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Origin of structure in supersymmetric quantum cosmology
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Can the imprint of an early supersymmetric quantum cosmological epoch be present in our cosmological
observations? Addressing this question is the precise purpose of this paper. Perturbations about a supersym-
metric Friedmann-Robertson-Walker FRW model are introduced, in particular by expanding scalar and fermi-
onic fields in adequate harmonics 8. The homogeneous and isotropic degrees of freedom are treated
exactly, while the others are considered up to quartic order. A set of quantum states is then obtained by
employing the supersymmetry and Lorentz constraint equations of this model. Finally, a particular quantum
state which has properties typical of the conventional no-boungtaytle-Hawking solution is identified. Its
relevance towards a scale-free spectrum of density perturbations is then dis¢888&6-282(98)50512-7

PACS numbgs): 98.80.Hw, 04.60.Kz, 11.30.Pb, 98.80.Cq

The objective of this paper is to establisbandhowthe  quantum gravity is present, babt supersymmetry. Within
inclusion of supersymmetry in a quantum cosmological scethis point of view, either(a) supersymmetry has beem-
nario[1—3] can lead to a scale-free spectrum of density fluctirely broken, while quantum gravity prevalence continues
tuations. We will construct here a model that describes peréfterwards, or then(b) conventional quantum cosmology
turbations about a supersymmetric Friedmann-RobertsorsiMPIY constitutes aoarse grainediescription. In particular,
Walker (FRW) minisuperspace with complex scalar fields. €xtracted from SQC with some “averaging” process, whose
By doing so, we will advance some of the ideas previousl),phys'c""I justification is yet o be est_abllshed. .
presented in Ref§1,2] towards an “observational context.” Secondly, our research is based in tat 1 supergravity
To be more precise, most of the previous research in suy 9] constitutes a “'square-root O.f gravityr]. Th|§ means

! : ) hat in finding a physical statd, it may be sufficient to
persymmetric quantum cosmolo@8QQ0 was aimed at find-

i Atum. stat nd_overcomin nsisten robl solve the Lorentz and supersymmetry constraints of the
g quanium states and overcoming consistency pro en}?\eory. In fact, the algebra of constraints then implies that

(see Ref[1]). No plausible attempt was ever made to fInOIwiII consequently obey the Hamiltonian constraints. Conse-

gzxvcguraengjrrginz;?taes gvnzlgr:)fvg,%lﬂngivf?o; gtyzfslrsr'ggg"quently, this interesting property has been explored in many
9 P persy uantum cosmological cases: see REIs8—10, where the

“tc quatntunlhgrra\\;\llti?&i?)nzii(lj F::Iys:ﬁs E[crx]war()j(is tansem'?asns'cagupersymmetry and Lorentz constraints conducted to simple
stage, togethe entifying the existence of any first-order differential equations in the bosonic variables.

quantum state _assomated to structure format(cun) fol- This advantage contrasts with the situation in nonsupersym-
lowed by establishing how does conventional quantum cos-

mology harmonize into this picturdiv) and hence, deter- metric quantum cosmology: second-ordekVheeler-DeWitt

o9 . equation has to be solved, employing specific boundary con-
mining if a path from supersymmetric quantum cosmologyoIitions [6,11,12

physics down to a classical level can be consistently estab- The action for our model is then retrieved from the gen-

lished. . . . .
. . _ eral action ofN=1 of supergravity with scalar supermulti-
This paper reports on what is a response regar@dingbove. lets, as represented ianng.layof Ref. [5]. Ourpback-

In addition, we are also endorsing quantum supergravit . o . .
[4,5] as an adequate and more att?agtive Iow-enzrg?/ Iim?ground supersymmetric minisuperspace is constituted by the

theory. In particular, concerning the study of the very earlygr""v't""t"?nal field, which is represented by a tetreff'
Universe, instead of using standard gravitational theorie$eicr§A (in two-spinor notatiop where[1,2]
with matter fields, buho supersymmetry6].

Our approach is further based in two fundamental ele- e :<N(t) 0
ments. First, we subscribe to the idea that the presence of a 0 a(t)Ey
supersymmetry in a quantum universe constitutes an element
of the most value. SQC is a framework which is entirelywith a andi run from 1 to 3,E; is a basis of left-invariant
devoted to describe the very early Universe, when quantuni-forms on the uniS® and N(t), a(t), U/;A’ (A=0,1) de-
gravity effects and supersymmetry dseth dominant. This  note, respectively, the lapse function, scale factor, and
contrasts with conventional quantum cosmology, wher@nfeld-Van der Warden symbo[¢,5,7]. In addition, we also

have the gravitinos which must have the fofsee Refs[1,
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dependent Comp|ex scalar fie|d$’$' and their fermionic mulﬂpliers. H reEesentS the Hamiltonian constraint, while

superpartnersy(t), xa:(t) are also included. Finally, we Sa.Sas andJag.Jargr denote, respectively, the supersym-
choose a flat Kaler manifold for the scalar fields. metry and Lorentz c/?nstralnts. After some suitable redefini-
As far as the perturbations about the background minisuions of they/ and x variables(see F\;efsh[l,Z]), thel quan-
perspace are concerned, we take the scalar fields as tum  supersymmetry constraints OA_tA,e model can be
constructed from the coefficients iy ,¢; in the Hamil-

(%, 1) = (1) +Zpmfa (D Q(X)), (3)  tonian. They take the forrB,=S{*)+ S{Pe™®), with
together with its complex conjugate, where the coefficients o 9 aps 9 P
fIm ™ are functions of the time coordinateand Q. are SV=—ixazr— — - —V3alya— z Px®xeTa
n'n § _ Im d¢ 2v3 da 8 dx
standard scalar spherical harmonicsnx; are coordinates
on the three-sphere, and with=1,23...,1=0,... h—1, i _ P 3 9 WBig 0
m=—1,...,] [13]. The fermionic superpartners are ex- — = x5+ — B+t —— —x.
panded a$14] 4 IV 4v3 x> g3 "
_ 5
XA (X ,0) = XA(D) 2325 o8 gl DpAX) ©
- and
+tmp(H) 74 x)], 4
. . . . . (pertb) ';bA d d
together with its Hermitian conjugate, witm=1,... o, Sa =732m Smpf_tmpr
— — m m
p.g=1,...,(m+1)(m+2) and, wherepl?,p,, 7o}, TA Y P P
are spinor hyperspherical harmonics h In addition, the [ s d d
time-dependent coefficients,,,sy,, and their Hermitian +§ $2m Smgm_tmfm XA

conjugates are odd elements of a Grassmanian algebra,
where the matrixgp, satisfy 85 ,,= 21,.

Inserting now Eqs(1)—(4) into the general action dfl
=1 supergravity with scalar supermat{é&] and using the —
properties of the harmonics mentioned in R¢f3,14, we  together with their Hermitian conjugatesS,= Sy’
can obtain(after integrationa reduced action which includes -+ gpet), g0 S will denote the supersymmetry con-

c e . . . . . VAT
an infinite sum of time-dependent harmonic and Fermi osc."’(s%traints of the unperturbed background, wis| ertb.),g'((_\pertb.)

lators. The next step is to construct the relevant constrain orrespond to the perturbed sector and have the necessary
equations for our_model. . form to produce the corresponding bosonic Hamiltonian con-
In_order to write dOW” the supersymmetry CONStraints, i of Ref [14]. Hereatfter, the labels,|,m andm,p will
we first need to obtain the Hamiltonian of the theory, be denoted s.implly by andniw respecti\;eiy '
. _ A - _AI X ) 1 .
which has the formH=N}+ygSa+Sayg + MAB g At this stage, we introduce a natural ansatz for the wave
+MAB 3,5, whereMAB MA'B" are additional Lagrange function of the Universe, which has the form

, J :
—iXaZn g+ 270 N+ Dxa,  (6)

n

J
V=A+ByCc+iCyxc+Dx°xp+Ey icx®xo
=AO(a,¢,H)IT,AM (@, b, ¢ Fof ) ILA™ (@, b, .5, tm) +B (@, b, H)I1,BM(a, &, ¢; Fof )
XTmB™(@, ¢, ,5m tm) ¥+ CO(a, ¢, $)I1,C™(a, ¢, ;) TnC™ (2, b, b, Sm tm) ¥ xc
+D©(a, ¢, $)I1,D"M(a, ¢, ¢; ff) 11D ™ (@, b, $,5m tm) xxc+E(a, b, ) IIEM(a, b, $; fof )

X RE™ (@, b, b,Smtm) ¥ ¥exCxo , (7)

where each wave functionaA™ AM™, . EM™ EM de- described in[14], where the coefficients,, ty,Sm,tm are
pends only on the individual perturbation modés or  taken as invariant under local Lorentz transformation to low-
Sm.tm. Several comments are in order at this point. First, theest order in perturbation. We will see ahead that the form of
expression(7) satisfies the Lorentz constraints associated=ds. (5),(6) together with Eq.(7) will produce consistent

; : ; - . solutions. Concerning the coefficienss,,t,,Sm,tm, these
with the unperturbed field variablega ,iar, xa ar]d XA are taken as invariangt under local Lrgﬁen?z transformation to
Jne=¥a¥s)~ X(axs)=0. Second, the perturbation modes |o\est order in perturbatiofsee[14] for a related discussion
of the scalar fields and the fermionic partners do not coupley this issug Overall, this approach is fully satisfactory. In
to each other in our approximation and this is also translate¢act, we will see in the following, how we can extract a
in the ansat7). In addition, we also follow the approach consistent set of solutions from Eq8)—(7).
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Now, let us substitute Eq(7) into the supersymmetry separation constants. The quantit@s,(),,... represent
constraint(5),(6) and their Hermitian conjugates. It is impor- back reactions of the scalar and fermionic perturbed modes
tant to notice that the terms independent of the perturbatioi the homogeneous modes and are assumed to be of a very
modes have to vanish separately from the ones involving themall value(cf. Refs.[13,14)).
perturbation modes. Furthermore, the several terms with per- Characteristic features of the no-boundafifartle-
turbation modes must also vanish independently—since theyjawking solution are present in the bosonic coeffici€nt

do not couple with each othécf. Refs.[13,14, where this  (15,_(17) (see Refs[13,14,1,3). This state require$(|
procedure was similarly employedAfter having divided =

S,¥=0 and§A‘P=0 by ¥ as given in Eq.(7), we then
obtain a set of first-order differential equations. Among themg¢ 1o assuming

we have:
AA 1_2 d t a)A+E AA
96 5 $2m Smis tmgr T
+2a%s ,(n+1)f,A=0, (8)
(9E+1¢2 ( A Eis JE
JE— — S —_— —_— [EN—
g 2 T\ sy |ty i
—2a%3,(n—1)f,E=0, 9)
2 8A+2\f3 2A 2 3 J t J A=0 10
7 A= 2 $2m| Smog -~ - |A=0, (10
a ok 2V3a’E+ 2 3 J t J )E—O 11
v3a ZREET g PEn snge Tt | ES0 (Y

Concerning the analysis of a full set of equations, notice tha]te
Egs.(8)—(11) are uncoupled, while the remaining ones con-
stitute coupled partial differential equations. With respect t
the former ones, it is straightforward to obtain the following

solutions:
—3a2+ (20— Q) — 0y
A0 = AWO) , 17
0 at (12
A(n>:ABn)e—x2¢+$(2>\3—)\2>
XeZ)\4fn72a2(n+1)fnf7nf(037)\2)f7n+(037)\2)fn’ (13)
A(m):Agm)62x5¢701¢$704$+04¢z, (14)
e33%+ ¢(2h6—05)~ 05
(0)— (0)
EV=Ey 0% , (15)
E(M= Egn)e—x7$+ H(2hg—17)
Xezxg?n+2a2(n—1)fn7,1—(97—>\9>fn+(07—>\9)?n, (16)
E(m = Eg")em\sqﬁ*Cz¢¢*99¢+09¢~|§7 17)

where AQ)=AOe3% AN Al EO)— EO)e-3a"E(M E(m
denote integration constants aAdandE~ sy, OF typ. It is
important to emphasize the use ¢f= ¢, +i¢, or p=re'’

(o]

<1 and the terme "®ffn (n>1) in Eq.(16) to dominate
over the other remaining exponential terms. This is equiva-
that the corresponding separation/
integration constants in Eq$16),(17) to be very small. It
seems that the presence of supersymmséigctsa set of
solutions, where the no-boundafartle-Hawking quantum
state is mandatory. Finally, it is also important to mention

that the states correspondingHo- Smp OF E~tmp mean that
these solutions would represent one-particle or one-
antiparticle states if we adopt the interpretative framework
introduced in Ref[14].

Concerning theB,C,D coefficients, the corresponding
equations lead to integral expressions, similar to the ones in

Refs.[1,2]. However, the terms irf,,f, present in those
equations imply thaC(™=0 is the only possible solution.
Hence, we cannot avoi@ =0, which is a particularly inter-
esting result.

But do the results hereby presented contribute to our un-
derstanding of the very early Universe and if yes, how?
Some answers to these enticing questions are advanced in the
following.

As both a summary and a point of departure for future
search, we presented here an extension of the current rep-
ertoire of quantum cosmological models. In particular, incor-
porating supersymmetry and matter fields expanded in ad-
equate spatial harmonics. As a result, we obtaimedv
physical solutions. Among these, we identified one with
characteristics typical of the no-boundary propdd44l.

But the most important point brought about in this inves-
tigation is that supersymmetric quantum cosmology can con-
stitute an “observational” subject—namely, in the sense of
making specific predictions for cosmological properties from
a quantum description. Thus, this endorses supersymmetry as
a mandatory component in any realistic analysis of a quan-
tum universe. Within this context, the answer to those ques-
tions above is ges but where some caution is nevertheless
required.

In fact, let us take the bosonic coefficidat[see expres-
sions(15)—(17)], when the terne~"*nfn (n>1) in Eq.(16)
is dominant over the other remaining exponential terms.
Then, this particular fermionic state implies the following
expectation values(f(V)~(fY~n-ta 2 (a, would be
the value ofa, when the wavelength of the perturbation
modes equal a particular horizon sid®nce such conditions
have been established, they constitute part of the require-
ments such that the density perturbatiagigp represent an
almost scale-free spectrum of fluctuations, in similarity to
what is present in Ref4].

In addition, notice that each of the several bosonic ampli-
tudes in Eq.7) corresponds to a specific quantum scenario

in the process of integration to decouple the physical degreggr the very early Universe. Supersymmetry seems thus to

of freedom encompassed ig,¢. Notice as well that

Ni,Ao... and C;,C, constitute further

assign several possible fermionic states with distinct bosonic

integration/ features, each one leading to different scenarios of evolution.
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In particular, we found the Hartle-Hawking quantum state.ing with a quantum dominated era of evolution. Eventually, a

Since such a state may lead to a satisfactory spectrum Qfptential term, e.g.V(#,d)~M2¢p¢ [1,2,8 will be ad-
density pertgrpation$13], our resul'_[s 'indicate that super- equately analyzed within this prograb5] and permit us to
symmetry within a quantum description of the very earlyinciyde a suitable inflationary scenario derived from super-
Universe intrinsically contains the relevant seeds for StruCyravity (e.g., Ref.[16]). A natural extension will be to ex-
ture formation. _ pand the tetrad and gravitinos within spherical harmonics.
Let us also point out that our model has no potentialtyis would further illuminate on the states associated with
V(¢,¢;t,,f,) for the homogeneous and inhomogeneoushe inhomogeneous fermionic modds).
modes. The presence of such potential could induce a tran-
sition from a quantum supersymmetric Euclidian phase into
an inflationary expansion period. But such potentials will This research work was supported by a INICT/PRAXIS—
also lead to a mixing in the fermionic sectorsWfas present XXI Grant BPD/6095/95. The author is grateful to O. Ber-
in Eq. (7). In other words, it will imply an additional com- tolami, M. CavagliaG. Esposito, C. Kiefer, S. W. Hawking,
plex coupling between the equations to solve. Currently, ndR. Graham, H. Luckock, and A. Vilenkin for useful conver-
solutions have yet been found in such a scenario, not even gations which further influenced part of this report and addi-
the corresponding homogeneous sector. Hence, we are de#ibnal research.
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