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Radiation and string atmosphere for relativistic stars
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We extend the Vaidya radiating metric to include both a radiation field and a string fluid. Assuming diffusive
transport for the string fluid, we find new analytic solutions of Einstein’s field equations. Our new solutions
represent an extension of the Xanthopoulos superpos[i8f656-282(98)50210-X]

PACS numbd(s): 04.20.Jb, 04.40.Nr

Vacuum solutions of Einstein’s field equations have The spacetime metric covering the region exterior to a
played an important role in our understanding of curvaturespherical star is given by
effects and relativistic behavior even though it is obvious 5 o o )
that real stars do not sit in a vacuum but have particle and ds’=AdwP+2dudr—r?(d9*+sif9de?) 1)
radiation atmospheres. Quantum effects allow atmospheres _ " _ .
to be added to classical vacuums; for example black hole\é\/hereA_l 2m(u,r)/r. Initially m(u,r) =m provides the

; . : ; vacuum Schwarzschild solution in the regiom2mg. At
are as_s_omated W'th at_mqspheres of Hawking r_adle{ﬂoﬁﬂ. later timesm(u,r) admits a two-fluid description of diffus-
In addition to their intrinsic value as exact solutions, vacuu

. . . ) . ng matter and outward flowing short-wavelength photons
solutions in general relativity are approximate string theory(sometimes called a “null fluid). Metric (1) is spherically

solutions for curvature, small compared to the Planck Scalgymmetric and given in retarded time coordinatewith the
[3]. The intense level of activity in string theory has lead t0,5e of 3 Newman-Penrose null tetrad the Einstein tensor is
the idea that many of the classic vacuum scenarios, such @ymputed from Eq(1) and given by

the static Schwarzschild point mass or black hole, may have

atmospheres composed of a fluid or field of strifbgs One G,y=—20 (1 ,n,+n,l,+ mﬂrﬁﬂr ﬁ#my) 2
of the well known examples of radiation atmospheres is the
Vaidya metric[5], generated from the vacuum Schwarzs- —2P,) 1, —6Ag,,.

child solution by allowing the Schwarzschild mass to be a
function of retarded time. The resulting stress-energy conteritiere the null tetrad components of the Ricci tensor are
describes outgoing short-wavelength photons.

In this Rapid Communication we extend the Vaidya met- ®yy=—(rm"—2m")/(4r?), (33
ric by allowing the mass to be a function of both retarded .
time and distance along the outgoing null geodesics. The D o= —m/r?, (3b)
effect of this extension is to create two fluids outside the star,
the original null fluid and a new fluid composed of strings. A=R/24=(rm"+2m’")/(12r?).
Given the recent link$6,7] between black holes and string (30

theories, this result is of interest by itself. It is additionally
interesting since our new analytic solutions for the mas
function allow the metric to be written as a superposition of

The metric is Petrov typ® with |, andn, principal null
ectors,| , geodesic, and

a string fluid and vacuum Schwarzschild. We have thereby | dx“=du, (43)
extended the Xanthopolous superpositiéh

The string fluid tension and density depend on spatial de- n,dx*=(A/2)du+dr, (4b)
rivatives of the mass function. Assuming a specific model for
propagation of the density allows the generation of new den- m,dx“=—(r/;2)(d9+isindde). (40

sities and hence new mass functions. We choose to propa-

gate the density diffusively as a particular example of massn order to clearly see the two-fluid description we introduce

transport. a timelike unit velocity vecton” and three unit spacelike
Our sign conventions are A,1,5=A,R",0s, R vectorsr®, &, o* such that

=R® and metric signaturé+,-,-,-). Greek indices range

,LLV[I' N ~ A ~ ~ N “
over (0,1,2,3 = (u,r,d,¢). m abbreviatessm/du, m’ ab- =00, =10, =0, %, —0,0,.
breviatesom/dr, andm” representg?m/dr2. Overhead car- ) ]
ets denote unit vectors. The unit vectors are defined by
v, dxt=AYdu+A~Yr, (5a)
*Permanent address: Physics Department, University of Windsor, .
Ontario, Canada N9B 3P4. rﬂdx”=A_1/2dr, (5h)
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3, dxt=rd 9, (5¢)  V?=r"?(alar)r?(alar), andD is the positive coefficient of
self-diffusion. Classical transport theory derives the diffusion
;pﬂdxﬂzr sindde. (5d) equation by starting with Fick’s law
The Einstein tensof2) can be written as a two-fluid system: j(n)= —DVn (12
G,=2mIr?)l 1, —(2m'Ir?)(v v, — T ,r,) whereV is a purely spatial gradient. Then 4-current conser-
" A A A ionJ&. =
(D, 9+ @0, ©) vationJy,. =0, where
Spherical symmetry allows the function(u,r) to be iden- I3, = (I i) 13
tified as the mass within two-surfaces of constardndr,
and invariantly defined from the sectional curvature of those =nd,—D(Inldr)d,
surfaces:

s A yields the diffusion equatio(i1). We label the 4-currenk;,,
—2mM/r%= Ry, O PO ", (7)  to indicaten diffusion but we could have also writt
since the string number density and string fluid density must
be related byp=Mgn whereMq is the constant mass of the
axt ax” sFring _speciesMS must be a multiple of the Pla_nck mass
Shr— 6BC_B —, (B,C)=(0,1) or (2,3). since it IS only over Planck length scales that point particles
IX® X resolve into strings.
By rewriting the T,, components(1039 and (10b) as
Spherical symmetry requires that the string bivector have g§,— — 4712y andm’ =4mr2p, we can write the integrabil-
world-sheet in either theu(r) or (9,¢) plane. We require iy condition form as
that the world-sheets be timelike, ig.= %E’”EM<O, and
so only theX,, component is non-zero. Herg=—1. It is
useful to writeX*” in terms of unit vectors,

The string bivector is defined by

p+r723,(r2y)=0. (14)

Sav_fugv_ upv ) If we compare the diffusion equatiddl) (n replaced byp)
and soX~°3, "=p#p”—r#r”. We follow Letelier[9,10] and p="Dr2alor (r?dplar) (15
write a string energy-momentum tensor by analogy with one )

for a perfect fluid. The string energy-momentum is given bywith p in Eq. (14) we obtain

TSUII= p(— )1%5 93, —p, H,,,, m=47Dr2plor . (16)

where H# = 5’;—&*‘0@“, H/‘Vivﬁzo, We have written Thus solving the diffusion equation f@r and then integrat-
iw-z(—y)ﬂzw so thati“” is invariant under rep- ing those solutions to obtaim provides exact Einstein solu-

ot : e £ tions for diffusing string fluids.
arametrizations of the world-sheég. Einstein’s field equa- . .
tions,G,,,— — 8T, allow the matter portion of Eq6) to There are many analytic solutions of Ef5) and three of

be identified as a string fluid: them are
0,40 PeT T 9,9, + 0. =potk 17
To=,,+pv,0,+p 0,0, +p (9,9, +e,0,). (9 p=potkylr, (179
Thus p=po+ksu~¥exg —r2/(4Du)], (17b)
A= —m/r?, (109 p=pot (ke /1){1+ (Vml2)erfr(4Du)~ Y2}, (176

4mp=—4mp,=m'[r?, (10b)

) Upon integratingm’ =4mr2p and m=47Dr2dplar we
8mp,=—m"/r. (109 optain the following masses, listed consecutively, for the
. . I . - densities above:

The equation of motioii*)=0 is identically satisfied for the
components off ,, given in Eq.(10). . m(u,r)=mo+ (47/3)r3py+ 27k, (r2—2Du), (183

As an example of mass transport we assume the strings
diffuse and that string diffusion is like point particle diffu-
sion where the number density diffuses from higher numbers

to lower according to +167ks DY — pex — 72) +(\/;/2)erf( 1,
d,n=DVn. (11) (18b)

m(u,r)=my+ (47/3)r3p,
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. ) 1 =1-2my/r—2m/r. Metric (1) then has the formzp,,,
m(u,r)=mo+(4m/3)r°po+2mrk, 1—2—7]2 —(2mg/r)l I, —(2m/r)l I, which is clearly
1 o~ _Sch_ /o=
4 (ﬁ/Z)(l—;)erf(n) 9uv=0,, 2m/inl 1, . (19
n
For the Vaidya metric, witm(u), the field equations linear-
+(27) texp(— 77) } (189  ized aboutg}S" yield G)=(dmvdu)r 21, [11] which is
not a vacuum solution and s@E}V) computed about

where7:=r (4Du)~ 12 Schwarzschild wittm(u,r) is a fortiori not zero. Sinceg,,,

It is clear that metriol) can be written in Kerr-Schild 1S an exact solution for a string fluid argf;;" is an exact _

form as»,,—[2m(u,r)/r]l,l,. Whenm(u,r)=mj for the ~ Vacuum solution, we have extended Xanthopolous’ generali-
Mmv 1 Mmoo 1 .

Schwarzschild solution, (B/r)!,l, solves the vacuum Zation.
field equat_io_ns linearized about flat space. This was Xantho- E. N. Glass was partially supported by an NSERC of
90U|05 original superposition. His generalizatip8] has  canada grant. Computations were verified usirPLEV.4
9ur=09u, tHX) I, with H(x#)I I, required to solve the (Waterloo Maple Software, Waterloo, Ontarioand
vacuum field equations linearized abagyf,. Referring to  GRTENSORIIrel 1.59(P. Musgrave, D. Pollney, and K. Lake,
the mass solutions above, we can write-Am(u,r)/r Queens University, Kingston, Ontayio
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