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Power corrections and the Gaussian form of the meson wave function
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The wave function of a light pseudoscalar meson is considered and nonperturbative corrections as signaled
by perturbation theory are calculated. Two schemes are used: the massive gluon and the running coupling
scheme. Both indicate the presence of leading power corrections ofO(b2), whose exponentiation leads to a
Gaussian dependence of the wave function on the impact parameterb. The dependence of this correction on
the light cone energy fractions of the quark and the antiquark is discussed and compared with other models for
the meson.@S0556-2821~98!04113-7#

PACS number~s!: 13.40.Gp, 12.38.Bx, 25.80.Dj
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I. INTRODUCTION

The challenging task of explaining experimental data
exclusive processes, such as pion and nucleon electrom
netic form factors and elastic scattering, is tightly connec
with our understanding of the bound states of light hadro
In the asymptotic limit of parametrically large momentu
transfer (Q) there is a clear theoretical picture that com
from merging the parton model with perturbative QC
~PQCD!. The basic tenet of this picture is that a hadron
bound state is a superposition of virtual states with a defi
number of constituent partons. In the frame where all part
pating hadrons are fast moving, factorization guarantees
the Q2 dependence of an exclusive observable enters o
through the underlying process of the elastic scattering of
partonic constituents. This has led to the, by now clas
dimensional~or quark! counting rules@1#. However, the fact
that the scaling withQ2 as predicted by the counting rules
actually observed by experiments at high momentum tra
fers generated new questions. Counting rules assume tha
dominant configurations are those in which none of the c
stituents carries vanishingly small longitudinal momentu
But such configurations are present in the hadronic w
function and would lead to scaling withQ2 that is less
steeply falling asQ2→`. Underestimating the contribution
from these end-point regions was the main criticism aga
the parton model picture@2#.

The next major step forward came with the work of St
man and collaborators@3,4# who implemented the summa
tion of leading and next to leading logarithmic radiative co
rections through the introduction of Sudakov factors into
factorized expressions for exclusive processes. The gen
form of such factors is exp$2clnQ2ln@lnQ2/ln(1/b2)#% where
b is the transverse distance between constituents. It has
effect of suppressing configurations of constituents that
separated by large distanceb, which would be the case in th
end-point regions mentioned previously. We note that
Sudakov factors can be considered as the perturbative ta
the hadronic wave function, i.e. the region where the bou
state properties can be reconstructed purely from PQ
Sudakov-improved perturbation theory, implemented wit
model for the hadron wave function at a low momentu
scale and a reasonable prescription on how to freeze the
pling at large scales, and showed that it does give num
0556-2821/98/58~1!/013011~9!/$15.00 58 0130
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cally stable results with the smallest possible number of p
nomenological parameters@4–6#. This approach sets th
benchmark but it is not the final answer. The main probl
now becomes to estimate the sensitivity to soft contributio
of the Sudakov-improved perturbation theory for moder
Q2, that is, in the range 3 GeV2<Q2<40 GeV2. To this
end we need a framework for studying nonperturbative c
rections to hadronic wave functions. This is the objective
this paper.

Since our approach to the problem is from the highQ2

end, we consider the two-quark component of a light ps
doscalar meson wave function. This is the dominant confi
ration in the asymptotic limit. The specific exclusive proce
in which the pion participates will be of no concern her
Our goal is to calculate the structure of the nonperturba
corrections as they are signaled by perturbation theory its
These will occur in the form of power corrections inb in the
Fourier-transformed wave function.

Recently, some progress has been made in understan
the power corrections by considering classes of Feynm
diagrams that give rise to a factorial divergence of the p
turbation series in large orders. For the case of QCD
power corrections arise from the small momentum region
the loop integrations and are associated with the so-ca
infrared renormalons. For a review and related referen
see @7,8#. Thus, one may get an indication of the type
power corrections by looking at the infrared sensitivity
Feynman diagrams. Most investigations involving renorm
lons are in the context of two calculational schemes. The fi
is the massive gluon and the second is the running coup
scheme. In the first method, which we apply to the case
the radiative corrections to the meson wave function, a glu
mass is introduced via a dispersive parameterl @9# that acts
as an infrared regulator. This procedure is certainly con
tent at the one-loop level. Since the power corrections, in
renormalon approach, arise from the infrared-sensitive
gions, our interest will be in the structure of the nonanaly
terms inl2 which, to the order we work in, turn out to b
lnl2 and b2l2lnl2. It is known @7# that such nonanalytic
terms come only from the pinch singular points in the lo
momentum integration with lnl2 being associated with the
usual logarithmic enhancements of the perturbative se
andb2l2lnl2 with the leading power corrections. In the se
ond scheme, power corrections are computed using a
© 1998 The American Physical Society11-1
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loop improved perturbation theory where infrared effects
introduced through the running couplingas(k'

2 ). Then the
Sudakov exponent is Borel transformed and its singula
structure in the Borel plane is studied. The power correcti
in this case are found to be proportional toLQCD

2 b2. This
technique is the same one used for the study of power
rections to inclusive processes and has been widely
cussed in recent years; see, for example, Ref.@10#.

In Sec. II we calculate the leading power corrections a
discuss the correspondence between the expressions de
in the two schemes. Exponentiation of leading power corr
tions naturally lead to the Gaussian dependence of the m
wave function on the impact parameterb. In Sec. III we
discuss our results and compare them with previous pub
tions where such Gaussian factors for the meson wave f
tion have been advocated. Here, of interest will be thex and
lnQ2 dependence of the Gaussian factor itself, wherex is the
light cone fraction of the momentum of the quark in t
meson. Finally we summarize our conclusions in the l
section.

II. RADIATIVE CORRECTIONS TO THE MESON
WAVE FUNCTION

A. Definitions

The Bethe-Salpeter two-quark wave function of a f
moving pseudoscalar mesonM is defined by the following
matrix element at renormalization~and factorization! scalem
@3#:

X~k,p,m!5
1

Nc
E d4y

~2p!4
eik•y^0uT@ q̄~0!v”̄g5q~y!#uM ~p!&.

~2.1!

In the frame where the meson is moving fast we define
light cone vector along the direction of motion,vm

5(1/A2)(1,0,0,1), and the parity reflected direction vec

v̄m5(1/A2)(1,0,0,21), m50,1,2,3, normalized asv• v̄51.
Then the light cone momenta of the meson and the qu
constituent are defined as

pm5p1d1
m , k15 v̄•k5xp1, k25v•k, k'5k.

~2.2!

The large scale isp15Q/A2, whereQ is the momentum
transfer of the hard exclusive process in which the me
participates. Although we do not need to specify the proc
we must always keep in mind that our discussion will alwa
be in the context of a hard process. The object of interes
this work is the wave function in impact parameter spa
given by
01301
e

y
s

r-
s-

d
ved
c-
on

a-
c-

t

t

e

r

rk

n
s,
s
in
e

P~x,b,p,m!5E d2k eik•b E dk2X~k,p,m!

5
1

Nc
E dy2

2p
eixp1y2

3^0uT@ q̄~0!v”̄g5q~0,y2,b!#uM ~p!& .

~2.3!

The quark distribution amplitude, which enters the lead
order perturbative expressions, is

f~x,m!5Euku5m

d2kE dk2X~k,p,m!5P ~0!~x,b50,p,m!.

~2.4!

Radiative corrections toP (0) coming from the infrared re-
gion exponentiate. Their summation leads to the Suda
suppression factor@11#

P~x,b,p,m!5exp@2Sw f~x,b,Q,m!#P ~0!~x,b50,p,m!,
~2.5!

with

Sw f5
2CF

b0
ln

Q2

LQCD
2

lnS lnQ2/LQCD
2

ln1/~b2LQCD
2 !

D 1NL,

b05
11

3
Nc2

2

3
Nf , ~2.6!

where NL denotes next to leading logarithmic correctio
which are also known. Note that the above perturbative
swer is really defined in the region 1/b2@LQCD

2 ; i.e., the
evolution of the wave function can be reliably construct
only for small-size bound states.

The Sudakov exponent shown in Eq.~2.6! is obtained
from the one-loop radiative corrections toP (0). There exist
various methods of calculating these corrections. In this
per we will mostly follow the approach of Botts and Sterm
@3#. In this approach the fermions are taken to be mass
and the axial gauge is used. The advantage of using the a
gauge in the derivation of an evolution equation for the wa
function is that the diagrams involved in the calculation
the kernel have a simpler structure than in a covariant gau
Specifically, diagrams in which gluons couple the kern
with the ‘‘inside’’ of the wave function, thus generating non
two-particle-irreducible~2PI! connections in the constituen
quark channel~nonladder gluons!, are suppressed, Fig. 1. I
the covariant gauge such diagrams must be included

FIG. 1. Class of diagrams that contain ‘‘nonladder’’ gluons (l ).
These are suppressed in the axial gauge.
1-2
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FIG. 2. One-loop diagrams fo
the meson wave functionP.
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is
further reduced through the use of Ward identities, just l
in the treatment of parton distribution functions in deep
elastic scattering~DIS!.

In the axial gauge there are gauge (n) dependent contri-
butions toSw f that enter in the next to leading logarithm
corrections in Eq.~2.6!. Such gauge-dependent pieces can
against gauge-dependent terms in the radiative correction
the hard scattering. Since we do not analyze the hard sub
cess here, our results will be at the level of leading logar
mic and power corrections.

B. Meson wave function in the massive gluon scheme

As was mentioned in the Introduction, we are interested
the nonanalytic dependence of the radiative correction
the meson wave function on the infrared cutoff. The Land
equations guarantee that infrared sensitivity arises from th
momentum regions where the internal lines in a Feynm
graph approach their mass shell. To regularize mass-s
divergences we introduce for the gluon a~dispersive! mass
parameterl @9# and calculate the one-loop radiative corre
tions toP (0) in this massive gluon scheme. This is the ma
difference with the treatment found in Ref.@3# and also the
fact that we are mainly interested in the terms that
nonanalytic inl and vanish as powers ofl in the exact
mass-shell limit. The gluon polarization tensorNmn is de-
fined via the principal value prescription for the unphysic
singularitiesn•q. Hence the gluon propagator reads

Dmn~q,n!5
i

q22l21 i e
Nmn~q,n!,

Nmn~q,n!52gmn1
n•q

~n•q!21h2
n~mqn)

2
n2

~n•q!21h2
qmqn , ~2.7!

with h→0. At the end of this subsection we comment on t
possibility of using the same parameterl to regularize the
unphysicaln•q singularities. The graphs to be calculated a
depicted in Fig. 2 and the Dirac structure of the meson-q-q̄
vertex isX52(1/4)v”g5X, whereX is the scalar wave func
tion defined in Eq.~2.1!.

Contribution toP from vertex correction, Fig. 2 grap
(b): The vertex correction to the meson wave function is

P~b!5 i ~4pas!CFE d4q

~2p!4
eib•qtrFXgn

1

2p”1k”2q”1 i e
01301
e
-

l
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e

l

e

e

3v”̄g5

1

k”2q”1 i e
gmGNmn

1

q22l21 i e
. ~2.8!

The impact parameterb acts as an ultraviolet regulator s
that the loop integral can be kept atD54 dimensions. Stan-
dard manipulations for the2gmn piece of the gluon propa
gator yield

P~b!u2gmn
52

as

4p
CFP ~0!F ln~b2l2!1

1

6
b2l2ln~b2l2!G

1O„b4l4ln~bl!…1O„ln0~bl!…. ~2.9!

Without the gluon mass regulator, the ln(b2l2) term would
turn into an IR divergence that should be dimensiona
regularized. Here, as well as in the rest of the calculatio
the interest lies in the presence of theb2l2ln(b2l2) nonana-
lytic term.

The calculation involving then-dependent pieces of th
gluon propagator is somewhat subtler. Evaluation of
traces in Eq.~2.8! yields

P~b!un~mqn)
5 i ~4pas!CFP ~0!~ I 11I 2!, ~2.10!

with

I 15E d4q

~2p!4
eib•q

3
@n•~q2k!1v•nv̄•~q2k!2 v̄•nv•q#n•q

@~q2k!21 i e#~q22l21 i e!@~n•q!21h2#

~2.11!

and

I 25I 1uk→k2p . ~2.12!

The two integralsI 1 and I 2 arise from the two piecesnmqn

andnnqm of the gluon propagator, respectively. At this sta
it is advantageous tofix the gaugeby the choice

nm5
1

A2
~vm2 v̄m!. ~2.13!

This gauge choice has the advantage of simplifying the c
responding integrals by removing all dependence onq2 and
q, from the numerator of Eq.~2.11!, i.e., the normal coordi-
nates in the collinear limit for the gluon momentum. In th
gaugeI 1 becomes
1-3
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I 15E d4q

~2p!4
eib•q

3
@2n•q1~k•q!/~n•k!22n•k#n•q

@~q2k!21 i e#~q22l21 i e!@~n•q!21h2#
.

~2.14!

The above integral is evaluated via the introduction
Schwinger parameters. The intermediate steps can be re
structed by using the techniques and the integral relat
presented in Ref.@12# and the result is

I 15
i

~4p!2E0

1

dx1x1
21/2E

0

1

dx2S K0~AB!1A
1

AB
K1~AB!D ,

~2.15!

with

A5x2~221x21x1x2!b2~n•k!2,

B5b2F ~12x1!x2
2~n•k!21~12x2!l2

1
12x1

x1
h2G . ~2.16!

Since we are interested in the limitl→0, we will calculate
leading and nonanalyticl dependence of the Feynman int
grals with the help of the Mellin transformation defined a

M @F~ t !#~b!5E
0

`

dt t2b21F~ t !. ~2.17!

It should be noted that the Mellin transform method has b
used extensively in the study of the high energy behavio
Feynman diagrams. For a review of the method and for
ther references, see@13#. The definition~2.17! yields the fol-
lowing correspondence between poles inb and~large! t de-
pendence:

M @F#~b!5
r

~b2b0!n
↔F~ t !5

rt b0lnn21t

G~n!
. ~2.18!

Nonanalytic terms int ~logarithmic! are generated by at lea
double poles in the Mellin image. We define the dimensio
less ratios

t5
~n•k!2

l2
, s5b2~n•k!2, ~2.19!

and we note that the parameterb also acts as an IR regulato
Then, in Eqs.~2.16! theh→0 limit for the gluon propagator
can be taken. The Mellin transformation of the BesselK
functions can be found in Ref.@14# and the Mellin image of
Eq. ~2.15! turns out to be
01301
f
on-
s

n
f

r-

-

M @ I 1#5
i

~4p!2
~J01J1!, ~2.20!

where

J0~b!52bG~b!s2b/2E
0

1

dx1x1
b/2~12x1!21/2

3E
0

1

dx2x2
b~12x2!2bK2b~Asx1x2!, ~2.21!

J1~b!52bG~b!s1/22b/2E
0

1

dx1x1
21/21b/2~12x1!21/2

3E
0

1

dx2x2
b~12x2!2b~2212x22x1x2!

3K12b~Asx1x2!. ~2.22!

Inspecting the above integrals we see that forb.0 there are
no singularities. Singularities arise only forb<0 and they
are generated from the integration end pointsx1→0 and/or
x2→0. The extraction of such singularities is straightforwa
because the series expansions of theK functions for a small
argument can be used. From Eq.~2.18! it follows that the
relevant nonanalytic terms that we are interested in can a
from at least double poles atb50,21.1 We examine these
two points in turn.

For the poles atb50 we setb5d, d→0 and obtain

J0~b5d!5OS 1

d D ,

J1~b5d!52
1

d3
1

2

d2
~12 ln2!

1OS 1

d D . ~2.23!

Combining Eqs.~2.23!, ~2.20! and inverting the Mellin trans-
formation we get

I 1ub→05
2 i

~4p!2F1

2
ln2

l2

~n•k!2
12~12 ln2!ln

l2

~n•k!2G1R.

~2.24!

1It is straightforward to see that there are no other points in
range between21 and 0 that would give double poles, thus exclu
ing any linear inl corrections arising from poles atb521/2.
1-4
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The residueR generically contains all terms that are analy
in l2. Similarly, the poles areb521 are obtained by setting
b5211d and power expanding theK functions. The re-
sults are

J0~b5211d!5~s independent! ~2.25!

and
e

bu

s

s
ce
w

-

x

01301
J1~b5211d!5~s independent!2
s

4d3
1

s

2d2
~12 ln 2!

1O~1/d!. ~2.26!

Again, combining the above two equations with Eq.~2.20!
and inverting the Mellin transformation we have
I 1ub→215~b independent!1
i

~4p!2F2
1

8
b2l2ln2

l2

~n•k!2
2

1

2
~12 ln 2!b2l2ln

l2

~n•k!2G1R

5~b independent!2
i

~4p!2
b2l2F1

8
ln2S l2

x2Q2D 1
1

2
~12 ln 2!lnS l2

x2Q2D G1R. ~2.27!
t
on

is
-
mit
ld

rtex
n
rgy
,

he
by

s

In the last step we have used that (n•k)25x2Q2. By (b
independent! we denote all terms that are nonanalytic inl2,
O(l2lnl2) in this case, and are independent ofb. Analytic in
l terms reside inR. We make this distinction because, as w
will see later, the terms denoted by (b independent! are of
infrared origin and cancel against the self-energy contri
tion. The expression forI 2, Eq. ~2.12!, is obtained from the
above by simplyx2→(12x)2. The overall contribution to
the vertex from then(mqn) piece of the gluon propagator i
@Eq. ~2.10!#

P~b!un~mqn)
5

as

4p
CFP ~0!b2l2F1

8S ln2
l2

x2Q2
1 ln2

l2

~12x!2Q2D
1~12 ln 2!ln

l2

x~12x!Q2G
1~b independent!1R. ~2.28!

Finally, the qmqn piece of the gluon propagator give
b-independent leading contributions and hence it can
against the corresponding piece of the self-energy, as we
point out below.

Contribution to P from self-energy correction, Fig. 2
graphs (a1) and (a2): Because of UV divergences, we em
ploy dimensional regularization withD5422e and renor-
malization scalem:

P~a1!5 i ~4pas!CF m2eE dDq

~2p!D

3trFXv”̄g5

1

k”1 i e
gn

1

k”2q”1 i e
gmGNmn

1

q22l21 i e
.

~2.29!

It is straightforward to find that, even before any gauge fi
ing, the self-energy contribution is such that
-

ls
ill

-

P~a1!1P~a2!1P~b!~b→0!5RUV , ~2.30!

where the residueRUV contains terms of purely ultraviole
origin and it is due to the mismatch in the UV regularizati
of the two sets of diagrams. Note that the vertex diagram
UV regularized by a finiteb whereas the self-energy dia
grams are dimensionally regularized. Had we taken the li
b→0 before calculating the vertex integrals, then this wou
have required us to also dimensionally regularize the ve
and then in Eq.~2.30! RUV would have been exactly zero. I
any case, the net result of this analysis is that the self-ene
diagrams will cancel allb-independent terms in the vertex
such as the ones shown in Eq.~2.28!, as well as the vertex
contributions from theqmqn piece of the gluon propagator.

The final result for the one-loop radiative correction to t
wave function in the massive gluon scheme is obtained
combining the partial results of Eqs.~2.9!, ~2.28!, and~2.30!.
Retaining only the nonanalytic inl terms up toO(l2) we
obtain

P ~1!5
as

4p
CFP ~0!~C1b2l2lnl21C2b2l2ln2l2!1R,

~2.31!

with

C152
1

2
ln@x~12x!Q2#, C25

1

4
. ~2.32!

The familiar Sudakov factorSw f;asln
2Q2, calculated for

fixed couplingas , is analytic inl2 and it is contained in the
residueR. In the coefficientsC1 ,C2 we have only kept the
parts that aren independent to leading logarithmic inQ or-
der. Note that then-independent leading contributions toC1,
C2 come only from Eq.~2.28!. The n dependence enter
1-5
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through the combination ln(n•k)21ln@n•(k2p)#2, and any
variation of n will lead to change that is subleading inQ;
i.e., it will be down by a ln@x(12x)Q2#. Fixing the gauge as
in Eq. ~2.13! organizes conveniently the leading and suble
ing lnQ2 contributions but the result that we quote in Eq
~2.31!, ~2.32! is the gauge-independent leading piece.

We now return to the question of regularizing infrar
singularities in the axial gauge and within the massive glu
scheme. In the massive gluon propagator, Eq.~2.7!, we used
the parameterl to regularize on-shell singularities where
the polarization tensorNmn was defined through the principa
value prescription and the regulatorh. If we treat the param-
eterl as a Lagrangian mass, instead of a dispersive par
eter ~this is at the one-loop level only! then the propagato
will be modified by the addition of a fourth term of the form
nmnnl2/@(n•k)22l2n2#. A similar prescription has bee
considered in the leadingl→0 limit in Ref. @15#. However,
beyond the logarithmic inl level, this term yields
b-dependentO(l2 ln3l2) contributions that cannot be inte
preted as arising from some pinch singularity in the limitl
→0. Such artifacts of the regularization prescription a
avoided once one keeps in mind thatl is not a Lagrangian
gluon mass but just an on-shell regulator, as it appears in
~2.7!.
th

lin
ve
n
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n
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e
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C. Running as scheme and IR renormalons

The runningas scheme for estimating nonperturbativ
corrections starts with the expression for the one-loop ra
tive corrections to the meson wave function. The lead
logarithmic term is well known and can be readily obtain
from the expressions in Eqs.~2.8!, ~2.29! after rationalizing
the fermion propagators and applying the collinear appro
mation to the numerator factors. Equivalently it can be co
puted by calculating emission from two, almost parall
Wilson lines. All infrared divergences are dimensiona
regularized and nol regulator need be introduced. A princ
pal value prescription is used for the axial gauge glu
propagator which now reads

Dmn~q,n!5
i

q21 i e
F2gmn1

1

n•q
n~mqn)2

n2

~n•q!2
qmqnG .

~2.33!

After performing the collinear approximation to the numer
tor factors and then integrating overq2 by closing around its
poles in theq2 complex plane we obtain the result@3#
P ~1!~x,b,p,m!5
as

2p2
CFP ~0!~x,b50,p,m!Eq25Q2 d2q

q2
~eib•q21!E

uqu

xp1 dq1

q1
1~x→12x!. ~2.34!
i-

re
ur-
We
e-
f

l-
The Sudakov exponent due to perturbative evolution of
wave function, Eq.~2.5!, is determined to leading order inas
by the above expression. At this stage the running coup
is introduced. A perturbative analysis at the logarithmic le
@3# indicates that the scale of the coupling is set by the tra
verse momentum of the emitted gluon and it encodes
information that the strength of the interactions increases
emission at large impact parameter. The Sudakov expo
now reads

Sw f52
CF

2p2E d2q

q2
as~q2!~eib•q21!

3S E
uqu

xp1 dq1

q1
1E

uqu

~12x!p1 dq1

q1 D
52

CF

2p2E d2q

q2
as~q2!ln

x~12x!~p1!2

q2
~eib•q21!.

~2.35!

When the lower limit of thedq2 integration is set to 1/b2 the
result in Eq.~2.6! is recovered. However, apart from the ca
of small-size quarkonia, for the usual light mesons 1b
;LQCD. It is then apparent that after the introduction of t
e

g
l
s-
e
r
nt

running coupling the Sudakov exponent will become dom
nated by the lower end of thedq2 integration where pertur-
bation theory itself is ill defined. Nevertheless, what we a
interested in here is not the numerical stability of the pert
bative results but signals of nonperturbative corrections.
therefore proceed by allowing the infrared regulator to b
comeO(LQCD) and introduce the Borel transformation o
the Sudakov exponent defined as

Sw f~x,b,Q,m;as!5E
0

`

ds S̃w f~x,b,Q,m;s!e2s/as.

~2.36!

The Borel imageS̃w f can be obtained by first using the fo
lowing representation of the one-loop running coupling:

as~q2!5E
0

`

dse2sb0ln~q2/L2!. ~2.37!

Substituting the above expression into Eq.~2.35! and inte-
grating overq we get

Sw f5
CF

2p2
ln

x~12x!~p1!2

L2
1-6
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3E
0

`

d s
G~12sb0!

sb0G~11sb0!
e2s/as~4/b2!. ~2.38!

Comparing the result with the definition~2.36! we read off
the Borel image

S̃w f5
CF

2p2
ln

x~12x!~p1!2

L2

G~12sb0!

sb0G~11sb0!
. ~2.39!

The pole ats50 is of UV origin. Infrared sensitivity is
parametrized by the presence of IR renormalon poles as
5n/b0 , n51,2, . . . . Theleading IR renormalon is ats
51/b0 which leads toO(LQCD

2 b2) power corrections of the
form

Sw f5Sw f
PT1CLQCD

2 b2ln
x~12x!Q2

LQCD
2

. ~2.40!

Terms that areQ independent have been omitted in t
above equation. As in the case of the massive gluon sche
it is this part of the coefficient that isn independent to lead
ing logarithmic inQ order and it arises from soft gluon emi
sion; hence, it is universal. The coefficientC contains the
principal value integral overs, which is one possible way to
define it. This ambiguity is anticipated since perturbati
theory is ill defined and therefore it cannot predict the size
nonperturbative corrections, only their scaling withQ. We
emphasize that the manipulations that led to Eq.~2.39! are
formal and the transformation cannot be inverted back toas
space without the use of some prescription~or convention!.
The value of the coefficientC will depend on this prescrip
tion. In addition, as with the massive gluon case, higher
ders inas are not suppressed, unless one invokes an a
tional assumption of, say, the freezing of the coupling
small momenta@9,16#.

The connection between the running coupling and
massive gluon calculation is established by comparing
~2.40! with Eq. ~2.31!. Note that in the massive gluon resu
we have not written the analogue of theSw f

PT that we see
above. This is because in the Mellin transformation analy
of the massive gluon integrals we looked only for contrib
tions that are nonanalytic in the regulatorl2 and not in the
impact parameterb2. Had we chosen the latter we wou
have generated the perturbative answerSw f

PT in the massive
gluon scheme as well. The nonperturbative pieces in the
calculations can be mapped onto each other, up to a m
plicative constant, via the identification

l2ln l2↔LQCD
2 . ~2.41!

In Eq. ~2.31!, the l2ln2l2 term indicates that the coefficien
of the terml2ln l2 will depend on lnQ2, Q2 being the only
other scale involved; hence, we also ident
(1/2)l2ln2l2↔LQCD

2 ln LQCD
2 . The existence ofl2lnl2 con-

tributions is a signal for the presence of a condensate
term. Had only this term been present, then one could ex
that the power corrections could be captured from an op
tor product expansion~OPE! in terms of local operators. Th
01301
e,

f

r-
i-
t

e
q.

is
-

o
ti-

e
ct
a-

existence ofl2ln2l2 contributions, though, signals that suc
an expansion is not possible for the wave function of a lig
hadron. An operator expansion formalism for the wave fu
tion must necessarily involve nonlocal operators that ext
along the light cone and, in analogy with the usual OP
their expectations are to be parametrized by nonlocal c
densates. The possibility of parametrizing power correcti
to the meson electromagnetic form factor in terms of non
cal condensates has been discussed in Ref.@17#.

The other important piece of information in the leadin
power correction term is that itsb2 dependence leads to
Gaussian factor for the meson wave function. This is o
tained from Eqs.~2.5! and ~2.40!:

P5P PTexpF2C lnS x~12x!Q2

LQCD
2 D LQCD

2 b2G , ~2.42!

with P PT denoting the wave function perturbatively evolve
with exponent given in Eq.~2.6!. We turn to a discussion o
this form in the next section.

III. GAUSSIAN FORM OF THE MESON
WAVE FUNCTION

The wave function in Eq.~2.31! and Eq.~2.42! can be
rewritten in the following suggestive form:

P~x,b,Q!5f~x,Q!exp$2Sw f
PT2b2S2@x~12x!Q2#

2b4S4@x~12x!Q2#1•••%. ~3.1!

From the infrared renormalons at integer values ofsb0 we
obtain for the Sudakov exponent a power series expansio
the small parameterLQCD

2 b2!1 with Q-dependent coeffi-
cients. Within perturbation theory thisQ dependence is loga
rithmic. Truncation of the above power series to the first t
terms is accurate in the smallb region up to corrections o
orderO(LQCD

4 b4). This form of the exponent is the same
the one seen in the Drell-Yan process at measuredQ' and
has been derived by Korchemsky and Sterman in Ref.@10#.
These authors have also given an operator definition of
power corrections in terms of pairs of Wilson lines and th
transverse derivatives. For the same Drell-Yan process,
Gaussian form in impact parameter space was noted y
ago and outside the renormalon context by Collins and So
@18# in their treatment of the infrared sensitivity of the Sud
kov exponent.

The dimensionful functionsS2n , n51,2, . . . , scale as
LQCD

2n but their absolute normalization cannot be fixed with
perturbation theory. However, we have obtained some in
mation beyond the summation of logarithmic corrections
we assume that in Eq.~2.42! the unknown coefficientC is a
number ofO(1) and that our methods capture correctly thex
dependence of the leading nonperturbative corrections, t

S2~Q!;LQCD
2 ln@x~12x!Q2#, ~3.2!

where only the universal piece is retained, as has been
gued in the previous section. For fixedxÞ0, power correc-
1-7
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tions lead to increasing suppression of emission at a la
impact parameter with increasingQ. This suppression isin
addition to the one generated bySw f

PT . However, for fixedQ,
it is seen that this additional suppression becomes wea
the end-point region. The end-point region is enhanced r
tive to the central region by the Gaussian dependence o
meson wave function. This is not surprising since it is in t
end-point region that the effective hard scalex(12x)Q2 be-
comes small and power corrections become more import
We emphasize that all this is on top of the Sudakov supp
sion,Sw f

PT , as mentioned above. In this respect, the pattern
power corrections is very similar to that observed, for e
ample, in event shape variables where the leading po
corrections@22# also come from the end-point region~two-
jet limit in this case!, which is itself Sudakov suppressed.

For exclusive processes there exist in the literature v
ous models for the wave function with which we may co
pare our results. In the case of the meson, the most popu
the one obtained from an oscillator model of two constitu
quarks boosted in the light cone frame. This leads to a w
function of the form@19,20#

P~x,b,Q!5f~x,Q!exp@2Sw f
PT2^k'

2 &x~12x!b2#,
~3.3!

where the averagêk'
2 &21 is the oscillator parameter. Not

that this Gaussian form is such that it can interpolate
tween the perturbative tail of the wave function given
exp(2Swf

PT) and the nonperturbative region. TheO(b2) term
in the exponent has been found to be numerically impor
in order for Sudakov resummed perturbative expressions
the meson form factor to be applicable in the subasympt
Q region @21#. It is therefore interesting to compare itsx
dependence with the expression we get from perturba
theory. We observe that like in Eq.~3.2!, the exponent in Eq
~3.3! enhances the end-point regions compared to the ce
region. However, from the renormalon-based approa
which is rooted in perturbation theory, one can expect a
pendence onx(12x) which is logarithmic but not propor
tional to it. The analyses of nonperturbative corrections
signaled by perturbation theory and phenomenological m
els for the meson wave function in the nonperturbative
gime have similar qualitative behavior although the en
point enhancement in the former case is much milder tha
the latter. For our approach to give results in exact co
spondence with, say, the oscillator model would requir
resummation of the higher order inas contributions to the
l2ln l2 term at the level of theexponent. These could turn
the lnx(12x) into axn(12x)n dependence. It is not obviou
to us how such a resummation would be implemented.
call that in the region where nonperturbative corrections
generated, the coupling isas5O(1) and there appears to b
no small parameter around which to build and then resu
01301
e
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perturbative series. More importantly, it is not known how
define the massive gluon scheme for higher loop correctio
and for the running coupling scheme it is only an assumpt
that as5as(k'

2 ) all the way into the deep infrared region
We can say for sure, though, that any answer obtained f
perturbation theory would necessarily haveQ dependence in
the Gaussian form that it generates, unlike Eq.~3.3! which is
Q independent beyond the logarithmic corrections resid
in Sw f

PT . It should be pointed out here that, recent
renormalon-based models have been used to predict thx
dependence of the higher twist structure functions in dee
inelastic scattering with some phenomenological succ
@23# and this was one of our motivations for pursuing t
above analysis.

IV. SUMMARY

In this paper we studied the nonperturbative correction
the meson wave function using the methods that have
ready been developed for semi-inclusive cases, namely,
massive gluon and the renormalon methods. We found
the leading nonperturbative corrections are of ord
O(LQCD

2 b2) for the two-quark wave function at transvers
separationb. The exponentiation of such contributions lea
to a Gaussian factor in addition to the Sudakov resumm
logarithmic enhancements. Of particular interest is thex de-
pendence of this Gaussian factor. It leads to the conclus
that the power corrections arise from the end-point regio
This x dependence has been compared with low ene
Gaussian models for the wave function.

It must be emphasized that both methods for obtaining
leading nonperturbative corrections have their origin in p
turbation theory. They predict correctly the type of the pow
correction, but since they are applied in a region where
coupling is normalized at low scales, they have limited p
dictability for the coefficient of the power corrections unle
additional assumptions are introduced, such as freezing
the coupling. Thus our predictions for thex dependence
should be considered as another model. A similar appro
for the x dependence of the higher twist structure functio
in DIS has met with some phenomenological success
would be interesting to apply this model to the phenome
logical study of the meson electromagnetic form factor a
elastic scattering.
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