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One-loop QCD corrections to deeply-virtual Compton scattering: The parton
helicity-independent case
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We show that the one-loop QCD correction to deeply virtual Compton scattering can be factorized into finite
perturbative contributions and collinearly divergent terms, which correspond to the matrix elements of the
off-forward parton distributions. As a by-product, we obtain the next-to-leading order coefficient functions in
the generalized operator product expansion of two vector currents.@S0556-2821~98!50203-2#

PACS number~s!: 13.60.Hb, 12.38.Bx
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In searching for ways to measure the amount of
nucleon spin carried by quark orbital angular momentu
one of us introduced deeply virtual Compton scatter
~DVCS! as a probe to a novel class of ‘‘off-forward’’ parto
distributions ~OFPDs! @1#. DVCS is a process in which a
highly virtual photon~with virtual massQ2@LQCD

2 ! scatters
on a nucleon target~polarized or unpolarized!, producing an
exclusive final state consisting of a high-energy real pho
plus a slightly recoiled nucleon. With the virtual photon
the Bjorken limit, a quantum chromodynamic~QCD! analy-
sis shows that the scattering is dominated by the sim
mechanism in which a quark~antiquark! in the initial
nucleon absorbs the virtual photon, immediately radiate
real one, and falls back to form the recoiled nucleon.

Several interesting theoretical papers have since appe
in the literature, which made further studies of the DVC
process@2–6# and the OFPDs@7–9#. A process closely re-
lated to DVCS, Compton scattering with two-virtual ph
tons, have been studied before from theoretical inter
@10,11#. The OFPDs have also been recognized in a num
of theoretical studies in the past@12,13#. Moreover, the QCD
evolution equations for the OFPDs@2,3,8,9,11# are closely
related to the evolution of meson wave functions and lig
ray or string operators@14#. However, physical significanc
and actual measurement of OFPDs have not been thorou
explored in the literature. It was pointed out in Ref.@1# that
the OFPDs can appear in general types of hard diffrac
processes. Recent works in Ref.@15–18# have indeed found
their use in diffractive meson production@19,20# and Z0 or
muon pair production@21,22#.

In this paper, we study the one-loop correction to DVC
in QCD. Here, for simplicity, we consider only the parto
helicity-independent amplitude.~The helicity-dependent cas
will be published separately, together with a more detai
analysis of the present calculation@23#.! Our result shows
that the infrared divergences in the one-loop diagrams ca
entirely factorized into the nonperturbative OFPDs. This
sult is not immediately obvious from an analogy with a ge
eral virtual Compton scattering, because in DVCS the fi
state photon is real and new infrared divergences can po
tially arise from the appearance of a new light-like mome
tum. It turns out, however, that a factorization theorem d
hold at one-loop level with the final state photon real a
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structureless. We expect the factorization theorem to be
to all orders in perturbation theory, allowing DVCS to b
studied in perturbative QCD like other gold-plated examp
such as deep-inelastic scattering. The finite part of our o
loop results, together with the two-loop evolution of OFPD
in the modified minimal subtraction (MS) scheme, provides
the necessary ingredients for calculating DVCS at the ne
to-leading order.

To carry out our study in a more general setting, we
tually consider the non-forward, unequal-mass virtual Com
ton scattering@5,10,11#. We call the incoming~out-going!
virtual photon momentumqm (q8m5qm2Dm), and the in-
coming ~out-going! nucleon momentumPm (P8m5Pm

1Dm). We introduce the ‘‘average’’ photon momentu
q̄m5(q1q8)m/2 and ‘‘average’’ proton momentumP̄m

5(P1P8)m/2. The Compton amplitude is defined as

Tmn5 i E d4ze2 i q̄ •zK P8UTJmS 2
z

2D JnS z

2D UPL . ~1!

We want to study the simplification of the amplitude in th
Bjorken limit: Q̄252 q̄2→`, P̄•Q̄→`, and the ratio of the
two staying finite.

For convenience, we choose two light-like momentapm

and nm so thatp25n250 andp•n51. We let the average
photon and nucleon momenta to be parallel topm andnm, so
that

P̄m5pm1
M̄2

2
nm,

q̄m52 x̄ Bpm1
Q̄2

2 x̄ B

nm, ~2!

where M̄25M22D2/4 and M is the mass of the nucleon
Here, x̄ B is Q̄2/(2P̄• q̄ ). Clearly, any four-momentum ca
be expanded in terms ofpm, nm, and two unit vectors in the
transverse directions. Large scalars in any Feynman diag
come from the product of thep component of a four-vecto
and then component ofq̄ . Therefore, in the leading order
we can safely ignore other components of an external m
mentum. For instance, the momenta of the initial and fi
R1337 © 1997 The American Physical Society
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state nucleons can be approximated as (11j)pm and (1
2j)pm, respectively, wherej is defined from the expansio

Dm522jpm1••• ~3!

and is constrained to@0,1# by our choice of coordinates
~Note that the definition ofj differs from that in Ref.@1# by
a factor of 2.! From this, it follows that ourx̄ B is related to
the conventionalxB5 Q2/2P•q via x̄ B5(11j)xB2j when
corrections of ordert/Q2 are ignored. Moreover, the mo
menta of initial and final partons participating in a hard su
process can effectively be taken as (x1j)pm and (x
2j)pm, respectively, where21,x,1. The longitudinal
momentum fractions of the initial and final nucleons carr
by partons are (x1j)/(11j) and (x2j)/(12j), respec-
tively.

We consider only the part ofTmn which is insensitive to
helicities of partons in a nucleon target. Like the forwa
Compton scattering, there are two leading-order Loren
invariant amplitudes@5#,

Tmn5~2gmn1pmnn1pnnm!T11S pm2
q8mp•q8

q82 D
3S pn2

qnp•q

q2 DTL , ~4!

whereTi are functions ofx̄ B , j, t5D2, andQ̄2. Physically,
T1 represents the amplitude for the transversely polari
photon scattering, andTL the amplitude for the longitudi-
nally polarized scattering. SinceTL does not contribute to
DVCS, we ignore it in the remainder of the paper.

A factorization theorem is believed to exist for the gene
virtual Compton amplitudes defined above. For instance,

T1~ x̄ B ,j,t,Q̄2!5E
21

1 dx

x (
a

Fa~x,j,t,Q̄2!

3C1aS x

x̄ B

,
j

x̄ B

,as~Q̄2! D , ~5!

wherea labels different parton species. TheFa are the he-
licity independent leading-twist off-forward parton distrib
tions, as defined in Ref.@1#. For quarks, one has

Fa5q~x!5
1

2 E dl

2p
eilxK P8U c̄ S 2

l

2
nDn” cS l

2
nD UPL ,

~6!

and similarly for gluons,FG(x). C1a is the coefficient func-
tion calculable in perturbative QCD. At the leading order
as , one has

C1a
0 ~x,j!52ea

2S x

x21
1

x

x11D , ~7!

where ea is the electric charge. The second term in t
bracket represents a crossing contribution which is alw
present in Compton processes. Forj5t50, we go back to
the well-known forward virtual Compton scattering.
-

-

d

l

s

The factorization formula works for bothx̄ B.1 and x̄ B
,1 regions. In fact, it is defined throughout the compl
plane of x̄ B . The amplitude is analytic atu x̄ Bu.1, where
there is no on-shell propagation. Therefore, one can exp
C1a in Taylor series atx̄ B5`:

C1aS x

x̄ B

,
j

x̄ B
D 5 (

n52,4...i 50,2...

`

Ca
ni

„as~Q̄2!…
x̄nj i

x̄ B
n1 i

. ~8!

The x-integration in Eq.~5! can now be done using

E
21

1

dxxn21Fa~x,j,t !5an~j,t !5 1
2 nm1nm2•••nmn

3^P8u c̄ iDJ m1••• iDJ mn21gmncuP&.

~9!

Therefore thei 50 terms in the amplitudeT1 are just the
result of the usual twist-2 operators in the operator prod
expansion~OPE! for forward virtual Compton scattering. A
for the iÞ0 terms, one can translate thej factors into total
derivatives on the twist-2 operators:

nm1
•••nmn1 i

^P8u i ]mn11••• i ]mn1 i c̄ iDJ m1••• iDJ mn21gmncuP&

52~2j! ian~j,t !. ~10!

Therefore the factorization formula in Eq.~5! reflects a gen-
eral OPE in terms of twist-2 operators with arbitrary num
bers of total derivatives.Cn0

„as(Q̄
2)… is the coefficient func-

tion relevant for deep-inelastic scattering@24#. A general
virtual Compton process also requires theiÞ0 terms.

Deeply virtual Compton scattering is a physical proce
with the kinematic requirement that the final photon be on
mass shell. This corresponds to the regionx̄ B5j,1, where
the OPE form of the amplitude is not particularly illumina
ing. In particular, the Compton amplitudes now have bo
real and imaginary parts. The analytic continuation to
u x̄ Bu,1 region is made by approaching the real axis fro
the lower half plane, and hencex̄ B has a small negative
imaginary part. The central question we would like to a
dress is this: Does the factorization theorem still hold wh
x̄ B5j? One can, of course, study this question using
general factorization techniques@25#. While we believe the
answer is affirmative, we present a one-loop calculation
support this.

We have calculated the general one-loop virtual Comp
scattering with on-shell quarks and gluons. We present
quark result first. The initial and final momenta of the qua
target are taken to bePm5(x1j)pm and P8m5(x2j)pm,
respectively. For convenience, we replace the spinor-sp
matrix elementū (P8)Gu(P) by a trace Tr@p”G#/2. Although
they are not identical, this replacement only affects the in
pretation of the result. We call the resulting Compton amp
tude, tmn, with Lorentz-scalar amplitudest i . At the leading
order, one has
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t1a52ea
2S 1

x2 x̄ B1 i e
1

1

x1 x̄ B2 i e
D . ~11!

A practical aspect of parton calculation lies in the fact th
the coefficient functionC1a(x,j) can be obtained from the
infrared subtracted parton scattering amplitude.

We use dimensional regularization to regularize the inf
red divergences present in the loop calculations (d54
1e,e.0). We use the Lehmann-Symanzik-Zimmerma
reduction formula to extract on-shell matrix elements fro
the corresponding Green’s functions. The calculation is d
in the region wherex̄ B.1 so that there is no imaginary par
Summing up the standard vertex, self-energy, and box
grams, we find the following divergent contribution:

t1a
pole5ea

2 as

2p
CFS 2

2

e D 1

x2 x̄ B
S 3

2
1

x21 x̄ B
222j2

x22j2

3E
j

x dy

y2 x̄ B

1
~ x̄ B1j!~x2 x̄ B12j!

2j~x1j!
E

2j

j dy

y2 x̄ B
D

1~ x̄ B→2 x̄ B!. ~12!

An examination shows that the above expression is pro
tional to the perturbative matrix elements of the OFPDs c
culated in dimensional regularization at one-loop order@3#.
Therefore, the effect of this term is already taken into
count in the general factorization formula with a leadin
order coefficient functionC1a

0 and the nonperturbative OF

PDs. In the limit x̄ B→j, the factorization is not affected.
We also find the finite part of the one-loop result@taking

the renormalization pointm25Q2 in the modified minimal
subtraction (MS) scheme#,

t1a
finite5ea

2 as

2p
CFH 2

9v

2~12vx!
1F 3x~12v2j2!

~x22j2!~12v2x2!

2
x~12vj!

~x22j2! S 1

2vj
1

11vj

12v2x2D log~12jv!G
3 log~12vj!1S ~12vx!212~vx2v2j2!

2v~x22j2!~12vx!

3 log~12vx!2
3

2

2x2v~x21j2!

~x22j2!~12vx! D log~12vx!J
1~v→2v!, ~13!

where we have introducedv51/x̄ B . The above expressio
is manifestly finite in the DVCS limit,vj→1, although there
is a logarithmic branch point there, so the one-loop fact
ization theorem for DVCS holds for quark scattering. Wh
j50, we recover the coefficient function for the forwa
Compton scattering pertinent to deep-inelastic scatte
@24#. The coefficient function coupling with the off-forwar
quark distributions in the general virtual Compton scatter
at orderas is

C1a
1 ~x,j!5xt1a

finite~x,j,v51!. ~14!
t

-

e

a-

r-
l-

-
-

r-

g

g

Next, we consider virtual Compton scattering on an o
shell gluon. Again for convenience, we replace the polari
tion productem* en by (2gmn1pmnn1pnnm)/(21e). We
neglect the last two terms because of the color gauge inv
ance. At one-loop level, there are six quark-box diagram
three of which have identical results as the other three. T
of the three inequivalent diagrams are related to each o
by crossing symmetry; the remaining one is itself cross
symmetric. The infrared divergent part of the amplitude i

t1g
pole5

as

2p
2TF(

a
ea

2S 2
2

e D F 2x x̄B

x22j2 1
x̄ B

21~x2 x̄ B!22j2

x22j2

3E
j

x dy

y2 x̄ B

1S ~ x̄ B1j!~x22 x̄ B1j!

2j~x1j!

1
x~ x̄ B

22j2!

j~x22j2!
D E

2j

j dy

y2 x̄ B
G1~ x̄ B→2 x̄ B!, ~15!

whereTF51/2. It is not immediately clear that all the term
above can be absorbed into the renormalization mixing of
quark distributions with the gluon. However, notice that t
helicity-independent gluon distributionFG(x) is antisym-
metric in x→2x. Therefore, when convoluted withFG(x)
only thex-symmetric part of the amplitude contributes. An
the x-symmetrict1g

pole is identical to the mixing coefficient in
a renormalized quark density@3#.

The remaining finite part is considered as the gluon c
tribution to the Compton scattering in theMS scheme. Our
calculation yields

t1g
finite5

as

2p S 2TF(
a

ea
2D H F S 11

2~12vx!

v2~x22j2! D
3S 12

1

2
log~12vx! D12

12vx

v2~x22j2!G log~12vx!

1F S 1

vj
2

2

v2~x22j2! D S 12
1

2
log~12jv! D

2
2

v2~x22j2!G~12vj!log~12jv!J
1~v→2v!. ~16!

The above expression is finite in the limit ofvj→1, so the
factorization for DVCS on a gluon target holds at one-lo
order. Forj50, our result agrees with the coefficient fun
tion calculated in@24#. Using the definition of the off-
forward gluon distributionFG(x), we found the coefficient
function in the general factorization formula at theas order:

C1g
1 ~x,j!5

x2

x22j2 t1g
finite~x,j,v51!. ~17!

In a recent paper, Mu¨ller @26# studied the constraints o
the spacetime conformal symmetry on the form of the O
for two vector currents. He found that at the next-to-lead
order, the OPE can be expressed in terms of the coeffic
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functions in the forward scattering (j50) and the improved
conformal-covariant operators at the leading order. While
result can be checked for the non-singlet case using the
loop anomalous dimensions in the literature@27#, such
anomalous dimensions for the singlet case are not yet a
able. Clearly, they are needed if one is interested in carry
9
t. B

-

e-

e-

n
L

ra
.

e
o-

il-
g

the analysis for DVCS to the full next-to-leading order.
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