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Analytic study of the null singularity inside spherical charged black holes
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We study analytically the features of the Cauchy horizBhl) singularity inside a spherically symmetric
charged black hole, nonlinearly perturbed by a self-gravitating massless scalar field. We derive exact expres-
sions for the divergence rate of the blue-shift factors, namely the derivatives in the outgoing direction of the
scalar field® and the area coordinate Both derivatives are found to grow along the contracting CH exactly
like 1/r. Our results are valid everywhere along the CH singularity, down to the point of full focusing. These
exact analytic expressions are verified numerically.
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I. INTRODUCTION guy is finite and nonvanishing at the Cauchy horizon—see
below. Then,r , and® \, diverge at the CH. In this paper
In the last few years, the investigation of spinning andwe shall calculate the evolution af,, and ® ,, along the
charged black holes led to a new picture of the spacetimeontracting CH. We shall show, analytically, that the diver-
singularity inside such black holes. According to this newgence rate of both entities is exactly proportional ta Qur
picture, the Cauchy horizofCH) evolves into a curvature method of calculation is non-perturbative, and is therefore
singularity, which has the following two remarkable fea- valid also in the region of strong focusing; however, we shall
tures: (i) It is null (rather than spacelike(ii) It is weak(in use the perturbative resultapplicable at the early section of
Tipler's terminology[1]); namely, the tidal deformation ex- the CH to determine the two overall coefficients character-
perienced by extended physical objects is finite at the nulizing the blue-shift divergence.
singularity. In the case of a spinning black hole, the evidence The paper is organized as follows. In Sec. Il we describe
for the occurrence of the null weak singularity has emergedhe physical model of the self-gravitating massless scalar
from a systematic linear and nonlinear perturbation analysi§eld on a spherical charged black hole, and present the field
[2]. For the toy model of a spherical charged black hole, theequations. In Sec. Il we carry out a leading-order perturba-
main features of the singularity at the inner horizon were firstion analysis ofr (and use previous perturbative results for
deduced analytically from simplified models based on null®) and calculate the-derivatives of® andr at the very
fluids [3-5], and later confirmed numerically for a model early part of the CHwhere the focusing effect is still neg-
with a self-gravitating scalar fielf6,7]. (See also the ap- ligible). Then, in Sec. IV we perform a fully nonlinegand
proximate leading-order analysis i].) In addition, thelo-  non-perturbativecalculation of these -derivatives, which is
cal existence and genericity of the null weak singularity werevalid everywhere along the contracting CH, down to the
shown mathematically in Ref9], and more recentlyin the  point of full focusing, wherer =0 and the singularity be-
framework of plane-symmetric spacetimés Ref.[10]. The  comes spacelikg6]. This nonlinear analysis leaves two co-
compatibility of a null weak singularity with the constraint efficients undetermined—one for each field—and we deter-
equations was shown in Rdfl1]. mine these two coefficients by matching the nonlinear results
We shall consider here the spherically symmetric modeto the linear results applicable at the asymptotically early
of a charged black hole nonlinearly perturbed by a self-part of the CH. Our results are in excellent agreement with
gravitating, minimally coupled, massless scalar field. Despitéhe numerically obtained resulg].
its relative simplicity(compared to the analogous model of a
spinning black holg no systematic analytic study of this Il. PHYSICAL MODEL AND FIELD EQUATIONS
model has been carried out so far. The goal of this paper is to . . .
present a simple analytic calculation, which may be the first, W& consider here the model of a spherically symmetric

step towards such a thorough analytic study: We quantitagh‘"‘rg‘Ed black hole, nonlinearly perturbed by a self-

tively analyze the evolution of the divergent blue-shift fac_gravitating, s_pherically symmetric, minimally coupled, mass-
tors along the contracting CH. It is well knowifrom both less scalar fieldb (the same model as that analyzed numeri-

theoretical considerations and numerical simulabiotist caII_y !n [6,7)). This model alloyv§ us to optain_ _nontrivial
the singularity at the CH is characterized by finite values Oira(::at!vel dynam|;:s, while retaining the simplicity of the
the scalar field® and the area coordinate (The latter is SP\E”Ca _tsyrphme ry. | sphericall ic i | ¢
also known to decrease monotonically with increasing affine d et;/lvrl N I € ge(;]_erat spherically Symmetric fine elemen
parameter along the CH, due to the outflux of energy-m ouble-null coordinates,
momentum carr.ied by the scalar fieItH-lowev'e.r, thegradi- ds?=—f(u,v)dudy +r3(u,v)d0?, (1)
entsof ® andr diverge at the CH. More specifically, letbe

a “Kruskal-like” ingoing null coordinate(i.e. an ingoing whered(Q? is the line element on the unit two-sphere. The

null coordinate for which the double-null metric function energy-momentum tensor of a massless scalar field is
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1 ear part, and the singularity is well described by the linear
wa:ﬂ e P - Egﬂygaﬁ‘b,aq’,g : (2)  metric perturbation. In the later part of the CH, however,
nonlinear effects become exceedingly important, as demon-
The energy-momentum associated with the general spherfirated, e.g., by the contraction of the CH.
cally symmetric free electromagnetic field is Accordingly, we shall schematically divide the CH into
two parts:

0 2 0 0 (1) The linear regime i.e. the asymptotically early part of

em. Q@ [f2 0 0O 0 3 the CH, where the metric perturbatiofend the scalar
1 8ard| 0 0 r2 0 ’ field) are still very small, and a leading-order analysis is

2 adequate;
0 0 0 risin* 6 (2) Thenonlinear regimei.e. the later part of the CH, where
whereQ is the electric charge. the focusing(and possibly other nonlinear effegtse-
For a spherically symmetric scalar field, the Klein-Gordon ~ come important. At the future end of the nonlinear re-
(KG) equation reduces to gime the area of the CH shrinks to zero, and the singu-

L larity becomes spacelike.
Dyt F(r,uq),er ro®.u)=0. (4) In this section we shall consider the linear regime, and obtain
expressions for the blue-shift factors, namely, the
The Einstein field equation§,,=8w(T;,,+T;,), include  v-derivatives of® andr. The nonlinear regime will be the
two evolution equations subject of Sec. IV.
In the linear regime we may tredt as a linear KG field

_ Tl L . Q_2 5 over a fixed RN background. The evolution of such a field
fu™= r 4r r? ®  was analyzed i12] and more recently ifi13,14 (using a
different methogl For a spherically symmetric scalar field
fuf, 1 Q? satisfying an inverse power-law
quUZ Yf’ + f EZ 4I"u|"v+f 1—272— _Zq),uq),u s
~.,, —n
(6) =y, (EH) 9
and two constraint equations: at the event horizodEH), the asymptotic behavior at the
early part of the CH was found to §&2,13
Fou—(IN ) r y+r(® )%=0 7
= (I ) r g1 (D) ™ D=Ao T4 BU" (CH) 0
M= (Inf) r +r(®,)%=0. (8)

whereA andB are constants which only depend on the ratio

The form of the above line element and field equations i€2/M, M being the black-hole mass. Since we are primarily
invariant to a coordinate transformation of the forsn interested here in the-derivative of ®, we only need the
—u(v), u—u(u). In what follows u and v will denote value of A, which was found in Refd.12, 14 to be

generi¢ unspecified, double-null coordinates. Below we 1r. It .
shall often use specific types of null coordinates for specific - -t (_+ i
calculations, and in order to avoid confusion, we shall assign 2r_\r_ry
a special symbol to each of these specific coordinates. Thus, . . .
we shall denote the standard Eddington-Finkelstein null cof = P€ing the value of at the outer and inner horizons of
ordinates of Reissner-Nordsimo(RN) by u, andv,. We : i

shall also usdJ andV to denoteKruskal-like coordinates, One finds that both at the EH and at the CH

i.e. double-null coordinates which regularize the line element P oy P (12)
(1) at the inner horizon. In addition, in Sec. IV we shall Ve € 7

define two other types of ingoing null coordinat&s, and

: (11)

wherep=n+1, and

P DEH LA (13
Ill. LINEAR REGIME ' '
é—|ere and below the arrow denotes the limit of large ad-

Previous analytic and numerical studies have indicate danced time(corresponding tay,— ). Note that the last
that the geometry aind nearthe early part of the CH may S orresp 9 e .
relation is explicitly gauge invariant, so it holds for any type

well be described by the background metric functions of themc ingoing null coordinate . and not onlv fors —
static (or stationary black-hole solution plus a small metric INgoing null coordinate, and r ylorw=ve.
perturbation. This is found to be the situation both in vacuum Next, we consider thg-derlvatlve ofr ‘."‘t th_e CH. In the
spinning black holeqanalytically [2] and in the present pure RN geometryt, dies off exporllen-tlalb(m ve) -at the
model of a spherical charged black hdleumerically [7].  CH.In the presence of the self-gravitating scalar field, how-
Moreover, the perturbations become arbitrarily small as on&Ver.r ,_ decays as power-lawof v, (see below In the
approaches the asymptotic past of the CH. In the very earlgsymptotically early portion of the CHhe “linear regime”)

part of the CH, the perturbations are dominated by their linawhich concerns us here, the effect of the scalar field is domi-
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nated by the second-order terfine., the term quadratic in are only defined in the pure RN geomefr\We know that
derivatives of the scalar fieldand higher-order corrections outside the black hole, both the scalar field and the metric
are negligible. We shall now calculate this leading-orderperturbations decay at late time, and the geometry ap-

term ofr,ue. proaches that of RN. In particular, the mass function ap-
Viewing Eg. (8) as a linear first-order differential equa- proaches a limiting valuéM. We thus define _ and «_
tion forr ,, we formally integrate it and obtain according to the value of these parameters in the asymptotic
, RN geometry, i.e. according to their standard definition in
r(v)=— f(v)f“ M[Cb (0" ]Pdv. (14) terms ofM andQ (with M being the abpve Igte-time limit of
' f(v')- the mass function; note that the chaf@és a fixed parameter

) ) o in our modeJ. In a similar way, we also define the coordinate
Here [and also in Eq(15) below] the integration is done  yith respect to this late-time asymptotic RN geometry.

along lines of constant, and we omit the dependence on  \jore specifically, we may define, according to the affine
for brevity. F_rom th|§ exact expression weznow extract theparameter)\ along a line of constant>r, (or along the
term quadratic inderivatives of ®. Since® ,* appears ex- EH), by takingu(\) to be the same function as in the pure

plicit[y in the integrand, we simply need to rgplat:andr in RN geometry(with a mass parametdd defined as aboye
the right-hand sidéRHS) by the corresponding unperturbed jote that once the entitied, r_, «_, andv,, were defined

metric functions of RN, which we denofey andrry: in the linear regime, their extension to the nonlinear regime
o ran(’) is trivial.
r,(v)= _fRN(U)f fRN - [d)yv(v’)]zdv’. (15) One might be puzzled by the relevance of the_asymptotic
(V') external mass parameter to the internal dynamics near the

Iperturbed CHand particularly to the definition of the inner-
horizon parameters_ and «_), especially when the diver-
gence of the mass function at the CH is recalled. The reso-
lution of this puzzle relays on the basic features of the
geometry inside perturbed charg@a spinning black holes:
(16) On the one hand, the geometry is drastically different from
that of RN (or Kerr), as expressed by the divergence of cur-

wherex_ is the surface gravity of the inner horizon. On the vature at the CH. On the other hand, the geometry is very
other hand® , decays as an inverse powerwf, andr gy simil_ar to RN(or_Kerr) in terms of_the metric functions: The_
approaches aenonzero constant, at the CH. Therefore, metric perturbations are arb|tr_ar|Iy sma_ll at the asymptotic
since the relative change df , (andrgy) is exponentially past 9f the CH[Roug_th speaking, t_he phvergence of curva-
slower than that of gy, o the leading order in & we can ture _|nd|cat¢s the divergence dfrivativesof the metric
take® , outside the integral, and substituigy=r _ [as well functions(with respect to the regular background coordinate

; : ; V) at the CH] This smallness of metric perturbations is the
2:rsdeErqi.r51161); f)?r frul- Doing so, we obtain(to the leading necessary basis for the entire perturbative approach: As it
e

turns out, the perturbation analysighen properly formu-
r lated respects the smallness of the metric perturbations, and
=— —((IDS)H)Z. a7 not the divergence of curvature. That is, the typical ratio of
= ° two successive terms in the nonlinear perturbation expansion
is comparable to the small metric perturbations, and not to
the diverging curvaturéthis is fortunate, because otherwise
the perturbative approach would render usgle$hkis was

Note that this equation is invariant to the choice of gauge fo
the coordinatey. We shall now evaluate the integral at the
RHS, using the null coordinate, . In this gaugef gy decays
exponentially at the CH:

fryoe™ ",

Mo

Ve

Finally, using Eq.(13), we find

My r_
q)EHe 5—— —AZ, (19 demon_strated analytically for spinning black hol€3, and
( ,ue) K- numerically for charged ondg].

. ] . ] In the above analysis of the linear regirtteased on the
In particular, we have in the linear regime perturbative approaghr _ and x_ appear aparameters of
oy 2P (19 the background RN geometrand their definition should
Ve Ve therefore be based on the asymptotic mass fundiilonOn
. . the other hand, the divergence of the mass functiamose
_ One clarification should be made here concerning the prégefinition also involves theerivativesof r) at the perturbed
cise meaning of the parameters and «_, and the coordi- - oy merely reflects the divergence of, there, due to the
natev, in the perturbed spacetim@riginally these entities perturbation (which undergoes infinite blue-shift Obvi-
ously, this divergence has no relevance to the background
parameters _ andx_ .
!In the transition from Eq(14) to Eq. (15), we got rid of all terms
of order higher than quadratic i. Thus, in principle Eq.(15)

should include both the zero-order and the second-order parts of IV. NONLINEAR REGIME
r ,. The zero-order term is represented by tineplicit) integration )
constant in Eq(15). This zero-order term is exponentially small, ~ We turn now to analyze the divergence rates gfand

however, and is thus negligible compared to the quadratic term isP , along the nonlinear, strong-focusing, portion of the CH.
Eqg. (17). Here, it will be insufficient to calculate the leading-order
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perturbations, so we must carry out a full nonlinear calcula- guv =9uv/(dVr/dV):guv/(df/dV)uo- (21)
tion. '

We shall base our calculation on two assumptions: Sincegyy is finite (assumption %, and @dr/dV),, diverges

(1) For an appropriate choice of coordinatew, the line-  (assumption 2 we find thatgyy, vanishes everywhere
element(1) is valid up to the singular CH, and both along the CH, and so iguvr. Definingz(u)z(ryvr)CH, Eq.
functionsf andr are finite and nonvanishing along the (5) now reduces to the trivial equatian,=—(r ,/r)z. Its
entire CH. We shall denote such regular coordinates byjeneral solution is
U,V, and refer to them akruskal-like coordinates(Of
course, the choice dff andV is not unique. We shall z=ClIr, (22)
also setv=0 at the CH.

(2) There exists at least a single outgoing null geodeasic,
=Uug, Which intersects the CH and which satisfies the
following two requirements:

where C is an integration constant. Note that this exact
equality holdseverywherealong the CH. CalibratindC at
u=ug, we find
@ Along u=ugy, r and® are monotonic functions af in ry = r—o(r,\, ). = To (CH), (23

a neighborhood of the CH, rororTeT
(b) Along u=ug, bothr, anddd/dr (i.e. ® y/r ) di-

wherer g is ther-value of the CH ati=u,. The first of these
verge at the CH.

two equalities has an explicit gauge-invariant form, so we

. ) _ can immediately transform it to a generic gauge and write it
The validity of assumption 1 is strongly supported by the g

perturbative approach, at least in the early part of the CH.

Moreover, recent numerical simulatiofig] confirm its va- r, o
lidity down to contraction of the CH to less than 1% of its Ty T (29)
initial value? Assumption 2 is justified, because at least in 07t

the asymptotically early part of the CH, E¢%2),(19) ensure
the required monotonic behavior, and also implg/dr
«pL—o0. In addition, in the linear regime the standard in-

going Kruskal-like coordinatey=e *"c, r_ezgulanzes the  gitferential equation foxb ,, and integrate it along the CH.
line element at the CH, and satisfiegocve “Pe*~"e—. gy yirtye of assumption 2b, the second term in the parenthe-
We can thus take, to be in this asymptotically early section ¢aq i Eq.(4) is negligible at the CHat least atu=up)
(in fact, the numerical simulation§7] confirm that the compared to the preceding one. To make an optimal use of
asympt_otic relations of assumption 2 hold also in the nonlinypig fact, we transform Ed4) from v to the new ingoing null
ear regimg , coordinate

To analyze the evolution of ,, we shall use the evolu-
tion Eq. (5), viewing it as a first-order ordinary equation for Vo(v)=d(u=ug,v), (25)
r,. Our goal is to integrate this equation in the ingoing
direction, along the CH. This integration would be trivial if defined in a neighborhood of the CH. The last term in the
the last term on the RHB8vhich couples this equation to the transformed equation is proportional it . But
other evolution equationwere absent. Fortunately, on ap-
proaching the CH, this last term becomes arbitrarily small Fve=ryv, (dVi/dVg)=ry (dr/d®), . (26)
compared to the preceding one. For example, in a Kruskal- _
like V, the first term in the RHS divergdat least au=u,), At the CH,ry =C/r and @dr/d®), —0 (assumption 2h
whereas the second one is fini(Blote that although each of so the last term in the transformed E4) vanishes. Defining
these terms depends on the gauge, their ratio is gaugg(u)z(@yv(p)CH, Eq. (4) becomesy ,=—(r ,/r)y, whose
invariant) This suggests that, when integrating this equatioryeneral solution is
along the CH, the last term could be dropped. In order to

(later we shall use this result for=v,).
The analysis of the evolution @b , proceeds in a similar
way. This time we use the KG E), viewed as an ordinary

analyze this equation in a more systematic and elegant way, y=KI/r, 27)
we define a new ingoing null coordinatg in the neighbor- _ _ _ o
hood of the CH, by whereK is an integration constant. Calibratigat u=u,
we find
V. (v)=r(u=uq,v), (20) y -
Py, = (P y, )y, =7 (CH), (28)

and reexpress Eq(5) in terms of V,. To transform f

=—29,, fromu toV,, we first calculateggyy, : and again, the first equality may be immediately transformed

to a generic gauge:
2If assumption 1 were valid only in a portion of the CH, then the P, . r_0 (29)
analysis below would nevertheless be applicable to this portion ((ID,U)uo r’
(provided that the outgoing null ray considered in assumption 2
intersects this portion We shall now match the non-linear resul®t) and (29)
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to the leading-order results at the linear regime. To that end, et ) 2r_2 o one1
we take our reference outgoing ray-u, to be in the as- ¥, =—nr-Ave "V, (r?), =-2n < Ave (b,
ymptotically early section of the CH. We can then use the - (33

results of the previous sectide.g. Egs.(13) and (18)] for
(r,U)UO and (q),v)uo! and also substitute,=r_ . Combining

Eq. (24) (with v=v,) and Eq.(29) with Egs.(18) and(13), (Note that to the leading order indl/, which concerns us

respectively, we obtain here, the contribution m‘,ve to ‘1’,06 is negligible) That is, to
@ r the leading order in 1/, the v-derivatives of¥ andr? at
—tr— —A (30)  the CH areindependent of (andu). The translation of the
P, r above results fronv to any other type of ingoing null co-

ordinate(e.g.V) is straightforward.
The above results are verified numerically in R&. The
o, r2 terms at the two sides of E¢30) and (31) are evaluated
((I,T)z—)_ﬁ/'\z- (3D numerically glong an outgoing null ray that intersects the
Ve strong-focusing portion of the CH. We have checked the
analytic results numerically up to a stage of 90% focusing of
the CH, and found excellent agreement. We believe that
these results hold along the entire CH.
It would be an interesting challenge to try generalizing

r- C(n+1) ) r_2 2. —20+1) these results to the CH singularity of a generic spinning
(vaeg_nTAve » T =N T — A%, : vacuum black hole.
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These exact relations hold everywhere along the CH.
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