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Accurate checks of universality for Dyson’s hierarchical model
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Using recently developed methods, we perform high-accuracy calculations of the susceptibility nearbc for
theD53 version of Dyson’s hierarchical model. Using linear fits, we estimate the leading~g! and subleading
~D! exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized
renormalization group transformation. We foundg51.2991407361028 and D50.425946961027 indepen-
dently of the choice of local integration measure~Ising or Landau-Ginzburg!. After a suitable rescaling, the
approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed
by Koch and Wittwer.@S0556-2821~98!50311-6#

PACS number~s!: 05.50.1q, 11.10.Hi, 75.40.Cx
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Scalar field theory has many important applications s
as superconductivity, low energy descriptions of qua
antiquark bound states and possibly the mechanism res
sible for the mass generation of all the experimentally
served particles. However, there exists no approxim
treatment of this theory which could pretend to compete
accuracy with quantum electrodynamics at low ener
where renormalized perturbation theory can be used to
culate the magnetic moment of the electron and the m
with more than ten significant digits. Given the inherent d
ficulties associated with the experimental probing of ve
short distances, accurate calculations compared with accu
‘‘low-energy’’ experiments may become more of a standa
procedure in the next century.

In order to obtain a completely satisfactory treatment
scalar field theory in various dimensions, one needs an
proximation scheme such that~a! the zeroth-order approxi
mation preserves the main qualitative features of the mo
~b! the zeroth-order approximation allows very accurate c
culations, and~c! the zeroth-order approximation can be im
proved systematically and in a way which preserves its co
putational advantages. We advocate here that hierarch
approximations such as the approximate recursion form
derived by Wilson@1# or the related recursion formula whic
holds for Dyson’s hierarchical model@2# could be used as
such a zeroth-order approximation. The fact that the appr
mate recursion formula satisfies the requirement~a! is dis-
cussed at length in Ref.@1#. The fact that requirement~b! is
satisfied in the symmetric phase is explained in Refs.@3, 4#
and briefly reviewed below. The use of the hierarchical
proximation solves some important problems encountere
practical calculations in lattice field theory. First, it possib
to perform all the integrations appearing in the calculation
the zero-momentum Green’s function in a much more e
cient way than with the Monte Carlo procedure. Second,
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computing time scales only like the log of the number
sites, and one can eliminate finite-size effects complet
This can justify the effort of trying to solve part~c! of the
above program which is a very difficult problem.

Wilson’s approximate recursion formula is closely relat
to the recursion formula appearing in Dyson’s hierarchi
model@2#. Both models have no wave function renormaliz
tion (h50). It is possible to interpolate continuously b
tween the two models and to show that during this proce
the critical exponent associated with the susceptibilityg var-
ies @5# by less than 5 percent with respect to the near
neighbor value. However, the numerical treatment of the t
models is completely identical. In the following, we specia
ize the discussion to the case of Dyson’s model because
model has been studied@3,6–10# in great detail in the past
We want to make clear that this choice is not essential
anything done below could have been done for Wilso
approximate formula.

In a typical lattice field calculation, we pick some valu
for the bare parameters entering in an action and we calcu
the renormalized quantities. In general, the physical mas
cannot be too large, when expressed in cutoff units. Idea
we should be able to cover a broad range of situations go
from effective theories with a low cutoff„e.g. (mr /mp).6
for an effective theory of pions… to a ‘‘fundamental’’ theory
with a large cutoff and which requires some fine-tuning p
cedure. In the following calculations, the fixed bare para
eters will appear in a local measure of the Landau-Ginzb
~LG! form:

W0~f!}e2@~1/2!m2f21gf2p#. ~1!

The limit @1# of a large UV cutoffL, in units of the physical
massmR , can be reached by tuning another parameterb,
which is the inverse temperature in Dyson’s formulation
the model @2#. More explicitly, L/mR is proportional to
(bc2b)2g/2.
R6581 © 1998 The American Physical Society
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By fine-tuningb, one can approach a fixed point of th
renormalization group~RG! transformation and describe th
renormalization group~RG! flows using the linear approxi
mation. As we will show later, forb close enough tobc ~i.e.,
for L large enough!, one can approximate very well the ma
netic susceptibility ~zero-momentum two point function!
with a linearized expression taking into account only the fi
irrelevant direction:

x.~bc2b!2g@A01A1~bc2b!D#. ~2!

If we were sure that there is only one non-trivial fixed po
~universality! and if we could calculate accurately the exp
nents, then the complicated procedure described above
be reduced to the determination ofA0 and A1 in Eq. ~2!, a
procedure that involves no fine-tuning.

In this Rapid Communication, we provide empirical ev
dence suggesting that the RG transformation of Dyson’s
erarchical model has only one non-trivial fixed point. W
calculate the exponentsg andD with two independent meth
ods~direct fit and linearization!. The accuracy of our result
is significantly better than the accuracy reached in the p
@3,6,7,9#. All the approximate fixed points we have co
structed below are very close~after rescalings explained be
low! to the fixed point calculated with an extraordinary a
curacy by Koch and Wittwer@8#. Our work demonstrates th
enormous calculational advantage of using the hierarch
approximation and addresses the question of understan
to what extent expansions about a known fixed point can
used as a substitute to the lengthy calculations in term
bare parameters described above.

For the sake of completeness, we briefly review the st
which lead to the basic expression of the RG transforma
of Eq. ~6!. The block-spin transformation of the hierarchic
model is an integral formula which transforms the local m
sureW(f) according to the rule:
th
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Wn11~f!}e~b/2!~c/4!n11f2

3E df8WnS ~f2f8!

2 DWnS ~f1f8!

2 D , ~3!

where c52122/D in order to approximateD-dimensional
nearest neighbor models. For more details, the reader
consult Refs.@4, 8, 9#. In the following we only consider the
caseD53 in the symmetric phase. We approach critical
for a fixed initial W0 by fine-tuningb as described in Ref
@4#. When a critical valuebc is reached approximately,
~discrete! scale invariance is temporarily restored and it
convenient to reabsorb the scale factor (c/4) in f2. After
this rescaling, we obtain the conventional RG transformat
of the local measure. In Fourier form it reads

Rn11~k!5Cn11expS 2
1

2
b

]2

]k2D FRnS kAc

2 D G2

. ~4!

We fix the normalization constantCn in such way that
Rn(0)51. We consider the finite dimensional approxim
tions of degreel max:

Rn~k!511an,1k
21an,2k

41¯1an,l max
k2l max. ~5!

The coefficientsan,l are proportional@4,10,9# to the expec-
tation value of the sum of all the fields~after n iterations,
there are 2n of them! denotedMn . In particular, the finite
volume susceptibilityxn(b), defined aŝ (Mn)2&n/2n is sim-
ply 22an,1(2/c)n. Whenb,bc , xn reaches a finite limitx,
when n goes to infinity. The recursion formula foran,m is
purely algebraic:
an11,m5
( l 5m

l max~(p1q5 lan,pan,q!@~2l !!/ ~ l 2m!! ~2m!! #~c/4! l@2~1/2!b# l 2m

( l 50
l max~(p1q5 lan,pan,q!@~2l !!/ l ! #~c/4! l@2~1/2!b# l . ~6!
ve
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The initial condition for the Ising measure isR05cos(k). For
the Landau-Ginsburg measure, the coefficients in
k-expansion need to be evaluated numerically.

In a recent article@4#, we have shown that the errors onx
due to finite volume and finite truncations fell exponentia
fast with, respectively, the number of iterations used and
dimension of the truncated space (l max). It is possible to
make calculations, where these errors play no practical r
The main limitation of the method comes from the round-
errors which are amplified, when many iterations are sp
near the fixed point. If the arithmetic operations are p
formed with a precisiond, then@4#

Udx

x U; d

bc2b
. ~7!

We now proceed to determine the values of the four
e

e

e.
f
nt
-

-

rameters appearing in Eq.~2! from direct calculations ofx at
various temperatures. The calculations which follow ha
been performed for two particular choices ofW0 , one corre-
sponding to the Ising limit@W0(f)5d(f221)# and the
other to the choicem251, p52, andg50.1 in Eq.~1!. Un-
less specified differently, the calculations are performed
ing double-precision. In the following, we use the notationx
for the quantity2 log10(bc2b). If we display log(x) versus
x, the deviations from the linear behavior are not visible
the eye and need to be studied and understood ‘‘locally’
b. In order to get a rough understanding of the correctio
we have divided the computer data in 14 bins of 100 poin
The first bin contains data for values ofx51.00, 1.01, . . .
1.99 and so on. In each bin~indexedi !, we make a linear fit
of log10(x) versusx. In the i th bin, we call the slopeg ( i ),
and (s ( i ))2 denotes the sum of the squares of the differen
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between the data and the linear fit divided by the numbe
points in a bin~100! minus 2. The values ofs ( i ) are dis-
played in Fig. 1. This graph can be interpreted easily. Th
are two known sources of deviations from the linear beh
ior: the subleading corrections to the scaling laws~which
decrease whenb gets close tobc! and the round-off errors
@which increase, whenb gets close tobc according to Eq.
~7!#. The approximate slopes in Fig. 1 confirm this interp
tation. In bin 9, we minimize the combined deviations fro
linearity and we can considerg (9) as a first estimate ofg. Its
numerical value is 1.29917 in the Ising case and 1.2991
the Landau-Ginzburg~LG! case. With this simple procedure
we have already gained almost two significant digits co
pared to the existing estimates@3,7,9#, where the answerg
51.300 was consistently obtained with errors of order 1
the last digit.

We can improve this result by estimating the sublead
corrections. For this purpose, we have used the bins 6 an
where the next subleading corrections are small~see discus-
sion later! and where the numerical errors are still not t
large. We have divided these two bins into 10 sub-bins
100 points each. We use two digit indices for these sub-b
For instance sub-bin 6.3 is the third sub-bin of bin 6 a
contains the values ofx: 6.3, 6.301, . . . , 6.399. Using Eq.
~2!, the same kind of notations as above forg and noting that
j 10.0495 is the middle of the sub-bin indexed byj , we
obtain the approximate decay law:

g~ j !.g2DS A1

A0
D102D~ j 10.0495!. ~8!

The unknown coefficients can be extracted from linear fits
log10(g

( j 10.1)2g ( j )). We obtainedA1 /A0520.57 andD
50.428 for the Ising model andA1 /A050.14 and D
50.427 for the LG model specified above. Repeating
first step ~a linear fit in bin 9!, but with x divided by @1
1(A1 /A0)(bc2b)D#, we obtain g51.299141 with an
agreement up to the sixth decimal place between the
models considered above.

Equation~7! is an unavoidable limitation if we use doub
precision arithmetic. However, usingMATHEMATICA with a
suitably set precision,l max542 for the Ising model andl max

FIG. 1. The deviations from the linear fitss ( i ) defined in the
text as functions of the bins, for the Ising model~circles! and the
Landau-Ginzburg model~stars!.
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550 for the LG model~see Ref.@4# for the determination of
these quantities!, we were able to calculatex in bins 10, 11,
and 12 with 11 significant digits. In the following, we ca
this data the ‘‘high-precision data.’’ Since this procedure
relatively lengthy, we have used only ten points per bins.
also determinedbc with 24 significant digits so that in bin
12, the subtracted quantitybc2b is also known with at leas
11 significant digits. In the Ising case, the result is eas
reproducible and readsbc51.1790301704462697325118
We have then used bin 12~where the subleading correction
are very small and our errors on them are less importa!
with x divided by the subleading correction as describ
above, to estimateg. We then used this better value ofg to
obtain the subleading corrections in bin 7~where they are
more sizable!. This procedure can be iterated. This ‘‘boo
strap’’ of linear fits converges rapidly. We reach a nine s
nificant digit agreement between the high-precision data
the fit obtained with the above procedure. The small discr
ancies can be analyzed in terms of first order errors mad
the estimate of the four parameters. This linear analysis p
vides small corrections (,431029) to g and more sizable
corrections (,431024) to D. The size of these correction
provide an order magnitude estimate for the errors. Af
these small corrections are taken into account, we obtain
agreement between the exponents of the two models for
following digits: g51.299140730 andD50.4260. We con-
clude thatg51.29914073 with an estimated error of le
than 1028.

We would like to comment about the corrections to E
~2! and how they could affect our estimates. First, since
third eigenvalue of the linearized RG transformationl3

.0.48, the next subleading exponent is approximately 2.
x.10, these effects are negligible. Second, a general a
ment @1#, suggests that we should replace the constantA0

and A1 in Eq. ~2! by log-periodic function which can be
expressed as linear superposition of Fourier modes of
form (bc2b) @ i2p l / ln(l1)#, with l an integer. Evidence for non
zero Fourier modes were found in Ref.@9# by using an esti-
mator ofg21 called the extrapolated slope and denotedŜm .
In this estimator, oscillating and constant contributions ha
roughly the same amplitude. However, using Eqs.~3.7! to
~3.10! of Ref. @9#, one realizes that inŜm , the oscillating
amplitude is dramatically amplified by a factor of the ord
uv3/G(g1 iv)u, wherev52p/ ln(l1).18. This implies that
the Fourier coefficients of the non-zero modes are suppre
by at least 14 orders of magnitude. A direct search for th
oscillations confirms this upper bound. Third, Eq.~2! is ob-
tained from a linearization. Higher order corrections gi
contributions proportional to (bc2b)2D. An analysis of the
difference between fit and data in low bins indicates t
these corrections are the main source of errors in our an
sis.

An alternative calculation of the exponents consists in l
earizing the RG transformation near a fixed point. An a
proximate fixed point can be found by approachingbc from
below with our best resolution and iterating untilan11,1/an,1
takes a value which is as close as possible to 1. In the pre
formulation, the linearized RG transformation is given by t
l max3lmax matrix



e

t

in

d

th
-

v

i-

on

t

r
e

ef.

r-
ing
2
ili-

en-

en
We
od-
ions

the
not

nts

ped
fi-
nd
cal
of

le
e

we
it is

sider
i-
on
tute
his

t of
ina
d

RAPID COMMUNICATIONS

R6584 57J. J. GODINA, Y. MEURICE, AND M. B. OKTAY
Ml ,m5
]an11,l

]an,m
~9!

evaluated at the~approximated! fixed point. Using the high-
precisionMATHEMATICA -based method described above, w
obtained this approximate fixed point forn5101 for the
Ising model and forn597 for the LG model. Calculating the
eigenvalues of Eq.~9! for the two models used for the firs
estimates, we obtain discrepancies of 231028 for l1 and of
431028 for l2 . The average values arel151.42717246
and l250.85941163. Changingn by one or improving the
fixed point using Newton’s method produce variations
these eigenvalues which are smaller than 331028. Using the
relationsg52 ln(2)/3 ln(l1) andD52 ln(l2)/ln(l1), we ob-
tain g51.29914078 andD50.4259469 both with estimate
errors of order 1027. The new estimate ofg is compatible
with the previous one, but is less accurate. On the o
hand, the new estimate ofD is more accurate. The discrep
ancy with the previous estimate is less than 1024 which is
compatible with our previous error estimate.

The two approximated fixed points obtained in the abo
calculation depend onbc . We denote themR* (k,bc). How-
ever, it is possible to obtain what will turn out to be a un
versal functionU(k) by absorbingb into k. More explicitly,
we found that

U~k!5R* ~Abck,bc! ~10!

is in very good approximation independent of the model c
sidered. This function is related to a fixed pointf (s2) con-
structed in Ref.@8# by the relation

U~k!} f F S c24

2c D k2G . ~11!

The Taylor coefficients off can be found in the file approx.
in @8#. Normalizing Eq.~11! with U(0)51, we obtain

U~k!51.020.358711349882k210.053537288227k42¯ .
~12!

It is not known if there is only one non-trivial fixed point fo
Dyson’s model. Both the two approximate fixed points w
have constructed above give a functionU(k) very close to
Eq. ~12!. The closeness can be characterized by ther-norms
ys
er

e

-

introduced in@8#. For r52 and l<42, we found that the
error dul on the l th coefficients of the approximateU(k)
with respect to the accurate expression obtained from R
@8# were bounded byudul u,331028/ l !2 l .

In order to further explore the possibility of having diffe
ent fixed points, we have considered more LG models. Us
the parametrization of Eq.~1!, we have considered the 1
cases obtained by choosing among the following possib
ties: m2561 ~single or double-well potentials!, p52, 3, or
4 ~coupling constants of positive, zero and negative dim
sions, when the cutoff is restored! andg510 or 0.1~moder-
ately large and small couplings!. These searches have be
performed using regular double-precision calculations.
have not aimed at great accuracy. For all these twelve m
els, we found that using the same notations and convent
as a aboveudul u,531025/ l !2 l . In other words, the function
U(k) seems to be independent of the general shape of
potential, the strength of the interactions and whether or
the model is perturbatively renormalizable.

In conclusion, our best estimates of the critical expone
g51.2991407361028 and D50.425946961027 have an
accuracy significantly better than existing estimates@3,7,9#.
Our results demonstrate the power of the methods develo
in Ref. @4#. They provide an incentive to develop more ef
cient perturbative calculations of the critical exponents a
to attack the problem of the improvement of the hierarchi
approximation. We found no indications for the existence
a non-trivial fixed point different from the one obtainab
from Ref.@8#. Near criticality, or in field theoretical languag
for a large UV cutoff, the parametrization of Eq.~2! fits the
data very well. The quantitiesA0 andA1 depend on the bare
parameters in a complicated way. However, the fact that
can use confidently the universal features suggests that
possible to shortcut the use of bare parameters and con
directly A0 , A1 as an input. More generally, we are in pos
tion to check if the following conjecture is true: an expansi
about the non-trivial fixed point can be used as a substi
for the calculations in terms of bare parameters. If true, t
would mean that the result of Ref.@8# effectively ‘‘solves’’
the hierarchical model even far away from criticality.
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