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Bell’s locality and «8/«
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We formulate a set of Bell’s inequalities for the system of two correlated neutral kaons coming from the
decay of af meson, without assumingCP andCPT invariance. We show that a nonvanishing value of the
phenomenological parameter«8 would violate such inequalities, ruling out Bell’s locality.
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The neutral kaon system has proven to be one of the m
useful laboratories for studying many aspects of modern
ticle physics. Indeed, the study of the phenomena assoc
with kaon production, propagation, and decay has provi
strong experimental confirmation for various predictions
the standard model.

Recently, theK0-K0 system has also been proposed as
natural system to look for possible new phenomena lead
to the loss of quantum coherence andCPT violating effects
@1–3#. These arise as natural consequences of effective
namics that treat the kaon system as an open quantum
tem, and could be of particular relevance in the study
correlated kaons@4–6#.

When af meson at rest decays into two neutral kaons,
final state has the property of being antisymmetric in
spatial part, due to angular momentum conservation.
though the two kaons fly apart with opposite momenta, th
remain quantum mechanically correlated in a way tha
very similar to the entanglement of two spin-1/2 particles
a singlet state. Therefore, as in the spin case, by studying
evolution of certain observables of the correlated kaons s
one can perform fundamental tests on the behavior of
tangled systems.

In the following we shall focus on the property calle
Bell’s locality @7–10# and discuss whether, by looking a
experimentally observable quantities, the system of the
neutral kaons coming from thef decay satisfies this cond
tion. Typically, observables that can be studied in the tw
kaon system are the probabilitiesP( f 1 ,t1 ; f 2 ,t2) that one
kaon decays into the final statef 1 at proper timet1 , while
the other kaon decays into the final statef 2 at proper time
t2 . The requirement of Bell’s locality can be translated in
certain inequalities that the probabilitiesP should satisfy
~Bell’s inequalities!.

We shall see that in the standard quantum mechan
description of the correlated two-kaon system, these
equalities are violated by the phenomenological constant«8,
that parametrizes small directCP andCPT violating effects
in the decays of the kaons in two pions. Therefore, if in
actual experiment the parameter«8 is found to be nonzero
then Bell’s locality will be ruled out. It should be notice
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that manyad hocexperiments have been proposed in ord
to test Bell’s inequalities using correlated neutral kao
However, while experiments aiming at the measure of«8 are
actually under way, the possibility of experimentally reve
ing violations of Bell’s locality through direct investigation
of kaon correlations seems at the moment technically v
difficult.

For our discussion, we shall adopt a particle description
the phenomena related to the time evolution and decay of
K0-K0 system. This means that the transition probabilit
we shall be dealing with are actuallyS-matrix elements, i.e.,
matrix elements of the scattering operatorS ~or better, the
transition operatorT512S) between asymptotic particle
states. This description is standard in particle physics sinc
is the closest to the actual experimental situations in wh
the various decay products are identified in physical de
tors. TheK0-K0 system can then be effectively described
means of a two-dimensional Hilbert space@11#. A useful
orthonormal basis in this space is given by t
CP-eigenstatesuK1& and uK2&:

uK1&5
1

A2
@ uK0&1uK0&],

uK2&5
1

A2
@ uK0&2uK0&]. ~1!

For the discussion that follows, we find it convenient to d
scribe the states of a physical system by means of den
matrices. These are Hermitian matricesr, with positive ei-
genvalues and unit trace. In the case of the kaon system,r is
a two-dimensional matrix. With respect to the basis~1! it can
be written as

r5S r1 r3

r4 r2
D , ~2!

wherer4[r3* , and* signifies complex conjugation. Sinc
the kaon system is unstable, its evolution in time is descri
by
R1332 © 1998 The American Physical Society
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r°r~ t ![g t@r#5e2 i tHreitH †
, ~3!

where H5M2( i/2)G is the effective~Weisskopf-Wigner!
Hamiltonian, withM and G positive Hermitian 232 matri-
ces. The entries of these matrices can be expressed in t
of the complex parameterseS , eL , appearing in the eigen
states ofH, described by the density matrices@2,3#

rL5uNLu2S ueLu2 eL

eL* 1 D rS5uNSu2S 1 eS*

eS ueSu2D , ~4!

and the four real parameters,mS , gS and mL , gL charac-
terizing the eigenvalues ofH: lS5mS2( i /2)gS , lL5mL
2( i /2)gL , with NS5(11ueSu2)21/2 and NL5(1
1ueLu2)21/2 normalization factors;gS , gL andmS , mL are
the physical decay widths and masses of the statesKS and
KL . The constantseS andeL parametrize the so-called ind
rectCP and~for eSÞeL) CPT violating effects; if we ignore
these small effects,rL and rS would correspond to the
CP-eigenstates in Eq.~1!.

The time evolution of a system of two correlated neut
kaons, as those coming from the decay of af meson, can be
derived from the single-kaon dynamical mapg t in Eq. ~3!.
First note that, since thef meson has spin 1, its decay in
two spinless bosons produces an antisymmetric spatial s
In the f rest frame, the two neutral kaons are produced
ing apart with opposite momenta; in the basisuK1&, uK2&,
the resulting state can be described by

ucA&5
1

A2
~ uK1 ,2p& ^ uK2 ,p&2uK2 ,2p& ^ uK1 ,p&).

~5!

The corresponding density matrixrA is a 434 matrix that
can be conveniently written as

rA5 1
2 @P1~2p! ^ P2~p!1P2~2p! ^ P1~p!

2P3~2p! ^ P4~p!2P4~2p! ^ P3~p!#, ~6!

where P1[uK1&^K1u, P2[uK2&^K2u, P3[uK1&^K2u and
P4[uK2&^K1u. ~Henceforth, the explicit reference to the m
mentump will be dropped.!

Once produced in af decay, the kaons evolve indepe
dently in time each according to the mapg t in Eq. ~3!.
Therefore, the density matrix that describes a situation
which the first kaon has evolved up to proper timet1 and the
second up to proper timet2 is given by:

rA~t1 ,t2![~gt1
^ gt2

!@rA#

5 1
2 @P1~t1! ^ P2~t2!1P2~t1! ^ P1~t2!

2P3~t1! ^ P4~t2!2P4~t1! ^ P3~t2!#, ~7!

where Pi(t1) and Pi(t2), i 51,2,3,4, represent the evolu
tion according to Eq.~3! of the initial operatorsPi , up to the
time t1 andt2, respectively.

The formula ~7! can now be used to compute the tim
evolution of characteristic observables for the two-kaon s
tem; indeed, any physical property of this system can
extracted from the density matrixrA(t1 ,t2) by taking its
ms
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trace with suitable Hermitian operators. The typical obse
ables that can be studied are double decay probabil
P( f 1 ,t1 ; f 2 ,t2), i.e., the probabilities that one kaon deca
into a final statef 1 at proper timet1 , while the other kaon
decays into the final statef 2 at proper timet2 @12#:

P~ f 1 ,t1 ; f 2 ,t2![Tr@~Of 1
^Of 2

!rA~t1 ,t2!#, ~8!

whereOf 1
and Of 2

represent the 232 projector matrices,

describing the decay of a single kaon into the final statesf 1
and f 2 , respectively. Useful observables are associated w
the decay of the neutral kaons into two pions and into se
leptonic states. We shall be as general as possible and
matricesOf that encode possibleCP and CPT violating
effects also in the decay amplitudes. Let us stress that
quantitiesP introduced in Eq.~8! are decay probabilities an
not decay rates; indeed, normalized expressions for the v
ous observablesO are used: Tr@O#51.

In the case of the decay intop1p2 final state, the corre-
sponding projector matrix can be written as@3,5#

O125N12F 1 Y12

Y12* uY12u2G , ~9!

whereY12 is the ratio of the decay amplitudes ofK2 andK1
states intop1p2, and N125(11uY12u2)21. Similar ex-
pressions hold for the decay into 2p0, which can be obtained
from the above formulas by replacingY12 with the ratioY00
between the decay amplitudes ofK2 andK1 into two neutral
pions. The two amplitude ratiosY12 and Y00 can be ex-
pressed in terms of the phenomenological constants« and«8
that parametrize theKL , KS amplitudes ratio for the deca
into p1p2 and 2p0; these are directly accessible to th
experiment@13#. Up to first order in all smallCP andCPT
violating terms, one explicitly finds@5#

Y125«2eL1«8, Y005«2eL22«8. ~10!

In a similar way one can derive the expressions for
observables that describe the decay of neutral kaons into
semileptonic statesp2l 1n andp1l 2n̄. The projector ma-
trices to be used in this case are@3,5#

Ol 15N1F u11xu2 ~11x* !~12x!

~11x!~12x* ! u12xu2 G , ~11a!

Ol 25N2F uz11u2 ~z* 11!~z21!

~z11!~z* 21! uz21u2 G , ~11b!

where the complex parametersx andz measure the violation
of the DS5DQ rule, that would forbid the decaysK0

→p1l 2n̄ and K0→p2l 1n @14#, and N15@2(1
1uxu2)#21, N25@2(11uzu2)#21.

Once inserted in the general formula~8!, the four observ-
ablesO12 , O00, Ol 1, andOl 2 allow determining vari-
ous joint probabilities for the system of two kaons comi
from the decay of af meson. These double probabilitie
enter a class of inequalities that can be derived from
hypothesis of Bell’s locality. Before giving explicit expres
sions for those probabilities, we shall derive and disc
these relations~Bell’s inequalities!.
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In actual experimental setups~the so calledf factories!,
one studies the decay of af meson into two neutral kaons b
counting the occurrence of the various final decay states
the two kaons. For instance, the probabilityP( f 1 ,t1;2,t2)
of finding a certain final statef 1 at proper timet1 for one of
the two kaons and any decay mode for the second on
proper timet2 can be experimentally obtained as the ratio
partial (f 1 ,t1 ;2,t2) counts over the totalf decays. A simi-
lar argument holds for the double probabili
P( f 1 ,t1 ; f 2 ,t2).

Let us now suppose that we can describe the system o
two kaons by a set of variables that we globally calll. We
assume that the description in terms of the setl is the best
available characterization of the system. In particular, giv
the variables l, we expect a well-defined probabilit
pl( f 1 ,t1 ;2,t2) of detecting a final decay state (f 1 ,t1) for
one of the two kaons and any state (2,t2) for the second
one, and a probabilitypl( f 1 ,t1 ; f 2 ,t2) of detecting a final
decay state (f 1 ,t1) for one kaon and a final decay sta
( f 2 ,t2) for the second one. The average probabilit
P( f 1 ,t1 ;2;t2) andP( f 1 ,t1 ; f 2 ,t2) are then given by

P~ f 1 ,t1 ;2,t2!5E dlr~l!pl~ f 1 ,t1 ;2,t2!, ~12a!

P~ f 1 ,t1 ; f 2 ,t2!5E dlr~l!pl~ f 1 ,t1 ; f 2 ,t2!, ~12b!

wherer~l! is a normalized probability density characterizin
the ensemble of initialf particles. It should be stressed th
this description of thef decay into two neutral kaons i
rather general, and surely can be made to agree with ordi
quantum mechanics.

Since the decays of the two kaons coming from af me-
son are localized events, usually very well spatially se
rated, one is led to assume thatpl( f 1 ,t1 ;2,t2) and
pl(2,t1 ; f 2 ,t2) are independent probabilities. In oth
words, one considers a description of the two-kaon sys
for which

pl~ f 1 ;t1 ; f 2t2!5pl~ f 1 ,t1 ;2,t2!pl~2,t1 ; f 2 ,t2!.
~13!

This condition is known as Bell’s locality condition. Measu
able consequences of this assumption can be easily der
We will now adapt the arguments developed in Ref.@8# for
stationary spin singlets to the case of time-evolving cor
lated kaon systems.

By noting that for any set of four positive numbe
x1 , x2 , x3 , x4 less or equal to 1 the following inequalit
holds

x1x22x1x41x3x21x3x4<x31x2 , ~14!

using Eq.~13! and integrating overl with weight r~l!, one
easily deduce the following relation among double probab
ties:

P~ f 1 ,t1 ; f 2 ,t2!2P~ f 1 ,t1 ; f 4 ,t2!1P~ f 3 ,t1 ; f 2 ,t2!

1P~ f 3 ,t1 ; f 4 ,t2!<P~ f 3 ,t1 ;2,t2!1P~2,t1 ; f 2 ,t2!.
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This inequality for the probabilitiesP, involving four generic
decay statesf i , i 51,2,3,4, of the neutral kaons, is a dire
consequence of the condition~13! and is called a~general-
ized! Bell’s inequality.

We shall now discuss whether this relation is satisfied
ordinary quantum mechanics. In doing this, one has to co
pute the probabilitiesP appearing in Eq.~15! using the ex-
pression~8!. Actually, we shall study a simplified version o
the inequality, obtained from Eq.~15! by settingf 15 f 4 and
t15t25t. Since the original starting stateucA& in Eq. ~5! is
antisymmetric, the probabilityP( f 1 ,t; f 1 ,t) identically van-
ishes in quantum mechanics, so that Eq.~15! reduces to

P~ f 1 ,t; f 2 ,t!1P~ f 3 ,t; f 2 ,t!1P~ f 3 ,t; f 1 ,t!

<P~ f 3 ,t;2,t!1P~2,t; f 2 ,t!. ~16!

Furthermore, it is convenient to eliminate the single-ka
probabilities in the right-hand side~RHS! of Eq. ~16!, by
using the identity

P~ f 3 ,t;2,t![Tr@~Of 3
^ 1!rA~t,t!#

5P~ f 3,t; f 4,t!1P~ f 3,t; f̃ 1,t!, ~17!

where1 is the 232 unit matrix andOf 1
, O f̃ 1

are orthogonal
projectors corresponding to an orthonormal basis in the t
dimensional kaon Hilbert space, so that15Of 1

1O f̃ 1
. In

practice, the use of Eq.~17! allows trading the statef 1 for the
state f̃ 1 . In fact, after these manipulations, the inequal
~16! takes the form

P~ f 3 ,t; f 2 ,t!2P~ f 3 ,t; f̃ 1 ,t!<P~ f̃ 1 ,t; f 2 ,t!. ~18!

It should be stressed that Eq.~18! is a weaker condition than
the original relation~16!. Indeed, the relation~17! is compat-
ible with the expressions~12! for the probabilitiesP only
under the assumption that the decay of one kaon is stoc
tically independent from the decay of the second one.
other words, in using Eq.~17! we assume the absence
variablesl that, without violating Bell’s locality~13!, might
nevertheless correlate the two decays. This is the price
has to pay for using an effective two-dimensional descript
of the K02K0 system. As already observed, if one aims
identify the final states in Eq.~18! with actual asymptotic
particles, this is essentially the only consistent available
scription.

The three kaon decay states appearing in Eq.~18! can be
taken to be the two-pion or the semileptonic states discus
before; in particular, for f̃ 15p1p2, f 252p0, f 3

5p2l 1n, or f̃ 152p0, f 25p1p2, f 35p2l 1n, one ob-
tains the two independent inequalities:

P~p2l 1n,t;2p0,t!2P~p2l 1n,t;p1p2,t!

<P~p1p2,t;2p0,t!, ~19a!

P~p2l 1n,t;p1p2,t!2P~p2l 1n,t;2p0,t!

<P~2p0,t;p1p2,t!; ~19b!

since P( f 1 ,t; f 2 ,t) is symmetric under the exchang
f 1↔ f 2 , see Eq.~8!, these can be combined into
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uP~p2l 1n,t;2p0,t!2P~p2l 1n,t;p1p2,t!u

<P~2p0,t;p1p2,t!. ~20!

A similar relation holds when the semileptonic statep2l 1n
is substituted withp1l 2n̄.

Explicit expressions for the three probabilities appear
in Eq. ~20! can be easily obtained using the general form
~8! and the normalized observablesO12 , O00, andOl 1.
For our purposes, it is sufficient to work with approxima
expressions obtained by keeping only the leading term
the small CP and CPT violating parameterseL , eS ,
Y12 , Y00, and DS5DQ violating termsx and z. Up to
leading order in all small parameters, one finds

P~p2l 1n,t;2p0,t!5 1
4 e2~gL1gS!t @122Re~Y00!

22Re~x!#, ~21a!

P~p2l 1n,t;p1p2,t!5 1
4 e2~lL1gS!t @122Re~Y12!

22Re~x!#, ~21b!

P~2p0t;p1p2,t!5 1
2 e2~gL1gS!t uY122Y00u2.

~21c!

Similar expressions hold forP(p1l 2n̄,t;2p0,t) and
P(p1l 2n̄,t;p1p2,t); they are obtained from Eqs.~21a!
and ~21b! by changing the signs in front of Re(Y12) and
Re(Y00), and by replacing Re(x) with Re(z).

Notice that since we are considering probability corre
tions at equal time, the time-dependence factorizes. Th
fore, inserting Eq.~21! in Eq. ~20!, the time-dependenc
drops and one finds

uRe~Y122Y00!u<uY122Y00u2. ~22!

Recalling the expressions~10!, one sees that the differenc
Y122Y00 is expressible solely in terms of the phenomen
logical parameter«8. Then, the assumption of Bell’s localit
for the system of correlated neutral kaons coming from
decay of af predicts that«8 must satisfy the condition:

uRe~«8!u<3u«8u2. ~23!

Therefore, a direct measurement of this parameter in
experimental setup, not necessarily involving correlated
ons, would automatically be a check of Bell’s locality, with
the assumption of stochastic independence of kaon deca

The complex parameter«8 is expected to be very smal
theoretical estimates based on the standard model pr
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u«8u<1026, while its phase is expected to be close top/4
@13#. Therefore, the inequality~23! can be satisfied only if«8
is identically zero~such a prediction is made by the so-call
superweak model!. The most recent experimental determin
tions are not very accurate and the measured value
Re~«8/«!, the parameter so far accessible in actual exp
ments, does not significantly differ from zero@15,16#. How-
ever, more refined experimental setups are presently u
construction, or are just operative, and soon very precise
termination of«8 will be available.1 If these new experiments
will confirm the theoretical predictions for a nonzero«8, than
the condition~23! will be violated by several orders of mag
nitude, resulting in one of the best tests of Bell’s locality.

Before closing, we would like to comment on some of t
earlier approaches to the study of Bell’s inequalities in
system of correlated neutral kaons~see@17–19# and refer-
ences therein!. Although the existing literature on the topic
vast, none of these contributions discuss Bell’s locality
taking into accountCP and CPT violating effects both in
the mass matrix and in the decay amplitudes. Further, m
of the papers deal with a class of Bell’s inequalities whi
are different from the one considered here; they involve c
related decay probabilities at different times, not direc
connected with asymptotic states, i.e., with experimenta
detectable final particles.

The inequalities~18! have also been discussed in Re
@19#, where they have been derived using different te
niques. The aim of that paper is to propose a direct exp
mental test of those inequalities, using af factory. Although
it is certainly of interest to devise direct tests of Bell’s loca
ity in actual experimental setups, we emphasize that our c
clusions are independent from these considerations. Ind
we were able to reduce the relations~18! to an equivalent
condition on the phenomenological parameter«8, directly ac-
cessible to the experiment. Any measure of this paramete
therefore a test on the inequalities~18!: there is no need to
constructad hocquantum interferometers to check direct
these conditions. As already observed, such measures o«8,
besides being crucial for the confirmation of the stand
model, will also constitute automatically one of the clean
tests of Bell’s locality.

We thank G. Ghirardi, N. Paver, and T. Weber for ma
illuminating discussions.

1The fixed target experiments KTEV at Fermilab and NA48
CERN are already collecting data; the KLOE apparatus at
DAFNE f factory in Frascati is expected to be operative in a ye
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