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Using recently developed methods, we perform high-accuracy calculations of the susceptibiliB hear
the D=3 version of Dyson'’s hierarchical model. Using linear fits, we estimate the legglirand subleading
(A) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized
renormalization group transformation. We foumer 1.29914073: 10 8 and A =0.425946% 10 7 indepen-
dently of the choice of local integration measiitging or Landau-Ginzbung After a suitable rescaling, the
approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed
by Koch and Wittwer[S0556-282198)50311-§

PACS numbes): 05.50-+q, 11.10.Hi, 75.40.Cx

Scalar field theory has many important applications sucttomputing time scales only like the log of the number of
as superconductivity, low energy descriptions of quark-sites, and one can eliminate finite-size effects completely.
antiquark bound states and possibly the mechanism respomhis can justify the effort of trying to solve paft) of the
sible for the mass generation of all the experimentally ob-above program which is a very difficult problem.
served particles. However, there exists no approximate Wilson's approximate recursion formula is closely related
treatment of this theory which could pretend to compete irf0 the recursion formula appearing in Dyson’s hierarchical
accuracy with quantum electrodynamics at low energy,model[z:l. Both models have no wave function renormaliza-
where renormalized perturbation theory can be used to cafion (#=0). It is possible to interpolate continuously be-
culate the magnetic moment of the electron and the muofveen the two models and to show that during this process,
with more than ten significant digits. Given the inherent dif- the critical exponent associated with the susceptibiityar-
ficulties associated with the experimental probing of veryi€s [5] by less than 5 percent with respect to the nearest
short distances, accurate calculations compared with accura@ighbor value. However, the numerical treatment of the two
“|ow-energy” experiments may become more of a StandardmOdels is Completely identical. In the f0||0Wing, we SpeCial'
procedure in the next century. ize the discussion to the case of Dyson’s model because this

In order to obtain a completely satisfactory treatment offodel has been studi¢8,6—1Q in great detail in the past.
scalar field theory in various dimensionS, one needs an aﬁﬂle want to make clear that this choice is not essential and
proximation scheme such théd) the zeroth-order approxi- anything done below could have been done for Wilson's
mation preserves the main qualitative features of the modefPproximate formula.

(b) the zeroth-order approximation allows very accurate cal- In a typical lattice field calculation, we pick some values
culations, andc) the zeroth-order approximation can be im- for the bare parameters entering in an action and we calculate
proved systematically and in a way which preserves its comthe renormalized quantities. In general, the physical masses
putational advantages. We advocate here that hierarchicGfnnot be too large, when expressed in cutoff units. Ideally,
approximations such as the approximate recursion formul#/€ should be able to cover a broad range of situations going
derived by Wilsor{1] or the related recursion formula which from effective theories with a low cutofe.g. (m,/m,)=6
holds for Dyson’s hierarchical modé®] could be used as for an effective theory of pionsto a “fundamental” theory
such a zeroth-order approximation. The fact that the approxiwith a large cutoff and which requires some fine-tuning pro-
mate recursion formula satisfies the requirem@itis dis- cedure. In the following calculations, the fixed bare param-
cussed at length in Reffl]. The fact that requiremertb) is eters will appear in a local measure of the Landau-Ginzburg
satisfied in the symmetric phase is explained in Rgfs4]  (LG) form:
and briefly reviewed below. The use of the hierarchical ap-
proximation solves some important problems encountered in W (¢)Oce,[(1,2)m2¢2+g¢2p]
practical calculations in lattice field theory. First, it possible 0 '
to perform all the integrations appearing in the calculation of
the zero-momentum Green’s function in a much more effi-The limit [1] of a large UV cutoffA, in units of the physical
cient way than with the Monte Carlo procedure. Second, thenassmg, can be reached by tuning another paramgter
which is the inverse temperature in Dyson’s formulation of
the model[2]. More explicitly, A/mg is proportional to
*Present address. (B.—B) 2.
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By fine-tuning 8, one can approach a fixed point of the W (d))Oce(ﬁ/2)<c/4>”+1¢2
renormalization grougRG) transformation and describe the et
renormalization grougRG) flows using the linear approxi- o (=) (p+ ")
mation. As we will show later, foB close enough t@.. (i.e., Xf dé Wn( 2 )Wn( 2 ) ©)
for A large enough one can approximate very well the mag-
netic susceptibility (zero-momentum two point function ) . ) .
with a linearized expression taking into account only the firstvhere c=2"?" in order to approximateD-dimensional

irrelevant direction: nearest neighbor models. For more details, the reader may
consult Refs[4, 8, 9. In the following we only consider the
x=(Bc—B) TAc+AL(B.— B)2]. 2 caseD =3 in the symmetric phase. We approach criticality

) L _ for a fixed initial W, by fine-tuningB as described in Ref.
If we were sure that there is only one non-trivial fixed point [4]. When a critical valueg, is reached approximately, a
(universality and if we could calculate accurately the expo- (giscrete scale invariance is temporarily restored and it is
nents, then the complicated procedure described above cQnvenient to reabsorb the scale factofd) in ¢2. After
be reduced to the determination Af andA, in Eq. (2), @  thjs rescaling, we obtain the conventional RG transformation

procedure that involves no fine-tuning. . _ of the local measure. In Fourier form it reads
In this Rapid Communication, we provide empirical evi-

dence suggesting that the RG transformation of Dyson’s hi-

erarchical model has only one non-trivial fixed point. We 1 &

calculate the exponentsandA with two independent meth- Ro+1(k)= C““eXF( 2 B W)

ods(direct fit and linearization The accuracy of our results

is significantly better than the accuracy reached in the past o .

[3,6,7,9. All the approximate fixed points we have con- We fix the normalization constan€, in such way that

structed below are very clogafter rescalings explained be- Rn(0)=1. We consider the finite dimensional approxima-

low) to the fixed point calculated with an extraordinary ac-{10nS of degred s

curacy by Koch and Wittwefi8]. Our work demonstrates the

enormous galculational advantage of us_ing the hierarchiqal Rn(k):1+an,lk2+ an’2k4+...+an‘|maxk2|max‘ (5)

approximation and addresses the question of understanding

to what extent expansions about a known fixed point can be

used as a substitute to the lengthy calculations in terms ofhe coefficientsa,, |, are proportiona[4,10,9 to the expec-

bare parameters described above. tation value of the sum of all the fieldgfter n iterations,
For the sake of completeness, we briefly review the stepthere are 2 of them) denotedM,,. In particular, the finite

which lead to the basic expression of the RG transformatiowolume susceptibility,(8), defined ag(M,)?),/2" is sim-

of Eq. (6). The block-spin transformation of the hierarchical ply —2a, 1(2/c)". WhenB<pg., x, reaches a finite limi,

model is an integral formula which transforms the local meawhenn goes to infinity. The recursion formula fa, ., is

sureW(¢) according to the rule: purely algebraic:

2
|- @

o

S\ (S 5 18 pn, ) [(2D)1 (1 = m)1 (2m)1 ](c/4)'[ - (172 g1

S\ S+ g 18n,pn,g) (2D 111(c/4)'[ - (1/2) 5]

(6)

Ant1m™

The initial condition for the Ising measureR=cosk). For  rameters appearing in E€R) from direct calculations of at
the Landau-Ginsburg measure, the coefficients in thearious temperatures. The calculations which follow have
k-expansion need to be evaluated numerically. been performed for two particular choiceswf, one corre-

In a recent articl¢4], we have shown that the errors gn sponding to the Ising limif Wy(¢)= 5(¢2_1)] and the
due to finite volume and finite truncations fell exponentially other to the choicen?=1, p=2, andg=0.1 in Eq.(1). Un-
fast with, respectively, the number of iterations used and thgess specified differently, the calculations are performed us-
dimension of the truncated spack,{J. It is possible 10 jnq double-precision. In the following, we use the notation
make calcgla_tlons, where these errors play no practical rolg,, ihe quantity—log;o( B.— B). If we display logf) versus
The main limitation of the method comes from the round-offx7 the deviations from the linear behavior are not visible to

errors which are amplified, when many iterations are spen o eye and need to be studied and understood “locally” in

near the fixed point. If the arithmetic operations are per- ; 4
formed with a precisior, then[4] B. In order to get a rough understanding of the corrections,

we have divided the computer data in 14 bins of 100 points.
Sx S The first bin contains data for values »£1.00, 1.01, ...
| B=p (7)  1.99 and so on. In each biindexedi), we make a linear fit
¢ of log;o( x) versusx. In theith bin, we call the slope/!”,
We now proceed to determine the values of the four paand (") denotes the sum of the squares of the difference
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. — =50 for the LG modelsee Ref[4] for the determination of
B . = 1G . | these quantitios we were able to calculatgin bins 10, 11,
‘ . and 12 with 11 significant digits. In the following, we call
L . 1 this data the “high-precision data.” Since this procedure is
x o . relatively lengthy, we have used only ten points per bins. We
| x B also determinegB, with 24 significant digits so that in bin
s, : 12, the subtracted quantifg,— B is also known with at least
. ] 11 significant digits. In the Ising case, the result is easily
© < _ reproducible and readg8.=1.17903017044626973251189.
* We have then used bin I%here the subleading corrections
L — are very small and our errors on them are less important
with y divided by the subleading correction as described
Bin Index (i) above, to estimatg. We then used this better value pfto
obtain the subleading corrections in bin(Where they are
FIG. 1. The deviations from the linear fits") defined in the more sizablg This procedure can be iterated. This “boot-
text as functions of the bins, for the Ising modeircles and the strap” of linear fits converges rapidly. We reach a nine sig-
Landau-Ginzburg modestars. nificant digit agreement between the high-precision data and
) o the fit obtained with the above procedure. The small discrep-
between the data and the linear fit divided by the number ofies can be analyzed in terms of first order errors made in

points i_n a_bin(lOO)_ minus 2. The \_/alueS oir) are dis-  the estimate of the four parameters. This linear analysis pro-
played in Fig. 1. This graph can be interpreted easily. Therg;jag small corrections<(4x 10~ to y and more sizable

are two known sources of (_jewatlons from the linear .behav'corrections €4x10 % to A. The size of these corrections
ior: the subleading corrections to the scaling lagwshich

decrease wheys gets close t8.) and the round-off errors provide an order magnitude estimate for the errors. After
A Bg PBe : these small corrections are taken into account, we obtain an
[which increase, wheiB gets close tg3. according to Eq.

(7)]. The approximate slopes in Fig. 1 confirm this interpre_agreement between the exponents of the two models for the

tation. In bin 9, we minimize the combined deviations from following digits: y=1.299140730 and =0.4260. We con-
linearity and we can consider® as a first estimate of. Its clude thaty=1.29914073 with an estimated error of less

numerical value is 1.29917 in the Ising case and 1.29914 if1an 10°. _ _
the Landau-Ginzburd_G) case. With this simple procedure, e would like to comment about the corrections to Eq.
we have already gained almost two significant digits com{2) and how they could affect our estimates. First, since the
pared to the existing estimatég,7'9], where the answey third eigenvalue of the linearized RG tl’ansformatiﬂ@
=1.300 was consistently obtained with errors of order 1 in=0.48, the next subleading exponent is approximately 2. For
the last digit. x>10, these effects are negligible. Second, a general argu-
We can improve this result by estimating the subleadingnent[1], suggests that we should replace the consfent
corrections. For this purpose, we have used the bins 6 and @nd A; in Eq. (2) by log-periodic function which can be
where the next subleading corrections are sifsae discus- expressed as linear superposition of Fourier modes of the
sion latey and where the numerical errors are still not tooform (BC—B)“Z”'”"M], with | an integer. Evidence for non-
large. We have divided these two bins into 10 sub-bins ofzero Fourier modes were found in RE®] by using an esti-

100 points each. We use two digit indices for these sub-bing, ofy—1 called the extrapolated slope and dendigd
For instance sub-bin 6.3 is the third sub-bin of bin 6 and,, ;s estimator, oscillating and constant contributions have

contains the values of: 6.3, 6.301. .., 6.399. Using Eg. rou - -

. : X ghly the same amplitude. However, using E(7) to
2), th k f t h -
(2), the same kind of notations as above foand noting that (3.10 of Ref. [9], one realizes that i18,,, the oscillating

j+0.0495 is the middle of the sub-bin indexed pywe . ) : o
obtain the approximate decay law: an;plltude.ls dramatically amplified by a fagtqr of_the order
|wT (y+iw)|, wherew=2m/In(\;)=18. This implies that
A the Fourier coefficients of the non-zero modes are suppressed
Y= y—A(—l 10 A(j+0.0495 (8) by atleast 14 orders of magnitude. A direct search for these
Ao oscillations confirms this upper bound. Third, Eg) is ob-
tained from a linearization. Higher order corrections give
The unknown coefficients can be extracted from linear fits otontributions proportional tog.— 8)22. An analysis of the
log;o YU TOV—9)). We obtainedA,/A,=—0.57 andA difference between fit and data in low bins indicates that
=0.428 for the Ising model and\;/A;=0.14 and A  these corrections are the main source of errors in our analy-
=0.427 for the LG model specified above. Repeating thesis.
first step(a linear fit in bin 9, but with y divided by[1 An alternative calculation of the exponents consists in lin-
+(A1/A)(B.—B)*], we obtain y=1.299141 with an earizing the RG transformation near a fixed point. An ap-
agreement up to the sixth decimal place between the twproximate fixed point can be found by approachggfrom
models considered above. below with our best resolution and iterating urajl, ; ;/a, ;
Equation(7) is an unavoidable limitation if we use double takes a value which is as close as possible to 1. In the present
precision arithmetic. However, usingATHEMATICA with a  formulation, the linearized RG transformation is given by the
suitably set precision, =42 for the Ising model anfl,.x, ! maxXImax Matrix
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daps1, introduced in[8]. For p=2 andl<42, we found that the
= ' ©) error éu; on thelth coefficients of the approximate (k)
with respect to the accurate expression obtained from Ref.

evaluated at théapproximatedifixed point. Using the high- [8] were bounded bysu|<3x 10°8/112".

PrecisionMATHEMATICA -based method described above, we N order to further explore the possibility of having differ-
obtained this approximate fixed point for=101 for the ent fixed points, we have considered more LG models. Using

Ising model and fon= 97 for the LG model. Calculating the gasepsa?gaﬁgz(?%onC?]f()(l)zsci{#)’ ;vrﬁogavshg(z‘gﬁ?vsirr?d tgisilbzili-
eigenvalues of Eq(9) for the two models used for the first y g 9 gp

) o . _ ties:m?= =1 (single or double-well potentiglsp=2, 3, or
estimates, we obtain discrepancies of 20~8 for \; and of : L A
’ 4 I f -
4x10°8 for \,. The average values ae,—1.42717246 (coupling constants of positive, zero and negative dimen

4 . . sions, when the cutoff is restoredndg= 10 or 0.1(moder-
a}nd A>=0.85941163. Cha’nglng by one or improving the __ately large and small couplingsThese searches have been
fixed point using Newton's method produce variations inperformed using regular double-precision calculations. We
these eigenvalues which are smaller thanl® °. Using the  hayve not aimed at great accuracy. For all these twelve mod-
relationsy=21n(2)/3 In(\;) and A= —In(A,)/In(\y), we ob-  els, we found that using the same notations and conventions
tain y=1.29914078 and =0.4259469 both with estimated as a abovésu,|<5x10~%/112'. In other words, the function
errors of order 10". The new estimate of is compatible (k) seems to be independent of the general shape of the
with the previous one, but is less accurate. On the othepotential, the strength of the interactions and whether or not
hand, the new estimate df is more accurate. The discrep- the model is perturbatively renormalizable.
ancy with the previous estimate is less tharm 4@vhich is In conclusion, our best estimates of the critical exponents
compatible with our previous error estimate. y=1.29914073 108 and A=0.425946%10 ' have an

The two approximated fixed points obtained in the abovesccuracy significantly better than existing estimd®&g,9].
calculation depend ofi.. We denote therR* (k,3c). How-  Qur results demonstrate the power of the methods developed
ever, it is possible to obtain what will turn out to be a uni- in Ref.[4]. They provide an incentive to develop more effi-
versal functionU (k) by absorbingg into k. More explicitly,  cient perturbative calculations of the critical exponents and

I, m— é’an,m

we found that to attack the problem of the improvement of the hierarchical
. approximation. We found no indications for the existence of
U(k)=R*(VBck.Bo) (100 4 non-trivial fixed point different from the one obtainable

is in very good approximation independent of the model Confrom Ref.[8]. Near criticality, or in field theoretical language

. : L : 2 _ for a large UV cutoff, the parametrization of E@) fits the
sidered. _Th|s function is relat(_ad to a fixed pofifs”) con data very well. The quantitie&, andA; depend on the bare
structed in Ref[8] by the relation : ;

parameters in a complicated way. However, the fact that we

c—4 can use confidently the universal features suggests that it is
U(k)ocf (Y) k2 (1)  possible to shortcut the use of bare parameters and consider
directly Ay, A; as an input. More generally, we are in posi-
The Taylor coefficients of can be found in the file approx.t tion to check if the following conjecture is true: an expansion
in [8]. Normalizing Eq.(11) with U(0)=1, we obtain about the non-trivial fixed point can be used as a substitute
for the calculations in terms of bare parameters. If true, this
U(k)=1.0—0.358711349882 + 0.05353728824" —- - - . would mean that the result of RgB] effectively “solves”

(12 the hierarchical model even far away from criticality.

It is not known if there is only one non-trivial fixed point for This research was supported in part by the Department of
Dyson’s model. Both the two approximate fixed points weEnergy under Contract No. FG02-91ER40664. J. J. Godina
have constructed above give a functioifk) very close to is supported by CONACYT. Y. M. thanks P. Wittwer and
Eqg. (12). The closeness can be characterized byptherms  the CERN lattice group for useful conversations.
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