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Numerical evolution of dynamic 3D black holes: Extracting waves
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We consider the numerical evolution of dynamic black hole initial data sets with a full 3D, nonlinear
evolution code. These data sets consist of single black holes distorted by strong gravitational waves, and mimic
the late stages of coalescing black holes. Through comparison with results from well established axisymmetric
codes, we show that these dynamic black holes can be accurately evolved. In particular, we show that with
present computational resources and techniques, the process of excitation and ringdown of the black hole can
be evolved, and one can now extract accurately the gravitational waves emitted from the 3D Cartesian metric
functions, even though they may be buried in the metric at levels on the order d&ab@ below. Waveforms
for both the/'=2 and the much more difficult’=4 modes are computed and compared with axisymmetric
calculations. In addition to exploring the physics of distorted black hole data sets, and showing the extent to
which the waves can be accurately extracted, these results also provide important testbeds for all fully non-
linear numerical codes designed to evolve black hole spacetimes in 3D, whether they use singularity avoiding
slicings, apparent horizon boundary conditions, or other evolution meth8@556-282(98)50106-3

PACS numbg(s): 04.25.Dm, 04.30.Db, 95.30.5f, 97.60.Lf

I. INTRODUCTION larity avoiding slicings usually cause the codes to become
very inaccurate and crash.

As numerical relativity is empowered by ever larger com- In such simulations, it has been shown that, using a
puters, numerical evolutions of black hole data sets are begauge-invariant radiation extraction technique developed
coming more and more commdri]. The need for such originally by Abrahamg9,10], one can in principle extract
simulations is great, especially as gravitational wave obserthe waveforms generated by the black holes. However, even
vatories are gearing up to collect gravitational wave datan axisymmetric simulations, where the coordinate systems
over the next decadg]. As black hole collisions are con- are naturally adapted to the black holes and the radiation,
sidered a most promising source of signals to be detected tthese waveforms can sometimes be difficult to compute
these observatories, it is crucial to have a detailed theoreticaleanly. The waves are small perturbations buried in the full,
understanding of the coalescence process that can only Im@nlinear metric functions actually being evolved, are gener-
achieved through numerical simulation. In particular, it isated in the strong field regime just outside the evolving ho-
most important to be able to simulate accurately the excitarizon, and then propagate out to the wave zone where they
tion of the coalescing black holes, to follow the waves genimust be extracted. The energy carried by these waves is typi-
erated in the process, and to extract gravitational waveformeally found to be on the order of 16— 1072M. At such low
expected to be seen by detectors. amplitude, both the generation and propagation of these sig-

This is a very difficult calculation, as one must simulta- nals are susceptible to small numerical errors inherent in nu-
neously deal with singularities inside the black holes, followmerical simulations. For example, in the axisymmetric evo-
the highly nonlinear regime in the coalescence process takution of Misner data for two colliding black holes, although
ing place near the horizons, and also calculate the lineahe /=2 signals have been accurately computed, as verified
regime in the radiation zone where the waves represent by careful comparisons with perturbation theory in different
very small perturbation on the background spacetime metriaegimes, the more difficult’=4 signals are still rather un-

In axisymmetry this has been achieved for stellar collapseertain[8].

[3], rotating collisionless mattd#], distorted vacuum black In this paper we show that with current techniques and

holes with rotation5] and without[6], and for equal mass computational resources available to 3D numerical relativity,

colliding black holes[7,8], but with difficulty. These 2D distorted black holes can be evolved through the initial re-

evolutions can be carried out to roughbyg 100M, whereM laxation and final ringdown period, and that the gravitational

is the Arnowitt-Deser-MisnefADM ) mass of the spacetime, waveforms can be followed and accurately extracted from
although beyond this point large gradients related to singuthe numerical evolutions, even though they represent a small
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perturbation on the background spacetime which is also bdiding axisymmetric black holes. The agreement between the
ing evolved. Here we focus on the application of the 3D codevaveforms produced with the 3D and 2D codes is the subject
to the evolution of an axisymmetric distorted black hole ini- of this paper, while comparisons of metric functions and

tial data set, the so-called “Brill wave plus black hole” other quantities for a variety of axisymmetric initial data sets

[6,11], that range from Schwarzschild to highly distorted will be found in[13,17].

black holes. In this way, careful comparisons can be made

with previous results obtained with mature 2D codes. The B. Initial data

evolutions can be carried out at present through about
t=30-39M, which provides time to study several wave-
lengths of the fundamental=2 and/ =4 modes present in

the simulations. The extension to full 3D black hole initia

The initial data we evolve in this paper consist of a single
black hole that has been distorted by the presence of an ad-
Ijustable torus of nonlinear gravitational waves which sur-
data and wave modes, for which no testbeds exist at prese und it. The amplltudg and shape of the torus can be speci-
as well as more extensive comparisons with axisymmetri '?d by hand, as described pel_o_w, and can create very highly
initial data, are in progress and will be published elsewhereq'StorFed b.laCk holes. Such initial datg sets, and.the|r evolu-
In particular, nonaxisymmetric modes, such as the tions in axisymmetry, have been studied extensively, as de-
/=2,m=2 m’ode expected to be impo}tant in the ringing scribed in Refs.[6,18_,1_]_]. For our purposes, we consider
radia,tion for rotating black holes at late tims2], and them as convenient initial data that create a distorted black

therefore an important signal for gravitational wave observa-hoIe that mimics the merger, just after coalescence, of two

. ; black holes colliding in axisymmetr8].
tions, can now be studigd 3} Following [18], we write the 3—metric in the form origi-

nally used by Brill[19]:
Il. 3D EVOLUTION OF BLACK HOLES
WITH RADIATION d/ 2=y e*9(dn?+d6?) +sirfad ¢?], (1)
A. Our code and prior 3D simulations . . . .
P where 7 is a radial coordinate related to the Cartesian coor-
We have developed a 3D code to study black holes anginates by,/x?+y?+zZ=e”. (We have set the scale param-
gravitational waves in Cartesian coordinates. This codgterm in [18] to be 2 in this paper.We choose our initial
(known as the “G” cod¢ was applied to Schwarzschild gjice to be time symmetric, so that the extrinsic curvature
black holes, where we showed that using singularity avoidyanishes. Thus, given a choice for the “Brill wave” function
ing time slicings, a spherical black hole could be evolvedy the Hamiltonian constraint leads to an elliptic equation for

accurately tot=30-5(M, depending on the resolution, lo- the conformal factows. The functionq represents the gravi-

cation of the outer boundary, and the slicing conditifih. tational wave surrounding the black hole, and is chosen to be
Beyond that time, the code generally crashes due to the un-

bounded growth of metric functions generated by singularity i B 2 2
avoiding slicings. However, the focus [4] was on spheri- A(7,6,¢)=asin g(e~ (7D g=l(7=0IWT%

ca! black holes, so no studies were made of blgck hole oscil- X (1+ccod ). @)
lations and the waves that would be generated in the process.

It was shown that with spherical initial data some nonspheri-.l.
cal behavior could be introduced by the Cartesian mesh an
boundary conditions, the numerics of which could in prin-

ciple generate spurious gravitational waves. . .
peg P 9 ¢ control its angular structure. Note that we have generalized

The same co_de was simultaneously applied to the probler{he original axisymmetric construction to full 3D by the ad-
of pure gravitational wavegL5], where many systems were dition of the parametec, but in this paper we restrict our-

studied, from pure linear quadrupole waves to nonlinear ) ) ) .
elves toc=0 for comparison with axisymmetric results. A

waves, and their propagation on a Cartesian mesh was stud L . . .
ied. In that study it was shown that waves can be accuratelswdy of full 3D initial data and their evolutions will be pub-

evolved, although certain problems with gauge modes in th Sh?d elsewher{313,17,2_(). If the _amplltudea vanl_shes, the
“near linear” regime that can confuse the results were iden_und|storted Schwarzschild solution results, leading to
tified, along with strategies to deal with them.
_This 3D _code was then applied to the collision of two E=2cos?€z). 3
axisymmetric black holegMisner data [16], where we 2
showed by comparison to 2D results that one could accu-
rately track the merging of the horizons, and that the radia- We note that just as the Schwarzschild geometry has an
tion emitted was qualitatively the same, but at that time thésometry that leaves the metric unchanged under the opera-
waveforms were not studied extensively. Building on thetion »— — %, our data sets also have this property, even in
work presented in this paper, a more detailed study of théhe presence of the Brill wave. As discussedid,11], this
Misner data in 3D, including the waveforms, is in prepara-condition can also be applied during the evolution and in
tion for publication elsewhere. Cartesian coordinates as well. The evolution of the data set
In this paper, we build on this prior work, focusing on the (0.5,0,1,2,0) is considered in this paper. In what follows we
3D evolution of distorted single black holes. In previous 2Dsolve the Hamiltonian constraint for this initial data set, in-
axisymmetric studies, such data sets were shown to be sinierpolate it onto a 3D Cartesian grid, and study its evolution
lar to single black holes formed just after the merger of col-with a 3D evolution code.

hus, an initial data set is characterized by the parameters
,b,w,n,c), where, roughly speaking, is the amplitude of
the Brill wave,b is its radial locationy its width, andn and
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C. Evolution and analysis 40 7rr/1l/4

Using the techniques described [ih4], we evolve the
initial data sets described above in 3D Cartesian coordinates. 30¢F
The present evolution code is based on the one detailed in
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[14,15, using the same finite difference algorithms, having 20t l i i
the same convergence properties, etc., but having been re- ”,ﬁ%gf/;,,”q,, ‘\‘\\\\;\\g\\}g\%\\\w
written to take advantage of newer parallel computers. 10 L il p
Although the 3D evolution code is written without mak- \38;5’:;’( “W
ing use of any symmetry assumptions, the initial data we 0 ‘{{}\3:\::4”) “\‘ﬁg%,’,,,,‘
evolve in this paper have both equatorial plane symmetry b ‘Qﬁ\ﬁ?{@'}[}”‘!‘"ﬂ“%&’ — -
and axisymmetry. Hence we save on the memory and com- = " ~ S

putation required by evolving only one octant of the system.

As shown in[14], this has no effect on the simulations ex-  FIG. 1. We show the radial metric functiop, /4* for the evo-

cept to reduce the computational requirements by a factor dition of the distorted black hole data seta,ip,w,n,c)

eight. Even with such computational savings, these are ex=(0.5,0,1,2,0) at time=27.2\l. The evolution was performed

travagant calculations. The results presented in this paparith 150° grid points, although data from only the inner fagid

were computed on a 3D Cartesian grid of 30@merical  points are shown to bring out detail. The resolution was

grid zones, which is about a factor three larger than the largAx=0.0544\.

est production relativity calculations of which we are aware

(which were about 260zones. With our new code, these tional wave astronomy we are particularly interested in com-

take about 12 Gbytes of memory, and require about a day opyting the waveforms emitted. One measure of this radiation

a 128 processor, early access SGI/Cray Origin 2000 supefs the zerilli function,, which is a gauge-invariant function

computer. . , , _that obeys the Zerilli wave equatid22]. The Zerilli func-
Given a choice of lapse and shift, the Cartesian metrig; . o1 e computed by writing the metric as the sum of a

functions yxy, ¥xy, €lc., are evolved using the ADM formu- o poricaiy  symmetric  part and a  perturbation:
lation of the Einstein equations. In this paper we use a lapsg™ _ o +h where the perturbatioh. . is expanded in
which is initially maximal, with antisymmetric conditions 928~ Jas ™ Nas. P B P

across the throat of the black hole, defined by the isometr?gnsor sphe_rlcal hafmor_"cs- To compute the elemenlt@@f
surfacen=0, orr=1. The initial data are then evolved with " & numerlc_al simulation, one Integrates the numerl_cally
the “1-+log” algebraic lapse conditiof4], an isometry op- evolved_metrlc compongng;,w against approprlatg spherical
erator in Cartesian coordinates, and with zero shift. ThesBarmonics over a coordinate 2-sphere surrounding the black
choices have been made for computational efficiency, anfiole. The resulting functions can then be combined in a
are not unigue choices for successful evolution. For exampléauge-invariant way, following the prescription given by
we have performed similar calculations with maximal slicingMoncrief [23]. This procedure was originally developed by
and no isometry with similar results, except that the compuAbrahamg9], and was applied to the same class of distorted
tational time needed to solve the elliptic maximal slicing black hole initial data sets discussed here, but evolved in 2D
equation can double or triple the computational time neededpherical-polar coordinates and with a different gauge, as
to perform these simulations. At the outer boundary, we holdliscussed if6].
the evolved functions fixed to their initial value. We have developed numerical methods based on the same
As in the case of a spherical black h¢l], singularity  ideas to extract the waves in a full 3D Cartesian setting. The
avoiding slicings lead to large gradients in metric functionsmethod used is essentially that used in the axisymmetric
that cannot presently be resolved in 3D and eventually causgase, except that the metric functions and their spatial deriva-
the code to crash. The same problem occurs with distortegyes need to be interpolated onto a two-dimensional surface,
black holes. In Fig. 1 we show the radial metric functionwhich we choose to have constant coordinate radius. The
Yer /47, with its large round peak, at timie=27.2M, recon-  projections of the perturbed metric functiohg,, and their
structed from the Cartesian metric functions that are actuallygqig) derivatives, are then computed by numerically per-
evolved. The spike developing near the origin is inside theforming two-dimensional surface integrals for eachm
throat, and is a result of the application of the isometry cOnygge desired. Then, for each mode, the Zerilli function is
dition. One expects that the region near the metric functiononstryucted from these projected metric functions, according
peaks needs to be accurately computed in order to produgg \joncrief's gauge-invariant prescription. This is a compli-
the correct waveform, because the ringing radiation is progateqd but straightforward procedure. Both the numerical in-
duced by scattering off the Zerilli potential, which is located (erpolations and integrations involved in this extraction pro-
just outside of the peak as we know from studies of horizoneqyre were chosen to be second order accurate, and both
location[21]. Although this potential is never explicitly com- p4ve been shown to converge to second order in the relevant
puted in the calculations, it is implicitly built into the Carte- grid spacing. As in Ref[6], we choose to normalize the

sian metric functions being evolved. Zerilli function so that the asymptotic energy flux in each
- _ mode is given(in linear theory by E=(1/327)?. While
D. Radiation extraction previously only axisymmetric simulations have been studied,

Although in black hole simulations we evolve directly the we can now study all non-trivial wave modes, including
metric and extrinsic curvature, for applications to gravita-those withm+0.
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(a) 1=2 Zerilli Function 10 %M, yet it can still be accurately evolved and extracted.
06F ' ' Small differences between the 2D and 3D results can be

seen. Resolution studies of the 3D results indicate that the
differences are not completely due to resolution of the 3D
evolution code. The small differences in phase can be under-
stood as a result of the different shift and slicings being used
in the two simulations. The radiation is extracted at a con-
stant coordinate location, and the coordinates fall towards
the black hole at different rates with different slicings and
shifts. By measuring the physical radial position of the wave
i \ ] extraction in these simulations, we determined that the dif-
-0.6L ' e ] ference between the 2D and 3D phases at late time is con-

0 0 I 20 30 sistent with the slightly different extraction locations in the

two cases. The additional differences in the 4 waveforms

(b) 1=4 Zerilli Function could be related to slight differences in the initial data, which

' ' ] were generated in independent ways, or even differences in
gauge(the waveforms are gauge-invariant, meaning they are
unaffected only at first order under gauge transformajions
As /=4 has a much smaller amplitude thér-2, it will be
more sensitive to such details. The differences are very
small, and do not affect the conclusions of this paper, but
they will be studied in detail and discussed elsewhere.
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[ll. SUMMARY AND CONCLUSIONS

-0.020t : : ] We have shown that, in 3D numerical relativity, given
0 10 M 20 30 sufficient resolution, distorted black holes can be accurately
evolved. Furthermore the gravitational waveforms generated
FIG. 2. We show théa) /=2 and(b) /=4 Zerilli functions vs by the black hole, consisting of small perturbations on the
time, extracted during 2D and 3D evolutions of the data setevolving black hole background, can be accurately propa-
(a,b,w,n,c)=(0.5,0,1,2,0). The functions were extracted at a ra-gated and extracted from the numerically generated metric,
dius of 8. M. The 2D data were obtained with 2834 grid points, on a 3D Cartesian grid. We have demonstrated this by com-
giving a resolution ofA = A §=0.03. The 3D data were obtained paring results from a mature 2D code, showing good agree-

using 308 grid points and a resolution afx=0.0816\. ment not only for the”’=2, but also the”=4 modes of the
radiation.
We extracted the"=2 and/ =4 Zerilli functions during Although we regard this as an important step in establish-

an evolution of the distorted black hole initial data seting numerical relativity as a viable tool to compute wave-
(a,b,w,n,c)=(0.5,0,1,2,0), using the extraction method de-forms from black hole interactions, the calculations one can
scribed above. In Fig.(@) we show the”’=2 Zerilli function  presently do are limited. With present techniques, the evolu-
extracted at a radius=8.7M as a function of time. Super- tions can only be carried out for a fraction of the time re-
imposed on this plot is the same function computed duringyuired to simulate the 3D orbiting coalescence. Many tech-
the evolution of the same initial data set with a 2D code,niques to handle this more general case are under
based on the one described in detail6rl1]. The agreement development, such as hyperbolic formulations of the Einstein
of the two plots over the first peak is a strong affirmation ofequationd24,25 and the advanced numerical methods they
the 3D evolution code and extraction routine. It is importantbring [26,27], adaptive mesh refinemef8,29 that will en-
to note that the 2D results were computed with a differentable placing the outer boundary farther away while resolving
slicing (maxima), different coordinate system, andddfer-  the strong field region where the waves are generated, and
ent spatial gaugeYet the physical results obtained by theseapparent horizon boundary conditiofi30] that excise the
two different numerical codes, as measured by the waveinteriors of the black holes, thus avoiding the difficulties as-
forms, are remarkably similaias one would hope This is  sociated with singularity avoiding slicings.
the principal result of this paper. A full evolution with the  All of these techniques, and others, may be needed to
2D code tot=100M, by which time the hole has settled handle the more general, long term evolution of coalescing
down to Schwarzschild, shows that the energy emitted in thislack holes. Our purpose in this paper has been to show that
mode at that time is about410 M. (a) given present resources one can evolve simpler distorted
In Fig. 2(b) we show the’=4 Zerilli function extracted black hole systems and accurately extract the waveforms,
at the same radius, computed during evolutions with 2D an@ven when they carry only=10"°M in energy, andb) to
3D codes. This waveform is more difficult to extract, be- establish testbeds for the techniques under development for
cause it has a higher frequency in both its angular and radiahe more general case. Each of these techniques may intro-
dependence, and it has a much lower amplitude: the energyuce numerical artifacts, even if at very low amplitude, to
emitted in this mode is about three orders of magnitudevhich the waveforms may be very sensitive. As new meth-
smaller than the energy emitted in thé=2 mode, i.e., ods are developed and applied to numerical black hole simu-
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