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Radiation and string atmosphere for relativistic stars
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~Received 8 December 1997; published 27 April 1998!

We extend the Vaidya radiating metric to include both a radiation field and a string fluid. Assuming diffusive
transport for the string fluid, we find new analytic solutions of Einstein’s field equations. Our new solutions
represent an extension of the Xanthopoulos superposition.@S0556-2821~98!50210-X#

PACS number~s!: 04.20.Jb, 04.40.Nr
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Vacuum solutions of Einstein’s field equations ha
played an important role in our understanding of curvat
effects and relativistic behavior even though it is obvio
that real stars do not sit in a vacuum but have particle
radiation atmospheres. Quantum effects allow atmosph
to be added to classical vacuums; for example black h
are associated with atmospheres of Hawking radiation@1,2#.
In addition to their intrinsic value as exact solutions, vacu
solutions in general relativity are approximate string the
solutions for curvature, small compared to the Planck sc
@3#. The intense level of activity in string theory has lead
the idea that many of the classic vacuum scenarios, suc
the static Schwarzschild point mass or black hole, may h
atmospheres composed of a fluid or field of strings@4#. One
of the well known examples of radiation atmospheres is
Vaidya metric @5#, generated from the vacuum Schwarz
child solution by allowing the Schwarzschild mass to be
function of retarded time. The resulting stress-energy con
describes outgoing short-wavelength photons.

In this Rapid Communication we extend the Vaidya m
ric by allowing the mass to be a function of both retard
time and distance along the outgoing null geodesics.
effect of this extension is to create two fluids outside the s
the original null fluid and a new fluid composed of string
Given the recent links@6,7# between black holes and strin
theories, this result is of interest by itself. It is additiona
interesting since our new analytic solutions for the m
function allow the metric to be written as a superposition
a string fluid and vacuum Schwarzschild. We have ther
extended the Xanthopolous superposition@8#.

The string fluid tension and density depend on spatial
rivatives of the mass function. Assuming a specific model
propagation of the density allows the generation of new d
sities and hence new mass functions. We choose to pr
gate the density diffusively as a particular example of m
transport.

Our sign conventions are 2An;[ab]5AmR nab
m , Rmn

5R mna
a , and metric signature~1,-,-,-!. Greek indices range

over ~0,1,2,3! 5 (u,r ,q,w). ṁ abbreviates]m/]u, m8 ab-
breviates]m/]r , andm9 represents]2m/]r 2. Overhead car-
ets denote unit vectors.

*Permanent address: Physics Department, University of Wind
Ontario, Canada N9B 3P4.
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The spacetime metric covering the region exterior to
spherical star is given by

ds25Adu212dudr2r 2~dq21sin2qdw2! ~1!

whereA5122m(u,r )/r . Initially m(u,r )5m0 provides the
vacuum Schwarzschild solution in the regionr .2m0. At
later timesm(u,r ) admits a two-fluid description of diffus
ing matter and outward flowing short-wavelength photo
~sometimes called a ‘‘null fluid’’!. Metric ~1! is spherically
symmetric and given in retarded time coordinateu. With the
use of a Newman-Penrose null tetrad the Einstein tenso
computed from Eq.~1! and given by

Gmn522F11~ l mnn1nml n1mmm̄n1m̄mmn! ~2!

22F22l ml n26Lgmn .

Here the null tetrad components of the Ricci tensor are

F1152~rm922m8!/~4r 2!, ~3a!

F2252ṁ/r 2, ~3b!

L5R/245~rm912m8!/~12r 2!.
~3c!

The metric is Petrov typeD with l m and nm principal null
vectors,l m geodesic, and

l mdxm5du, ~4a!

nmdxm5~A/2!du1dr, ~4b!

mmdxm52~r /A2!~dq1 isinqdw!. ~4c!

In order to clearly see the two-fluid description we introdu
a timelike unit velocity vectorv̂m and three unit spacelike
vectorsr̂ m, q̂m, ŵm such that

gmn5 v̂mv̂n2 r̂ m r̂ n2q̂mq̂n2ŵmŵn .

The unit vectors are defined by

v̂mdxm5A1/2du1A21/2dr, ~5a!

r̂ mdxm5A21/2dr, ~5b!
r,
R5945 © 1998 The American Physical Society
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q̂mdxm5rdq, ~5c!

ŵmdxm5r sinqdw. ~5d!

The Einstein tensor~2! can be written as a two-fluid system

Gmn5~2ṁ/r 2!l ml n2~2m8/r 2!~ v̂mv̂n2 r̂ m r̂ n!

1~m9/r !~q̂mq̂n1ŵmŵn!. ~6!

Spherical symmetry allows the functionm(u,r ) to be iden-
tified as the mass within two-surfaces of constantu and r ,
and invariantly defined from the sectional curvature of tho
surfaces:

22m/r 35Rabmnq̂aŵbq̂mŵn. ~7!

The string bivector is defined by

Smn5eBC
]xm

]xB

]xn

]xC
, ~B,C!5~0,1! or ~2,3!.

Spherical symmetry requires that the string bivector hav
world-sheet in either the (u,r ) or ~q,w! plane. We require
that the world-sheets be timelike, i.e.g:5 1

2 SmnSmn,0, and
so only theSur component is non-zero. Hereg521. It is
useful to writeSmn in terms of unit vectors,

Smn5 r̂ mv̂n2 v̂m r̂ n, ~8!

and soSmaSa
n5 v̂mv̂n2 r̂ m r̂ n. We follow Letelier@9,10# and

write a string energy-momentum tensor by analogy with o
for a perfect fluid. The string energy-momentum is given

Tmn
string5r~2g!1/2Ŝm

aŜan2p'Hmn ,

where H n
m 5d n

m 2ŜmaŜan , H n
m Ŝnb50. We have written

Ŝmn:5(2g)21/2Smn, so that Ŝmn is invariant under rep-
arametrizations of the world-sheets@9#. Einstein’s field equa-
tions,Gmn528pTmn , allow the matter portion of Eq.~6! to
be identified as a string fluid:

Tmn5c l ml n1r v̂mv̂n1pr r̂ m r̂ n1p'~q̂mq̂n1ŵmŵn!. ~9!

Thus

4pc52ṁ/r 2, ~10a!

4pr524ppr5m8/r 2, ~10b!

8pp'52m9/r . ~10c!

The equation of motionT ;n
mn50 is identically satisfied for the

components ofTmn given in Eq.~10!.
As an example of mass transport we assume the str

diffuse and that string diffusion is like point particle diffu
sion where the number density diffuses from higher numb
to lower according to

]un5D¹2n. ~11!
e
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¹25r 22(]/]r )r 2(]/]r ), andD is the positive coefficient of
self-diffusion. Classical transport theory derives the diffusi
equation by starting with Fick’s law

JW ~n!52D¹W n ~12!

where¹W is a purely spatial gradient. Then 4-current cons
vation J(n);m

m 50, where

J~n!
m ]m5~n,JW ~n!! ~13!

5n]u2D~]n/]r !] r ,

yields the diffusion equation~11!. We label the 4-currentJ(n)
to indicaten diffusion but we could have also writtenJ(r)
since the string number density and string fluid density m
be related byr5Msn whereMs is the constant mass of th
string species.Ms must be a multiple of the Planck mas
since it is only over Planck length scales that point partic
resolve into strings.

By rewriting the Tmn components~10a! and ~10b! as
ṁ524pr 2c andm854pr 2r, we can write the integrabil-
ity condition for m as

ṙ1r 22] r~r 2c!50. ~14!

If we compare the diffusion equation~11! ~n replaced byr!

ṙ5Dr 22]/]r ~r 2]r/]r ! ~15!

with ṙ in Eq. ~14! we obtain

ṁ54pDr 2]r/]r . ~16!

Thus solving the diffusion equation forr and then integrat-
ing those solutions to obtainm provides exact Einstein solu
tions for diffusing string fluids.

There are many analytic solutions of Eq.~15! and three of
them are

r5r01k1 /r , ~17a!

r5r01k3u23/2exp@2r 2/~4Du!#, ~17b!

r5r01~k4 /r !$11~Ap/2!erf@r ~4Du!21/2#%. ~17c!

Upon integratingm854pr 2r and ṁ54pDr 2]r/]r we
obtain the following masses, listed consecutively, for t
densities above:

m~u,r !5m01~4p/3!r 3r012pk1~r 222Du!, ~18a!

m~u,r !5m01~4p/3!r 3r0

116pk3D3/2@2hexp~2h2!1~Ap/2!erf~h!#,

~18b!
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m~u,r !5m01~4p/3!r 3r012pr 2k4H S 12
1

2h2D
1F ~Ap/2!S 12

1

2h2D erf~h!

1~2h!21exp~2h2!G J , ~18c!

whereh:5r (4Du)21/2.
It is clear that metric~1! can be written in Kerr-Schild

form ashmn2@2m(u,r )/r # l ml n . Whenm(u,r )5m0 for the
Schwarzschild solution, (2m0 /r ) l ml n solves the vacuum
field equations linearized about flat space. This was Xan
poulos’ original superposition. His generalization@8# has
ĝmn5gmn1H(xm) l ml n with H(xm) l ml n required to solve the
vacuum field equations linearized aboutgmn . Referring to
the mass solutions above, we can write 122m(u,r )/r
e

D

o-

5122m0 /r 22m̃/r . Metric ~1! then has the formhmn

2(2m0 /r ) l ml n2(2m̃/r ) l ml n which is clearly

ĝmn5gmn
Sch2~2m̃/r !l ml n . ~19!

For the Vaidya metric, withm̃(u), the field equations linear
ized aboutgmn

Sch yield Gmn
(1)5(dm̃/du)r 22l ml n @11# which is

not a vacuum solution and soGmn
(1) computed about

Schwarzschild withm̃(u,r ) is a fortiori not zero. Sinceĝmn

is an exact solution for a string fluid andgmn
Sch is an exact

vacuum solution, we have extended Xanthopolous’ gener
zation.
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