RAPID COMMUNICATIONS

PHYSICAL REVIEW D VOLUME 57, NUMBER 7 1 APRIL 1998

Multigrid implementation of the Fourier acceleration method for Landau gauge fixing
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We present a new implementation of the Fourier acceleration method for Landau gauge fixing. By means of
a multigrid inversion we are able to avoid the use of the fast Fourier transform. This makes the method more
flexible, and well suited for vector and parallel machines. We study the performance of this algorithm on serial
and on paralle{APE100Q machines for the four-dimensional 8) case. We find that our method is equivalent
to the standard implementation of Fourier acceleration already on a serial machine, and that it parallelizes very
efficiently: its computational cost shows a linear speedup with the number of processors. We have also
implemented, on the parallel machines, a version of the method using conjugate gradient instead of multigrid.
This leads to an algorithm that is efficient at intermediate lattice voluh$&5656-282(98)50607-§

PACS numbds): 11.15.Ha, 02.60.Pn

I. INTRODUCTION nentz is equal to zero; we have also obtair@d at finite 8
and in two dimensions, that is equal to 0.0360.064.
Lattice gauge fixing is a necessary tool for understandindgvoreover, the FA gauge-fixing method is very efficient in
the relationship between continuum and lattice gauge theory@chieving a constant value for the longitudinal gluon propa-
In fact, because of asymptotic freedom, the continuum limitgator at zero three-momentu®—8|, which provides a very
of the lattice theory is the weak-coupling limit, and a weak-sensitive test of the goodness of the gauge fixing.
coupling expansion requires gauge fixing. Gauge fixing is To fix Landau gauge on the lattice, one looks for a mini-
also used in smearing techniques, and is necessary in ordernaum of the functional9]:
evaluate quark or gluon matrix elements which can be used
to extract nonperturbative results from Monte Carlo simula-
tions[1]. It is therefore important to devise numerical algo- 5U[g]— 2 Tr{1-9g( #(x)gT(x+e ). @
rithms to gauge fix efficiently a lattice configuration. An im-
portant issue regarding the efficiency of these algorithms is
the problem ofcritical slowing down(CSD), which occurs  (We refer to[7] for notation) The FA update is given by
when the relaxation time of an algorithm diverges as the g™")(x)=R(x)g®?¥(x) with
lattice volume is increasefl2]. Conventional local algo-
rithms have adynamic critical exponent=2, namely 7 (
1

grows with the lattice sid& roughly asN?. Improved local R(X)x1—F~
methods show typicallyz~1, while global methods may
succeed in eliminating CSD completely, i.ex 0. Usually,
global algorithms are more costly per iteration than local
methods but, due to the elimination of CSD, their total com-, HereF is a Fourier transformy is a tuning parametep’(k)
putational cost becomes progressively lower than that of lo!S the square of the lattice momentum, andA is the lattice
cal methods at large lattice volumes. For this reason, efficierffiver9ence of the gluon field,, . Thus, in this case, the
global algorithms are a highly desirable tool in large-volumePreconditioning is obtained using in momentum space a di
applications. Another important issue is whether gauge2donal matrix with elements given bypE(k) (see Ref[4],
fixing algorithms can be implemented efficiently on paraIIeISeC Il, for details The FA method in its original form
machineg3], since computers of this type are widely used inmakes use of théast Fourier transform(FFT) to evaluateF
numerical studies of gauge theory on large lattices. andF 1, which requires a work of onlylogV, whereV is
A well-known global approach for reducing CSD, appli- the lattice volume[4], making it very appealing from the
cable to gauge fixing as well as to other problems, is thecomputational point of view. On the other hand, in order to
method ofFourier acceleration(FA) [4]. The idea is to pre- implement FFT efficiently, one is restricted to using lattice
condition a problem using a diagonal matrix in momentumsides that are powers of ¢10], Chapter 12 Moreover,
space that is related to the solution of a simplified version oimplementing FFT on parallel machines of the SIMD type,
the problen{4,5]. For the SW2) Landau gauge fixing case, it and especially in four dimensions, can be very cumbersome
can be proved6] that Fourier acceleration eliminates CSD [3,11]. Here we present a new implementation of the FA
completely at infinite8, namely the dynamic critical expo- method for Landau gauge fixing, which avoids completely
the use of the fast Fourier transform, and we test its perfor-
mance for the four-dimensional $2) case on serial and on
*Email address: cucchieri@roma2.infn.it parallel machines. Preliminary results have been reported in
"Email address: mendes@romaz2.infn.it [12].
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FIG. 1. Plot of the number of gauge-fixing sweeps for the MGFA algorithm as a function of the accuracy imposed on the inversion of
the Laplacian. Simulations were carried out on a workstation, for lattice volutrend atg=oc. The different types of multigrid cycle
employed are(left-hand figur¢ Gauss-Seidel updateX(), V-cycle withN,=1N,i,=1 (O), W-cycle withN,=1N,=1 (O), W-cycle
with N,=2Nin=1 (*); (right-hand figurg¢ a closer view of thaN-cycle withN,=2N.,=1 case(solid line), together with theVN/-cycle
with N, =2 N,;,=2 case ). In the second plot errors are omitted for clarity. We note that for FFTFA the number of gauge-fixing sweeps
is 14.9-0.2. In all cases we sei=1.105, and we stopped the gauge fixing when the condifibrA)?<10~° was satisfied.

[l. THE MULTIGRID FA METHOD can be done only up to an accuracy of a few percent. Thus,

Let us start by noting that the Fourier-mode decomposi:[he inversion ofA most likely will not require the high ac-

tion in Eq. (2) is equivalent to an inversion of the lattice curacy obFained in the FFT case, making possible a substan-
Laplacian operatoA: tial reduction of the compu@a_tl_onal cost.
In order to test the feasibility of this approach, we have
IE—lp—Z(k)IE:(_A)—l _ 3) started our simulations on a workstation, comparing the per-
formance of the MG implementation of the Fourier accelera-
(Note that this inversion is carried out for each component ofion methodMGFA) with the original implementation using
V-A.) Thus, the FFT can be avoided by invertitigusing an ~ FFT (which we call from now on FFTFA[16]. As a first
alternative algorithm. Clearly, a good candidate should b&tep, we tuned the parameterfor the FFTFA method at
suitable for use on parallel machines, and should requirdnfinite 8 and V=8*. We obtainedaq,=1.105 as optimal
ideally, the same computational work as FFT, i¥logy.  choice, and a number of gauge-fixing sweeps equal to
One such candidate is thaultigrid (MG) algorithm with ~ 14.92). (Note that our data represent averages over a set of
W-cycle and piecewise-constant interpolation. The idea ofauge configurations, and that our error bars are one standard
MG is to solve the lattice problem recursively, using local deviation) We then tested MGFA witlw = ao;: in addition
(Gauss-Seidglupdates on coarser versions of the originalto the W-cycle (where each grid is visited twice before pro-
lattice in order to accelerate the convergence of slow modegeeding to the next finer gridwe also tested for comparison
of the solution. The MG is an efficieriterative routine for ~ theV-cycle (where each grid is visited once before proceed-
inverting the Laplaciam\: with our choice of cycle and in- ing to the next finer griland the standard Gauss-Seidel up-
terpolation, each iteration of the method represents a work afate; for theW-cycle we also varied the number of Gauss-
orderV, and the number of iterations required for conver-Seidel relaxation sweeps on each gritl;X, and the
gence is proportional to lagat most{13,14. Moreover, the ~ minimum number of complete multigrid cycledl;,). Re-
MG routine can be successfully implemented on vector angults for the number of gauge-fixing sweeps as a function of
parallel machine§15)]. Thus this approach should preservethe accuracy17], at infinite 8 and V=28, are reported in
the property of eliminating CSD for Landau gauge fixing, Fig. 1. By comparing these results with the result from the
while being applicable on parallel machines. At the samd=-FTFA method, it is clear that the number of gauge-fixing
time, there is no restriction on the lattice size since, even fopweeps is independent of the method used for the inversion
a fixed coarsening factde.g., 2, the size of the coarsest of A, provided that a high enough accuracy is required.
grid can be adjusted conveniently. Among the tested versions of the MGFA method, the best
The overhead for the MG routine is likely to be larger from the point of view of computational cost is the one with
than the one for FFT, but in our case it can be reduced byhe following choice of parametersy=2, an accuracy of
exploiting the fact that multigridas opposed to FBTis an  about 10°°, two relaxation sweeps on each grid, and a mini-
iterative method. For example, a significant computationamum of two multigrid cycles for each inversion &f. (We
gain can be obtained if one starts the inversion from a goodote that the CPU cogtomputer timg per iteration of this
initial guess for the solution. Also, by changing the stoppingMG version is higher than for the other versions, but the fact
criterion for the inversion, the accuracy of the solution canthat the inversion of the Laplacian can be stopped already at
be suitably varied, while for FFT the accuracy is fixed by thean accuracy of 10° makes it the fastest versioriWe then
precision used in the numerical code. This is important sincedopt this version of MG as the routine used for our MGFA
we will be tuning the parameter in Eq. (2), and this tuning methodFor the MG routine we have chosen to use a coarsest
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TABLE I. Comparison between the FFTFA and MGFA algo- volume. MGFA is equivalent to FFTFA also g=2.2 and

rithms atB= and at3=2.2 on a workstation. The optimal choice \/=g8% and therefore it appears that the use of FFT can be

for the tuning parametez for the two FA methods is report¢d8]. avoided also at finites.

We also quote here results for the overrelaxatioWE) method. We remark that the FA method may have convergence

problems at low values g8 [6,21], probably related to the

large number of local minima of the function&l[ g] and/or

Algorithm B \% agr  GF sweeps  CPU timés)

OVE o0 4% 18.1+0.1  0.167-0.003 to the existence of topological objects on the lattice. These
FFTFA 0 44 112 13.6:0.3 0.34-0.01 problems are more likely to affect a global method than a
MGFA o 44 112 13.7023 0.55+0.02 local one(such as overrelaxatipnA possible solution may

be the smearing approach recently introduced28]: by
OVE I 37.5£0.2 591003 smoothing out the lattice gauge configuration, one can per-
FETFA ° 8 112 16103 9.60-0.20 form gauge fixing at an effectiv@ close to infinity; this
MGFA ° 8" 112 16.2:0.3 11.4-0.5 result is then used as a preconditioning of the original gauge-
OVE o 16 76.6+ 0.9 194+ 2 fixing probler_n,. i.e., the gauge-fixing it.erations _stgrt e_xlready
FEIEA - I8 11 004 2w SO0 mum. T apposch ams a elmnaing e
MGFA © 16 11 20.3-04 242-10 suited for the FA method. In fact, the two gauge-fixing steps
OVE 22 ¢ 139+8 22.5-1.4 involved (the one for the preconditioning—at high—and
FFTFA 22 & 189 33327 200+ 12 the one starting close to a minimigare ideal applications of
MGFA 22 & 189 31225 18715 FA.

We then applied MGFA on two paralléAPE-Quadrics
machines of the APE100 series: the Qf (®ocessorsand
grid of 2*. Nevertheless we have checked that the perforthe QH4 (& processons[23]. In order to implement the
mance of the chosen version does not change if a coarsesiethod on a parallel machine, the idea is to use as the coars-
grid of 4% is used. This is an important result, as we will see,est grid for the MG routine a grid with volume equal to or
for the implementation of the algorithm on parallel ma- larger than the number of processors. This avoids the prob-
chines. We have also tested different initial guesses for thtkem of idle processors discussed in Ref5]. For example,
MG inversion, finding that the use of the solution to thefor the Q1 we implemented the MG routine with coarsest
previous inversion of the Laplacian is preferable to a null orgrid 4* (respectively, 8) for the lattice volumeV=8* (re-
random initial guess. spectively,V=12%), while for the QH4 we used 8as the
coarsest grid24]. We have checked that the number of
gauge-fixing sweeps does not change, if we use for the MG
routine an accuracy in the range 78-10"°. This confirms

Initially, we have tested the performance of the MGFA the result obtained for a serial machifsee Fig. 1 In all our
method aiB=« and atB=2.2 on a workstation. The results, runs on APE machines, we set the accuracy for the inversion
reported in Table |, are compared with those obtained for théo 5x 10 °. Since these machines work in single precision,
FFTFA method and for the overrelaxatig®VE) algorithm  we have also decreased the stopping criterion for the gauge
[19], an improved local method which shows-1 [6,7] and  fixing to (V-A)?<10 .
which is often used for production runs in lattice gauge As an alternative to the MG inversion, we have also
theory. In all cases the stopping criterion for the gauge fixingmplemented a version of the Fourier acceleration method in
was (V-A)?<10 2 From the data aB=x we can study which the Laplaciam is inverted using a standafierative
the volume dependence of the computational cost for theonjugate-gradient(CG) method. We call this method
various algorithms. Clearly, FFTFA and MGFA have a simi- CGFA. The CG algorithm is simpler to program, and has
lar performance[20], showing a number of gauge-fixing been widely used on parallel machines. Its CPU time per
sweeps increasing less than logarithmically with the volumeeycle should be smaller than the one for MG, but the number
V, and the CPU time per sweep increasing roughlylag\V. of iterations required in order to achieve a fixed accuracy
From our data we note that the number of MG cycles peshould increase faster than for the MG routine. In fact, we
inversion is essentially independent of the volume. As exhave checked that the number of multigrid iterations is es-
pected, for the overrelaxation algorithm the number ofsentially independent of the lattice volume, while the number
gauge-fixing sweeps is proportional to the lattice Sijand  of CG iterations grows roughly a¢%%’.
the CPU time per sweep grows as the voluNfe The data In Table Il we report the number of gauge-fixing sweeps
for the total CPU time for the two implementations of the FA obtained, atB=% and for several lattice sizes, for the
method and for the overrelaxation method are well fit byMGFA and the CGFA methods on APE machines. Their
VlogV and N°, respectively. An extrapolation of our data performances are compared with that of a standard overre-
using these fits predicts that either version of the FA methodiaxation(OVE) and with that of an unaccelerated local algo-
would be less costly than the overrelaxation method alreadyithm (the so-called Los Alamos algorithm, LQ$6,7].
at lattice sideN=24. Actually, the CPU cost for MGFA These runs on parallel machines confirm that local algo-
scales slightly better with the volume than for FFTFA. Thus,rithms are usually not able to achieve a constant value for the
on a serial machine, and gt=, the fast Fourier transform longitudinal gluon propagator at zero three-momentum. This
can be successfully replaced by the MG routine, and MGFAcan be checked by changing the stopping criterion for the
should be the method of choice in the limit of large lattice gauge fixing: instead of considering (A)? we can consider

Ill. RESULTS AND CONCLUSIONS
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TABLE Il. Results for the so-called Los Alam@kOS) method,  large lattices. With respect to the overrelaxation method, the
the overrelaxationfOVE) method, the CGFA and MGFA algo- two implementations of FA are competitive already at vol-
rithms atS=cc. Runs were carried out on the Q1 and QH4 ma-ume 32, if one requires a sensitive stopping criterion for the
chines, for the lattice volumeg=_8% 12" andV=16",32, respec-  gauge fixing. We observe that, at our lattice sizes, the CG
tively. The optimal choice for the tuning parameterfor the two implementation is about two times faster than MGFA, but at
FA methods is also reported. In all cases we stopped the gauggrge volumes we expect MGFA to win out.
fixing when the condition‘(-A)zs_'lof7 was satisfied. For the sec- We recall that local methods are more efficiently imple-
ond set of data af = 32" the conditiones<5x 10"° has been used. |\ anted on parallel machines than global ones, since they
require smaller communication between processors. Global

Algorithm v ¥opt  GF sweeps  CPU times) methods need implementations specifically designed for par-
LOS g 57.3+ 0.6 ~1 allel machines in order to achieve a significant reduction of
OVE g4 23.0+ 0.3 <1 their computational overhead. For example, in a parallel
CGEA g 114  13.9+ 01 456+ 0.07 implementation, the update for MG is not exactly of the
MGEA g* 1.10 13.8+ 0.1 13.4+ 0.2 Gauss-Seidel type, and in fact we observe that a higher
(fixed) number of MG iterations is needd@5]. We think
LOS 12 117+ 2 184+ 04 that our code for the MG routine can be optimized, since we
OVE 12 336+ 0.5 59 01 have not explored more advanced features of MG that can
CGFA 12 1.22 16.4+ 0.3 34.1+ 0.7 play a role on parallel machines, such as asynchronous mul-
MGFA 124 1.24 16.2+ 1.0 92+ 2 tigrid and the use of accommodative cycles instead of a fixed
cycling strategy.
g\)/SE ig 4(15938f 026 :1 We haye checked the dependence of the performance of
CGEA 1@ 133 17‘ 6: 0'2 919+ 0.04 the algorithms on the number of processors usmg_the data
. 0= L =Y from the Q1 and from the QH4, respectively, for lattice vol-
MGFA 16' 126 173+ 01  5.95* 0.08 ume 12 and 32. The CPU time per gauge-fixing iteration
LOS 3% 640 + 20 83+ 2 per site scales down by a factor of approximately 62 for all
OVE 3 84+ 2 12.0+ 0.3 the four algorithms, showing that the two FA methods par-
CGFA 3% 1.38 215+ 0.7 49+ 1 allelize as efficiently as the local onéblote that the number
MGEA 3 1.35 20.7+ 2.0 08+ 3 or:‘ proceisors increases by a factor 64 going from the Q1 to
the QH4
LOS 32 1970* 90 553+ 30 We have shown that the fast Fourier transform in the Lan-
OVE 32 252+ 70 75+ 20 dau gauge-fixing Fourier acceleration method can be suc-
CGFA 3z 1.34 23.4+ 0.8 57+ 2 cessfully substituted—on serial as well as on parallel
MGFA 32 1.33 22+ 3 123+ 3 machines—by an alternative inversion routine. This idea can

in principle be extended to other applications of FA such as
the case of quark propagators, and the Monte Carlo method

the quantitye, defined in Refs[6,7], which monitors the for thermalization of lattice configurations.
fluctuations of this gluon propagator. Results are reported in
Table Il for the lattice volumé/=32*. (Note that for LOS
and OVE the results, in this case, have a large statistical Simulations were done on an IBM RS-6000/340 worksta-
error, due to the fact that for some configurations the gaugéon at New York University, and on two APE-Quadrics ma-
fixing did not converge within 3000 sweeps. chines at the University of Rome Tor Vergata. We wish to

Also in the parallel case, the FA method eliminates CSDthank Philippe de Forcrand and Alan Sokal for helpful dis-
at B=, and therefore should be the method of choice orcussions.
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