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Numerical evolution of dynamic 3D black holes: Extracting waves
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We consider the numerical evolution of dynamic black hole initial data sets with a full 3D, nonlinear
evolution code. These data sets consist of single black holes distorted by strong gravitational waves, and mimic
the late stages of coalescing black holes. Through comparison with results from well established axisymmetric
codes, we show that these dynamic black holes can be accurately evolved. In particular, we show that with
present computational resources and techniques, the process of excitation and ringdown of the black hole can
be evolved, and one can now extract accurately the gravitational waves emitted from the 3D Cartesian metric
functions, even though they may be buried in the metric at levels on the order of 1023 and below. Waveforms
for both thel 52 and the much more difficultl 54 modes are computed and compared with axisymmetric
calculations. In addition to exploring the physics of distorted black hole data sets, and showing the extent to
which the waves can be accurately extracted, these results also provide important testbeds for all fully non-
linear numerical codes designed to evolve black hole spacetimes in 3D, whether they use singularity avoiding
slicings, apparent horizon boundary conditions, or other evolution methods.@S0556-2821~98!50106-3#

PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

As numerical relativity is empowered by ever larger co
puters, numerical evolutions of black hole data sets are
coming more and more common@1#. The need for such
simulations is great, especially as gravitational wave ob
vatories are gearing up to collect gravitational wave d
over the next decade@2#. As black hole collisions are con
sidered a most promising source of signals to be detecte
these observatories, it is crucial to have a detailed theore
understanding of the coalescence process that can onl
achieved through numerical simulation. In particular, it
most important to be able to simulate accurately the exc
tion of the coalescing black holes, to follow the waves ge
erated in the process, and to extract gravitational wavefo
expected to be seen by detectors.

This is a very difficult calculation, as one must simult
neously deal with singularities inside the black holes, follo
the highly nonlinear regime in the coalescence process
ing place near the horizons, and also calculate the lin
regime in the radiation zone where the waves represe
very small perturbation on the background spacetime me
In axisymmetry this has been achieved for stellar colla
@3#, rotating collisionless matter@4#, distorted vacuum black
holes with rotation@5# and without@6#, and for equal mass
colliding black holes@7,8#, but with difficulty. These 2D
evolutions can be carried out to roughlyt5100M , whereM
is the Arnowitt-Deser-Misner~ADM ! mass of the spacetime
although beyond this point large gradients related to sin
570556-2821/98/57~6!/3204~5!/$15.00
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larity avoiding slicings usually cause the codes to beco
very inaccurate and crash.

In such simulations, it has been shown that, using
gauge-invariant radiation extraction technique develop
originally by Abrahams@9,10#, one can in principle extrac
the waveforms generated by the black holes. However, e
in axisymmetric simulations, where the coordinate syste
are naturally adapted to the black holes and the radiat
these waveforms can sometimes be difficult to comp
cleanly. The waves are small perturbations buried in the f
nonlinear metric functions actually being evolved, are gen
ated in the strong field regime just outside the evolving h
rizon, and then propagate out to the wave zone where t
must be extracted. The energy carried by these waves is
cally found to be on the order of 102621022M . At such low
amplitude, both the generation and propagation of these
nals are susceptible to small numerical errors inherent in
merical simulations. For example, in the axisymmetric ev
lution of Misner data for two colliding black holes, althoug
the l 52 signals have been accurately computed, as veri
by careful comparisons with perturbation theory in differe
regimes, the more difficultl 54 signals are still rather un
certain@8#.

In this paper we show that with current techniques a
computational resources available to 3D numerical relativ
distorted black holes can be evolved through the initial
laxation and final ringdown period, and that the gravitation
waveforms can be followed and accurately extracted fr
the numerical evolutions, even though they represent a s
R3204 © 1998 The American Physical Society



b
d

ni-
’’
d

ad
h
o
e-

al
se
tr
r

e
ng

va

an
d

d
id
e
-

u
rit

c
e

er
a
in

le
e
ea
tu
te
th

en

o

c
ia

th
he
th
ra

e
D
im
ol

the
ject
nd
ts

le
ad-

ur-
eci-
ghly
lu-
de-
r
ack
two

or-
-

re
n
for
-

be

ters

zed
d-
-
A
-

an
era-
in

in
set

we
n-
ion

RAPID COMMUNICATIONS

57 R3205NUMERICAL EVOLUTION OF DYNAMIC 3D BLACK . . .
perturbation on the background spacetime which is also
ing evolved. Here we focus on the application of the 3D co
to the evolution of an axisymmetric distorted black hole i
tial data set, the so-called ‘‘Brill wave plus black hole
@6,11#, that range from Schwarzschild to highly distorte
black holes. In this way, careful comparisons can be m
with previous results obtained with mature 2D codes. T
evolutions can be carried out at present through ab
t530– 35M , which provides time to study several wav
lengths of the fundamentall 52 andl 54 modes present in
the simulations. The extension to full 3D black hole initi
data and wave modes, for which no testbeds exist at pre
as well as more extensive comparisons with axisymme
initial data, are in progress and will be published elsewhe
In particular, nonaxisymmetric modes, such as th
l 52, m52 mode expected to be important in the ringi
radiation for rotating black holes at late times@12#, and
therefore an important signal for gravitational wave obser
tions, can now be studied@13#.

II. 3D EVOLUTION OF BLACK HOLES
WITH RADIATION

A. Our code and prior 3D simulations

We have developed a 3D code to study black holes
gravitational waves in Cartesian coordinates. This co
~known as the ‘‘G’’ code! was applied to Schwarzschil
black holes, where we showed that using singularity avo
ing time slicings, a spherical black hole could be evolv
accurately tot530– 50M , depending on the resolution, lo
cation of the outer boundary, and the slicing conditions@14#.
Beyond that time, the code generally crashes due to the
bounded growth of metric functions generated by singula
avoiding slicings. However, the focus of@14# was on spheri-
cal black holes, so no studies were made of black hole os
lations and the waves that would be generated in the proc
It was shown that with spherical initial data some nonsph
cal behavior could be introduced by the Cartesian mesh
boundary conditions, the numerics of which could in pr
ciple generate spurious gravitational waves.

The same code was simultaneously applied to the prob
of pure gravitational waves@15#, where many systems wer
studied, from pure linear quadrupole waves to nonlin
waves, and their propagation on a Cartesian mesh was s
ied. In that study it was shown that waves can be accura
evolved, although certain problems with gauge modes in
‘‘near linear’’ regime that can confuse the results were id
tified, along with strategies to deal with them.

This 3D code was then applied to the collision of tw
axisymmetric black holes~Misner data! @16#, where we
showed by comparison to 2D results that one could ac
rately track the merging of the horizons, and that the rad
tion emitted was qualitatively the same, but at that time
waveforms were not studied extensively. Building on t
work presented in this paper, a more detailed study of
Misner data in 3D, including the waveforms, is in prepa
tion for publication elsewhere.

In this paper, we build on this prior work, focusing on th
3D evolution of distorted single black holes. In previous 2
axisymmetric studies, such data sets were shown to be s
lar to single black holes formed just after the merger of c
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liding axisymmetric black holes. The agreement between
waveforms produced with the 3D and 2D codes is the sub
of this paper, while comparisons of metric functions a
other quantities for a variety of axisymmetric initial data se
will be found in @13,17#.

B. Initial data

The initial data we evolve in this paper consist of a sing
black hole that has been distorted by the presence of an
justable torus of nonlinear gravitational waves which s
round it. The amplitude and shape of the torus can be sp
fied by hand, as described below, and can create very hi
distorted black holes. Such initial data sets, and their evo
tions in axisymmetry, have been studied extensively, as
scribed in Refs.@6,18,11#. For our purposes, we conside
them as convenient initial data that create a distorted bl
hole that mimics the merger, just after coalescence, of
black holes colliding in axisymmetry@8#.

Following @18#, we write the 3–metric in the form origi-
nally used by Brill@19#:

dl 25c̃4@e2q~dh21du2!1sin2udf2#, ~1!

whereh is a radial coordinate related to the Cartesian co
dinates byAx21y21z25eh. ~We have set the scale param
eter m in @18# to be 2 in this paper.! We choose our initial
slice to be time symmetric, so that the extrinsic curvatu
vanishes. Thus, given a choice for the ‘‘Brill wave’’ functio
q, the Hamiltonian constraint leads to an elliptic equation
the conformal factorc̃ . The functionq represents the gravi
tational wave surrounding the black hole, and is chosen to

q~h,u,f!5asinnu~e2@~h1b!/w#2
1e2@~h2b!/w#2

!

3~11ccos2f!. ~2!

Thus, an initial data set is characterized by the parame
(a,b,w,n,c), where, roughly speaking,a is the amplitude of
the Brill wave,b is its radial location,w its width, andn and
c control its angular structure. Note that we have generali
the original axisymmetric construction to full 3D by the a
dition of the parameterc, but in this paper we restrict our
selves toc50 for comparison with axisymmetric results.
study of full 3D initial data and their evolutions will be pub
lished elsewhere@13,17,20#. If the amplitudea vanishes, the
undistorted Schwarzschild solution results, leading to

c̃52coshS h

2 D . ~3!

We note that just as the Schwarzschild geometry has
isometry that leaves the metric unchanged under the op
tion h→2h, our data sets also have this property, even
the presence of the Brill wave. As discussed in@14,11#, this
condition can also be applied during the evolution and
Cartesian coordinates as well. The evolution of the data
(0.5,0,1,2,0) is considered in this paper. In what follows
solve the Hamiltonian constraint for this initial data set, i
terpolate it onto a 3D Cartesian grid, and study its evolut
with a 3D evolution code.
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C. Evolution and analysis

Using the techniques described in@14#, we evolve the
initial data sets described above in 3D Cartesian coordina
The present evolution code is based on the one detaile
@14,15#, using the same finite difference algorithms, havi
the same convergence properties, etc., but having bee
written to take advantage of newer parallel computers.

Although the 3D evolution code is written without ma
ing use of any symmetry assumptions, the initial data
evolve in this paper have both equatorial plane symme
and axisymmetry. Hence we save on the memory and c
putation required by evolving only one octant of the syste
As shown in@14#, this has no effect on the simulations e
cept to reduce the computational requirements by a facto
eight. Even with such computational savings, these are
travagant calculations. The results presented in this pa
were computed on a 3D Cartesian grid of 3003 numerical
grid zones, which is about a factor three larger than the la
est production relativity calculations of which we are awa
~which were about 2003 zones!. With our new code, these
take about 12 Gbytes of memory, and require about a da
a 128 processor, early access SGI/Cray Origin 2000 su
computer.

Given a choice of lapse and shift, the Cartesian me
functionsgxx ,gxy , etc., are evolved using the ADM formu
lation of the Einstein equations. In this paper we use a la
which is initially maximal, with antisymmetric condition
across the throat of the black hole, defined by the isom
surfaceh50, or r 51. The initial data are then evolved wit
the ‘‘11log’’ algebraic lapse condition@14#, an isometry op-
erator in Cartesian coordinates, and with zero shift. Th
choices have been made for computational efficiency,
are not unique choices for successful evolution. For exam
we have performed similar calculations with maximal slici
and no isometry with similar results, except that the com
tational time needed to solve the elliptic maximal slici
equation can double or triple the computational time nee
to perform these simulations. At the outer boundary, we h
the evolved functions fixed to their initial value.

As in the case of a spherical black hole@14#, singularity
avoiding slicings lead to large gradients in metric functio
that cannot presently be resolved in 3D and eventually ca
the code to crash. The same problem occurs with disto
black holes. In Fig. 1 we show the radial metric functi
g rr /c4, with its large round peak, at timet527.2M , recon-
structed from the Cartesian metric functions that are actu
evolved. The spike developing near the origin is inside
throat, and is a result of the application of the isometry c
dition. One expects that the region near the metric funct
peaks needs to be accurately computed in order to prod
the correct waveform, because the ringing radiation is p
duced by scattering off the Zerilli potential, which is locat
just outside of the peak as we know from studies of horiz
location@21#. Although this potential is never explicitly com
puted in the calculations, it is implicitly built into the Carte
sian metric functions being evolved.

D. Radiation extraction

Although in black hole simulations we evolve directly th
metric and extrinsic curvature, for applications to gravi
s.
in

re-

e
y
-

.

of
x-
er

g-

on
r-

ic

se

ry

e
d
e,

-

d
d

s
se
d

ly
e
-
n
ce
-

n

-

tional wave astronomy we are particularly interested in co
puting the waveforms emitted. One measure of this radia
is the Zerilli function,c, which is a gauge-invariant function
that obeys the Zerilli wave equation@22#. The Zerilli func-
tion can be computed by writing the metric as the sum o
spherically symmetric part and a perturbatio
gab5g̊ab1hab , where the perturbationhab is expanded in
tensor spherical harmonics. To compute the elements ofhab

in a numerical simulation, one integrates the numerica
evolved metric componentsgab against appropriate spherica
harmonics over a coordinate 2-sphere surrounding the b
hole. The resulting functions can then be combined in
gauge-invariant way, following the prescription given b
Moncrief @23#. This procedure was originally developed b
Abrahams@9#, and was applied to the same class of distor
black hole initial data sets discussed here, but evolved in
spherical-polar coordinates and with a different gauge,
discussed in@6#.

We have developed numerical methods based on the s
ideas to extract the waves in a full 3D Cartesian setting. T
method used is essentially that used in the axisymme
case, except that the metric functions and their spatial der
tives need to be interpolated onto a two-dimensional surfa
which we choose to have constant coordinate radius.
projections of the perturbed metric functionshab , and their
radial derivatives, are then computed by numerically p
forming two-dimensional surface integrals for eachl 2m
mode desired. Then, for each mode, the Zerilli function
constructed from these projected metric functions, accord
to Moncrief’s gauge-invariant prescription. This is a comp
cated but straightforward procedure. Both the numerical
terpolations and integrations involved in this extraction p
cedure were chosen to be second order accurate, and
have been shown to converge to second order in the rele
grid spacing. As in Ref.@6#, we choose to normalize th
Zerilli function so that the asymptotic energy flux in ea
mode is given~in linear theory! by Ė5(1/32p)ċ2. While
previously only axisymmetric simulations have been studi
we can now study all non-trivial wave modes, includin
those withmÞ0.

FIG. 1. We show the radial metric functiong rr /c4 for the evo-
lution of the distorted black hole data set (a,b,w,n,c)
5(0.5,0,1,2,0) at timet527.2M . The evolution was performed
with 1503 grid points, although data from only the inner 1003 grid
points are shown to bring out detail. The resolution w
Dx50.0544M .
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We extracted thel 52 andl 54 Zerilli functions during
an evolution of the distorted black hole initial data s
(a,b,w,n,c)5(0.5,0,1,2,0), using the extraction method d
scribed above. In Fig. 2~a! we show thel 52 Zerilli function
extracted at a radiusr 58.7M as a function of time. Super
imposed on this plot is the same function computed dur
the evolution of the same initial data set with a 2D cod
based on the one described in detail in@6,11#. The agreemen
of the two plots over the first peak is a strong affirmation
the 3D evolution code and extraction routine. It is importa
to note that the 2D results were computed with a differ
slicing ~maximal!, different coordinate system, and adiffer-
ent spatial gauge. Yet the physical results obtained by the
two different numerical codes, as measured by the wa
forms, are remarkably similar~as one would hope!. This is
the principal result of this paper. A full evolution with th
2D code tot5100M , by which time the hole has settle
down to Schwarzschild, shows that the energy emitted in
mode at that time is about 431023M .

In Fig. 2~b! we show thel 54 Zerilli function extracted
at the same radius, computed during evolutions with 2D
3D codes. This waveform is more difficult to extract, b
cause it has a higher frequency in both its angular and ra
dependence, and it has a much lower amplitude: the en
emitted in this mode is about three orders of magnitu
smaller than the energy emitted in thel 52 mode, i.e.,

FIG. 2. We show the~a! l 52 and~b! l 54 Zerilli functions vs
time, extracted during 2D and 3D evolutions of the data
(a,b,w,n,c)5(0.5,0,1,2,0). The functions were extracted at a
dius of 8.7M . The 2D data were obtained with 202354 grid points,
giving a resolution ofDh5Du50.03. The 3D data were obtaine
using 3003 grid points and a resolution ofDx50.0816M .
t
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1026M , yet it can still be accurately evolved and extracte
Small differences between the 2D and 3D results can

seen. Resolution studies of the 3D results indicate that
differences are not completely due to resolution of the
evolution code. The small differences in phase can be un
stood as a result of the different shift and slicings being u
in the two simulations. The radiation is extracted at a co
stant coordinate location, and the coordinates fall toward
the black hole at different rates with different slicings a
shifts. By measuring the physical radial position of the wa
extraction in these simulations, we determined that the
ference between the 2D and 3D phases at late time is
sistent with the slightly different extraction locations in th
two cases. The additional differences in thel 54 waveforms
could be related to slight differences in the initial data, whi
were generated in independent ways, or even difference
gauge~the waveforms are gauge-invariant, meaning they
unaffected only at first order under gauge transformation!.
As l 54 has a much smaller amplitude thanl 52, it will be
more sensitive to such details. The differences are v
small, and do not affect the conclusions of this paper,
they will be studied in detail and discussed elsewhere.

III. SUMMARY AND CONCLUSIONS

We have shown that, in 3D numerical relativity, give
sufficient resolution, distorted black holes can be accura
evolved. Furthermore the gravitational waveforms genera
by the black hole, consisting of small perturbations on
evolving black hole background, can be accurately pro
gated and extracted from the numerically generated me
on a 3D Cartesian grid. We have demonstrated this by c
paring results from a mature 2D code, showing good agr
ment not only for thel 52, but also thel 54 modes of the
radiation.

Although we regard this as an important step in establi
ing numerical relativity as a viable tool to compute wav
forms from black hole interactions, the calculations one c
presently do are limited. With present techniques, the evo
tions can only be carried out for a fraction of the time r
quired to simulate the 3D orbiting coalescence. Many te
niques to handle this more general case are un
development, such as hyperbolic formulations of the Einst
equations@24,25# and the advanced numerical methods th
bring @26,27#, adaptive mesh refinement@28,29# that will en-
able placing the outer boundary farther away while resolv
the strong field region where the waves are generated,
apparent horizon boundary conditions@30# that excise the
interiors of the black holes, thus avoiding the difficulties a
sociated with singularity avoiding slicings.

All of these techniques, and others, may be needed
handle the more general, long term evolution of coalesc
black holes. Our purpose in this paper has been to show
~a! given present resources one can evolve simpler disto
black hole systems and accurately extract the wavefor
even when they carry only'1026M in energy, and~b! to
establish testbeds for the techniques under developmen
the more general case. Each of these techniques may i
duce numerical artifacts, even if at very low amplitude,
which the waveforms may be very sensitive. As new me
ods are developed and applied to numerical black hole si
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lations, they can now be tested on evolutions such as th
presented here to ensure that the waveforms are accur
represented in the data.

In future papers we address the wave extraction in m
detail; work is presently in progress to apply it to more e
tensive axisymmetric initial data@17#, to full 3D initial data
sets where nonaxisymmetric modes can be extracted fo
first time @13#, and to the evolution of colliding black hole
in 3D, extending the work in@16#. Once this has been fully
developed and tested on full 3D data sets, it will be imp
tant to apply it to true 3D black hole collision simulation
such as those recently reported by Bru¨gmann@31#.
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