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Analytic study of the null singularity inside spherical charged black holes

Lior M. Burko and Amos Ori
Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

~Received 10 November 1997; published 15 May 1998!

We study analytically the features of the Cauchy horizon~CH! singularity inside a spherically symmetric
charged black hole, nonlinearly perturbed by a self-gravitating massless scalar field. We derive exact expres-
sions for the divergence rate of the blue-shift factors, namely the derivatives in the outgoing direction of the
scalar fieldF and the area coordinater . Both derivatives are found to grow along the contracting CH exactly
like 1/r . Our results are valid everywhere along the CH singularity, down to the point of full focusing. These
exact analytic expressions are verified numerically.
@S0556-2821~98!50112-9#
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I. INTRODUCTION

In the last few years, the investigation of spinning a
charged black holes led to a new picture of the spacet
singularity inside such black holes. According to this ne
picture, the Cauchy horizon~CH! evolves into a curvature
singularity, which has the following two remarkable fe
tures:~i! It is null ~rather than spacelike!. ~ii ! It is weak~in
Tipler’s terminology@1#!; namely, the tidal deformation ex
perienced by extended physical objects is finite at the
singularity. In the case of a spinning black hole, the evide
for the occurrence of the null weak singularity has emerg
from a systematic linear and nonlinear perturbation anal
@2#. For the toy model of a spherical charged black hole,
main features of the singularity at the inner horizon were fi
deduced analytically from simplified models based on n
fluids @3–5#, and later confirmed numerically for a mod
with a self-gravitating scalar field@6,7#. ~See also the ap
proximate leading-order analysis in@8#.! In addition, thelo-
cal existence and genericity of the null weak singularity we
shown mathematically in Ref.@9#, and more recently~in the
framework of plane-symmetric spacetimes! in Ref. @10#. The
compatibility of a null weak singularity with the constrain
equations was shown in Ref.@11#.

We shall consider here the spherically symmetric mo
of a charged black hole nonlinearly perturbed by a s
gravitating, minimally coupled, massless scalar field. Des
its relative simplicity~compared to the analogous model o
spinning black hole!, no systematic analytic study of thi
model has been carried out so far. The goal of this paper
present a simple analytic calculation, which may be the fi
step towards such a thorough analytic study: We quan
tively analyze the evolution of the divergent blue-shift fa
tors along the contracting CH. It is well known~from both
theoretical considerations and numerical simulations! that
the singularity at the CH is characterized by finite values
the scalar fieldF and the area coordinater . ~The latter is
also known to decrease monotonically with increasing affi
parameter along the CH, due to the outflux of ener
momentum carried by the scalar field.! However, thegradi-
entsof F andr diverge at the CH. More specifically, letV be
a ‘‘Kruskal-like’’ ingoing null coordinate~i.e. an ingoing
null coordinate for which the double-null metric functio
570556-2821/98/57~12!/7084~5!/$15.00
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gUV is finite and nonvanishing at the Cauchy horizon—s
below!. Then,r ,V andF ,V diverge at the CH. In this pape
we shall calculate the evolution ofr ,V and F ,V along the
contracting CH. We shall show, analytically, that the dive
gence rate of both entities is exactly proportional to 1/r . Our
method of calculation is non-perturbative, and is theref
valid also in the region of strong focusing; however, we sh
use the perturbative results~applicable at the early section o
the CH! to determine the two overall coefficients charact
izing the blue-shift divergence.

The paper is organized as follows. In Sec. II we descr
the physical model of the self-gravitating massless sc
field on a spherical charged black hole, and present the fi
equations. In Sec. III we carry out a leading-order pertur
tion analysis ofr ~and use previous perturbative results f
F! and calculate thev-derivatives ofF and r at the very
early part of the CH~where the focusing effect is still neg
ligible!. Then, in Sec. IV we perform a fully nonlinear~and
non-perturbative! calculation of thesev-derivatives, which is
valid everywhere along the contracting CH, down to t
point of full focusing, wherer 50 and the singularity be-
comes spacelike@6#. This nonlinear analysis leaves two co
efficients undetermined—one for each field—and we de
mine these two coefficients by matching the nonlinear res
to the linear results applicable at the asymptotically ea
part of the CH. Our results are in excellent agreement w
the numerically obtained results@7#.

II. PHYSICAL MODEL AND FIELD EQUATIONS

We consider here the model of a spherically symme
charged black hole, nonlinearly perturbed by a se
gravitating, spherically symmetric, minimally coupled, mas
less scalar fieldF ~the same model as that analyzed nume
cally in @6,7#!. This model allows us to obtain nontrivia
radiative dynamics, while retaining the simplicity of th
spherical symmetry.

We write the general spherically symmetric line eleme
in double-null coordinates,

ds252 f ~u,v !dudv1r 2~u,v !dV2, ~1!

wheredV2 is the line element on the unit two-sphere. T
energy-momentum tensor of a massless scalar field is
R7084 © 1998 The American Physical Society
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Tmn
s 5

1

4p S F ,mF ,n2
1

2
gmngabF ,aF ,bD . ~2!

The energy-momentum associated with the general sph
cally symmetric free electromagnetic field is

Tmn
em5

Q2

8pr 4 S 0 f /2 0 0

f /2 0 0 0

0 0 r 2 0

0 0 0 r 2sin2 u

D , ~3!

whereQ is the electric charge.
For a spherically symmetric scalar field, the Klein-Gord

~KG! equation reduces to

F ,uv1
1

r
~r ,uF ,v1r ,vF ,u!50. ~4!

The Einstein field equations,Gmn58p(Tmn
s 1Tmn

em), include
two evolution equations

r ,uv52
r ,ur ,v

r
2

f

4r S 12
Q2

r 2 D ~5!

f ,uv5
f ,uf ,v

f
1 f H 1

2r 2 F4r ,ur ,v1 f S 122
Q2

r 2 D G22F ,uF ,vJ ,

~6!

and two constraint equations:

r ,uu2~ ln f ! ,ur ,u1r ~F ,u!250 ~7!

r ,vv2~ ln f ! ,vr ,v1r ~F ,v!250. ~8!

The form of the above line element and field equations
invariant to a coordinate transformation of the formv
→ v̄(v), u→ū(u). In what follows u and v will denote
generic, unspecified, double-null coordinates. Below w
shall often use specific types of null coordinates for spec
calculations, and in order to avoid confusion, we shall ass
a special symbol to each of these specific coordinates. T
we shall denote the standard Eddington-Finkelstein null
ordinates of Reissner-Nordstro¨m ~RN! by ue and ve . We
shall also useU and V to denoteKruskal-like coordinates,
i.e. double-null coordinates which regularize the line elem
~1! at the inner horizon. In addition, in Sec. IV we sha
define two other types of ingoing null coordinates,Vr and
VF .

III. LINEAR REGIME

Previous analytic and numerical studies have indica
that the geometry at~and near! the early part of the CH may
well be described by the background metric functions of
static ~or stationary! black-hole solution plus a small metri
perturbation. This is found to be the situation both in vacu
spinning black holes~analytically! @2# and in the presen
model of a spherical charged black hole~numerically! @7#.
Moreover, the perturbations become arbitrarily small as
approaches the asymptotic past of the CH. In the very e
part of the CH, the perturbations are dominated by their
ri-

s
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ear part, and the singularity is well described by the line
metric perturbation. In the later part of the CH, howev
nonlinear effects become exceedingly important, as dem
strated, e.g., by the contraction of the CH.

Accordingly, we shall schematically divide the CH int
two parts:

~1! The linear regime, i.e. the asymptotically early part o
the CH, where the metric perturbations~and the scalar
field! are still very small, and a leading-order analysis
adequate;

~2! Thenonlinear regime, i.e. the later part of the CH, wher
the focusing~and possibly other nonlinear effects! be-
come important. At the future end of the nonlinear r
gime the area of the CH shrinks to zero, and the sin
larity becomes spacelike.

In this section we shall consider the linear regime, and ob
expressions for the blue-shift factors, namely, t
v-derivatives ofF and r . The nonlinear regime will be the
subject of Sec. IV.

In the linear regime we may treatF as a linear KG field
over a fixed RN background. The evolution of such a fie
was analyzed in@12# and more recently in@13,14# ~using a
different method!. For a spherically symmetric scalar fiel
satisfying an inverse power-law

F>ve
2n ~EH! ~9!

at the event horizon~EH!, the asymptotic behavior at th
early part of the CH was found to be@12,13#

F>Ave
2n1Bue

2n ~CH!, ~10!

whereA andB are constants which only depend on the ra
Q/M , M being the black-hole mass. Since we are primar
interested here in thev-derivative ofF, we only need the
value ofA, which was found in Refs.@12, 14# to be

A5
1

2

r 1

r 2
S r 1

r 2
1

r 2

r 1
D , ~11!

r 6 being the value ofr at the outer and inner horizons o
RN.

One finds that both at the EH and at the CH

F ,ve
}ve

2p, ~12!

wherep[n11, and

F ,v
CH/F ,v

EH→A. ~13!

Here and below the arrow denotes the limit of large a
vanced time~corresponding tove→`!. Note that the last
relation is explicitly gauge invariant, so it holds for any typ
of ingoing null coordinatev, and not only forv5ve .

Next, we consider thev-derivative ofr at the CH. In the
pure RN geometry,r ,ve

dies off exponentially~in ve! at the
CH. In the presence of the self-gravitating scalar field, ho
ever, r ,ve

decays as apower-lawof ve ~see below!. In the
asymptotically early portion of the CH~the ‘‘linear regime’’!
which concerns us here, the effect of the scalar field is do
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nated by the second-order term~i.e., the term quadratic in
derivatives of the scalar field!, and higher-order correction
are negligible. We shall now calculate this leading-ord
term of r ,ve

.
Viewing Eq. ~8! as a linear first-order differential equa

tion for r ,v , we formally integrate it and obtain

r ,v~v !52 f ~v !Ev r ~v8!

f ~v8!
@F ,v~v8!#2dv8. ~14!

Here @and also in Eq.~15! below# the integration is done
along lines of constantu, and we omit the dependence onu
for brevity. From this exact expression we now extract
term quadratic in~derivatives of! F. SinceF ,v

2 appears ex-
plicitly in the integrand, we simply need to replacef andr in
the right-hand side~RHS! by the corresponding unperturbe
metric functions of RN, which we denotef RN and r RN:

r ,v~v !52 f RN~v !Ev r RN~v8!

f RN~v8!
@F ,v~v8!#2dv8. ~15!

Note that this equation is invariant to the choice of gauge
the coordinatev. We shall now evaluate the integral at th
RHS, using the null coordinateve . In this gauge,f RN decays
exponentially at the CH:

f RN}e2k2ve, ~16!

wherek2 is the surface gravity of the inner horizon. On th
other hand,F ,ve

decays as an inverse power ofve , andr RN

approaches a nonzero constant,r 2 , at the CH. Therefore
since the relative change ofF ,v ~and r RN! is exponentially
slower than that off RN, to the leading order in 1/ve we can
takeF ,v outside the integral, and substituter RN>r 2 @as well
as Eq.~16! for f RN#. Doing so, we obtain~to the leading
order in 1/ve!

1

r ,ve
>2

r 2

k2
~F ,ve

CH!2. ~17!

Finally, using Eq.~13!, we find

r ,ve

~F ,ve

EH!2→2
r 2

k2
A2. ~18!

In particular, we have in the linear regime

r ,ve
}ve

22p . ~19!

One clarification should be made here concerning the
cise meaning of the parametersr 2 andk2 , and the coordi-
nateve , in the perturbed spacetime.~Originally these entities

1In the transition from Eq.~14! to Eq.~15!, we got rid of all terms
of order higher than quadratic inF. Thus, in principle Eq.~15!
should include both the zero-order and the second-order par
r ,v . The zero-order term is represented by the~implicit! integration
constant in Eq.~15!. This zero-order term is exponentially sma
however, and is thus negligible compared to the quadratic term
Eq. ~17!.
r

e

r

e-

are only defined in the pure RN geometry.! We know that
outside the black hole, both the scalar field and the me
perturbations decay at late time, and the geometry
proaches that of RN. In particular, the mass function
proaches a limiting valueM . We thus definer 2 and k2

according to the value of these parameters in the asymp
RN geometry, i.e. according to their standard definition
terms ofM andQ ~with M being the above late-time limit o
the mass function; note that the chargeQ is a fixed parameter
in our model!. In a similar way, we also define the coordina
ve with respect to this late-time asymptotic RN geomet
More specifically, we may defineve according to the affine
parameterl along a line of constantr .r 1 ~or along the
EH!, by takingve(l) to be the same function as in the pu
RN geometry~with a mass parameterM defined as above!.
Note that once the entitiesM , r 2 , k2 , andve were defined
in the linear regime, their extension to the nonlinear regi
is trivial.

One might be puzzled by the relevance of the asympt
external mass parameter to the internal dynamics near
perturbed CH~and particularly to the definition of the inner
horizon parametersr 2 and k2!, especially when the diver
gence of the mass function at the CH is recalled. The re
lution of this puzzle relays on the basic features of t
geometry inside perturbed charged~or spinning! black holes:
On the one hand, the geometry is drastically different fro
that of RN~or Kerr!, as expressed by the divergence of cu
vature at the CH. On the other hand, the geometry is v
similar to RN~or Kerr! in terms of the metric functions: The
metric perturbations are arbitrarily small at the asympto
past of the CH.@Roughly speaking, the divergence of curv
ture indicates the divergence ofderivativesof the metric
functions~with respect to the regular background coordina
V! at the CH.# This smallness of metric perturbations is th
necessary basis for the entire perturbative approach: A
turns out, the perturbation analysis~when properly formu-
lated! respects the smallness of the metric perturbations,
not the divergence of curvature. That is, the typical ratio
two successive terms in the nonlinear perturbation expan
is comparable to the small metric perturbations, and no
the diverging curvature~this is fortunate, because otherwis
the perturbative approach would render useless!. This was
demonstrated analytically for spinning black holes@2#, and
numerically for charged ones@7#.

In the above analysis of the linear regime~based on the
perturbative approach!, r 2 andk2 appear asparameters of
the background RN geometry, and their definition should
therefore be based on the asymptotic mass functionM . On
the other hand, the divergence of the mass function~whose
definition also involves thederivativesof r ! at the perturbed
CH merely reflects the divergence ofr ,V there, due to the
perturbation ~which undergoes infinite blue-shift!. Obvi-
ously, this divergence has no relevance to the backgro
parametersr 2 andk2 .

IV. NONLINEAR REGIME

We turn now to analyze the divergence rates ofr ,v and
F ,v along the nonlinear, strong-focusing, portion of the C
Here, it will be insufficient to calculate the leading-ord

of
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perturbations, so we must carry out a full nonlinear calcu
tion.

We shall base our calculation on two assumptions:

~1! For an appropriate choice of coordinatesu,v, the line-
element~1! is valid up to the singular CH, and bot
functions f and r are finite and nonvanishing along th
entire CH. We shall denote such regular coordinates
U,V, and refer to them asKruskal-likecoordinates.~Of
course, the choice ofU andV is not unique.! We shall
also setV50 at the CH.

~2! There exists at least a single outgoing null geodesicu
5u0 , which intersects the CH and which satisfies t
following two requirements:

~a! Along u5u0 , r andF are monotonic functions ofv in
a neighborhood of the CH,

~b! Along u5u0 , both r ,V and dF/dr ~i.e. F ,V /r ,V! di-
verge at the CH.

The validity of assumption 1 is strongly supported by t
perturbative approach, at least in the early part of the C
Moreover, recent numerical simulations@7# confirm its va-
lidity down to contraction of the CH to less than 1% of i
initial value.2 Assumption 2 is justified, because at least
the asymptotically early part of the CH, Eqs.~12!,~19! ensure
the required monotonic behavior, and also implydF/dr
}ve

p→`. In addition, in the linear regime the standard i
going Kruskal-like coordinate,V[e2k2ve, regularizes the
line element at the CH, and satisfiesr ,V}ve

22pek2ve→`.
We can thus takeu0 to be in this asymptotically early sectio
~in fact, the numerical simulations@7# confirm that the
asymptotic relations of assumption 2 hold also in the non
ear regime!.

To analyze the evolution ofr ,v , we shall use the evolu
tion Eq. ~5!, viewing it as a first-order ordinary equation fo
r ,v . Our goal is to integrate this equation in the ingoi
direction, along the CH. This integration would be trivial
the last term on the RHS~which couples this equation to th
other evolution equation! were absent. Fortunately, on a
proaching the CH, this last term becomes arbitrarily sm
compared to the preceding one. For example, in a Krus
like V, the first term in the RHS diverges~at least atu5u0!,
whereas the second one is finite.~Note that although each o
these terms depends on the gauge, their ratio is ga
invariant.! This suggests that, when integrating this equat
along the CH, the last term could be dropped. In order
analyze this equation in a more systematic and elegant w
we define a new ingoing null coordinateVr in the neighbor-
hood of the CH, by

Vr~v ![r ~u5u0 ,v !, ~20!

and reexpress Eq.~5! in terms of Vr . To transform f
[22guv from v to Vr , we first calculategUVr

:

2If assumption 1 were valid only in a portion of the CH, then t
analysis below would nevertheless be applicable to this por
~provided that the outgoing null ray considered in assumptio
intersects this portion!.
-

y

.

-

ll
l-

e-
n
o
y,

gUVr
5gUV /~dVr /dV!5gUV /~dr/dV!u0

. ~21!

SincegUV is finite ~assumption 1!, and (dr/dV)u0
diverges

~assumption 2b!, we find that gUVr
vanishes everywhere

along the CH, and so isguVr
. Definingz(u)[(r ,Vr

)CH , Eq.

~5! now reduces to the trivial equationz,u52(r ,u /r )z. Its
general solution is

z5C/r , ~22!

where C is an integration constant. Note that this exa
equality holdseverywherealong the CH. CalibratingC at
u5u0 , we find

r ,Vr
5

r 0

r
~r ,Vr

!u0
5

r 0

r
~CH!, ~23!

wherer 0 is ther -value of the CH atu5u0 . The first of these
two equalities has an explicit gauge-invariant form, so
can immediately transform it to a generic gauge and writ
as

r ,v

~r ,v!u0

→
r 0

r
~24!

~later we shall use this result forv5ve!.
The analysis of the evolution ofF ,v proceeds in a similar

way. This time we use the KG Eq.~4!, viewed as an ordinary
differential equation forF ,v , and integrate it along the CH
By virtue of assumption 2b, the second term in the parent
ses in Eq.~4! is negligible at the CH~at least atu5u0!
compared to the preceding one. To make an optimal us
this fact, we transform Eq.~4! from v to the new ingoing null
coordinate

VF~v ![F~u5u0 ,v !, ~25!

defined in a neighborhood of the CH. The last term in t
transformed equation is proportional tor ,VF

. But

r ,VF
5r ,Vr

~dVr /dVF!5r ,Vr
~dr/dF!u0

. ~26!

At the CH, r ,Vr
5C/r and (dr/dF)u0

→0 ~assumption 2b!,
so the last term in the transformed Eq.~4! vanishes. Defining
y(u)[(F ,VF

)CH , Eq. ~4! becomesy,u52(r ,u /r )y, whose
general solution is

y5K/r , ~27!

whereK is an integration constant. CalibratingK at u5u0 ,
we find

F ,VF
5

r 0

r
~F ,VF

!u0
5

r 0

r
~CH!, ~28!

and again, the first equality may be immediately transform
to a generic gauge:

F ,v

~F ,v!u0

→
r 0

r
. ~29!

We shall now match the non-linear results~24! and ~29!

n
2
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to the leading-order results at the linear regime. To that e
we take our reference outgoing rayu5u0 to be in the as-
ymptotically early section of the CH. We can then use
results of the previous section@e.g. Eqs.~13! and ~18!# for
(r ,v)u0

and (F ,v)u0
, and also substituter 05r 2 . Combining

Eq. ~24! ~with v5ve! and Eq.~29! with Eqs.~18! and ~13!,
respectively, we obtain

F ,v

F ,v
EH→

r 2

r
A ~30!

and

r ,ve

~F ,ve

EH!2→2
r 2

2

rk2
A2. ~31!

These exact relations hold everywhere along the CH.
More explicitly, for initial dataF>ve

2n at the EH, the
asymptotic behavior at the CH is~to leading order in 1/ve!

F ,ve
>2n

r 2

r
Ave

2~n11!, r ,ve
>2n2

r 2
2

rk2
A2ve

22~n11!.

~32!

These results take an especially simple form when expre
in terms ofC[rF and r 2:
R

d,

e

ed

C ,ve
>2nr2Ave

2~n11!, ~r 2! ,ve
>22n2

r 2
2

k2
A2ve

22~n11!.

~33!

~Note that to the leading order in 1/ve , which concerns us
here, the contribution ofr ,ve

to C ,ve
is negligible.! That is, to

the leading order in 1/ve , the v-derivatives ofC and r 2 at
the CH areindependent of r~andu!. The translation of the
above results fromve to any other type of ingoing null co
ordinate~e.g.V! is straightforward.

The above results are verified numerically in Ref.@7#. The
terms at the two sides of Eq.~30! and ~31! are evaluated
numerically along an outgoing null ray that intersects t
strong-focusing portion of the CH. We have checked
analytic results numerically up to a stage of 90% focusing
the CH, and found excellent agreement. We believe t
these results hold along the entire CH.

It would be an interesting challenge to try generalizi
these results to the CH singularity of a generic spinn
vacuum black hole.
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