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One-loop QCD corrections to deeply-virtual Compton scattering: The parton
helicity-independent case
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We show that the one-loop QCD correction to deeply virtual Compton scattering can be factorized into finite
perturbative contributions and collinearly divergent terms, which correspond to the matrix elements of the
off-forward parton distributions. As a by-product, we obtain the next-to-leading order coefficient functions in
the generalized operator product expansion of two vector curie2556-282(198)50203-2

PACS numbd(s): 13.60.Hb, 12.38.Bx

In searching for ways to measure the amount of thestructureless. We expect the factorization theorem to be true
nucleon spin carried by quark orbital angular momentumfo all orders in perturbation theory, allowing DVCS to be
one of us introduced deeply virtual Compton scatteringstudied in perturbative QCD like other gold-plated examples
(DVCS) as a probe to a novel class of “off-forward” parton such as deep-inelastic scattering. The finite part of our one-
distributions (OFPDS$ [1]. DVCS is a process in which a loop results, together with the two-loop evolution of OFPDs
highly virtual photon(with virtual maSSQ2>Aczgcc9 scatters  in the modified minimal subtractiorMS) scheme, provides
on a nucleon targefpolarized or unpolarizédproducing an the necessary ingredients for calculating DVCS at the next-
exclusive final state consisting of a high-energy real photorio-leading order. . _
plus a slightly recoiled nucleon. With the virtual photon in  TO carry out our study in a more general setting, we ac-
the Bjorken limit, a quantum chromodynam(i@CD) analy- tually consider the non-forward, unequal-mass virtual Comp-

sis shows that the scattering is dominated by the simplé‘_)rtl s<|:at:]erting{5,10,1]].t Weﬂcallr :rle LanTinqotg-?hoin_g
mechanism in which a quarKantiquark in the initial virtual photon momentung® (q'#=q ), an e in-

nucleon absorbs the virtual photon, immediately radiates om/lng (out-_gomc? nuc:]eorl momer,lytun;]P“ (PTH=P"
real one, and falls back to form the recoiled nucleon. A )- W‘? Intro uce“t € aV(’a’rage photon: momentum

Several interesting theoretical papers have since appearﬂ:(q“iq )“l2_and “average” proton momentunP*
in the literature, which made further studies of the Dvcs ™ (P+P’)#/2. The Compton amplitude is defined as
procesg2-6] and the OFPD$7-9]. A process closely re- - 7 7
lated to DVCS, Compton scattering with two-virtual pho- Tf“’=if d4ze‘iq'Z<P’ TJ”“(—E)JV(E
tons, have been studied before from theoretical interests
[10,11. The OFPDs have also been recognized in & NUMb&jye \yant to study the simplification of the amplitude in the
of theoretical studies in the pdst2,13. Moreover, the QCD Biorken limit: O2= — 92— P.O-—. and the ratio of the
evolution equations for the OFPDg,3,8,9,11 are closely imit: Q q°—oe, P-Q—er, :

. : 7 two staying finite.

related to the evolution of meson wave functions and light- For convenience. we choose two liaht-like momenta
ray or string operatorgl4]. However, physical significance dn* so thatp2— ’2=O do-n=1 V?/ let th H
and actual measurement of OFPDs have not been thorough jan sod a pl n andp nb ) Pil efoaeda\l/Lerage
explored in the literature. It was pointed out in Rf] that h oton and nucleon momenta to be paraligbtoandn®, so
the OFPDs can appear in general types of hard diffractivé at
processes. Recent works in REE5—18 have indeed found —
their use in diffractive meson producti¢@9,20 and z° or Ph=pH+ M_nu
muon pair productiofi21,22. 2

In this paper, we study the one-loop correction to DVCS
in QCD. Here, for simplicity, we consider only the parton — —
helicity-independent amplitudéThe helicity-dependent case q*=—xgp*+ -~ n*, )
will be published separately, together with a more detailed B
analysis of the present calculati¢@3].) Our result shows — .
that the infrared divergences in the one-loop diagrams can b\ghere_M2_= M?—A%4 andM is the mass of the nucleon.
entirely factorized into the nonperturbative OFPDs. This reHere, xg is Q%/(2P-q). Clearly, any four-momentum can
sult is not immediately obvious from an analogy with a gen-be e€xpanded in terms @, n*, and two unit vectors in the
eral virtual Compton scattering, because in DVCS the finafransverse directions. Large scalars in any Feynman diagram
state photon is real and new infrared divergences can pote§ome from the product of the component of a four-vector
tially arise from the appearance of a new light-like momen-and then component ofq. Therefore, in the leading order,
tum. It turns out, however, that a factorization theorem doesve can safely ignore other components of an external mo-
hold at one-loop level with the final state photon real andmentum. For instance, the momenta of the initial and final

P>. 1)

0?2
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state nucleons can be approximated as- £lp* and (1
— &) p*, respectively, wheré is defined from the expansion

)

and is constrained t§0,1] by our choice of coordinates.
(Note that the definition of differs from that in Ref[1] by

a factor of 2) From this, it follows that ourx_B is related to
the conventionakg= Q?%/2P-q via xg=(1+ &)xg— & when
corrections of ordet/Q? are ignored. Moreover, the mo-

AF=—2pH+---
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The factorization formula works for bothB>1 andx_B
<1 regions. In fact, it is defined throughout the complex

plane of xg. The amplitude is analytic dtxg|>1, where
there is no on-shell propagation. Therefore, one can expand

C,, in Taylor series atkg=o°:

cla(%;): >

n=24..i=0,2

Cli(ay @) 5
xg

®

menta of initial and final partons participating in a hard sub-

process can effectively be taken agH¢)p” and
—&)p#, respectively, where-1<x<1. The longitudinal

momentum fractions of the initial and final nucleons carried (1

by partons are X+ &)/(1+¢&) and k—§&)/(1—¢), respec-
tively.
We consider only the part of*” which is insensitive to

helicities of partons in a nucleon target. Like the forward
Compton scattering, there are two leading-order Lorentz-

invariant amplitude$5],

THY=(—gt’+p#n"+p"n*) T+ | p*—

q”’“p~q’)
q12
a’p-q

P

14

X\ p T, 4

whereT; are functions ofxg, £ t=A2, andQ?2. Physically,

T, represents the amplitude for the transversely polarized

photon scattering, andl, the amplitude for the longitudi-
nally polarized scattering. Sincg_ does not contribute to
DVCS, we ignore it in the remainder of the paper.

A factorization theorem is believed to exist for the general

virtual Compton amplitudes defined above. For instance,

_ _ 1 d _
Tl(XBagvt!Qz)zf _X g Fa(xvgathz)

1 X

é,i,as(@), (5)

Xg Xp

XCia

wherea labels different parton species. Thg are the he-
licity independent leading-twist off-forward parton distribu-
tions, as defined in Refl]. For quarks, one has

A A
W‘E”W(ﬂ
(6)

and similarly for gluonsFg(x). C4, is the coefficient func-

F :l d_)\ iAX P/ P
a=a¥=75 | 3,© ’

tion calculable in perturbative QCD. At the leading order in

ag, one has

X

0 _ _ A2
Cla(x.8)=~¢€; x—1  x+1

: ()

The x-integration in Eq(5) can now be done using

dxX"IF (X, €, 1) =an(&,t) = Fn#ink2. - - nkn
-1

X (P’ iD#1- - -iD #n-1yknyy| P).
9

Therefore thei=0 terms in the amplitudd’; are just the
result of the usual twist-2 operators in the operator product
expansion OPE) for forward virtual Compton scattering. As
for thei#0 terms, one can translate tijdactors into total
derivatives on the twist-2 operators:

wy nMn+i<P,|i GHNFL - i P+ hiD F - D M-yt P)

=2(28)'ap(£1).

n

(10

Therefore the factorization formula in E(p) reflects a gen-
eral OPE in terms of twist-2 operators with arbitrary num-

bers of total derivatives<C"’(a4(Q?)) is the coefficient func-
tion relevant for deep-inelastic scatterif@4]. A general
virtual Compton process also requires i0 terms.

Deeply virtual Compton scattering is a physical process
with the kinematic requirement that the final photon be on its

mass shell. This corresponds to the regiof= ¢<1, where
the OPE form of the amplitude is not particularly illuminat-
ing. In particular, the Compton amplitudes now have both
real and imaginary parts. The analytic continuation to the

|xg|<1 region is made by approaching the real axis from
the lower half plane, and henceg has a small negative

imaginary part. The central question we would like to ad-
dress is this: Does the factorization theorem still hold when

xg=£&? One can, of course, study this question using the
general factorization techniqué®5]. While we believe the
answer is affirmative, we present a one-loop calculation to
support this.

We have calculated the general one-loop virtual Compton
scattering with on-shell quarks and gluons. We present the
quark result first. The initial and final momenta of the quark
target are taken to bB#=(x+ &)p* and P'#=(x— &) p*,
respectively. For convenience, we replace the spinor-space

matrix elementu_(P’)I‘u(P) by a trace TrpI"]/2. Although

where e, is the electric charge. The second term in thethey are not identical, this replacement only affects the inter-
bracket represents a crossing contribution which is alwaygretation of the result. We call the resulting Compton ampli-

present in Compton processes. Bert=0, we go back to
the well-known forward virtual Compton scattering.

tude, t*”, with Lorentz-scalar amplitudes. At the leading
order, one has
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1 1 Next, we consider virtual Compton scattering on an on-
t1a=—€5 +— : (1) shell gluon. Again for convenience, we replace the polariza-

X=Xgtie X+xg=ie tion producte** €” by (—g*’+p“n”+p’n#)/(2+€). We
A practical aspect of parton calculation lies in the fact thatneglect the last two terms because of the color gauge invari-

the coefficient functiorC,,(x,£) can be obtained from the ance. At one-loop Ieyel, Fhere are six quark-box diagrams,
) . . three of which have identical results as the other three. Two
infrared subtracted parton scattering amplitude.

of the three inequivalent diagrams are related to each other
We use dimensional regularization to regularize the infra-

by crossing symmetry; the remaining one is itself crossing
red divergences present in the loop calculatioms= 4
+ee>0). We use the Lehmann-Symanzik-Zimmermannsymmemc The infrared divergent part of the amplitude is

reduction formula to extract on-shell matrix elements from — = —. .
the corresponding Green’s functions. The calculation is donetpole 2TFE e ) 2xXxg Xt (X—Xxg) =&

1g 2T 72
in the region wherexg>1 so that there is no imaginary part. x*—¢ X‘—¢
Summing up the standard vertex, self-energy, and box dia- _ _
grams, we find the following divergent contribution: « fx dy ((XB+ &) (X—2xg+§)

—, £ Y—Xg 2&(x+§)
pole_ g2 %5 ( 2) 1 (3+x2+ x3—2¢2 _2
=e,5_-C¢l — = =5 ) x(x5— &%)\ r¢ d
am T\ el x-xg\2 Xd Mt J L (e —xe), (19
Ex°=8) )t y—xp

xfx dy  (xg+&(x—xg+2¢) (¢ dy
£ Y—Xg 2&(x+ &) —ty—Xg

whereTg=1/2. It is not immediately clear that all the terms

above can be absorbed into the renormalization mixing of the
+ (X_B—> _X_B)- (12) quark distributions with the gluon. However, notice that the

helicity-independent gluon distributioRr g(x) is antisym-

An examination shows that the above expression is propometric in x— —x. Therefore, when convoluted withg(x)

tional to the perturbative matrix elements of the OFPDs calonly thex—symmetric part of the amplitude contributes. And

culated in dimensional regularization at one-loop orid®dr  thex- symmetrict"ge is identical to the mixing coefficient in

Therefore, the effect of this term is already taken into ac-a renormalized quark densifg].

count in the general factorization formula with a leading-  The remaining finite part is considered as the gluon con-

order coefficient functiorC?, and the nonperturbative OF- tribution to the Compton scattering in théS scheme. Our

PDs. In the limitxg— &, the factorization is not affected.  calculation yields

We also find the finite part of the one-loop redétking
the renormalization point.?=Q? in the modified minimal tinie_ o7 2
subtraction 1S) schemg F2 €

( 2(1- wx))
w*(x*— &%)
9w

3x(1— w?é?)
2(1—wx) |

(x*= &) (1- %)

wX
)

tflnlte_ ea_CF[ Iog(l—wx)

1
X|1— > log(1— wX)

X(1-wé) [ 1 1+ wé 1 2 1
T (zwg+1—w2x2)'°g(l‘f“’) y &‘52&2——5)(1‘5'09“—@))
xlog(1— wé)+ (1_wx)22+22(wx_w2§2) L,z (1—w§)log(l—§w)]
2w(X°— &) (1— wX) w(X°— &)
3 2x—w(X?+£%) +(w— —w). (16)

Xlog(1l— wx)—

§<x2—§2><1—wx>)'°g(l ‘”X)]
The above expression is finite in the limit ef{— 1, so the
+(w— —w), (13 factorization for DVCS on a gluon target holds at one-loop
order. Foré=0, our result agrees with the coefficient func-
where we have introduced=1/xg. The above expression tion calculated in[24]. Using the definition of the off-
is manifestly finite in the DVCS limitwé— 1, although there  forward gluon distributiorF(x), we found the coefficient
is a logarithmic branch point there, so the one-loop factorfunction in the general factorization formula at thg order:
ization theorem for DVCS holds for quark scattering. When
£=0, we recover the coefficient function for the forward 1 f,n,te
Compton scattering pertinent to deep-inelastic scattering Clg(x’g):xz—g x.§,0=1). (17)
[24]. The coefficient function coupling with the off-forward
quark distributions in the general virtual Compton scattering |n a recent paper, Mier [26] studied the constraints of
at orderas is the spacetime conformal symmetry on the form of the OPE
ﬂmte for two vector currents. He found that at the next-to-leading
Cla(X,&) =xt1(x,£,w=1). (14 order, the OPE can be expressed in terms of the coefficient

2
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functions in the forward scattering € 0) and the improved the analysis for DVCS to the full next-to-leading order.
conformal-covariant operators at the leading order. While the

result can be checked for the non-singlet case using the two- We thank I. Balitsky, P. Hoodbhoy and W. Lu for their
loop anomalous dimensions in the literatuf27], such interest in this calculation. This work is supported in part by
anomalous dimensions for the singlet case are not yet avaifunds provided by the U.S. Department of Ene@/O.E)
able. Clearly, they are needed if one is interested in carryinginder cooperative agreement DOE-FG02-93ER-40762.
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