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Search for a heavy magnetic monopole at the Fermilab Tevatron and CERN LHC
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If a heavy Dirac monopole exists, the light to light scattering below the monopole production threshold is
enhanced due to the strong coupling of monopoles to photons. This effect could be observable in the collision
of virtual photons at proton colliders. At the Fermilab Tevatron it will be seen as pair production of photons
with energies 200—400 GeV and roughly compensated transverse momenta 100—460Té&d/éffect could
be seen at monopole masses of about 1-2.5 TeV at the upgraded Tevatron and 7.4-19 TeV at the CERN Large
Hadron Collider depending on the monopole spB0556-282(98)50511-5

PACS numbgs): 14.80.Hv, 12.90tb, 13.85.Qk, 13.85.Rm

I. INTRODUCTION ementary electric and magnetic chargeandg ought to be
quantified so that
The magnetic charg@nonopole was introduced into par- 2.
ticle theory by Dirad1] (see alsd2]) to restore symmetry g=——1, nN=*x1=+2, ... (N

among electricity and magnetism. The idea of a monopole is
very attractive in order to explain the mysterious quantiza-
tion of the electric charge of particles. Therefore, the searchvith aEezl(47T)=1/137:>a9592/(477)=n2/(4a). Unfor-

for a monopole is essential despite the fact that there is néinately, the explicit form of such a theory is still not yet
place for it in the standard description of our world. known.

The Dirac-Schwinger monopoles, discussed here, are We are interested in the energy region below the mono-
pointlike particles. They differ strongly from nonlocal mono- Pole production threshold. Here the interactions of photons
poles in the context of gauge theories, first considered byi2 Vvirtual monopoles are considered as main effect. The
Polyakov and 't Hooft[3]. Below we assume that a few effective expansion parameter is of the order of
monopoles exist in the Universe and they are not yet ob-
served due to their high mass. __ 9o _

Our basic idea is simpl&he existence of monopoles pro- Get JarM  2\aM
vides for ayy elastic scattering at large angles that is suf-
ficiently strong below the monopole production threshold. . . . . : . .
This effect is observable at colliders with energies smaIIerIn this region general considerations like gauge invariance,

than the monobole masseduch a method for discoverin threshold behavior, etc., together with a perturbative ap-
P . overing proach allow us to believe that a perturbation theory analo-
monopoles has been suggested in Rpd$[5]. A similar

: Lo . gous to standard QED can be appli@ertainly, in lowest
idea for the process™ e —Z— 3y has been considered re- \,qirivial order only. In that case QED-like calculations
cently[6,7] and tested at the CERBI"e™ collider LEP[8].  ghouid be valid, both in tree approximation and at one loop

Our paper deals with detailed calculations of this effect ajeyel. For one loop we can assume a Wick rotation into Eu-
hadron colliders. Throughout the paper we denote the mongidean region. As it is well known, the integration over the
pole mass byM and its spin byJy (we assume a definite Joop momentump is convergent due to gauge invariance.
spin of the monopole w is the characteristic photon energy Therefore, the integration region is limited by virtualities

Nw

2

[typically—the yy c.m. system(c.m.s) energy. p?<w?, where the effective expansion parameter is small,
A theory with two point-like charges, electric and mag- and QED results are valid.
netic, cannot be standard QEDAccording to Refs[1], [2] The estimate of the effective coupling constant is sup-

(see alsd6]), the electromagnetic field in such a theory is ported by estimating qualitatively the cross sectionyof

described by a vector potential having the Dirac string or— 7y scattering via a monopole loofFig. 1) in the yy

some of its surrogate. To have unambiguous results, the e¢-m.s.(without fixing the form of the interactionBecause of
gauge invariance, each photon leg of the matrix element
yields a factorw. On dimensional grounds this factor has to

*Email address: ginzburg@math.nsc.ru be divided by the monopole mabt. Additionally, the mag-
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*According to[9], this theory even could violated (1) local gauge
invariance of standard QED. We are thankful to Dr. He for clarifi- 2In the Schwinger theor{2] the quantityn should be evenn=
cation of this point. +2,*+4,....
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N ’ Let us denote the standard Mandelstam variables for the
. noAn . ~ + ~ + ~ — ~ o .
ryl\ M / A vy scattering bys,t,u with s+t+u=0 [s is the effective

mass of producegy system squared artdvaries within the
interval (0,—%/2)]. Furthermoreg is the scattering angle in
c.m.s. of the photons with© #< /2. In our cases=4w?,
t=—2w?(1-cosb).

The cross section foyy scattering via a monopole loop
ats<M? is given by the expressions

Y. .
b4 , N o_g3) g 2P n ® .
g \ cmRa) R a0sr 2am @
FIG. 1. yy— vy via monopole loop. 5(3+ co20)> 5824724 (2\2 %
do=———0"'dcoso= AT ',
netic chargey has to be associated to each vertex. Therefore, 56 S S 5
the amplitude M (gw/M)* and the cross section isr
*(Uw?)(go/M)8. 0.085, Jy=0,
The corresponding effective Lagrangi&f Heisenberg- 2 2 _
Euler type is P=g5+2p-=4 1.39, Jy=1/2, (6)
159, Jy=1
E :_FMVFMV+ g4 /B++B_(F'U“VF )2 .
eff 4 36(47)°M 4\ 2 uv Tote that the result strongly depends on the monopole spin
M .
B.—B_ _ These expressions are correct up to contributions of order
+ T(F‘”FW)2 +.- (3  O(g%). We expect that with growing, the increase of

the cross section as a function of energy stops and the pro-

duction of a largefever) number of photons becomes essen-
with the electromagnetic field strength tensgy, and Frv tial The effective parameter here is expected to be less than
= etVePE g/2. An additional gauge fixing term has to be geff For example, in QED with spin 1/2 fermions, the ratio
mtroduced to invert the photon propagator. The const@nts of coefficients of the § to 4y operators in the effective
depend on the monopole spia numerical coefficient is in- Lagrangian foryy interactions is about 0g3, [10]. Besides,
troduced to simplify the final expressign8ased on argu- one can expect that below the threshodgs{M) the expres-
ments mentioned earligrelated to Wick rotatio)) we use  sjons(4) correctly describe the sum of cross sections of pro-
here the coefficientg.. obtained in QED. Their values have cessesyy—27y, 4y, 6y, ... with increasing multiple pho-
been found for different values of the monopole spjfin ton production at higheg..
[10] (Iy=1/2), [11] (Iy=0), [12,13 (Iy=1). We use

. . . _ 2 2
their combinationP= g% +2- . Il. yy PRODUCTION VIA A MONOPOLE LOOP

AT HADRON COLLIDERS

3if some monopole—antimonopole bound state with re@s! The cross section for the production of two photons via a

exists, it is wide enougfsinceg>1), and it gives additional more Virtual heavy monopole loop ipp or pp collisions is a
strong light to light scattering. We do not speculate about this opconvolution of theyy cross section(5) with the photon

portunity in detail. fluxes arising from the colliding protons
|
2
a do; dw, dQ? dQ3
O-pp—wy'yX:<_> f nl(wval)nZ(wZ!QZ)____do-'y')/_"y'yl (7)
77 w; W Q1 Qz
|

Since in the dominant integration regi@f<s, the trans- Taking these approximations into account, the cross sec-
verse motion of initial photons can be neglected with goodion (7) can be written in factorized forrtvalid for QI <s).
accuracy. The photon flux densities; depend on their “own” photon

The relevant scale for the virtuality dependence of thevariables only
yy— vy subprocess cross section is given by the unique
inner parameter of monopole loop—the monopole mass.
Therefore, this dependence appears in the form of the quan- wi 2
P PP a nizni(yi=—',Q$), s=40,0, (®)

tity Q%/M?2. SinceQ?<s<M?, it is safely neglected below.
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and we have for the cross section 2 X
min
(a)zf DDy )T (Xmin_l>
Opp—yyx—| Y1 Y2)d0yy—yy
m Y1 Y2

The upperx value is reached at the minimal value for the
quantityL?=M%—mj~2m,m,.:
QZ

Xmax™ —5 -

dQZ Q2+ L2

N(E)=Jy2f(y)dy, f(y)=f n(y,Qz)?. (10

@ 2
E(;) REN?(E), ©)
(16)

With these transformations we pres@(Q?) andD;,(Q?)

The photon flux density arising from one proton is a sum™ the form

over elastic and inelastic contributions:
2

Xmax 0 X
cr(@)=2 [ TR Q2,

n(y’Q2)=(De,+ Din)+ y—(Ce|+ Cin)- (11) min (17)
2 XmaxdX[ X
Din(QZ):y . ;(X——]_) FZ(X,QZ).

In the individual contributions the quantit9? is limited ki-

nematically from below if; is the proton mags Concerning the uppe®? limit for the inelastic contribu-

2 tion, one should keep in mind that the basic representation
Q2>Q2.=(|\/|2—m2)L+m2 Y (12) - R
min X with photon flux factorization is valid a@;<s only. Near
this bound the original integrand is less than that obtained
My is the effective mass of the system produced in the virlising our factorization, but its contribution to the total cross

tual y* p collision, Mx=m, in the elastic case. section is small. Therefore, the integration region can be re-

The elastic contributionis written via standard proton stricted from above bpi2<§=ylyzs with sufficient accu-
form factorsGg and Gy, : racy. Since the virtual photon energies in both fluxes are
C.(0%)=G2(0Q?), roughly equal, we use

Q) =Gy (Q%) 13 02—y 8

) AMEGE(Q*) +Q°GH(QY) [ Qfn pme
De(Q%)=(1-Y) 4m2+ Q2 1- Q? ) as upper limit for the inelastic contribution without further
P

reducing the accuracy. With this choice the factorization re-

The integral overQ? in Eq. (10) rapidly converges at the Mains valid. ,
upper boundary due to the form factors. The integral is satu- !N theyy integration of Eq.(10), yma=1 can be used as
rated atQ? values given by the form factor scale. This scaleUPPer bound. The inaccuracy in the quantities that enter
is much lower than the other parameters of the prob|em(structure functionsis inessential, since contributions yt
Therefore, the upper integration limit can be extended tg~1 can be safely neglected.
infinity and the elastic contribution td(E) becomes energy
independent. Ill. TOTAL CROSS SECTION AND MASS LIMITS

The inelastic contributioris written via the proton struc-
ture functionsF,, F,. C;, and D;, are integrals over the
squared effective mass of the produced sysl&éfzn

We basically start from Eq(D.4) and Table 8 of Ref. Gu(Q%) G0 —
[14]: = E(Q)_—Z/ 55
Mp (1+Q%/Qp)

pp=2.79285, Q2=0.71GeV. (19

Elastic contribution.The proton form factors are written
in the standard dipole approximation

2
cm<Q2>=§fdMiFl<Mi,Q2>,

(14 Using dimensionless variables=4m%/Qj and z=(a/4)
anin> xy?/(1—y), the energy distribution is fouidas follows:

Q? dNei_ y*(1-y)

In order to use the standard representations of the structure dy a
functions, we change the integration variable fritf to the

Bjorken variable x using the relationM%=mj+Q?(1 +(a+z)(us—1l(z,a) - 5
—x)/x. Next, from inequality(12) the lower limit in x is (1+2)
found,

Dm(QZ)=(1Q;2y)fdMisz(Mi,Qz)(l—
(a+2z(1+ us+4a))l(z,0)

. (20

where
y

-— 15
1—y2mf,/Q2 (19

Xmin

4Compard 14], Eq.(D.7) with a sign misprint corrected and upper
yielding the useful relation Q2 limit neglected.
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1-a
1+2z

0.10

( a+z
I(z,a)=

g 2 k
k=

_a)

With the numerical values for, andQq, the remainingy
integration leads to the energy independent conshigt

— total GRV
-+« total MRRS
—-— elastic

=0.017672 as elastic contribution N(E). 5006

Inelastic contributionThe structure functionk, , are pa- <
rametrized using the next to leading order quark distributions 0.04 [i
of [15] and the parton model relatidf, = 2xF;. To test the

LI LI L AL IS L DL L L

sensitivity of our results on this particular parametrization, 0.02
we have repeated some of the calculations using the structure
functions of[16]. The difference is small enough.

The Q? dependence of thElz parametrizations is valid _ bustdusnbiatudustusbitnbudu bt
above some low input valu®?, . Fortunately, the inelastic 0 0.2 04 =w/E°'6 o8 10
contributions toN(E) should be almost insensitive to the Y
behavior of structure functions at sm@lf. To test this state- FIG. 2. Energy distribution of virtual photons from the proton,
ment, we consider two extrapolations for these functions bey?f(y) at 0.9 TeV.
low Qf: F1A%,Q%)=0 or F1(x,Q)=F1Ax,Qf,). At
E=0.9 TeV in Glick-Reya-Vogt (GRV) parametrization Large Hadron Collider independent on monopole spinand
[15] the results coincide within 1% accuracy. These values are much higher than the cross section of the

Numerical estimatesAt 0.9 TeV we obtain N(E)  main background procesgy— yy via a W boson and &
=0.0410 in the GRV andN(E)=0.0338 in the Martin- quark loop which is about 20-30 fl4.3].
Roberts-Ryskin-StirlindMRRS) approximatior{ 16] for this
factor of Eq.(9). The quantityN(E) depends only weakly on IV. ENERGY AND MOMENTUM DISTRIBUTIONS

the proton energye. The ratio N(E)/N(0.9 TeV) varies o ,
from 0.966 atE=0.5 TeV to 1.006 at 1 TeV and 1.102 at  ENergy distribution for virtual photonsthe photon fluxes
E=7 TeV using GRV parametrization. in Eq. (9) decrease with increasing photon energies. On the

For a monopole withl,,=1/2 andM/n=1 TeV and a other hand, the/y subprocess cross section rapidly increases

proton energy of 1 TeV, we obtain the total cross section With S=4wjw,. Therefore, the main contribution to the
o —150 b 21) cross section is given by region of intermediate. As al-
Pp= 77X ' ready mentioned, the dependence of the subprocess cross
It is useful to rewrite this photon production cross section forsection onQ? can be neglected since the characteristic val-
different proton collider energies and different kinds of ues of virtualityQ?<s<M?2. Therefore, the energy distribu-

U NN T N T N [N T N N N T IS B A

monopoles: tion for virtual photons is given bycompare Eqs(9) and
Tpp—yyx(E;M,P,n) = 108P( (N(lTe\/)) o u
——=|— REGy f(yDysf(y2). (25)
1TeV\? dy,dy, \7
E fb (22
Figure 2 shows the energy distributigff (y) for photons

arising from one protoigthe distribution is identical for each
photon) using the two structure function parametrizations.
The virtual photon energy distribution varies only weakly
with the energyE, this weak energy dependence manifests
itself in the weake dependence di(E) mentioned above.

Let us consider a luminosity integral of 2 fhand a beam
energy of 0.9 TeMTevatron. If we assume 10 events to be
sufficient to detect the discussed effect, the following mass
limits can be reachefor different spinsly):

0.998 TeV, Jy=0, At 0.9 TeV the average energy of the colliding photons and
M<n®{ 1.42 TeV, Jy=1/2, (23)  their energy spread are
2.56 TeV, Jy=1. (w)=0.31EF, (Aw)=0.14F. (26)
Taking 100 fo ' andE=7 TeV (LHC) we obtain the fol- vy differential cross sectiong\s noticed at the beginning
lowing mass limits: of Sec. Il, the transverse motion of inciddmirtual) photons

can be neglected with reasonable accuracy. Therefore, the

7.40 TeV, Jy=0, transverse momenta of the produced photons are balanced:

M<n®{ 10.5 TeV, Jy=1/2, (24  pr3~—prs=p7. The 4-momenta of these photons in the
19.0 TeV, Jy=1. c.m.s. of the protons can be written in two forms:
. — » P34= (€34, = P1,0PL3L4) =P1(COSHY3 4, % 1,0,5iNM734).
The obtained limiting quantities correspond to »ay (27

— vy subprocess cross sectifralculated af{ w)® with an
estimate of w) taken from Eq(26) below] which is roughly ~ Here transverse and longitudinal momenta and rapidities of
500 pb for the Fermilab Tevatron and 10 pb for the CERNphotons are introduced. Using these notations we have
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w12 Pt .
ylzzn———:-—_(efﬂa+ e” 74)_

P
Voo, E 2E
(28)

sing=

With the standard transformation
d 83843

Jy19Y29 COSE  PrIpL3dPLadPT

the integrand of Eq(7) (after integrating oveQiz) can be
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9= (1-y)(Q2-Qf ), =12, (3D

whereQ? ,;, is the minimal value ofQ? for energy fraction
yi as given in Eq(12).

Since characteristicaIIQi2<§, the photon pair transverse
momentum is typically much smaller than the transverse mo-
menta of the produced photonk;<<py3~pt4. Therefore,
the distribution inp;, pt factorizes from that irky. The
latter distribution can be obtained by integration over the

considered as the distribution over the momenta of producedirtual photon fluxes only(changing the order of integra-

photons. Then the differential cross sectionygf production
via monopole loop can be presented in the form

do a>2 26 (y )y2i( )5RE4
€384 3 =|—
3 4d3p3d3p4 —| Yit(y1)yat(y2 1120
X 8 (pra+ pra) @,
(pzs F23T4) (29)
o—| 4— pT)
w103

2
-[a- ) .
cost[ (73— 74)/2]

Integrating over one transverse momentum and azimuthal

angle, the cross section is given by

3 2 4
d—(rz:(g iy )y3f(y2)
dpsdpdpr \ 7

®. (30
112 (30

vy total transverse momentum distributioithe total
transverse momentum of the produced photon a# prs

tion). The detailed form of this dependence would be an

additional test for the origin of the discussed photons. The

corresponding calculations are simple but cumbersome, and
one can postpone them to the time, when first events of dis-
cussed type are observed.

However, even before performing the calculation, we can
conclude that this distribution is peaked n&ar=0. This is
evident for the elastic contribution, where the scale of the
distribution is limited from above by that of the form factor.
For the inelastic contribution the virtual photon flux distribu-
tion is wider, however the mean value I is much lower

thans.
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