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Energy and directional signatures for plane quantized gravity waves

Donald E. Neville*
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122

~Received 2 April 1997; published 19 December 1997!

Solutions are constructed to the quantum constraints for planar gravity~fields dependent onz andt only! in
the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solu-
tions. These include the familiar ADM energy and area operators, as well as new operators sensitive to intrinsic
spin and directionality~z1ct vs z2ct dependence!. The directionality operators are quantum analogs of the
classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson~BPR!. It is
argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are
semiclassical in a certain sense. Schwinger has proved that a unidirectional plane electromagnetic wave is
stable, even in the presence of the quantum zero point fluctuations of the vacuum. A preliminary calculation
~preliminary, because not regulated! indicates that the corresponding gravitational wave may be destabilized by
zero point fluctuations. The ADM energy and area operators are likely to have imaginary eigenvalues, unless
one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical
theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this
collapse.@S0556-2821~98!04102-2#

PACS number~s!: 04.60.Ds, 04.30.Nk
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I. INTRODUCTION: CLASSICAL RADIATION
CRITERIA

The connection-triad variables introduced by Ashtekar@1#
have simplified the constraint equations of quantum grav
further, these variables suggest that in the future we ma
able to reformulate gravity in terms of non-local holonom
rather than local field operators@2,3,4#. However, the new
variables are unfamiliar, and it is not always clear what th
mean physically and geometrically. In particular, it is n
clear what operators or structures correspond to gra
waves. Although the quantum constraint equations are m
simpler in the new variables, and solutions to these equat
have been found@2,5,6#, it is not clear whether any of thes
solutions contain gravitational radiation.

This is the fifth of a series of papers which search
operator signatures for gravitational radiation by apply
the Ashtekar formalism to the problem of plane gravitatio
waves. Paper I in the series@7# constructed classical con
stants of the motion for the plane wave case, using the m
familiar geometrodynamics rather than Ashtekar connec
dynamics. Papers II and III switched to connection dynam
and proposed solutions to the quantum constraints@8,9#. The
constraints annihilate the solutions of paper II except
boundary points, and annihilate the solutions of paper
everywhere. Paper IV constructs an operatorLZ which mea-
sures total intrinsic spin around thez axis @10#. The present
paper proposes operator signatures which are sensitive t
directionality of gravitational radiation~z2ct vs z1ct de-
pendence! and applies those operators~as well as the spin
energy, and area operators! to the solutions constructed i
papers II and III.

It is not easy to detect the presence of radiation, e
when the problem is formulated classically, using the m
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familiar metric variables. One would like to define gravit
tional radiation using an energy criterion~such as radiation is
a means of transporting energy through empty space, e!.
Gravitational energy is notoriously difficult to define, how
ever, since there is no first-order-in-derivatives-of-the-me
quantity which is a tensor. Accordingly, in the period 1960
1970 several authors developed an algebraic criterion inv
ing transverse components of a second-order quantity,
Weyl tensor@11,12,13,14#. To use the criterion, one needs
know which directions are ‘‘transverse’’; hence the criteri
is most useful when the direction of propagation is cle
from the symmetry: e.g. radial propagation~for spherical
symmetry! or z-axis propagation~for planar symmetry, the
case studied in the present paper!. The planar metrics con
sidered here@15,16# admit two null vectorsk and l which
have the right hypersurface orthogonality properties to be
propagation vectors for right-moving (k) and left-moving (l )
gravitational waves along thez axis, so that the propagatio
direction is especially easy to identify. The Weyl criterion
derived and discussed in Appendix D.

A second, more group-theoretical criterion was develop
by Bondi, Pirani, and Robinson~BPR! @17#. It is applicable
when the plane wave is unidirectional, that is, when the w
is either right moving~depending only onz2ct! or left mov-
ing ~depending only onz1ct!. The unidirectional case is
especially intruguing. It is relatively simple, since no scatt
ing occurs@18,19#. Nevertheless the full complexity of grav
ity is already present; the unidirectional case is not sim
waves propagating in an inert background. In particular,
one has been able to cast the Hamiltonian into a free-fi
form in terms of variables (p i ,qj ) which commute in the
canonical @p i ,qj #52 i\d i

j manner characteristic of non
interacting, non-gravitational theories. Also, the BPR cri
rion for unidirectional radiation requiresthreeamplitudes to
vanish, rather than the two one would naively expect fro
counting the two polarizations associated with unidirectio
radiation. I shall argue that the remaining vanishing amp
986 © 1997 The American Physical Society
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57 987ENERGY AND DIRECTIONAL SIGNATURES FOR PLANE . . .
tude represents a constraint on the background geomet
constraint which must be satisfied in order for the waves
propagate without backscattering off the background. T
BPR group is derived and discussed in Sec. II.

Note that one criterion, that based on the Weyl tensor
relegated to Appendix D, while the BPR criterion is di
cussed in the body of the paper. I have done this first bec
the BPR amplitudes are much simpler than the Weyl am
tudes. Second, the Poisson brackets between the clas
Weyl amplitudes and the constraints do not vanish. Since
constraints generate coordinate transformations, this sugg
that the amount of Weyl amplitude is coordinate depend
This plane wave metric does admit coordinates that could
considered as preferred or natural~coordinates which are
constant on the hypersurfaces picked out by the null vec
k and l !. But even in such a coordinate system, the sca
constraint occurs as part of the Hamiltonian.~This system
has a Hamiltonian because the space is non-compact.! The
non-zero Poisson bracket would mean that the amoun
Weyl amplitude changes with time.

It is not possible to ignore the Weyl amplitudes com
pletely, however; they are central to the literature of t
1960s. Further, expressions which appear complex at
time may appear simple at a later time. At one time
traditional scalar constraint was thought to be too comp
because it contained a factor of 1/Ag. Then Thiemann pro-
posed a regularization of this constraint which actually
quires that factor@20#. The present ‘‘complexity’’ of the
Weyl amplitudes may disappear once a quantum regular
tion is constructed.

Also, the time dependence of these amplitudes may no
a serious drawback. The amount of Weyl amplitude c
change with time, presumably because the transverse c
ponents of the Weyl tensor can self-interact and evolve
non-transverse components; nevertheless it may be of in
est to know that some transverse amplitude was presen
tially. Therefore I have devoted Appendix D to the We
amplitudes.

Now return to the BPR criteria. It is of some interest
reexpresss the classical BPR criteria in the Ashtekar
guage, even if one does not go on to consider the quan
case. However, one would really like to construct from ea
classical criterion a corresponding quantum operator. I c
struct such operators in Sec. III.

The Poisson brackets between the classical BPR oper
and the constraints have the form

$classical BPR operator,constraint%

5S~••• !~classical BPR operators!. ~1!

Following a terminology used widely in the literature, I wi
refer to a quantity as physical if its Poisson brackets with
constraints vanish~or equal linear combinations of the con
straints!. Since the constraints generate transformations
the arbitrary coordinate labels, a physical quantity is coo
nate independent. From Eq.~1!, the classical BPR ampli
tudes are not physical. However, they are consistent, m
ing that it is consistent with dynamics to demand that B
amplitudes vanish for all time~to demand that the system
unidirectional for all time!: From Eq.~1!, if a BPR ampli-
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tude is set to zero initially, then its Poisson brackets with
Hamiltonian also vanish, and the amplitude remains zero
later times.

On physical grounds, it is not obvious that the quantu
BPR operators should be consistent. The BPR operators
force unidirectionality, and the quantized system is ne
purely unidirectional: There are always zero point fluctu
tions traveling counter to the wave. If the nonlinearities
the system cause the initially unidirectional wave to sca
off these fluctuations, then the BPR amplitudes will evol
in time.

The analogous effect in quantum electrodynamics was
vestigated by Schwinger@21#. A classical, unidirectional
electromagnetic wave does not scatter. In the quan
theory, conceivably the wave might break up into a num
of softer photons, because the wave can interact with z
point photons via exchange of virtual electron-positron pa
However, Schwinger proved that a unidirectional wave
stable even in the quantum theory.

I have been unable to prove that the corresponding gr
tational wave is also stable. If the classical Poisson brac
on the left-hand side of Eq.~1! are replaced by a quantum
commutator, then for consistency the commutator sho
have the form

@quantum BPR operator,constraint#

5S~••• !~quantum BPR operators!, ~2!

where the~quantum BPR operators! must stand to the right
on the right-hand side of Eq.~2!. I am assuming that the
wave functional stands to the right of the operators, so t
the quantum BPR operators must be commuted to the
right, in order to annihilate the wave functional. I have co
puted the commutators of Eq.~2! in Appendix E, but it is not
possible to bring all the quantum BPR operators to the
right, due to factor ordering problems.

Since the commutator calculation in Appendix E involv
four degrees of freedom, it is possible on first reading
appendix to miss key features because of the details. Acc
ingly, in this Introduction I describe an imaginary commut
tor calculation which involves only two degrees of freedo
yet has all the essential complications of the calculation
Appendix E. Suppose the classical criterion for no le
moving wave has the formp1q,zQ50. Herep andq are a
canonical pair~p52 i\d/dq after quantization!, and Q is
the second degree of freedom. All fields depend on two v
ables (z,t). In a linear theory such as free-field QED,Q is
unity, since the classical condition for no left-moving wa
is p1q,z5(] t1]z)q50. Now check consistency by com
muting this expression with the Hamiltonian~equivalently,
with the constraints!. Suppose the result is

@p1q,zQ,H#5•••1~p!22~q,zQ!2, ~3!

where the ellipsis denotes terms withp1q,zQ to the right.
The last term on the right may be rewritten using the iden

~p!22~q,zQ!25~p1q,zQ!~p2q,zQ!/2

1~p2q,zQ!~p1q,zQ!/2. ~4!
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988 57DONALD E. NEVILLE
The last term on the right has the correct form. The first te
on the right cannot be brought to correct form, because
two factors do not commute:

@p~z!1q,zQ~z!,p~z8!2q,z8Q~z8!#522i\d~z2z8!Q,z .
~5!

This is essentially what happens in the actual calculat
Appendix E.

Note that the commutator, Eq.~3!, involves products of
two operators evaluated at the same point. It is there
badly defined, and the calculation needs to be redone af
regularization. Discussion of regularization is beyond
scope of this paper, and the conclusion drawn here is pr
sional: The stability of unidirectional plane gravitation
waves has not been established. A historical note on the
portance of regularization to calculations of this typ
Schwinger’s paper continues to be quotable today, in par
its result on plane waves, but primarily because it introdu
the elegant method of proper-time renormalization.

The proof of consistency requires a computation of co
mutators between BPR operators and constraints. Origin
I considered doing the calculation in the Ashtekar formalis
However, the Ashtekar calculation is unconvincing, I b
lieve, for both quantitative and qualitative reasons. Quant
tively, the algebra is difficult to follow or reproduce, becau
the algebra is lengthy and complex. There is also the qu
tative objection that~as pointed out above! factor ordering
issues are important. Quantum commutator and class
Poisson brackets will differ only if factor ordering issues a
signifigant. But it is not clear how to factor order the As
tekar scalar constraint. There is the usual ambiguity ab
functional derivatives: Do they go to the right or to th
left? In addition, it is not even clear that a single fact
ordering suffices: If one insists that the scalar constra
should be self-adjoint, then it should be a sum of two ter
having two different factor orderings. Therefore in Append
E, I compute the commutators using a geometrodynamic
malism. In this formalism, the algebra is signifigantly eas
to follow. In addition, there is no ambiguity about how
factor order the scalar constraint, because, in the plane w
case, every term in the scalar constraint is a product of c
muting factors.

So far I have assumed that a classical constraint of
form (classical BPR amplitude)50 translates into a quan
tum constraint (quantized BPR amplitude)c50. In Appen-
dix E I require, not only that the commutator@BPR amplitu-
de,constraint# be proportional to a BPR amplitude, but als
that the BPR amplitude can be commuted to the far rig
where it annihilates the wave functional, assumed to
standing to the right. Actually, the classical theory is reco
ered if the quantum theory obeys the weaker condit
^quantized BPR amplitude&50, where the^ & denotes an
average over an appropriate semiclassical state. In Sec.
argue that the weaker condition is the correct one to use
the BPR amplitudes.

Suppose for the moment that this is true; does switch
to the weaker condition affect the argument that unidir
tional plane waves are unstable? The calculation of App
dix E remains relevant, even if one uses the weaker co
tion. Just as for the stronger condition, one must continu
e
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check that the weaker condition is preserved in time,
computing commutators with the constraints. However, if
weaker condition is correct, then the commutator, Eq.~3!,
should be interpreted in a different manner. There is no n
to commute the BPR amplitudes to the right. Instead, o
should average both sides of Eq.~3! over an appropriate
semiclassical state~sandwich both sides between the brac
ets ^ &! and look for a zero on the right. Since the (p)2 and
(q,zQ)2 terms on the right in Eq.~3! resemble kinetic and
potential energies of an oscillator, it would not be surprisi
if the two energies averaged to the same value. The ave
of the right-hand side would then vanish, implying cons
tency on average,̂] t(p1q,zQ)&50.

But this does not settle the question whether left-mov
waves are being produced from the vacuum. Suppose
quantity p1q,zQ is initially zero. Even if this amplitude
becomes non-zero because of scattering off the vacuum
averageof p1q,zQ probably continues to be zero, becau
of the randomness inherent in the zero-point fluctuatio
similarly for the time derivative of the amplitude. If th
weaker condition is the correct one to use, then the only s
way to see growth in left-moving waves is to look at a
amplitude which cannot fluctuate in sign, for examp
(p1q,zQ)2. In free-field QED, whereQ51, this is the~di-
vergent! energy of the left-moving zero-point oscillation
Forget the divergence for the moment and proceed:
QED the time derivative,@H,(p1q,z)

2# is proportional to
]z(p1q,z)

2. One expects the zero-point fluctuations of t
vacuum to bez independent by translation invariance, so th
the QED commutator vanishes. I have computed the co
sponding commutator for the gravitational case in Appen
E. In addition toz-derivative terms, analogous to those e
countered in QED, there are derivative-free terms prop
tional to (p1q,zQ)2 itself; these terms should not vanis
when both sides are averaged over a semiclassical s
Again, the calculation is heuristic; regularization is neede

Even though the unidirectional amplitudes may evo
away from zero, they remain of interest. It is of interest
know that a wave is unidirectional, at least initially, even if
later departs from that state. However, if one must use
weaker condition~amplitudes shoud be averaged over
semiclassical state!, rather than the strong condition~ampli-
tudes should annihilate the state!, the weaker condition is
more difficult to use. How does one recognize when a stat
‘‘semiclassical?’’ Also, the weaker criterion involves an a
erage and hence seems to require knowledge of the mea
in Hilbert space. The situation is difficult, but may not b
impossible; these issues are discussed in Sec. III. Sectio
in fact discusses several issues which arise on replacin
classical criterion with a quantum one, but the issues hav
to do with the weaker criterion are the most important. S
tion III also reports progress made toward the goal of c
structing a measure.

In Sec. IV, I construct additional solutions to the quantu
constraints. In Sec. V, I apply the Arnowitt-Deser-Misn
~ADM ! energy operator, the area operator, and the oper
LZ for total intrinsic spin to the wave functional solution
obtained in papers II–III, as well as the new solutions co
structed in Sec. IV. Also in Sec. V, I apply the BPR quantu
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57 989ENERGY AND DIRECTIONAL SIGNATURES FOR PLANE . . .
operators to these solutions; the results are informative e
when the wave functionals do not correspond to states w
are semiclassical.

There are five appendixes. Two of the appendixes~A and
D! cover calculational details and the details of the W
criterion. Appendix B elucidates theLZ intrinsic spin content
of the BPR amplitudes. Appendix C considers the ADM e
ergy. There is a modest surprise here: Normally the AD
energy is considered to be given by the surface term in
Hamiltonian, but in the quantum case it is possible for
volume term to contribute also. Appendix E studies the c
sistency of the BPR constraints.

My notation is typical of papers based upon the Ham
tonian approach with concomitant 311 splitup. Uppercase
indicesA,B,...,I ,J,K,... denote local Lorentz indices@‘‘in-
ternal’’ SU~2! indices# ranging overX,Y,Z only. Lowercase
indicesa,b,...,i , j ,... arealso three dimensional and deno
global coordinates on the three-manifold. Occasionally
formula will contain a field with a superscript~4!, in which
case the local Lorentz indices range overX,Y,Z,T and the
global indices are similarly four dimensional, or a supersc
~2!, in which case the local indices range overX,Y ~and
global indices overx,y! only. The~2! and ~4! are also used
in conjunction with determinants; e.g.,g is the usual 333
spatial determinant, while(2)e denotes the determinant o
the 232 X,Y subblock of the triad matrixea

A . I use Levi-
Cività symbols of various dimensions:eTXYZ5eXYZ
5eXY511. The basic variables of the Ashtekar approach
an inverse densitized triad E˜

A
a and a complex SU~2! connec-

tion Aa
A .

ẼA
a5eeA

a , ~6!

@ẼA
a ,Ab

B#5\d~x2x8!dA
Bdb

a . ~7!

The planar symmetry~two spacelike commuting Killing vec
tors]x and]y in appropriate coordinates! allows Husain and
Smolin @22# to solve and eliminate four constraints~the x
and y vector constraint and theX and Y Gauss constraint!

and correspondingly eliminate four pairs of (E˜
A
a ,Aa

A) com-

ponents. The 333 ẼA
a matrix then assumes a block diagon

form, with one 131 subblock occupied by E˜
Z
z plus one 2

32 subblock which contains all the ‘‘transverse’’ E˜
A
a , that

is, those witha5x,y andA5X,Y. The 333 matrix of con-
nections Aa

A assumes a similar block diagonal form. None
the surviving fields depends onx or y.

The local Lorentz indices are vector rather than spin
strictly speaking the internal symmetry is O~3! rather than
SU~2!, gauge fixed to O~2! rather than U~1!. Often it is con-
venient to shift to transverse fields which are eigenstate
the surviving gauge invariance O~2!:

Ẽ6
a 5@ẼX

a6 i ẼY
a #/&, ~8!

wherea5x,y, and similarly for Aa
6 .

In papers I–III, I use the letterH to denote a constrain
~scalar, vector, or Gauss!. In the present paper I adopt what
becoming a more common convention in the literature a
use the letterC to denote a constraint, while reserving th
en
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letterH for the Hamiltonian. The quantity denotedCS in the
present paper is identical to the constraint denotedHS in
papers II and III. This convention underscores the fact t
every gravitational theory has constraints, but not ev
gravitational theory has a Hamiltonian.

In three spatial dimensions it is usual to place the bou
ary surface at spatial infinity. Bringing the surface at infin
in to finite points is a major change, because at infinity
metric goes over to flat space, and flat space is a consider
simplification. In the present case~effectively one dimen-
sional because of the planar symmetry! the space doesnot
become flat asz goes to infinity, and nothing is lost by con
sidering an arbitrary location for the boundary surface. T
‘‘surface’’ in one dimension is of course just two points~the
two end points of a segment of thez axis!. The notationzb
denotes either the left or right boundary pointzl or zr ,
zl<z<zr . The result that the space does not become fla
z goes to infinity was established in paper II. Note that t
result agrees with one’s intuition from Newtonian gravit
where the potential in one spatial dimension due to
bounded source does not fall off, but grows asz at largez.

If a certain solution does not satisfy the Gauss constr
~or other constraint! at the boundary, this does not mean th
necessarily there is something wrong with the solution.
classical theory the solutions satisfy the constraints eve
where. In quantum theory, however, when the constraints
imposed after quantization, in the Dirac manner, it is on
necessary that thesmearedconstraint annihilate the solution
The Hamiltonian contains a sum of constraints of the fo
*N(z)C(z)dz, whereN is a smearing function or Lagrang
multiplier. SinceN has no physical significance, one mu
require that arbitrary small changes inN, dN, annihilate the
wave functional:

E dzdN~z!C~z!c50. ~9!

N and dN are not totally arbitrary, however. IfN obeys a
boundary condition of the formN→constant at boundarie
zb , then Eq.~9! must respect this boundary condition, whic
means

dN~zb!50. ~10!

Equation~10! implies thatC(zb)c does not have to vanish
A statement that ‘‘this solution does not obey the constra
at the boundaries’’ does not mean necessarily that the s
tion is flawed.

II. BONDI-PIRANI-ROBINSON SYMMETRY

Bondi, Pirani, and Robinson argue that the metric o
unidirectional plane gravitational wave should be invaria
under a five-parameter group of symmetries. Their argum
proceeds essentially as follows. First they point out tha
planeelectromagneticwave moving in the1z direction is
invariant under a five parameter group.@Besides the obvious
]x , ]y , and ]v symmetries, there are two ‘‘null rotations’
which rotate thev5(t1z)/& direction into thex or y di-
rection.# Then for gravitational plane waves they constru
five Killing vectors which have the same Lie algebra as
corresponding Killing vectors for the electromagnetic ca
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990 57DONALD E. NEVILLE
~More precisely they construct ten Killing vectors, one set
five for ct1z waves and a similar set of five forct2z
waves.!

This section constructs the fivect2z vectors and then
imposes the usual symmetry requirement that the Lie der
tive of the basic Ashtekar fields must vanish in the direct
of the Killing vectors. In this way one finds that the field
must obey certain constraints; the section closes with a
cussion of the physical meaning of these constraints in
classical theory.

It is convenient to do the proofs in a gauge which h
been simplified as much as possible using the]v symmetry
and then afterwards transform the results to a general ga
The plane wave metrics we consider here possess two hy
surface orthogonal null vectors; if the two hypersurfaces
labeledu5const andv5const@u andv5(ct7z)/&#, then
one can always transform the metric to a conformally
form in the (z,t) sector by usingu andv as coordinates@16#:

ds2522dudv f ~u,v !1(
~2!

gabdxadxb. ~11!

The sums overa,b,c,... extend overx,y only. If one now
invokes the symmetry under]v , then f (u,v) depends onu
only, and one can remove the functionf by transforming to
a newu coordinate. In this gauge, the Rosen gauge@23#, the
metric is~not just conformally flat, but! flat in the (z,t) sec-
tor and non-trivial only in the (x,y) sector:

ds2522dudv1(
~2!

gabdxadxb. ~12!

In the Rosen gauge, the five BPR Killing vectors a
]x ,]y ,]v , and

j~c!l5xcdv
l1Eu

gcd~u8!du8dd
l , ~13!

wherec5x or y. These two Killing vectors are the gravita
tional analogues of the electromagnetic ‘‘null rotation
which mix thex or y direction with thev direction.

The constraints imposed by the first three]x , ]y , and]v
Killing vectors are satisfied already, because of the choic
gauge. I now work out the constraints which the last t
Killing vectors, Eq.~13!, impose on the Ashtekar variable
~in the Rosen gauge first, than in a general gauge!. I summa-
rize the highlights of the calculation in this section, a
move the algebraic details to Appendix A.

It is necessary to calculate the symmetry constraints
the four-dimensional tetrads and Ashtekar connections fi
since the Killing vectors are intrinsically four dimensiona
and then carry out a 311 decomposition to obtain the con
straints on the usual three dimensional densitized triad
connection. At the four-dimensional level, the three lo
Lorentz boosts have been gauge fixed by demanding
three of the tetrads vanish:

eM
t 50,M5space. ~14!

The gauge condition of Eq.~14! is the standard choice, use
with all metrics@24#. In addition, for the special case of th
f

a-
n

s-
e

s

ge.
er-
e

t

of

n
t,

d
l
at

plane wave metric, the gauge fixing of theXY Gauss con-
straint andxy spatial diffeomorphism constraints imply tha
four more tetrads vanish@22#:

eX
z 5eY

z 5eZ
x5eZ

y50. ~15!

At the four-dimensional level, the requirement of a va
ishing Lie derivative in the direction of the Killing vecto
gives

05jl]leI
a2]bjaeI

b2L .I
I 8eI 8

a , ~16!

05jl]l
~4!Aa

IJ1]ajl~4!Al
IJ1L.I 8

I ~4!Aa
I 8J

1L.J8
J ~4!Aa

IJ82]aLIJ. ~17!

These equations are not quite the usual Lie derivatives
cause of theL andL terms.L andL are local Lorentz trans-
formations. If j5]x , ]y , or ]v , no L or L is required. If
j5j (c), one of the two Killing vectors defined at Eq.~13!,
then a Lorentz transformationL is required in Eq.~16! for
the tetrads; otherwise the symmetry destroys the gauge
ditions, Eqs.~14! and ~15!. If the tetrads are Lorentz trans
formed, then for consistency,(4)A in Eq. ~17! must undergo
the same Lorentz transformation. Since(4)A is self-dual, the
Lorentz transformationL in Eq. ~17! must be the self-dua
version of the Lorentz transformationL:

2LIJ5LIJ1 id~e ..MN
IJ /2eTXYZ!L

MN. ~18!

The phased/eTXYZ561 is the duality eigenvalue which de
termines whether the theory is self-dual or anti-self-dual. B
cause I include the extra factor ofeTXYZ, Eq. ~18! contains
two factors ofe and so is independent of one’s choice
phase for this quantity. After the four-dimensional theory
rewritten in 311 form, all results will depend only ond. In
the body of the paper I choosed511, but Appendix A
indicates what happens for the opposite choiced521.

It is a straightforward matter to determine the Loren
transformationL which will preserve the gauge conditions o
Eqs. ~14! and ~15!, then solve Eqs.~16! and ~17!. This is
done in Appendix A. From Eq.~A23! in that appendix, Eqs
~16! and~17! imply the following constraints on the connec
tion A:

05Aa
2 ,

052Aa
112‘‘Re’’ Aa

1 ~right-moving!, ~19!

where a5x,y only. The connectionA is now the usual 3
11 connection, not the four-dimensional connection(4)A.
ReAa

X without the quotes is the usual real part, containing
factors ofi , while

‘‘Re’’ Aa
1[~Re Aa

X1 i Re Aa
Y!/&. ~20!

‘‘Re’’ A contains a factor ofi , because of thei in the defini-
tion of the (X6 iY) O~2! eigenstates, and is no longer real.
one writes out the ‘‘Re’’ and ‘‘Im’’ parts ofAa

6 , it is easy to
see that the two constraints of Eq.~19! are just the complex
conjugates of each other. To obtain the constraints for l
moving waves, interchange1 and2 in Eq. ~19!.
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Equation~19! can be interpreted physically by using th
classical equations of motion to prove theorems about
spin behavior of the BPR fields. Again, the required calcu
tions are done in an appendix~Appendix B!, and this section
summarizes the main conclusions.

To interpret the spin content of the four amplitudes wh
vanish, one should express the total spin angular momen
LZ of the gravitational wave in terms of the BPR amplitud
@Eq. ~19! for right-moving waves, plus two more amplitude
with 1↔2 for left-moving waves#. NoteLZ cannot be sim-
ply an integral over these amplitudes: They are not wei
one, and therefore integrating them overdz will not produce
a diffeomorphism scalar. In fact the integrand ofLZ is a
weighted average over the four weight one combinati
ẼA

aAa
7 and ẼB

a@2Aa
612‘‘Re’’A a

6#. One can always recove
the original four BPR amplitudes from these four, becaus
is always possible to invert the 232 matrix formed from the
transverse components of the densitized triad, E˜

b
B with B5

X,Y andb5x,y. Equation~B4! of Appendix B expressesLZ
in terms of these weight one combinations:

LZ5 i E dz$e1
y e1xẼ2

a @Aa
21~Aa

222‘‘Re’’A a
2!#

1e2
y e2xẼ1

a @Aa
11~Aa

122‘‘Re’’A a
1!#%2~x↔y!,

~21!

whereeAa and eA
a are triad and inverse triad fields, respe

tively. Out of the four possible combinations E˜
A
aAa

2 and

ẼB
a@2Aa

112‘‘Re’’A a
1#, only two combinations E˜2

a Aa
2 and

Ẽ1
a @2Aa

112‘‘Re’’A a
1# contribute to the spin angular mo

mentum. Since these are the two amplitudes with O~2! helic-
ity 62 in the local Lorentz frame, it is natural to interpr
Ẽ6

a Aa
6 as an amplitude for a wave having helicity62. Both

helicity 62 combinations must vanish in order to elimina
the two polarizations moving in thect1z direction.

Two more combinations, E˜
1
a Aa

2 and Ẽ2
a @2Aa

1

12‘‘Re’’A a
1], are helicity zero and also contain the fields

Eq. ~19!. How does one interpret these helicity zero amp
tudes? Using the Gauss constraint plus the classical e
tions of motion in a conformally flat gauge, one can pro
that these two constraints collapse to a single constraint,
~B10! of Appendix B:

05~] t1]z!ẼZ
z . ~22!

ẼZ
z5eZ

ze5 (2)e, where (2)e is the determinant of the 232
transverse sector of the triad matrix, a scalar function
(z,t). This function characterizes the background geome
rather than the wave. In general relativity, however, ‘‘bac
ground’’ and wave are inseparable, in the sense that
‘‘background’’ is not inert. The wave will scatter off th
background, in general, unless it obeys the constraint g
by Eq. ~22!.

This completes the survey of the constraints predicted
BPR symmetry and their physical interpretation in the cl
sical context. In the next section these classical express
are promoted to quantum operators.
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III. TRANSITION FROM THE CLASSICAL
TO QUANTUM CRITERION

This section lists three issues which arise when conver
a classical expression into a quantum criterion. I summa
and discuss each issue and then show the application to
BPR criteria.

A. Factor ordering

I choose a factor ordering which is natural and simp
within the complex connection formalism. The ordering
‘‘functional derivatives to the right’’@25#. That is, I quantize
in a standard manner, by replacing one-half of the fields
functional derivatives,

ẼZ
z→2\d/dAz

Z ,

Aa
A→1\d/dẼA

a ~ for a5x,y and A5X,Y!, ~23!

and then order the functional derivatives to the right in ev
operator or constraint. This approach has the virtue of c
sistency, since I have used it in two previous papers on qu
tization of plane waves.

B. Semiclassicality

This section discusses the point raised in the Introd
tion: The classical constraint (classical BPR amplitud
50 probably does not imply the strong constra
(quantized BPR amplitude)c50, but rather the weake
constraint^quantized BPR amplitude&50, where the aver-
age is taken over a semiclassical state.

An example from QED will be helpful in explaining why
the constraint must be weaker. The BPR criteria are es
tially field strengths for waves moving in a given directio
with a given polarization. An analogous quantity from fl
space QED is

F[Fmnmmkn . ~24!

HereFmn is the self-dual QED field strength and (k,l ,m,m̄)
is the usual flat space null tetrad:k and l are null vectors
with space components along6z; m and m̄ are transverse
polarization vectors along (x̂6 i ŷ)/&. Classically, the crite-
rion for absence of radiation alongk with polarizationm̄ is
F50. The corresponding quantum criterion for absence
radiation, obtained after replacing classicalA fields by quan-
tum operatorsÂ, is not

F̂c50, ~wrong!, ~25!

but rather

^semicluF̂usemicl&50. ~26!

Since the QED field strengthF̂ contains creation as well a
annihilation operators, it cannot annihilate any state, and
~25! is too strong. The classical statementF50 merely im-
plies the existence of a corresponding semiclassical s
such that Eq.~26! holds. I have deliberately used the ter
‘‘semiclassical’’ rather than ‘‘coherent’’ to describe the sta
in Eq. ~26!, because the latter term conventionally denote
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992 57DONALD E. NEVILLE
state which is an eigenfunction of the annihilation opera
and annihilation operators usually are not available in qu
tum gravity. While annihilation operators may not exist, c
tainly semiclassical states will, because of the corresp
dence principle.

Clearly the criterion, Eq.~26!, is more difficult to apply
than Eq.~25!, but let us survey the damage; the situation m
not be hopeless. To define ‘‘semiclassical’’ without invokin
coherent states or annihilation operators, one can study

F̂usemicl&5 f ~z!usemicl&1uremainder&, ~27!

whereF̂ stands for a typical BPR field.usemicl& is normed to
unity, althoughuremainder& need not be. I define semiclass
cal, not by requiringf (z) to be large, but rather by requirin
the uremainder& to be small. If I requiref (z) to be large
~perhaps reasoning that ‘‘classical’’ means large quan
numbers!, then I exclude the vanishing amplitude cas
f (z)50, where usemicl& is the vacuum with respect to
given radiation mode. The vacuum is a well-defined sta
classically, and one expects it to have a quantum analo
For usemicl& to approximate a classical state, therefore, it
not necessary thatf (z) be large, only that the fluctuation
away from this state be small. In a theory with three spa
dimensions, these fluctuations are measured by

^F̂†F̂&2^F̂†&^F̂&5^remainderuremainder&

<~ l p / l !2/ l 2 ~3D!. ~28!

Here the fluctuations are assumed to be small compare
the size of typical matrix elements one gets whenu i & and^ f u
are few-graviton states andF̂ is a canonical degree of free
dom in the linearized theory:

^ f uF̂u i &' l p / l 2 ~3D!. ~29!

l p is the Planck length, andl is a typical length or wave-
length. The right hand side of Eq.~28! is the square of the
right hand side of Eq.~29!. In the planar case~one rather
than three spatial dimensions! remove one power of lengthl
from the denominator of Eq.~29!, and two powers ofl from
the denominator of Eq.~28!.

I interrupt the flow of the discussion to present the dime
sional analysis needed to establish Eq.~29!. @This paragraph
and the next could perhaps be skipped on a first readi#
Start by estimating the order of magnitude of the mat
element in Eq.~29! whenF̂ is replaced by a massless sca
field f, and the dynamics is small perturbation around f
field theory. The usual dimensional analysis applied to
quadratic terms in the Lagrangian gives

f;1/l ~3D! ~30!

Since f is a massless field, it contains no built-in leng
scale;l will come from the length scales associated with t
initial and final states. If the initial state is the vacuum a
the final state is a one-particle wavepacket,
r,
n-
-
n-

y

m
,

,
e.

s

l

to

-

.

r
e
e

^ f ufu i &5E d3k f~k!^kufu0&

;1/l ~3D!. ~31!

There is no change from Eq.~30! because the packet i
normed to unity; therefore*d3k f(k)^ku is dimensionless.
Now switch fromf to the gravitational fieldh, h a small
fluctuation of the tetrad away from background.

ei
I;d i

I1 l phi
I . ~32!

The explicit factor of Planck length ensures that the ove
factor of 1/G;1/l p

2 in the Lagrangian cancels out of the qu
dratic terms. Therefore the dimensional analysis forh is
identical to that forf: h;1/l .

Now make the transition fromh to the BPR amplitudes
F̂. Those amplitudes are linear inGA, A the Ashtekar con-
nection andG the Newtonian constant~usually set to unity in
this paper!. GA is linear in the Lorentz connectionva

IJ , so
that

F̂;GA;v;]e

; l p / l 2 ~3D!, ~33!

which is Eq.~29!. ~Again, taking matrix elements does no
change dimension.! The discussion for the one dimension
planar case is identical to the discussion just given for
three dimensional case, except for the very first step:f has
dimension 1 rather than 1/l . Therefore the final answer, Eq
~29! or Eq. ~33!, should bel p / l rather thanl p / l 2.

In a classical theory, or in a theory quantized on a fl
background, l is a typical length associated with the init
and final wavepackets. One might ask what is meant b
typical lengthl , in a quantized and diffeomorphism invaria
theory where no background metric is available. In suc
theory, even in the absence of a background metric, len
area, and volume operators can be defined@26,27,20#, and
the eigenvalues of these geometric operators are dimens
less functions of spinsj i , times factors ofl p to give the
correct dimension. The spins label the irreducible repres
tations of SU~2! associated with each holonomy~if the wave
functional c is in connection representation, so thatc is a
product of holonomies! or associated with each edge of
spin network~if the wavefunctional is a spin network state!.
Thus one expectsl 5 l 0( j i) l p , l 0 dimensionless and@1. @In
the planar case, SU~2! is gauge fixed to O~2! and presumably
the SU~2! eigenvaluesj will be replaced by the O~2! eigen-
values m5spin angular momentum component alongz.#
Evidently, then, to check that Eq.~28! is satisfied, one should
apply the geometric operators to the state first, in orde
estimatel . One also needs the measure in Hilbert space,
in favorable situations one might be able to tell th
uremainder& is small simply by inspection of Eq.~27!.

Since the criterion of Eq.~28! is an inequality, it cannot
be used to draw sharp distinctions between states. For
ample, in the linearized limit, ifuN& denotes an eigenstate o
the number operator havingN quanta of a given polarization
and direction, thenf (z) will be zero, while the norm equa
tion ~28! will be orderN( l p / l )2/ l 2. There will be uncertain-
ties in estimatingl , so that the criterion cannot distinguis
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sharply between the vacuum state and a number eigen
having small occupation numberN.

The semiclassical criterion works best if one has a m
sure. Here I report some initial steps taken toward const
tion of a measure. The discussion will be in the nature o
progress report~results only, no proofs!, because more need
to be done. However, it is surprisingly easy to construc
measure which preserves the reality conditions which m
be obeyed by the Ashtekar connection.

The wavefunctionals constructed in papers II and III a
Sec. IV depend on a complete set of commuting observa
consisting of the four E˜ in the 232 X,Y sector, plus the
complex connection Az

Z . This suggests that one should ta
the dot product to have the form

^fuc&5E f* cmd4Ẽd2A, ~34!

where d2A[d ReAz
Zd ImAz

Z . The measurem must satisfy
several requirements.~i! It must guarantee the quantum for
of the reality constraints on the connection:

^fuAc&1^Afuc&52^fuReAc&. ~35!

~ii ! It must guarantee the invariance ofmd4Ẽd2A under
transformations generated by the scalar, vector, and G
constraints.~iii ! It must contain enough gauge-fixing del
functions to remove the usual unbounded integrations o
infinite numbers of gauge copies. Note that~ii ! requires only
invariance under the constraints, not invariance under fo
dimensional diffeomorphisms. In a 311 formalism, one
does not have the proper set of fields to implement the la
invariance, essentially because all fields are evaluated
constant time hyperslice, whereas four-dimensional diff
morphisms move fields off the hyperslice@28#.

It is possible to construct am which guarantees the realit
constraints@requirement~i!#. Set

m5d@Az
Z1Az

Z
* 12vz

XY#. ~36!

vz
XY is the Lorentz connection, (21) times the real part o

Az
Z , so that this delta function enforces the Az

Z reality con-
straint. The surprising fact is that it also enforces the rea
constraints on the remaining, transverse Aa

A as well, those
with A5X,Y anda5x,y. I sketch the proof. From the quan
tization rule, Eq.~23!, the first term in Eq.~35! contains a
functional derivatived/dẼA

a acting on the ket wavefunc
tional. When this is functionally integrated by parts, one g
2d/dẼA

a acting on the bra wave functional@second term in
Eq. ~35!#, plus a term which can be rewritten as

@2dm/dAz
Z#d@2vz

XY#/dẼA
a . ~37!

The d/dAz
Z can be integrated by parts onto the ket.~The bra

depends only on Az
Z* .! It is then ~lengthy but! straightfor-

ward to show that

@d@2vz
XY#/dẼA

a #d/dAz
Z52 ReAa

A . ~38!

The d/dAz
Z in the quantum expression corresponds to a f

tor of ẼZ
z in the classical expression for ReAz

Z . Further
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progress will involve choosing a specific gauge and verify
that requirements~ii ! and ~iii ! above have been met.

The following three paragraphs contain material which
first glance may seem to be of only historical interest, b
will be needed later in Sec. V. I interpret the BPR criteria
a semiclassical sense, as^F̂&50 rather thanF̂c50. ~From
now on^ & is understood to indicate an average over a se
classical state, unless explicitly indicated otherwise.! Yet the
Hamiltonian constraints are always imposed strongly,
Ĉic50, even though~in the linearized limit, at least! the Ĉi
are sums of creation and destruction operators, like the B
field strengths. Why this difference in treatment? This sa
question was posed and answered in a different context,
entz gauge QED, many years ago, and it is worthwhile
take a moment here to review that discussion@29#. In Lor-
entz gauge QED, the analogue of theCi is ~the usual Gauss
constraint, plus! the four-divergence]A50. The analogue of
the strong requirementĈic50 would be]Âc50, and the
analogue of the semiclassical requirement^Ĉi&50 would be
]Â1c50, where the superscript1denotes positive frequenc
components.~Since a splitup into positive and negative fr
quencies is available in QED, there is no need to introduc
semiclassical average.!

Both constraints, the strong and the positive frequenc
semiclassical, are used in the Lorentz gauge literature.
thors who employ the positive frequency constraint tend
treat the ‘‘unphysical’’ part of the Hilbert space with mor
respect.~Remember that the Lorentz gauge condition is d
signed to eliminate the effects of the unphysical, longitudi
and timelike components.! Heitler @30# is a typical proponent
of this approach: He gives a very careful treatment of
unphysical sector, including a full discussion of the Gup
Bleuler formalism. The payoff is that dot products over t
full Hilbert space are well defined, including dot products
longitudinal and timelike photons. Authors who employ t
stronger constraint@31# pay a price: It is possible to find
states which are annihilated by both the annihilationand the
creation parts of]Â, but these states are not normalizable
the unphysical sector@29#. This result is not particularly sur
prising: Since the creation operators in]Â create a state
with one more timelike or longitudinal photon,c must be a
sum over an unbounded, infinite number of longitudinal a
timelike occupation numbers. This infinte sum leads to
divergence in the norm. The authors who use the strong c
straint are well aware of this difficulty, and they circumve
it by requiring that the dot product in Hilbert space be tak
over physical excitations only.

Returning to the gravitational case, one can now see w
the strong criterion will work for theCi , but not for the BPR
operators. For the moment, imagine the gravitational the
to be linearized, so that the analogy to QED is strongest.
creation operators for the BPR operators create phys
quanta, not unphysical. If I impose the strong criterion, I g
states which have an infinite norm in the physical sec
There is no way of avoiding this by restricting the measure
a later step. If I now pass from the linearized to the f
theory, there is no reason why the strong criterion sho
suddenly become applicable. I must use the semiclass
criterion, which is justified using the correspondence pr
ciple.
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C. Non-polynomiality

The BPR operators, Eq.~19!, occur in complex conjugate
pairs, and one member of the BPR pair involves ReAa

A ,

which is a known, but non-polynomial function of E˜
A
a . In

particular, ReAa
A contains factors of 1/(2)Ẽ, where(2)Ẽ is the

232 determinant formed from the E˜
A
a with internal indices

A5X,Y and global indicesa5x,y. I have dealt with a simi-
lar operator, 1/E˜Z

z , in a previous paper@8#, but would just as
soon not do so here.

One can use the fact that the BPR constraints com
complex conjugate pairs, plus semiclassicality, to prove
following theorem~and then one uses the theorem to av
dealing with the non-polynomiality!. Theorem:

^2Aa
112 ReAa

1&5^Aa
2&* , ~39!

and similarly for the other BPR pair. This result is just wh
one would expect from the corresponding result for expe
tion values of complex operators in ordinary quantum m
chanics~for instance^p1 iq&* 5^p2 iq&) except that here
the basic operators are not Hermitean, so that the proo
slightly longer. Proof: Expand out the Aa

6 operators using

Aa
65~Aa

X6 iAa
Y!/&

5\~d/dẼX
a6 id/dẼY

a !/&. ~40!

Integrate by parts the functional derivative on the left side
Eq. ~39!, using

E mc* \dc/dẼA
a5E m@~2\!d/dẼA

ac* #c

1E mc* 2 ReAa
Ac. ~41!

Here c is the semiclassical state and*m is the measure, a
path integral over the fields inc. m need not be known in
detail, except that it enforces the reality condition in Eq.~41!

@via (2\)dm/dẼA
a52 ReAa

Am#. Also, m must be real
(m* 5m) in order for norms to be real. If one inserts Eq.~41!
into the left-hand side of Eq.~39! and carries out the com
plex conjugation~usingm* 5m), the result is the right-hand
side of Eq.~39!.h

IV. ADDITIONAL SOLUTIONS

In the previous section I derived quantum BPR operato
In the present section I construct new solutions to the c
straints. In the next section I apply the BPR, ADM energ
andLZ operators to the solutions constructed in papers II
III and this section.

I start from the solutions considered in paper III. The
are strings of transverse E˜

A
a operators, ordered along thez

axis, and separated by holonomies:
in
e

t
-
-

is

f

s.
-

,
d

e

c5F)
i 51

n E
z0

zn11
dziQ~zi 112zi !M ~zi 11 ,zi !

3ẼAi

ai ~zi !SAiQ~z12z0!GM ~z0 ,zn11!. ~42!

The M are holonomies alongz,

M ~zi 11 ,zi !5expF i E
zi

zn11
Az

Z~z8!SZdz8G , ~43!

and theSM are the usual Hermitian SU~2! generators. These
can be 2j 11 dimensional; they need not be Pauli matrice
The Q functions in Eq.~42! are Heaviside step function
which path-order the integrations,z0<z1•••<zn11 . For this
section only, the boundary pointszl andzr are relabeledz0
andzn11 . Although the metric is not flat at the boundaries,
can be taken as conformally flat at the boundaries, with
radiation present confined to a wavepacket near the or
@8#.

Since the full SU~2! invariance has been gauge fixed
O~2!, it is convenient to use basis fields introduced in E
~8!, fields which are irreducible representations of O~2!.
These are one dimensional, labeled by the eigenvalue ofSZ ,
e.g.,

Ẽ6
a 5~ẼX

a6 i ẼY
a !/&,

ẼA
aSA5Ẽ1

a S2 or Ẽ2
a S1 . ~44!

Because the irreducible representations are one-dimensi
there is no need to sum over both values ofAi56 in Eq.
~42!, in order to obtain a Gauss-invariant expression; nor i
necessary to take the trace in that equation. However,
must be sure to have an equal number ofS1 andS2 matrices
in the chain, in order to form a closed loop of flux with n
open ends violating Gauss invariance. That is, if one visu
izes each holonomyM (zi 11 ,zi) as a flux line alongz from zi
to zi 11 , then the factor in the square brackets, Eq.~42!, may
be visualized as a flux line fromz0 to zn11 . The line varies
in thickness~varies in SZ eigenvalue! because of theS6

operators encountered along the way, but the finalSZ value
at zn11 must equal the initialSZ value atz0 ~there must be an
equal number ofS1 andS2 matrices in the chain!. Then the
final holonomy in Eq.~42!, M (z0 ,zn11), can join the two
ends atz0 andzn11 and turn the open flux line into a close
flux loop. As shown in paper III, the wave functional of E
~42! can be made to satisfy all the constraints, by suita
choice of theai andAi .

A set of wave functionals is said to form part of a kin
matical basis if the wavefunctionals are annihilated by
Gauss and spatial diffeomorphism constraints; the w
functionals are physical if they are~kinematical and! annihi-
lated by the scalar constraint as well. In order to obtain
larger, kinematical space, as well as more physical solutio
one can simplify Eq.~42! by dropping allQ functions. This
removes the path ordering, or~in visual terms! this allows
flux lines to double back on themselves.
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ckin5)
i 51

n E
z0

zn11
dziM ~zi 11 ,zi !ẼAi

ai ~zi !SAiM ~z0 ,zn11!.

~45!

Again, the expression is Gauss invariant even ifAi56 is not
summed over, and no trace is needed.

To check the spatial diffeomorphism and scalar co
straints, one must first obtain these constraints from
Hamiltonian, written out in an O~2! eigenbasis:

HT5N8F i ~2!Ẽ~ẼZ
z !21eabAa

1Ab
21(

6
~6 i !Ẽ6

b Fzb
7 G

1 iNz(
6

Ẽ6
b Fzb

7 2 iNGF]zẼZ
z2(

6
~6 i !Ẽ6

a Aa
7G1ST

[N8CS1NzCz1NGCG1ST, ~46!

where

Fzb
7 5@]z7 iAz

Z#Ab
7 . ~47!

(2)Ẽ is the determinant of the 232 transverse subblock o
the matrix ẼA

a . ST denotes surface terms~terms evaluated a
the two end points on thez axis,z0 andzn11!. The detailed
form of these terms is worked out in paper II but will not b
needed here. The primed lapseN8 equals the usual lapseN
multiplied by a factor of ẼZ

z , and correspondingly the scala

constraint CS is the usual constraint divided by E˜
Z
z . As

shown in paper II, this renormalization leads to a much s
on

by

i-
-
e

-

pler constraint algebra, but again the details of this will n
be relevant here. The system is quantized by replacing tr
verse Aa

A and ẼZ
z by functional derivatives, these being th

fields conjugate to the fields inc:

Aa
6→\d/dẼ7

a ,

ẼZ
z→2\d/dAz

Z . ~48!

The operator ordering@already adopted in Eq.~42!# is func-
tional derivatives to the right. The first term in Eq.~46! con-
tains an inverse operator (E˜

Z
z)21; this is well defined pro-

vided ẼZ
zM never vanishes, that is, provided theSZ in Eq.

~43! never has eigenvalue zero.
As discussed at Eq.~9!, the physics must be invarian

under smallchangesdN in the lapse and shift, so that th
constraint should be written as

05E dz@dN8CS1dNzCz#ckin , ~49!

05dN8~zb!5dNz~zb!, ~50!

wherezb is either boundary point,z0 or zn11 . Equation~50!
guarantees that the boundary conditions atzb are left un-
changed by the transformation of Eq.~49!.

Both theCS andCz constraints in Eq.~49! contain terms
proportional to Fzb

7 , the field strength defined in Eq.~47!.
When a typical term of this type acts onc, the result is~up to
constants!
E dzdN~z!Ẽ1
a Fzb

2 @ckin#5E dzdN~z!Ẽ1
a Fzb

2 F •••E dziM Ẽ
1

aiS2M ••• G
5E dzdN(

i
Ẽ

1

ai F •••E dziM ~]z2 iAz
Z!d~z2zi !S2M ••• G

5•••F •••E dzid~z2zi !~]zi2 iAz
Z!MS2M ••• G

5•••F •••E dzid~z2zi !~2 iM @SZ ,S2#MAz
Z2 iAz

ZMS2M !••• G
50. ~51!
n

l

On the third line I have changed the]z to ]zi and integrated
by parts with respect tozi . The surface terms atzi5zb van-
ish because thedN(z)d(z2zi) yields a factor ofdN(zb),
which vanishes at boundaries. Thusckin is annihilated by all
constraint terms containing field strengths Fzb

7 . This is al-
ready enough to prove that the spatial diffeomorphism c
straintCz annihilatesckin , and henceckin is at least part of
a kinematical basis, if not a physical basis.

The state would be physical if it were also annihilated

the first term inCS , which I call CE because of the(2)Ẽ
factor which it contains. The following is a sufficient cond
-

tion for ckin to be physical:CE annihilates the state if it
contains only two out of the four transverse fields:

~either! Ẽ1
x and Ẽ2

x only,

~or! Ẽ1
y and Ẽ2

y only. ~52!

If c contains Ẽ1
x and Ẽ2

x only, for instance, the connectio
determinanteabAa

1Ab
2 in CE will necessarily annihilate the

wavefunctional, since the indicesa andb cannot both equa
x. Note that the wavefunctional must have anequalnumber
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of Ẽ1
x and Ẽ2

x fields, because Gauss invariance requires
equal number ofS2 andS1 operators in the chain.

The result given in Eq.~52! can be generalized:ckin is
physical if every ẼAi

ai is the same linear combination

ẼAi

ai 5axẼAi

x 1ayẼAi

y , ~53!

whereax anday are constants independent ofi . In particu-
lar, every ẼAi

ai can be either an E˜1 or an Ẽ2, where

ẼAi

6 5@ẼAi

x 6 i ẼAi

y #/&. ~54!

These are eigenstates of global O~2! rotations mixingx and
y. @All local transformations mixingx and y have been
gauge fixed, but the Hamiltonian continues to be invari
under global O~2! rotations.# These linear combinations wil
be used in the next section to construct the eigenstates o
LZ operator.

One can generate additional physical states, starting f
those described by Eqs.~45! and~52!, by applying operators
Gy

x or Gx
y constructed by Husain and Smolin@22#. The Gb

a

(a,b5x,y) are integrals overz of weight one objects:

Gb
a5E

z0

zn11
dzẼA

aAb
A . ~55!

Husain and Smolin have shown that the operatorsGb
a com-

mute withH; they are physical. Hence application ofm fac-
tors of Gx

y to a functionalc @Ẽ1
x ,Ẽ2

x # replacesmx super-
scripts in the chain byy superscripts, but leavesc physical.
The operatorsGb

a are essentially raising and lowering oper
tors for total intrinsic spin@10#.

I have labeled the generatorsSAi in Eq. ~42! using two
quantum numbersj andm. ~If the generatorSA is one which
changesm, them label can be the initialm value, say.! Once
the SU~2! symmetry is broken to O~2!, however, thej quan-
tum number loses significance. I could replace theSAi by any
other matrix with the samem ~andDm! but different j , and
c would change only by a constant factor.

Even though thej has no physical significance, it is math
ematically convenient to useSA having definitej . One can
then employ the familiar commutation relations of theSA in
calculations. Also, the planar statec is presumably a limit of
some three-dimensional state for which the labelj has mean-
ing. The fact that states of differentj are equivalent in the
planar limit presumably means that the correspondence
tween three-dimensional and planar states is many to on

V. APPLICATION TO SOLUTIONS

In this section I study the solutions constructed so far
applying several operators to them: the BPR operators~from
Sec. III!, the ADM energy operator~from paper III and Ap-
pendix C!, the area operator E˜

Z
z for areas in thexy plane

~from paper III!, and the operatorLZ giving the total spin
angular momentum around thez axis ~from paper IV and
Appendix B!. All the solutions~those constructed in pape
II and III as well as the new solutions constructed in Sec.!
have the form of strings of transverse E˜

6
a (zi)S7 operators
n

t

the

m

e-
.

y

separated by holonomiesM (zi 11 ,zi). The solutions in pa-
pers II and III have additional step functionsu(zi 112zi)
which path order the integrations over thezi , but theu fac-
tors will play a minor role in the considerations of th
present section.

Consider first theLZ operator. From paper IV, this may b
expanded as

LZ52E dz@Ẽ1
1A2

22Ẽ2
2A1

1#

52\E dz@Ẽ1
1d/dẼ1

12Ẽ2
2d/dẼ2

2#, ~56!

where the fields E˜A
6 are the global O~2! eigenstates intro-

duced in Eq.~54!. From Eq.~56!, LZ is determined by count-
ing the number of E˜6

6 fields in the wave functionalc. Each

such field contributes an amount62\ to LZ , while fields Ẽ7
6

contribute nothing. Similarly when a connection represen
tion is used,c5c@A#, each A6

6 field contributes62\.
Next consider the ADM energy operator. Often this

identified with the surface term in the Hamiltonian, but,
discussed in Appendix C, the volume term can also cont
ute. In the present case the volume term typically does c
tribute, but its only effect is to double the size of the surfa
term, and I will ignore volume contributions. The surfa
term is, from Eq.~C4!,

Hst52eMNẼM
b Ab

Nuzl

zr

5 i\@Ẽ2
b d/dẼ2

b 2Ẽ1
b d/dẼ1

b #zl

zr. ~57!

When this operator acts upon a factor of E˜
6
a (zi)dzi in the

wave functional, it gives7 i\Ẽ6
a dzi times a factor of

d(zi2zr) or d(zi2zl). Obviously none of the solutions is a
eigenfunction of the ADM energy, since thed function de-
letes one integrationdzi . One could perhaps construct a
eigenfunction by summing over an infinite number of so
tions, each containing one moredzi integration. Each addi-
tional integration should be multiplied by an additional fa
tor of i , to cancel thei in Eq. ~57! and make the eigenvalu
real. Investigation of such sums is beyond the scope of
present paper. Without a measure one does not kn
whether such a sum converges to a normalizable result.

If the Gauss constraint

CG52 i @]zẼZ
z2eMNẼM

a Aa
N# ~58!

vanishes at the boundaries, it can be used to simplify
ADM surface term to

Hst52ẼZ
z ,zuzl

zr

5\~d/dAz
Z!,z . ~59!

Unwanted factors ofi are now more of a problem. Az
Z occurs

only in holonomies, where it is always multiplied by~a real
matrix SZ times! a factor of i , and the ẼZ

z will bring down
this factor ofi . Except for the solutions constructed in pap
II, there is always at least one boundary where the Ga
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constraint holds, so that factors ofi will be a generic prob-
lem. Of course one could eliminate the problem by disca
ing the holonomy structure, but this is a solution almost
unattractive as the problem.

The operator E˜Z
z ,z occurs in the ADM energy, while E˜

Z
z

itself is the area operator for areas in thexy plane. (ẼZ
z

5eeZ
z5 (2)e.) Therefore the area operator also has p

imaginary eigenvalues, a situation already noted in Appen
D of paper II; see also DePietri and Rovelli@32#.

Even if one for the moment ignores the factors ofi , there
is another problem with the area operator: At any bound
where the Gauss constraint is satisfied, the area operator
always give zero. If the Gauss constraint is satisfied, say
the left boundaryzl , then there is no net flux exiting atzl .
One can regroup the holonomies until there are noM (zi ,zl),
only M (zr ,zi); or until every M (zi ,zl) is paired with an
M (zl ,zj ) to giveM (zi ,zl) M (zl ,zj )5M (zi ,zj ). Either way,
there is no holonomy depending on Az

Z(zl), and the area

operator ẼZ
z(zl) gives zero.

Next consider the action of the BPR operators. The so
tions given in paper II~and some of those considered in Se
IV ! contain either E˜1

a operators or E˜2
a operators, but not

both. A wave functional which contains only E˜
2
a operators

~for example! will be annihilated by Aa
25\d/dẼ1

a , even
before any semiclassical average is taken:

Aa
2c@Ẽ2

a #50. ~60!

In classical theory, Aa
250 is a signal that the solution i

purely left moving, and from this one might expect th
c@Ẽ2

a # is unidirectional. Condition~60! is too strong, how-
ever. As discussed in Eq.~26! of Sec. III, one expects at mos
a vanishing semiclassical average^Aa

2&50. In fact from the
remarks on Lorentz gauge QED in the concluding pa
graphs of Sec. III, Eq.~60! implies thatc is probably not a
normalizable state.

The solutions of paper III and most of those from Sec.
contain both Ẽ1

a and Ẽ2
a , and hence are not annihilated b

any BPR operator. One cannot conclude that these solut
are infinite norm, therefore. However, they do suffer fro
the problems described previously in this section, those
sociated with the ADM energy and area operators.

VI. CONCLUSIONS

Papers II and III proposed new solutions to the co
straints, and Sec. IV of the present paper proposes still m
solutions. However, the investigations of Sec. V have de
onstrated that these solutions are less than satisfying in
eral respects.

This outcome is perhaps not surprising. In earlier wo
simplicity was the primary criterion for choosing the meth
of quantization~polarization and factor ordering!, as well as
the primary criterion for constructing solutions. Simplicity
the criterion one uses when information is scarce, howe
In the present paper several operators of physical sig
cance were available, and the theory and its solutions ca
held to a standard more demanding than simplicity, the s
dard of a reasonable physical interpretation. As a result,
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lutions are called into doubt, but this happens for a rea
which is fundamentally positive: More is known about ho
to interpret and understand the solutions.

The difficulties with imaginary eigenvalues encounter
in Sec. V seem to require fundamental revisions in
theory, since the difficulties are closely linked to the co
plex nature of the connection. As discussed in Sec. V,

operator ẼZ
z , present in both the area operator and the AD

energy operator, has complex eigenvalues because of thei in
the holonomies, exp@iAz

Z
•••#. Getting rid of thei entails

dropping or modifying the holonomic structure, not a plea
ant prospect. Recently Thiemann@20# has proposed an alter
native formalism based upon a real connection. Thieman
alternative is motivated primarily by issues of regularizatio
but has the desirable side effect of producing real eigen
ues for the area operator.

It is a little harder to see how switching to a real conne
tion will cure the problem of zero eigenvalues of the ar
operator at boundaries, also uncovered in Sec. V. The z
eigenvalues occur only at boundaries where Gauss inv
ance is satisfied. Since E˜

Z
z is a Gauss invariant, at first sigh

any connection between area and Gauss invariance se
strange. The connection is indirect, via the structure of
complex connection Az

Z5 i ImAz
Z1ReAz

Z . ImAz
Z is the part

which does not commute with E˜
Z
z ; therefore its presence in

the wave functional gives rise to nonzero area. ReAz
Z is the

part which transforms like a connection under Gauss ro
tions; therefore it is needed in the wavefunctional for gau
invariance. The notions of area and gauge invariance
linked only because ImA and ReA are linked together
form a single~complex! connection. At a boundary wher
Gauss invariance is satisfied, if there is no net flux exiti
then there is no dependence on the connection and henc
area. In the Thiemann scheme one still joins ImA and R
together to form a single~real! connection; in fact the
Thiemann connection is just the Ashtekar connection with
the factor ofi . The real and imaginary parts of the conne
tion are separated when constructing the Thiemann c
straints. Must they be separated when constructing the w
functional as well? If the answer is yes, the wave functio
would not be purely a product of holonomies.

Before doing anything as drastic as dropping the ho
nomic structure, it is a good idea to investigate what happ
to the zero area argument when it is extrapolated from
planar case to the full, three-space-dimensional case.
argument that Gauss invariance leads to zero area dep
on properties of the wavefunctional at boundaries, and
behavior at boundaries changes markedly with spatial dim
sion.

In the full three-dimensional case, the smearing funct
for the Gauss constraint must vanish at spatial infinity,
that there is no need for the Gauss constraint to annihilate
wave functional there. As a result, net flux may pass throu
the boundary at infinity, and there is no difficulty obtainin
finite area at the boundary, even when the wave functiona
purely a product of holonomies. This suggests that the z
area may be a problem which occurs only in the planar lim

In fact the area problem may not exist in the planar lim
if one takes this limit correctly. Imagine the generic thr
dimensional flux configuration which is well approximate
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by planar symmetry: Near the origin, the flux lines corr
sponding to holonomies containing Aa

Zdxa are finite in cross
section and well collimated along thez axis. The planar
wave functionals constructed in papers II and III contain f
tors of S6 , presumably relics of Clebsch-Gordan coef
cients coupling Aa

Zdxa holonomies to holonomies containin
Aa

Xdxa and Aa
Ydxa. The latter are represented by flux line

lying in planes z5const. Although Aa
Zdxa flux lines are well

collimated near the origin, they must diverge far out alonz
into the past or future. A sketch of the Aa

Zdxa flux lines
resembles a drawing depicting radial geodesics near a wo
hole: The flux lines come in from radial infinity, pas
through a narrow ‘‘throat’’ oriented alongz, and then di-
verge once more to radial infinity.~The wavefronts perpen
dicular to these rays are constructed from Aa

Xdxa and Aa
Ydxa

holonomies.! Alternatively, the Aa
Zdxa flux lines at infinity

may not exit through the surface at infinity, but may lo
back and close on themselves, resembling the flux lines
solenoid in magnetostatics. Either outcome is allowed by
boundary conditions on the Gauss smearing function at
finity, and for either behavior at infinity, the behavior at t
throat is the same. If one takes a cross section through
points zl and zr.zl at the throat, one finds net Aa

Zdxa flux
through both boundary pointszl andzr . If this picture of the
three dimensional flux is correct, then in the planar limit o
shouldnot impose Gauss invariance at the boundaries. Pla
solutions would resemble the ‘‘open flux’’ solutions studi
in paper II. If there is Aa

Zdxa flux through the boundaries, th
zero area problem at boundaries disappears.

Even though the Aa
Zdxa flux lines now extend throughou

the entire rangezl<z<zr , one can still construct localize
wave packets. In paper II, I reviewed the geometrodynam
treatment of the planar problem, and introduced the Szek
scalar fieldsB, W, andA. ~It is a little easier to work out the
boundary conditions forB, W, andA, rather than work di-
rectly with the Ashtekar fields; as shown in paper II, t
boundary conditions onB, W, andA then imply correspond-
ing boundary conditions on the Ashtekar variables.! When
only the field A is present, the forces on a cloud of te
particles are isotropic in the transverse (xy) direction; the
elliptical distortions characteristic of gravitational waves a
pear only when theB andW fields are non-zero.~In a more
covariant language, the components of the Weyl ten
which give rise to transverse deviations of geodesics
present only whenB andW are non-zero.! One can impose
wavepacket boundary conditions onB andW ~equivalently,
on transverse components of the Weyl tensor!, requiring
these quantities to vanish at the boundarieszb , but this re-
quirement tells us nothing about the behavior ofA at the
boundaries. The variableA determines geometrical quantitie
such as areas: The Ashtekar area operator E˜

Z
z is just exp(A).

Perhaps one has a ‘‘wavepacket,’’ but not a ‘‘geome
packet.’’ One may require localized, wavepacket behav
for B andW, but not for the more geometrical quantityA.

To summarize, there are two possible solutions to the z
area problem. The first splits the connection, abandoning
strict holonomic form for the wave functional. The seco
allows the Gauss constraint to be non-zero at boundaries
in effect assumes that the ‘‘open flux’’ boundary conditio
used in paper II are generic. Further information and thou
-
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is needed before one can decide between these two alte
tives.

Apart from the zero area difficulty, there is another reas
why the transition from three to one space dimension ne
more attention. Ultimately one would like to use the plan
case as a guide to the behavior of radiation in the full, th
dimensional case. In the full case, one expects the con
tions to occur in holonomies, so as to preserve gauge inv
ance. In the planar case, the gauge fixing allows the tra
verse connections to occur outside of holonomies. Two
radiative properties of the planar solutions, their direction
ity and spin, are associated with the transverse sector, w
least resembles the three-dimensional case. It will proba
be necessary to recast the transverse sector in a more
nomic language, in order to understand more clearly w
happens on passing to the full theory.

For the moment let us overlook any possible difficulti
with zero area and suppose that one shifts to a real con
tion, in order to eliminate the problem with imaginary eige
values. One can ask whether the solutions constructe
papers II and III and Sec. IV are likely to survive the shift
a real connection formalism. The present solutions may
survive, if the factor ordering is changed, and it is easy
imagine a reason why one might want to change the fa
ordering. The scalar constraint usually must be taken to
non-Hermitian, in a complex connection formalism, where
with a real connection one may wish to factor order so as
make the constraint Hermitian.

It may be helpful to comment briefly on why the scal
constraint is difficult to make Hermitian in a complex co
nection formalism. The usual recipe for constructing a se
adjoint operator is to factor order it, and then, if the opera
is not self-adjoint, form the average (C1C†)/2. C† is C,
with the order of all operators reversed and the connecti
A replaced byA†; in turn the A† are replaced by2A
12 ReA. This last step introduces the unwanted no
polynomial expressions ReA into theC† term. In the case of
the Gauss and spatial diffeomorphism constraints, identi
may be used to eliminate the ReA contributions, andC† is
well behaved, in fact identical toC. In the case of the scala
constraint, the unwanted ReA terms do not go away. Within
a real connection framework, theA† is justA, and the tra-
ditional (C1C†)/2 recipe is easier to implement.

Although the present solutions may not survive as ex
solutions, they may constitute approximate solutions to
new, modified constraints, solutions valid in the limit\→0.
This would happen because the new and old scalar c
straints presumably will differ only by a reordering of facto
and hence will differ by terms of order\. Also, theGb

a op-
erators, defined in Eq.~55! and shown to be constants of th
motion by Husain and Smolin@22#, are likely to remain con-
stants of the motion, in any transition to a new opera
ordering, because of the close connection between theGb

a

and total spin@10#.
Even though the complex connection formalism may n

be appropriate for the dynamics, this formalism is the natu
one to use when constructing a criterion for the presenc
radiation. Note that the BPR operators were derived in S
II using only symmetry considerations; no assumptions w
made about the factor ordering or dynamics. Even if o
dropped the Ashtekar connection and used the Thiem
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connection, one would have to reintroduce the Ashtekar c
nection in order to express the results of Sec. II succinc
Anyone familiar with the classical results on radiative cri
ria will not be surprised at this: Much of that work is mo
conveniently expressed using the language of complex c
nections.~See for example the work on the Weyl tens
quoted in Sec. I and Appendix D.!

Classically, exact plane wave solutions are known
which the area operator E˜

Z
z5 (2)e evolves to zero@16#. In fact

this collapse behavior appears to be generic; solutions w
do not collapse are rare and are unstable under small pe
bations@33#. The zero area cannot be removed by a cha
of coordinates, since typically there is an accompanying
gularity in a scalar polynomial quadratic in components
the Weyl curvature tensor. One can ask whether a quant
mechanical effect might prevent this collapse. It is not p
sible to answer this question definitively within the prese
context, because the area operator has imaginary eige
ues. Nevertheless, one can see the outlines of a pos
quantum solution which would avoid a collapse. The qu
tum area operator E˜

Z
z acts on holonomies exp(i*Az

ZSZdz); as

long asSZ is not allowed to assume the value zero, E˜
Z
z cannot

have the eigenvalue zero. In the solutions constructed in
pers II and III and Sec. IV, theSZ value in each holonomy
does not evolve dynamically and therefore remains non-z
if chosen to be non-zero initially. It remains to be se
whether this happy state of affairs will persist to a new f
malism with real eigenvalues for the area operator.

APPENDIX A: DETAILS OF THE BPR CALCULATION

This appendix solves Eqs.~16! and ~17! for the connec-
tion and tetrads obeying BPR symmetry, the invarian
group for unidirectional plane gravitational waves. Wh
setting up a complex connection formalism, it is necessar
choose three phases: When defining the Lagrangian a
four-dimensional level, one must choose the duality phasd
and the phase ofeTXYZ @see for example Eq.~18!#, and an
additional phase comes in when rewriting the fou
dimensional formalism in 311 canonical form. These
phases are explained in Appendix A of paper II, and I use
same phase choices here as in that paper. I begin a
four-dimensional level by solving Eq.~16! for the Lorentz
transformationL;

LI 8I52]bjaeaI 8eI
b . ~A1!

I have dropped ajl]l term which is zero becausej (c), Eq.
~13!, is a linear combination of]x , ]y , and]v , all of which
annihilateeI

a . In the Rosen gauge, from Eq.~13!,

]bja5db
ugca2db

c gua. ~A2!

Therefore

LI 8I52eI 8
c eI

u1eI 8
u eI

c . ~A3!

L is antisymmetric, as it should be. Equation~16! determines
L, Eq. ~A3!, but otherwise imposes no new constraints
the tetrads beyond those already imposed by]x , ]y , and
]v50.
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Next consider Eq.~17!. In principle, one should be able t
determine all the constraints on the Aa

A by solving these
equations directly, but they are awkward, and it is easie
adopt an indirect approach. Given the tetrads, compute
Lorentz connectionva

IJ ; then compute(4)A, which is just
the self-dual version ofv. In this way one finds that many
components of(4)A are identically zero. When this informa
tion is inserted into Eq.~17!, that equation reduces to th
trivial statement 050, for most values of the indices; for
small number of index values the equation is non-trivial a
can be solved with moderate effort.

The equation relatingv to the tetrads is

v i ja[eiI ejJva
IJ

5@2ga j ,i1gai, j1ejK]Jaei
K#/2.

~A4!

From this equation, at least one ofi , j , or a must beu, since
derivatives with respect tox,y,v are zero. Further, the tetra
matrix in the Rosen gauge is 232 block diagonal, with the
zt to ZT block containing constants only. This implies thatat
most one of i , j , or a must beu. After stripping off the
~block diagonal! tetrads, one finds that the only non-zerov
are

vu
XY ,va

VA , ~A5!

where a5x,y only and A5X,Y only. Now compute(4)A
from v, using

2~4!Aa
IJ5va

IJ1 id~e ..MN
IJ /2eTXYZ!va

MN , ~A6!

where the duality eigenvaluedeTXYZ equals11, given my
conventionsd5eTXYZ51. The only non-zero(4)A compo-
nents are

~4!Au
XY ,~4!Au

TZ ,~4!Aa
V1 . ~A7!

At first glance one might think this list is too short; the
should be non-zero(4)Aa

U6 as well, because thee ..MN
IJ term

in Eq. ~A6! will map theVA indices onva
VA into UB ~B5

X,Y or 6!. Duality mapsVX into VY, not UY, however,
because of the identities

eTXYZ5eUVXY5e ..VY
VX , ~A8!

etc., where the last, mixed index tensor with twoV’s is the
one which occurs in duality relations. This explains w
there are no(4)Aa

U6 ; to see what happened to(4)Aa
V2 , note

2~4!Aa
V65va

V61 id~e ..MN
V6 /2eTXYZ!va

MN

5va
V61 id~e ..V7

V6 /eTXYZ!va
V6

5va
V6~16d!. ~A9!

For my phase choiced511, (4)Aa
V2 vanishes.

From Eq.~A7!, there is no need to considera5v in Eq.
~17!. I consider firsta5a5x,y. The first term in Eq.~17! is
a linear combination of]x , ]y , and]v , which vanishes for
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any a. The second term vanishes from Eq.~A2! and the
absence of anyl5v component of(4)A. Then Eq.~17! col-
lapses to

050101L.I 8
I ~4!Aa

I 8J1L.J8
J ~4!Aa

IJ820. ~A10!

From Eqs.~A3! and ~18!, the only non-zero elements ofL,
are

LUX5 iLUY5~eX
c 1 ieY

c !/25e1
c /& ~A11!

or

LU15e1
c , LU250. ~A12!

Inserting this and Eq.~A7! into Eq. ~A10!, one finds that all
the a5a5x,y equations are trivially 050.

Finally, considera5u. The first term in Eq.~15! van-
ishes as before. The onlyIJ index pair which does not give
050 is IJ5VA, A5X,Y only, which gives

0501]ujl ~4!Al
VA1L.I 8

V ~4!Au
I 8A1L.J8

A ~4!Au
VJ82]uLVA.

~A13!

Use Eq.~A2! to simplify the first term; use Eq.~A12! to
simplify the remaining terms and to show that theA
52 equation is trivial. Then

0501gcaAa
V122e1

c Au
211]ue1

c

5gcaAa
V122eB

c Au
B11]ue1

c . ~A14!

I have used the duality relationAVU52 iAXY and
A215 iAXY. On the second line, recall that a ‘‘plus’’ inde
always pairs with a ‘‘minus’’ index to form the two
dimensional dot product:eB

c AB15e1
c A2110. TheAu field

in Eq. ~A14! is a linear combination ofAz andAt fields, and
the At fields are non-dynamical Lagrange multipliers for t
Gauss constraints. I therefore eliminate theAu field in order
to obtain a constraint on the dynamical field Aa

V1 . From
duality and Eqs.~A4! and ~A5! for v,

2eaB
~4!Au

B15eaB@vu
B11 i ~d/2eTXYZ!eMN

B1 vu
MN#

5@ej 1va ju10#

5ej 1@ejK]Juea
K#/2. ~A15!

I solve Eq.~A14! for AVA and insert Eq.~A15!:

~4!Aa
V15ej 1@ejK ]Juea

K#/22gca]ue1
c

5ej 1@2ejK]uea
K2]ugja#/22]uea11]ugcae1

c

5]ugcae1
c /2. ~A16!

The right-hand side of Eq.~A16! is proportional to the par
of Aa

V1 which contains noid factor:

2‘‘Re’’ ~4!Aa
V1[~va

VX1 iva
VY!/&

5eiV~eX j1 ieY j!v i ja /&

5e1 j]uga j/2. ~A17!
Therefore

052 ~4!Aa
V112‘‘Re’’ ~4!Aa

V1

5 ~4!Aa
V1 for d521. ~A18!

The second line means that the first line is the four dim
sional connection computed with the opposite choice for
duality eigenvalue,d521 rather thand511.

This result is very easy to transform from the Rosen t
general gauge in thez,t sector, since the ‘‘minus’’ and ‘‘a’’
indices in thex,y sector remain invariant under such a tran
formation. In order to maintain the gauge conditions~14! and
~15! on the tetrads, it is necessary to combine any fo
dimensional diffeomorphism (z,t)→(z8t8) with a Lorentz
transformation, as in Eq.~16!. A short calculation shows tha
a very simple Lorentz transformationL .Z

T 5]t8/]z will main-
tain all the gauge conditions of Eqs.~14! and~15!. For trans-
forming (4)A one needs the correspondingL; the only non-
zero matrix elements will beL.Z

T andL.Y
X or, equivalently,

L.U
U , LV.V

V , andL.7
6 . Thus the coordinate transformation

the general gauge amounts to a Lorentz transforma
which multiplies Eq.~A18! by an overall factor:

~4!Aa
V185L.V

V L.2
1 ~4!Aa

V1 for d521, ~A19!

where everyL and every(4)A is to be calculated using th
d521 convention. From Eq.~A19!, the quantity in Eq.
~A18! vanishes in every gauge. Similarly, from Eq.~A7!, the
following quantities vanish in every gauge:

052 ~4!Aa
U112‘‘Re’’ ~4!Aa

U1

5 ~4!Aa
V2

5 ~4!Aa
U2 . ~A20!

Equations~A20! and ~A18! may be rewritten as

05 ~4!Aa
T122‘‘Re’’ ~4!Aa

T1

5 ~4!Aa
Z122‘‘Re’’ ~4!Aa

Z1

5 ~4!Aa
T2

5 ~4!Aa
Z2 , ~A21!

where every connection in Eq.~A21! is evaluated using the
d511 convention. For the opposite duality conventio
d521, exchange (1↔2) everywhere in Eq.~A21!. For
d511 but left-moving rather than right moving wave
again exchange (1↔2) in Eq. ~A21!.

So far the calculation has been carried out entirely at
four-dimensional level. The four-dimensional connecti
(4)A is related to the usual 311 connectionA by the follow-
ing equation from Appendix A of paper II:

Aa
S52eMNS

~4! Aa
MN . ~A22!

Then the four-dimensional equation~A21! implies the 311
dimensional equations

05Aa
2 ,

052Aa
112‘‘Re’’A a

1 . ~A23!
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Again, exchange (1↔2) for the opposite duality conven
tion or left-moving waves.

APPENDIX B: KINEMATICS OF THE A A
6 FIELDS: SPIN

From paper IV, the integral

LZ5 i E dz@ẼI
y~Ax

I 2ReAx
I !2~x↔y!# ~B1!

gives the total spin angular momentum of the wave, and
constant of the motion@10#. The integral is over the entire
wavepacket, that is, fromzl to zr . As in paper II, the fields
and Weyl tensor components which produce transverse
placements of test particles are assumed to vanish at
boundaries, with support only in the regionzl,z,zr . It is at
first sight surprising that any conserved quantity associa
with the Lorentz group should be given by a volume integ
~integral overz! rather than by a surface term~term evalu-
ated at the end pointszl and zr!. However, in the one-
dimensional planar case, the extensive gauge fixing in
x,y plane removes all gauge freedom, except for rigid ro
tions aroundz, and thex,y sector of the theory resemble
special relativity rather than general relativity.

This appendix rewrites the integrand ofLZ in terms of the
unidirectional fields@Eq. ~19! for right-moving waves, and
two more amplitudes with1↔2 for left-moving waves#, in
order to understand the spin content of these fields. Introd
triadsea

A and inverse triadseA
a , and write the integrand ofLZ

as

ẼI
y Im Ax

J2~x↔y!5@~eJ
yeKx2~x↔y!#ẼK

a ImAa
J

5@~e[J
y eK]x1e(J

y eK)x2~x↔y!#ẼK
a ImAa

J .
~B2!

In the last line the term antisymmetric inJ,K is proportional
to ẼK

a ImAa
JeJK . This expression is part of the Gauss co

straint ]zẼZ
z1ẼK

a Aa
JeJK50, which implies ẼK

a ImAa
JeJK50.

Hence the term antisymmetric inJ,K can be dropped. The
term symmetric inJ,K can be expanded in O~2! eigenstates,
keeping in mind that every1 index must be contracted wit
a 2 index. TheJÞK terms are proportional to

e1
y e2x1e2

y e1x5eB
y eBx

5dx
y

50. ~B3!

Hence these terms can be dropped also. The surviving te
are products of tensors with J5K and therefore helicity62
in the local Lorentz frame, a reassuring result:
a

is-
he
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ms

LZ52E dz@e1
y e1xẼ2

a ‘‘ Im’’A a
2

1e2
y e2xẼ1

a ‘‘ Im’’A a
12~x↔y!#

5 i E dz$e1
y e1xẼ2

a @Aa
21~Aa

222‘‘Re’’A a
2!

1e2
y e2xẼ1

a @Aa
11~Aa

122‘‘Re’’A a
1!%2~x↔y!. ~B4!

In the last line I have writtenLZ in terms of the weight one
combinations of unidirectional BPR fields introduced in E
~21!. This expression for gravitational spin angular mome
tum possesses the same coordinate times momentum s
ture as the corresponding expression for electromagnetic
angular momentum:

LW em5~1/4p!E d3x@EW 3AW #

52E d3x@PW 3AW #. ~B5!

That is, one can interpret the unidirectional quantities E˜ A
and Ẽ (A22‘‘Re’’A) in Eq. ~B4! as momenta associate
with waves of definite helicity. This parallel with QED doe
not extend too far: These ‘‘momenta’’ have nothing lik
free-field commutation relations with each other or with t
triad ‘‘coordinates.’’

It is now clear why one wants the two combinatio
Ẽ1

a Aa
1 and (2Aa

212‘‘Re’’A a
2)Ẽ2

a to vanish: These two
constraints remove left-moving helicity62 contributions
from LZ . Why must the remaining helicity zero combina
tions vanish? The helicity zero combinations are E˜

2
a Aa

1 and

(2Aa
212‘‘Re’’A a

2)Ẽ1
a . They are complex conjugates o

each other, so that by adding and subtracting them from e
other one gets pure imaginary and pure real constraints

05ẼB
a~Aa

B2ReAa
B!2 i eAB ReAa

AẼB
a , ~B6!

052 i eAB~Aa
A2ReAa

A!ẼB
a1ẼB

a ReAa
B . ~B7!

Now consider the classical equation of motion

052 i ẼZt

z 2dH/dAz
Z

52 i ẼZt

z 2ẼB
aAa

B . ~B8!

On the second line I use the Hamiltonian of Eq.~46!. I also
use the unidirectionality assumption~for the first time in this
section;LZ is the spin operator also for the scattering ca!
and evaluate the Hamiltonian in Rosen~or at least confor-
mally flat! gauge. The metric in a general gauge has the fo

ds25$@2~N8!21~Nz!2#dt212Nzdzdt1dz2%gzz

1x,y sector, ~B9!

so that to obtain conformal gauge, one must takeNz50 and
N851 in the Hamiltonian, whereNz is the shift andN8 is the
renormalized lapse defined following Eq.~46!. From the real
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part of Eq.~B8!, the ẼReA term in Eq.~B7! vanishes. The
rest of this equation is just the imaginary part of the Ga
constraint, ]zẼZ

z1eABAa
AẼB

a50, and vanishes also. Thi

leaves Eq.~B6!. The e ReAẼ term may be simplified using
the real part of the Gauss constraint; the E˜~A2ReA) term
may be simplified using the imaginary part of the equation
motion, Eq.~B8!. The result is simply

052 i ~] t1]z!ẼZ
z , ~B10!

in any conformally flat gauge. This equation is discuss
further in Eq.~22! of Sec. II.

APPENDIX C: THE ADM ENERGY

It is a worthwhile exercise to express the ADM energy
terms of BPR operators. In the usual three-space dimensi
case, the Hamiltonian expressed in terms of the orig
ADM variables as the sum of a volume integral plus a s
face termHst @34,35#,

H5E d3x@NCsc1NiCi #1Hst . ~C1!

In the classical theory, the ADM energy is just the surfa
term, since the constraints in the volume term must van
everywhere when the solution obeys the classical equat
of motion. Often one says that in the quantum case the A
energy is just the surface term also, but this is not quite rig
as we shall see in a minute.

In the planar, one-space dimensional case, the expres
for the Hamiltonian in terms of Ashtekar variables looks s
perficially much the same as Eq.~C1! @8#,

E dz@N8CS1NzCz1NGCG#1Hst , ~C2!

except for the additional Gauss constraint and the prime
N8. ~The prime means I have renormalized the usual A
tekar lapse by absorbing a factor of E˜

Z
z into the lapse, as

explained in paper II.! In both one and three spatial dime
sions, one might be tempted to drop the volume terms, in
quantum mechanical case, because the constraintsCi are re-
quired to annihilate the wavefunctional. However, the sta
ment that the scalar constraint~say! annihilates the wave
functional means, notCSc50, or even*dzCSc50, but
rather

E dzdN8CSc50, ~C3!

where dN8 is a small change in the lapse. The arbitra
changedN8 must preserve the boundary condition at spa
infinity, N8→1. HencedN8→0 there. On the other hand
whenCS occurs in the Hamiltonian of Eq.~C2!, it is multi-
plied by N8 rather thandN8. There is no need forN8 to
vanish at the boundaries~in fact it becomes unity there!.
Now suppose the evaluation of the action ofCS on c re-
quires an integration by parts with respect toz. In Eq. ~C3!,
when the constraint acts uponc, surface terms atz5zb will
vanish because of the boundary condition ondN8. WhenH
s
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acts uponc, however, theCS in H is smeared byN8 rather
thandN8; the former does not vanish at boundaries. Con
quently the volume term can contribute to the ADM ener
in the quantum case. In the planar case both the Gauss
scalar constraints in the volume term can contribute to
ADM energy; neitherN8 nor NG is required to vanish at the
boundaries. In the usual 311 dimensional case with fla
space boundary conditions at infinity, only the scalar co
straint in the volume term can contribute; the remaining c
straints are smeared byNi which are required to vanish a
spatial infinity.

For the plane wave case, the surface terms in the Ha
tonian were computed in Sec. 4 of paper II:

Hst52eMNẼM
b Ab

Nuzl

zr

5I @Ẽ2
b Ab

12Ẽ1
b A2b#

5 i\@Ẽ2
b d/dẼ2

b 2Ẽ1
b d/dẼ1

b #zl

zr ~C4!

To simplify the boundary term quoted in paper II, I hav
invoked the boundary conditionsNz→0, N8→1 on the shift
and renormalized lapse. Evidently the ADM energy conta
the BPR operators which are sensitive to the long-range
lar potential, which suggests that these operators may pl
role even in the presence of waves which are not unidir
tional.

The operator of Eq.~C1! gives a finite result when applie
to the solutions of papers II and III; there is no need
renormalize. However, the solutions are not eigenfuncti
of this operator. A typical solution involvesn integrations
dzi over the locations of thenẼA

a(zi) operators contained in
the wavefunctional, and the ADM operator acts as a ‘‘low
ing operator,’’ removing one integration. Hence an eige
function would have to be an infinite sum over wavefun
tionals of all possible values ofn. It is beyond the scope o
this paper to investigate the finiteness of the norm of suc
sum.

APPENDIX D: THE TRANSVERSE WEYL CRITERION

1. Classification of Weyl tensors

The Weyl tensor is the part of the Reimann tensor wh
can be non-zero even in empty space, and certain of its c
ponents induce transverse vibrations when inserted into
equation of geodesic deviation@36#. It is therefore a natura
object to work with when constructing a criterion for th
presence of radiation@37#. The construction proceeds in tw
steps. The first step is a straightforward mathematical pr
lem: Classify Weyl tensors using their algebraic properti
In the second step, one uses physical arguments to deter
the Weyl class~es! most closely associated with radiation.

To begin with the mathematical problem, there are
independent real components of the Weyl tensor, and fr
these one can construct 5 independent complex compon
which have simple duality properties.

Cabcd5@Cabcd1 i ~d/2eTXYZ!eabmnCcd
mn#/2, ~D1!

Cabcd5 i ~d/2eTXYZ!eabmnCcd
mn . ~D2!
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Lowercase Roman indicesa,b,c,... are global; uppercase
Roman indicesA,B,C,... arelocal Lorentz.eabmn is the to-
tally antisymmetric global tensor, whileeTXYZ is the corre-
sponding local Lorentz quantity, the Levi-Civita` constant
tensor. The duality eigenvalue isd/eTXYZ561. There is an-
other Levi-Civitàtensor hidden in theeabmn,

eabmn5ea
Aeb

Bec
Ced

DeABCD ;

thereforeeTXYZ and its associated sign convention drop o
after the conversion to Ashtekar variables and the 311
splitup. The final 311 Hamiltonian contains only the phas
d. My convention isd511, but in this paper all results ar
stated in a manner which facilitates a conversion to the
posite convention. Of course the combinations with sim
duality properties also have simple transformation proper
in the local Lorentz frame, which is why one chooses
work with C rather thanC, when attempting a classification

Petrov was the first to classify Weyl tensors by their
gebraic properties@11#, but for present purposes the equiv
lent classification scheme due to Debever@12,13# is more
convenient. A null vectork is said to be a principal nul
vector ~Debever vector! of C if

k[aCb]mn[ckd]k
mkn50;kaka50. ~D3!

Debever proved that a Weyl tensor can have up to four
tinct principal null vectors, and he classified Weyl tensors
the number of degeneracies among these vectors. If@1111#
denotes the Weyl tensors which have 4 distinct Debever v
tors,@211# the Weyl tensors with two vectors degenerate a
the rest distinct, etc., then the five classes are@1111#, @211#,
@22#, @31#, and @4#. ~The corresponding five Petrov class
are I, II, D, III, and N, respectively.!

Now supposek is a Debever vector obtained by solvin
Eq. ~D3!. Make it one leg of a null tetradk, l , m, m̄. Choose
the Z axis of a local free fall frame so thatk and l have
spatial components along6Z, while m and m̄ are trans-
verse:

2kal a5mam̄a51,

kaka5 l al a5mama

5kama5 l ama50. ~D4!

C may be expanded in this basis, and~not surprisingly! one
gets five possible terms:

Cabcd5C1VabVcd1C2~VabMcd1MabVcd!1C3~MabMcd

2UabVcd2VabUcd!1C4~UabMcd1MabUcd!

1C5UabUcd , ~D5!

where

Vab52k[amb] ,

Uab52l [am̄b] ,

Mab52k[al b]12m[am̄b] . ~D6!
t
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The five combinations in Eq.~D5! are the only ones allowed
by the duality conventiond511. The expansion for the op
posite duality convention may be obtained from Eqs.~D5!
and ~D6! by interchangingm and m̄ in Eq. ~D6!. Equation
~D5! is essentially the expansion given by Szekeres@36#,
after a relabeling of the basis vectors (k,l ,m,m̄)
→(k,2m,t, t̄ ). Since the expansion treatsk and l quite
symmetrically, it is valid also for the case thatl , rather than
k is the principal null vector.

At this point one turns from the mathematical to th
physical: Which Petrov/Debever class~es! or which term~s!
in Eq. ~D5! are most closely associated with radiation? Co
sider first which of the five tensors in Eq.~D5! distorts a
cloud of test particles in the manner expected for grav
tional radiation. Szekeres finds that only theC1 andC5 terms
produce the transverse displacements in theXY plane char-
acteristic of gravitational radiation in the linearized theo
C2 andC4 produce longitudinal displacements in theXZ or
YZ planes.C3 produces a Coulomb~or tidal force! displace-
ment: C3 distorts a sphere of particles into an ellipsoid
revolution with axis alongZ. These facts suggest that theC1
andC5 terms signal the presence of radiation.

There is another set of arguments which suggest that
C1 andC5 terms are closely associated with the presence
radiation. If the Weyl tensor containsonly a C1 or C5 term,
the tensor is typeN. ~A typeN tensor withk as principal null
vector contains only aC1 term; a typeN tensor with l as
principal null vector contains only aC5 term.! Type N is
closely associated with radiation. Along characteris
curves, when the metric is discontinuous, the discontinuity
the Weyl tensor is typeN @38#. In the linearized theory, the
tensor associated with unidirectional gravitational radiat
is typeN. At large distances from bounded sources, the s
viving components of the Weyl tensor are typeN ~‘‘peeling
theorem’’ @13#!.

Although theC1 andC5 terms are closely associated wi
typeN, it would be better to call these terms transverse W
components, rather than typeN components, since a tenso
which is not typeN can nevertheless containC1 or C5 terms.
A @22# ~type II! field containsC1 plus some admixture o
longitudinal component, while@1111# ~type I! containsC1 ,
C5 , andC3 terms. In a theory as non-linear as general re
tivity, one can expect that a collision betweenC1 and C5
transverse waves will produce someC3 ~Coulomb! compo-
nent, and the tensor will be type I rather than typeN. In
asymptotic regions, after the transverse wave has ‘‘outru
its Coulomb companion, presumably the tensor will revert
typeN, but in general one should be looking forC1 andC5 ,
rather than typeN or any other specific Petrov class. On
should describe this radiation criterion as the transve
Weyl criterion, rather than the typeN criterion.

I now construct operators which project out theC1 and
C5 terms:

C15Cabcdl
am̄bl cm̄d,

C55Cabcdk
ambkcmd, ~D7!

C352Cabcdl
am̄bkcmd.
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For completeness I have included also the expression fo
pure Coulomb componentC3 . The plane wave case has n
longitudinal components;C2 andC4 vanish identically.

2. Transition to Ashtekar variables

At this point I specialize to the case of plane waves alo
the Z axis. By definition, the plane wave metric has tw
hypersurface orthogonal null vectors which may serve
normals to right- and left-moving wavefrontsU5(cT
2Z)/&5const andV5(cT1Z)/&5const. I identify these
normals withk ~right-moving! and l ~left-moving!, so that a
small change in the wave phase will look like

kadxa5~2dT1dZ!/&52dU,

l adxa5~2dT2dZ!/&52dV. ~D8!

@Hypersurface orthogonality demandskadxa}dU, etc.; the
normalization conditions force the constants of proportion
ity to be as shown in Eq.~D8!, and the overall phase ofka
and l a is fixed by the requirement thatk0 and l 0 be positive,
i.e. future pointing.# Lowercasex denotes a global coordi
nate; uppercase (T,Z,U,V) denotes a coordinate in a loc
Lorentz frame. From the expression for the~inverse! tetrads,
eb

Adxb5dXA, k and l may be identified with the tetrads

ka52eaU51eV
a ,

l a5eU
a . ~D9!

Similarly,

ma5e1
a ,

m̄a5e2
a . ~D10!

Evidently the quantitiesCi are~global scalars and! tensors in
a Local Lorentz frame.

Equation~D8! places quite a strong restriction on the n
basis, going beyond what is required to maintain the norm
ization equation~D4!. The choice equation~D9! certainly is
not unique. For example,ka remains null if it is rescaled by
an arbitrary function.~Simultaneouslyl a must be rescaled by
the inverse function, in order to maintain the normalizati
condition2kal a51.! Similarly m andm̄ may be rescaled
The choice equations~D9! and ~D10! facilitate calculations
and lead to highly symmetric formulas forC1 and C5 . @In
this basis,C1 is just C5 with some plus and minus indice
interchanged; see Eq.~D20! below.# For further discussion
of the effect of choice of basis, see the remarks following
~D20!.

Conversion to the Ashtekar language is straightforwardC
is essentially the~four dimensional! Ashtekar field strength
since theC tensor is self-dual, and in empty space the W
tensor is the full Riemann tensor:

~4!Fcd
AB5eAaeBbCabcd. ~D11!

The four-dimensional field strengths(4)F may be replaced
by 311 quantitiesF by using standard formulas:
he

g

s

l-

l-

.

l

~4!Fcd
TM52 isdFcd

M /2,

~4!Fcd
MN5seMNSFcd

S /2. ~D12!

M ,N,S5space only.s is a new phase which appears at t
311 reduction step. I chooses521, for reasons explained
in Appendix A of paper II. This phase~unlike d! merely
changes the overall sign of theCi , and I shall not keep track
of the s dependence in the future. Useful corollaries of E
~D12! are

~4!Fcd
V65~ i /& !Fcd

6 @~d61!#/2,

~4!Fcd
U65~ i /& !Fcd

6 @~d71!#/2. ~D13!

If tetrad equations~D9! and ~D10! and field strength equa
tion ~D13! are inserted into Eq.~D7! for C1 , the result for
d511 is

C15 i @2Fcd
1 eT

c1Fcd
1 eZ

c #e1
d /2. ~D14!

~For d521 replace1 by 2.! For any metric, typically the
Lorentz boosts are gauge fixed by demanding that thre
the tetrads vanish:

eM
t 50, M5space. ~D15!

For the special case of the plane wave metric, the ga
fixing of the XY Gauss constraint andxy spatial diffeomor-
phism constraints imply that four more tetrads vanish:

eX
z 5eY

z 5eZ
x5eZ

y50. ~D16!

The tetrad matrix reduces to two 232 subblocks which link
x,y to X,Y ~or 6! andz,t to Z,T. Therefore the first term in
Eq. ~D14! ~and only the first term! contains anFtd

1 term, d
5x or y, with unacceptable time derivatives of the ‘‘coord
nate’’ Ad

1 . I eliminate this term using the classical equatio
of motion, which are

~4!Fcd
ABeA

c 50, ~D17!

or after 311 splitup, and settingB51,

05 ~4!Fcd
A1eA

c

5 ~4!Fcd
21e1

c 1 ~4!Fcd
U1eU

c 1 ~4!Fcd
V1eV

c

5Fcd
1 eV

c 5Fcd
1 eT

c1Fcd
1 eZ

c . ~D18!

In the second line the(4)FU1 term vanishes because of E
~D13!, and the (4)Fcd

21e1
c may be dropped because at th

next step the entire term will be contracted withe1
d . When

Eq. ~D18! is inserted into Eq.~D14!, the result is

C15 iF cd
1 eZ

ce1
d . ~D19!

This is not quite Ashtekar form, because the triads must
densitized. Also, thec index can equalz only, because of the
gauge conditions~D15! and~D16!. The final result is~for C5
andC3 also, since they are calculated similarly!
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C15 iF zd
1 Ẽ1

d / ~2!Ẽ,

C55 iF zd
2 Ẽ2

d / ~2!Ẽ,

C35Fxy
Z /2ẼZ

z . ~D20!

(2)Ẽ is the determinant of the 232 XY subblock of the tetrad
matrix. The results ford521 are the same, except for ove
all phases, and interchange of1 and2 everywhere.

In the case that the wave is unidirectional, the resu
~D20! are consistent with the BPR constraints. For exam
if the wave is right moving, then the principal vector isk,
associated with the tensorC1 . From Eq.~19!, Aa

2 vanishes,
implying that ~C1 is finite, while! C5 vanishes.

TheCi of Eq. ~D20! were calculated in a specific basis.

particular the factors of(2)Ẽ in Eq. ~D20! are basis depen
dent, and will change if the basis is changed. For exam
suppose one shifts from the tetrad basis, Eq.~D9!, to a basis
in which ka is affinely parametrized~kbka;b5lka , lÞ0!.

Then the(2)Ẽ factor inC1 disappears, replaced by a factor

ẼZ
z . Could such a change of basis makeC1 kinematical,

physical, or consistent?@Kinematical,C1 commutes with the
Gauss and spatial diffeomorphism constraints; physical,C1

commutes with all the constraints; consistent, the comm
tor ~C1 , constraint! is proportional toC1 . Consistency is
relevant only ifC1 is to be set equal to zero.#

It is unlikely thatC1 or any transverse operator could b
made consistent or physical. Gravitational radiation
closely identified with transversality only in the linearize
theory. In the full classical theory, scattering of two tran
verse waves produces aC3 Coulomb component@16#. Pre-
sumably, then, the commutator or Poisson brackets of
purely transverse operator with the Hamiltonian will not
especially simple, even in the classical theory.~This is one
reason why the main body of the paper concentrates on
BPR operators, rather than the Weyl tensor.!

Although it is unlikely that any transverse criterion cou
be made physical or consistent, a kinematical criterion
transversality should be feasible in some cases and us
for example, to monitor the amount ofC1 amplitude presen
initially, for either caseC150 or C1Þ0. One could rescale
C1 by change of basis, until it became density weight un
and then integrate it overz; the resulting expression woul
commute with the diffeomorphism constraint. It is less cle
how to make an expression that is Gauss invariant. If
wave were unidirectional, one could multiplyC1(z) by a
holonomy stretching fromz to the right-hand boundary~flux
tube open to the right!. Since the wave is right moving, n
signal has reached the right-hand boundary as yet, and
boundary condition on the Gauss smearing function is
space,dNG50. This means the Gauss constraint does
have to commute withC1 at the boundary, and the flux ex
iting through the right boundary causes no problems. I do
know how to handle the scattering case, in which waves
in both directions.
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APPENDIX E: CONSISTENCY OF THE BPR
CONSTRAINTS

This appendix calculates the commutators between
BPR operators and the scalar constraint. The formalism u
is geometrodynamical@7#. One starts from the three-metri
gi j and canonical momentump i j , gauge-fixes two canonica
pairs (gxz , pxz) and (gyz , pyz) to zero, and then carries ou
a canonical transformation to a set of four variablesA, D, B,
W with canonical momentapA , pD , pB coshW, andpW .
Note the unexpected canonical pair (pB coshW,B). Also,
since the constraints containeA more often thanA, it is
convenient to use (pAe2A,eA) rather than (pA ,A) as the
canonical pair. It may be helpful to note that in the lineariz
limit the variablesA, D disappear, while the variablesB, W
represent the two polarizations of gravitational radiation.
terms of these variables the metric is

ds25$@2~N8!21~Nz!2#dt212Nzdzdt1dz2%exp~D2A/2!

1eA@eB coshWdx222 sinhWdxdy

1e2B coshWdy2#. ~E1!

Two constraints survive the gauge fixing: the scalar c
straintCS and the constraintCz generating spatial diffeomor
phisms alongz:

CS52~eA!,zz2~eA!,zD,z2pA~e2A!,zpD

1eA@~B,z coshW!21~W,z!
2#/2

1e2A@~pB!21~pW!2#/2, ~E2!

Cz522~pD!,z1~eA!,zpA~e2A!,z1D,zpD

1B,z coshWpB1W,zpW . ~E3!

I will not check explicitly the commutator with theCz con-
straint, since the commutator is trivially consistent:@BPR
amplitude,Cz# ;]z ~BPR amplitude!, just what one would
expect, sinceCz generatesz diffeomorphisms. In fact, since
the BPR amplitudes are scalar densities, their integral ovz
will commute withCz .

At a later point in the discussion I will need to elimina
time derivatives of A,D, . . . in favor of momenta
pA ,pD , . . . by using the classical equations of motion f
A,D, . . . . These follow from the Hamiltonian, which is
sum of the above constraints.

H5E dz@N8CS1NzCz#1S.T. ~E4!

S.T. denotes the surface term, which was worked out in@7#
but will not be needed explicitly here, since it does not co
tribute to the classical equations of motion.N8 is not quite
the usual lapseN ~andCS is not quite the usual scalar con
straint!:

N85N/Agzz. ~E5!

In the planar case this renormalization of the scalar c
straint allows the constraints themselves to be consist
that is, a commutator of two constraints is always a sum
constraints@8#.
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I now have the constraints; the next step is to calculate
BPR unidirectionality constraints in terms of theA, D, B, W
variables and their conjugate momenta. One must com
the Lie derivatives of the four-dimensional quantitiesgmn

along the direction of the BPR Killing vector equation~13!
for right-moving waves, and set these derivatives equa
zero. In the Rosen gauge equation~12! these equations ar
easy to solve.

The only non-trivial components are the transverse spa
space components, which obey

]vgab50,a,b5x,y. ~E6!

The two Killing vectors of equation~13! therefore give no
new information in the Rosen gauge~and therefore in any
gauge!, since we know already that one of the five BP
Killing vectors is]v . Something similar happens in the As
tekar formalism, where Eq.~16! for the tetrads gives no new
information about the tetrads, but merely determines the L
entz transformationL. Note that we would be almost done
this point, if we were working in a covariant, second ord
formalism ~gmn and ] tgmn as variables, rather thangi j and
p i j , i , j 5space!. It would only be necessary to transfor
Eq. ~E6! from Rosen coordinates (u,v) to a general gauge
(z8,t8), and this is easy. The transverse space-space com
nents gab are scalars under the transformation; it is on
necessary to transform]v .

Since it is so easy to do the calculation in a covari
second order formalism, I will continue with this formalis
a bit longer. Shift from the Rosengmn to A, B, W, andD as
variables; Eq.~E6! becomes

]vA5]vB5]vW50. ~E7!

The functionsgab contain onlyA, B, and W in the Rosen
gauge; hence there is no constraint]vD50. In fact D is
identically zero in the Rosen gauge. SinceD is totally an
artifact of the gauge transformation from Rosen to gene
coordinates, it can depend on bothu andv.

Next, transform]v to general coordinates. Note that

05gvv5]vx8m]vx8ngmn8

5~]vt8!2@2N821~Nz!2#12]vt8]vz8Nz1~]vz8!2,

~E8!

where the second line follows from Eq.~E1! ~after priming
thez,t variables in that equation!. The second line is a prod
uct of two factors, so that

N8]vt85Nz]vt81]vz8, ~E9!

where I have chosen the root that reduces correctly in
Rosen limitN8→1, Nz→0. Now note that

]v5]vt8] t81]vz8]z8

}] t81@]vz8/]vt#8]z8

5] t81~N82Nz!]z8 , ~E10!

where the last line follows from Eq.~E9!. From this result,
Eq. ~E7! becomes, in the general gauge,
e

te

to

e-

r-

r

o-
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05@] t1~N82Nz!]z#A

5@] t1~N82Nz!]z#B

5@] t1~N82Nz!]z#W. ~E11!

I have dropped primes onz and t.
The constraints of Eq.~E11! are still second order, but i

is straightforward to eliminate the time derivatives in fav
of the momenta, by using the classical equations of mot
q̇5$q,H% to derive

05~eA!,t2Nz~eA!,z1N8pD ,

05B,t2NzB,z2N8pBe2A/coshW,

05W,t2NzW,z2N8pWe2A. ~E12!

~Remember thatpB coshW is the momentum conjugate t
B.! Eliminating the time derivatives between Eqs.~E11! and
~E12! gives the BPR constraints for right-moving waves,
first order form:

05pB1B,z coshWeA,

05pW1W,ze
A,

052pD1~eA!,z . ~E13!

For left-moving waves useguu in place ofgvv in Eq. ~E8!,
replaceN8 by 2N8 in Eq. ~E11!, and change the sign of a
z derivatives in Eq.~E13!. One reassuring feature of Eq
~E13! is their gauge independence. All factors ofN8 andNz

have dropped out.
Now both the scalar constraint and the BPR amplitud

have been expressed in geometrodynamical variables, an
that remains is to commute the constraint equation~E2! with
the amplitude equation~E13!. The first two amplitudes of
Eq. ~E13! are the ones which give difficulties. For examp

@pW1W,ze
A,CS~z8!#

5@2 i\d~z2z8!,z81 i\d~z2z8!e2ApD#

2 i\d~z2z8!e2ApW@~eA!,z2pD#

1 i\d~z2z8!tanhWe2A@~pB!22~eAB,z coshW!2#.

~E14!

The right-hand side of this commutator is of the correct fo
~BPR amplitudes to the right! except for the square bracke
in the last line. This has the (p)22(q,zQ)2 form discussed
following Eq. ~2!. As shown there, this term cannot be r
written with BPR amplitudes to the right, so that the stro
form of consistency~BPR amplitudes annihilate the wave
functional! does not hold.

Before going on to consider the weaker form of cons
tency, note that this troublesome term is multiplied by a fa
tor of tanhW, so that if the wave is linearly polarized (W
5pW50), one might suppose that the BPR constraints
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consistent. However, the next commutator to be studied
suggest that a unidirectional wave is unstable even if initia
linearly polarized, since a non-zeroW can be created out o
the vacuum.

As discussed in the Introduction, in order to check for t
he

to
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consistency of the weaker condition, one should examine
amplitude which cannot fluctuate in sign. The amplitu
(pW(z)1W,ze

A)2 is the simplest choice, because its com
mutator can be computed in terms of the known commuta
Eq. ~E14!:
@~pW~z!1W,ze
A!2,CS~z8!#5~pW1W,ze

A!@pW1W,ze
A,C~z8!#1@pW1W,ze

A,C~z8!#~pW1W,ze
A!

522i\d~z2z8!z8~pW~z!1W,ze
A!21 i\d~z2z8!]z~pW~z!1W,ze

A!2

22i\d~z2z8!~pW~z!1W,ze
A!2pD2 i\d~z2z8!@pWe2A~pW1W,ze

A!

1~pW~z!1W,ze
A!pWe2A#@~eA!,z2pD#1••• . ~E15!
-
he

ount
e

the
the

the

he
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he
The terms indicated by the ellipsis contain t
(pB)22(eAB,z coshW)2 term in Eq.~E14! and will presum-
ably average to zero. The first two terms of the commuta
resemble the corresponding free-field QED commuta
which has no production of left-moving waves from th
vacuum. Several terms are cross terms, products of two B
amplitudes, rather than perfect squares. Again, these line
likely to average to zero. This leaves a term on the sec
line from the end, which is a perfect square timespD . Un-
less the latter function fluctuates, this term is unlikely
average to zero.

At least in classical theory,pD is unlikely to fluctuate in
sign, in the manner that left-movingpB , pW , B, and W
fields fluctuate, becausepD is quadratic in those fields. Fo
orientation, consider calculatingpD in classical theory, in a
conformally flat gaugeNz50, N851. Since two gauges hav
been fixed, it is necessary to eliminate two coordinates
their canonical momenta. It is natural to eliminateA andD
and keep the coordinatesB andW, since these represent th
two polarizations in the linear limit. If the wave is unidirec
tional, it is consistent with the equations of motion in th
gauge to chooseD5pA50. TheneA andpD may be elimi-
nated by solving the constraints~E3!. The constraint which
determinespD is Cz50. This constraint relates (pD),z to a
difference ofsquaresof BPR amplitudes for left- and right
moving waves:

Cz522~pD!,z1e2A~B,z coshWeA1pB!2/4

2e2A~B,z coshWeA2pB!2/41e2A~W,ze
A1pW!2/4

2e2A~W,ze
A2pW!2/4. ~E16!
r
r,

R
are
d

d

HencepD is unlikely to fluctuate in sign even if the left
moving BPR amplitudes fluctuate. Therefore t
(pW1W,ze

A)2pD term in Eq.~E15! is unlikely to average to
zero, and the weaker condition also suggests that the am
of left-moving BPR amplitude will change with time. Not
that this term creates non-zeroW amplitude even when the
wave is initially linearly polarized~W50 initially!.

It is instructive to repeat these heuristic arguments for
interacting QED case, where Schwinger has worked out
correct answer. The condition for no left-movingx-polarized
wave is px1Ax,z50. The QED Hamiltonian in radiation
gauge is@39#

H5E dz@~px!
21~Ax,z!

222AxJx1•••#/2, ~E17!

where the ellipsis indicates terms which commute with
BPR amplitude, andJx5ec̄gxc is the usual current. Then

@px1Ax,z ,H#5 i\@]z~px1Ax,z!1Jx#, ~E18!

@~px1Ax,z!
2,H#5 i\@]z~px1Ax,z!

212Jx~px1Ax,z!#.
~E19!

The interaction adds additionalJx terms which arenot per-
fect squares. One expects

^Jx&;^x†sxh&, ~E20!

wherex andh are positron and electron two-spinors, and t
right-hand side has the correct parity because the particle
antiparticle have opposite intrinsic parity. The spin of t
vacuum should average to zero.
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