KSZ_Z! K4:_ZZ, K7:Z+ZZ,
L 21z 1z ¢ 65
Kg=g =4 K=~ 5375 KuT T 7B = Fg' (6.

The u dependence of the finite pakf(u) of k; is fixed by the prescription that its sum with the 4n¢) term of the
corresponding loop diagrams heindependent; the corresponding multiplicative coefficienk;is(3272). The Lagrangian
(6.2, together with the coefficient®.5), is associated with the SB)xXSU(2) version of the chiral effective Lagrangian of
Ref.[3], in which the multiplicative factors have been arranged so that the coeffitjdmsp the same values as those of the
0O(4) version[Egs.(7.D)—(7.3)].

The Lagrangiar(6.2) takes the following form in the representatié®5), keeping only pion fields that contribute to the
scattering problem to the present approximation:

10/ k 1/1 1
2p?) _ a2 2 0 p,0 - 02 - 02 -
LEPI=¢ (k2+ E(E—ka 3, T+ 20, m" ot +F_g Ea#w +0, (7w ))(E&“w +o4(mt ))
4¢? e’ - - e’ "
—ka27T+7T_(z9#7T0(9M7TO+2(9M7T+¢9M7T_)+ E2(2k3_k4)(7T+(9M7T_)(7T+z9'u’IT_)_E2(2k3+k4) FOﬁM’ITOaMWO
0 0 0

2

1 5e A 1
- 77028”770(9“770— 27t (9M7T03’U"7TO+ E&Mﬂ'oz&“ﬂ'oz—l— d,( w0 ot 77)} - ?(k7+ k11)8mBy > 7%+ a7t

1
FgﬂT+’7T_—7T+7T_ — 924 7T+77_”. (6.6)

2

2e?(1 3 .
—Fz— Z(k7—2k8)+ Z(k7+2k8) 8mB,
0

1
+ — (72427 77)?
8F;

The coefficients K,/10+k,o), ks and K7+ 2kg) contribute, at least concerning their infinite parts, only to the pion-photon
interaction effects, while the coefficients, ks, (k;+kq7) and k;—2kg) contribute to the quark-photon interaction effects
[insertions of the mass terfd.1)]. We shall admit that this separation also holds for their finite parts.

The O(e?p?) Lagrangian(6.2) introduces new terms into the relationships between the pseudoscalar densities and the pion
fields. These are:

Pa: ZBoFO

20e? atw
1+ T(k7+ k11)+4e2k8§ai_2e2((k7_2k8)+3(k7+ 2k8)) F2 7Ta, (67)
0

wherea=0,+,—. The three-pion term yields additional dia- discarded. One findén the Feynman gaugdor the renor-
grams for the scattering amplitude, which, however, contribsmalized Green’s functions the expressions:
ute only off the mass shell. The term proportional to the
coefficientkg alone contributes to both the pion-photon and . 2 0
: . : i1(2BgF)“(1—AZ°)
qguark-photon interaction effects. For this reason we shall Go%p)= - . —
separate this coefficient into two parts by writing, with an p?—(MZ+(Amio) ) tie
obvious notationkg=kg”+kg” . Although this separation is
ambiguous for the corresponding finite parts, it will not show 22
up in physical quantities. _A70_ _ 5% pr r 21
To obtain the renormalized Green'’s functions of the pseu- AZ'= 9 (kz 10639 +4€%ks,
doscalar densities due to pion-photon interaction, we select
among the above expressions the quantities proportional to 0e?
the relevant coefficients. Furthermore, since we only need in 2 _m2| 55 r 21
the present calculation the on-mass shell expression of the (AMz0) 7y =My 9 (kz +10k39) +4€%k3 |,
scattering amplitude, the three-pion term of E8}7) can be (6.8
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i(2BoF)2(1—AZ™")

G (p)= ,
(P) p2—(mfr+(Ami+)wy)+ie
Azt e Oy O Ma| @ M
=2t o 2 N
a [ (m? 2e? )
—E In F +1 —T(kz'f'ld(lo)
+8e%kg"",
Am2, ). —mz| & 3a(| 3T+1)
( mw+)m—mw E E n—

2e2 r r 2 r r
— 5 (Ky 10Kg) + 6€%(Kky+2kp)

(6.9

where we have defined

A2=m2—pZ.

w

(6.10

PHYSICAL REVIEW D 58 014011

0 at Fis T

(a) (h)
FIG. 3. One-photon exchange diagram in the presence of the
strong coupling@ and its constraint diagratti).

whereA(s|t,u) is defined in Eq(3.4), A is the vertex func-
tion of Fig. 3a) and A the contribution of the constraint
diagram arising from the interference term between the
strong interaction amplitude and one-photon exchange dia-
gram (Fig. 3b)). The leading-order expression Af is

c __@4ppe \E 2
A~(p1,p2)= 5 S b2 arctan —bg'
(6.13

The constraint diagram cancels a similar term preseni,in

The difference between the charged and neutral pioivhich, otherwise, would give a contribution of ord@(a®).

masses due to pion-photon interaction is:

(Am2) ., =(Am2.) 1= (AmZo) .,

LN

— 4e?k5+ 6e?(kh+ 2kg)} m2.  (6.1))

The Lagrangian(6.6) provides the following counter-
terms:

2.2
(Weo. 2 )y
-
=(2BgFo) B2 g (kat10kyo) —8ks|s
0

3 .
+8(k3+ Z(k7+2k8))2mBo . (6.14

To obtain the renormalized scattering amplitude of the
processr* ~ — w7, we consider the sum of the unrenor- These remove the divergences of the unrenormalized vertex
malized four-point vertex function and of the corresponding(6.12. The sum of the two quantities is then multiplied by

constraint diagram contribution:
[Woo,+ - +Wo5i ], = (2BoF o) ~“(1+4e?kg”) 2
XA(S|t,u)(1+A+A°),
(6.12

c(11Dy
[MOO,+—+M0(<),+—)]7T'}/_ F2

2

(s— mio) { a

the renormalized wave function renormalization factors
(2BoFo)*(1—AZ°%2)2(1—AZ*/2)? [Egs. (6.9), (6.9]. We
also incorporate in the mass term of the lowest-order ampli-
tude(3.4) the neutral pion mass shif6.8). The renormalized
scattering amplitude, together with the constraint diagram
contribution, is then:

K 2L 282 r r
—|+1]—4e k3—T(k2+1Oklo)

2m‘” 21,1 201" r
+2e F—S[Ze ks+3e“(k;+2Kkg)]. (6.15
The corresponding modification of the decay width is:
2 2
a 3a m:. 4e” | ; 16e” | o)1 r ;
(AF),TYZ —;—Z In 7 +1 —?(k2+10f<10)—T 3+4e (k7+2k8) FO- (6.16
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To estimate the correctiof6.16 one needs to know the the mass tern{4.1) in internal charged pion propagators.
values of the coefficientk". At this time they are not yet This will bring us to the strong interaction amplitude calcu-
well established, but several evaluations with different methiated with individual momenta fixed at the charged pion
ods exist and can be used to have an idea of the order afiass, but with the mass parameter fixed at the neutral pion
magnitude and sign of the correction. The correspondence ahass. In the second step, we shall determine the difference
the above coefficientk with the SUS3) coefficientsK is  between the latter amplitude and the one calculated with in-

(valid also for the finite paris dividual momenta and masses fixed at the charged pion
mass, with which the numerical values of the scattering
Ko+ 10ky0=12K; +10Ks5, k3=Ksg, lengths are calculated in the literat3,38,47.

For the evaluation of the effect of the insertions of the
mass shift term(4.1) the counterterm Lagrangians needed
here are the quark-photon part of the Lagrangidu2 and
the standar®(p*) Lagrangiar{3]; part of the latter survives

In Ref. [49], the K"'s have been evaluated using a reso-in the mass shift counterterms. We therefore begin by writ-
nance model for the saturation of sum rules. The correspondng the relevant part of this Lagrangian for our problesith
ing values are in units of I¢ and at the scalg=m,: K} standard notations
=—6.4,K;=6.4,K;=19.9, Kg=K§=K’,=0, K;;=0.6.

In Ref. [50] values of some of th&"'s have been evalu-
ated with the aid of the Ng-expansion method, the ex-
tended Nambu-Jona-Lasinio model and perturbative QCD. | |
The results are not completely compatible with those of Ref. 2 + top 3, ¢ 2
[49]. In particular it is foupno(atysimila? scales and in units of * 4 (9,UT0,U)(a"UTo"U)+ 16 (U+xuh
1073): Kg=—1.3, K/ ,=4.0; the other results involvi&"s |
with even indices. Estimates #f;, andK}; have been pre- + 2o x U +a,xa U, 7.0
sented in Ref[51] on the basis of sum rule analysis. The 4+~ #
value ofK, found there is compatible with that of R¢&0],
while for K/ ; the value 2.% 102 is found (with the choices
n=umo=my=ma/v2). The latter values, which affect the
combination k%+2kg), do not seem, however, to qualita-
;{/Iv\ftehlytﬁga\r/]a%?](:geo?st?]rgaége(;;ié?eenfsogfecélgjé? ewvgliar;[zﬁ v;/]herel)\ is.defined in Eq(6.4) and the coefficienty have
therefore present the numerical estimates with the valuetse values:
supplied by Ref[49]. Since there is not yet a definite con- 1 2 1
sensus on the numerical values of the coeffici&htand the =3, Y2730 V3T 5 v4=2. (7.3
corresponding uncertainties, we allow for a 100% uncer-
tainty in theglobal contributions of these coefficients in the . iha scattering problem the above Lagrangian becomes:
various expressions we encountaumerical evaluations of
differentk;’s are often correlated 4 1y

We find (with the mass scalp=m,): )= F—g(%WOWWO*‘ 29,7 " 7")

3 3
Z(k7+2k8):_§K8+KlO+Kll' (61D

|
= Zl <(9MUT(7MU>2

The coefficientd have the following decompositions:

L= yh+1{(w), (7.2

(Amﬁo)m= —0.01=0.01 MeV, X(&Vwoo—,vwo+ 2(9,,’7T+0"V777)

Am,+),,=0.43+0.10 MeV, |
( Y + F—24(r7ﬂ770r9,,770+ dymtam+a,ma,m)
(Am,),,=0.44£0.11 MeV, 0

X (09" 7O+ Fmt oV m + ot vt
(AT) ,

=~ 0.0015+0.0075. (6.18
0

s .
- F—Q;(zmso)z(w%r 27t 7). (7.4
0

We observe that the pion mass shift is of the order of 10%
of the observed mass shitm_=4.6 MeV and has the cor- This Lagrangian provides the following relationship between

rect order of magnitude for a@(e?p?) effect. the pseudoscalar densities and the pion fields:

VII. ELECTROMAGNETIC MASS SHIFT CORRECTIONS 25 - il 2
. Pa:(zBoFo) 1+ ?szo l__2 —|4o7 '7Ta.
This section is devoted to the evaluation of the electro- ° ° (7.5

magnetic mass shift corrections contained in the amplitude
ReMGg 97 [Egs.(4.7) and(4.8)]. We shall proceed in two  The three-pion term does not contribute to the present ap-
steps. First, we shall determine the effect of the insertions oproximation to the two-point Green’s function renormaliza-
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tion, but provides an additional contributiofe three- (AM2)q,=(AMZ.)q,— (AmZo)
propagator termto the four-point Green’s function. Also, e i A
the term proportional tb; in Eq. (7.1) provides in addition a

two-propagator term to the four-point Green’s function. c
These contributions should be taken into account for the off- =2e’—
mass shell expression of the scattering amplitude. Fo
The finite parts of wave function and mass renormaliza- c 1 m
tions proportional taC/F§ [in notations similar to those of —2e2m? { — (3 |n(_2 +1)
Egs.(6.8), (6.9)] are: Fo 167 Iz
AZ%= —2e2 Kl — K 20 + k' — (kL — 2k, (7.8
- =-—2e kz—k4—3(k7+kll) , 4~ (K7 8) |- .
2 _ oo C 1 ( (m | | |
(AM’o)q,= —2e°m7| — F4 1672 z\In Wz +1 To evaluate the change in the scattering amplitude due to
the pion mass shift4.2), we first calculate the pion loop
contributions with the physical pion masses in the internal
+ko—ky— (k74r ki) |, (7.6)  propagators. There are diagrams with tadpole loops at the

four-pion vertex and four diagrams with loops with two-pion

propagators, one with two charged pions, one with two neu-
+K, tral pions and two with one charged and one neutral pions.
To the contributions of these diagrams one adds the remain-
ing contributions of the pseudoscalar densities to the four-
point vertex functiofEgs.(6.7) and(7.5)]. The divergences

—AZt=-2¢? +1

cC 1 (I(m2
FA16m2\ "\ 1?2

20
- g(k;—i- ki) —4kgd”" -

— "

Fé 4 of the above contributions are cancelled by those of the
) counterterm Lagrangian®.6) (the part proportional to the
C 2C 1 m factor C/Fg) and(7.4). One multiplies the result by the wave
2 —0p2 " om2m2| S 7 r 0
(Am’+)q,=2€ F2 2e"m;, Fa 16777|n(? +ka function renormalization factors (AAZ%2)?> and (1

—AZ"%/2)? coming from the contribution$7.6), (7.7) and
from those of the strong interaction lin{i8] and isolates in
7.7 the resulting expression the part proportiona[lb:é. One
also incorporates in the mass term of the lowest-order ampli-
[We have also incorporated im\ (n? ~+)qy the lowest order tude(3.4) the neutral pion mass shif?.6). One finds in the
term (4.2)]. The difference between the charged and neutralimits t=u=0 [with the notationsm,=m_o and AmZ
pion masses due to quark-photon interaction is: =(Am2 “ay» EQ.(7.9)]:

10 r r r r
- §(k7+k11)_(k7_2k8) .

2
FO(AReMoo+-) =—L(s—m2)(s+ 2+ p5—2m?) Am”+7ze( - %(s)) | + ! 2
0 00+ -)ay= T 352 ™ P+ P2 | 2 Q" (s)—Q"(s) 16,25~ m2)

00, 2 1 2, 2,2, 2 Am;
—ReQ(s))Am; — 64772(p1+p2)(p3+p4) -

ko

+2e?F2(3k,— 2k!,) s— 2e?F3( 2k, — k) (p3

+p3) — 262F5(K5 — K — (Kj — 2kg))mZ — 2e2F §( 2K, — k) (s— m2) + 2e?F§(K, — 2kg) (p3+ pg
—2mZ) —4l5(p3+ pi—m2)AmZ — 21} (s—m2)AmZ, (7.9

where the functiorQ'(s) (12=+ — or 00 is:

( , Vasti(s) M Vs—(My—my) %+ 5= (my+ my)?

s Vs—(my—my)2—\s—(my+my)?

+—_4Sb%(3) {w—arct f( _4SbS(S)

s a s—(m2+m?)
1tm;
B Vasbp(s) In( V(my+my)?—s+ \/(ml—mz)z—s)

s V(mg+my)2—s—(m;—my)?—s

) —iw], (my+my)?<s,

Q'(s) =1 (M —my)?<s<(mi+m,)?%,  (7.10

s<(m;—my,)2.
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[Only relevant first-order terms inmf, have been kept in with the use of the relatiofi3] [the mass shiff7.6) of the
Eq. (7.9.] neutral pion mass has already been incorporated in the mass

With the mass shell conditions?=m’. (i=1,...,4) and Parameter of the lowest-order amplitutg4)]:
s=4mi+, the above expression becomes, to first order in m4 1 m2
Am?: m 0—2mBO+ 215+ 32W2In<7) . (7.14

4 42
Fo(AReMop,. —(S=4M’1))qy one finds for the shift at threshold from the amplitude calcu-

11m2 lated with the charged pion mass:
G > Am2— (415+61)m2Am? ,
™ (AReMog s —(S=4M_))am_
+2e2F2((k,— 2KY) + (K, — 2Kg))m2.. Am2[  m2 9 11 (m
(7.13) “ 22 |V el T e 2
The relationships between tlk¢'s and the S3) coeffi-
cientsK| [41] are (m is the kaon mags +415+ 12, (7.19
1 m2 str.
kh=K5+K§— s{In| — | +1],ky=—K, Designating byMg,: _ the strong interaction amplitude,
64m” u one has at thresholdgs. (3.6), (3.7) and (3.9)]:
r r 1 r r r 9 m2 str 2 32m 0 2
k5 + k11=§(6K8+5K9+5K10) 32072 In| —|+1], MOOV'+,(S=4mW)=T(ao—ao)str_, (7.16
3 m2 where thea’s are the scattering lengths calculated up to two
k7 —2kg=10Kg— Te.2\n z| +1f. (712 loops[13,39 of the chiral effective Lagrangian. In the stan-

dard scheme one has the va[@13]: (ad—a3)=0.258, ob-
The numerical values of the coefficierit$ presented in tained with charged pion masses. Equat{@ri9 yields the

Ref. [49] are, in units of 10° and at the scalg=m,: K} following corrections for the scattering lengths and the decay

__31 K;:'—Gz KL=8.6, Ki—KL =K~ 0. The alues  Width (we take Fo=88 MeV, m,+=139.57 MeV, Am,

of the coefficientd{ can be found in Ref{13]. They are in =4.6 MeV and a 100% uncertainty in thgs):

units of 10 % and at the scalg=m,: I1=~-5.4,1,=5.67, (A(aS—a2))am. = 0.0083+ 0.0008,
5=0.82,1,=5.6. As for theki's (cf. the end of Sec. | we “
allow for a 100% uncertainty in the global contributions of (AT)
thel{’s. One finds the following corrections in the scattering A, 0.064+ 0.006. (7.17
lengths and the decay width: Lo
(A(ag—aé))qf 0.0005+ 0.0003, The contribution of theD(p?) term represents 40% of this
correction, indicating an increase of its relative strength by a
(AT),, factor of 2 with respect to the corresponding situation in the
F—o =0.0035+0.0024. (7.13 amplitude; this might be understood as a consequence of the

increase of the powers of mass and momentum terms in
higher-order terms. In this case one should expect a correc-

Once the correctior7.11) due to the mass shifé.2) is  tion of the order of X5% coming from theO(p®) term,

separated, the amplitud@e M3 "9 reduces to thetrong which would bring the correctiori7.17) in the scattering

00,+ —
interaction amplitude calculated with individual momenta 'engths to 0.0095.

fixed at the charged pion maf&q. (4.8)] and the mass pa- . We also quote here for information the value of the effec—
~ ) . . . tive scattering length corresponding to the amplitude

rameter 2nB,, fixed at the neutral pion mass, after including ReMEU-+97 (4.7) [without the use of th@(e?p%) correc-

in it the neutral pion mass shift corrections calculated up tqQ 00+~ 6 j P

now. Numerical values of the strong interaction scattenngIlon coming from theO(p") term]

lengths are however calculated in the literature with the in-

2 0 2
- . aj—a =(ad—a ~HT(A(ap—a
dividual momenta and the mass parameter fixed at the (35~ 83)str. +ay= (85— Bo)str )+ (A(85= o) oy

charged pion maspl13,38,47. It is therefore necessary to +(A(aS—a3))am
evaluate the difference between these two amplitudes. It can 7
be obtained from th®(p*) off-mass shell expression of the —0.267+ 0.001. (7.18

scattering amplitude given in Reff3] [we neglect for the
moment the mass shift effect in ti@(p°) term]. Replacing [The inclusion of the estimate@(e?p*) correction coming
in the O(p?) term (3.4) the mass parameter in termsmeo from theO(p®) term would bring the central value to 0.2$8.
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It is also possible to extract the value of the const@nt the low energy coupling constantsandk; . Other (small)
from the pion mass shift formulé&.8). Taking into account uncertainties might come from higher loop effects not con-
the mass shifts due to pion-photon interacti®4 MeV, sidered in the pion-photon and quark-photon interactions,
Egs. (6.11) and (6.18] and to isospin breaking0.2 MeV  corresponding toO(e?p*) terms. The overall correction
[3,4]) and the observed pion mass differertée& MeV), one  [apart from the kinematic correction of E@.1)] is thus:
finds (Am.)4,=4.0 MeV, leading to:

_ -5 r

C=4.1x10" GeV. (7.19 +-=0.0700.015. 8.3
0

This value is in agreement with the central value found in

Ref. [50] at a slightly higher mass scalé4.2+ 1.5)>< 1073

GeV’, at »=0.85 Ge\l. The correspondin@(e?p®) mass Using (aJ—aj)=0.258[13], one finds for the lifetime the
shift is (Am,, )(e P)~3.6 MeV, the remaining 0.4 MeV be- Value:
ing produced by theDd(e?p?) correction[Eq. (7.8)], with

(Am;0)q,=—0.13 MeV. , 7=(2.97+0.05 %10 ¥ s, (8.4
Electromagnetic mass differences of pions and kaons

were recently evaluated by the Cottingham method in Ref.

[52]. to be compared with the value,=3.19x10 '°s found
from formula (1.1) using the same value obf—a3). The

VIIl. SUMMARY AND COMPARISON uncertainty in the resul{8.4) is the one contained in the

WITH OTHER WORK corrective effect$8.2) and does not include eventual uncer-

_ . tainties, expected to be of the order of a few percent, coming
The total amount of sizablé(«) corrections to the from the evaluation of strong interaction scattering lengths to
lowest-order formula of the pionium decay width can be repthe one- and two-loop orders, where one also meets low-

resented in the following form: energy coupling constants. These are not yet presented in the
literature in a systematic way, but the related question is
r=T 1- Am, ) ( 1+ (Ar)str.) under consideration by the authors of R@f3]. The uncer-
0 2m, + Ty tainty from the measurement efin the DIRAC experiment

is expected to be of the order of 10%.
1+ (AF)M) ( 1+ (Ar)qy) We now turn to a comparison of our results with those
Iy Iy obtained in other work. We note, as a general remark, that
xPT, which constitutes the main theoretical framework of the
(AF)Am,, problem, is not taken into account in the latter in a system-
Ty ' atic way.

In Ref.[24], the problem is analyzed with a coupled chan-
wherel', is the lowest-order decay width, E@..1), with the  nel potential model, the potentials being determined by the
strong interaction scattering lengths calculated up to twoinverse scattering method from the phase shifts. A very sen-
loop order of the chiral effective Lagrangian with chargedsitive result upon the numerical values of the pion masses is
pion masses; AI')s, is the correction arising from the found, a half-percent variation inducing a change of several
second-order perturbation theory contribution of the interacorders of magnitude in the pionium lifetime. The instability
tion potential; AT') ., arises from the radiative corrections of the result renders questionable the method of analysis that
due to pion-photon interaction; Aa") is the correction IS used. Ther-7 scattering amplitude being relativistic away
coming from the pion mass shift due to quark-photon interfrom threshold, it might be that the use of energy indepen-
action; (AF)Am is the correction coming from the shift in dent potentials in the inversion method is inadequate for the
the strong |nteract|on amplitude due to the change of thénvestlgatlon of the problem.
mass parameter value from the charged pion mass to t In Ref.[25], the authors develop a formalism based on the
neutral pion mass with individual momenta fixed at the ethe-Salpeter equation with the electromagnetic interaction

charged pion mass. The corresponding numerical values argPnsidered in the Coulomb gauge. A 1% effect is found for
the second-order perturbation theory correcti¢otber than
(AT, (AT) the radiative,_ mass shift, and retardatic_m correchiotts be
=0.004, ——=-0.001+0.007, compared with the 0.4% effect found in the present paper
o Lo (Sec. V. The signs of the effects are the same and the orders
A (AT) of magnitude comparable; however, in our result we do not
(AT)q, Am, have an infra-red logarithmic enhancement.
Ty =0.003+0.002, Ty =0.064+0.006, In Ref.[26], the author evaluates radiative corrections to
(8.2)  point-like pions. A 3% correction is found for the pionium
decay width. In the present wofiSec. V), we have found
where the uncertainties come from a conservative 100% urfor the equivalent quantity an effect that is very close to zero
certainty attached separately to the global contributions ofith a possible uncertainty of the order af0.75%. The

X

x| 1+ (8.1
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evaluation of the photop-meson transition effects in Ref.
[26] did not take, however, into account the constraints com-
ing from yPT.

In Ref. [23] (first pape) the electromagnetic corrections
due to the pion mass shift and the Coulomb potential are
evaluated using coupled Scklinger equations for the two-

channel system and determining the values of the strong in-
teraction potentials at threshold from thdT scattering
lengths. A correction of the order of 8% is found for the

pionium decay width. Our evaluation of similar effects
which is of the order of 7% is in agreement with this result.
In the second paper, using a different interpretation of the
pion mass shift effect, a correction with the opposite sign to
the above is found. This sign is not, however, compatible
with the predictions ofyPT, as is easily seen from the
lowest-order amplitud€3.4) [42]. The higher-order correc-
tions enhance the latter effect, as is found in R&7] and in
Sec. VII of the present paper. Therefore, the interpretation
given in the first paper seems to us the closest one tgRie
framework.

We conclude in general that the overall 7% dynamical
corrections to the conventional lowest-order formula of the
pionium decay width found in the present paper, together
with an uncertainty of 1.5%, underline the stability of the
lowest-order predictions, bringing at the same time theoreti-
cal support to the feasibility of the experiment, and provide a
precise basis for a comparison of the prediction/®f with
the experimental result.

(a)

& 2
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APPENDIX: TWO-LOOP DIAGRAMS
. . . . (d)
In this appendix we generalize the validity of the lowest-

order formula established in Sec. [¥q. (4.7)] to the two- FIG. 4. Two-loop diagrams having constraint diagram counter-
loop level. parts.

The main ingredient of the proof is already met at the
one-loop level and can be summarized as follows. In the  Aq(M) 4+ pfCL0D= pqH 4 gL 4 pgCL0D= pq(L)
vicinity of the two-pion threshold, the strong interaction uni- (A1)
tarity one-loop amplitudéwith the pion mass shift included
in) can be decomposed into an analytic functioti}) of the  The deviation of the analytic pieca/ (%), from the pionium
real variables?(s), t andu and a non-analytic part\((}),  energy to ther 7~ threshold is of orde©(«?) and hence
(essentially proportional tg/ — boz). (The analyticity of/\/lgln? Mgln) can be replaced by its value at threshold:
in t andu near threshold is due to the absence of infra-red
singularities in the strong interaction amplitude with massive M. (b3 ,t,u)= MY (s=4m’, ,t=0u=0)+0(a?).
pions) The constraint diagram amplitud#/°(*:%% [the no- (A2)
tation being explained before E¢p.8)], has the property of
cancelling the nonanalytic part(%)_ | of the one-loop am- Two cases must be distinguished, depending on whether the

nan.
plitude (sum of the two diagrams of Fig,):1 loop is made ofr* 7~ or of #%#°. In the first case £ 7 -

014011-15



H. JALLOULI AND H. SAZDJIAN PHYSICAL REVIEW D 58 014011

|00p)’ the nonana|ytic piece/’\/lgla)n , and the constraint am- culations. For the latter, one has the same results as in the

plitude, MC%1) are real and separately vanish at theone-loop caséFig. 1). . .
7"~ threshold and therefore the value 61(} at thresh- In the first diagram of Fig. @), the internal propagator is
old coincides with that of the one-loop amp"'tudd(l) at moc_i|f|ed with the |ncIuS|o.n of the self-energy cprrecnon
threshold, which is real. In the second casen -loop), ~ (Which must also be done in the other propagaf®his fea-
MD and MCALO1) gre imaginary and do not vanish at the tUre does not qualitatively change the singularities of the
#m threshold: the value OMgln) then coincides with the dlagram with respect to the one-lopp case, for these depend
real part of the one-loop amplitudet) at threshold. There- ess_en_nally on the ma_ss-she_ll cqnd|t|on of the_ internal loops.
fore, in all cases we have: A similar self-energy inclusion in the constraint propagator
[Eg. (2.3]] (second diagrajnensures the cancellation of the
singularities of the first diagram and the reasonings of the
one-loop case can be repeatéthe mass shift coming from
the above self-energy correction can be incorporated in the

This property can be used for the analysis of two-Ioopr,naSS term uged n the constraint propaggg)rWave func-'
diagrams. It is clear that not all two-loop diagrams necessition renormalization constants should not influence physical

tate a detailed study: those not having singularities inghe "esults) _ o
channel are analytic in the vicinity of the two-pion threshold N the diagrams of Fig. @), the constraint diagram, cor-
and real; since in this case their deviation from the thresholdesponding to the first loop, cancels the singularities of the
value is of Ordero(az)' they can |mmed|ate|y be rep'aced first |00p of the first diagram. The second |00p, which is on
by their value at ther™ 7~ threshold. the right of each diagram, is free of singularities in the
The typical diagrams involved in this analysis are pre_channel and is also free of infra-red singularit(esv mass-
sented in Fig. 4. less particles Hence, the sum of the two diagrams is ana-
The sum of the four diagrams of Fig(a} (where the loop  Iytic in the vicinity of the two-pion threshold and the previ-
pions are the same in the four diagrarissfree of singulari-  0ous results are found again.
ties in thes channel and is represented in the vicinity of the ~ There are also diagrams with three internal pion propaga-
two-pion threshold by a real analytic function. The value oftors, in which three external pions join each other at one
the latter at the pionium energy differs from its value at thevertex and a single external pion is attached at the other
7~ threshold by aD(«?) term; hence it can be replaced vertex. Such diagrams have singularities g (3m,)? (i
by its value at the two-pion threshold. When the loops con=1, ... ,4). Forp;’s in the vicinity of the mass shell, as is
tain at least one pair of "7, this value coincides with the the case in the present problem, these diagrams are free of
real part of the two-loop amplituddirst diagram at thresh-  singularities and are analytic ®t,u.
old. If the two loops correspond to neutral pions, then this The remaining two-loop diagrams do not have singulari-
value differs from the real part of the amplitude at thresholdties in thes channel and the above diagrams exhaust the
by a factor that is proportional to the product of the imagi-cases where constraint diagrams occur. The result found in
nary parts of each loofactually cancelled by the last con- Sec. IV[Eq. (4.7)] can therefore be generalized to the two-
straint diagram and hence to Am,)2. This factor contrib- loop level.
utes with a relative order of magnitude of 0and can be At the three-loop level, a qualitative change appears with
neglected. Therefore, the sum of the four diagrams at théhe occurrence of inelasticities through the four-pion inter-
pionium energy is equivalent to the real part of the two-loopmediate states. The constraint propag#fo8) is no longer
amplitude(first diagram at thew " 7~ threshold. sufficient by itself to cancel the singularities of the scattering
In diagrams of Fig. &), the tadpole diagram factorizes at amplitude. In this case, new pieces should be added to it to
the vertex and does not interfere with the loop diagram caltake into account the inelasticity effects.

MV + MELOY=Re MV (s=4m’., t=0u=0).
(A3)
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