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Soft dynamics and gauge theories

Emili Bagarf
Grup de Fsica Teoica and IFAE, Edificio Cn, Universitat Autmma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

Martin Lavelld and David McMullari
School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
(Received 17 November 1997; published 13 March 1998

Infrared divergences obscure the underlying soft dynamics in gauge theories. They remove the pole struc-
tures associated with particle propagation in the various Green’s functions of gauge theories. Here we present
a solution to this problem. We give two equations which describe how charged particles must be dressed by
gauge degrees of freedom. One follows from gauge invariance, the other, which is new, from velocity super-
selection rules familiar from the heavy quark effective theory. The solution to these equations in the Abelian
theory is proven to lead to on-shell Green's functions that are free of soft divergences at all orders in
perturbation theoryS0556-282(98)50108-7

PACS numbss): 11.15.Bt, 11.10.Gh, 12.26m, 12.38.Aw

A widespread belief in particle physics is that the relativ-with products of the formh~1(x) ¢(x) where the dressing,
istic concept of achargedparticle does not exist due to the h™1(x), which surrounds the charged matter(x), trans-
infrared (IR) structure of gauge theoridsee, for example, forms as
the conclusions to Refl]). This point of view is based on
the observatiofi2] that the Green’s functions for the charged

matter fields do not have a simple polelike structure, bujnqer the gauge transformation described by the group ele-
rather a branch cut, thus signaling the need for a form OfnentU(x). Since ¢ transforms agh(x)— U~ 1(x) ¢(x), the
asymptotic dynamics more complicated than that of the fre%roduct is gauge invariant. The explisitdependence in the
theory[1]. The interpretation of this result is that in QED a charged matter fields does not imply that this is an operator
soft photon cloud always surrounds each physical charggreating a charge at the spacetime pointRather, as dis-
(see the discussion on page 524 of R8f). Although there  cussed in Ref[9] such fields must necessarily be nonlocal
is now a well-developed industry which, at the level of crossand thex dependence is simply labeling the matter field core
sections, avoids most of the problems associated with oub the charged field and thus the source of the dressing. For a
lack of knowledge of the form of this asymptotic dressingparticle description of the charged field, we need to investi-
[4], even in QED it is still not completely understood how to gate whether there is a choice of dressing for which the field
circumvent these difficultie§5—7]. The situation in non- has a well-defined momentum.
Abelian theories is much more complicated as the form of We will say that the charged field~*(x)$(x) has a
the asymptotic dynamics is poorly understd@&dl sharp momentunp” if the state created by it is @eneral-
Here we will show that a relativistic particle description ized eigenstate of the momentum operaf@t=igd*, with
of charged matter is, in fact, possible. Our starting point iseigenvalue p#. Thus the sharpness condition is
the observation that one cannot talk about a physical chargré“(h‘l(x) d(x))=—ip*h~1(x)#(x). In terms of the four
without including some form of gauge dressing, and it is thisvelocity, u*, we can write this sharpness condition as
combined systenthat must be identified with a charged par- L~
ticle. To this end, we present two equations which determine u-a(h™>(x) #(x))=0, @
how gauge degrees of freedom, such as glue, surround ~ imu. L .
charged matter, such as valence quarks. We solve thes\f\éhere ¢(x) =€ ¢(x), which is familiar from heavy

. : Uark effective theory.
equations for t'he Abe!|an theory and Qemonstrate that thg We now need to find such sharp charged states which we
on-shell Green’s functions of the solutions are free of so

. . 1L[can then identify, in an appropriate asymptotic regime, with
d|v¢rgences and .ha've a pple structure at all orders In pertuffe in and out charged particle states of the theory. For mas-
bation theory. This is the first formulation of QED with thiS e charged mattehich is the only case we will consider
important property. We conclude with a discussion of the; this papey, the heavy matter sectdor equivalently the
solutions in QCD. . ) . .__soft gauge sectois the region where the velocity becomes a
In a gauge theory physical fields must be gauge invarian{,,orselection ruld10] and a particle description can

and, in particular, charged matter fiel8] are identified  garge In this sector the matter fields satisfy the equation

_ _ u-D((x))=0. (€
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Hermitian gauge potential.lt then follows that the dressed g"M"g fwl’i srf\/\'bzl &
(@)

charge has a sharp momentum in this heavy sector if the
dressing satisfies the equation ®) (e) @

u~a(h’l(x))zgh’l(x)uA(x). @) FIG. 1. The one-loop propagator for the dressed field®X¢.

Equations(1) and (4) are the fundamental equations for divergences as we assume massive electrons and that we use
determining the dressing and hence the soft dynamics dhe scalar theory for simplicity: the electron’s spin does not
charged particles in gauge theories. The first of these is affect the infrared structure. We will consider the terms in
minimal demand: physical charges are gauge invariant. Préhe dressed Green’s functions that have a simple pole for
vious work on these various solutions, in the framework oféach external leg. Generally an infrared divergence appears
the standard model, was summarized and extended in Réf the residues of these pole structures when we go on-shell.
[9] (see also Refd.11-15). The second equation is a new, We will show that these soft divergences cancel when we
kinematical requirement which removes the ambiguity assoinclude our dressings. We start with the propagator of the
ciated with the plethora of solutions to Ed). We now note ~ above(dressegiscalar electron which at one loop is given by
that in QED we can explicitly solvboth of these equations. the four diagrams of Fig. fwith (b) and (c) identical in the
The resulting dressing can be shown to factor into the prodscalar theory The new Feynman rule fon photons at a

uct of two terms: dressing vertex is shown in Fig. 2. We will work in Feynman
_ _ gauge, but gauge invariance will be always apparent in our
h™1(x)=e " 'eKXgiex() (5)  final results. Note that the dressed fermion propagator is

treated in detail in Ref.16] and the scalar case in R¢L7]:
The K-dependent factor is gauge invariant and describes thR-finite results were obtained in both cases and the renor-
response of the charge to the other charges in the systemnalization constants were calculated. We therefore extract
The second term in the dressing represents the soft core ge |R-divergent terms in the residue of the pole in the propa-
the dressing and its form was essentially guessed in[BEf. gator. After some algebra they are found to be
through an analysis of the resulting electric and magnetic
fields of the dressed particle. The explicit forms of these

terms are Spoiel = . )
RegiSg, 2 ¢ ﬁ_vv-k rd
JI'F
Kx)=— | dT(p+v)* =2
(x) J} (n+v) G0
x P, Vl'}/ (8)
GA* oy [ GANC2) Pl VD
x(X)= g‘%(?(x)'__ﬂfdz”;——xﬂu (6)

where we are only integrating over soft momenta less than
some cutoff. Note that the divergences in E).are of loga-
rithmic type. Replacing*"/k? by a more general propagator
shows the gauge invariance of this result. We now need to
show that it in fact vanishes: this may be done either by
direct calculation or by realizing that effectively we may
write [with p* = (p°® —p)]

In these expression§, =(7+v),(n—v)-d—d, with 7
=(1,0), a unit timelike vector;y the orthogonal velocity
vectorv=(0y), wherev is the velocity three vector of the
particle; y=(1—v?) %2 and the metric convention is
(+, —, —, —). The contour[', in the definition ofK is the
past world line of a particle moving with four velocity*.
The explicit form of the inverse t§"- J is given by

1 1 oz v
=52 f % eu ’ (7) V’u —>&— —m272k'u
Izll," 2%y V-k Vo.k p-k p-kp*-k’

(©)

whereV, =(n+v),(n—v)-k=K,. This is well defined for

massive matter|¢|<1). Asv—0 we obtain the usual in- which holds when we evaluate at the residue ofkh@oles
verse to the three-dimensional Laplacian. Equati@  (which are well known to be the only poles that yield soft
makes manifest the spatial nonlocality of the physicaldivergencesand go on shell in the correct fashion: i.e., at
charges. p=my(1lyp). The second term clearly will not contribute to

On physical states th& term of the dressing may be Eg. (8) and we see thathe soft divergences all cancel
reexpressed in terms of the matter current. As such it is the
analogue of the Coulombic term in infrared dynamj&$
and, as can be verified explicitly, does not take part in the
soft dynamics of the Abelian theory.

In the remainder of this paper we will show that, using the
non-Coulombic, y-dependent part of the dressing, we re- eV{‘1 eV in
move the soft divergences due to virtual photons in the - Vi -k Vo k
Green’s functions of these dressed chargesX™® ¢(x), at e
all orders in scalar QED. Note that there are no collinear FIG. 2. The Feynman rule for the dressing vertex.
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FIG. 5. Noncovariant part of the vertex.
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FIG. 3. Diagrammatic expression fa@b .

The pole structure that we obtain has, as a special case,

the limit p— 0, where the dressed charge and the undressd@ lines directly linking one dressing vertex to the other. This

one coincide in Coulomb gauge. Thus we see that our corlS @ consequence of the Feynman rules for the dressing ver-

struction explains and extends a result due to KipBlewho tex (see Refs|16] and[l_?] for the one I('Jop'examp)elt may )
noted that the propagator in the Coulomb gauge has a polelﬁe s”ee.n that the IR-d.lvergent cqntrlbqtlon of such “rain-
we are at the static point on the mass she#(m,0). We bow” lines to t_he residue factorlze, yielding a factor of
also remark that we may use Sect. 3D of R&g] to see that  Cvv O €ach line where we define
the dressed propagator is indeed IR-finite at all orders if we
choose the correct point on the mass shell. c d*k VoY

We now consider an interaction with a source. We will vo' T 7 o 2"
assume that the vertex has the famh¢* ¢, which is renor- (2m7 (vl (V- bk

malization group invariant. For simplicity we take a charge i i
initially at rest which emerges from the interaction with ve- SUmming up terms, and noting thenllsymmetry factor for

locity v. We now multiply in a factor of W whereZ n such Ii_nes, yields an exponential. The gen_eral structure of
: : . ! : the IR-divergent part of the propagator pole is thus

is the infrared finite[16,17], v-dependent wave-function

renormalization constant associated with a particle moving ~
with three velocityy. This infrared finite factor will lead to i(1+3)?
various useful cancellations of diagrams. As far as the resi- p’—m’—3
dues of the poles are concerned, their diagrammatic form is

shown in Fig. 3. Using this, we obtain the covariant contri-yye may conclude that dressings do not change the mass shift
bution from Fig. 4, _Wh|le the explicitly noncovariant terms (as seen[16,17 in explicit one-loop calculations and

are expressed by Fig. 5. Note the amputated legs on the lag{at the wave-function renormalization constant factors
two terms of this figuréwhich are each to be understood asjniq g product of a covariant and a noncovariant part,
the product of their two partsCalculating these latter dia- Zv— cov(1+§)zexp(_c )

grams we find for the IR divergences in the residue the 2, 2 vor

gauge-invariant result

(11)

exp(—C,,). (12

Armed with this we consider the vertex at all orders. The
general class of diagrams with two simple poles and possible
m2e? 1 1 d%k VY O IR divergences is shown in Fig. 6, i.e., the diagrams where
(V”Mk_ Voﬂk) there are possible covariant vertex corrections from one leg
' ' to another(in the left-most blol, covariant corrections on
o » 0 the external legs, “end blob” corrections on the legs and
—ig” ( Vi VY, ) possible rainbow corrections from one dressing to the other.
k2 \Vvv.k VY.k/ The use of a black do#®, here denotes that there may or
(100 may not be an “end blob” ¥) at the ends of one or both of

Using Eq.(9) we may easily see that this cancels the stan-the lines. Other diagrams are either IR finite or will not yield

dard covariant integral which is just EELO) with an oppo- both poles. For example, if a line from, say, the upper dress-

site sian and thas replaced by the approoriate momentum ing vertex is attached to a covariant vertex on the lower
9 : bl y pprop .~ scalar matter leg, there will not be a pole associated with the
pi; - The extension of this argument to other processes is d

rect Illeper leg.

To show that this is true at all orders, we consider theFi gF%Ctgzﬁéggt;r;?erﬂ]gbog ?T:Zssrl]rgsb)élzlgseahdebdlﬁjg:ﬁr?hs e(s)(fa
structure of the propagator. As well as the usual dressingﬁne'S ;/ve may write the)s/e end f)zlactors as#(i) Thev there-
independent diagrams which yield the forry(p?—m? ' y Wi : y
—3), we can havéat either engla “blob” with lines ema-  foré ca/nceltheE dependence from each of the external leg
(2%) ~ Y2 factors. Diagrammatically we thus obtain Fig. 8 and
we see that the dressing effects have exponentiated. Since the

2 pi—m?ps—m? ) (2m)*

nating from a dressing vertex, this we denote%yThis then
adds to the propagator the terni¥2(p?’—m?—X). A blob

at both ends contributes>?/(p?—m?—3). If these end
blobs overlap, there is no pole contribution to the residue,
except in one important case: when this overlap is solely due

=

FIG. 4. Covariant part of the vertex. FIG. 6. Diagrams with both poles and IR divergences.
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FIG. 7. The preceding figure after factorization. FIG. 8. Exponentiation of the dressings.

region where the heavy mass equati{@h holds. For heavy

- . : . v _quarks this will be at a scale significantly greater tiag-p
remaining covariant diagrams timesZ37" are known to ex and thus for such quarks a non-Abelian extension of the

ponentiate, we see thall the soft effects exponentiatethe  apejian dressing described above would be expected within
residue of the double poles. We have seen that they cancel 2l ihoy horizon where the dressing equation can be solved.
one loop, this now directly implies that this residue is IR o the lighter quarks, their heavy sector is at a scale lower
finite at all orders. This demonstration shows the validity ofi5, Aocp and thus nonperturbative contributions to the
the dressing equation. We also note that the extension of th@ressing, such as condensd@k would be expected to play
to other vertices is straightforward: we conclude that- 5 gominant role even before the effects of the horizon be-
rectly dressed on-shell Green’s functions are infrared finitecome manifest. We note here that the interquark potential
to all orders Full details of the proof will be presented else- -5n be found rather directly from dressingee Sect. 7 of
where togethgr with the details of the one—loc_)p cglcglationsRef_ [9] and Ref.[14]) and further that it has been argued
“We now finish with some remarks on the implications of 9] that the incorporation of nonperturbative effects associ-
this paper for the non-Abelian theory. The E¢B) and(4)  5teq with the Gribov ambiguity, and hence with the break-
open a way taleriving how glue dresses quarks. In RE3] 4o of solutions to Eq(1), lead to a linearly rising poten-
it was shown that there are no global solutions to the dress;g). The incorporation of nonperturbative effects in dressings

ing equation(1) in an unbroken non-Abelian theory, how- hich solve Eqs(1) and(4) and their impact on the potential
ever perturbative solutions can be constructed and nonpertugii be studied elsewhere.

bative effects can be incorporated into them. Perturbative

solutions for the gluonic dressing are relevant for short dis- E.B. received support from CICYT research project
tance physics such as initial jet formation. At larger scalesAEN95-0815. M.J.L. thanks the Universitat Autmma de
nonperturbative effects will dominate. The sharpness condiBarcelona for their hospitality while much of this work was
tion (4) on the dressing leads to sharp quark states in thearried out.
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