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Multigrid implementation of the Fourier acceleration method for Landau gauge fixing
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~Received 17 December 1997; published 10 March 1998!

We present a new implementation of the Fourier acceleration method for Landau gauge fixing. By means of
a multigrid inversion we are able to avoid the use of the fast Fourier transform. This makes the method more
flexible, and well suited for vector and parallel machines. We study the performance of this algorithm on serial
and on parallel~APE100! machines for the four-dimensional SU~2! case. We find that our method is equivalent
to the standard implementation of Fourier acceleration already on a serial machine, and that it parallelizes very
efficiently: its computational cost shows a linear speedup with the number of processors. We have also
implemented, on the parallel machines, a version of the method using conjugate gradient instead of multigrid.
This leads to an algorithm that is efficient at intermediate lattice volumes.@S0556-2821~98!50607-8#

PACS number~s!: 11.15.Ha, 02.60.Pn
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I. INTRODUCTION

Lattice gauge fixing is a necessary tool for understand
the relationship between continuum and lattice gauge the
In fact, because of asymptotic freedom, the continuum li
of the lattice theory is the weak-coupling limit, and a wea
coupling expansion requires gauge fixing. Gauge fixing
also used in smearing techniques, and is necessary in ord
evaluate quark or gluon matrix elements which can be u
to extract nonperturbative results from Monte Carlo simu
tions @1#. It is therefore important to devise numerical alg
rithms to gauge fix efficiently a lattice configuration. An im
portant issue regarding the efficiency of these algorithm
the problem ofcritical slowing down~CSD!, which occurs
when the relaxation timet of an algorithm diverges as th
lattice volume is increased@2#. Conventional local algo-
rithms have adynamic critical exponent z'2, namely t
grows with the lattice sideN roughly asN2. Improved local
methods show typicallyz'1, while global methods may
succeed in eliminating CSD completely, i.e.,z'0. Usually,
global algorithms are more costly per iteration than lo
methods but, due to the elimination of CSD, their total co
putational cost becomes progressively lower than that of
cal methods at large lattice volumes. For this reason, effic
global algorithms are a highly desirable tool in large-volum
applications. Another important issue is whether gau
fixing algorithms can be implemented efficiently on paral
machines@3#, since computers of this type are widely used
numerical studies of gauge theory on large lattices.

A well-known global approach for reducing CSD, app
cable to gauge fixing as well as to other problems, is
method ofFourier acceleration~FA! @4#. The idea is to pre-
condition a problem using a diagonal matrix in momentu
space that is related to the solution of a simplified version
the problem@4,5#. For the SU~2! Landau gauge fixing case,
can be proved@6# that Fourier acceleration eliminates CS
completely at infiniteb, namely the dynamic critical expo

*Email address: cucchieri@roma2.infn.it
†Email address: mendes@roma2.infn.it
570556-2821/98/57~7!/3822~5!/$15.00
g
y.
it
-
s
r to
d
-

is

l
-
-

nt

-
l

e

f

nentz is equal to zero; we have also obtained@7#, at finiteb
and in two dimensions, thatz is equal to 0.03660.064.
Moreover, the FA gauge-fixing method is very efficient
achieving a constant value for the longitudinal gluon prop
gator at zero three-momentum@6–8#, which provides a very
sensitive test of the goodness of the gauge fixing.

To fix Landau gauge on the lattice, one looks for a mi
mum of the functional@9#:

EU@g#[
1

4 V(
m ,x

Tr@12g~x!Um~x!g†~x1em!# . ~1!

~We refer to@7# for notation.! The FA update is given by
g(new)(x)[R(x)g(old)(x) with

R~x!}12F̂21S a

p2~k!
F̂~¹•A~g!!D ~x!. ~2!

HereF̂ is a Fourier transform,a is a tuning parameter,p2(k)
is the square of the lattice momentum, and¹•A is the lattice
divergence of the gluon fieldAm . Thus, in this case, the
preconditioning is obtained using in momentum space a
agonal matrix with elements given by 1/p2(k) ~see Ref.@4#,
Sec. II, for details!. The FA method in its original form
makes use of thefast Fourier transform~FFT! to evaluateF̂
and F̂21, which requires a work of onlyVlogV, whereV is
the lattice volume@4#, making it very appealing from the
computational point of view. On the other hand, in order
implement FFT efficiently, one is restricted to using latti
sides that are powers of 2~@10#, Chapter 12!. Moreover,
implementing FFT on parallel machines of the SIMD typ
and especially in four dimensions, can be very cumberso
@3,11#. Here we present a new implementation of the F
method for Landau gauge fixing, which avoids complete
the use of the fast Fourier transform, and we test its per
mance for the four-dimensional SU~2! case on serial and on
parallel machines. Preliminary results have been reporte
@12#.
R3822 © 1998 The American Physical Society
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FIG. 1. Plot of the number of gauge-fixing sweeps for the MGFA algorithm as a function of the accuracy imposed on the inve
the Laplacian. Simulations were carried out on a workstation, for lattice volume 84 and atb5`. The different types of multigrid cycle
employed are:~left-hand figure! Gauss-Seidel update (L), V-cycle with Nr51,Nmin51 (s), W-cycle with Nr51,Nmin51 (h), W-cycle
with Nr52,Nmin51 (*); ~right-hand figure! a closer view of theW-cycle with Nr52,Nmin51 case~solid line!, together with theW-cycle
with Nr52,Nmin52 case (3). In the second plot errors are omitted for clarity. We note that for FFTFA the number of gauge-fixing s
is 14.960.2. In all cases we seta51.105, and we stopped the gauge fixing when the condition (¹•A)2<10210 was satisfied.
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II. THE MULTIGRID FA METHOD

Let us start by noting that the Fourier-mode decompo
tion in Eq. ~2! is equivalent to an inversion of the lattic
Laplacian operatorD:

F̂21p22~k!F̂5~2D!21 . ~3!

~Note that this inversion is carried out for each componen
¹•A.! Thus, the FFT can be avoided by invertingD using an
alternative algorithm. Clearly, a good candidate should
suitable for use on parallel machines, and should requ
ideally, the same computational work as FFT, i.e.,VlogV.
One such candidate is themultigrid ~MG! algorithm with
W-cycle and piecewise-constant interpolation. The idea
MG is to solve the lattice problem recursively, using loc
~Gauss-Seidel! updates on coarser versions of the origin
lattice in order to accelerate the convergence of slow mo
of the solution. The MG is an efficientiterative routine for
inverting the LaplacianD: with our choice of cycle and in-
terpolation, each iteration of the method represents a wor
order V, and the number of iterations required for conve
gence is proportional to logV at most@13,14#. Moreover, the
MG routine can be successfully implemented on vector
parallel machines@15#. Thus this approach should preser
the property of eliminating CSD for Landau gauge fixin
while being applicable on parallel machines. At the sa
time, there is no restriction on the lattice size since, even
a fixed coarsening factor~e.g., 2!, the size of the coarses
grid can be adjusted conveniently.

The overhead for the MG routine is likely to be larg
than the one for FFT, but in our case it can be reduced
exploiting the fact that multigrid~as opposed to FFT! is an
iterative method. For example, a significant computatio
gain can be obtained if one starts the inversion from a g
initial guess for the solution. Also, by changing the stopp
criterion for the inversion, the accuracy of the solution c
be suitably varied, while for FFT the accuracy is fixed by t
precision used in the numerical code. This is important si
we will be tuning the parametera in Eq. ~2!, and this tuning
i-
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can be done only up to an accuracy of a few percent. Th
the inversion ofD most likely will not require the high ac-
curacy obtained in the FFT case, making possible a subs
tial reduction of the computational cost.

In order to test the feasibility of this approach, we ha
started our simulations on a workstation, comparing the p
formance of the MG implementation of the Fourier accele
tion method~MGFA! with the original implementation using
FFT ~which we call from now on FFTFA! @16#. As a first
step, we tuned the parametera for the FFTFA method at
infinite b and V584. We obtainedaopt51.105 as optimal
choice, and a number of gauge-fixing sweeps equal
14.9(2). ~Note that our data represent averages over a se
gauge configurations, and that our error bars are one stan
deviation.! We then tested MGFA witha5aopt: in addition
to theW-cycle ~where each grid is visited twice before pro
ceeding to the next finer grid!, we also tested for compariso
theV-cycle ~where each grid is visited once before procee
ing to the next finer grid! and the standard Gauss-Seidel u
date; for theW-cycle we also varied the number of Gaus
Seidel relaxation sweeps on each grid (Nr), and the
minimum number of complete multigrid cycles (Nmin). Re-
sults for the number of gauge-fixing sweeps as a function
the accuracy@17#, at infinite b and V584, are reported in
Fig. 1. By comparing these results with the result from t
FFTFA method, it is clear that the number of gauge-fixi
sweeps is independent of the method used for the inver
of D, provided that a high enough accuracy is requir
Among the tested versions of the MGFA method, the b
from the point of view of computational cost is the one wi
the following choice of parameters:g52, an accuracy of
about 1025, two relaxation sweeps on each grid, and a mi
mum of two multigrid cycles for each inversion ofD. ~We
note that the CPU cost~computer time! per iteration of this
MG version is higher than for the other versions, but the f
that the inversion of the Laplacian can be stopped alread
an accuracy of 1025 makes it the fastest version.! We then
adopt this version of MG as the routine used for our MGF
method.For the MG routine we have chosen to use a coars
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grid of 24. Nevertheless we have checked that the per
mance of the chosen version does not change if a coa
grid of 44 is used. This is an important result, as we will se
for the implementation of the algorithm on parallel m
chines. We have also tested different initial guesses for
MG inversion, finding that the use of the solution to t
previous inversion of the Laplacian is preferable to a null
random initial guess.

III. RESULTS AND CONCLUSIONS

Initially, we have tested the performance of the MGF
method atb5` and atb52.2 on a workstation. The results
reported in Table I, are compared with those obtained for
FFTFA method and for the overrelaxation~OVE! algorithm
@19#, an improved local method which showsz'1 @6,7# and
which is often used for production runs in lattice gau
theory. In all cases the stopping criterion for the gauge fix
was (¹•A)2<10212. From the data atb5` we can study
the volume dependence of the computational cost for
various algorithms. Clearly, FFTFA and MGFA have a sim
lar performance@20#, showing a number of gauge-fixin
sweeps increasing less than logarithmically with the volu
V, and the CPU time per sweep increasing roughly asVlogV.
From our data we note that the number of MG cycles
inversion is essentially independent of the volume. As
pected, for the overrelaxation algorithm the number
gauge-fixing sweeps is proportional to the lattice sideN, and
the CPU time per sweep grows as the volumeN4. The data
for the total CPU time for the two implementations of the F
method and for the overrelaxation method are well fit
VlogV and N5, respectively. An extrapolation of our da
using these fits predicts that either version of the FA met
would be less costly than the overrelaxation method alre
at lattice sideN524. Actually, the CPU cost for MGFA
scales slightly better with the volume than for FFTFA. Thu
on a serial machine, and atb5`, the fast Fourier transform
can be successfully replaced by the MG routine, and MG
should be the method of choice in the limit of large latti

TABLE I. Comparison between the FFTFA and MGFA alg
rithms atb5` and atb52.2 on a workstation. The optimal choic
for the tuning parametera for the two FA methods is reported@18#.
We also quote here results for the overrelaxation~OVE! method.

Algorithm b V aopt GF sweeps CPU time~s!

OVE ` 44 18.160.1 0.16760.003
FFTFA ` 44 1.12 13.660.3 0.3460.01
MGFA ` 44 1.12 13.760.3 0.5560.02

OVE ` 84 37.560.2 5.9160.03
FFTFA ` 84 1.12 16.160.3 9.6060.20
MGFA ` 84 1.12 16.260.3 11.460.5

OVE ` 164 76.660.9 19462
FFTFA ` 164 1.1 20.060.4 24666
MGFA ` 164 1.1 20.360.4 242610

OVE 2.2 84 13968 22.561.4
FFTFA 2.2 84 1.89 333627 200612
MGFA 2.2 84 1.89 312625 187615
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volume. MGFA is equivalent to FFTFA also atb52.2 and
V584, and therefore it appears that the use of FFT can
avoided also at finiteb.

We remark that the FA method may have converge
problems at low values ofb @6,21#, probably related to the
large number of local minima of the functionalEU@g# and/or
to the existence of topological objects on the lattice. Th
problems are more likely to affect a global method than
local one~such as overrelaxation!. A possible solution may
be the smearing approach recently introduced in@22#: by
smoothing out the lattice gauge configuration, one can p
form gauge fixing at an effectiveb close to infinity; this
result is then used as a preconditioning of the original gau
fixing problem, i.e., the gauge-fixing iterations start alrea
close to a minimum. This approach aims at eliminating
problem of Gribov copies on the lattice, and is very w
suited for the FA method. In fact, the two gauge-fixing ste
involved ~the one for the preconditioning—at highb—and
the one starting close to a minimum! are ideal applications o
FA.

We then applied MGFA on two parallel~APE-Quadrics!
machines of the APE100 series: the Q1 (23 processors! and
the QH4 (83 processors! @23#. In order to implement the
method on a parallel machine, the idea is to use as the co
est grid for the MG routine a grid with volume equal to
larger than the number of processors. This avoids the p
lem of idle processors discussed in Ref.@15#. For example,
for the Q1 we implemented the MG routine with coarse
grid 44 ~respectively, 64) for the lattice volumeV584 ~re-
spectively,V5124), while for the QH4 we used 84 as the
coarsest grid@24#. We have checked that the number
gauge-fixing sweeps does not change, if we use for the
routine an accuracy in the range 1024–1025. This confirms
the result obtained for a serial machine~see Fig. 1!. In all our
runs on APE machines, we set the accuracy for the invers
to 531025. Since these machines work in single precisio
we have also decreased the stopping criterion for the ga
fixing to (¹•A)2<1027.

As an alternative to the MG inversion, we have al
implemented a version of the Fourier acceleration method
which the LaplacianD is inverted using a standard~iterative!
conjugate-gradient~CG! method. We call this method
CGFA. The CG algorithm is simpler to program, and h
been widely used on parallel machines. Its CPU time
cycle should be smaller than the one for MG, but the num
of iterations required in order to achieve a fixed accura
should increase faster than for the MG routine. In fact,
have checked that the number of multigrid iterations is
sentially independent of the lattice volume, while the numb
of CG iterations grows roughly asN0.37.

In Table II we report the number of gauge-fixing swee
obtained, atb5` and for several lattice sizes, for th
MGFA and the CGFA methods on APE machines. Th
performances are compared with that of a standard ove
laxation~OVE! and with that of an unaccelerated local alg
rithm ~the so-called Los Alamos algorithm, LOS! @6,7#.
These runs on parallel machines confirm that local al
rithms are usually not able to achieve a constant value for
longitudinal gluon propagator at zero three-momentum. T
can be checked by changing the stopping criterion for
gauge fixing: instead of considering (¹•A)2 we can consider
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the quantitye6 defined in Refs.@6,7#, which monitors the
fluctuations of this gluon propagator. Results are reporte
Table II for the lattice volumeV5324. ~Note that for LOS
and OVE the results, in this case, have a large statis
error, due to the fact that for some configurations the ga
fixing did not converge within 3000 sweeps.!

Also in the parallel case, the FA method eliminates C
at b5`, and therefore should be the method of choice

TABLE II. Results for the so-called Los Alamos~LOS! method,
the overrelaxation~OVE! method, the CGFA and MGFA algo
rithms at b5`. Runs were carried out on the Q1 and QH4 m
chines, for the lattice volumesV584,124 andV5164,324, respec-
tively. The optimal choice for the tuning parametera for the two
FA methods is also reported. In all cases we stopped the ga
fixing when the condition (¹•A)2<1027 was satisfied. For the sec
ond set of data atV5324 the conditione6<531026 has been used

Algorithm V aopt GF sweeps CPU time~s!

LOS 84 57.3 6 0.6 '1
OVE 84 23.0 6 0.3 ,1
CGFA 84 1.14 13.96 0.1 4.566 0.07
MGFA 84 1.10 13.86 0.1 13.46 0.2

LOS 124 117 6 2 18.46 0.4
OVE 124 33.6 6 0.5 5.96 0.1
CGFA 124 1.22 16.46 0.3 34.16 0.7
MGFA 124 1.24 16.26 1.0 926 2

LOS 164 198 6 2 '1
OVE 164 46.3 6 0.6 ,1
CGFA 164 1.33 17.66 0.2 2.126 0.04
MGFA 164 1.26 17.36 0.1 5.956 0.08

LOS 324 640 6 20 836 2
OVE 324 84 6 2 12.06 0.3
CGFA 324 1.38 21.56 0.7 496 1
MGFA 324 1.35 20.76 2.0 986 3

LOS 324 19706 90 5536 30
OVE 324 252 6 70 756 20
CGFA 324 1.34 23.46 0.8 576 2
MGFA 324 1.33 226 3 1236 3
C

zio

la-
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large lattices. With respect to the overrelaxation method,
two implementations of FA are competitive already at v
ume 324, if one requires a sensitive stopping criterion for t
gauge fixing. We observe that, at our lattice sizes, the
implementation is about two times faster than MGFA, but
large volumes we expect MGFA to win out.

We recall that local methods are more efficiently imp
mented on parallel machines than global ones, since t
require smaller communication between processors. Glo
methods need implementations specifically designed for
allel machines in order to achieve a significant reduction
their computational overhead. For example, in a para
implementation, the update for MG is not exactly of th
Gauss-Seidel type, and in fact we observe that a hig
~fixed! number of MG iterations is needed@25#. We think
that our code for the MG routine can be optimized, since
have not explored more advanced features of MG that
play a role on parallel machines, such as asynchronous m
tigrid and the use of accommodative cycles instead of a fi
cycling strategy.

We have checked the dependence of the performanc
the algorithms on the number of processors using the d
from the Q1 and from the QH4, respectively, for lattice vo
ume 124 and 324. The CPU time per gauge-fixing iteratio
per site scales down by a factor of approximately 62 for
the four algorithms, showing that the two FA methods p
allelize as efficiently as the local ones.~Note that the number
of processors increases by a factor 64 going from the Q
the QH4.!

We have shown that the fast Fourier transform in the L
dau gauge-fixing Fourier acceleration method can be s
cessfully substituted—on serial as well as on para
machines—by an alternative inversion routine. This idea
in principle be extended to other applications of FA such
the case of quark propagators, and the Monte Carlo met
for thermalization of lattice configurations.
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