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Calibrating the energy of a 50350 GeV muon collider using spin precession
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The neutral Higgs boson is expected to have a mass in the region 90–150 GeV/c2 in various schemes within
the minimal supersymmetric extension of the standard model. A first generation muon collider is uniquely
suited to investigate the mass, width, and decay modes of the Higgs boson, since the coupling of the Higgs
boson to muons is expected to be strong enough for it to be produced in thes channel mode in the muon
collider. Because of the narrow width of the Higgs boson, it is necessary to measure and control the energy of
the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of
determining the energy scale of a muon collider ring with circulating muon beams of 50 GeV energy by
measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons.
This variation is caused by the existence of an average initial polarization of the muon beam and a nonzero
value ofg22 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine
with this method to a few parts per million using data collected during 1000 turns.@S0556-2821~98!02213-9#

PACS number~s!: 14.80.Bn, 13.10.1q
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I. METHOD

The spin vectorSW of a muon in the muon collider will
precess according to the following equation, first derived
Bargmann, Michel, and Telegdi@1#:

dSW

dt
5VW 3SW , ~1.1!

VW 52
e

gmm
F ~11ag!BW'1~11a!BW i2S ag1

g

11g DbW 3
EW

c
G ,

~1.2!

whereBW' andBW i are the transverse and parallel compone
of the magnetic field with respect to the muon’s veloc
bW c,e is the electric charge,mm the mass of the muon,a
[(g22)/2 is the magnetic moment anomaly of the muo
and g and g are the Lorentz factor and the gyromagne
ratio of the muon. The value ofa[(g22)/2 for the muon is
1.165 92431023 @2#. In what follows, we will consider the
ideal planar collider ring case whereBW i andEW are zero. For
such a collider ring,VW is given by

VW 5VW cyc~11ag!, ~1.3!

whereVW cyc is the angular velocity of the circulating beam
From this, it follows that when the beam completes one tu
the spin will rotate by a furtherag32p rad. We will com-
pute the precision with whichg can be determined by mea
suring the energy of the electrons produced by muon de
in this ideal case. We will examine the effects of departu
from the ideal case in the last section.

It can be shown that the angular distribution of the dec
electrons in the muon center of mass is given by the rela
@3#
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d2N

dxdcosu
5N@x2~322x!2 P̂x2~122x!cosu#, ~1.4!

whereN denotes the number of muon decays,x[2E/mm is
the electron energyE in the muon rest frame expressed as
fraction of the maximum possible energy ('0.5mm), cosu
is the angle of the electron in the muon rest frame w
respect to thez axis which is the direction of motion of the
muon in the laboratory, andP̂ is the product of the muon
charge and thez component of the muon polarization. Th
muon polarization is defined as the average of the individ
muon unit spin vectors over the ensemble of muons con
ered. We note that the distribution is linear inP̂.

A routine was written to generate muon decays accord
to Eq. ~1.4!. Figure 1 shows the shape of the function in E
~1.4! and the generated events inx,cosu space for various
values ofP̂. There is excellent agreement between the th
retical shape of the function and the Monte Carlo–genera
events. The average energy^E& and longitudinal momentum
^PL& of the electron in the muon rest frame can be obtain
using Eq.~1.4! as follows:

^E&5
mm

2 E E x
d2N

dxdcosu
dxdcosu5

7

10

mm

2
, ~1.5!

^PL&5
mm

2 E E x cosu
d2N

dxdcosu
dxdcosu5

P̂

10

mm

2
.

~1.6!

These two quantities form the components of a four-vec
whose transverse components are zero, which may be tr
formed to the laboratory frame to yield the average elect
energy^Elab&:

^Elab&5
7

20
EmS 11

b

7
P̂D , ~1.7!
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whereEm is the energy of the muon beam. Since the pol
ization P̂ precesses from turn to turn by the amountv
5g(g22)/232p rad and the number of muons decreas
turn by turn due to decay and losses, the total energyE(t)
due to decay electrons observed during turnt in an electro-
magnetic calorimeter will have the following expression:

E~ t !5Ne~2at !F 7

20
EmS 11

b

7
~ P̂ cosvt1f! D G , ~1.8!

whereN is the number of muon decays sampled in turn 0f
is an arbitrary phase containing information on the init
direction of polarization, anda is the turn-by-turn decay
constant of the muon intensity which in the absence of los
other than decay is given by

a5
tcirc

gt l i f e
, ~1.9!

wheretcirc is the time taken to circulate around the stora
ring andt l i f e is the muon lifetime.

For a 100% polarized beam, the amplitude of the osci
tions is only 1/7 that of the nonoscillating background. It c
be seen from Eq.~1.4! that the sensitivity toP̂ is enhanced
by selecting larger values of cosu. This implies selecting
electrons with higher laboratory energy. Figures 2~a!–2~c!
show the deposited electron energy as a function of t
number for polarizationP̂51.0 for individual electron en-
ergy ranges of 0–10 GeV, 10–25 GeV, and 25–50 G
respectively, as a function of turn number. Figure 2~b! shows
very little oscillatory signal, since the electrons in that e
ergy range have small values of cosu. Figure 2~d! shows the
deposited electron energy with no electron energy cuts.

FIG. 1. The top lego plots show the generated events and

theoretical decay function in thex,cosu plane for P̂521.0. The
lego plots at the bottom of the figure show the corresponding p

for P̂51.0.
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perimposed is the predicted behavior according to Eq.~1.8!.
This serves as a consistency check for our routines.
signal-to-background ratio increases as we demand elect
with higher values of cosu. In what follows, we use elec
trons with energy greater than 25 GeV during the investi
tive phase of this analysis and will later optimize this cut.
practice, we can select electrons with energies above a v
by momentum analyzing them with a dipole field before th
enter the calorimeter.

The method to determine the energy scale of the colli
would then entail fitting a functional form of the type

f ~ t !5Ae2Bt@C cos~D1Et!1F# ~1.10!

to the energy observed in the calorimeter. The variab
A,B,C,D,E,F are parameters to be fitted. The informatio
on the energy scale is contained in the parameterE.

A. Parameters of a 50 GeV idealized muon storage ring

In order to arrive at reasonable numbers fora andv, we
consider a storage ring of 50 GeV muons with a unifo
bending field of 4 T. This would produce a circular ring wi
the parameters given in Table I. It should be noted that for
idealized storage ring with constantB field considered here
a does not depend ong, since

tcirc5
mmg

0.3Bc
, ~1.11!

a5
2pmm

0.3Bctli f e
, ~1.12!

he

ts

FIG. 2. ~a!Total energy observed as a function of turn numb

for P̂521.0 with individual electron energies in the range 0–
GeV for 100 000 muon decays. Electron energies in the range~b!
10–25 GeV and~c! 25–50 GeV.~d! All electrons included. Super-
imposed is a functional form defined by Eq.~1.8!.
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TABLE I. Parameters of an idealized muon storage ring.

Parameter Value Parameter Value

Muon energy 50 GeV g 473.22
Spin precession in one turn 3.4667 rad Magnetic field 4.0 T
Radius of ring 41.666 66 m Beam circulation time 0.873 2731026 sec
Dilated muon lifetime 0.103 9731022 sec Turn-by-turn decay constant 0.839931023
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wheremm is the muon rest mass,B is the bending field of the
storage ring, andc is the velocity of light. A 100 GeV col-
lider ring will have the samea as a 50 GeV collider ring or
a 25 GeV collider ring in this idealized case. Asg changes
slightly, tcirc changes in proportion,a being the constan
used to convert measurements oftcirc to g. Measuring the
decay rate of muons also affords a second method to d
mine g. The beam circulation timetcirc can be measured t
precisions of the order of 1 part in 106 and the fractional
error in the muon lifetime is 1.8231025 @2#. The fractional
error in g obtainable by observing the rate of decay of t
muons will then be dominated by the precision that one
measurea, namely,dg/g5da/a.

B. Generation of events and fitting forg

Since Eq.~1.4! is linear inP̂, the decay distribution of an
ensemble of muons depends only onP̂, the ensemble aver
age of thez component of the individual muon spin vector
However, because of the momentum spread of the mu
each individual particle will have ag slightly different from
the average and hence the precession of the spin ve
around the ring will be different, leading to a slightly diffe
ent value ofP̂ for the next turn. We model the beam b
generating an ensemble of 100 000 muons, each havin
own spin vector and momentum. In an actual collider, it w
be possible to sample significantly more decays than t
During each turn, we decay all the beam particles once
record the number and total energy deposited by elect
with individual energies above 25 GeV. Approximately 27
of the decay electrons pass this cut, on average. We dec
the number of decays by the appropriate number expecte
muon decay alone for the next turn. At this stage we do
introduce fluctuations in the number of decays from turn
turn, since the 100 000 muons are meant to be represent
of a much larger number in the actual ring. We precess
100 000 spin vectors by their individual precession rates
make them decay again. We repeat this for 1000 turns.
reuse the muons after each turn since the 100 000 mu
represent our model of the muon ensemble in the collide

1. Generation of muon spin vectors

We generate four different samples of events with diff
ent ensembles of spin vectors. Thez component of the unit
spin vector of a muonSz is allowed to vary from21 to 1.
This range is divided into 51 bins and thez components are
generated using a binomial distribution whose average v
is specified. We are justified in treating this problem in th
classical fashion, since each ‘‘muon’’ represents an ensem
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of actual muons with quantized spin components. A m
realistic generation of the spin vectors with correlations

tween momentum spread andP̂ would require a detailed
modelling of the pion decay and muon transport systems
is not warranted here since the effect due to the distribu
in Sz is expected to be small. Figures 3~a!–3~d! show the
distributions ofSz for the four samples. The average valu
of the distributions are 0.9, 0.74, 0.5, and 0.26, respectiv
We study negatively charged muons resulting in an ini

value of P̂ of 20.9, 20.74,20.5, and20.26, respectively,
for these samples. In the absence of momentum spread

decay distributions would only depend onP̂ and not on the
details of the distribution ofSz . The angles of the spin vec
tors are precessed by the individualg-dependent precessio
rate from turn to turn. In what follows, we assume a be
energy spread of 0.03% for the muons for all samples un
otherwise specified.

2. Fitting procedure and generation of errors

The energy deposited every turn is fitted to the functio
form given by Eq.~1.10! using the CERN programMINUIT

@4#. In order to study the variation of the fractional err
dg/g with the number of electrons sampled, we fluctuate
energy observed in the calorimeterEm by

FIG. 3. ~a!–~d! show the distribution of thez component of the
spin vectors for the four samples considered.
5-3
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sEm

2

^Em&2
'

1

N
~1.03153!, ~1.13!

whereN is the number of electrons sampled. See the App
dix for a derivation of this formula. We analyze the case

FIG. 4. ~a! Energy detected in the calorimeter during the first
turns in a 50 GeV muon storage ring~points!. An average value of

P̂520.26 is assumed and a fractional fluctuation of 0.531022 per
point. The curve is the result of aMINUIT fit to the functional form
in Eq. ~1.10!. ~b! The same fit, with the function being plotted on
at integer turn values. A beat is evident.~c! Pulls as a function of
turn number.~d! Histogram of pulls.
01300
n-
r

41 261, 10 315, 2579, and 1146 electrons sampled wh
corresponds to a fractional error in the measured total ene
of PERR[sEm

/Em of 0.531022, 1.031022, 2.031022,

and 3.031022, respectively.

II. RESULTS

We simulate the muon collider spin precession for a g
of values ofP̂520.9, 20.74, 20.5, and20.26 and frac-
tional measurement error for the first turn~PERR! of 0.5
31022, 1.031022, 2.031022, and 3.031022. Figure 4~a!

shows the result of theMINUIT fit plotted for 50 turns forP̂
520.26 and PERR50.531022. Figure 4~b! shows the
same plot but with the function being plotted only at integ
values of the turn numbert. A beat is evident in both the
theoretical curve and the simulated measurements as a r
of sampling the oscillation function at fixed intervals, n
connected with the oscillation frequency. The origin of t
beat is stroboscopic. Figure 4~c! shows the pulls, defined a
~data-fit!/error at each measurement as a function of t
number for 1000 turns. There are no major turn-depend
variations in this quantity, indicating that the fit converg
satisfactorily. Figure 4~d! shows the histogram of the pulls
which approximates a unit Gaussian as desired. Tabl
shows the results of the fit for the grid of values ofP̂ and
PERR. The results presented in Table II are shown gra
cally in Fig. 5. As an example, for an average polarizati
P̂520.26, the fractional error indg/g varies from 5.1
31026 to 1.931025 as the fractional error in the electro
energy sampled varies from 0.531022 to 3.031022, corre-
sponding to the number of electrons sampled during the
turn varying from 41 261 to 1146. The average number
decays in the muon collider is expected to be 3.23106 de-
TABLE II. Results of fits fordg/g as a function of polarizationP̂ and noise PERR. Also shown is thex2

of the fit for 1000 turns.

P̂ PERR

Number of electrons

dg/g oscillations dg/g decay x2 for NDF51000sampled

20.90 0.5031022 41 261 0.145 6831025 0.132 2731022 824
20.90 0.1031021 10 315 0.221 4731025 0.201 2431022 936
20.90 0.2031021 2579 0.399 9931025 0.363 9831022 1009
20.90 0.3031021 1146 0.586 5931025 0.534 5731022 1030
20.74 0.5031022 41 261 0.174 1831025 0.130 1931022 843
20.74 0.1031021 10 315 0.261 8331025 0.195 9131022 954
20.74 0.2031021 2579 0.469 8131025 0.352 2931022 1021
20.74 0.3031021 1146 0.687 6531025 0.516 7231022 1039
20.50 0.5031022 41 261 0.259 0331025 0.128 1331022 888
20.50 0.1031021 10 315 0.384 0731025 0.190 2931022 973
20.50 0.2031021 2579 0.683 3831025 0.339 7231022 1026
20.50 0.3031021 1146 0.997 4431025 0.497 4931022 1041
20.26 0.5031022 41 261 0.512 4231025 0.126 8831022 898
20.26 0.1031021 10 315 0.753 1731025 0.187 9131022 1004
20.26 0.2031021 2579 0.133 2431024 0.334 4731022 1053
20.26 0.3031021 1146 0.193 8031024 0.489 5031022 1061
5-4
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CALIBRATING THE ENERGY OF A 50350 GeV MUON . . . PHYSICAL REVIEW D 58 013005
cays per meter for a beam intensity of 1012 muons. The error
in determiningg is thus going to be dominated by the flu
tuations in the number of electrons sampled turn by tu
rather than sampling fluctuations in the calorimeter. We h
simulated conditions involving'40 000 decays. It should b
possible to go to higher statistical precision than compu
here by sampling a larger number of electrons.

The results fordg/g obtained from the measurement
the turn-by-turn rate of decay of the electron energy are
competitive with the precession method primarily because
the small value ofa (0.839931023). This leads to larger
fractional errors forg from this method~which also assume
that the loss of intensity is entirely due to the decay proce!
by almost three orders of magnitude than from the preces
method.

A. Variation of dg/g as a function of muon energy

The spin precession per turn equals 2p for a g value of
857.689, which corresponds to a muon beam momentum
90.622 GeV/c. This is the first spin resonance for muons.
this point, the fitting method loses sensitivity complete
since there will be no spin oscillations turn by turn. We no
study the errordg/g as a function of beam energy forP̂5
20.26 and PERR50.531022 ~keeping the magnetic field in
the idealized storage ring to be 4.0 T! as a function of muon
beam energy that straddles the spin resonance. For in
muon collider physics, the interesting beam energies are
GeV ~half the Z mass!, 80.3 GeV (W threshold!, and 175
GeV ~top threshold! as well as half the neutral Higgs boso
mass, which could be as low as 55 GeV in some supers

FIG. 5. ~a! Fractional error indg/g obtained from the oscilla-

tions as a function of polarizationP̂ and the fractional error in the
measurements PERR.~b! Fractional error indg/g obtained from

the decay term as a function of polarizationP̂ and the fractional
error in the measurements PERR.~c! The totalx2 of the fits for
1000 degrees of freedom.
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metry ~SUSY! scenarios. We sample all electrons that ha
energies greater than half the muon energy. Figure 6 sh
the variation ofdg/g as a function of muon beam energie
that straddle these values. It can be seen thatdg/g first de-
creases as one gets close to the resonance and then blo
on the spin resonance. Figures 7–12 show the fitted solut
superimposed on the simulated data for various mome
Also shown side by side is the simulated data

FIG. 6. Fractional error indg/g obtained from the oscillations
as a function of muon beam momentum.

FIG. 7. The figures on the left hand side show the simulated d
with the fitted function superimposed for 50 turns. The figures
the right hand side show the simulated data and the fitted functio
integer values of the turn number. The data shown are 60 Gec
and 70 GeV/c muon momenta, respectively.
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RAJENDRAN RAJA AND ALVIN TOLLESTRUP PHYSICAL REVIEW D58 013005
itself. As one approaches the spin resonance, the oscilla
slow down. It is nevertheless possible to fit the slowed do
oscillations by a rapidly oscillating theoretical function
high accuracy on either side of the resonance. At the re

FIG. 8. The figures on the left hand side show the simulated d
with the fitted function superimposed for 50 turns. The figures
the right hand side show the simulated data and the fitted functio
integer values of the turn number. The data shown are 80 Gec
and 90 GeV/c muon momenta, respectively.

FIG. 9. The figures on the left hand side show the simulated d
with the fitted function superimposed for 50 turns. The figures
the right hand side show the simulated data and the fitted functio
integer values of the turn number. The data shown
90.622 GeV/c and 91.2 GeV/c muon momenta, respectively. Th
upper curve is on resonance.
01300
ns
n

o-

nance, the oscillations die completely, which results in
large value ofdg/g. It may be possible to use this blowup i
dg/g to find the spin resonance accurately and~paradoxi-
cally! determineg at resonance accurately. This would d
pend on the width of the spin resonance, an analysis
which would take us beyond the scope of this paper.
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FIG. 10. The figures on the left hand side show the simula
data with the fitted function superimposed for 50 turns. The figu
on the right hand side show the simulated data and the fitted fu
tion at integer values of the turn number. The data shown
100 GeV/c and 110 GeV/c muon momenta, respectively.

FIG. 11. The figures on the left hand side show the simula
data with the fitted function superimposed for 50 turns. The figu
on the right hand side show the simulated data and the fitted fu
tion at integer values of the turn number. The data shown
120 GeV/c and 130 GeV/c muon momenta, respectively.
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CALIBRATING THE ENERGY OF A 50350 GeV MUON . . . PHYSICAL REVIEW D 58 013005
B. Variation of dg/g as a function of beam energy spread

We now calculate the variation of polarization as a fun
tion of turn number for an ensemble of muons with init
value of polarizationP̂520.26 and values of the momen
tum spreaddp/p varying from 0.0231022 to 0.00125
31022. This variation is plotted in Fig. 13. For the large
values of the momentum spread, there is a significant de
dation of polarization as a function of turn number, due
the differential spin precession of the individual beam p
ticles. We note that when the beam energy is at 175 GeV,
spin tune is significantly higher and the depolarization
more rapid. Despite this depolarization, there is enough
formation from the first few hundred turns to extract t
excellent value ofdg/g for 175 GeV beam energy as show
in Fig. 6.

Figure 14 shows the variation of the fractional ener
resolution,dg/g, as a function of fractional beam energ

FIG. 12. The figure on the left hand side show the simula
data with the fitted function superimposed for 50 turns. The fig
on the right hand side show the simulated data and the fitted f
tion at integer values of the turn number. The data shown
175 GeV/c muon momentum.

FIG. 13. Variation of polarization as a function of turn numb

for 50 GeV muons with initialP̂520.26 and various values o
dp/p in an ideal collider ring. The bottom curve is for 175 Ge
muons and shows a more rapid depolarization due to the higher
tune.
01300
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spread for a muon beam withP̂520.26, with 41 261 elec-
trons sampled. There is little dependence ofdg/g on the
momentum spread. This is due to the fact that the momen
spread is determined from the spin tune and not from
spin oscillation amplitude and the fact that the depolarizat
is not significant for the first few hundred turns for any of t
beam momentum spreads considered here.

C. Optimization of the electron energy cut

We now vary the cut on electron energy and study
dependence ondg/g on the cut. Figure 15 shows the varia
tion of dg/g with the cut on individual electron energies fo
P̂520.26 for 41 261 and 1146 electrons sampled. As sho
in the Appendix, the fractional error on the average energy
electrons is much smaller than the fractional error on
total energy of electrons. It is possible to measure the a
age electron energy by counting the number of electrons
ing into the calorimeter with a scintillator array. Howeve
the precession information is contained increasingly in
number of electrons rather than their average energy as
increase the electron energy cut. Figure 15 shows the va
tion of dg/g calculated from the average as well as to
electron energy as a function of the electron energy cut.
smaller values of the electron energy cut, the average me
produces superior errors than the total energy method. H
ever, with 40 000 electrons or more sampled a total ene
method with a cut of 25 GeV or higher seems optimal.
should, however, be pointed out that the average ene
method does not require a model for the rate of decay
muon intensity in the machine, which in practice could be
complicated function of turn number. As such the system
ics associated with this would not be present in the aver
energy method. Figure 16~a! shows the variation of the ab
solute value ofC/F as a function of the electron energ

d
e
c-
re

in

FIG. 14. dg/g versus fractional beam energy spread for 50 G

muons with PERR50.531022 and P̂520.26.
5-7



e
s
th
th
e
t

ith
e
-

s
s
ru-

the
h

ue

e rf
ec-
this
erse

ce
net
he
o-

till
ntal
een

ru-
d
he

eV
e

in
e a
the
bly

p

ge
gy

RAJENDRAN RAJA AND ALVIN TOLLESTRUP PHYSICAL REVIEW D58 013005
cutoff for P̂520.26, whereC and F are defined in Eq.
~1.10! for both the total energy method and the average
ergy method. Figure 16~b! shows the fraction of electron
that lie above the electron energy cut as a function of
energy cut. The polarization for this sample is 0, since
electron energy fraction depends on polarization as w
Given the curves shown in Fig. 16, it should be possible
estimate the error indg/g for a variety of conditions.

FIG. 15. The variation ofdg/g as a function of the electron

energy cut for 41 261 and 1146 electrons,P̂520.26. We fit the
total energy in the calorimeter as well as the average energy
electron.

FIG. 16. ~a! The variation ofC/F as a function of the electron

energy cut forP̂520.26 for the total energy method and avera
energy method.~b! The fraction of electrons that survive the ener

cut as a function of the cut forP̂50.
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III. EFFECTS DUE TO DEPARTURES
FROM THE IDEAL CASE

So far we have considered a planar collider ring w
uniform vertical magnetic field and no electric fields. Th
actual collider ring will depart from the ideal in three re
spects:~a! It will have rf electric fields to keep the muon
bunched,~b! it will have radial horizontal magnetic field
experienced by particles in an off-center trajectory at quad
poles and at vertical correction dipoles, and~c! it will have
longitudinal magnetic fields due to solenoidal magnets in
interaction region~s!. We now consider the effect due to eac
of these departures from the ideal.

A. Electric fields

Equation~1.2! implies that there is no spin precession d
to longitudinal electric fields (bW 3EW 50). rf electric fields are
longitudinal, and so there will be no precession due to th
electric fields. At present there are no plans to install el
trostatic separators to separate the beams. If and when
happens, one should consider the effect due to the transv
electric fields thus introduced.

B. Effect of radial magnetic fields

Particles which are off axis at quadrupoles will experien
radial as well as vertical magnetic fields. Even though the
integral of these off-axis fields around the ring is zero, t
spin rotation along a horizontal axis followed by a spin r
tation about a vertical axis~caused by a bend dipole! fol-
lowed by a reverse rotation in the horizontal direction s
produces a net effect since the rotations about the horizo
and vertical axes do not commute. The effects have b
analyzed by Assmann and Koutchouk@5# who show that this
results in both a net spin tune shift^dn& as well as a spread
in tunesdn :

^dn&5
cot pn0

8p
n0

2@nQ~Kl Q!2sy
21nCVsuCV

2 #, ~3.1!

wheren0[ag is the spin tune of the collider ring,nQ are the
number of quadrupoles with integrated gradientKl Q , sy is
the misalignment spread of the closed orbit at the quad
poles,nCV is the number of vertical correction dipoles, an
suCV is the rms bend angle in the vertical correctors. T
spread in tune is given by

sdn5
^dn&

cospn0
. ~3.2!

Table III shows the values for̂dn& and sdn obtained by
Assman and Koutchuk@5# for the CERNe1e2 collider LEP.
We compare this with the current design for the 50 G
muon collider ring@6#. Including the low beta section, ther
are 70 quadrupoles with an rms value ofKl Q50.27 m21.
The effects due to correction dipoles may be neglected
both the LEP and the muon collider cases. We assum
beam misalignment of 5 mm at the quadrupoles, which is
same value used in the LEP calculation. This is proba

er
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TABLE III. Predictions for spin tune shiftdn and spread in spin tune shiftsdn caused by quadrupoles fo
LEP compared to the 50 GeV muon collider ring.

Machine Spin tunen0 Quadrupoles rmsKl Q sy dn sdn

(m21) ~m!

46 GeV LEP 100.47 '600 0.032 0.531023 5.731026 6.131025

[3keV [30 keV
50 GeV Muon Collider 0.5517 70 0.274 0.531023 20.2631028 1.6631028
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being conservative. The tune shift for LEP corresponds t
shift in beam energy calibration of 3.0 keV. The tune spre
for LEP corresponds to a spread in beam energy calibra
of 30 keV. For the muon collider, the tune shift correspon
to a shift in beam energy calibration of20.24 keV and a
spread of 1.46 keV, both of which are negligible. The reas
for the smallness of this effect for the muon collider is tw
fold. Since the circumference of the muon collider is sma
than LEP, there are fewer quadrupoles. Second, the muo
200 times more massive than the electron and has a spin
ag that is smaller by the same factor. The spin tune s
depends on the the square of the spin tune. It should be n
that the above formulas are not valid for a fractional s
tune of 0.5.

C. Solenoidal magnetic fields

The experimental region will in all likelihood contain
solenoidal magnet. This solenoidal field, if uncorrected, w
rotate the spin vector of the muons about the beam direc
by a constant amountus per turn, which can be derived usin
Eq. ~1.2!:

us52
e

gmm
~11a!Bs52~11a!

Bsl

Br
, ~3.3!

whereBs is the field due to the solenoid of lengthl , andB
and is the dipole bending field of the ring of radiusr. For a
solenoid of 1.5 T and length 6 m,us53.09° for the planar
storage ring parameters of Table I. It can be shown ana
cally @8# that this produces a spin tune shiftdn given by

n1dn5
1

p
arccosFcos~pn!cosS u

2D G , ~3.4!

yielding a spin tune shiftdn521.90131025, or a fractional
spin tune shift ofdn/n523.4531025. For a 50 GeV muon
beam, this is a shift in energy calibration of21.72 MeV. In
LEP, a similar solenoid will have a much smaller fraction
tune shift@8#, since the tune is 200 times larger for electro
It is important to correct the effect due to the solenoids, si
this is cumulative turn by turn. At LEP this is done by
series of vertical orbit correctors@9# followed by normal lat-
tice followed by vertical orbit correctors of reverse polarit
which has the effect of rotating the spin by half the amo
produced by the solenoid. A similar set of corrections
inserted after the solenoid to complete the correction. T
method depends on a nonzero value ofg22 and as such will
01300
a
d
n

s

n

r
is
ne

ft
ted

l
n

ti-

l
.
e

t
s
is

be 200 times less effective for muons than for electrons,
any given magnet strength. The most effective method
correct for the solenoid is to surround it on either side
compensating solenoids of minimal radius large enough
allow the beam to go through.

IV. POSSIBLE IMPLEMENTATION STRATEGY

We have given some thought to techniques to measure
energy due to decay electrons. Our current plans entai
electromagnetic calorimeter that is segmented both long
dinally and transversally placed inside an enlarged be
pipe in one of the straight sections in the collider ring. T
length of the straight section upstream of the calorimeter
be chosen to control the number of decays (3.23106 decays
per meter for a beam intensity of 1012 muons! and hence the
rate of energy deposition. The sensitive material can be g
eous, since the energy resolution is controlled by decay fl
tuations rather than sampling error. In order to measure
total number of electrons entering the calorimeter, we plan
include a calorimeter layer with little absorber upstream o
as the first layer.

V. CONCLUSIONS

We have demonstrated that it is feasible to measure
energy of a 50 GeV muon collider to a few parts per 16

using theg22 spin precession technique, provided it is fe
sible to maintain a muon polarization of the order ofP̂
50.25 in the ring for 1000 turns. In order to explore th
Higgs resonance, it is necessary to measure the bunch
bunch variation in energy to a few parts per 106. We have
demonstrated that theg22 technique is capable of doing so
It is still possible to tolerate a spin tune shift in the over
energy scale of a few percent, which will act only as a s
tematic error on the Higgs boson mass and width.

We would also like to note in passing that polarizati
information from a calorimeter of the type proposed here c
be used in conjunction with a neutrino detector placed alo
the line of the neutrinos produced in association with
electrons to estimate the variation in the energy spectrum
the muon neutrinos and electron antineutrinos in the be
Such information can be a valuable tool in untangling va
ous possible neutrino oscillation scenarios.

We intend to develop the method here by studying
propagation of polarized muons in a realistic 50 GeV collid
lattice using the programCOSY @7#, which takes into accoun
nonlinear effects in the dynamic aperture. Design and Mo
5-9
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Carlo studies will also be undertaken to develop the calor
eter detector needed.
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APPENDIX

1. Treatment of errors

We measure the total energyE of all electrons with indi-
vidual energye.25 GeV in an electromagnetic calorimete
Let N be the number of electrons sampled during a turnN
can fluctuate from sampling to sampling. Then

E5(
i 51

N

ei5N^e& ~A1!

sE
2

^E&2
5

sN
2

^N&2
1

s^e&
2

^e&2
5

1

^N&S 11
se

2

^e&2D , ~A2!

where the variances2 of the quantitiese andE results from
the kinematic distributions of those quantities and not fr
the measurement errors. The average of the individual e
tron energies is denoted by^e&.

Let the calorimeter be such that it measures the true
posited energyE with a resolutione(E) such that

e2

E2
5C21

S2

E
1
N2

E2
, ~A3!

where C, S, andN represent the constant, sampling, a
noise terms, respectively. Let us assume that the meas
ment errors are Gaussian. Then,

P~Em!5E P~E!G~E,Em ,e!dE, ~A4!

where Em is the measured energy andG(E,Em ,e) is a
Gaussian of meanE and standard deviatione, which is a
function ofE and is written ase(E). From this it follows that
the mean measured energy^Em& and the mean-squared me
sured energŷEm

2 & are given by

^Em&5E EmP~Em!dEm

5E EmdEmE P~E!G~E,Em ,e!dE

5E P~E!dEE EmG~E,Em ,e!dEm

5E P~E!dE3E5^E&. ~A5!
01300
-

-
t

c-

e-

re-

Equation~A5! states that the mean value of any distributi
given byP(E) is the same as that of the smeared distribut
P(Em) provided the smearing function is such that the av
age of the smeared values for any given true valueE equals
the true value~a property satisfied by Gaussians! and the
integration is carried over the full range of the variables.
an aside, in high energy physics, we measure steeply fa
spectra that are smeared by measurement errors. Prov
there is no arbitrary lower cutoff in the measured spec
~such as a trigger threshold!, the above result would be valid
even for non-Gaussian resolutions. For the muon collid
the cutoff in selected electrons of 25 GeV is imposed
momentum selection that is independent of the calorime
So the above result would still be valid. Similarly, one c
compute^Em

2 &:

^Em
2 &5E Em

2 P~Em!dEm

5E Em
2 dEmE P~E!G~E,Em ,e!dE

5E P~E!dEE Em
2 G~E,Em ,e!dEm

5E P~E!dE3~E21e2!5^E2&1E P~E!e2~E!dE.

~A6!

From this it follows that the variance of the measur
energy,sEm

2 , is given by

sEm

2 5sE
21E P~E!e2~E!dE'sE

21e2~^E&!, ~A7!

where the last approximation results from assigning the
erage measurement resolution to the resolution at the ave
energy. This then leads to

sEm

2

^Em&2
'

sE
2

^E&2
1

e2~^E&!

^E&2
. ~A8!

Using Eqs.~A2! and ~A3! leads to

sEm

2

^Em&2
'

1

NS 11
se

2

^e&2D 1C21
S2

N^e&
1
N2

N2^e&2
. ~A9!

From the above equation, it is obvious that the calorime
must be such that the constant termC must be negligible for
the fractional resolution to scale inversely with the numbeN
of electrons collected. The noise term can be neglected
large enoughN since it goes asN22. With these assump
tions, one gets

sEm

2

^Em&2
'

1

NS 11
se

2

^e&2
1
S2

^e& D . ~A10!
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For a 50 GeV muon beam, the values of^e& andse are 34.05
GeV and 6.046 GeV, respectively, for electrons withe
.25 GeV. The ratio,se /^e& is to a good approximation
independent of muon energy. This then leads to the follo
ing error formula:

sEm

2

^Em&2
'

1

NS 110.031 531
S2

34.05D . ~A11!

Sampling terms of 0.15 GeV1/2 or better are easy to obtai
in electromagnetic calorimeters. This leads to

sEm

2

^Em&2
'

1

N
~110.031 5310.000 661!; ~A12!

i.e., the sampling term can be neglected when compare
the fluctuation in the true electron energies. So if the fr
tional measurement error PERR[sEm

/^Em& is specified, the
equivalent number of electrons is given by

N'
1.031 53

~PERR2!
. ~A13!

In other words, PERR50.531022, 1.031022, 2.0
31022, and 3.031022 implies 41 261, 10 315, 2579, an
1146 electrons sampled. If in practice we sample 100
electrons, this leads to a value of PERR50.321231022. In
order for this good a resolution to be meaningful, the co
stant termC has to be below this order of magnitude.
to
lso

01300
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2. Using averages

Equation~A2! holds for the total energyE in the calorim-
eter. If, however, one also measures the total number of
ticles entering the calorimeter~using a scintillator system, fo
example, that counts minimum ionizing particles!, then for
each turn one can measure the average energyEav of elec-
trons. The fractional error onEav does not contain a term
due to the fluctuation of the number of electrons entering
calorimeter, being given by

sEav

2

^Eav&
2

5
s^e&

2

^e&2
5

1

^N&S se
2

^e&2D , ~A14!

with ^Eav&5^e&. For a fractional error of PERR inEav , the
equivalent number of electrons sampled would be given

N'
0.031 53

~PERR2!
. ~A15!

With this method, PERR50.531022, 1.031022, 2.0
31022, and 3.031022 implies 1261, 315, 79, and 35 elec
trons sampled, assuming no error in the measurement oN.
If we sample 100 000 electrons, the fractional error in t
average would be 0.56131023. For this error to be mean
ingful, the sampling term would have to be of this order
magnitude.
e
.
N
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