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CKM matrix and fermion masses in the dualized standard model
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A dualized standard model recently proposed affords a natural explanation for the existence of Higgs fields
and of exactly 3 generations of fermions, while giving at the same time the observed fermion mass hierarchy
together with a tree-level CKM matrix equal to the identity matrix. It further suggests a method for generating
from loop corrections the lower generation masses and nondiagonal CKM matrix elements. In this paper, the
proposed calculation is carried out to 1-loop. It is found first that with the method suggested one can account
readily for the masses of the second generation fermions as ‘‘leakage’’ from the highest generation. Then, with
the Yukawa couplings fixed by fitting the masses of the 2 higher generations, one is left with only 2 free
parameters to evaluate the CKM matrix and the masses in the lowest generation. One obtains a very good fit
to the CKM matrix and sensible values for the masses ofd and e, though, for a valid reason, not ofu. In
addition, the fitted values of the Yukawa couplings and vacuum expectation values of the dual color Higgs
fields show remarkable features perhaps indicative of a deeper significance.@S0556-2821~98!00713-9#
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I. INTRODUCTION

Up to the present, the standard model has worked ex
tionally well, there being no experimental fact we know
which is demonstrably contradictory to its predictions. Ne
ertheless, the standard model contains in itself a numbe
unsatisfactory features, which are widely recognized as s
For example, at the more fundamental level, Higgs fields
introduced to break the electroweak symmetry and fermi
are assumed to exist in three generations or families to
observation without theoretical reasons being given for w
it should be so. Compared with the intrinsic gauge struct
and the existence of the gauge bosons in the theory, bo
which have deep geometric significance, the assumpt
about Higgs fields and fermion generations appearad hoc.
At the more practical level, this situation is reflected in t
large number of independent parameters which have to
determined by experiment. In addition, these parameters
hibit some quite startling patterns which are still une
plained. In particular, there is first the so-called fermion
erarchy puzzle, namely that fermions of the same type
different generations have widely different masses. Take,
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example, the threeU-type quarks; the experimental value
quoted in the latest data booklet@1# for the masses oft, c,
and u respectively are 17665 GeV, 1.021.6 GeV, and
228 MeV, dropping by more than two orders of magnitu
from generation to generation. Then, second, there is
mixing problem, say, between theU-type andD-type quarks
through the Cabibbo-Kobayashi-Maskawa~CKM! matrix
@2,3#, which though tantalizingly close to the identity matr
is yet not the identity, with its off-diagonal elements varyin
in magnitude from about 20% to about 3 per mill@1#. These
empirical facts, of course, are all of the greatest phenome
logical significance and cry out for a theoretical explanat
but are not given one in the standard model as usually
mulated.

In the literature, answers to these questions are o
sought for from beyond the standard model, but with, to o
mind, no obvious great success. The difficulty is that, th
being more freedom working outside the standard mo
framework, one often ends up by putting in more than o
gets out. Recently, however, a suggestion was made f
solution of the above problems from within the framework
the standard model itself which, if at all possible, would
least have the advantage of economy and restraint. In
suggestion@4#, one first made use of a newly discovere
generalized electric-magnetic duality for Yang-Mills field
@5# together with a well-known result of ’t Hooft on confine
ment @6# to give a natural place to both Higgs fields an
fermion generations, with Higgs fields appearing as fra
vectors in internal symmetry space and fermion generati
© 1998 The American Physical Society04-1
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appearing as dual color. As an immediate consequence,
then deduced that fermions will occur in exactly three g
erations and that the generation symmetry will be broken
experimentally observed. Moreover, with one more sim
assumption about the dual hypercharges of the dual H
fields, it was shown that there will be a fermion mass hi
archy and that the CKM matrix would be the identity at t
tree level, but that loop corrections would lift the above tre
level degeneracy to give small but nonzero values both to
lower generation fermion masses and to the off-diago
CKM matrix elements.

The purpose of the present paper is to push further in
direction to make a first attempt at actually evaluating qu
masses and CKM matrix elements for comparison with
periment. The calculation is here carried out to the 1-lo
level. Out of the many 1-loop diagrams we have examined
turns out first that some, which affect only the normalizati
of the fermion mass matrix but not its orientation, are lar
due to the large dual gauge coupling and cannot be evalu
perturbatively. Since it is only the orientation in flavor spa
which is of the most interest to us as far as the CKM ma
is concerned, it is profitable at present to abandon calcula
the normalization of the mass matrix and concentrate so
on its orientation. This has the benefit of allowing us to
nore those diagrams affecting only the normalization, red
ing thus the number of free parameters in the problem. S
ond, it happens that of the remaining diagrams affecting
orientation of the fermion mass matrix, most are negligible
we put in the estimate for the dual gauge boson mass
tained from the absence of flavor-changing neutral dec
As pointed out already in@4#, the exchange of the dual gaug
bosons would give rise to flavor-changing neutral curr
~FCNC! effects, and experimental constraints put a low
bound on the lowest dual gauge boson mass of several
TeV.

What remains then is basically just the Higgs loop d
gram which matters for our present investigation. This
pends on a Yukawa coupling strengthr, one for each fer-
mion type, a mass scalemT which may be identified as th
highest generation mass, again one for each fermion t
and last the 3 vacuum expectation values (x,y,z) of the dual
color Higgs fields which are common to all fermion type
We ascertain first that the masses of the second gener
fermions can indeed be obtained as a ‘‘leakage’’ from
highest generation, as suggested in@4#, with a Yukawa cou-
pling strengthr of order unity for each fermion type. W
then fixed their values by fitting theser ’s to the empirical
values of the masses of the second generation. Next, o
remaining parameters (x,y,z), it was shown that the calula
tion is independent of their normalization to a high accura
With then only 2 free parameters, we had to calculate
CKM matrix and the fermion masses of the lowest gene
tion. A very good fit to the absolute values of all CKM
elements was obtained together with some ratios and p
ucts of these elements measured independently. In addi
in spite of the lack of knowledge on the scale dependenc
the normalization of the mass matrix, sensible estimates w
obtained for all the lowest generation fermions except for
u quark.
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The result of the fit reveals also 2 intriguing feature
namely ~a! a close proximity of the normalized vecto
(x,y,z) to one of its fixed points (1,0,0) to an accuracy
about 1 part in 10 000 and~b! the near equality to a few
percent accuracy of the fitted values of ther ’s for all 3 fitted
fermion types~i.e. U, D and the charge leptons L!. We think
these may be indicative of a hidden symmetry which
have not yet understood.

II. FRAMEWORK

We begin with a short account of the dual framework
which the calculations are based, the details of which can
found in @4#. Generalized electric-magnetic duality as o
tained in@5# implies that, dual to color in the standard mod
there is also anSŨ(3) symmetry for dual color. The charge
of this dual symmetry are color monopoles and its mon
poles are color charges. Using then the well-known resul
’t Hooft @6#, one concludes from the fact that color is co
fined that dual colorSŨ(3) is spontaneously broken via th
Higgs mechanism. The proposal was that this broken d
color symmetry be identified with what is sometimes r
ferred to in the literature as the ‘‘horizontal symmetry’’ re
lating the generations@7,8#.

Now it so happens that in the dual framework of@4# there
are scalar fields occurring which have the right properties
play the role of Higgs fields, these being the frame vectors
the SŨ(3) internal space. They constitute altogether 3 d
color triplets, which we denote byf ã

(a) , with ã51,2,3 rep-
resenting the dual color which labels the 3 components o
triplet and (a)51,2,3 being just a label distinguishing the
triplets. We want the vacuum expectation values off ã

(a) to
form an orthogonal triad, as is appropriate for the 3 vect
which make up anSŨ(3) frame. We need therefore a Higg
potential which gives these vacuum expectation values
minima. The following was suggested@4#:

V@f#52m(
~a!

uf~a!u21lH(
~a!

uf~a!u2J 2

1k (
~a!Þ~b!

uf̄~a!.f~b!u2, ~2.1!

with m, l and k all positive. The minimum ofV occurs
when the f (a) are mutually orthogonal and( (a)uf (a)u2

5m/2l, independently of the individual lengths of the di
ferentf (a)’s. Thus, a vacuum can be chosen as

fV
~1!5zS x

0

0
D , fV

~2!5zS 0

y

0
D , fV

~3!5zS 0

0

z
D ,

~2.2!

with

z5Am/2l ~2.3!

and
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x21y21z251, ~2.4!

which will in general break both theSŨ(3) symmetry and
the permutation symmetry between the differentf (a)’s. In
our calculation here we shall use explicitly this potential
though we recognize that it has no claim for uniqueness.
shall show, however, that the result will not depend much
its detailed properties.

As in @4#, left-handed fermions are assigned to dual co
triplets and right-handed fermions to dual color singlets. W
have thus the Yukawa coupling term

(
[b]

Y[b](
~a!

~ c̄L! ãf ã
~a!

~cR! [b]1H.c., ~2.5!

where we have suppressed both color and weak isospin
dices which are irrelevant for our discussion here. Insert
then the vacuum expectation values given in Eq.~2.2! for the
Higgs fields, we have at the tree level the following facto
ized fermion mass matrix:

m5zS x

y

z
D ~a,b,c!, ~2.6!

where we have abbreviated the Yukawa couplingsY[1]5a,
Y[2]5b, Y[3]5c. The matrix being of rank 1, it follows tha
mm† has only one non-zero eigenvalue@9#, namely r2z2,
with

r5Auau21ubu21ucu2 ~2.7!

implying thus immediately a mass hierarchy with one f
mion state much higher in mass than the other two. Furth
more, the first factor inm, being given in terms just of the
Higgs vacuum expectation valuesx,y,z, is independent of
the fermion type, i.e. of whether it isU-type or D-type
quarks or leptons that we are dealing with, although the s
ond factor, given in terms of the Yukawa couplingsa, b,
andc, does depend on the fermion type. As a conseque
one obtains that the CKM matrix, which depends only on
relative orientation of the first~left-handed! factors of respec-
tively the U-type andD-type quarks, is at the tree level ju
the identity matrix. This was already discussed in detail
@4#.

What we need to do now is to go beyond the tree le
and look at loop corrections. As pointed out in@4#, because
of the special manner in which the fermions here are coup
to the dual gauge and Higgs bosons, loop corrections do
destroy the factorizability property of the tree-level ma
matrix.1 Nevertheless, they will modify the first~left-handed!
factor in Eq.~2.6! and hence give rise to a nontrivial CKM
matrix and nonzero masses to the lower generation ferm

1As a result, the mass matrix has two zero eigenvalues so tha
u vacuum can be rotated away and the strongCP problem is
avoided@10#.
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as explained in@4#. This is what we wish now to examine i
detail.

III. ONE-LOOP DIAGRAMS

Our fermions carry in fact weak isospin and in the case
quarks also color, so that in principle there will be loop co
rections coming from color gluon and electroweak bos
loops. However, as far as the CKM matrix and the low
generation fermion masses are concerned, only those
grams which rotate the mass matrix with respect to d
color ~i.e. the generation index! will matter. Since neither the
color gluons nor the gauge and Higgs bosons in the e
troweak sector carry dual color, they cannot rotate the g
eration index, and hence will leave both factors~2.6! of the
mass matrix intact, affecting at most its normalization. As
shall see, there are other reasons why we cannot in any
concern ourselves with the normalization of the mass mat
There is thus no point for us to consider gluon and el
troweak boson loops any further. There remain then o
those diagrams with dual gauge and Higgs boson loops
which all those of 1-loop order are listed in Fig. 1.

Let us first write down the explicit expressions for th
corrections to the fermion mass matrix arising from the d
grams in Fig. 1. This has been done already in a gen
framework by Weinberg@12# who expressed the answer as
sum of five terms:

dm52S~A1!2S~Af!2S~AT!2S~f1!2S~T1!, ~3.1!

where

S~A1!5
1

16p2(N E
0

1

dx$22mt̄N~12x!

14g4 t̄ Ng4m% ln S mN
2 1

m2x2

12x D t̄ N ,

ny

FIG. 1. One loop corrections to the fermion mass matrix, wh
solid lines represent fermions, wavy lines dual gauge bosons
dotted lines dual color Higgs fields.
4-3
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S~Af!5
1

16p2(N
1

mN
2 E0

1

dx$~12x!m@g4m, t̄ N#g4

1g4@g4m, t̄ N#m%

3H ln S m2x2

12x D2 ln S mN
2 1

m2x2

12x D J
3g4@g4m, t̄ N#,

S~AT!5
1

32p2(N g4@ t̄ N ,@ t̄ N ,g4m## ln mN
2 ,

S~f1!52
1

16p2(K E
0

1

dx$2~12x!mg4ḠKg4

1ḠKm% ln $m2x21MK
2 ~12x!%ḠK ,

S~T1!5
1

32p2
G iM i j

22H f kl j~M2 ln M2!kl

216Tr~m3 ln mG j !

16(
N

~ ūN
2 l! jmN

2 ln mN
2 J . ~3.2!

As they are written, these formulas depend on the ene
scale, the significance of which will be elucidated later.

The above formulas depend also on the following qua
ties, the explicit forms for which have yet to be specified: t
fermion mass matrixm, the eigenvaluesmN ,N50, . . . ,8, of
the dual gauge boson mass matrix, the Higgs boson m
matrix Mi j and its eigenvaluesMK , K51, . . . ,9, thefer-
mion couplings to the dual gauge bosonst̄ N and to the Higgs
bosonsG i or ḠK , and then the Higgs bosons’ couplings
themselvesf kl j and to the dual gauge bosons (ūN

2 l) j . We
proceed to do so now.

The fermion mass matrix Weinberg defined somew
differently from that given above in Eq.~2.6!. Writing the
Yukawa coupling in terms of the full fermion fieldc, thus,
01300
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[b]

Y[b](
~a!

c̄ ãf ã
~a!

c [b]1H.c., ~3.3!

instead of the left- and right-handed components as in
~2.5!, one obtains a mass matrix of the form

mW85m
1

2
~11g5!1m†

1

2
~12g5!, ~3.4!

containing factors ing5. However, since the labels on th
right-handed components have actually no physical sign
cance, one can relabel them such as to makem Hermitian
and hence obtain the mass matrix in the form

mW5rzS x

y

z
D ~x,y,z!, ~3.5!

which has nog5 in it, and is essentially just the square ro
of mm† in terms of them previously defined. We notice tha
mW remains a factorized matrix, which property is crucial f
our discussion later. In the calculations which follow, wh
no confusion is likely to occur, we shall drop the subscriptW
from the Weinberg mass matrix.

Next, the mass matrix for the dual gauge bosons has
ready been worked out in@4#. This 939 matrix is diagonal
for a5N51,2,4,5,6,7, as labelled by the Gell-Mann mat
cesla of SŨ(3), with eigenvalues

m1 ,m25
g̃3z

2
Ax21y2,

m4 ,m55
g̃3z

2
Az21x2,

m6 ,m75
g̃3z

2
Ay21z2. ~3.6!

The remaining 333 nondiagonal block inm2 as labelled by
l3, l8 andl05 2

3 I reads as
S g̃3
2

4
z2~x21y2!

g̃3
2

4A3
z2~x22y2! 2

g̃1g̃3

3
z2~x22y2!

g̃3
2

4A3
z2~x22y2!

g̃3
2

12
z2~x21y214z2! 2

g̃1g̃3

3A3
z2~x21y222z2!

2
g̃1g̃3

3
z2~x22y2! 2

g̃1g̃3

3A3
z2~x21y222z2!

4g̃1
2

9
z2~x21y21z2!

D , ~3.7!
4-4
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the eigenvalues of which we label bymN
2 ,N53,8,0 with

eigenvectorsCaN such that

(
a,b53,8,0

CaN8mab
2 CbN5mN

2 dNN8. ~3.8!

The diagonalization of this matrix we shall perform on
with explicit values for the parameters.

The Higgs fieldsf ã
(a) represent 9 complex degrees

freedom, which we write, following Weinberg’s conventio
as 18 real fields: thus,

f ã
~a!

5f ã1
~a!

1 if ã2
~a! . ~3.9!

From these and the potentialV@f# in Eq. ~2.1!, the Higgs
boson mass matrix is given by

M25F ]2V

]f ãr
~a!

]f b̃s
~b!G

vacuum

, ~3.10!

which breaks up into 8 diagonal blocks as follows. Fir
there is a 333 block labelled byf1,1

(1) ,f2,1
(2) ,f3,1

(3) :

8lz2S x2 xy xz

yx y2 yz

zx zy z2
D . ~3.11!

Second, there is a 232 block labelled byf2,1
(3) ,f3,1

(2) :

4kz2S y2 yz

zy z2 D . ~3.12!

Third, there is a 232 block labelled byf2,2
(3) ,f3,2

(2) :

4kz2S y2 2yz

2zy z2 D . ~3.13!

Fourth, there is a 232 block labelled byf3,1
(1) ,f1,1

(3) :

4kz2S z2 zx

xz x2D . ~3.14!

Fifth, there is a 232 block labelled byf3,2
(1) ,f1,2

(3) :

4kz2S z2 2zx

2xz x2 D . ~3.15!

Sixth, there is a 232 block labelled byf1,1
(2) ,f2,1

(1) :

4kz2S x2 xy

yx y2 D . ~3.16!

Seventh, there is a 232 block labelled byf1,2
(2) ,f2,2

(1) :

4kz2S x2 2xy

2yx y2 D . ~3.17!
01300
,

Finally, there is a 333 block labelled byf1,2
(1) ,f2,2

(2) ,f3,2
(3) ,

the entries of which are all zero. All the first seven blocks a
of rank 1 and have each only one nonzero eigenvalue, giv
thus for M2 altogether 11 zero modes, 9 of which, name
one each from each block except the first and last and a
from the last, are absorbed by the dual gauge bosons, lea
2 from the first block. These 2 remaining zero modes co
from an ‘‘accidental symmetry’’ of the vacuum, not from
symmetry of the potential~2.1!, as explained in@4#, and are
therefore not absorbed by the gauge bosons. We are then
with 7 Higgs bosons coming one from each of the first sev
blocks which we label in that order with their eigenvalu
and eigenvectors each in its own block,

K51: 8lz2~x21y21z2! ~x,y,z!,

K52: 4kz2~y21z2! ~y,z!,

K53: 4kz2~y21z2! ~y,2z!,

K54: 4kz2~z21x2! ~z,x!,

K55: 4kz2~z21x2! ~z,2x!,

K56: 4kz2~x21y2! ~x,y!,

K57: 4kz2~x21y2! ~x,2y!, ~3.18!

while the two remaining zero~pseudo Goldstone! modes
coming from the first block will be assigned the followin
eigenvectors in the original basis of that block:

uv8&52bS y2z

z2x

x2y
D , uv9&5bS 12x~x1y1z!

12y~x1y1z!

12z~x1y1z!
D ,

~3.19!

with

b22532~x1y1z!2. ~3.20!

Next, the couplings of the dual gauge bosons to the
mions are, in Weinberg’s convention,

t̄ N5tN , N51,2,4,5,6,7,

t̄ N5C3Nt31C8Nt81C0Nt0 , N53,8,0,
~3.21!

where

ta52
g̃3

2
la

1

2
~12g5!, a51, . . . ,8,

t05
2g̃1

3

1

2
~12g5!. ~3.22!

The coefficientsC3N ,C8N ,C0N are as defined in Eq.~3.8!.
The couplings of the Higgs bosons to the fermions

extracted from the Yukawa couplings~3.3!, expressed in
4-5
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terms of the real Higgs fields~3.9!, and rotated to the basi
wherem is Hermitian or wheremW has nog5, are

G11
~a!5

1

2
~11g5!rS x y z

0 0 0

0 0 0
D 1

1

2
~12g5!rS x 0 0

y 0 0

z 0 0
D ,

G12
~a!5

i

2
~11g5!rS x y z

0 0 0

0 0 0
D 2

i

2
~12g5!rS x 0 0

y 0 0

z 0 0
D ,

G21
~a!5

1

2
~11g5!rS 0 0 0

x y z

0 0 0
D 1

1

2
~12g5!rS 0 x 0

0 y 0

0 z 0
D ,

G22
~a!5

i

2
~11g5!rS 0 0 0

x y z

0 0 0
D 2

i

2
~12g5!rS 0 x 0

0 y 0

0 z 0
D ,

G31
~a!5

1

2
~11g5!rS 0 0 0

0 0 0

x y z
D 1

1

2
~12g5!rS 0 0 x

0 0 y

0 0 z
D ,

G32
~a!5

i

2
~11g5!rS 0 0 0

0 0 0

x y z
D 2

i

2
~12g5!rS 0 0 x

0 0 y

0 0 z
D ,

~3.23!

which are independent of the superscript (a). Notice that the
three indices (a)51,2,3, ã51,2,3, r 51,2 here are to play
together the role of the indexi 51, . . . ,18 in theformula for
ST1 in Eqs.~3.2!. Alternatively, when expressed in terms
the basis formed by the eigenstates of the Higgs mass m
M as listed in Eqs.~3.18! and ~3.19!, we have the same
couplings in the form to be used inSf1 of Eqs.~3.2!:

ḠK5ḡK

1

2
~11g5!1ḡK

† 1

2
~12g5!, ~3.24!

where

ḡK5ruvK&^v1u ~3.25!

and

uv1&5S x

y

z
D ,

uv2&5
1

Ay21z2S 0

y

z
D ,
01300
rix

uv3&5
i

Ay21z2S 0

y

2z
D ,

uv4&5
1

Az21x2S x

0

z
D ,

uv5&5
i

Az21x2S 2x

0

z
D ,

uv6&5
1

Ax21y2S x

y

0
D ,

uv7&5
i

Ax21y2S x

2y

0
D ,

~3.26!

while uv8& and uv9& are already given in Eqs.~3.19!.
There remains then for us to specify only the couplin

( ūN
2 l) j of the gauge fields to the Higgs fields and the co

plings f kl j of the Higgs fields to themselves, both occurrin
in the tadpole termST1 in Eqs. ~3.2!. The calculations for
these are somewhat tedious, especiallyf kl j which has alto-
gether 18318318 entries, most of which are zero. Since t
calculation is straightforward and their actual values will n
be needed for our calculation later, here we shall give o
those results which are relevant for our considerations.
instance, one does not need to include in the sum overK the
zero modes~3.19! @12#. For the rest, it is easier to state th
result in terms of the basis formed by the eigenstates~3.18!
of the Higgs mass matrix than in terms of the original ba
labelled by the three indices (a)51,2,3, ã51,2,3, r 51,2
corresponding together to the indexi in Weinberg’s formu-
las. In that case, the couplings (ūN

2 l)K for K52, . . . ,7 all
vanish, leaving only

~ ūN
2 l!K5152z~DN1

2 x21DN2
2 y21DN3

2 z2!, ~3.27!

with

DN1
2 5

g̃3
2

4
, DN2

2 5
g̃3

2

4
, DN3

2 50, N51,2,

DN1
2 5

g̃3
2

4
, DN2

2 50, DN3
2 5

g̃3
2

4
, N54,5,

DN1
2 50, DN2

2 5
g̃3

2

4
, DN3

2 5
g̃3

2

4
, N56,7,

~3.28!
4-6
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and, forN53,8,0,

DN1
2 5S C3N

g̃3

2
1C8N

g̃3

2A3
2C0N

2g̃1

3 D 2

,

DN2
2 5S 2C3N

g̃3

2
1C8N

g̃3

2A3
2C0N

2g̃1

3 D 2

,

DN3
2 5S 2C8N

g̃3

A3
2C0N

2g̃1

3 D 2

. ~3.29!

Finally, in the same basis of eigenstates, of the Higgs fie
self-couplingsf̄ IJK we need only those withI 5J and these
are found to vanish except whenK51, where

f̄ 111524lz,

f̄ 22158lz18kz~y21z2!,

f̄ 33158lz116kzS y2z2

y21z2D ,

f̄ 44158lz18kz~z21x2!,

f̄ 55158lz116kzS z2x2

z21x2D ,

f̄ 66158lz18kz~x21y2!,

f̄ 77158lz116kzS x2y2

x21y2D .

~3.30!

With these, the specification of quantities entering in the
pressions for the 1-loop diagrams in Eq.~3.2! is complete.

IV. RELEVANT TERMS

Although the 1-loop diagrams detailed in the preced
section were all referred to formally as corrections, they n
not all be small. In particular, the coupling of the dual glu
is given in terms of that of the usual color gluon by the Dir
quantization condition@11#

gg̃54p, ~4.1!

which means that for the usual color couplingg, having the
observed value of around 1.18 at theZ mass, the dual colo
couplingg̃ is of order 10. Thus, loop diagrams such as Fi
1~a! and 1~d!, in which the integrated momenta need not
low so that the propagator suppression by a high dual gl
mass is inoperative, can in fact take on very large valu
They cannot then be treated perturbatively.

However, not all the diagrams in Fig. 1 rotate the fermi
mass matrix with respect to dual color, which rotation
needed to give a nontrivial CKM matrix and nonzero mas
01300
s

-

g
d

.

n
s.

s

to the two lower generations. Indeed, as we shall see, it tu
out that the large contributions from Fig. 1 will all affec
only the normalization of the mass matrix but not its orie
tation in dual color, so that as far as the effects we seek
concerned, there are only small corrections to be conside
This is very fortunate, for otherwise one would not be able
calculate the lower generation quark masses and the C
matrix perturbatively as we set out to do.

To see that this fortunate situation does indeed arise, c
sider first the last term inST1 in Eqs.~3.2! which represents
the dual gauge boson tadpole diagram exhibited in Fig. 1~d!.
This term is huge, being proportional tog̃3

2mN
2 ln mN

2 , where

g̃3, as already mentioned above, is of order 10, and the d
gauge bosons, in order for their exchanges not to violate
very stringent experimental bounds on flavor-changing n
tral current decays, have to have massesmN of the order of
100 TeV @13,15#. However, in terms of the basis of Higg
boson mass eigenstates, this term appears as

3

16p2(K ḠKMK
22(

N
~ ūN

2 l!KmN
2 ln mN

2 . ~4.2!

Now, according to our previous result stated in Eq.~3.27!,
only the Higgs stateK51 has nonvanishing coupling to th
dual gauge bosons so that the sum overK in Eq. ~4.2! has
only theK51 term. By Eqs.~3.24!–~3.26!, however,Ḡ1 is
itself proportional to the tree-level mass matrixmW in Eq.
~3.5!, so that the whole diagram has the effect only of cha
ing the normalization of the tree-level mass matrix as ant
pated.

A similar conclusion is reached for the other termsSA1,
SAf andSAT in Eq. ~3.2!, coming from the dual gauge boso
loop. In contrast with the dual gauge boson tadpole stud
in the above paragraph, these terms do rotate the ferm
mass matrix but do so only through the mass matrixm itself
on which these terms depend. Suppose then we expand
expressions in powers ofm; then the leading term of orderm
will be just a scalar times the original tree-level mass ma
and can therefore only affect its normalization, not its orie
tation. The other terms in the expansion which rotate
mass matrix will be of orderm2/mN

2 times the mass matrix
and hence much smaller, in fact even negligible, as we s
see later.

The fact that the normalization of the fermion mass m
trix is affected by large loop corrections means of course t
we cannot hope to calculate its value perturbatively but h
to treat it as a parameter to be determined experimentall
means in particular that the one nonzero eigenvalue om
corresponding to the mass of the highest generation wh
started at the tree level asrz can now no longer be given in
terms ofr, the Yukawa coupling, andz the vacuum expec-
tation value of the Higgs fields, but has to be treated a
separate parameter, saymT ~whereT labels the type of fer-
mions under consideration, namelyU or D for quarks andL
for leptons!, thus reducing the predictive power of th
present calculation. On the other hand, since the norma
tion cannot be predicted in any case, there is now no sens
calculating those diagrams which affect the normalizat
4-7
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only. Hence, as mentioned already in the beginning of
section, one may safely ignore all those diagrams with lo
of the ordinary color gluons and the usual electroweak Hi
bosons.

A similar conclusion applies also to the dual Higgs ta
pole diagram in Fig. 1~c! representing the first term inST1 of
Eqs. ~3.2!. In the diagonal basis for the Higgs mass mat
M , this term appears as

1

32p2(K (
L

ḠKMK
2 f̄ LLK~M2 ln M2!L , ~4.3!

where since, according to Eq.~3.30!, f̄ LLK vanishes excep
for K51, there remains only one term in the sum prop
tional to the matrixḠ1, which is itself proportional to the
tree-level mass matrixm. It will therefore affect only the
normalization ofm, not its orientation, and thus, by the log
above, can also be ignored. Given that in Fig. 1 only
diagram~c! depends on the Higgs self-couplingsf i jk , this
means that we can henceforth eliminate this coupling fr
our considerations.

The remaining terms in Fig. 1, namely the terms of ord
m2/mN

2 or higher inSA1, SAF, andSAT, the termSf1, and
the second term inST1 corresponding to the fermion-loo
tadpole of Fig. 1~e!, the explicit expressions for which ar
given in Eqs.~3.2!, all rotate the mass matrix. However, a
explained in Ref.@4#, they will leave the mass matrix in
factorized form with only the left-handed factor rotated.
other words, the correctionS from these terms can each b
written in the form

S5mTS x11

y11

z11

D ~x,y,z!
1

2
~11g5!

1mTS x

y

z
D ~x12 ,y12 ,z12!

1

2
~12g5!. ~4.4!

Added to the tree-level mass matrix and symmetrized w
respect to left and right, this gives the 1-loop corrected m
matrix as

S5mTS x8

y8

z8
D ~x,y,z!

1

2
~11g5!

1mTS x

y

z
D ~x8,y8,z8!

1

2
~12g5!, ~4.5!

wherex85x2 1
2 x112 1

2 x12 , etc. Again, as in the tree-leve
mass matrix, theg5 terms in Eq.~4.5! can be rotated away
by redefining the right-handed fermions to give
01300
is
s
s

-

-

e

r

h
ss

mW8 5
mT

z82S x8

y8

z8
D ~x8,y8,z8!. ~4.6!

Hence, in order to specify the effect of the loop correctio
we need only give for each the correspondingx15 1

2 x11

1 1
2 x12 , etc.
The results of our calculation are as follows. From t

sum ofSA1 andSAT in Eqs.~3.2!, we obtain

S x1

y1

z1

D 52
1

8p2(N T̄Nf N~m2!T̄NS x

y

z
D , ~4.7!

whereT̄N are just the dual gluon couplingst̄ N listed in Eqs.
~3.21! without the 1

2 (12g5) factor,

t̄ N5T̄N

1

2
~12g5!, ~4.8!

and f N(m2) is the integral:

f N~m2!5E
0

1

dx~12x! ln F11
~m2/mN

2 !x2

12x G . ~4.9!

From SAf, Eqs.~3.2!, we have

S x1

y1

z1

D 5
1

16p2(N
1

mN
2 @2m2T̄NgN

2~m2!T̄N

1T̄Nm2gN
1~m2!T̄N#S x

y

z
D , ~4.10!

with

gN
6~m2!5E

0

1

dx~16x!F ln S m2x2

12x D2 ln S mN
2 1

m2x2

12x D G .
~4.11!

From Sf1 in Eqs.~3.2! we obtain

S x1

y1

z1

D 52
1

16p2F(K AKuv1&1(
K

BKuvK&G , ~4.12!

whereuvK& are as listed in Eqs.~3.26! and ~3.19!. The first
term with

AK52r2^vKuFK~m2!uvK& ~4.13!

need not bother us, being proportional touv1& which is the
same as for the tree-level mass matrix. For the second t
we have
4-8
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BK52r2^v1uFK~m2!uv1&^vKuv1&

12r2^v1uGK~m2!uv1&^v1uvK&, ~4.14!

with

FK~m2!5E
0

1

dx~12x! ln @m2x21MK
2 ~12x!#

~4.15!

and

GK~m2!5E
0

1

dx ln @m2x21MK
2 ~12x!#. ~4.16!

Last, from the fermion-loop tadpole term of Fig. 1~e! as
given in the second term ofST1 in Eqs.~3.2!, we obtain

S x1

y1

z1

D 52
1

p2

r2

mT
(
K

MK
22Tr$m3 ln mḡK%uvK&,

~4.17!

with ḡK as given in Eq.~3.25!. The sum here is to be take
only over the Higgs bosons with nonzero masses, nam
over onlyK51, . . . ,7 with MK given in Eqs.~3.18!.

Although the terms listed in the preceding paragraph
rotate the mass matrix and hence could contribute to
present calculation of the CKM matrix and lower generat
masses, they are widely different in size. Thus, the te
~4.7! and ~4.10! are both of orderm2/mN

2 wherem is about
176 GeV forU-type quarks and 4.3 GeV forD-type quarks,
while, as already mentioned before, the dual gauge bos
are bounded by experiment to have masses larger than
TeV, a bound that we shall be able to check later within
present framework for consistency. That being the case,
corrections due to these two terms are only of the orde
1026 or less and are thus seen to be entirely negligible
calculating the lower generation quark masses or the C
matrix to the present experimental accuracy. A similar c
clusion is reached also for the term~4.17! which is of order
(m2 ln m)/MK

2 , with Higgs boson massesMK being esti-
mated to be of order some tens of TeV, again an estim
that we shall be able to check for consistency within
present framework. Hence, the end result of our analysi
that of all the 1-loop corrections we have evaluated, only
term ~4.12! from the Higgs boson loop in Fig. 1~b! is poten-
tially large enough to give the right orders of magnitude
the lower generation quark masses or for the off-diago
CKM matrix elements, and it is therefore to this term that
shall now direct our attention.

V. ROTATING MASS MATRIX

The Higgs boson loopSf1 in Eqs.~3.2! of Fig. 1~b! not
only rotates the fermion mass matrix but rotates it in a m
ner which depends on the renormalization scale. To see
let us write the logarithm in Eqs.~4.15! and ~4.16! at any
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scalem̃ as a sum of its value at some given scalem plus a
scale-dependent term; thus,

ln Fm2x2

m̃2
1

MK
2

m̃2
~12x!G5 ln Fm2x2

m2
1

MK
2

m2
~12x!G

1 ln @m2/m̃2#. ~5.1!

If we change the scale fromm to m̃, thenSf1 in Eqs.~3.2!
will change by the amount

H 2
1

32p2(K mg4ḠKg4ḠK

1
1

16p2(K ḠKmḠKJ ln @m̃2/m2#. ~5.2!

Recalling Eq.~3.24!, we can rewrite the first term within the
curly brackets as

2
1

32p2(K mH ḡK
† ḡK

1

2
~11g5!1ḡKḡK

† 1

2
~12g5!J

~5.3!

and the second term as

1

16p2(K H ḡKmḡK

1

2
~11g5!1ḡK

† mḡK
† 1

2
~12g5!J .

~5.4!

On substitutingḡK from Eq. ~3.25! and summing overK we
obtain, for the first term,

2
1

32p2
mTr2H 3S x

y

z
D ~x,y,z!

1

2
~11g5!

1S x

y

z
D ~ x̃1 ,ỹ1 ,z̃1!

1

2
~12g5!J ~5.5!

and for the second term

1

16p2
mTr2H 2S x̃1

ỹ1

z̃1

D ~x,y,z!
1

2
~11g5!

2S x

y

z
D ~ x̃1 ,ỹ1 ,z̃1!

1

2
~12g5!J , ~5.6!

with
4-9
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x̃15
x~x22y2!

x21y2
1

x~x22z2!

x21z2
,cyclic, ~5.7!

where we have kept only the contributions fromK53,5,7
since those fromK51 and the sum ofK52,4,6 affect only
the normalization ofm, while those fromK58,9 both van-
ish. In principle, of course, a change in the normalization
m will get reflected also in its orientation, but this is o
second order in smallness if the change in scale is small
can therefore be neglected.

The scale-dependent corrections~5.5! and ~5.6! leave the
mass matrix factorized, as expected from the argume
given in Ref.@4#, but no longer Hermitian. However, follow
ing the convention introduced above in Eqs.~4.5! and ~4.6!,
one can redefine the right-handed fermion fields again s
to make the corrected mass matrixm8 Hermitian. The net
result then is that, apart from changes in the normaliza
which may be ignored, one obtains from these terms a r
tion to the mass matrix which may be represented as a r
tion to the vector (x,y,z); thus,

S x

y

z
D→S x̃

ỹ

z̃
D 5S x

y

z
D 1

5

64p2
r2S x̃1

ỹ1

z̃1

D ln @m̃2/m2#,

~5.8!

which depends on the change in scale.
By iterating the formula~5.8! in small steps, one can

evaluate the rotation in (x8,y8,z8) over finite changes o
scales. One arrives then at a picture similar to the fami
one of running coupling constants, except that here it i
normalized vector (x8,y8,z8) that ‘‘runs.’’ From Eq.~5.7!, it
is readily seen that for (x8,y8,z8) equal to (1,0,0) or
(1/A3)(1,1,1), the increment due to a change of scale v
ishes. These 2 vectors are thus fixed points in the usual s
under changes of scales. It can also be seen from Eq.~5.7!
that for other values of (x8,y8,z8) ~where we have adopte
the conventionx8.y8.z8), and for decreasing energ
scales, the increment satisfies the following inequalities:

x̃8

ỹ8
,

x8

y8
,

ỹ8

z̃8
,

y8

z8
, ~5.9!

which mean that for decreasing scales, the vector (x8,y8,z8)
will ‘‘run’’ away from the fixed point (1,0,0) towards, in
general, the fixed point (1/A3)(1,1,1), tracing out a tracjec
tory as the scale decreases. These assertions are confirm
the numerical calculation presented in Fig. 2, where the sp
ing between points on a trajectory denotes the speed~in ar-
bitray units! at which the vector (x8,y8,z8) runs as a func-
tion of ln m. Since (x8,y8,z8) is normalized by definition,
only the values ofx8 andy8 need be presented and the tr
jectories are bounded by the circlex821y8251, while the
convention adopted above, ofx8.y8.z8, restricts the tra-
jectories to within the linex85y8 and the ellipsey825(1
2x822y82). This figure gives us a very useful picture
which we shall often refer.
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We recall that the vector (x8,y8,z8) represents actually
the two identical factors of the factorized mass matrix~4.6!
at the 1-loop level, so that a rotating (x8,y8,z8) implies a
mass matrix with a scale-dependent orientation. Now,
such a case, it is not so obvious how the mass and s
vector of each individual state ought to be defined. This a
biguity is not a peculiarity of the dualized standard mod
alone but arises already in the ordinary~i.e. nondualized!
standard model where a mass matrix with scale-depen
orientation occurs by virtue of the non-diagonal CKM matr
in the renormlaization group equation@4#; only there, the
effect being small, its consequences can be neglected.
point is the following. At any scale, the mass matrix can
course be diagonalized and, being Hermitian, its eigenva
will be real and, if nondegenerate, their eigenvectors are
thogonal to one another so that the transformation mat
sayS, from the original basis to the new basis formed by t
eigenvectors will be unitary. However, these eigenvalues
scale dependent, and cannot as yet be identified as the
of the individual states. Usually, the actual mass of a stat
defined as the value of the scale-dependent mass evalua
the scale equal to its value at that scale:m(m)5m. Here,
however, since the eigenvalues are different by assump
there is no scale for which this criterion can be satisfi
simultaneously for all of them. One can, of course, take e
eigenvalue and evaluate it at the scale equal to its value,
hence define at this scale the corresponding eigenvecto
the state vector of the particle with this value as its mass.
since the orientation of the mass matrix is itself supposed
depend also on the scale, the state vectors so defined fo
various particles at different scales will in general not
orthogonal to one another, so that the transformationS from
the original basis to this new basis of state vectors will no
general be unitary. In fact, we do not know of a gene
prescription which can define, from a rotating mass mat
the masses and state vectors of the individual particle st
by the normal criterion which yet leaves the transformat
matrix S unitary.

However, for a mass matrix which remains factorizable
all scales as the one considered here, it turns out that the
a way@4# in which masses and state vectors can be define

FIG. 2. The ‘‘running’’ of the vector (x8,y8,z8).
4-10
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accordance with the normal criterion and which gives a u
tary S matrix. To be specific, let us take first theU-type
quarks as an example. The mass matrix being factoriza
there is only one nonzero eigenvalue at any scale. Sup
we evaluate this nonzero eigenvalue at the scale equal t
value. Then, in accordance with the standard criterion abo
we can define this value unambiguously as the mass of
top quark. The state vector of the top quark is thereby a
defined uniquely as that eigenvector with the nonzero eig
value at the scale of the top mass, which in the pres
framework is just the vector (x8,y8,z8) taken at the top
quark mass. At this scale, the other two eigenvalues are z
but they should not be regarded as the masses of the
lower generations for they are evaluated at the wrong sc
Furthermore, one does not know at this stage which
vectors should correspond to the 2 lower generations. H
ever, being physically independent states, the 2 lower g
erations ought to have state vectors lying in the
dimensional subspace orthogonal to the top quark s
vector, namely in the space spanned by two vectors with z
eigenvalues which we may choose as

uv2&52bS y82z8

z82x8

x82y8
D , uv3&5bS 12x8~x81y81z8!

12y8~x81y81z8!

12z8~x81y81z8!
D ,

~5.10!

with

b51/A32~x81y81z8!2, ~5.11!

although at this stage one does not know which linear co
binations of these two vectors should represent thec quark
and which theu quark.

Suppose we now lower the scalem by some small amoun
Dm. Then we know from Eq.~5.8! that the mass matrix will
be rotated via a rotation of the vector (x8,y8,z8) by a small
amount proportional to ln (m2/mt

2). Hence, by repeated appl
cation of this procedure, one can evaluate the loop-corre
mass matrixm̃8 at a scale some finite amount lower than t
top quark mass. At the lower scale, because of the rotat
the vectorsuvi& are no longer eigenvectors ofm̃8, so that in
particular the mass submatrix

^vi um̃8uvj&, i , j 52,3, ~5.12!

which was zero at the top quark mass scale, is here no lo
the null matrix. However, being a submatrix of a rank
matrix, it is still of at most rank 1 and hence has at most o
nonzero eigenvalue, the value of which will depend on
scale where the expression is evaluated. Applying then
same reasoning as for the top quark, we now vary the s
until the nonzero eigenvalue of Eq.~5.12! comes out equal to
the scale itself, which value we shall call the charm qu
mass for consistency. At the same time, the eigenvectoruv28&
corresponding to this eigenvalue at this scale we define
the state vector of thec quark, which is, of course, by defi
nition orthogonal to the state vectoruv1& defined above for
the t quark, as it should be. Furthermore, the state vecto
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the u quark is now also automatically given as the vec
uv38& which is orthogonal to both the top quark state vec
uv1& and the charm quark state vectoruv28& already defined.
At this stage, then, the state vectors of the 3 generations
all specified which we were unable to do before.

Finally, to find the mass of theu quark, we lower the
scale again in small steps, applying repeatedly Eq.~5.8!, to
some scale. This scale we then vary until the value of

^v38um̃̃8uv38& ~5.13!

becomes equal to the scale itself, and this we define as
mass of theu quark, again in conformity to the procedur
above. So now the masses of all three physical states are
defined, and they will all in general be nonzero.

We notice that the masses of all three generationst,c,u
here are each defined using the normal criterion of evalua
the appropriate eigenvalue of the mass matrix at the s
equal to its value. Moreover, the three state vectors co
sponding to the three generations so defined are also m
ally orthogonal so that the matrixS transforming from the
original ‘‘gauge basis’’ to the ‘‘physical basis’’ of state vec
tors is unitary as it ought to be. The actual values of
masses and state vectors so defined depend on the m
that the mass matrix rotates as a function of the energy sc
which in our present scheme depends in turn on the vacu
expectation valuesx,y,z of the ~dual color! Higgs fields and
on the strengthrU of their Yukawa couplings to theU-type
quarks, the values of which parameters have yet to be sp
fied.

A similar procedure applied to theD-type quarks defines
in turn the masses and state vectors of theb, s, andd quarks.
The actual values of these quantities in the present sch
will depend on the same Higgs fields vacuum expectat
valuesx,y,z as for theU-type quarks but in general a dif
ferent Yukawa coupling strengthrD . Together withmT , the
normalization of the mass matrix for each quark typeT,
which may be identified with the highest generation ma
there are altogether then 6 parameters, namelymU , mD , rU ,
rD , and the vector (x,y,z) which, being normalized to uni
length, counts only as 2 parameters. With the remainin
parameters then, one is required to evaluate the 4 mass
the 2 lower generationsmc ,mu ,ms ,md by the method de-
scribed above, as well as the 4 relevant parameters of
CKM matrix in the manner outlined below.

By definition, the CKM matrix is the matrix giving the
relative orientation of the physical state vectors of the
U-type quarks to those of the 3D-type quarks. In terms of
the notation introduced above, it is given as the matrix

Vi j 5^v8i uv8j&, ~5.14!

where i ( j )51,2,3 denote respectivelyt(b),c(s),u(d),
which in the usual convention are arranged in the rever
order. Now, in the literature, the CKM matrix is often de
fined also as the overlapUD† between the matrixU which
diagonalizes the mass matrix of theU-type quarks and the
matrix D which diagonalizes the mass matrix of theD-type
quarks. This definition is equivalent to that adopted above
4-11
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terms of the physical states when the mass matrices do
rotate with the energy scale. When the mass matrices h
scale-dependent orientations, however, the 2 definitions
fer, since the vectors which diagonalize the mass matrice
explained above, need no longer represent the phys
states. Indeed, since the mass matrices are scale depen
so will be their diagonalizing matricesU andD, and so also
will be the CKM matrix which is defined as their overlap. O
the other hand, the physical state vectors defined in the
ceding section for the 3 generations of both theU-type and
D-type quarks are all scale independent, so that the C
matrix defined as the transformation between theU physical
basis to theD physical basis is also scale independent. H
we shall evaluate the CKM matrix defined as the transform
tion matrix ~5.14! between bases of physical states, wh
definition accords more with the philosophy adopted in t
paper and seems to us also to correspond more to wh
actually measured experimentally.

Before we proceed to the numerical work, however, let
first note a qualtitaive feature of the present procedure wh
is of relevance both to our future calculation and to its co
parison with experiment. The empirical CKM matrix, thoug
near identity, has off-diagonal elements differing consid
ably in size, varying from around 20% forVcd and Vus
through a few percent forVts andVcb to just a few per mill
for Vtd andVub . This variation may seem difficult to explai
since if the matrix is due to some effect rotating theU-type
mass matrix relative to theD-type mass matrix, one would
expect the mixing elements to be of roughly the same or
of magnitude. In the present scheme, however, there
natural explanation for this variation. We recall that the st
vectors of the two lower generations are to be defin
through the running rotation of the mass matrices, so
these vectors get an extra kick in orientation in addition
that of the frames at the top and bottom quark mass. And
this effect, having strictly to do with the special way that t
physical states of the lower generations are here defi
which gives the Cabibbo angle a sort of special status am
CKM matrix elements and hence, as we shall see, a par
larly large value in comparison with the others as experim
tally observed.

VI. NUMERICAL RESULTS

To perform the calculation outlined in the preceding s
tion, given any vector (x,y,z) for the Higgs fields vacuum
expectation values which also doubles as the factor of
zeroth order fermion mass matrix, we face as our first t
the evaluation of the 1-loop corrected vector

uv1&5S x8

y8

z8
D 5S x

y

z
D 2S x1

y1

z1

D ~6.1!

~properly normalized!, for x1 ,y1 ,z1 evaluated at the energ
scale, respectively for theU- and D-type quark, of the top
and bottom quark mass. This cannot be done by apply
directly the formula~4.12! derived above for the following
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reason. The expression~4.12! depends on the masses of th
Higgs bosonsMK , which in turn depend on the strengthz of
the Higgs vacuum expectation values and the Higgs s
couplingsk andl. Of these parameters,l is irrelevant since
it occurs only inM1 entering inA1 and B1 of Eq. ~4.12!
which are seen to affect only the normalization
(x1 ,y1 ,z1), not its orientation, while the other two occu
only together in the combinationkz2, as seen in Eqs.~3.18!.
From the lower bound on the dual gauge boson mass
around 400 TeV deduced from the absence of flav
changing neutral currents effects in meson decays, one
tains from Eq.~3.7! an estimate of about 20 TeV for a lowe
bound onz. Assuming the couplingk to be of order unity,
this gives an estimate for a lower bound onMK also of
around 20 TeV. Now the formula for (x1 ,y1 ,z1) involves
ln MK

2 , which when evaluated directly at the top and botto
quark mass scales as we desired would be very large
violate the spirit of our present perturbative calculatio
However, there is no real problem in this, for we can alwa
evaluate first the correction (x1 ,y1 ,z1) at the scale of the
Higgs boson mass, say 20 TeV, and then use the form
~5.8! to ‘‘run’’ the corrected vector by steps down to th
scales of the top and bottom quark mass. At every step, t
the calculation would be perturbative for the correction
kept always small. This is in the spirit of the original Ge
Mann-Low idea@14# which led to the renormalization grou
equation.

A calculation done in this way, however, still leaves
dependent explicitly on the masses of the Higgs bosons. T
would be a little awkward but for a happy and quite intrig
ing ‘‘accident’’ to be elucidated later, for these masses
known only by the tree-level formulas~3.18! which are
likely to be strongly renormalized, like the fermion mass
by e.g. the dual gluon loops. Because of this ‘‘acciden
however, it turns out that to a very good approximation
can put all the Higgs boson masses equal, say, to a com
scaleMH , even the value of which in the end does not rea
matter, but which we take at the moment to be 20 TeV. W
need then to evaluate the formulas~4.12! for the common
scaleMH5MK for all K. This expression is almost the sam
for U- andD-type quarks, and indeed even for leptons, d
fering only in the normalizationmT of the mass matrix. This
difference is small, only of the order ofmT

2/MH
2 which for

MH around 20 TeV is less than 1024, as we have checked
both by analytic and numerical calculations. It can thus
safely neglected. This means that whatever the correc
due to Eq.~4.12! happens to be at the scaleMH ~which is in
fact quite small numerically!, it will be the same for all the
fermions. Therefore, in the present approximation when
MK’s are put equal, we can just start at the scaleMH with the
same values ofx8,y8,z8 for all fermions, and simply ‘‘run’’
them down to the mass of the highest generation for e
fermion type to evaluate the vectoruv1& in Eq. ~6.1! for each
case.

The ‘‘running’’ mechanism~4.12! and the starting values
at MH both being the same for all fermion types, the vec
(x8,y8,z8) will in this approximation ‘‘run’’ along the same
4-12
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trajectory, only possibly at different speeds because
Yukawa couplingsrT may be different. In any case, sinc
the mT’s are different, one would arrive at a different sta
vector for the highest generationuv1& for the different fer-
mion types. Starting with some input values forrT and some
initial values for (x8,y8,z8), say (xI ,yI ,zI), at the scaleMH ,
and applying Eq.~4.12! repeatedly in small steps, one wou
arrive at some value foruv1& for each fermion type. In prin-
ciple, the steps should be infinitesimal, but in our numeri
calculation we used typically about 500 steps for each
cade of energy which we found were just about sufficient
the 1% accuracy that we wanted.

Having defineduv1& for each fermion type, we can now
‘‘run’’ farther down in the energy scale to the second ge
eration mass. As the mass matrix rotates in running, the m
will ‘‘leak’’ into the second generation and give it a mass,
explained in the section above. The amount of leakage
depend on the value of the Yukawa coupling strengthrT and
the range of the energy run. Hence, the mass obtained
leakage at the mass scale of the second generation w
general be different for the different fermion types and d
ferent also from the actual input mass of the second gen
tion. By adjusting the values ofrT , one can adjust the
amount of leakage and hence ensure that the leaked
obtained for the second generation is indeed the same a
input mass for each fermion type. Let us call these optimi
values ofrT so obtained at this stage as the outputr ’s.

These outputr8s, however, were determined startin
from some vectoruv1& for the highest generation, which i
turn depended on the assumed input values ofrT used to run
the initial vector (xI ,yI ,zI) from the scaleMH down to the
scale of the highest generation. Obviously, the input and
put values of theser ’s need not be the same. We have th
to optimize again and adjust the input values ofrT until the
output value is in each case the same as the output valu
rT obtained from it. This optimized value we now call th
fitted rT .

With these fitted values forrT giving good second gen
eration masses, we can now determine the state vec
uv8i&,i 52,3 both for the second and the lowest generatio
as we explained in the preceding section. Then, with
physical state vectors for all three generations and bothU-
and D-type quarks all determined, the CKM matrix eas
follows from Eq. ~5.14!. Further, by running down to eve
lower energy scales, we can calculate the mass of the lo
generation by requiring that the ‘‘leaked’’ mass in the lowe
state in some scale be equal to the scale itself to which
run. One sees thus that given any initial value (xI ,yI ,zI) at
the scaleMH , our program automatically determines for
the values ofrT which fit the masses of the top 2 generatio
for each fermion type, and then gives us the CKM mat
and the lowest generation masses as the result. We have
in effect just 2 real parameters left to adjust with which
calculate all these physical quantities.

We recall that the present scheme does not allow u
calculate the absolute normalization of the mass matrix o
variation with the energy scale, but only the orientation
the mass matrix. We are therefore more confident with
result on the CKM matrix which depends only on the orie
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tation than on the fermion masses. The calculation of
fermion masses depends in principle on the scale depend
not only of the normalization of the mass matrix but also
the r ’s, which dependence, for lack of anything better, w
have simply ignored. In our calculation, therefore, we ha
concentrated on getting a good fit to the CKM matrix rath
than the masses of the lowest generation.

With the whole calculation involving only real quantitie
it is clear that we shall not be able to obtain a
CP-violating phase in our CKM matrix. There are thus on
3 independent real parameters in the CKM matrix to cal
late. We focus first our attention on the last row and colu
of V, namely that labelled byt andb. The state vectors oft
and b, which in our notation were denoted byuv1

U&uv1
D& re-

spectively, are not affected by the additional rotation of t
physical states from the highest to the second genera
which, as explained in the last paragraph of the preced
section, is responsible for the particularly large value of
Cabibbo angle. Their relative orientation therefore gives
measure of the relative rotation of the vectors (x8,y8,z8)
when run from the starting value atMH to the respective
highest generation mass. One sees that the difference in
entation between these two states is quite small, the
diagonal elements being only of the order of a few percen
magnitude. However, the distances run from the start
point MH to respectively thet andb mass are quite different
being only about 2 decades in energy for thet and nearly 4
decades for theb. Therefore, to end up with only a few
percent difference in orientation, either the Yukawa co
plings rT must be so small as to give little running, whic
would contradict the sizable amount of ‘‘leakage’’ require
to give the second generation mass, or the vectors (x8,y8,z8)
have to be near a fixed point so that the running is rat
inefficient. We explored first the ‘‘upper’’ fixed poin
(1/A3)(1,1,1), but found no sensible solution. The ‘‘lower
fixed point (1,0,0), however, proved productive.

In the input initial values of (xI ,yI ,zI), for xI;1 andyI
.zI but both small, it is, crudely speaking,yI which tells us
how far down we are on the trajectory, and the relative s
of zI to yI which tells us which trajectory we are on. B
adjustingyI , one can thus make the relative orientation b
tween thet andb states, as exhibited in e.g.Vts andVcb , to
be of the order of a few percent as required by experime
Then, by adjustingzI , to whichVts andVcb are quite insen-
sitive, one can fit the Cabibbo angleVus and Vcd to the
empirical value of around 20%. The best result we have
tained so far in this exercise is

uVrsu5S 0.9755 0.2199 0.0044

0.2195 0.9746 0.0452

0.0143 0.0431 0.9990
D . ~6.2!

This is to be compared with the result below obtained fro
experiment@1#:
4-13



0.974520.9757 0.21920.224 0.00220.005
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uVrsu5S 0.21820.224 0.973620.9750 0.03620.046

0.00420.014 0.03420.046 0.998920.9993
D . ~6.3!
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The agreement is seen to be good. This we find encourag
first that we can indeed adjust our parameters to obtain g
values for the Cabibbo angle and theVts andVcb elements,
and second that once we have fitted these to approxima
the right values, thenVub andVtd automatically come out to
be a few per mill in magnitude as experimentally observ
which seems to indicate that the method we used for defin
the lower generations states have somehow got the orie
tion right. We have calculated also with the same values
the parameters certain products and ratios of matrix elem
which have been independently measured, obtaining

uVubu/uVcbu50.0983,

uVtdu/uVtsu50.3310,

uVtb* Vtdu50.0142, ~6.4!

to be compared with the values below quoted from the
tabook@1#:

uVubu/uVcbu50.0860.02,

uVtbu/uVtsu,0.37,

uVtb* Vtdu50.00960.003. ~6.5!

The agreement is again reasonable.
These numbers were calculated with the following mas

in GeV for the fermions in the 2 highest generations:

mt5176, mb54.295, mt51.777,

mc51.327, ms50.173, mm50.106, ~6.6!

where the central value was taken where such is given
otherwise the geometric mean of the upper and lower exp
mental bounds as listed in the databook@1#. We have in-
cluded in the fit the charged leptonst andm which, though
not entering into the CKM matrix, can be dealt with in th
same manner as the quarks at the cost of only an extr
parameter. The initial values of (xI ,yI ,zI) at the scale ofMH
5 20 TeV chosen to fit the CKM elements were

xI50.999998, yI50.002200, zI50.000025. ~6.7!

The fittedr ’s which emerged automatically from the requir
ment of consistency with the input masses~6.6! turned out
then to be

rU53.4737, rD53.4693, rL53.4728, ~6.8!

which are encouragingly all of order unity.
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One quite amazing feature of the parameters obtai
from the fit is the close proximity to one another of th
values of the Yukawa couplingsr for all three fermion types,
the spread of which in Eqs.~6.8! is only around 1.5 parts pe
mill. The actual values listed in Eqs.~6.8! depend of course
on the input values of the masses~6.6! of the fermions of the
2 higher generations. However, even if we vary these in
masses to the utmost extremes allowed by the experime
bounds, ther ’s are found by calculation to remain rough
equal, differing from one another always by less than 10
At first sight, this may seem strange for the ratio of t
second to highest generation mass differs considerably f
fermion type to fermion type. For example, (mc /mt)
;0.7%, while (ms /mb);4%, a factor of 6 different, which
would mean that the ‘‘leakage’’ of mass by running fromb
to s must be several times stronger than that fromt to c,
suggesting that the couplingr which governs the speed o
this running ought to be several times bigger for theD-type
than for theU-type quarks. The reason why this does n
happen in the present calculation is that thet quark, being
heavier than theb, lies farther down the trajectory depicte
in Fig. 2, i.e. nearer the fixed point (1,0,0), so that the ru
ning rotation there is much less efficient than at theb mass
which lies much higher on the trajectory. Hence, with abo
the same value forr one can still obtain widely differen
‘‘leakages’’ in the two cases. However, that the fitted valu
of rT should come out so close to one another for al
fermion types is a bit of a surprise.

This approximate equality of ther ’s for all 3 fermion
types is what we called our ‘‘happy accident’’ at the beg
ning of this section which gives us a number of practic
advantages in our calculation. First, we recall that in
calculation reported above, we had made the simplifying
sumption that all the Higgs bosons had the same massMH ,
which would be far from the truth if we believe the tree-lev
relations~3.18! given the very different values we need
Eqs.~6.7! for x, y andz. To take Higgs boson mass splittin
into account, one ought in principle to proceed as follow
One first goes up to the scale of the highest Higgs bo
mass, which in the present case, according to Eqs.~3.18! and
~6.7!, would be M 4;M6, approximately several orders o
magnitude higher than the lowest Higgs massMH of around
20 TeV. At this high scale, we have next to calculate t
rotation to the original Higgs vacuum expectation valu
(x,y,z) due to theK54,5,6,7 terms in the Higgs loop dia
gram ~4.12!, and then run the resulting (x8,y8,z8) down to
the scale of the lightest Higgs boson, namelyM25MH .
Then the result of this running has to be added to the re
of the rotation of the original (x,y,z) due to theK52,3
terms in Eq.~4.12!, and it is this sum that we have in prin
ciple to use as the intitial vector (xI ,yI ,zI) for our above
4-14
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calculation. If the Yukawa couplingsr were different for the
3 fermion types, then (xI ,yI ,zI) so obtained would be dif-
ferent also. Now, however, because of the ‘‘happy accide
of the r ’s being the same@and themT dependence of Eq
~4.12! being, as explained before, negligible#, the resulting
(xI ,yI ,zI) of the above maneuver would be the same for
3 fermion types. Hence, our ‘‘simplifying’’ assumption mad
at the beginning of starting with the same (xI ,yI ,zI) for all
fermion types at scaleMH is now a posteorientirely justi-
fied.

Further, this ‘‘happy accident’’ implies also that the ca
culation is actually independent of the scaleMH which we
have so far chosen to be 20 TeV. To see this, recall that
were supposed to start with some (xI ,yI ,zI) at MH for all
fermion types and run the vector, with the appropriater ’s,
down to respectively thet, b and t mass values. If ther ’s
were different, then starting with a differentMH , one would
arrive at different values at the highest generation mass
the 3 fermion types. Now that ther ’s are the same, howeve
there is only one value of (x8,y8,z8) at every point of the
trajectory. One can therefore start at any point of the tra
tory with some (xI ,yI ,zI) for all 3 types of fermions and
obtain the same answer. That this assertion holds even
approximately equalr ’s has been checked numerically b
repeating our calculation for various starting pointsMH . It
means thatMH can be removed altogether from our calcu
tion as a parameter, leaving thus only the 2 ratios betw
(xI ,yI ,zI) as the only parameters in the calculation, as
have claimed.

The other intriguing feature of the fit is the proximity o
the fitted values in Eqs.~6.7! of these (xI ,yI ,zI) to the fixed
point (1,0,0). In contrast to the approximate equality of t
r ’s discussed above, this outcome is no accident but, a
ready explained before, is required by the smallness of
other off-diagonal CKM matrix elements besides t
Cabibbo angle. Although the values of (xI ,yI ,zI) at the ar-
bitrary starting pointMH do not by themselves have muc
significance, we can deduce from them the vacuum expe
tion values (x,y,z) of the Higgs fields by running the sca
backwards up to the highest Higgs boson mass and eva
ing Eq.~4.12! there. Assuming the lowest Higgs boson ma
of 20 TeV, the tree-level formulas~3.18!, and using Eq.
~4.12!, one obtains in this way for the vacuum expectati
rough values of the Higgs fields:

x;1, y;531025, z;131028, ~6.9!

which are very close indeed to the fixed point (1,0,0).
Though perhaps just fortuitous, the proximity of the fitt

(x,y,z) to the fixed point (1,0,0) and the near equality of t
fitted r ’s are so remarkable that it is tempting to consider
exciting possibility of the coincidence representing in fac
symmetry which is exact in some approximation and is o
perturbed from it by an external agent. One possibility,
example, could be that if electroweak effects are neglec
then (x,y,z) is exactly (1,0,0) and ther ’s are exactly equal,
and it is only the electroweak effects which give rise to t
quantities’ departure from the equilibrium values. At th
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stage, of course, the suggestion is a pure conjecture on
part, but it may be a worthwhile conjecture to entertain.

Having now determined the parameters of the problem
is an easy matter to run the vector (x8,y8,z8) farther down in
the energy scale and evaluate the masses of the lowest
eration fermions following the method outlined in the pr
ceding section. Notice, however, that this calculation d
pends in principle on the scale dependence both of
normalization of the mass matrix and also of ther ’s, neither
of which are calculable in the present framework. In fa
even the earlier calculation of the CKM matrix depends
some extent on these through fitting ther ’s to the 2 higher
generation fermion masses, but there, the change in scal
being too large, the change in normalization can be mas
by adjusting the parameters in the fit, and hence not
noticeable. In calculating further the lowest generati
masses, the effect of the neglect is compounded, and no
good results can be expected. Our calculation, using the
ues of the fitted parameters~6.7! and ~6.8! and the same
higher generation masses~6.6! and assuming constantr ’s
and mass matrix normalizations throughout the whole ene
range of over 6 decades, gives

mu5209 MeV, md515 MeV, me56 MeV.
~6.10!

These mass values are fairly stable with respect to variat
of the input masses for the 2 higher generations. For va
tions between the ranges given in the databook@1#, the val-
ues obtained for the lowest generation lie in the range

mu51202360 MeV, md512222 MeV,

me55211 MeV. ~6.11!

Apart from the mass of theu quark, we regard these result a
sensible given the crudeness of the assumption of no s
dependence at all for either the Yukawa couplingsr or the
normalization of the mass matrix. It is perhaps interesting
understand technically why the mass for theu quark turns
out to be so much worse than in the other two cases.
explained above, the approximate equality of ther ’s means
that all 3 fermion types lie on the same trajectory, only d
fering in where the various physical states are placed. For
calculation here, these positions are shown in Fig. 3.
notice there that thet quark, being the heaviest fermion, lie
of necesssity the lowest on the trajectory, while theb andt
both lie higher up. For this reason, as already explain
above, the running efficiency is much lower around thet
mass than for the others so that even with the same valu
r, the leakage fromt to c is much smaller than that fromb
to s or from t to m. For the run from the second generatio
to the lowest, however, theU-type quark is now in the par
of the trajectory where the running efficiency is high, wh
for the D-type quark and charged lepton, the lowest gene
tion is already pressing a little against the upper fixed po
(1/A3)(1,1,1) and losing running efficiency. Hence, we ha
the unwelcome large mass for theu quark but not so large
for d and e. When the scale dependence ofr and the nor-
malization of the mass matrix are properly accounted fo
4-15
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possible scenario may be that (x8,y8,z8) will run faster
along the trajectory so that all the lowest generation sta
will press against the upper fixed point (1/A3)(1,1,1) and
give lower masses for all of them, in particular for theu
quark. The investigation of this possibility, however, is b
yond the scope of the present paper.

Finally, just as a matter of curiosity, let us apply the sa
sort of reasoning to the neutrino masses also. Assuming
same value ofr for neutrinos as for the charged leptons, w
can then in principle calculate the masses of all the neutr
given any one of them. Or else, given the experimental up
bound of any neutrino, we can obtain upper bounds on
others. The strongest bounds obtained in this way, we fou
come from inputting the experimental bound, 0.17 MeV
for thenm mass quoted in@1#. Using the same fitted values o
(xI ,yI ,zI) in Eqs.~6.7! we obtained

mne
,5 eV, mnt

,6 MeV, ~6.12!

both of which, interestingly, are stronger than the experim
tal boundsmne

,10215 eV,mnt
,24 MeV given in@1#. We

note that in Fig. 3, the points representing the neutrinos
press quite tightly against the upper fixed point, especi
for ne , which is why it gets such a stringent limit on it
mass. These limits, however, should not be taken too s
ously, since for the neutrinos, and indeed even for
charged leptons, there is much more than just the mass
be understood.

VII. CONCLUSION AND REMARKS

In this paper, we set out to address the question
whether the dualized standard model scheme suggeste
@4# is capable of giving reasonable CKM matrix elemen
and quark masses. The question has now, we think, b
answered in the affirmative. Not only has one been able t
the masses of the 2 higher generations sensibly with Yuk

FIG. 3. The locations of the various fermion states on the co
mon trajectory.
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coupling strengths all of order unity, but also with only
parameters then left to fit the absolute values of CKM ma
elements very well and give sensible estimates as well for
fermion masses of the lowest generation except for thu
quark. This may not mean, of course, that the schem
correct, but it is at least encouraging.

The calculation was done with dual Higgs and gauge
son masses consistent with existing bounds obtained f
flavor-changing neutral currents decays@15,13#, namely
Akz5 20 TeV, meaning Higgs boson masses of the orde
several 10’s of TeV and higher and gauge boson masse
the order of several 100’s of TeV and higher. An estimate
these masses from the calculation, if available, would be
phenomenological significance, since it enters in FCNC
cays@15,16#, and possibly also in understanding air showe
from cosmic rays with energy greater than 1020 eV, namely
those beyond the Greisen-Zatsepin-Kuz’min~GZK! spectral
cutoff @17,18,15,19#. However, unfortunately for this pur
pose, though fortunately for the calculation, it turns out th
the calculation is almost independent of the dual color Hig
and gauge boson masses provided that they are large, so
no useful estimate for them can yet be made.

The calculation gave also a rather intriguing picture
how CKM mixing and lower generation fermion masses a
generated, namely in terms of ‘‘running’’ trajectories an
fixed points. Two unexpected bonuses are the close prox
ity of the Higgs vacuum expectation values (x,y,z) to the
fixed point (1,0,0) and the near equality of the Yakawa co
pling strengthsr for the different fermion types. If one could
find a theoretical reason why ther ’s should be equal, or how
(x,y,z) is given that miniscule departure from the fixed po
(1,0,0), one would be approaching a fit with a single para
eter~the commonr) to all CKM mixings and fermion mass
splittings, which would be fantastic.

Of the outstanding problems, we have identified two. O
concerns theCP-violating phase in the CKM matrix which
as explained already, cannot be obtained in the present
proach, at least not in first order. The other concerns
special properties of the mass matrix with scale-depend
orientation, also already discussed in Sec. V. The problem
that there does not seem to be a basis of state vectors
well-defined masses for which the mass matrix is exac
diagonal. In fact, this problem already figures in the ordina
~non-dualized! formulation of the standard model where
scale-dependent orientation is induced by the CKM ma
which cannot be made diagonal simultaneously with
mass matrix. The only difference is that the effect there
quite small, as shown in@4#, and is for that reason often
ignored. It seems to us that whichever description o
chooses to adopt, whether in terms of the diagonal basi
the basis with definite masses, the physics ought to
equivalent. However, the relation between the two desc
tions and the physical consequences this implies have
been properly worked out.

Note added in proof.The above analysis has since be
fully extended to neutrinos giving predictions for the osc
lation parameters@20#, while the special status of th
Cabibbo angle and its sensitivity tozI noted above are now
much better understood@21#.

-
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