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Calibrating the energy of a 50x50 GeV muon collider using spin precession
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The neutral Higgs boson is expected to have a mass in the region 90—156?@eVirious schemes within
the minimal supersymmetric extension of the standard model. A first generation muon collider is uniquely
suited to investigate the mass, width, and decay modes of the Higgs boson, since the coupling of the Higgs
boson to muons is expected to be strong enough for it to be produced smdhannel mode in the muon
collider. Because of the narrow width of the Higgs boson, it is necessary to measure and control the energy of
the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of
determining the energy scale of a muon collider ring with circulating muon beams of 50 GeV energy by
measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons.
This variation is caused by the existence of an average initial polarization of the muon beam and a nonzero
value ofg—2 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine
with this method to a few parts per million using data collected during 1000 tL80§56-282(198)02213-9
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The spin vectorS of a muon in the muon collider will
precess according to the following equation, first derived b

XvhereN denotes the number of muon decays:2E/m, is
Bargmann, Michel, and Telegfi]: ¥ #

the electron energi in the muon rest frame expressed as a
fraction of the maximum possible energy0.5m,), cosd
ds . . is the angle of the electron in the muon rest frame with
gr = 94xs, (1.)  respect to the axis which is the direction of motion of the
muon in the laboratory, an@ is the product of the muon
charge and the component of the muon polarization. The
E muon polarization is defined as the average of the individual
cl’ muon unit spin vectors over the ensemble of muons consid-
(1.2 ered. We note that the distribution is linearfn

A routine was written to generate muon decays according
whereB, andB are the transverse and parallel componentd© Ed. (1.4). Figure 1 shows the shape of the function in Eq.
of the magnetic field with respect to the muon’s velocity (1-4 and the generated eventsxpcos¢ space for various
Bc,e is the electric chargem, the mass of the muora values ofP. There is excellent agreement between the theo-
=(g—2)/2 is the magnetic moment anomaly of the muon,"etical shape of the function and the Monte Carlo—generated
and y and g are the Lorentz factor and the gyromagneticeve”ts- The average_ener(ﬂ) and longitudinal momentur_n
ratio of the muon. The value @f=(g—2)/2 for the muonis (Pu) of the electron in the muon rest frame can be obtained
1.165 924< 1072 [2]. In what follows, we will consider the USing Eq.(1.4) as follows:

ideal planar collider ring case wheBs andE are zero. For N .
T m m
such a collider ring{2 is given b = _Mf J - = _*
g g y (E) 5 xdxdcosgdxdcosa 102 (1.5
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eve Y 5 _mﬂjj d?N dnd _Pm,
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whereﬁcyc is the angular velocity of the circulating beam. (1.6)

From this, it follows that when the beam completes one turn,

the spin will rotate by a furtheayx 27 rad. We will com These two quantities form the components of a four-vector,

pute the precision with whicly can be determined by mea- whose transverse components are zero, which may be trans-

suring the energy of the electrons produced by muon dec ;
in this ideal case. We will examine the effects of departureasi,)()rmed to the laboratory frame to yield the average electron

from the ideal case in the last section. energy(Eia):

It can be shown that the angular distribution of the decay
electrons in the muon center of mass is given by the relation (Epap) = 1E
3] 1abl 20K
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FIG. 1. The top lego plots show the generated events and the )

theoretical decay function in the,cosé plane forP=—1.0. The FAIG. 2. (a)Total energy observed as a function of turn number

lego plots at the bottom of the figure show the corresponding plotéor P=—1.0 with individual electron energies in the range 0-10

for P=1.0. GeV for 100 000 muon decays. Electron energies in the rébge

10-25 GeV andc) 25-50 GeV.(d) All electrons included. Super-

whereE, is the energy of the muon beam. Since the polar-'mpos'aOI is a functional form defined by Hd.8).

ization P precesses from turn to turn by the amount perimposed is the predicted behavior according to(E).

=v(9—2)/2x2m rad and the number of muons decreasesryis serves as a consistency check for our routines. The

turn by turn due to decay and losses, the total en&@y  gjgnal-to-background ratio increases as we demand electrons

due to decay electrons observed during tufn an electro-  ith higher values of co8. In what follows, we use elec-

magnetic calorimeter will have the following expression: .45 with energy greater than 25 GeV during the investiga-
tive phase of this analysis and will later optimize this cut. In

}’ (1.8  Practice, we can select electrons with energies above a value
by momentum analyzing them with a dipole field before they
enter the calorimeter.

whereN is the number of muon decays sampled in turip0,  The method to determine the energy scale of the collider

is an arbitrary phase containing information on the initialwould then entail fitting a functional form of the type
direction of polarization, andr is the turn-by-turn decay

constant of the muon intensity which in the absence of losses f(t)=Ae B{CcogD+Et)+F] (1.10
other than decay is given by

7
=~E

— (—at)
E(t)=N¢e 50Ew

1+ g(fD Ccoswt+ ¢)

to the energy observed in the calorimeter. The variables
= Leirc (1.9 A,B,C,D,E,F are parameters to be fitted. The information
Yite | ' on the energy scale is contained in the paramiéter

wheret,;,. is the time taken to circulate around the storage
ring andt ;. is the muon lifetime. )
For a 100% polarized beam, the amplitude of the oscilla- N order to arrive at reasonable numbers doand w, we
tions is only 1/7 that of the nonoscillating background. It canconsider a storage ring of 50 GeV muons with a uniform
be seen from Eq(1.4) that the sensitivity t® is enhanced bending field of 4. T. Thls would produce a circular ring with
by selecting larger values of cés This implies selecting Fhe parameters given in Table I 1t ShPUId be npted that for an
electrons with higher laboratory energy. Figures)22(c) idealized storage ring with constaBtfield considered here,

show the deposited electron energy as a function of turf does not depend o, since

number for polarizatioP= 1.0 for individual electron en- m,y

ergy ranges of 0-10 GeV, 10-25 GeV, and 25-50 GeV, tcirﬁm, (111
respectively, as a function of turn number. Figutb)Zhows '

very little oscillatory signal, since the electrons in that en- 5

ergy range have small values of dbsrigure 2d) shows the My (1.12

X= ——  ,
deposited electron energy with no electron energy cuts. Su- 0.3Bctjre

A. Parameters of a 50 GeV idealized muon storage ring
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TABLE |. Parameters of an

PHYSICAL REVIEW D 58 013005

idealized muon storage ring.

Parameter Value Parameter Value
Muon energy 50 GeV y 473.22

Spin precession in one turn 3.4667 rad Magnetic field 40T
Radius of ring 41.666 66 m Beam circulation time 0.87%4D ®sec
Dilated muon lifetime 0.1039710 ?sec Turn-by-turn decay constant 0.839m0 3

wherem,, is the muon rest masB, is the bending field of the
storage ring, and is the velocity of light. A 100 GeV col-
lider ring will have the samer as a 50 GeV collider ring or
a 25 GeV collider ring in this idealized case. Aschanges
slightly, t;,. changes in proportiong being the constant
used to convert measurementstgf. to y. Measuring the
decay rate of muons also affords a second method to det
mine y. The beam circulation timé,;,. can be measured to
precisions of the order of 1 part in 4@nd the fractional
error in the muon lifetime is 1.8210 ° [2]. The fractional

of actual muons with quantized spin components. A more
realistic generation of the spin vectors with correlations be-

tween momentum spread ar®l would require a detailed
modelling of the pion decay and muon transport systems and
is not warranted here since the effect due to the distribution
in S, is expected to be small. Figure$aB-3(d) show the
istributions ofS, for the four samples. The average values
of the distributions are 0.9, 0.74, 0.5, and 0.26, respectively.
We study negatively charged muons resulting in an initial

error in y obtainable by observing the rate of decay of theValue of P of —0.9, -0.74,—0.5, and—0.26, respectively,
muons will then be dominated by the precision that one cafOr these samples. In the absence of momentum spread, the

measurex, namely, Syl y= Sal a.

B. Generation of events and fitting for y

Since Eq(1.4) is linear in P, the decay distribution of an

decay distributions would only depend &hand not on the
details of the distribution 0§,. The angles of the spin vec-
tors are precessed by the individualdependent precession
rate from turn to turn. In what follows, we assume a beam
energy spread of 0.03% for the muons for all samples unless

ensemble of muons depends only Bnthe ensemble aver- otherwise specified.
age of thez component of the individual muon spin vectors.
However, because of the momentum spread of the muons,
each individual particle will have & slightly different from

the average and hence the precession of the spin vector The energy deposited every turn is fitted to the functional
around the ring will be different, leading to a slightly differ- form given by Eq.(1.10 using the CERN programinuiT

ent value ofP for the next turn. We model the beam by [4]. In order to study the variation of the fractional error

generating an ensemble of 100 000 muons, each having i€/ v with the number of electrons sampled, we fluctuate the

2. Fitting procedure and generation of errors

own spin vector and momentum. In an actual collider, it will €N€rgy observed in the calorimetef, by

be possible to sample significantly more decays than this.
During each turn, we decay all the beam particles once ancoooo

record the number and total energy deposited by electronssoco [
with individual energies above 25 GeV. Approximately 27% 30000
of the decay electrons pass this cut, on average. We decrea20® |

the number of decays by the appropriate number expected bfzggg 3

000 [

muon decay alone for the next turn. At this stage we do not
introduce fluctuations in the number of decays from turn to 0
turn, since the 100 000 muons are meant to be representativ
of a much larger number in the actual ring. We precess the
100 000 spin vectors by their individual precession rates anc
make them decay again. We repeat this for 1000 turns. We
reuse the muons after each turn since the 100 000 muonzsooo

represent our model of the muon ensemble in the collider. 55000 |

1. Generation of muon spin vectors

We generate four different samples of events with differ-

ent ensembles of spin vectors. Theomponent of the unit 3000

15000 E

10000 |

spin vector of a muors, is allowed to vary from—1 to 1.
This range is divided into 51 bins and thecomponents are

o b
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generated using a binomial distribution whose average value
is specified. We are justified in treating this problem in this  FIG. 3. (a)—(d) show the distribution of the component of the
classical fashion, since each “muon” represents an ensembkin vectors for the four samples considered.
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x 103 41 261, 10 315, 2579, and 1146 electrons sampled which
o 1500 P — corresponds to a fractional error in the measured total energy
0 \ o W of PERR=0¢_/Ep of 0561077, 1.0x107%, 2.0x107?,

1350 [ and 3.0x 10”2, respectively.

1300 i

1250 E b 1

1200 F

1150 Il. RESULTS

1100 E

1050 ‘ . ‘ |(°) ‘ . ‘ . We simulate the muon collider spin precession for a grid

1000 B o b e L b e b ~

O 5 10 15 20 25 30 35 40 45 50 of values ofP=-0.9, —0.74, —0.5, and—0.26 and frac-

x 10 turn number tional measurement error for the first tu(RERR of 0.5

1500
1450
1400 frll] s
1350
1300 B
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45 EEER x1072, 1.0x102, 2.0x10 2, and 3.0 10" 2. Figure 4a)
shows the result of thenuiT fit plotted for 50 turns forP
=—0.26 and PERR0.5X10 2. Figure 4b) shows the
) same plot but with the function being plotted only at integer
values of the turn number. A beat is evident in both the
theoretical curve and the simulated measurements as a result
© 7 of sampling .the oscillat.ion.function at fixed inte.rv'als, not
——— ; 500‘ : -1‘000 0 -_‘2 5 : '0 o connected with the_ osqllla'uon frequency. The origin of the
Turn number Turn number fractional residuals beat is stroboscopic. Figurdc} shows the pulls, defined as
] ) ] ] (data-fid/error at each measurement as a function of turn
FI(_B. 4. (a) Energy detected in the cglorlmeter during the first 50 , \ her for 1000 turns. There are no major turn-dependent
turns in a 50 GeV muon storage rifigoints. An average value of o jations in this quantity, indicating that the fit converged
P=—0.26 is assumed and a fractional fluctuation obOI®™* per  gatisfactorily. Figure @) shows the histogram of the pulls,
point. The curve is the result ofaNuIT fit to the functional form \, hich approximates a unit Gaussian as desired. Table I

in Eq.(1.10. (b) The same fit, with the function being plotted only . . ~

at integer turn values. A beat is evideftt) Pulls as a function of shows the results of the fit for_the grid of values fofand .

turn number.(d) Histogram of pulls. PERR. The results presented in Table Il are shown 'gra.phl—
cally in Fig. 5. As an example, for an average polarization

o2 P=-0.26, the fractional error inSy/y varies from 5.1
Em %1(1 03153 (113 X108 to 1.9x10°° as the fractional error in the electron
(Em? N7 ’ ' energy sampled varies from X80 2 to 3.0x 10 2, corre-
sponding to the number of electrons sampled during the first
whereN is the number of electrons sampled. See the Appenturn varying from 41 261 to 1146. The average number of
dix for a derivation of this formula. We analyze the case fordecays in the muon collider is expected to bex312° de-

F(t)

TABLE II. Results of fits forsy/y as a function of polarizatioR and noise PERR. Also shown is t@
of the fit for 1000 turns.

Number of electrons

P PERR sampled 8vyly oscillations  §y/y decay  x? for Npg=1000
-0.90 0.5x10°? 41 261 0.1456810°° 0.1322%10°? 824
-0.90 0.1x10°* 10 315 0.2214%10°°  0.201 24<10°2 936
-0.90 0.20x10°! 2579 0.3999%10°° 0.36398 102 1009
-0.90 0.3x10°! 1146 0.586 5%10°°> 0.5345% 102 1030
-0.74 0.50<10°? 41 261 0.1741810°° 0.130 191072 843
-0.74 0.1x10°* 10 315 0.2618%10°° 0.19591x10°? 954
-0.74 0.20x10°* 2579 0.4698%10°°>  0.35229%10°2 1021
-0.74 0.3x10°* 1146 0.6876%10°° 0.516 7102 1039
—-0.50 0.50<10°? 41 261 0.2590%10°° 0.128 13 10°? 888
-0.50 0.1x10°* 10 315 0.3840%10°° 0.190 2% 10 ? 973
-0.50 0.20x10°! 2579 0.6833%10°> 0.3397% 102 1026
-0.50 0.3x10°* 1146 0.997 4%10°°  0.497 49102 1041
-0.26 0.50x10°2 41 261 0.5124%10°° 0.126 88<10°2 898
-0.26 0.1x10°* 10 315 0.7531%10°° 0.18791x10°? 1004
-0.26 0.20<10°* 2579 0.1332%10°* 0.3344%10°2 1053
-0.26 0.3x10°* 1146 0.1938%10°*  0.48950<10°2 1061
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FIG. 5. (a) Fractional error indy/y obtained from the oscilla- FIG. 6. Fractional error irdy/y obtained from the oscillations

tions as a function of polarizatioR and the fractional error in the as a function of muon beam momentum.
measurements PERRb) Fractional error indy/y obtained from
the decay term as a function of polarizatiBnand the fractional metry (SUSY) scenarios. We sample all electrons that have
error in the measurements PERR) The total y* of the fits for  energies greater than half the muon energy. Figure 6 shows
1000 degrees of freedom. the variation oféy/y as a function of muon beam energies
that straddle these values. It can be seen &hdty first de-
cays per meter for a beam intensity offdfhuons. The error creases as one gets close to the resonance and then blows up
in determiningy is thus going to be dominated by the fluc- on the spin resonance. Figures 7—12 show the fitted solutions
tuations in the number of electrons sampled turn by turnsuperimposed on the simulated data for various momenta.
rather than sampling fluctuations in the calorimeter. We havélso shown side by side is the simulated data by
simulated conditions involving=40 000 decays. It should be

possible to go to higher statistical precision than computed s Oscillations as a function of momentum
here by sampling a larger number of electrons. x 10 x 10
The results forsy/y obtained from the measurement of 2 2% 2000 ¢
1900 1900 k

the turn-by-turn rate of decay of the electron energy are not

L. . : . . 800 1800 F
competitive with the precession method primarily because of 1700 | 1700 |
the small value ofe (0.8399x 10 3). This leads to larger 1600 1600 E
fractional errors fory from this methodwhich also assumes 1500 1500 E
that the loss of intensity is entirely due to the decay process 400 1400 |
by almost three orders of magnitude than from the precessior 1300 1300
method. 1200 ool o Lo b | o0 e b o o oo
v 10 20 30 40 50 0 10 20 30 40 50
x 103 turn number | 103 Turn number
A. Variation of évy/y as a function of muon energy = 2300 | 2300 E
. . 2200 i1 ‘ 2200
The spin precession per turn equals for a y value of 2100 !' H llll "“ NI 2100
857.689, which corresponds to a muon beam momentum o 2000 J' it ll! 'r” : ’H H‘ 2000
1900 * ol | Hilnim 1900

90.622 GeVt. This is the first spin resonance for muons. At E
. . - e 1800 1800 F
this point, the fitting method loses sensitivity completely, ;700 1700 E

since there will be no spin oscillations turn by turn. We now 1600 70 Gev 1600 F

study the errorsy/y as a function of beam energy fér= }igg R SR P R Sgg FONTTIRTY
—0.26 and PERR 0.5x 10" 2 (keeping the magnetic field in 0 10 20 30 40 50 0 10 20 30 40 50
the idealized storage ring to be 4.0 ds a function of muon turn number Turn number

beam energy that straddles the spin resonance. For initial £, 7. The figures on the left hand side show the simulated data
muon collider physics, the interesting beam energies are 45.jjth the fitted function superimposed for 50 turns. The figures on
GeV (half the Z mas$, 80.3 GeV W threshold, and 175  the right hand side show the simulated data and the fitted function at
GeV (top thresholdlas well as half the neutral Higgs boson integer values of the turn number. The data shown are 60 GeV/
mass, which could be as low as 55 GeV in some supersyn&nd 70 GeVé muon momenta, respectively.
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Oscillations as a function of momentum
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Oscillations as a function of momentum
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FIG. 8. The figures on the left hand side show the simulated data FIG. 10. The figures on the left hand side show the simulated

with the fitted function superimposed for 50 turns. The figures ondata with the fitted function superimposed for 50 turns. The figures
the right hand side show the simulated data and the fitted function ain the right hand side show the simulated data and the fitted func-
integer values of the turn number. The data shown are 80 &eV/tion at integer values of the turn number. The data shown are
and 90 GeV¢ muon momenta, respectively. 100 GeVk and 110 GeVé muon momenta, respectively.

itself. As one approaches the spin resonance, the oscillatio#ance’ the oscillations die completely, which results in a
sIow.down It isplgevertheless pc?ssible to fit thé slowed downkgrge value ofoy/y. It may be possible to use this blowup in
oscillations by a rapidly oscillating theoretical function to 9y/y to find the spin resonance accurately apdradoxi-

high accuracy on either side of the resonance. At the resoc-a"y) determiney at resonance accurately. This would de-

pend on the width of the spin resonance, an analysis of

Oscillations as a function of momentum

which would take us beyond the scope of this paper.

x 103 x 10 Oscillations as a function of momentum
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FIG. 9. The figures on the left hand side show the simulated data

with the fitted function superimposed for 50 turns. The figures on

turn number

0
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Turn number

FIG. 11. The figures on the left hand side show the simulated

the right hand side show the simulated data and the fitted function atata with the fitted function superimposed for 50 turns. The figures
integer values of the turn number. The data shown areon the right hand side show the simulated data and the fitted func-
90.622 GeVt and 91.2 GeW muon momenta, respectively. The tion at integer values of the turn number. The data shown are
upper curve is on resonance. 120 GeVk and 130 GeVé muon momenta, respectively.
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Oscillations as a function of momentum M 10*5
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FIG. 12. The figure on the left hand side show the simulated el
data with the fitted function superimposed for 50 turns. The figure o535 [
on the right hand side show the simulated data and the fitted func- ;
tion at integer values of the turn number. The data shown are 052 -

175 GeVk muon momentum.

0.51 M””
B. Variation of 8y/y as a function of beam energy spread F

0.5 :HHI....IHHM.‘.\.‘.I P | P IR

We now calculate the variation of polarization as a func- 0 0025 005 0075 0.1 0125 0.15 0.175 0.2 0225 025,
tion of turn number for an ensemble of muons with initial Fractional beam momentum spredd’
value of polarizationP=—0.26 and values of the momen- )
tum spreaddp/p varying from 0.0 1072 to 0.00125 FIG. 14. 5yl y versus fractional beam energy spread for 50 GeV

X 10" 2. This variation is plotted in Fig. 13. For the larger muons with PERR-0.5x 10~ ? and P=—0.26.
values of the momentum spread, there is a significant degra-
dation of polarization as a function of turn number, due to
the differential spin precession of the individual beam par
ticles. We note that when the beam energy is at 175 GeV, th
spin tune is significantly higher and the depolarization is
more rapid. Despite this depolarization, there is enough in
formation from the first few hundred turns to extract the.
excellent value of5y/y for 175 GeV beam energy as shown
in Fig. 6.

Figure 14 shows the variation of the fractional energy
resolution, §y/y, as a function of fractional beam energy

spread for a muon beam wifh= —0.26, with 41 261 elec-
‘trons sampled. There is little dependence&f/y on the
fhomentum spread. This is due to the fact that the momentum
spread is determined from the spin tune and not from the
spin oscillation amplitude and the fact that the depolarization
is not significant for the first few hundred turns for any of the
beam momentum spreads considered here.

C. Optimization of the electron energy cut

We now vary the cut on electron energy and study the
dependence o0Ay/y on the cut. Figure 15 shows the varia-
tion of §y/y with the cut on individual electron energies for

o5 b o o P=—0.26 for 41 261 and 1146 electrons sampled. As shown
S, D in the Appendix, the fractional error on the average energy of
electrons is much smaller than the fractional error on the
\ total energy of electrons. It is possible to measure the aver-
age electron energy by counting the number of electrons go-
ing into the calorimeter with a scintillator array. However,
the precession information is contained increasingly in the
number of electrons rather than their average energy as we
increase the electron energy cut. Figure 15 shows the varia-
tion of 6y/vy calculated from the average as well as total
electron energy as a function of the electron energy cut. For
smaller values of the electron energy cut, the average method
produces superior errors than the total energy method. How-
ever, with 40 000 electrons or more sampled a total energy
method with a cut of 25 GeV or higher seems optimal. It
0 100 200 300 400 500 600 700 800 9oc% 1000 should, however, be pointed out that the average energy
method does not require a model for the rate of decay of
FIG. 13. Variation of polarization as a function of turn number muon intensity in the machine, which in practice could be a
for 50 GeV muons with initialP=—0.26 and various values of Ccomplicated function of turn number. As such the systemat-
Sp/p in an ideal collider ring. The bottom curve is for 175 GeV ics associated with this would not be present in the average

muons and shows a more rapid depolarization due to the higher sp@nergy method. Figure & shows the variation of the ab-
tune. solute value ofC/F as a function of the electron energy

Ideal ring polarization vs 6p/pz
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$10° Il. EFFECTS DUE TO DEPARTURES
a 01 [ FROM THE IDEAL CASE
\ .
& o9 [ So far we have considered a planar collider ring with
[ O Average energy 1146 electrons uniform vertical magnetic field and no electric fields. The
008 |- ¥ Total energy 1146 electrons actual collider ring will depart from the ideal in three re-
A Averageenergy 41261 electrons spects:(a) It will have rf electric fields to keep the muons
0.07 - B Totol energy 41261 electrons

i bunched,(b) it will have radial horizontal magnetic fields
006 | experienced by particles in an off-center trajectory at quadru-
' poles and at vertical correction dipoles, afd it will have
longitudinal magnetic fields due to solenoidal magnets in the
interaction regiofs). We now consider the effect due to each

of these departures from the ideal.

0.05 F
0.04 [

003 L

r A. Electric fields
0.02 |

. Equation(1.2) implies that there is no spin precession due
0.01

to longitudinal electric fields,@x E= 0). rf electric fields are
g S T N T S T longitudinal, and so there will be no precession due to the rf
c 5 10 15 20 25 30 35 40 45 50 electric fields. At present there are no plans to install elec-
Electron energy cutoff trostatic separators to separate the beams. If and when this

happens, one should consider the effect due to the transverse

FIG. 15. The variation of5y/y as a function of the electron electric fields thus introduced.

energy cut for 41 261 and 1146 electroiss —0.26. We fit the
g)kt:(lzltrinnergy in the calorimeter as well as the average energy per B. Effect of radial magnetic fields
Particles which are off axis at quadrupoles will experience
cutoff for P=—0.26, whereC and F are defined in Eq. radial as well as vertical magnetic fields. Even though the net
(1.10 for both the total energy method and the average enintegral of these off-axis fields around the ring is zero, the
ergy method. Figure 1B) shows the fraction of electrons Spin rotation along a horizontal axis followed by a spin ro-
that lie above the electron energy cut as a function of thdation about a vertical axiscaused by a bend dipgldol-
energy cut. The polarization for this sample is 0, since thdowed by a reverse rotation in the horizontal direction still
electron energy fraction depends on polarization as wellproduces a net effect since the rotations about the horizontal
Given the curves shown in Fig. 16, it should be possible tcand vertical axes do not commute. The effects have been

estimate the error idy/y for a variety of conditions. analyzed by Assmann and Koutchdi{ who show that this
results in both a net spin tune sh{ffv) as well as a spread

S o | intuneoy,:

0.16 — cot

0.14 | * Average energy method TV

0.12 :— & Total energy method <5V> = 8— V%[”Q(KI Q)20-3+ nCVO%CV]: (31)

01 F (@) T

008 [

0.06 | wherevy=ay is the spin tune of the collider ringg, are the

0.04 E . . . .

002 [ number of quadrupoles with integrated gradi&ng, o is

0 Bl e S the misalignment spread of the closed orbit at the quadru-
5 015200 25 30 35 40 45 %0 poles,ncy is the number of vertical correction dipoles, and

- 1= Electron energy cutoff oscy IS the rms bend angle in the vertical correctors. The
3 o9 spread in tune is given by
z 08 F
S 07 B
2 o6 | (®) (6v)
£ oos | S v— (3.2
L 04 | 0
s 03 F
5§ 02 F Table Il shows the values fofdv) and o, obtained by
R T T T T T Sevs= Y000 Leee Assman and Koutchuls] for the CERNe* e~ collider LEP.

© 5 10 15 20 25 30 35 40 45 50 We compare this with the current design for the 50 GeV
Electron energy cutoff muon collider ring[6]. Including the low beta section, there
are 70 quadrupoles with an rms value Kf,=0.27 m L
FIG. 16. (a) The variation ofC/F as a function of the electron The effects due to correction dipoles may be neglected in
energy cut forfP=—0.26 for the total energy method and averageboth the LEP and the muon collider cases. We assume a
energy method(b) The fraction of electrons that survive the energy beam misalignment of 5 mm at the quadrupoles, which is the
cut as a function of the cut fd?=0. same value used in the LEP calculation. This is probably
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TABLE Ill. Predictions for spin tune shifév and spread in spin tune shift;, caused by quadrupoles for
LEP compared to the 50 GeV muon collider ring.

Machine Spin tuney, Quadrupoles rm&Klg, oy Sv Tsy
(m™) (m)
46 GeV LEP 100.47 ~600 0.032 0X%10° 57x10°% 6.1x10°
=3keV =30 keV
50 GeV Muon Collider 0.5517 70 0274 &80 ° -0.26x10°% 1.66x10°8

=-0.24 keV =1.46 keV

being conservative. The tune shift for LEP corresponds to &#e 200 times less effective for muons than for electrons, for
shift in beam energy calibration of 3.0 keV. The tune spreadhny given magnet strength. The most effective method to
for LEP corresponds to a spread in beam energy calibrationorrect for the solenoid is to surround it on either side by
of 30 keV. For the muon collider, the tune shift correspondscompensating solenoids of minimal radius large enough to
to a shift in beam energy calibration 6f0.24 keV and a allow the beam to go through.

spread of 1.46 keV, both of which are negligible. The reason

for the smallness of this effect for the muon collider is two- IV. POSSIBLE IMPLEMENTATION STRATEGY

fold. Since the circumference of the muon collider is smaller ] )

than LEP, there are fewer quadrupoles. Second, the muon is e have given some thought to techniques to measure the
200 times more massive than the electron and has a spin tug8€rgy due to decay electrons. Our current plans entail an
ay that is smaller by the same factor. The spin tune shiftlectromagnetic calorimeter that is segmented both longitu-
depends on the the square of the spin tune. It should be notétnally and transversally placed inside an enlarged beam

that the above formulas are not valid for a fractional spinPiPe in one of the straight sections in the collider ring. The
tune of 0.5. length of the straight section upstream of the calorimeter can

be chosen to control the number of decays (3L2° decays
per meter for a beam intensity of 3muong and hence the
rate of energy deposition. The sensitive material can be gas-
The experimental region will in all likelihood contain a eous, since the energy resolution is controlled by decay fluc-
solenoidal magnet. This solenoidal field, if uncorrected, willtyations rather than sampling error. In order to measure the
rotate the spin vector of the muons about the beam directiotbtal number of electrons entering the calorimeter, we plan to
by a constant amourst; per turn, which can be derived using include a calorimeter layer with little absorber upstream of it
Eq. (1.2 as the first layer.

C. Solenoidal magnetic fields

e Bl
0= — o (1+a)Bg=—(1+ a)B_;’ (3.3 V. CONCLUSIONS
a We have demonstrated that it is feasible to measure the

whereB; is the field due to the solenoid of lengthandB  energy of a 50 GeV muon collider to a few parts pef 10
and is the dipole bending field of the ring of radipisFor a  using theg—2 spin precession technique, provided it is fea-

solenoid of 1.5 T and length 6 n®s=3.09° for the planar sible to maintain a muon polarization of the order iof
storage ring parameters of Table I. It can be shown analyti=0.25 in the ring for 1000 turns. In order to explore the
cally [8] that this produces a spin tune shift given by Higgs resonance, it is necessary to measure the bunch-by-

bunch variation in energy to a few parts pe1We have
(3.4 demonstrated that thg— 2 technique is capable of doing so.

It is still possible to tolerate a spin tune shift in the overall

energy scale of a few percent, which will act only as a sys-
yielding a spin tune shifsv=—1.901x 10" °, or a fractional  tematic error on the Higgs boson mass and width.
spin tune shift ofsv/v=—3.45< 10 °. For a 50 GeV muon We would also like to note in passing that polarization
beam, this is a shift in energy calibration ©fL.72 MeV. In  information from a calorimeter of the type proposed here can
LEP, a similar solenoid will have a much smaller fractionalbe used in conjunction with a neutrino detector placed along
tune shift[8], since the tune is 200 times larger for electrons.the line of the neutrinos produced in association with the
It is important to correct the effect due to the solenoids, sincelectrons to estimate the variation in the energy spectrum of
this is cumulative turn by turn. At LEP this is done by a the muon neutrinos and electron antineutrinos in the beam.
series of vertical orbit correctof9] followed by normal lat- Such information can be a valuable tool in untangling vari-
tice followed by vertical orbit correctors of reverse polarity, ous possible neutrino oscillation scenarios.
which has the effect of rotating the spin by half the amount We intend to develop the method here by studying the
produced by the solenoid. A similar set of corrections ispropagation of polarized muons in a realistic 50 GeV collider
inserted after the solenoid to complete the correction. Thidattice using the programosy [7], which takes into account
method depends on a nonzero valugef2 and as such will nonlinear effects in the dynamic aperture. Design and Monte

1 0
v+ Sv= ;arcco%cos{ V) cos( 5) ,
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Carlo studies will also be undertaken to develop the calorimEquation(A5) states that the mean value of any distribution

eter detector needed. given byP(E) is the same as that of the smeared distribution
P(E,,) provided the smearing function is such that the aver-
ACKNOWLEDGMENTS age of the smeared values for any given true véueuals

the true value(a property satisfied by Gaussiarend the
The authors would like to acknowledge useful conversaintegration is carried over the full range of the variables. As
tions with Alain Blondel, Yaroslav Derbenev, and Robertan aside, in high energy physics, we measure steeply falling

Rossmanith. spectra that are smeared by measurement errors. Provided
there is no arbitrary lower cutoff in the measured spectra
APPENDIX (such as a trigger threshg)dhe above result would be valid,
even for non-Gaussian resolutions. For the muon collider,
1. Treatment of errors the cutoff in selected electrons of 25 GeV is imposed by

We measure the total ener@yof all electrons with indi- Mmomentum selection that is independent of the calorimetry.
vidual energye>25 GeV in an electromagnetic calorimeter. SO the above result would still be valid. Similarly, one can
Let N be the number of electrons sampled during a tixn. compute(E7):
can fluctuate from sampling to sampling. Then

(EZ)= f EZP(EmdEy,

N
E=Zl e =N(e) (A1)
- =fE,2ndEmf P(E)G(E,E,€)dE
a_é: o +0'<2e>:i< 0_5 (A2)
(E)2 (N)2 (e)2 (N)\ ™ (e)?)’ :f P(E)dEf E2G(E,En,€e)dEy,

where the variance? of the quantitiee andE results from
the kinematic distributions of those quantities and not from
the measurement errors. The average of the individual elec-
tron energies is denoted Kg).

Let the calorimeter be such that it measures the true de-
posited energy with a resolutione(E) such that

=j P(E)dEx(E2+ez)=<E2>+f P(E)€*(E)dE.
(AB)
From this it follows that the variance of the measured
energy,o¢ , is given by
2 2

e N?
E_C +E+§’ (A3) géngngJ P(E)eX(E)dE~o2+ €*((E)), (A7)

whereC, S, and N represent the constant, sampling, andwhere the last approximation results from assigning the av-
noise terms, respectively. Let us assume that the measurerage measurement resolution to the resolution at the average

ment errors are Gaussian. Then, energy. This then leads to
2
P(Em)zf P(E)G(E,Ep,e)dE, (A4) E, ot  €(E) 8)
(Em? (B)*  (E)?
where E,,, is the measured energy ar@(E,E,,¢) is a )
Gaussian of mea and standard deviatios, which is a  Using Eqs.(A2) and(A3) leads to
function of E and is written a%(E). From this it follows that
the mean measured enerdy,,) and the mean-squared mea- Uém 1 o? ) ) 2
2 i ——~—| 1+ +C°+ +——. (A9)
sured energyEZ,) are given by (E? N ()2 N(e)  NZ(e)?
<Em>=f EnP(E)dE, From the above equation, it is obvious that the calorimeter
must be such that the constant tefrmust be negligible for

the fractional resolution to scale inversely with the numier
=f Edemf P(E)G(E,Ep,€e)dE of electrons collected. The noise term can be neglected for
large enoughN since it goes a?N~2. With these assump-

tions, one gets
=f P(E)dEf E.G(E,E,,e)dE,

Te

= 1 2 2
:J P(E)dEXE=(E). (AB) w“n( 1+ (e)2+@)' (A10)
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For a 50 GeV muon beam, the valueg ef ando are 34.05 2. Using averages

GeV and 6.046 GeV, respectively, for electrons wih Equation(A2) holds for the total energl in the calorim-
>25 GeV. The ratio,g./(e) is to a good approximation eter |f, however, one also measures the total number of par-
independent of muon energy. This then leads to the followyicjes entering the calorimetéusing a scintillator system, for
ing error formula: example, that counts minimum ionizing partiglethen for
each turn one can measure the average engggyof elec-
trons. The fractional error oi,, does not contain a term
due to the fluctuation of the number of electrons entering the
calorimeter, being given by

Sampling terms of 0.15 Gé¥? or better are easy to obtain 5

in electromagnetic calorimeters. This leads to Te,, a<29> 1 ( ol )

(e)?

TEn 1 1+0.031 53+ & All
(En? N7 34.05" (AL1)

(Ea)? ()2 (N)

(Al4)
og
(Em)? . : .
with (E,,)=(e). For a fractional error of PERR i&,,, the
i.e., the sampling term can be neglected when compared tequivalent number of electrons sampled would be given by

the fluctuation in the true electron energies. So if the frac-
tional measurement error PERRrg /(E,) is specified, the

1
~ N(1+ 0.031 53+ 0.000 663; (Al12)

equivalent number of electrons is given by N 0.03153 (AL5)
(PERR)
N 1.03153 (A13)
(PERR)’

With this method, PERR0.5x10 2%, 1.0x10 2, 2.0
In other words, PERRO0.5x1072, 1.0x10 2, 20 X102 and 3.0<10 2 implies 1261, 315, 79, and 35 elec-
X102, and 3.0<10°? implies 41 261, 10 315, 2579, and trons sampled, assuming no error in the measurement of
1146 electrons sampled. If in practice we sample 100 000f we sample 100 000 electrons, the fractional error in the
electrons, this leads to a value of PERB.3212<10 2. In  average would be 0.56410 3. For this error to be mean-
order for this good a resolution to be meaningful, the con4ingful, the sampling term would have to be of this order of

stant termC has to be below this order of magnitude. magnitude.
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