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Relativistic effects in the pionium lifetime

H. Jallouli* and H. Sazdjian†
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~Received 17 November 1997; published 28 May 1998!

The pionium decay width, the measurement of which allows determination of the scattering amplitude of the
processp1p2→p0p0 near threshold, is evaluated in the framework of chiral perturbation theory and the
relativistic bound state formalism of constraint theory. Corrections of orderO(a) are calculated with respect
to the conventional lowest-order formula, in which the strong interaction scattering amplitude has been evalu-
ated to two-loop order with charged pion masses. Strong interaction corrections from second-order perturbation
theory of the bound state wave equation are found to be of the order of 0.4%. Electromagnetic radiative
corrections, due to pion-photon interactions, are estimated to be of the order of20.1%. Electromagnetic mass
shift insertions in internal propagators produce a correction of the order of 0.3%. The correction due to the
passage from the strong interaction scattering amplitude evaluated with the mass parameter fixed at the charged
pion mass to the amplitude evaluated with the mass parameter fixed at the neutral pion mass is found to be of
the order of 6.4%. The overall uncertainty to these corrections is estimated to be of the order of 1.5%. The
numerical prediction for the pionium lifetime in the standard scheme of chiral perturbation theory is presented.
@S0556-2821~98!05413-7#
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I. INTRODUCTION

The pp scattering amplitude@1# represents one of th
main quantities that allow confrontation of predictions
chiral perturbation theory@2–4# with experiment. Unfortu-
nately, the lack of direct low energy data forces one to
construct the low energy scattering amplitude from extra
lations @5–7# from high energy data@8# and from indirect
information coming fromKl4 decay@9#, at the price of in-
creasing error bars on numerical values. The 20% un
tainty of the experimental value of the isospin zeroS-wave
scattering length, obtained in this way,a0

050.2660.05
@6,10–12#, does not allow one to draw a clear-cut conclusi
when the latter is compared with the theoretical prediction
standard chiral perturbation theory~xPT!, which is 0.20 to
the one-loop order@3# and 0.217 to the two-loop order@13#.

From this viewpoint, the DIRAC experiment, which wi
be realized at CERN in the near future and which aims
measuring the pion scattering lengths from the lifetime
pionium ~p1p2 atom! decaying intop0p0 @14,15#, might
provide a decisive improvement for the above comparis
~Results on previous experiments are presented in Ref.@16#.!

The lowest-order expression of the pionium lifetime w
established long ago in the nonrelativistic limit by vario
methods@17–20#:

1

t0
5G05

16p

9
A2Dmp

mp1

~a0
02a0

2!2

mp1
2 uc12~0!u2,

Dmp5mp12mp0, ~1.1!

wherea0
I is the ~dimensionless! S-wave scattering length in

the isospinI channel, usually evaluated in the literature w
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the charged pion mass, andc12(0) is the 1s–state wave
function of the pionium at the origin~in x space!. Character-
istics of the pionium have been discussed in Ref.@21# and
the relevance of its lifetime for determining chiral symmet
breaking parameters has been outlined in Ref.@22#. While
the above formula provides a relationship between the
onium lifetime and the pion scattering lengths, it is desirab
for a precise theoretical interpretation of the experimen
result, to have a knowledge of the possible corrections to
This question was addressed recently in Refs.@23–26#.

The purpose of the present paper is to evaluate the
rections to formula~1.1! in the framework of SU~2!3SU~2!
chiral perturbation theory. Apart from relativistic kinemat
and mass shift corrections, they can be grouped into f
categories:~i! Corrections coming from second-order pertu
bation theory in the bound state wave equation.~ii ! Contri-
butions originating from the electromagnetic radiative c
rections due to pion-photon interactions.~iii ! Contributions
coming from the electromagnetic mass shift corrections,
to quark-photon interactions and acting through insertions
the O(e2p0) mass shift Lagrangian term in pion intern
propagators.~iv! Mass shift corrections with respect to th
strong interaction amplitude evaluated with the charged p
mass.

The evaluation of the pionium bound state energy shif
done in the framework of the constraint theory@27# method
of the resolution of the Bethe-Salpeter equation, which c
be considered as a variant of the quasipotential appro
@28,29# and has been shown to provide a means of a cov
ant treatment of the QED bound state problem@30#. The
above corrections to the bound state energy shift are ev
ated to the relative leading orderO(a), wherea is the QED
fine structure constant, the calculations being done with
O(e2p0) andO(e2p2) terms of the chiral effective Lagrang
ian.

Our results are the following. The corrections of the fi
type are found to be of the order of 0.4%. The corrections
© 1998 The American Physical Society11-1
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the second type are shown to be free of infra-red enha
ment and are estimated to be of the order of20.1%. The
corrections of the third type are estimated to be of the or
of 0.3%. The corrections of the fourth type are found to be
the order of 6.4%. The overall uncertainty to these corr
tions, coming essentially from the uncertainties in the val
of the low energy coupling constants, is estimated to be
the order of 1.5%. The relative smallness of these correct
confirms the stability of the lowest-order prediction for t
decay width.

The plan of the paper is the following. In Sec. II, th
properties of the constrained Bethe-Salpeter equation
briefly sketched. In Sec. III, the latter formalism is adapted
the case of the coupled channels of thep1p2 and p0p0

systems. In Sec. IV, the pionium lifetime expression in fi
order of perturbation theory with respect to the strong int
actions with pion mass shift is established. The validity
this formula up to the two-loop level of the strong intera
tions is shown in the Appendix. In Sec. V, the correctio
due to second-order perturbation theory in the bound s
equation are evaluated. In Sec. VI, the radiative correcti
due to the pion-photon interaction are evaluated to one-l
order in the tree approximation of the strong interactions
Sec. VII, the electromagnetic mass shift corrections are
culated. A summary of the results and a comparison w
other work are presented in Sec. VIII.

II. THE CONSTRAINT THEORY BOUND STATE
WAVE EQUATION

The Bethe-Salpeter equation@31#, which is the basic
bound state equation in quantum field theory, has been
vealed inadequate for quantitative calculations withcovari-
ant propagators. Two typical drawbacks are the following.
the nonrelativistic limit, the one-photon~or one-particle! ex-
change diagram yields relativistic corrections of order 1c,
instead of 1/c2 @32#. In spectroscopic calculations, two
photon exchange diagrams yield spurious infra-red logar
mic singularities@33#. These effects are cancelled only wi
the inclusion of higher order diagrams, a feature that en
mously complicates the use of the equation in perturba
theory.

In practice, the Bethe-Salpeter equation has been use
QED in the Coulomb gauge, which is a noncovariant gau
Because of the instantaneous nature of the dominant pa
the photon propagator, one is able to transform the orig
four-dimensional equation into a three-dimensional one
to avoid the previous difficulties@34#. However, the latter
gauge has its own limitations. It necessitates a different tr
ment of exchanged photons and of photons entering in ra
tive corrections. Furthermore, additional complications ar
when QED is mixed with other interactions, where alrea
covariant propagators are present.

In this respect, the constraint theory@27# method applied
to the resolution of the Bethe-Salpeter equation has b
shown to provide a satisfactory answer to the requiremen
a covariant treatment of perturbation theory in the bou
state problem@30#.

In constraint theory the relative energy variable of t
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external particles is eliminated by means of a constra
equation. For a two-particle system this is generally cho
in the form:

C~P,p![~p1
22p2

2!2~m1
22m2

2!'0. ~2.1!

The two-particle Green’s function is projected on this h
persurface and then iterated around it. At its pole positio
the latter not being affected by the projection operation~2.1!,
one establishes a three-dimensional eigenvalue equation
takes the form

g̃0
21C52ṼC, ~2.2!

where g̃0
21 is the wave equation operator defined for tw

spinless particle systems by

g̃052
1

H01 i e
. ~2.3!

Here,H0 is the Klein-Gordon operator of particle 1 or 2 i
the presence of constraintC ~they become equal in this
case!:

H0[~p1
22m1

2!uC5~p2
22m2

2!uC

5
P2

4
2

1

2
~m1

21m2
2!1

~m1
22m2

2!2

4P2 1pT2. ~2.4!

We use the notations:P5p11p2 , p5(p12p2)/2, x5x1
2x2 and the decompositions of four-vectors into transve
and longitudinal vectors with respect toP:

qL5q•P/AP2, qm
T5qm2qLPm /AP2, r 5A2xT2.

~2.5!

The operatorg̃0 above is defined up to possible finite reno
malizations related to the finite parts of the individual pa
ticle propagator renormalizations; they will not show u
however, to the approximations used throughout this workṼ
is the potential, related to the renormalized off-mass sh
scattering amplitudeT by a Lippmann-Schwinger type equa
tion:

Ṽ5T̃1Ṽg̃0T̃, T̃5
i

2As
TuC , ~2.6!

where the indexC denotes the use of constraint~2.1! ~on the
external lines ofT! and s5(p11p2)2. ~T is defined as the
amputated four-point connected Green’s function multipl
by the wave function renormalization factors of the exter
particles.! The amplitudeT̃ contains the usual Feynman dia
grams, where the external particles are submitted to the c
straintC. The second term in the right-hand side of the fi
of Eqs. ~2.6! generates an iteration series, the diagrams
which are called ‘‘constraint diagrams,’’ where the integr
tions, because of the presence of the factorg̃0 , are three-
dimensional, taking into account constraintC.
1-2
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RELATIVISTIC EFFECTS IN THE PIONIUM LIFETIME PHYSICAL REVIEW D58 014011
As long as perturbation theory is concerned, Eq.~2.2! is
equivalent in content to the exact Bethe-Salpeter equat
with, however, a different arrangement of the perturbat
series. The constraint theory wave functionC is related to
the Bethe-Salpeter wave functionF by means of the projec
tion of the latter on the constraint hypersurface~2.1!, but the
explicit form of this relationship will not be needed in th
present work. Once Eq.~2.2! is solved with the exact poten
tial Ṽ, the Bethe-Salpeter wave functionF can be recon-
structed, through the iteration procedure, in terms of the c
straint theory wave functionC and can be shown to satisf
the Bethe-Salpeter equation with the exact irreducible ke
K and the same energy eigenvalue as that of Eq.~2.2! @30#.

Equation~2.2! satisfies the following four properties:~i!
Correct nonrelativistic limit~Schrödinger equation!. ~ii ! Cor-
rect one-body limit. When one of the masses becomes
nite, one recovers the Dirac or Klein-Gordon equation in
presence of the static potential.~iii ! Correct Hermiticity and
unitarity properties. PotentialṼ is an irreducible kernel, in
the sense that it is free of singularities in thes channel, at
least in the elastic unitarity region: the constraint diagra
cancel the singularities of the reducible diagrams ofT̃. ~iv!
Correct QED spectroscopy. In particular, the constraint d
gram contributions remove all spurious singularities~in the
bound state region! coming from T̃. More generally, the
leading effect of the sum of alln-photon exchange diagram
~in the absence of radiative corrections! is of orderO(a2n),
wherea is the fine structure constant.

In QED, g̃0 undergoes a finite multiplicative renormaliz
tion by a constant factor (11g1) due to the off-mass she
treatment of the Lippmann-Schwinger type equation~2.6!.
The constantg1 appears from the requirement that the on
O(1/r ) terms in the QED potential come from the on
photon exchange diagram. Its presence amounts to mult
ing the potentialṼ by (11g1) and continuing the use o
expression~2.3! for g̃0 , the constantg1 allowing the cancel-
lation of a spuriousO(a3) term @30#. The use of this finite
multiplicative constant, which tends to improve the perturb
tive expansion of the potential, should not, however, have
influence on physical quantities~in analogy with the pres-
ence of wave function renormalization constants!.

Since in the present work we are interested by correcti
of order O(a) to the pionium bound state energy, we c
from the start consider the pure QED potential in its nonr
ativistic limit ~Coulomb potential! and use the correspondin
nonrelativistic wave functions for the zeroth-order appro
mations. The pure QED corrections in the channelp1p2

2p1p2, being of orderO(a2) @30,35#, will not be consid-
ered further.

The nonrelativistic Coulomb potential is here

VCoul.522m
a

r
, m5

m1m2

m11m2
. ~2.7!

The rest of the potential in Eq.~2.6! will be treated as a
perturbation. It contains the strong interaction part of thepp
01401
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interaction, as well as the interference part between str
and electromagnetic interactions.

In general, potentialṼ being energy dependent, the sca
product of wave functions has a more complicated ker
than in the energy independent case@30#. The perturbation
theory formulation in the case of energy dependent poten
can be found in Ref.@29# ~valid for four- and three-
dimensional equations!. However, since in the present wor
the zeroth-order potential is the energy independent C
lomb potential~2.7!, the scalar product that should be used
the perturbative calculations is the usual nonrelativistic o
Energy factors, present in higher-order potentials, sho
then be expanded around their zeroth-order values.

In the rest of this work we shall use, for the evaluation
the importance of various terms, the infra-red counting ru
of the QED bound state system. Let, for a given proces
12→314, s,t,u be the Mandelstam variables:s5(p1
1p2)2, t5(p12p3)2, u5(p12p4)2. We also define the
~c.m.! momentum operators:

bab
2 ~s!5

s

4
2

1

2
~pa

21pb
2!1

~pa
22pb

2!2

4s

52pT2 ~a,b51,2 or 3,4!,

b0,ab
2 ~s!5

s

4
2

1

2
~mpa

2
1mpb

2
!1

~mpa
2 -mpb

2
!2

4s

5paL
2 2mpa

2
5pbL

2 2mpb
2 . ~2.8!

In the pionium state (p1p2), the deviation ofs from the
threshold value 4mp1

2 is of order O(a2). The quantities
b12

2 (s), b00
2 (s), b0,12

2 (s), t andu are of orderO(a2). The
quantity b0,00

2 of the p0p0 system at the same energy is
orderO(Dmp /mp).

III. WAVE EQUATIONS OF THE p1p2

AND p0p0 SYSTEMS

In order to deal with the specific sectors of thep1p2 and
p0p0 systems, we have to enlarge the spaces of poten
and wave functions considered in Sec. II and adopt a tw
channel description. The two-channel formalism was con
tently applied to the bound state problem in Ref.@36#.

We introduce a two-component wave functionC as:

C5S C12

C00
D ~3.1!

and define the potentialṼ in matrix form in the correspond
ing space:

Ṽ5S V12,12 V12,00

V00,12 V00,00
D . ~3.2!

The constraint propagatorg̃0 @Eqs.~2.2!, ~2.3! and ~2.6!#
is now
1-3
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@ g̃0#5S g̃0,12 0

0
1

2
g̃0,00

D , @ g̃0#215S g̃0,12
21 0

0 2g̃0,00
21 D ,

~3.3!

where the subscripts12 and 00 have been associated w
g̃0 , in order to take account, when necessary, of the spe
free masses of the systemsp1p2 and p0p0 in formula
~2.3!. The factor 1/2 in front ofg̃0,00 has been introduced
because of the identity of the particles in the correspond
sector.

Let T12,12 , T12,00, T00,12 and T00,00 ~with M[
2 iT! designate the scattering amplitudes of the proces
p1p2→p1p2, p0p0→p1p2, etc. We use for our calcu
lations the chiral effective Lagrangian@3,4# in the
SU~2!3SU~2! case. The scattering amplitude is obtain
from the amputated four-point Green’s function of pseud
scalar densities, multiplied by the corresponding wave fu
tion renormalization factors.

The conventionalpp scattering amplitudeA(sut,u) is at
lowest orderO(p2):

A~sut,u!5
1

F0
2 ~s22m̂B0!,

B052^0uq̄qu0&0 /F0
2 , m̂5

mu1md

2
. ~3.4!

F0 is the pion decay constantFp in the chiral limit (Fp

592.4 MeV),mu andmd are the masses of the quarksu and
d. At this order, the quark condensate parameter 2m̂B0 takes
the valuemp

2 in the standard scheme ofxPT @3#. In the
generalized version ofxPT @37,38# it may take values be
tween 0 andmp

2 . We shall stick in the following to the
standard scheme.

We shall use for the fieldU of the chiral effective La-
grangian the representation

U5s1 i
p

F0
•t, s5A12

p2

F0
2, ~3.5!

where t are the Pauli matrices andp the pion fields. The
pseudoscalar densities are defined asPa5 i q̄g5taq (a
51,2,3), whereq are the quark fields. Their Green’s fun
tions are obtained by deriving the generating functional w
respect to the pseudoscalar sources. In the represent
~3.5! and for theO(p2) Lagrangian the pseudoscalar den
ties Pa are proportional to the fieldspa by the common
constant factor 2B0F0 . In the higher-order Lagrangian term
more complicated differences arise and they should be ta
into account. We shall draw Feynman diagrams with resp
to the pion fieldspa.

In the strong interaction limit and in the absence of is
spin breaking, the amplitudesT above are related to the con
ventional amplitudesA(sut,u), etc., with the relations
01401
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2 iT12,12
str. 5M12,12

str. 5A~sut,u!1A~ tus,u!,

2 iT12,00
str. 52 iT00,12

str. 5M12,00
str. 5A~sut,u!,

2 iT00,00
str. 5M00,00

str. 5A~sut,u!1A~ tus,u!

1A~uut,s!, ~3.6!

and in terms of the isospin invariant amplitudesT(I ), they are
@5#

T12,12
str. 5

1

6
T~2!1

1

2
T~1!1

1

3
T~0!,

T12,00
str. 5T00,12

str. 5
1

3
T~0!2

1

3
T~2!,

T00,00
str. 5

2

3
T~2!1

1

3
T~0!. ~3.7!

The scattering lengths are defined as

2 iT ~ I !~s54mp
2 !532pal 50

I . ~3.8!

Equations~2.6! take now the explicit forms

V12,125T̃12,121V12,12g̃0,12T̃12,12

1
1

2
V12,00g̃0,00T̃00,12 ,

V12,005T̃12,001V12,12g̃0,12T̃12,00

1
1

2
V12,00g̃0,00T̃00,00,

V00,125T̃00,121V00,12g̃0,12T̃12,12

1
1

2
V00,00g̃0,00T̃00,12 ,

V00,005T̃00,001V00,12g̃0,12T̃12,00

1
1

2
V00,00g̃0,00T̃00,00. ~3.9!

We isolate from the potentialV12,12 the Coulomb po-
tential part@Eq. ~2.7!#:

V12,125VCoul.1V̄12,12 . ~3.10!

The wave equations~2.2! then become

2g̃0,12
21 C125~VCoul.1V̄12,12!C121V12,00C00,

~3.11!

2g̃0,00
21 C005

1

2
V00,12C121

1

2
V00,00C00.

~3.12!
1-4
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RELATIVISTIC EFFECTS IN THE PIONIUM LIFETIME PHYSICAL REVIEW D58 014011
These two wave equations are characterized by the s
eigenvalueP2. Whenever not specified, all potentials will b
considered at the pionium ground state c.m. energy.At ze-
roth order~Coulomb potential only!, it is:

P052mp12
mp1

4
a2. ~3.13!

For this value ofP0 , the operatorg̃0,00 in Eq. ~3.12! has
values in the scattering region of thep0p0 system and there
fore it gives rise to a scattering state for the wave funct
C00. The energy shift of the pionium is obtained by fir
eliminating C00 from Eq. ~3.11! in terms ofC12 through
Eq. ~3.12!, using there the boundary condition thatC00 is an
outgoing wave due entirely to the presence ofC12 .

The wave functionC00 can be expressed in terms
C12 by iterating Eq.~3.12! with its last term~proportional
to V00,00!. This iteration, where the dominant contributio
comes from the strong interaction sector, when treated
bally as a first-order perturbation, yields in the pioniu
decay width expression the unitarity factor@18,20# @1
1(2/9)(Dmp /mp)(2a0

21a0
0)2#21; the correction term to

one, being of the order of 1024, will be neglected in the
following. We thus obtain the wave equation

2g̃0,12
21 C125FVCoul.1V̄12,12

2
1

2
V12,00,g̃0,00V00,12GC12 .

~3.14!

To the order of approximations we are working, the p
tentialsV̄12,12 , V12,00 andV00,12 are, inx-space, three-
dimensional delta functions and hence they project all m
tiplicative quantities on their values at the origin. The val
at the origin of the functiong̃0,00 is calculated by Fourier
transformation to momentum space and dimensional regu
ization. Designating byDmp the pion mass difference@Eq.
~1.1!#, one finds~with dimensional regularization!:

g̃0,00~r 50!5
i

4p
ADmp~mp11mp0!. ~3.15!

This term induces an imaginary part to the pionium e
ergy.

IV. LOWEST-ORDER FORMULA WITH MASS SHIFT

We shall determine a lowest-order expression for the
onium decay width with the inclusion in it of the main pa
of the pion mass shift. This formula will prove useful for th
evaluation of the various types of correction. It is obtain
by treating the last term of Eq.~3.14! in first order of pertur-
bation theory and by keeping in the potentialV00,12 its
dominant part, which comes essentially from the strong
teractions. The expression ofV00,12 @Eq. ~3.9!# contains
three terms. The second and third terms are the const
diagram contributions, which will be considered below. T
01401
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first term is the scattering amplitude. The latter can be s
into two parts, the strong interaction part and the rest, wh
represents the contributions containing electromagnetic
fects. Among the latter, there is one piece which plays
crucial role; it is the quark-photon~or massive hadron-
photon! interaction term in the chiral limit, which is respon
sible for the main part of the pion mass difference@39#. It
corresponds to theO(e2p0) term of the chiral effective La-
grangian with the expressione2C^QUQU†&, whereC is an
unknown constant andQ is the quark charge matrix@40,41#.
Using for the fieldU the representation~3.5!, one finds

e2C^QUQU†&52
2e2C

F0
2 p1p2, ~4.1!

which shows that this term induces for the charged pions
mass shift:

~Dmp
2 !qg52e2

C

F0
2 , ~4.2!

which is nonvanishing in the chiral limit. Otherwise, it ha
no effect on the scattering amplitude in lowest order~cf. also
Ref. @42#!. @We emphasize that expression~3.4! of the latter
is also valid off the mass shell and does not depend on
mass-shell prescription.# Therefore, the quark-photon inter
action term~4.1! acts essentially through insertions in th
pion loop propagators, where the charged pion masses
replaced by their~almost! physical masses. Because the p
onium lifetime evaluation is sensitive to the pion mass d
ference, it is natural to incorporate from the start the qua
photon interaction term~4.1! and its counterterms of the
higher-order Lagrangian in the strong interaction Lagra
ian. With this prescription, the amplitudeM is split into two
terms:

M5Mstr.1qg1Mem., ~4.3!

whereMem. contains all interference terms between elect
magnetic and strong interaction effects, except the low
order quark-photon interaction term and its counterterm
which are included, together with the strong interacti
terms, inMstr.1qg.

We now turn to the evaluation of the two constraint d
grams corresponding to the last two terms of the expres
of the potentialV00,12 @Eq. ~3.9!#. The evaluation of these
diagrams is done by first considering the potentials and
plitudes T̃str. at the tree level~Fig. 1! and calculating the
loop integrals with the physical pion masses~cf. the com-
ments above!. It is found that the terms in the amplitude
proportional tot, u, b2 andb0

2 yield, after integration, terms

FIG. 1. A loop diagram and its constraint diagram, denoted b
cross, in thes channel. The sum of the two diagrams is free
singularities in thes channel.
1-5
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that are again of the same order and hence can be negle
The leading terms are directly obtained by ignoring t
above terms in the amplitudes and integrating overg̃0 . One
finds:

T̃12,12g̃0,12T̃12,1252
1

4p
A2b0,12

2 ~ T̃12,12!2,

T̃12,00g̃0,00T̃00,1251
i

4p
Ab0,00

2 T̃12,00T̃00,12

~4.4!

~there are no integrations in the right-hand side,! and so forth
for the other amplitudes, it being clear thatg̃0,12 yields a
real contribution andg̃0,00 an imaginary one. By the very
choice of the constraint propagatorsg̃0 , the imaginary terms
that arise from the constraint diagrams cancel similar te
coming from loop diagrams contained in the amplitudesT̃
@the first terms of the right-hand sides of Eqs.~3.9!#. There-
fore, these amplitudes are replaced by their real parts. C
cerning the real part of the constraint diagram, it is of ord
O(a) and has the opposite value of theO(a) part of the
deviation of the scattering amplitude from thep1p2 thresh-
old down to the pionium energy; it comes from the fin
non-analytic part of the unitarity loop, the polynomial pa
giving only contributions of orderO(a2) to the above devia-
tion. Hence, the real part of the constraint diagram shifts
real part of the scattering amplitude to its value at thep1p2

threshold. We thus obtain

V12,12
~0! 5ReT̃12,12

~0! ~s54mp1
2

!,

V00,12
~0! 5ReT̃00,12

~0! ~s54mp1
2

!,

V00,00
~0! 5ReT̃00,00

~0! ~s54mp1
2

!. ~4.5!

The above property can also be generalized to the t
loop level of the strong interaction amplitude. The details
the derivation are presented in the Appendix.

The part of the potentialV00,12 that will contribute to the
lowest-order expression of the decay width is then provid
by the real part ofM00,12

str.1qg throughReT̃00,12
(0) . Defining

P05P0R2 i
G

2
, ~4.6!

one finds the modified lowest-order expression of the
onium decay width:

1

t̄0

5Ḡ05
1

64pmp1
2 ~ReM00,12

str.1qg!2uc12~0!u2

3A2Dmp

mp1
S 12

Dmp

2mp1
D , ~4.7!

whereReM00,12
str.1qg is calculated at thep1p2 threshold.~c

is the relative motion part ofC.! Furthermore, because th
external particle momenta are subjected to the constra
01401
ted.

s

n-
r

e

o-
f

d

i-

ts

p1L5p2L5PL/2, p3L5p4L5PL/2, with PL52mp1 and the
kinetic energy operatorsupT2u and up8T2u have, in the bound
state, values of the order of magnitude ofO(a2), the mass-
shell conditions in the above amplitude are

p1
25p2

25p3
25p4

25mp1
2 , s54mp1

2 , t5u50.
~4.8!

With respect to the lowest-order formula~1.1!, formula
~4.7! contains two corrections. The first one, which has
kinematic origin, is included in the square-root term. T
second one is included inMstr.1qg, where now, because o
the pion mass difference, a modification occurs from the
pression involving the scattering lengths calculated with
strong interaction amplitude.

In the remaining part of this paper we shall evaluate
O(a)-corrections to the formula~4.7! as well as the modifi-
cations contained inMstr.1qg.

V. SECOND-ORDER PERTURBATION THEORY

In this section, we evaluate the effects coming from t
second-order perturbation theory treatment of the strong
teraction potential. At this order, it is the interference of t
last two potential terms of Eq.~3.14! that contributes to the
imaginary part of the energy. We have to distinguish h
between the contributions of the discrete and continu
states of the pionium spectrum. We first consider the disc
spectrum contribution.

A. Contribution of the discrete spectrum

Designating byc12,n (n>1) the zeroth order radial ex
citation wave functions of the ground state~c is the relative
motion part ofC! and byEn the corresponding nonrelativis
tic energies, the shift in the decay width is:

~DG!discr.52 i
2

mp
g̃0,00~r 50!

3V00,12
2 V̄12,12c12

2 ~0! (
n51

` c12,n
2 ~0!

mp~E02En!
.

~5.1!

Using the nonrelativistic formulas

En52
mpa2

4~n11!2 , c12,n
2 ~0!5

mp
3 a3

8p~n11!3 ~n>0!,

~5.2!

one finds:

~DG!discr.52
a

4p
mpV̄12,12G05

a

3
~2a0

01a0
2!G0 ,

~5.3!

where in the last expression we have neglected the pion m
difference and introduced the strong interaction scatter
lengths~3.8!.
1-6
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B. Contribution of the continuous spectrum

For the evaluation of the contribution of the continuu
states, we introduce the nonrelativistic wave vector modu
k5AEmp and normalize wave functions as:

E d3xck8
* ~x!ck~x!52pd~k2k8!. ~5.4!

The shift in the decay width is then

~DG!cont.522G0V̄12,12E dk

2p

uck~0!u2

~k21mp
2 a2/4!

,

~5.5!

with @43#:

uck~0!u25
1

4p

4pmpak

@12exp~2pmpa/k!#
. ~5.6!

It is easily seen that (DG)cont. diverges linearly in the
ultra-violet region. In dimensional regularization, linear d
vergences being equivalent to zero, the divergence that
vives in Eq.~5.5! is logarithmic:

~DG!cont. '
k→`

22G0V̄12,12

mpa

4p
lnS k

mp
D . ~5.7!

The origin of this divergence is related to the singular
of the three-dimensional delta function that characterizes
potentials inx space. In quantum mechanics, potentials t
are proportional to three-dimensional delta functions mus
regularized through a renormalization of the coupling co
stant@44# or a self-adjoint extension of the Hamiltonian@45#.
In both cases, an additional unknown parameter appea
the spectrum. On the other hand, a bound state equa
based on field theory, should not introduce new unkno
parameters into the set of parameters already defined or
by the field theory itself. This is why one should expect t
cancellation of the divergence~5.7! by some other terms
present in the potential.

The constraint diagrams corresponding to the proc
p1p2→p0p0 with one photon exchange and two loo
~Fig. 2! play this role. They have overall logarithmic dive
gences that cancel the one appearing in (DG)cont. . There-
fore, these two types of contribution should be conside
together.

We now consider the contributions of the above constra
diagrams. At the vertexp1p22p0p0, the amplitude that
contributes isA(sut,u) @Eqs. ~3.6! and ~3.4!#; in lowest or-
der, it depends only on the variables and therefore can be
factored out of the integrals. At the vertexp1p22p1p2,
it is the amplitudeA(sut,u)1A(t,us,u) that contributes.
However, the contribution of the variablet, present in
A(tus,u), is of orderO(a2) when considered in the boun
state domain; therefore, it can be omitted and the amplit
A(sut,u)1A(tus,u) can also be factored out. We use for t
potentials arising from the constraint diagrams the nota
V00,12

C(n,m,p) , C referring to ‘‘constraint,’’n to the number of
01401
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ur-

e
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e

n

loops,m to the number of exchanged photons andp to the
number of the constraint factorsg̃0 .

We first consider the constraint diagram of Fig. 2-c. The
corresponding potential at leading order is~in arbitrary co-
variant gauges!

V00,12
C~2,1,2!52mpaV00,12V̄12,12

3E d3kT

~2p!3

1

mp
2 2p1L

2 2kT2

1

A2kT2

3arctanA2kT2

2b0
2 . ~5.8!

We next consider the two constraint diagramsa andb of
Fig. 2. Since the amplitudeA(sut,u)1A(tus,u) has been fac-
tored out of the integrals, the two diagrams give equal c
tributions. The four-dimensional loop corresponds to t
electromagnetic radiative correction of the scalar vertex.
expression will be calculated in Sec. VI. The contributi
resulting from the sum of the two diagrams~a! and ~b! of
Fig. 2 is, at leading order,

V00,12
C~2,1,1!522V00,12

C~2,1,2! . ~5.9!

The contribution to the shift in the decay width resultin
from the three constraint diagrams of Fig. 2 is then

~DG!C~2,1,112!52mpaG0V̄12,12

3E d3k

~2p!3

1

~k21mp
2 a2/4!

1

k

3arctanS 2k

mpa D , ~5.10!

where we have replaced2b0
2[mp

2 2p1L
2 by its eigenvalue

mp
2 a2/4.

FIG. 2. Constraint diagrams the dominant part of which can
the ultra-violet divergence of the continuum contribution in seco
order perturbation theory. Wavy lines are photons.
1-7
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(DG)C has an ultra-violet divergence that is the oppos
of that of (DG)cont. @Eq. ~5.7!#. Therefore, the sum (DG)C

1(DG)cont. is finite. One obtains

~DG!C~2,1,112!1~DG!cont.

52mpaG0V̄12,12

1

4p E
0

`

dxS x

x211D
3F 2

p
arctanx1

x

p
2

2

12e22p/xG
.21.7mp

a

2p
G0V̄12,1251.1a~2a0

01a0
2!G0 .

~5.11!

@We have subtracted from (DG)cont. its linear divergence,
which is null in dimensional regularization.# The constraint
diagrams have played the role of an effective cut-off of
divergence of (DG)cont. . Had we cut the integral in Eq.~5.5!
at the valuek5mpa, we would have found a result close
that of Eq.~5.11!.

In the previous cancellation mechanism of divergen
we used dimensional regularization and hence ignored lin
divergences. The latter are present in conventional calc
tions of integrals and for such type of calculation they sho
be taken into account. The point is that in this case the c
straint diagrams themselves are linearly divergent and th
divergences should be isolated and grouped essentially
those coming from second-order perturbation theory. It is
difficult to show that the linear divergences cancel o
among themselves and the physical results are not affe
by their presence. The cancellation mechanism of div
gences is therefore regularization scheme independent.

The total amount of the strong interaction corrections
given by the sum of (DG)discr. @Eq. ~5.3!# and
(DG)C(2,1,112)1(DG)cont. @Eq. ~5.11!#. One obtains:

~DG!str.5~DG!discr.1@~DG!cont.1~DG!C~2,1,112!#

51.5a~2a0
01a0

2!G0 . ~5.12!

The relative correction is@with 1.5(2a0
01a0

2).0.55
@3,11##

~DG!str.

G0
50.55a50.004. ~5.13!
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VI. ELECTROMAGNETIC RADIATIVE CORRECTIONS

In this section we calculate the electromagnetic radiat
corrections arising from pion-photon interaction and contr
uting to the amplitudeMem. of the decomposition~4.3!.

The Lagrangian corresponding to the pion-photon inter
tion is obtained by appropriately incorporating in the ext
nal vector current of the chiral effective Lagrangian the ph
ton field. Using for the fieldU the representation~3.5!, the
corresponding Lagrangian becomes in lowest order:

L5
1

2
]mp0]mp01~]m1 ieAm!p1~]m2 ieAm!p2

2
1

2
mp

2 ~p0p012p1p2!2
1

4
FmnFmn

2
1

2~12j!
~]•A!21

1

8F0
2 ]m~p0212p1p2!]m~p02

12p1p2!2
1

8F0
2 ~2m̂B0!~p0414p1p2p0p0

14p12p22!, ~6.1!

2m̂B0 being defined in Eq.~3.4!.
We next consider theO(e2p2) counterterms present in th

chiral effective Lagrangian. The complete expression of
corresponding SU~3!3SU~3! Lagrangian in the Feynman
gauge is given in Ref.@41#, where the coefficients of the
various terms are designated byKi ( i 51,...,17). These
terms are of two categories: those which are counterterm
theO(e2p0) Lagrangian~4.1! and the infinite parts of which
are proportional toC, and those which are counterterms
the radiative corrections of the pion-photon interactio
Since theO(e2p0) term is included in the Lagrangian con
tributing to the amplitudeMstr.1qg, so must be done with
the corresponding counterterms. Therefore we have to se
from the O(e2p2) Lagrangian those terms the infinite par
of which are not proportional to the constantC.

The O(e2p2) Lagrangian in the SU~2!3SU~2! case was
recently presented in Refs.@46, 47# ~in the Feynman gauge!.
Since we are treating in the present work the SU~2! case, we
use for our subsequent calculations the latter Lagrang
indicating, when necessary, the correspondence betwee
SU~2! and SU~3! coefficients.~We use the notations of Ref
@46#.! The relevant part of this Lagrangian for our problem
~in standard notation!
L~e2p2!5F0
2$k2^QUQU†&^]mU]mU†&1k3~^U†]mUQ&^U†]mUQ&1^]mUU†Q&^]mUU†Q&!

1k4^U
†]mUQ&^]mUU†Q&1k7^QUQU†&^xU†1Ux†&1k8^~U†x2x†U !~U†QUQ2QU†QU!&

1k10̂ Q2&^]mU]mU†&1k11̂ Q2&^xU†1Ux†&%, ~6.2!

whereQ is the quark charge matrix. The coefficientsk have the following decompositions:

ki5k i l̄1ki
r~m!, ~6.3!
1-8
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wherel̄ has a pole ind54 dimensions,

l̄5
1

16p2 S 1

d24
2

1

2
„ln~4p!1G8~1!11…D , ~6.4!

and the coefficientsk have the values@48#:

k252Z, k352
3

4
, k4522Z, k75

1

4
12Z,

k85
1

8
2Z, k1052

27

20
2

Z

5
, k1152

1

4
2

Z

5
, Z5

C

F0
4 . ~6.5!

The m dependence of the finite partki
r(m) of ki is fixed by the prescription that its sum with the ln(m22) term of the

corresponding loop diagrams bem independent; the corresponding multiplicative coefficient isk i /(32p2). The Lagrangian
~6.2!, together with the coefficients~6.5!, is associated with the SU~2!3SU~2! version of the chiral effective Lagrangian o
Ref. @3#, in which the multiplicative factors have been arranged so that the coefficientsl i keep the same values as those of t
O(4) version@Eqs.~7.1!–~7.3!#.

The Lagrangian~6.2! takes the following form in the representation~3.5!, keeping only pion fields that contribute to th
scattering problem to the present approximation:

L~e2p2!5e2Xk21
10

9 S k2

10
1k10D CF]mp0]mp012]mp1]mp21

1

F0
2 S 1

2
]mp021]m~p1p2! D S 1

2
]mp021]m~p1p2! D G

2
4e2

F0
2 k2p1p2~]mp0]mp012]mp1]mp2!1

e2

F0
2 ~2k32k4!~p1 ]Jmp2!~p1 ]Jmp2!2

e2

F0
2 ~2k31k4!FF0

2]mp0]mp0

2p02]mp0]mp022p1p2]mp0]mp01
1

2
]mp02]mp021]m~p02!]m~p1p2!G2

5e2

9
~k71k11!8m̂B0F1

2
p021p1p2

1
1

8F0
2 ~p0212p1p2!2G2

2e2

F0
2 S 1

4
~k722k8!1

3

4
~k712k8! D8m̂B0FF0

2p1p22p1p2S 1

2
p021p1p2D G . ~6.6!

The coefficients (k2/101k10), k3 and (k712k8) contribute, at least concerning their infinite parts, only to the pion-pho
interaction effects, while the coefficientsk2 , k4 , (k71k11) and (k722k8) contribute to the quark-photon interaction effec
@insertions of the mass term~4.1!#. We shall admit that this separation also holds for their finite parts.

TheO(e2p2) Lagrangian~6.2! introduces new terms into the relationships between the pseudoscalar densities and t
fields. These are:

Pa52B0F0S 11
20e2

9
~k71k11!14e2k8da622e2

„~k722k8!13~k712k8!…
p1p2

F0
2 Dpa, ~6.7!
-
rib
he
nd
ha
an

w

eu
le
l

d
t

wherea50,1,2. The three-pion term yields additional dia
grams for the scattering amplitude, which, however, cont
ute only off the mass shell. The term proportional to t
coefficientk8 alone contributes to both the pion-photon a
quark-photon interaction effects. For this reason we s
separate this coefficient into two parts by writing, with
obvious notation,k85k8

pg1k8
qg . Although this separation is

ambiguous for the corresponding finite parts, it will not sho
up in physical quantities.

To obtain the renormalized Green’s functions of the ps
doscalar densities due to pion-photon interaction, we se
among the above expressions the quantities proportiona
the relevant coefficients. Furthermore, since we only nee
the present calculation the on-mass shell expression of
scattering amplitude, the three-pion term of Eq.~6.7! can be
01401
-

ll

-
ct
to
in
he

discarded. One finds~in the Feynman gauge! for the renor-
malized Green’s functions the expressions:

G0~p!5
i ~2B0F0!2~12DZ0!

p22„mp
2 1~Dmp0

2
!pg…1 i e

,

2DZ052
2e2

9
~k2

r 110k10
r !14e2k3

r ,

~Dmp0
2

!pg5mp
2 F2

2e2

9
~k2

r 110k10
r !14e2k3

r G ,
~6.8!
1-9
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G1~p!5
i ~2B0F0!2~12DZ1!

p22„mp
2 1~Dmp1

2
!pg…1 i e

,

2DZ15
a

p
1

a

p
lnS mp

2

l2 D 1
a

2p

l2

p2 lnS mp
2

l2 D
2

a

2p
XlnS mp

2

m2 D 11C2 2e2

9
~k2

r 110k10
r !

18e2k8
pg,r ,

~Dmp1
2

!pg5mp
2 F 7a

4p
2

3a

4p
XlnS mp

2

m2 D 11C
2

2e2

9
~k2

r 110k10
r !16e2~k7

r 12k8
r !G ,

~6.9!

where we have defined

l25mp
2 2p2. ~6.10!

The difference between the charged and neutral p
masses due to pion-photon interaction is:

~Dmp
2 !pg5~Dmp1

2
!pg2~Dmp0

2
!pg

5F 7a

4p
2

3a

4p
XlnS mp

2

m2 D 11C
24e2k3

r 16e2~k7
r 12k8

r !Gmp
2 . ~6.11!

To obtain the renormalized scattering amplitude of
processp1p2→p0p0, we consider the sum of the unreno
malized four-point vertex function and of the correspond
constraint diagram contribution:

@W00,121W00,12
C~1,1,1!#pg5~2B0F0!24~114e2k8

pg!22

3A~sut,u!~11L1LC!,

~6.12!
01401
n

e

g

whereA(sut,u) is defined in Eq.~3.4!, L is the vertex func-
tion of Fig. 3~a! and LC the contribution of the constrain
diagram arising from the interference term between
strong interaction amplitude and one-photon exchange
gram ~Fig. 3~b!!. The leading-order expression ofLC is

LC~p1 ,p2!52
a

2

4p1•p2

s
A s

b2 arctanA b2

2b0
2.

~6.13!

The constraint diagram cancels a similar term present inL,
which, otherwise, would give a contribution of orderO(a0).

The Lagrangian~6.6! provides the following counter-
terms:

~W00,12
~e2p2! !pg

5~2B0F0!24
e2

F0
2 F S 2

9
~k2110k10!28k3D s

18S k31
3

4
~k712k8! D2m̂B0G . ~6.14!

These remove the divergences of the unrenormalized ve
~6.12!. The sum of the two quantities is then multiplied b
the renormalized wave function renormalization facto
(2B0F0)4(12DZ0/2)2(12DZ1/2)2 @Eqs. ~6.8!, ~6.9!#. We
also incorporate in the mass term of the lowest-order am
tude~3.4! the neutral pion mass shift~6.8!. The renormalized
scattering amplitude, together with the constraint diagr
contribution, is then:

FIG. 3. One-photon exchange diagram in the presence of
strong coupling~a! and its constraint diagram~b!.
@M00,121M00,12
C~1,1,1!#pg5

~s2mp0
2

!

F0
2 F12

a

2p
2

3a

4p
XlnS mp

2

m2 D 11C24e2k3
r 2

2e2

9
~k2

r 110k10
r !G

12e2
mp

2

F0
2 @2e2k3

r 13e2~k7
r 12k8

r !#. ~6.15!

The corresponding modification of the decay width is:

~DG!pg5F2
a

p
2

3a

2p
XlnS mp

2

m2 D 11C2 4e2

9
~k2

r 110k10
r !2

16e2

3
k3

r 14e2~k7
r 12k8

r !GG0 . ~6.16!
1-10
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To estimate the correction~6.16! one needs to know the
values of the coefficientskr . At this time they are not ye
well established, but several evaluations with different me
ods exist and can be used to have an idea of the orde
magnitude and sign of the correction. The correspondenc
the above coefficientsk with the SU~3! coefficientsK is
~valid also for the finite parts!:

k2110k10512K1110K5 , k35K3 ,

3

4
~k712k8!52

3

2
K81K101K11. ~6.17!

In Ref. @49#, the Kr ’s have been evaluated using a res
nance model for the saturation of sum rules. The correspo
ing values are in units of 1023 and at the scalem5mr : K1

r

526.4, K3
r 56.4, K5

r 519.9, K8
r 5K9

r 5K10
r 50, K1150.6.

In Ref. @50# values of some of theKr ’s have been evalu
ated with the aid of the 1/NC-expansion method, the ex
tended Nambu–Jona-Lasinio model and perturbative Q
The results are not completely compatible with those of R
@49#. In particular it is found~at similar scales and in units o
1023!: K9

r 521.3, K10
r 54.0; the other results involveKr ’s

with even indices. Estimates ofK10
r andK11

r have been pre-
sented in Ref.@51# on the basis of sum rule analysis. Th
value ofK10

r found there is compatible with that of Ref.@50#,
while for K11

r the value 2.931023 is found~with the choices
m5m05mV5mA /&!. The latter values, which affect th
combination (k7

r 12k8
r ), do not seem, however, to qualita

tively change the estimate of the correction~6.16! evaluated
with the values of the coefficients of Ref.@49#. We shall
therefore present the numerical estimates with the va
supplied by Ref.@49#. Since there is not yet a definite con
sensus on the numerical values of the coefficientski

r and the
corresponding uncertainties, we allow for a 100% unc
tainty in theglobal contributions of these coefficients in th
various expressions we encounter~numerical evaluations o
different ki

r ’s are often correlated!.
We find ~with the mass scalem5mr!:

~Dmp0!pg520.0160.01 MeV,

~Dmp1!pg50.4360.10 MeV,

~Dmp!pg50.4460.11 MeV,

~DG!pg

G0
520.001560.0075. ~6.18!

We observe that the pion mass shift is of the order of 1
of the observed mass shiftDmp54.6 MeV and has the cor
rect order of magnitude for anO(e2p2) effect.

VII. ELECTROMAGNETIC MASS SHIFT CORRECTIONS

This section is devoted to the evaluation of the elect
magnetic mass shift corrections contained in the amplit
ReM00,12

str.1qg @Eqs.~4.7! and~4.8!#. We shall proceed in two
steps. First, we shall determine the effect of the insertion
01401
-
of
of

-
d-

.
f.

es

r-

-
e

of

the mass term~4.1! in internal charged pion propagator
This will bring us to the strong interaction amplitude calc
lated with individual momenta fixed at the charged pi
mass, but with the mass parameter fixed at the neutral p
mass. In the second step, we shall determine the differe
between the latter amplitude and the one calculated with
dividual momenta and masses fixed at the charged p
mass, with which the numerical values of the scatter
lengths are calculated in the literature@13,38,47#.

For the evaluation of the effect of the insertions of t
mass shift term~4.1! the counterterm Lagrangians need
here are the quark-photon part of the Lagrangian~6.2! and
the standardO(p4) Lagrangian@3#; part of the latter survives
in the mass shift counterterms. We therefore begin by w
ing the relevant part of this Lagrangian for our problem~with
standard notations!:

L~p4!5
l 1

4
^]mU†]mU&2

1
l 2

4
^]mU†]nU&^]mU†]nU&1

l 3

16
^x†U1xU†&2

1
l 4

4
^]mx†]mU1]mx]mU†&. ~7.1!

The coefficientsl have the following decompositions:

l i5g i l̄1 l i
r~m!, ~7.2!

where l̄ is defined in Eq.~6.4! and the coefficientsg have
the values:

g15
1

3
, g25

2

3
, g352

1

2
, g452. ~7.3!

For the scattering problem the above Lagrangian becom

L~p4!5
l 1

F0
4 ~]mp0]mp012]mp1]mp2!

3~]np0]np012]np1]np2!

1
l 2

F0
4 ~]mp0]np01]mp1]np21]mp2]np1!

3~]mp0]np01]mp1]np21]mp2]np1!

2
l 3

F0
4 ~2m̂B0!2~p0212p1p2!. ~7.4!

This Lagrangian provides the following relationship betwe
the pseudoscalar densities and the pion fields:

Pa5~2B0F0!X11
2l 3

F0
2 2m̂B0S 12

p2

2F0
2D 2 l 4]2Cpa.

~7.5!

The three-pion term does not contribute to the present
proximation to the two-point Green’s function renormaliz
1-11
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tion, but provides an additional contribution~a three-
propagator term! to the four-point Green’s function. Also
the term proportional tol 3 in Eq. ~7.1! provides in addition a
two-propagator term to the four-point Green’s functio
These contributions should be taken into account for the
mass shell expression of the scattering amplitude.

The finite parts of wave function and mass renormali
tions proportional toC/F0

4 @in notations similar to those o
Eqs.~6.8!, ~6.9!# are:

2DZ0522e2Fk2
r 2k4

r 2
20

9
~k7

r 1k11
r !G ,

~Dmp0
2

!qg522e2mp
2 F2

C

F0
4

1

16p2 XlnS mp
2

m2 D 11C
1k2

r 2k4
r 2

10

9
~k7

r 1k11
r !G , ~7.6!

2DZ1522e2F C

F0
4

1

16p2 XlnS mp
2

m2 D 11C1k2
r

2
20

9
~k7

r 1k11
r !24k8

qg,r2
2C

F0
4 l 4

r G ,
~Dmp1

2
!qg52e2

C

F0
2 22e2mp

2 F2C

F0
4

1

16p2 lnS mp
2

m2 D 1k2
r

2
10

9
~k7

r 1k11
r !2~k7

r 22k8
r !G . ~7.7!

@We have also incorporated in (Dmp1
2 )qg the lowest order

term ~4.2!#. The difference between the charged and neu
pion masses due to quark-photon interaction is:
01401
.
f-

-

al

~Dmp
2 !qg5~Dmp1

2
!qg2~Dmp0

2
!qg

52e2
C

F0
2

22e2mp
2 F C

F0
4

1

16p4 X3 lnS mp
2

m2 D 11C
1k4

r 2~k7
r 22k8

r !G . ~7.8!

To evaluate the change in the scattering amplitude du
the pion mass shift~4.2!, we first calculate the pion loop
contributions with the physical pion masses in the inter
propagators. There are diagrams with tadpole loops at
four-pion vertex and four diagrams with loops with two-pio
propagators, one with two charged pions, one with two n
tral pions and two with one charged and one neutral pio
To the contributions of these diagrams one adds the rem
ing contributions of the pseudoscalar densities to the fo
point vertex function@Eqs.~6.7! and~7.5!#. The divergences
of the above contributions are cancelled by those of
counterterm Lagrangians~6.6! ~the part proportional to the
factorC/F0

4! and~7.4!. One multiplies the result by the wav
function renormalization factors (12DZ0/2)2 and (1
2DZ1/2)2 coming from the contributions~7.6!, ~7.7! and
from those of the strong interaction limit@3# and isolates in
the resulting expression the part proportional toC/F0

4. One
also incorporates in the mass term of the lowest-order am
tude ~3.4! the neutral pion mass shift~7.6!. One finds in the
limits t5u50 @with the notationsmp5mp0 and Dmp

2

5(Dmp
2 )qg , Eq. ~7.8!#:
F0
4~DReM00,12!qg52

1

32p2 ~s2mp
2 !~s1p1

21p2
222mp

2 !S Dmp
2

mp
2 1Re„Q12~s!2Q00~s!…D 1

1

16p2 ~s2mp
2 !„2

2ReQ00~s!…Dmp
2 2

1

64p2 ~p1
21p2

2!~p3
21p4

2!
Dmp

2

mp
2 12e2F0

2~3k2
r 22k4

r !s22e2F0
2~2k2

r 2k4
r !~p3

2

1p4
2!22e2F0

2
„k2

r 2k4
r 2~k7

r 22k8
r !…mp

2 22e2F0
2~2k2

r 2k4
r !~s2mp

2 !12e2F0
2~k7

r 22k8
r !~p3

21p4
2

22mp
2 !24l 3

r ~p3
21p4

22mp
2 !Dmp

2 22l 4
r ~s2mp

2 !Dmp
2 , ~7.9!

where the functionQ12(s) ~12512 or 00! is:

Q12~s!55
1

A4sb0
2~s!

s F lnS As2~m12m2!21As2~m11m2!2

As2~m12m2!22As2~m11m2!2D 2 ipG , ~m11m2!2,s,

1
A24sb0

2~s!

s Fp2arctanS A24sb0
2~s!

s2~m1
21m2

2!
D G , ~m12m2!2,s,~m11m2!2,

2
A4sb0

2~s!

s
lnS A~m11m2!22s1A~m12m2!22s

A~m11m2!22s2A~m12m2!22s
D , s,~m12m2!2.

~7.10!
1-12
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@Only relevant first-order terms inDmp
2 have been kept in

Eq. ~7.9!.#
With the mass shell conditionspi

25mp1
2 ( i 51,...,4) and

s54mp1
2 , the above expression becomes, to first order

Dmp
2 :

F0
4
„DReM00,12~s54mp1

2
!…qg

5
11mp

2

16p2 Dmp
2 2~4l 3

r 16l 4
r !mp

2 Dmp
2

12e2F0
2
„~k2

r 22k4
r !1~k7

r 22k8
r !…mp

2 .

~7.11!

The relationships between theki
r ’s and the SU~3! coeffi-

cientsKi
r @41# are ~mK is the kaon mass!:

k2
r 5K2

r 1K6
r 2

1

64p2 XlnS mK
2

m2 D 11C,k4
r 52K4

r ,

k7
r 1k11

r 5
1

5
~6K8

r 15K9
r 15K10

r !2
9

320p2 XlnS mK
2

m2 D 11C,
k7

r 22k8
r 510K8

r 2
3

16p2 XlnS mK
2

m2 D 11C. ~7.12!

The numerical values of the coefficientsKi
r presented in

Ref. @49# are, in units of 1023 and at the scalem5mr : K2
r

523.1, K4
r 526.2, K6

r 58.6, K8
r 5K9

r 5K10
r 50. The values

of the coefficientsl i
r can be found in Ref.@13#. They are in

units of 1023 and at the scalem5mr : l 1
r 525.4, l 2

r 55.67,
l 3
r 50.82, l 4

r 55.6. As for theki
r ’s ~cf. the end of Sec. VI!, we

allow for a 100% uncertainty in the global contributions
the l i

r ’s. One finds the following corrections in the scatteri
lengths and the decay width:

„D~a0
02a0

2!…qg50.000560.0003,

~DG!qg

G0
50.003560.0024. ~7.13!

Once the correction~7.11! due to the mass shift~4.2! is
separated, the amplitudeReM00,12

str.1qg reduces to thestrong
interaction amplitude calculated with individual momen
fixed at the charged pion mass@Eq. ~4.8!# and the mass pa
rameter 2m̂B0 fixed at the neutral pion mass, after includin
in it the neutral pion mass shift corrections calculated up
now. Numerical values of the strong interaction scatter
lengths are however calculated in the literature with the
dividual momenta and the mass parameter fixed at
charged pion mass@13,38,47#. It is therefore necessary t
evaluate the difference between these two amplitudes. It
be obtained from theO(p4) off-mass shell expression of th
scattering amplitude given in Ref.@3# @we neglect for the
moment the mass shift effect in theO(p6) term#. Replacing
in the O(p2) term ~3.4! the mass parameter in terms ofmp0

2

01401
n

o
g
-
e

an

with the use of the relation@3# @the mass shift~7.6! of the
neutral pion mass has already been incorporated in the m
parameter of the lowest-order amplitude~3.4!#:

mp0
2

52m̂B01
mp

4

F0
2 X2l 3

r 1
1

32p2 lnS mp
2

m2 D C, ~7.14!

one finds for the shift at threshold from the amplitude calc
lated with the charged pion mass:

„DReM00,12~s54mp1
2

!…Dmp

5
Dmp

2

F0
2 F11

mp
2

F0
2 S 2

9

32p2 2
11

16p2 lnS mp
2

m2 D
14l 3

r 112l 4
r D G . ~7.15!

Designating byM00,12
str. the strong interaction amplitude

one has at threshold@Eqs.~3.6!, ~3.7! and ~3.8!#:

M00,12
str. ~s54mp

2 !5
32p

3
~a0

02a0
2!str. , ~7.16!

where thea’s are the scattering lengths calculated up to t
loops@13,38# of the chiral effective Lagrangian. In the stan
dard scheme one has the value@3,13#: (a0

02a0
2)50.258, ob-

tained with charged pion masses. Equation~7.15! yields the
following corrections for the scattering lengths and the de
width ~we take F0588 MeV, mp15139.57 MeV, Dmp

54.6 MeV and a 100% uncertainty in thel i
r ’s!:

„D~a0
02a0

2!…Dmp
50.008360.0008,

~DG!Dmp

G0
50.06460.006. ~7.17!

The contribution of theO(p4) term represents 40% of thi
correction, indicating an increase of its relative strength b
factor of 2 with respect to the corresponding situation in
amplitude; this might be understood as a consequence o
increase of the powers of mass and momentum term
higher-order terms. In this case one should expect a cor
tion of the order of 335% coming from theO(p6) term,
which would bring the correction~7.17! in the scattering
lengths to 0.0095.

We also quote here for information the value of the effe
tive scattering length corresponding to the amplitu
ReM00,12

str.1qg ~4.7! @without the use of theO(e2p4) correc-
tion coming from theO(p6) term#:

~a0
02a0

2!str.1qg5~a0
02a0

2!str.~p1!1„D~a0
02a0

2!…qg

1„D~a0
02a0

2!…Dmp

50.26760.001. ~7.18!

@The inclusion of the estimatedO(e2p4) correction coming
from theO(p6) term would bring the central value to 0.268#
1-13
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It is also possible to extract the value of the constanC
from the pion mass shift formula~7.8!. Taking into account
the mass shifts due to pion-photon interaction@0.4 MeV,
Eqs. ~6.11! and ~6.18!# and to isospin breaking~0.2 MeV
@3,4#! and the observed pion mass difference~4.6 MeV!, one
finds (Dmp)qg.4.0 MeV, leading to:

C54.131025 GeV4. ~7.19!

This value is in agreement with the central value found
Ref. @50# at a slightly higher mass scale@(4.261.5)31025

GeV4, at m50.85 GeV#. The correspondingO(e2p0) mass

shift is (Dmp)qg
(e2p0).3.6 MeV, the remaining 0.4 MeV be

ing produced by theO(e2p2) correction @Eq. ~7.8!#, with
(Dmp0)qg520.13 MeV.

Electromagnetic mass differences of pions and ka
were recently evaluated by the Cottingham method in R
@52#.

VIII. SUMMARY AND COMPARISON
WITH OTHER WORK

The total amount of sizableO(a) corrections to the
lowest-order formula of the pionium decay width can be re
resented in the following form:

G5G0AS 12
Dmp

2mp1
D S 11

~DG!str.

G0
D

3S 11
~DG!pg

G0
D S 11

~DG!qg

G0
D

3S 11
~DG!Dmp

G0
D , ~8.1!

whereG0 is the lowest-order decay width, Eq.~1.1!, with the
strong interaction scattering lengths calculated up to tw
loop order of the chiral effective Lagrangian with charg
pion masses; (DG)str. is the correction arising from the
second-order perturbation theory contribution of the inter
tion potential; (DG)pg arises from the radiative correction
due to pion-photon interaction; (DG)qg is the correction
coming from the pion mass shift due to quark-photon int
action; (DG)Dmp

is the correction coming from the shift i
the strong interaction amplitude due to the change of
mass parameter value from the charged pion mass to
neutral pion mass with individual momenta fixed at t
charged pion mass. The corresponding numerical values

~DG!str.

G0
50.004,

~DG!pg

G0
520.00160.007,

~DG!qg

G0
50.00360.002,

~DG!Dmp

G0
50.06460.006,

~8.2!

where the uncertainties come from a conservative 100%
certainty attached separately to the global contributions
01401
s
f.

-

-

-

-

e
he

re:

n-
f

the low energy coupling constantsl i
r and ki

r . Other ~small!
uncertainties might come from higher loop effects not co
sidered in the pion-photon and quark-photon interactio
corresponding toO(e2p4) terms. The overall correction
@apart from the kinematic correction of Eq.~8.1!# is thus:

DG

G0
50.07060.015. ~8.3!

Using (a0
02a0

2)50.258 @13#, one finds for the lifetime the
value:

t5~2.9760.05!310215 s, ~8.4!

to be compared with the valuet053.19310215 s found
from formula ~1.1! using the same value of (a0

02a0
2). The

uncertainty in the result~8.4! is the one contained in the
corrective effects~8.2! and does not include eventual unce
tainties, expected to be of the order of a few percent, com
from the evaluation of strong interaction scattering lengths
the one- and two-loop orders, where one also meets l
energy coupling constants. These are not yet presented in
literature in a systematic way, but the related question
under consideration by the authors of Ref.@13#. The uncer-
tainty from the measurement oft in the DIRAC experiment
is expected to be of the order of 10%.

We now turn to a comparison of our results with tho
obtained in other work. We note, as a general remark,
xPT, which constitutes the main theoretical framework of t
problem, is not taken into account in the latter in a syste
atic way.

In Ref. @24#, the problem is analyzed with a coupled cha
nel potential model, the potentials being determined by
inverse scattering method from the phase shifts. A very s
sitive result upon the numerical values of the pion masse
found, a half-percent variation inducing a change of seve
orders of magnitude in the pionium lifetime. The instabili
of the result renders questionable the method of analysis
is used. Thep-p scattering amplitude being relativistic awa
from threshold, it might be that the use of energy indep
dent potentials in the inversion method is inadequate for
investigation of the problem.

In Ref. @25#, the authors develop a formalism based on
Bethe-Salpeter equation with the electromagnetic interac
considered in the Coulomb gauge. A 1% effect is found
the second-order perturbation theory corrections~other than
the radiative, mass shift, and retardation corrections!, to be
compared with the 0.4% effect found in the present pa
~Sec. V!. The signs of the effects are the same and the ord
of magnitude comparable; however, in our result we do
have an infra-red logarithmic enhancement.

In Ref. @26#, the author evaluates radiative corrections
point-like pions. A 3% correction is found for the pionium
decay width. In the present work~Sec. VI!, we have found
for the equivalent quantity an effect that is very close to z
with a possible uncertainty of the order of60.75%. The
1-14
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evaluation of the photon-r-meson transition effects in Re
@26# did not take, however, into account the constraints co
ing from xPT.

In Ref. @23# ~first paper! the electromagnetic correction
due to the pion mass shift and the Coulomb potential
evaluated using coupled Schro¨dinger equations for the two
channel system and determining the values of the strong
teraction potentials at threshold from thexPT scattering
lengths. A correction of the order of 8% is found for th
pionium decay width. Our evaluation of similar effec
which is of the order of 7% is in agreement with this resu
In the second paper, using a different interpretation of
pion mass shift effect, a correction with the opposite sign
the above is found. This sign is not, however, compati
with the predictions ofxPT, as is easily seen from th
lowest-order amplitude~3.4! @42#. The higher-order correc
tions enhance the latter effect, as is found in Ref.@47# and in
Sec. VII of the present paper. Therefore, the interpreta
given in the first paper seems to us the closest one to thexPT
framework.

We conclude in general that the overall 7% dynami
corrections to the conventional lowest-order formula of
pionium decay width found in the present paper, toget
with an uncertainty of 1.5%, underline the stability of th
lowest-order predictions, bringing at the same time theor
cal support to the feasibility of the experiment, and provid
precise basis for a comparison of the prediction ofxPT with
the experimental result.
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APPENDIX: TWO-LOOP DIAGRAMS

In this appendix we generalize the validity of the lowe
order formula established in Sec. IV@Eq. ~4.7!# to the two-
loop level.

The main ingredient of the proof is already met at t
one-loop level and can be summarized as follows. In
vicinity of the two-pion threshold, the strong interaction un
tarity one-loop amplitude~with the pion mass shift included
in! can be decomposed into an analytic functionMan.

(1) of the
real variablesb0

2(s), t andu and a non-analytic part,Mnan.
(1)

~essentially proportional toA2b0
2!. ~The analyticity ofMan.

(1)

in t and u near threshold is due to the absence of infra-
singularities in the strong interaction amplitude with mass
pions.! The constraint diagram amplitude,MC(1,0,1) @the no-
tation being explained before Eq.~5.8!#, has the property of
cancelling the nonanalytic part,Mnan.

(1) , of the one-loop am-
plitude ~sum of the two diagrams of Fig. 1!:
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M~1!1MC~1,0,1!5Man.
~1!1Mnan.

~1! 1MC~1,0,1!5Man.
~1! .

~A1!

The deviation of the analytic piece,Man.
(1) , from the pionium

energy to thep1p2 threshold is of orderO(a2) and hence
Man.

(1) can be replaced by its value at threshold:

Man.
~1! ~b0

2 ,t,u!5Man.
~1! ~s54mp1

2 ,t50,u50!1O~a2!.
~A2!

Two cases must be distinguished, depending on whethe
loop is made ofp1p2 or of p0p0. In the first case (p1p2-

FIG. 4. Two-loop diagrams having constraint diagram count
parts.
1-15



-
he

e

op
ss
e
ld
o
d

re

he
o
he
d
on

hi
ol
gi
-

th
op

at
a

the

n

the
end
ps.
tor
e
the

the

ical

-
the
on

a-
i-

ga-
ne

ther

s
e of

ri-
the
d in
o-

ith
er-

ing
it to

H. JALLOULI AND H. SAZDJIAN PHYSICAL REVIEW D 58 014011
loop!, the nonanalytic piece,Mnan.
(1) , and the constraint am

plitude, MC(1,0,1), are real and separately vanish at t
p1p2 threshold and therefore the value ofMan.

(1) at thresh-
old coincides with that of the one-loop amplitudeM(1) at
threshold, which is real. In the second case~p0p0-loop!,
Mnan.

(1) andMC(1,0,1) are imaginary and do not vanish at th
p1p2 threshold; the value ofMan.

(1) then coincides with the
real part of the one-loop amplitudeM(1) at threshold. There-
fore, in all cases we have:

M~1!1MC~1,0,1!5ReM~1!~s54mp1
2 ,t50,u50!.

~A3!

This property can be used for the analysis of two-lo
diagrams. It is clear that not all two-loop diagrams nece
tate a detailed study; those not having singularities in ths
channel are analytic in the vicinity of the two-pion thresho
and real; since in this case their deviation from the thresh
value is of orderO(a2), they can immediately be replace
by their value at thep1p2 threshold.

The typical diagrams involved in this analysis are p
sented in Fig. 4.

The sum of the four diagrams of Fig. 4~a! ~where the loop
pions are the same in the four diagrams! is free of singulari-
ties in thes channel and is represented in the vicinity of t
two-pion threshold by a real analytic function. The value
the latter at the pionium energy differs from its value at t
p1p2 threshold by anO(a2) term; hence it can be replace
by its value at the two-pion threshold. When the loops c
tain at least one pair ofp1p2, this value coincides with the
real part of the two-loop amplitude~first diagram! at thresh-
old. If the two loops correspond to neutral pions, then t
value differs from the real part of the amplitude at thresh
by a factor that is proportional to the product of the ima
nary parts of each loop~actually cancelled by the last con
straint diagram! and hence to (Dmp)2. This factor contrib-
utes with a relative order of magnitude of 1024 and can be
neglected. Therefore, the sum of the four diagrams at
pionium energy is equivalent to the real part of the two-lo
amplitude~first diagram! at thep1p2 threshold.

In diagrams of Fig. 4~b!, the tadpole diagram factorizes
the vertex and does not interfere with the loop diagram c
01401
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-
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l-

culations. For the latter, one has the same results as in
one-loop case~Fig. 1!.

In the first diagram of Fig. 4~c!, the internal propagator is
modified with the inclusion of the self-energy correctio
~which must also be done in the other propagator!. This fea-
ture does not qualitatively change the singularities of
diagram with respect to the one-loop case, for these dep
essentially on the mass-shell condition of the internal loo
A similar self-energy inclusion in the constraint propaga
@Eq. ~2.3!# ~second diagram! ensures the cancellation of th
singularities of the first diagram and the reasonings of
one-loop case can be repeated.~The mass shift coming from
the above self-energy correction can be incorporated in

mass term used in the constraint propagatorg̃0 . Wave func-
tion renormalization constants should not influence phys
results.!

In the diagrams of Fig. 4~d!, the constraint diagram, cor
responding to the first loop, cancels the singularities of
first loop of the first diagram. The second loop, which is
the right of each diagram, is free of singularities in thes
channel and is also free of infra-red singularities~no mass-
less particles!. Hence, the sum of the two diagrams is an
lytic in the vicinity of the two-pion threshold and the prev
ous results are found again.

There are also diagrams with three internal pion propa
tors, in which three external pions join each other at o
vertex and a single external pion is attached at the o
vertex. Such diagrams have singularities forpi

2>(3mp)2 ( i
51, . . . ,4). Forpi

2’s in the vicinity of the mass shell, as i
the case in the present problem, these diagrams are fre
singularities and are analytic ins,t,u.

The remaining two-loop diagrams do not have singula
ties in thes channel and the above diagrams exhaust
cases where constraint diagrams occur. The result foun
Sec. IV @Eq. ~4.7!# can therefore be generalized to the tw
loop level.

At the three-loop level, a qualitative change appears w
the occurrence of inelasticities through the four-pion int
mediate states. The constraint propagator~2.3! is no longer
sufficient by itself to cancel the singularities of the scatter
amplitude. In this case, new pieces should be added to
take into account the inelasticity effects.
-
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