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Power corrections and the Gaussian form of the meson wave function
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The wave function of a light pseudoscalar meson is considered and nonperturbative corrections as signaled
by perturbation theory are calculated. Two schemes are used: the massive gluon and the running coupling
scheme. Both indicate the presence of leading power correctio@¥liff), whose exponentiation leads to a
Gaussian dependence of the wave function on the impact paraimelee dependence of this correction on
the light cone energy fractions of the quark and the antiquark is discussed and compared with other models for
the meson[S0556-282(198)04113-7

PACS numbsefs): 13.40.Gp, 12.38.Bx, 25.80.Dj

[. INTRODUCTION cally stable results with the smallest possible number of phe-
nomenological parametersl—6]. This approach sets the
The challenging task of explaining experimental data forbenchmark but it is not the final answer. The main problem
exclusive processes, such as pion and nucleon electromagew becomes to estimate the sensitivity to soft contributions
netic form factors and elastic scattering, is tightly connectedf the Sudakov-improved perturbation theory for moderate
with our understanding of the bound states of light hadronsQ?, that is, in the range 3 GéwQ?<40 Ge\2. To this
In the asymptotic limit of parametrically large momentum end we need a framework for studying nonperturbative cor-
transfer Q) there is a clear theoretical picture that comesrections to hadronic wave functions. This is the objective of
from merging the parton model with perturbative QCD this paper.
(PQCD. The basic tenet of this picture is that a hadronic  Since our approach to the problem is from the hi@h
bound state is a superposition of virtual states with a definitend, we consider the two-quark component of a light pseu-
number of constituent partons. In the frame where all particidoscalar meson wave function. This is the dominant configu-
pating hadrons are fast moving, factorization guarantees thaation in the asymptotic limit. The specific exclusive process
the Q2 dependence of an exclusive observable enters onlin which the pion participates will be of no concern here.
through the underlying process of the elastic scattering of th®ur goal is to calculate the structure of the nonperturbative
partonic constituents. This has led to the, by now classicgorrections as they are signaled by perturbation theory itself.
dimensionalior quark counting rule§1]. However, the fact These will occur in the form of power correctionshrin the
that the scaling wittQ? as predicted by the counting rules is Fourier-transformed wave function.
actually observed by experiments at high momentum trans- Recently, some progress has been made in understanding
fers generated new questions. Counting rules assume that thee power corrections by considering classes of Feynman
dominant configurations are those in which none of the condiagrams that give rise to a factorial divergence of the per-
stituents carries vanishingly small longitudinal momentum turbation series in large orders. For the case of QCD the
But such configurations are present in the hadronic wav@ower corrections arise from the small momentum region of
function and would lead to scaling witl)? that is less the loop integrations and are associated with the so-called
steeply falling agQ?— . Underestimating the contributions infrared renormalons. For a review and related references,
from these end-point regions was the main criticism againssee[7,8]. Thus, one may get an indication of the type of
the parton model picturg2]. power corrections by looking at the infrared sensitivity of
The next major step forward came with the work of Ster-Feynman diagrams. Most investigations involving renorma-
man and collaboratorf3,4] who implemented the summa- lons are in the context of two calculational schemes. The first
tion of leading and next to leading logarithmic radiative cor-is the massive gluon and the second is the running coupling
rections through the introduction of Sudakov factors into thescheme. In the first method, which we apply to the case of
factorized expressions for exclusive processes. The generibe radiative corrections to the meson wave function, a gluon
form of such factors is eXp-cinQAn[InQ%In(1/b?)]} where  mass is introduced via a dispersive paramatg®] that acts
b is the transverse distance between constituents. It has tl&s an infrared regulator. This procedure is certainly consis-
effect of suppressing configurations of constituents that aréent at the one-loop level. Since the power corrections, in the
separated by large distanbewhich would be the case in the renormalon approach, arise from the infrared-sensitive re-
end-point regions mentioned previously. We note that thegions, our interest will be in the structure of the nonanalytic
Sudakov factors can be considered as the perturbative tail ¢érms in\? which, to the order we work in, turn out to be
the hadronic wave function, i.e. the region where the boundn\? and b2\2In\2. It is known [7] that such nonanalytic
state properties can be reconstructed purely from PQCDierms come only from the pinch singular points in the loop
Sudakov-improved perturbation theory, implemented with anomentum integration with kf being associated with the
model for the hadron wave function at a low momentumusual logarithmic enhancements of the perturbative series
scale and a reasonable prescription on how to freeze the coandb?\ 2In\? with the leading power corrections. In the sec-
pling at large scales, and showed that it does give numeriend scheme, power corrections are computed using a one-
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loop improved perturbation theory where infrared effects are
introduced through the running coupling(kf). Then the
Sudakov exponent is Borel transformed and its singularity
structure in the Borel plane is studied. The power corrections
In th'? Cas_e are found to be proportional mf?CDbz' This FIG. 1. Class of diagrams that contain “nonladder” gluohks (
technique is the same one used for the study of power Cofpease are suppressed in the axial gauge.
rections to inclusive processes and has been widely dis-
cussed in recent years; see, for example, Rif].

In Sec. Il we calculate the leading power corrections and P(x,b,p,,u)zf d%k e'k-P f dk X(k,p, &)
discuss the correspondence between the expressions derived
in the two schemes. Exponentiation of leading power correc- 1 (dy”

L
tions naturally lead to the Gaussian dependence of the meson = N_c ﬁemp Y

wave function on the impact parameter In Sec. Il we o

discuss our results and compare them with previous publica- X (0|T[q(0)dysq(0y,b)][M(p)) .
tions where such Gaussian factors for the meson wave func- 2.3

tion have been advocated. Here, of interest will bextfaand
InQ” dependence of the Gaussian factor itself, whei®the  The quark distribution amplitude, which enters the leading
light cone fraction of the momentum of the quark in the grger perturbative expressions, is
meson. Finally we summarize our conclusions in the last
section. K| =
¢(x,,u)=J deJ dk™ X(k,p, ) =PV (x,b=0p,u).

(2.9
Il. RADIATIVE CORRECTIONS TO THE MESON

WAVE FUNCTION Radiative corrections t®(®) coming from the infrared re-

gion exponentiate. Their summation leads to the Sudakov

A. Definitions suppression factdrll]

The Bethe-Salpeter two-quark wave function of a fast
P N POx,b,p, ) =exid — Si(x,0,Q, 1) 1P (x,b=0pp, ),

moving pseudoscalar mesdn is defined by the following
) o > (2.9
matrix element at renormalizatiqand factorizationscaleu
[3: with
1 dy - 2Ck Q2 INQ% Adcp
X(K,p, =—f e'*Y(0|T[q(0)¥ M(p)). =——In In NL,
(kopo) = - 2 (0[TLa(0)d ysa(y)1IM(p)) Sur=5. 2" Al
(2.2
11 2
BOZ?NC_§Nf, (2.6)

In the frame where the meson is moving fast we define the
light cone vector along the direction of motioy*  where NL denotes next to leading logarithmic corrections,
:(1/\/5)(1,0,0,1), and the parity reflected direction vectorwhich are also known. Note that the above perturbative an-
v_“:(ll\/i)(l,o,o,— 1), ©=0,1,2,3, normalized ag.p=1. Swer i_s really defined in th_e region tif/»/\_éCD; i.e., the
Then the light cone momenta of the meson and the quargxﬂﬂg?r‘sggltlhsz‘g%v:u:]Léngtt;gsca” be reliably constructed
constituent are defined as The Sudakov exponent shown in E@.6) is obtained
from the one-loop radiative corrections ®¥®). There exist
h ot s = _ B various methods of calculating these corrections. In this pa-
pr=proi, ki=v-k=xp’, k' =v-k k. =k per we will mostly follow the approach of Botts and Sterman
(2.2 [3]. In this approach the fermions are taken to be massless
and the axial gauge is used. The advantage of using the axial
] ] gauge in the derivation of an evolution equation for the wave
The large scale ip*=Q/\2, whereQ is the momentum  fynction is that the diagrams involved in the calculation of
transfer of the hard exclusive process in which the mesoihe kernel have a simpler structure than in a covariant gauge.
participates. Although we do not need to specify the processpecifically, diagrams in which gluons couple the kernel
we must always keep in mind that our discussion will alwayswith the “inside” of the wave function, thus generating non-
be in the context of a hard process. The object of interest iwo-particle-irreducible(2Pl) connections in the constituent
this work is the wave function in impact parameter spaceguark channe(nonladder gluons are suppressed, Fig. 1. In
given by the covariant gauge such diagrams must be included and
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“ FIG. 2. One-loop diagrams for

the meson wave functiof.
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further reduced through the use of Ward identities, just like o 1

in the treatment of parton distribution functions in deep in- X ys———y

elastic scatteringDIS). K—qg+ie
In the axial gauge there are gaug® (dependent contri- ] ]

butions toS,; that enter in the next to leading logarithmic The impact parameten acts as an ultraviolet regulator so

corrections in Eq(2.6). Such gauge-dependent pieces cancefhat the loop integral can be kept@t=4 dimensions. Stan-

against gauge-dependent terms in the radiative corrections #rd manipulations for the-g,, piece of the gluon propa-

the hard scattering. Since we do not analyze the hard subpréator yield

cess here, our results will be at the level of leading logarith-

mic and power corrections. __ 9 0

P Pl -g,,= = 7 CeP”

1

_. 2.8
g°—AN%+ie @8

nv

1
In(b?\?) + 6b2)\zln(b2)\2)

B. Meson wave function in the massive gluon scheme +ObB*\4In(b\))+ O®In°(b))). (2.9

As was mentioned in the Introduction, we are interested in
the nonanalytic dependence of the radiative corrections t¥Vithout the gluon mass regulator, the B(*) term would
the meson wave function on the infrared cutoff. The Landadurn into an IR divergence that should be dimensionally
equations guarantee that infrared sensitivity arises from thod@gularized. Here, as well as in the rest of the calculations,
momentum regions where the internal lines in a Feynmaihe interest lies in the presence of th& ?In(b°\?) nonana-
graph approach their mass shell. To regularize mass-shéytic term.
divergences we introduce for the gluon(dispersivé mass The calculation involving ther-dependent pieces of the
parametei [9] and calculate the one-loop radiative correc-gluon propagator is somewhat subtler. Evaluation of the
tions toP(® in this massive gluon scheme. This is the maintraces in Eq(2.8) yields
difference with the treatment found in R¢8] and also the ] ©
fact that we are mainly interested in the terms that are Pwyln a0, =1(4mas) CeP V(11 +15), (2.10
nonanalytic in\ and vanish as powers of in the exact
mass-shell limit. The gluon polarization tensir,, is de- ~ Wwith
fined via the principal value prescription for the unphysical

singularitiesn- g. Hence the gluon propagator reads | f d*q ibq
i C ) em®
D,.,(q,n)=——-—N,,(q,n), — —
wA Q) g>—\2+ie wA Q) ><[n-(q—k)+u-nu-(q—k)—v-nu-q]n~q

[(a—k)?+iel(a®=N*+ie)[(n-a)*+ 7]

NM,,(q,n)=—gW+ many) (211)

and
500, (2.7 =11k kp- (2.12

ith h d of thi b . h The two integrald; andl, arise from the two pieces,q,
with 7—0. At the end of this subsection we comment on thea g, o of the gluon propagator, respectively. At this stage
possibility of using the same parameterto regularize the

it is advantageous tfix the gaugeby the choice
unphysicaln- g singularities. The graphs to be calculated are g gaugey

depicted in Fig. 2 and the Dirac structure of the megeq- .
vertex isX= —(1/4)¢ ysX, whereX is the scalar wave func- nt=—(v*—ov*). (2.13
tion defined in Eq(2.1). V2

Contribution toP from vertex correction, Fig. 2 graph

(b): The vertex correction to the meson wave function is 1 NiS gauge choice has the advantage of simplifying the cor-
responding integrals by removing all dependencejorand

1 g, from the numerator of Eq2.11), i.e., the normal coordi-
v nates in the collinear limit for the gluon momentum. In this
—p+k—qg+ie gaugel ; becomes

P=i(dra )cf d'q e'Ptr| X

Y
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_ (Y e i
|1—J'(27T)4e a ['1]—( y 5(Jot+J1), (2.20

[2n-g+(k-g)/(n-k)—2n-k]n-q
[(a—k)2+i€el(q?=N2+ie)[(n )2+ 7?]
(2.19

where

1
Jo(B)=2FT S_'B/ZJ dx,x82(1—x,) 12
The above integral is evaluated via the introduction of o B) () o ( V

Schwinger parameters. The intermediate steps can be recon-

structed by using the techniques and the integral relations « Jldx ¥B(1—x.)~BK X 29
presented in Ref.12] and the result is 0o 2 2(17x2) PR p(VsXaxp), (2.23

dx:x 1/2f dx B)+A— 1
1 o] ket B A 4B 31(8)=2PT ()P [ ey V21— xy)
(2.15 0
1
W|th Xf dXZXg(l_Xz)iﬁ(_Z‘i‘2X2_X1X2)
0
A=Xo(— 24 Xp+X;X2)b2(N- k)2, XKy p(\5%%0). (2.22
B 2
B= bz[(l—xl)xz(n- k)24 (1—xz)\? Inspecting the above integrals we see thatdor0 there are

no singularities. Singularities arise only f@<0 and they
2.16 are generated from the integration end poiats-0 and/or
’ X>— 0. The extraction of such singularities is straightforward
because the series expansions of Kh&unctions for a small
Since we are interested in the limit—0, we will calculate ~argument can be used. From H@.18 it follows that the
leading and nonanalytic dependence of the Feynman inte- relevant nonanalytic terms that we are interested in can arise

grals with the help of the Mellin transformation defined as from at least double poles #=0,~1." We examine these
two points in turn.
For the poles aB=0 we setB= 5, §—0 and obtain

1_X1 2

+ n

X1

M[F(t)](,e)=f:dtt*ﬁle(t). (2.1

1
It should be noted that the Mellin transform method has been Jo(B= 5)=0(5),
used extensively in the study of the high energy behavior of
Feynman diagrams. For a review of the method and for fur-
ther references, s¢&3]. The definition(2.17) yields the fol-

lowing correspondence between polesgirand (large t de- Ji(B=8)=— i+ 3(1—|n2)
pendence: ! 5 6
1
r rtPoin"~ 1t +(’)( —). 2.2
M[F](8)= ——— —F(t)= (2.18 5 223

(B=Bo)" I'(n)

Nonanalytic terms int (logarithmig are generated by at least Combining Eqs(2.23), (2.20 and inverting the Mellin trans-
double poles in the Mellin image. We define the dimensionformation we get
less ratios

2 2

(n-k)? —i |1
[ In? 2+2(1—In2)|n(n o2

) e o 1 R
t=—s— s=bin-k?, (219 o0~ 72" (ng '

(2.29

and we note that the paramef@glso acts as an IR regulator.

Then, in Eqs(2.16 the —0 limit for the gluon propagator

can be taken. The Mellin transformation of the Bessel 1t is straightforward to see that there are no other points in the
functions can be found in Reff14] and the Mellin image of  range betweer- 1 and 0 that would give double poles, thus exclud-
Eq. (2.15 turns out to be ing any linear in\ corrections arising from poles @= —1/2.
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The residueR generically contains all terms that are analytic S
in A2. Similarly, the poles ar@= —1 are obtained by setting  J;(8=—1+8)=(s independent- —
B=—1+6 and power expanding thk functions. The re- 46°

sults are +0O(1/5). (2.26
Jo(B=—1+6)=(s independent (2.25

S
+—(1-1In2
252( )

Again, combining the above two equations with Eg.20

and and inverting the Mellin transformation we have
|
1 )\2 2
I, _1=(b independent+ — —b2\2An°——— = (1—1In2)b?\?n +R
1lp-1=( p (am? 8 (n-K)2 2( K2
(b ind dent | b2\2 1| o M +1(1 In2)l i +R (2.27
=(b independent- =In =(1-In2)In . .
P (417_)2 8 X2Q2 2 X2Q2
|
In the last step we have used that-k)?=x2Q?. By (b Playt Piay T Py (0—0)=Ryy, (2.30

independentwe denote all terms that are nonanalytic\if

O(N?InN?) in this case, and are independenbofanalytic in

\ terms reside ifR. We make this distinction because, as wewhere the residu&, contains terms of purely ultraviolet
will see later, the terms denoted bl (ndependentare of  origin and it is due to the mismatch in the UV regularization
infrared origin and cancel against the self-energy contribuof the two sets of diagrams. Note that the vertex diagram is
tion. The expression for,, Eq.(2.12), is obtained from the UV regularized by a finiteb whereas the self-energy dia-
above by simplyx>—(1—x)2. The overall contribution to grams are dimensionally regularized. Had we taken the limit
the vertex from then(,q,, piece of the gluon propagator is b—0 before calculating the vertex integrals, then this would

[Eq. (2.10] have required us to also dimensionally regularize the vertex
and then in Eq(2.30 Ryy would have been exactly zero. In

a 1 A2 A2 any case, the net result of this analysis is that the self-energy
P(b)|n( a,= 4_CF7D(O)b2)\2 3 In? —— +In? 5 diagrams will cancel alb-independent terms in the vertex,
. m x°Q (1-x)°Q such as the ones shown in EQ.28, as well as the vertex

2 contributions from theg g, piece of the gluon propagator.

The final result for the one-loop radiative correction to the

+(1-In2)In—-——  res| . _ .
X(1-x)Q wave function in the massive gluon scheme is obtained by
) combining the partial results of EqR.9), (2.28), and(2.30.
+(b independentt R. (.28 Retaining only the nonanalytic ik terms up toO(\2) we

Finally, the q,q, piece of the gluon propagator gives obtain

b-independent leading contributions and hence it cancels

against the corresponding piece of the self-energy, as we will as

p0|nt out beIOW P(l):ECFP(O)(Cle)\Zln)\Z'F Czb2)\2|n2)\2) + R,
Contribution to P from self-energy correction, Fig. 2 (2.3

graphs @;) and @,): Because of UV divergences, we em-

ploy dimensional regularization witB=4—2¢ and renor-

malization scaleu: with
=i(4 C 2¢ qu 1 2 1
P(al)—l( mas)Cr p (27T)D Ci=- Eln[x(l_x)Q 1, CZZZ_ (2.32
b ! ! —1 ili 212
Xtr| X yg——y" — YNy —5————- The familiar Sudakov factofS,s~ asIn“Q“, calculated for
K+ie" k-d+ie Q°—A"Fle fixed couplingas, is analytic in\2 and it is contained in the

(2.29 residueR. In the coefficient<C,,C, we have only kept the

parts that aren independent to leading logarithmic @ or-

It is straightforward to find that, even before any gauge fix-der. Note that th@-independent leading contributions@q,
ing, the self-energy contribution is such that C, come only from Eq.(2.28. The n dependence enters
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through the combination In(k)?>+In[n-(k—p)], and any C. Running a scheme and IR renormalons
variation of n will lead to change that is subleading @ ) o _
i.e., it will be down by a Ifix(1—X)Q?]. Fixing the gauge as The running as scheme for estimating nonperturbative
in Eq (213) Organizes Convenienﬂy the |eading and Sub]ead.corrections starts with the expreSSion for the One-lOOp radia-
ing InQ? contributions but the result that we quote in Egs.tive corrections to the meson wave function. The leading
(2.31), (2.32 is the gauge-independent leading piece. logarithmic term is well known and can be readily obtained
We now return to the question of regularizing infrared from the expressions in Eq&2.8), (2.29 after rationalizing
singularities in the axial gauge and within the massive gluorthe fermion propagators and applying the collinear approxi-
scheme. In the massive gluon propagator, Bd/), we used mation to the numerator factors. Equivalently it can be com-
the parametek to regularize on-shell singularities whereas puted by calculating emission from two, almost parallel,
the polarization tensad¥ ,, was defined through the principal Wilson lines. All infrared divergences are dimensionally
value prescription and the regulatgr If we treat the param- regularized and na regulator need be introduced. A princi-
eter\ as a Lagrangian mass, instead of a dispersive paranpal value prescription is used for the axial gauge gluon
eter (this is at the one-loop level onlythen the propagator propagator which now reads
will be modified by the addition of a fourth term of the form
n,n,\?/[(n-k)*>=\?n?]. A similar prescription has been

H 2
considered in the leading— 0 limit in Ref. [15]. However, D,,(q,n)= ! —g,,+ in q,— n 9,9, |-
beyond the logarithmic in\ level, this term vyields PR 2rie M neg T (g2 M
b-dependent(\? In®\?) contributions that cannot be inter- (2.33

preted as arising from some pinch singularity in the linit

—0. Such artifacts of the regularization prescription are

avoided once one keeps in mind thais not a Lagrangian After performing the collinear approximation to the numera-
gluon mass but just an on-shell regulator, as it appears in Edor factors and then integrating ovgr by closing around its
(2.7). poles in theq™ complex plane we obtain the resig]

2_62d? ) +dag”t
PO(xb,pow) =~ CePO(x,b=0p, ) J T gy [P
27 q

+(X—1—X). (2.34

The Sudakov exponent due to perturbative evolution of theunning coupling the Sudakov exponent will become domi-
wave function, Eq(2.5), is determined to leading orderin,  nated by the lower end of thag? integration where pertur-
by the above expression. At this stage the running couplingpation theory itself is ill defined. Nevertheless, what we are
is introduced. A perturbative analysis at the logarithmic levelinterested in here is not the numerical stability of the pertur-
[3] indicates that the scale of the coupling is set by the transbative results but signals of nonperturbative corrections. We
verse momentum of the emitted gluon and it encodes théherefore proceed by allowing the infrared regulator to be-
information that the strength of the interactions increases focome O(Aqcp) and introduce the Borel transformation of
emission at large impact parameter. The Sudakov exponetite Sudakov exponent defined as

now reads

Ce [ d? S\Nf(xivaaM;as):J doSys(x,b,Q,u;0)e” s,
__“F (99 2y aib-g_ 0
Sw 2] as(q°)(e 1) (2.3
xptdq® (1-xp* dg” The Borel imagéS,,; can be obtained by first using the fol-
X a q + " = lowing representation of the one-loop running coupling:
Cr (d? 1-x)(p*)? . * Jore— 7Boln(G?/A2
-— 2_':2 _zan(qZ)mW(elbq_l)_ ag(g?) = Jo dge™ Poln(a /A% (2.37
™ q q

(2.39 Substituting the above expression into Eg.35 and inte-

rating overg we get
When the lower limit of thelqg? integration is set to b? the grating awed

result in Eq.(2.6) is recovered. However, apart from the case c 1— 2
of small-size quarkonia, for the usual light mesong 1/ SNf:_FmM
~Aqcp- Itis then apparent that after the introduction of the 272 A2
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o T(1=0B0) uiamd existence of\2In?\? contributions, though, signals that such
X 0 d UUBor(lJr(Tﬁo) s . (238 an expansion is not possible for the wave function of a light
hadron. An operator expansion formalism for the wave func-

Comparing the result with the definitioi2.36) we read off ~ tion must necessarily involve nonlocal operators that extend

the Borel image along the light cone and, in analogy with the usual OPE,
their expectations are to be parametrized by nonlocal con-
_ Ce X(1-x)(p")?2 T(1-0pBy) densates. The possibility of parametrizing power corrections

(2.39  to the meson electromagnetic form factor in terms of nonlo-
cal condensates has been discussed in [R&.

The other important piece of information in the leading
power correction term is that its?> dependence leads to a
Gaussian factor for the meson wave function. This is ob-

ST 2T e GBI (1B

The pole atoc=0 is of UV origin. Infrared sensitivity is
parametrized by the presence of IR renormalon poles at

=n/By, N=1,2,... . Theleading IR renormalon is air ; .
=1/B8, which leads toO(AéCDbZ) power corrections of the tained from Eqs(2.5) and(2.40:
form x(1-x)Q?
, 7>=7>'°Texp[—cm Z—)AgCDbZ . (242
_ oPT 2 2 X(17X)Q QCb
S\Nf_S\Nf+CAQCDb |nA2— (24@
QCD with PPT denoting the wave function perturbatively evolved

with exponent given in E¢2.6). We turn to a discussion of

Terms that areQ independent have been omitted in the . . X
gus form in the next section.

above equation. As in the case of the massive gluon schem
it is this part of the coefficient that is independent to lead-
ing logarithmic inQ order and it arises from soft gluon emis- IIl. GAUSSIAN FORM OF THE MESON

sion; hence, it is universal. The coefficie@t contains the WAVE FUNCTION

principal value integral ovesr, which is one possible way to The wave function in Eq(2.31) and Eqg.(2.42 can be
define it. This ambiguity is anticipated since perturbation aritten in the following suggestive form:

theory is ill defined and therefore it cannot predict the size of

nonperturbative corrections, only their scaling with We P(x,b,Q) = ¢(x,Q)exp{ — Shi —b?S,[x(1—x)Q?]
emphasize that the manipulations that led to €339 are P St
formal and the transformation cannot be inverted backdo —b*S,[x(1=-x)Q%]+ - -}. 3.1

space without the use of some prescription convention.
The value of the coefficier® will depend on this prescrip- From the infrared renormalons at integer valuesrg, we
tion. In addition, as with the massive gluon case, higher orobtain for the Sudakov exponent a power series expansion in
ders inas are not suppressed, unless one invokes an addihe small parameteA g b?<1 with Q-dependent coeffi-
tional assumption of, say, the freezing of the coupling atcients. Within perturbation theory th@ dependence is loga-
small momentd9,16]. rithmic. Truncation of the above power series to the first two
The connection between the running coupling and théerms is accurate in the smailregion up to corrections of
massive gluon calculation is established by comparing qurderO(AéCDb“). This form of the exponent is the same as
(2.40 with Eq. (2.31). Note that in the massive gluon result the one seen in the Drell-Yan process at meas@edand
we have not written the analogue of ti8§{ that we see has been derived by Korchemsky and Sterman in Ref.
above. This is because in the Mellin transformation analysighese authors have also given an operator definition of the
of the massive gluon integrals we looked only for contribu-power corrections in terms of pairs of Wilson lines and their
tions that are nonanalytic in the regulatot and not in the transverse derivatives. For the same Drell-Yan process, the
impact parameteb?. Had we chosen the latter we would Gaussian form in impact parameter space was noted years
have generated the perturbative ansﬁ%f in the massive ago and outside the renormalon context by Collins and Soper
gluon scheme as well. The nonperturbative pieces in the twbL8] in their treatment of the infrared sensitivity of the Suda-

calculations can be mapped onto each other, up to a multkov exponent.

plicative constant, via the identification The dimensionful functionsS;,, n=1,2,...,scale as
Aér}:D but their absolute normalization cannot be fixed within
A2n xzwAéCD. (2.41) perturbation theory. However, we have obtained some infor-

mation beyond the summation of logarithmic corrections. If
In Eq. (2.31), the \2In®\? term indicates that the coefficient we assume that in E@2.42 the unknown coefficienC is a
of the termA?In\? will depend on IQ?, Q% being the only  number ofO(1) and that our methods capture correctly the
other scale involved; hence, we also identify dependence of the leading nonperturbative corrections, then
(L2)N2In°N%—Adcpin Adcp. The existence oh2InA? con-
tributions is a signal for the presence of a condensatelike SZ(Q)~A(23CDIn[x(1—x)Q2], (3.2
term. Had only this term been present, then one could expect
that the power corrections could be captured from an operawhere only the universal piece is retained, as has been ar-
tor product expansiofOPE in terms of local operators. The gued in the previous section. For fixad-0, power correc-

013011-7



R. AKHOURY, A. SINKOVICS, AND M. G. SOTIROPOULOS PHYSICAL REVIEW [38 013011

tions lead to increasing suppression of emission at a largperturbative series. More importantly, it is not known how to
impact parameter with increasing@. This suppression i define the massive gluon scheme for higher loop corrections,
additionto the one generated 18] | . However, for fixedQ,  and for the running coupling scheme it is only an assumption
it is seen that this additional suppression becomes weak ithat as= as(kf) all the way into the deep infrared region.
the end-point region. The end-point region is enhanced rela/e can say for sure, though, that any answer obtained from
tive to the central region by the Gaussian dependence of theerturbation theory would necessarily hayadependence in
meson wave function. This is not surprising since it is in thethe Gaussian form that it generates, unlike 813 which is
end-point region that the effective hard sca{@ —x)Q? be-  Q independent beyond the logarithmic corrections residing
comes small and power corrections become more importanta S\f. It should be pointed out here that, recently,
We emphasize that all this is on top of the Sudakov suppresenormalon-based models have been used to predick the
sion, S, as mentioned above. In this respect, the pattern oflependence of the higher twist structure functions in deeply
power corrections is very similar to that observed, for ex-inelastic scattering with some phenomenological success
ample, in event shape variables where the leading powd23] and this was one of our motivations for pursuing the
corrections[22] also come from the end-point regigtwo-  above analysis.
jet limit in this case, which is itself Sudakov suppressed.
For exclusive processes there exist in the literature vari-
ous models for the wave function with which we may com- IV. SUMMARY
pare our results. In the case of the meson, the most popular is |n this paper we studied the nonperturbative corrections to
the one obtained from an oscillator model of two constituenthe meson wave function using the methods that have al-
quarks boosted in the light cone frame. This leads to a wavgsady been developed for semi-inclusive cases, namely, the
function of the form[19,2Q massive gluon and the renormalon methods. We found that
_ PT 2 2 the leading nonperturbative corrections are of order
P(x,0,Q) = p(x, Q)exr = Sy (kD )X(1=x)b7], (33 O(Adcph?) for the two-quark wave function at transverse
' separatiorb. The exponentiation of such contributions leads
where the averagé(i>’1 is the oscillator parameter. Note 10 a Gaussian factor in addition to the Sudakov resummed
that this Gaussian form is such that it can interpolate belogarithmic enhancements. Of particular interest isxtue-
tween the perturbative tail of the wave function given bypendence of this Gaussian factor. It leads to the conclusion
eXp(—SZ{) and the nonperturbative region. TH¥b?) term thqt the power corrections arise from the engl-point regions.
in the exponent has been found to be numerically importanf Nis x dependence has been compared with low energy
in order for Sudakov resummed perturbative expressions fdpaussian models for the wave function. o
the meson form factor to be applicable in the subasymptotic |t must be emphasized that both methods for obtaining the
Q region[21]. It is therefore interesting to compare its eading nonperturbative corrections have their origin in per-
dependence with the expression we get from perturbatioffrbation theory. They predict correctly the type of the power
theory. We observe that like in E(B.2), the exponent in Eq. correction, but since they are applied in a region where the
(3.3) enhances the end-point regions compared to the centr§PUPIing is normalized at low scales, they have limited pre-
region. However, from the renormalon-based approachdictability for the coefficient of the power corrections unless
which is rooted in perturbation theory, one can expect a deddditional assumptions are introduced, such as freezing of
pendence ox(1—x) which is logarithmic but not propor- the coupling. Thus our predictions for the dependence
tional to it. The analyses of nonperturbative corrections aghould be considered as another model. A similar approach
signaled by perturbation theory and phenomenological mod_ﬁor the x dependenge of the higher twist stru_cture functions
els for the meson wave function in the nonperturbative rein DIS has met with some phenomenological success. It
gime have similar qualitative behavior although the end-would be interesting to apply this model to the phenomeno-
point enhancement in the former case is much milder than i#fgical study of the meson electromagnetic form factor and
the latter. For our approach to give results in exact corre€lastic scattering.
spondence with, say, the oscillator model would require a
resummation of the higher order i contributions to the
A2In\? term at the level of thexponent These could turn
the Inx(1—x) into ax"(1—x)" dependence. It is not obvious ~ We would like to thank Professor P. Kroll and Professor
to us how such a resummation would be implemented. ReN. G. Stefanis for a communication. This work was sup-
call that in the region where nonperturbative corrections argorted in part by the U.S. Department of Energy. One of us
generated, the coupling is;= O(1) and there appears to be (A.S. gratefully acknowledges financial support from the
no small parameter around which to build and then resum &lfred P. Sloan Foundation.
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