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Soft dynamics and gauge theories
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Infrared divergences obscure the underlying soft dynamics in gauge theories. They remove the pole struc-
tures associated with particle propagation in the various Green’s functions of gauge theories. Here we present
a solution to this problem. We give two equations which describe how charged particles must be dressed by
gauge degrees of freedom. One follows from gauge invariance, the other, which is new, from velocity super-
selection rules familiar from the heavy quark effective theory. The solution to these equations in the Abelian
theory is proven to lead to on-shell Green’s functions that are free of soft divergences at all orders in
perturbation theory.@S0556-2821~98!50108-7#

PACS number~s!: 11.15.Bt, 11.10.Gh, 12.20.2m, 12.38.Aw
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A widespread belief in particle physics is that the relat
istic concept of achargedparticle does not exist due to th
infrared ~IR! structure of gauge theories~see, for example
the conclusions to Ref.@1#!. This point of view is based on
the observation@2# that the Green’s functions for the charge
matter fields do not have a simple polelike structure,
rather a branch cut, thus signaling the need for a form
asymptotic dynamics more complicated than that of the f
theory @1#. The interpretation of this result is that in QED
soft photon cloud always surrounds each physical cha
~see the discussion on page 524 of Ref.@3#!. Although there
is now a well-developed industry which, at the level of cro
sections, avoids most of the problems associated with
lack of knowledge of the form of this asymptotic dressi
@4#, even in QED it is still not completely understood how
circumvent these difficulties@5–7#. The situation in non-
Abelian theories is much more complicated as the form
the asymptotic dynamics is poorly understood@8#.

Here we will show that a relativistic particle descriptio
of charged matter is, in fact, possible. Our starting poin
the observation that one cannot talk about a physical ch
without including some form of gauge dressing, and it is t
combined systemthat must be identified with a charged pa
ticle. To this end, we present two equations which determ
how gauge degrees of freedom, such as glue, surro
charged matter, such as valence quarks. We solve t
equations for the Abelian theory and demonstrate that
on-shell Green’s functions of the solutions are free of s
divergences and have a pole structure at all orders in pe
bation theory. This is the first formulation of QED with th
important property. We conclude with a discussion of t
solutions in QCD.

In a gauge theory physical fields must be gauge invar
and, in particular, charged matter fields@9# are identified
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with products of the formh21(x)f(x) where the dressing
h21(x), which surrounds the charged matter,f(x), trans-
forms as

h21~x!→h21~x!U~x! ~1!

under the gauge transformation described by the group
mentU(x). Sincef transforms asf(x)→U21(x)f(x), the
product is gauge invariant. The explicitx dependence in the
charged matter fields does not imply that this is an opera
creating a charge at the spacetime pointx. Rather, as dis-
cussed in Ref.@9# such fields must necessarily be nonloc
and thex dependence is simply labeling the matter field co
to the charged field and thus the source of the dressing. F
particle description of the charged field, we need to inve
gate whether there is a choice of dressing for which the fi
has a well-defined momentum.

We will say that the charged fieldh21(x)f(x) has a
sharp momentumpm if the state created by it is a~general-
ized! eigenstate of the momentum operatorP̂m5 i ]m, with
eigenvalue pm. Thus the sharpness condition
]m

„h21(x)f(x)…52 ipmh21(x)f(x). In terms of the four
velocity, um, we can write this sharpness condition as

u•]„h21~x!f̃~x!…50, ~2!

where f̃(x)5eimu•xf(x), which is familiar from heavy
quark effective theory.

We now need to find such sharp charged states which
can then identify, in an appropriate asymptotic regime, w
the in and out charged particle states of the theory. For m
sive charged matter~which is the only case we will conside
in this paper!, the heavy matter sector~or equivalently the
soft gauge sector! is the region where the velocity becomes
superselection rule@10# and a particle description ca
emerge. In this sector the matter fields satisfy the equati

u•D„f̃~x!…50. ~3!

@In this expression the covariant derivative is taken to
Dm5]m1gAm , whereAm is the Lie algebra valued~anti-
R4521 © 1998 The American Physical Society
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Hermitian! gauge potential.# It then follows that the dresse
charge has a sharp momentum in this heavy sector if
dressing satisfies the equation

u•]„h21~x!…5gh21~x!u•A~x!. ~4!

Equations~1! and ~4! are the fundamental equations f
determining the dressing and hence the soft dynamics
charged particles in gauge theories. The first of these
minimal demand: physical charges are gauge invariant.
vious work on these various solutions, in the framework
the standard model, was summarized and extended in
@9# ~see also Refs.@11–15#!. The second equation is a new
kinematical requirement which removes the ambiguity as
ciated with the plethora of solutions to Eq.~1!. We now note
that in QED we can explicitly solveboth of these equations
The resulting dressing can be shown to factor into the pr
uct of two terms:

h21~x!5e2 ieK~x!e2 iex~x!. ~5!

The K-dependent factor is gauge invariant and describes
response of the charge to the other charges in the sys
The second term in the dressing represents the soft cor
the dressing and its form was essentially guessed in Ref@9#
through an analysis of the resulting electric and magn
fields of the dressed particle. The explicit forms of the
terms are

K~x!52E
G
dG~h1v !m

]nFnm

Gv
•]

x~x!5
Gm

v Am

Gv
•]

~x! :52
g

4p E d3z
Gm

v Am~x0,zI !

izI2xI iv
. ~6!

In these expressionsGm
v 5(h1v)m(h2v)•]2]m with h

5(1,0I), a unit timelike vector;v the orthogonal velocity
vectorv5(0,vI ), wherevI is the velocity three vector of the
particle; g5(12vI 2)21/2 and the metric convention i
~1, 2, 2, 2!. The contour,G, in the definition ofK is the
past world line of a particle moving with four velocityum.
The explicit form of the inverse toGv

•] is given by

1

iziv
:5

1

2p2g E d3k
eikI •zI

Vv
•k

, ~7!

whereVm
v 5(h1v)m(h2v)•k2km . This is well defined for

massive matter (uvI u,1). As v→0 we obtain the usual in
verse to the three-dimensional Laplacian. Equation~6!
makes manifest the spatial nonlocality of the physi
charges.

On physical states theK term of the dressing may b
reexpressed in terms of the matter current. As such it is
analogue of the Coulombic term in infrared dynamics@3#
and, as can be verified explicitly, does not take part in
soft dynamics of the Abelian theory.

In the remainder of this paper we will show that, using t
non-Coulombic,x-dependent part of the dressing, we r
move the soft divergences due to virtual photons in
Green’s functions of these dressed charges,e2 iex(x)f(x), at
all orders in scalar QED. Note that there are no collin
e
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divergences as we assume massive electrons and that w
the scalar theory for simplicity: the electron’s spin does n
affect the infrared structure. We will consider the terms
the dressed Green’s functions that have a simple pole
each external leg. Generally an infrared divergence app
in the residues of these pole structures when we go on-s
We will show that these soft divergences cancel when
include our dressings. We start with the propagator of
above~dressed! scalar electron which at one loop is given b
the four diagrams of Fig. 1@with (b) and (c) identical in the
scalar theory#. The new Feynman rule forn photons at a
dressing vertex is shown in Fig. 2. We will work in Feynma
gauge, but gauge invariance will be always apparent in
final results. Note that the dressed fermion propagato
treated in detail in Ref.@16# and the scalar case in Ref.@17#:
IR-finite results were obtained in both cases and the ren
malization constants were calculated. We therefore ext
the IR-divergent terms in the residue of the pole in the pro
gator. After some algebra they are found to be

Res@ iSpole
IR #5

ie2

~2p!4 E d4kS pm

p•k
2

Vm
v

Vv
•kD gmn

k2

3S pn

p•k
2

Vn
v

Vv
•kD , ~8!

where we are only integrating over soft momenta less t
some cutoff. Note that the divergences in Eq.~8! are of loga-
rithmic type. Replacinggmn/k2 by a more general propagato
shows the gauge invariance of this result. We now need
show that it in fact vanishes: this may be done either
direct calculation or by realizing that effectively we ma
write @with p* 5(p0,2p)#

Vm
v

Vv
•k
→

pm

p•k
2

m2g2km

p•kp* •k
, ~9!

which holds when we evaluate at the residue of thek2 poles
~which are well known to be the only poles that yield so
divergences! and go on shell in the correct fashion: i.e.,
p5mg(1,vI ). The second term clearly will not contribute t
Eq. ~8! and we see thatthe soft divergences all cance.

FIG. 1. The one-loop propagator for the dressed field,e2 iexf.

FIG. 2. The Feynman rule for the dressing vertex.
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The pole structure that we obtain has, as a special c
the limit pI→0, where the dressed charge and the undres
one coincide in Coulomb gauge. Thus we see that our c
struction explains and extends a result due to Kibble@2#, who
noted that the propagator in the Coulomb gauge has a po
we are at the static point on the mass shell,p5(m,0I). We
also remark that we may use Sect. 3D of Ref.@18# to see that
the dressed propagator is indeed IR-finite at all orders if
choose the correct point on the mass shell.

We now consider an interaction with a source. We w
assume that the vertex has the formm2f* f, which is renor-
malization group invariant. For simplicity we take a char
initially at rest which emerges from the interaction with v
locity v. We now multiply in a factor of 1/AZ2

0Z2
v, whereZ2

v

is the infrared finite@16,17#, v-dependent wave-function
renormalization constant associated with a particle mov
with three velocityvI . This infrared finite factor will lead to
various useful cancellations of diagrams. As far as the r
dues of the poles are concerned, their diagrammatic form
shown in Fig. 3. Using this, we obtain the covariant con
bution from Fig. 4, while the explicitly noncovariant term
are expressed by Fig. 5. Note the amputated legs on the
two terms of this figure~which are each to be understood
the product of their two parts!. Calculating these latter dia
grams we find for the IR divergences in the residue
gauge-invariant result

2
m2e2

2

1

p1
22m2

1

p2
22m2 E d4k

~2p!4 S Vm
v

Vv
•k

2
Vm

0

V0
•kD

3
2 igmn

k2 S Vn
v

Vv
•k

2
Vn

0

V0
•kD .

~10!

Using Eq.~9! we may easily see that this cancels the st
dard covariant integral which is just Eq.~10! with an oppo-
site sign and theV’s replaced by the appropriate momentu
pi . The extension of this argument to other processes is
rect.

To show that this is true at all orders, we consider
structure of the propagator. As well as the usual dress
independent diagrams which yield the form,i /(p22m2

2S), we can have~at either end! a ‘‘blob’’ with lines ema-
nating from a dressing vertex, this we denote byS̃. This then
adds to the propagator the term, 2i S̃/(p22m22S). A blob
at both ends contributes,i S̃2/(p22m22S). If these end
blobs overlap, there is no pole contribution to the resid
except in one important case: when this overlap is solely

FIG. 4. Covariant part of the vertex.

FIG. 3. Diagrammatic expression forZ2 .
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to lines directly linking one dressing vertex to the other. Th
is a consequence of the Feynman rules for the dressing
tex ~see Refs.@16# and@17# for the one loop example!. It may
be seen that the IR-divergent contribution of such ‘‘ra
bow’’ lines to the residue factorize, yielding a factor o
2Cvv for each line where we define

Cvv85E d4k

~2p!4

Vv
•Vv8

~Vv
•k!~Vv8

•k!k2
. ~11!

Summing up terms, and noting the 1/n! symmetry factor for
n such lines, yields an exponential. The general structure
the IR-divergent part of the propagator pole is thus

i ~11S̃!2

p22m22S
exp~2Cvv!. ~12!

We may conclude that dressings do not change the mass
~as seen@16,17# in explicit one-loop calculations! and
that the wave-function renormalization constant fact
into a product of a covariant and a noncovariant pa
Z2

v5Z2
cov(11S̃)2exp(2Cvv).

Armed with this we consider the vertex at all orders. T
general class of diagrams with two simple poles and poss
IR divergences is shown in Fig. 6, i.e., the diagrams wh
there are possible covariant vertex corrections from one
to another~in the left-most blob!, covariant corrections on
the external legs, ‘‘end blob’’ corrections on the legs a
possible rainbow corrections from one dressing to the oth
The use of a black dot,d, here denotes that there may
may not be an ‘‘end blob’’ (S̃) at the ends of one or both o
the lines. Other diagrams are either IR finite or will not yie
both poles. For example, if a line from, say, the upper dre
ing vertex is attached to a covariant vertex on the low
scalar matter leg, there will not be a pole associated with
upper leg.

Factorizing the rainbow dressings yields the diagrams
Fig. 7. Since there may or may not be an end blob in th
lines, we may write these end factors as (11S̃). They there-
fore cancelthe S̃ dependence from each of the external l
(Z2

v)21/2 factors. Diagrammatically we thus obtain Fig. 8 a
we see that the dressing effects have exponentiated. Sinc

FIG. 5. Noncovariant part of the vertex.

FIG. 6. Diagrams with both poles and IR divergences.
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remaining covariant diagrams times 1/Z2
cov are known to ex-

ponentiate, we see thatall the soft effects exponentiatein the
residue of the double poles. We have seen that they canc
one loop, this now directly implies that this residue is
finite at all orders. This demonstration shows the validity
the dressing equation. We also note that the extension of
to other vertices is straightforward: we conclude thatcor-
rectly dressed on-shell Green’s functions are infrared fin
to all orders. Full details of the proof will be presented els
where together with the details of the one-loop calculatio

We now finish with some remarks on the implications
this paper for the non-Abelian theory. The Eqs.~1! and ~4!
open a way toderiving how glue dresses quarks. In Ref.@9#
it was shown that there are no global solutions to the dre
ing equation~1! in an unbroken non-Abelian theory, how
ever perturbative solutions can be constructed and nonpe
bative effects can be incorporated into them. Perturba
solutions for the gluonic dressing are relevant for short d
tance physics such as initial jet formation. At larger sca
nonperturbative effects will dominate. The sharpness co
tion ~4! on the dressing leads to sharp quark states in

FIG. 7. The preceding figure after factorization.
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region where the heavy mass equation~3! holds. For heavy
quarks this will be at a scale significantly greater thanLQCD
and thus for such quarks a non-Abelian extension of
Abelian dressing described above would be expected wi
a Gribov horizon where the dressing equation can be solv
For the lighter quarks, their heavy sector is at a scale lo
than LQCD and thus nonperturbative contributions to t
dressing, such as condensates@9#, would be expected to play
a dominant role even before the effects of the horizon
come manifest. We note here that the interquark poten
can be found rather directly from dressings~see Sect. 7 of
Ref. @9# and Ref.@14#! and further that it has been argue
@19# that the incorporation of nonperturbative effects asso
ated with the Gribov ambiguity, and hence with the brea
down of solutions to Eq.~1!, lead to a linearly rising poten
tial. The incorporation of nonperturbative effects in dressin
which solve Eqs.~1! and~4! and their impact on the potentia
will be studied elsewhere.

E.B. received support from CICYT research proje
AEN95-0815. M.J.L. thanks the Universitat Auto`noma de
Barcelona for their hospitality while much of this work wa
carried out.

FIG. 8. Exponentiation of the dressings.
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