PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Energy and directional signatures for plane quantized gravity waves
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Solutions are constructed to the quantum constraints for planar géieitys dependent om andt only) in
the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solu-
tions. These include the familiar ADM energy and area operators, as well as new operators sensitive to intrinsic
spin and directionalityz+ct vs z—ct dependenge The directionality operators are quantum analogs of the
classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and RokB#R@n It is
argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are
semiclassical in a certain sense. Schwinger has proved that a unidirectional plane electromagnetic wave is
stable, even in the presence of the quantum zero point fluctuations of the vacuum. A preliminary calculation
(preliminary, because not regulajeddicates that the corresponding gravitational wave may be destabilized by
zero point fluctuations. The ADM energy and area operators are likely to have imaginary eigenvalues, unless
one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical
theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this
collapse [S0556-282(98)04102-2

PACS numbd(s): 04.60.Ds, 04.30.Nk

I. INTRODUCTION: CLASSICAL RADIATION familiar metric variables. One would like to define gravita-
CRITERIA tional radiation using an energy criterigguch as radiation is
a means of transporting energy through empty space, etc.
The connection-triad variables introduced by Ashtditdr ~ Gravitational energy is notoriously difficult to define, how-
have simplified the constraint equations of quantum gravity€ver, since there is no first-order-in-derivatives-of-the-metric
further, these variables suggest that in the future we may b@uantity which is a tensor. Accordingly, in the period 1960—
able to reformulate gravity in terms of non-local holonomies1970 several authors developed an algebraic criterion involv-
rather than local field operatof®,3,4. However, the new ing transverse components of a second-order quantity, the
variables are unfamiliar, and it is not always clear what theyWeyl tensof11,12,13,14 To use the criterion, one needs to
mean physically and geometrically. In particular, it is not know which directions are “transverse”; hence the criterion
clear what operators or structures correspond to gravitys most useful when the direction of propagation is clear
waves. Although the quantum constraint equations are mucfiom the symmetry: e.g. radial propagatig¢for spherical
simpler in the new variables, and solutions to these equatiorBymmetry or z-axis propagatior(for planar symmetry, the
have been founf2,5,6], it is not clear whether any of these case studied in the present pgpdrhe planar metrics con-
solutions contain gravitational radiation. sidered herd 15,16 admit two null vectorsk and| which
This is the fifth of a series of papers which search forhave the right hypersurface orthogonality properties to be the
operator signatures for gravitational radiation by applyingpropagation vectors for right-moving) and left-moving ()
the Ashtekar formalism to the problem of plane gravitationalgravitational waves along theaxis, so that the propagation
waves. Paper | in the serigZ] constructed classical con- direction is especially easy to identify. The Weyl criterion is
stants of the motion for the plane wave case, using the moreerived and discussed in Appendix D.
familiar geometrodynamics rather than Ashtekar connection A second, more group-theoretical criterion was developed
dynamics. Papers Il and 1l switched to connection dynamic®y Bondi, Pirani, and RobinsofBPR) [17]. It is applicable
and proposed solutions to the quantum constrgBy@. The  when the plane wave is unidirectional, that is, when the wave
constraints annihilate the solutions of paper Il except ais either right movingdepending only oz—ct) or left mov-
boundary points, and annihilate the solutions of paper Illing (depending only orz+ct). The unidirectional case is
everywhere. Paper IV constructs an operatpwhich mea-  especially intruguing. It is relatively simple, since no scatter-
sures total intrinsic spin around tlzeaxis[10]. The present ing occurg18,19. Nevertheless the full complexity of grav-
paper proposes operator signatures which are sensitive to tlitg is already present; the unidirectional case is not simply
directionality of gravitational radiatioiz—ct vs z+ct de-  waves propagating in an inert background. In particular, no
pendenceand applies those operatoi@s well as the spin, one has been able to cast the Hamiltonian into a free-field
energy, and area operatpt® the solutions constructed in form in terms of variables 4;,q') which commute in the
papers Il and III. canonical [ 7;,q']=—i%# 6/ manner characteristic of non-
It is not easy to detect the presence of radiation, evelnteracting, non-gravitational theories. Also, the BPR crite-
when the problem is formulated classically, using the moreion for unidirectional radiation requirdbree amplitudes to
vanish, rather than the two one would naively expect from
counting the two polarizations associated with unidirectional
*Electronic address: nev@vm.temple.edu radiation. | shall argue that the remaining vanishing ampli-
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tude represents a constraint on the background geometry,tade is set to zero initially, then its Poisson brackets with the
constraint which must be satisfied in order for the waves tdHamiltonian also vanish, and the amplitude remains zero at
propagate without backscattering off the background. Thdater times.
BPR group is derived and discussed in Sec. Il. On physical grounds, it is not obvious that the quantum
Note that one criterion, that based on the Weyl tensor, i8PR operators should be consistent. The BPR operators en-
relegated to Appendix D, while the BPR criterion is dis- force unidirectionality, and the quantized system is never
cussed in the body of the paper. | have done this first becaugmirely unidirectional: There are always zero point fluctua-
the BPR amplitudes are much simpler than the Weyl amplitions traveling counter to the wave. If the nonlinearities of
tudes. Second, the Poisson brackets between the classithé system cause the initially unidirectional wave to scatter
Weyl amplitudes and the constraints do not vanish. Since theff these fluctuations, then the BPR amplitudes will evolve
constraints generate coordinate transformations, this suggeststime.
that the amount of Weyl amplitude is coordinate dependent. The analogous effect in quantum electrodynamics was in-
This plane wave metric does admit coordinates that could beestigated by Schwingef21]. A classical, unidirectional
considered as preferred or natufgbordinates which are electromagnetic wave does not scatter. In the quantum
constant on the hypersurfaces picked out by the null vectortheory, conceivably the wave might break up into a number
k andl). But even in such a coordinate system, the scalaof softer photons, because the wave can interact with zero-
constraint occurs as part of the Hamiltonigihis system point photons via exchange of virtual electron-positron pairs.
has a Hamiltonian because the space is non-compEte  However, Schwinger proved that a unidirectional wave is
non-zero Poisson bracket would mean that the amount dftable even in the quantum theory.
Weyl amplitude changes with time. | have been unable to prove that the corresponding gravi-
It is not possible to ignore the Weyl amplitudes com- tational wave is also stable. If the classical Poisson brackets
pletely, however; they are central to the literature of theon the left-hand side of Ed1) are replaced by a quantum
1960s. Further, expressions which appear complex at oneommutator, then for consistency the commutator should
time may appear simple at a later time. At one time thehave the form
traditional scalar constraint was thought to be too complex

because it contained a factor of\/f;’. Then Thiemann pro- [quantum BPR operator,constrdint

posed a regularization of this constraint which actually re-

quires that factof20]. The present “complexity” of the =2(--)(quantum BPR operators 2
Weyl amplitudes may disappear once a quantum regulariza-

tion is constructed. where the(quantum BPR operatorsnust stand to the right,

Also, the time dependence of these amplitudes may not ben the right-hand side of Ed2). | am assuming that the
a serious drawback. The amount of Weyl amplitude carwave functional stands to the right of the operators, so that
change with time, presumably because the transverse corthe quantum BPR operators must be commuted to the far
ponents of the Weyl tensor can self-interact and evolve intaight, in order to annihilate the wave functional. | have com-
non-transverse components; nevertheless it may be of inteputed the commutators of E() in Appendix E, but it is not
est to know that some transverse amplitude was present inpossible to bring all the quantum BPR operators to the far
tially. Therefore | have devoted Appendix D to the Weyl right, due to factor ordering problems.
amplitudes. Since the commutator calculation in Appendix E involves
Now return to the BPR criteria. It is of some interest to four degrees of freedom, it is possible on first reading the
reexpresss the classical BPR criteria in the Ashtekar lanappendix to miss key features because of the details. Accord-
guage, even if one does not go on to consider the quantuingly, in this Introduction | describe an imaginary commuta-
case. However, one would really like to construct from eachor calculation which involves only two degrees of freedom,
classical criterion a corresponding quantum operator. | conyet has all the essential complications of the calculation in

struct such operators in Sec. lll. Appendix E. Suppose the classical criterion for no left-
The Poisson brackets between the classical BPR operatonsoving wave has the formr+q,,Q=0. Heresr andq are a
and the constraints have the form canonical pair(wm=—i%6/5q after quantization and Q is
the second degree of freedom. All fields depend on two vari-
{classical BPR operator,constraint ables ¢,t). In a linear theory such as free-field QEQ, is
unity, since the classical condition for no left-moving wave
=3 (---)(classical BPR operators (1) is m+q,,=(d;+3,)q=0. Now check consistency by com-

muting this expression with the Hamiltonidequivalently,

Following a terminology used widely in the literature, | will With the constraints Suppose the result is

refer to a quantity as physical if its Poisson brackets with the

constraints vaniskior equal linear combinations of the con- [7+0,,QH]="+(m)?-(q,,Q)% ()
straintg. Since the constraints generate transformations of

the arbitrary coordinate labels, a physical quantity is coordiwhere the ellipsis denotes terms with+ g,,Q to the right.
nate independent. From E¢l), the classical BPR ampli- The last term on the right may be rewritten using the identity
tudes are not physical. However, they are consistent, mean-

ing that it is consistent with dynamics to demand that BPR 2_ 2_ _

amplitudes vanish for all timé&o demand that the system is (M= (4.Q7=(7+0..Q)(7=4..Q)/2

unidirectional for all tim¢: From Eq.(1), if a BPR ampli- +(7—q,,Q)(7+0q,,Q)/2. 4
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The last term on the right has the correct form. The first terncheck that the weaker condition is preserved in time, by
on the right cannot be brought to correct form, because theomputing commutators with the constraints. However, if the
two factors do not commute: weaker condition is correct, then the commutator, 8],
should be interpreted in a different manner. There is no need
[7(2)+q,,Q(2),7(Z')—q,,Q(Z")]=—-2ih6(z—2')Q,,. to commute the BPR amplitudes to the right. Instead, one
(5) should average both sides of E() over an appropriate
semiclassical statésandwich both sides between the brack-
This is essentially what happens in the actual calculationets( )) and look for a zero on the right. Since the)¢ and
Appendix E. (9,,Q)? terms on the right in Eq(3) resemble kinetic and
Note that the commutator, E¢3), involves products of potential energies of an oscillator, it would not be surprising
two operators evaluated at the same point. It is thereforé the two energies averaged to the same value. The average
badly defined, and the calculation needs to be redone afterg the right-hand side would then vanish, implying consis-
regularization. Discussion of regularization is beyond theiency on averagd,(7+q,,Q))=0.
scope of this paper, and the conclusion drawn here is provi- gyt this does not settle the question whether left-moving
sional: The stability of unidirectional plane gravitational \ayes are being produced from the vacuum. Suppose the
waves has not been established. A historical note on the IMiuantity =+q,,Q is initially zero. Even if this amplitude

portance of regularization to calculations of this type:pq omas non-zero because of scattering off the vacuum, the
Schwmger’s paper continues to pe qyotable toda.y,. In part foéverageof 7+(,,Q probably continues to be zero, because
its result on plane waves, but primarily because it introduces ' '

the elegant method of proper-time renormalization of the randomness inherent in the zero-point fluctuations;
g brop ) similarly for the time derivative of the amplitude. If the

The proof of consistency requires a computation of com- e
mutators between BPR operators and constraints. Originall eaker condition is the correct one to use, then the only safe
ay to see growth in left-moving waves is to look at an

| considered doing the calculation in the Ashtekar formalism. | X aves
However, the Ashtekar calculation is unconvincing, | be-@mplitude which cannot fluctuate in sign, for example
lieve, for both quantitative and qualitative reasons. Quantita(77+quQ)2- In free-field QED, wher® =1, this is the(di-
tively, the algebra is difficult to follow or reproduce, becausevergent energy of the left-moving zero-point oscillations.
the algebra is lengthy and complex. There is also the qualiforget the divergence for the moment and proceed: In
tative objection thatas pointed out aboyefactor ordering QED the time derivative[H,(w+q,,)?] is proportional to
issues are important. Quantum commutator and classicak(7+0q,,)°. One expects the zero-point fluctuations of the
Poisson brackets will differ only if factor ordering issues arevacuum to be independent by translation invariance, so that
signifigant. But it is not clear how to factor order the Ash-the QED commutator vanishes. | have computed the corre-
tekar scalar constraint. There is the usual ambiguity abowponding commutator for the gravitational case in Appendix
functional derivatives: Do they go to the right or to the E. In addition toz-derivative terms, analogous to those en-
left? In addition, it is not even clear that a single faCtorcountered in QED, there are derivative-free terms propor-
ordering suffices:. 'If one insists that the scalar constrainignal to (m+0,,Q)? itself; these terms should not vanish
sho_uld be se_lf-adjomt, then it should be a sum _Of two termsyhen both sides are averaged over a semiclassical state.
having two different factor orderings. Therefore in Appendix again, the calculation is heuristic; regularization is needed.

E, | compute the commutators using a geometrodynamic for- Even though the unidirectional amplitudes may evolve

malism. In this fqrmahsm, th? algebra IS s_|gn|f|gantly eaSIeraway from zero, they remain of interest. It is of interest to
to follow. In addition, there is no ambiguity about how to

. : know that a wave is unidirectional, at least initially, even if it
factor order the scalar constraint, because, in the plane waye .

) _— ater departs from that state. However, if one must use the
case, every term in the scalar constraint is a product of com-

muting factors. weaker condition(amplitudes shoud be averaged over a

So far | have assumed that a classical constraint of thgemiclassical stalerather than the strong conditigampli-
form (classical BPR amplitude)0 translates into a quan- tudes sh_ould annihilate the stpt¢he weakgr condition is _
tum constraint (quantized BPR amplituge3 0. In Appen- more.dn‘flcglt to use. How does one recognize when a state is
dix E I require, not only that the commutaf@®PR amplitu- “semiclassical?” Also, the weakgr criterion involves an av-
de,constrairitbe proportional to a BPR amplitude, but also €rage and hence seems to require knowledge of the measure
that the BPR amplitude can be commuted to the far rightin Hilbert space. The situation is difficult, but may not be
where it annihilates the wave functional, assumed to bémpossible; these issues are discussed in Sec. lll. Section llI
standing to the right. Actually, the classical theory is recov-in fact discusses several issues which arise on replacing a
ered if the quantum theory obeys the weaker conditiorclassical criterion with a quantum one, but the issues having
(quantized BPR amplitudle-0, where the() denotes an to do with the weaker criterion are the most important. Sec-
average over an appropriate semiclassical state. In Sec. lll tion 11l also reports progress made toward the goal of con-
argue that the weaker condition is the correct one to use withktructing a measure.
the BPR amplitudes. In Sec. IV, | construct additional solutions to the quantum

Suppose for the moment that this is true; does switchingonstraints. In Sec. V, | apply the Arnowitt-Deser-Misner
to the weaker condition affect the argument that unidirec{ADM) energy operator, the area operator, and the operator
tional plane waves are unstable? The calculation of Appentk, for total intrinsic spin to the wave functional solutions
dix E remains relevant, even if one uses the weaker condiebtained in papers lI-Ill, as well as the new solutions con-
tion. Just as for the stronger condition, one must continue tstructed in Sec. IV. Also in Sec. V, | apply the BPR quantum
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operators to these solutions; the results are informative evdetterH for the Hamiltonian. The quantity denot€}; in the
when the wave functionals do not correspond to states whicpresent paper is identical to the constraint dendtkdin
are semiclassical. papers Il and Ill. This convention underscores the fact that
There are five appendixes. Two of the appendi¥eand  every gravitational theory has constraints, but not every
D) cover calculational details and the details of the Weylgravitational theory has a Hamiltonian.
criterion. Appendix B elucidates the, intrinsic spin content In three spatial dimensions it is usual to place the bound-
of the BPR amplitudes. Appendix C considers the ADM en-ary surface at spatial infinity. Bringing the surface at infinity
ergy. There is a modest surprise here: Normally the ADMin to finite points is a major change, because at infinity the
energy is considered to be given by the surface term in thenetric goes over to flat space, and flat space is a considerable
Hamiltonian, but in the quantum case it is possible for thesimplification. In the present cadeffectively one dimen-
volume term to contribute also. Appendix E studies the consional because of the planar symmettiye space doesot
sistency of the BPR constraints. become flat ag goes to infinity, and nothing is lost by con-
My notation is typical of papers based upon the Hamil-sidering an arbitrary location for the boundary surface. The
tonian approach with concomitant+3L splitup. Uppercase ‘“surface” in one dimension is of course just two poiritee

indicesA,B,...,1,J,K,... denote local Lorentz indicds$in- two end points of a segment of theaxis). The notationz,
ternal” SU(2) indiced ranging overX,Y,Z only. Lowercase denotes either the left or right boundary pointor z,,
indicesa,b,...,i,j,... arealso three dimensional and denote z;<z<z,. The result that the space does not become flat as

global coordinates on the three-manifold. Occasionally the goes to infinity was established in paper Il. Note that this
formula will contain a field with a superscrig#), in which  result agrees with one’s intuition from Newtonian gravity,
case the local Lorentz indices range ovelY,Z, T and the where the potential in one spatial dimension due to a
global indices are similarly four dimensional, or a superscripthbounded source does not fall off, but growszaat largez.

(2), in which case the local indices range overY (and If a certain solution does not satisfy the Gauss constraint
global indices ovek,y) only. The(2) and(4) are also used (or other constraintat the boundary, this does not mean that
in conjunction with determinants; e.q, is the usual X3  necessarily there is something wrong with the solution. In
spatial determinant, whilé®e denotes the determinant of classical theory the solutions satisfy the constraints every-
the 2x2 X,Y subblock of the triad matri>e§. | use Levi- where. In quantum theory, however, when the constraints are
Civita symbols of various dimensions:eryy/=€xyz IMposed after quantization, in the Dirac manner, it is only
=e€yxy=+1. The basic variables of the Ashtekar approach aréecessary that themearecconstraint annihilate the solution.

an inverse densitized triaTJf‘;Eand a complex S(2) connec- The Hamiltonian contains a sum of constraints of the form

: A JN(z)C(z2)dz, whereN is a smearing function or Lagrange
tion A;. - ) ; —
multiplier. SinceN has no physical significance, one must
Fa_oe 6 require that arbitrary small changeshNh SN, annihilate the
AT €€ 6) wave functional:
[EX. AR]=%d(x—X") 8355 . (7)

f dzéN(z)C(z)¢=0. 9
The planar symmetritwo spacelike commuting Killing vec- '

tors 9, andé, in appropriate coordinatgallows Husain and N and 5N are not totally arbitrary, however. K obeys a
Smolin [22] to solve and eliminate four constraintghe x boundary condition of the fornN— constant at boundaries
andy vector constraint and th¥ andY Gauss constraint  Z,, then Eq.(9) must respect this boundary condition, which
and correspondingly eliminate four pairs of (%) com-  Me€ans

ponents. The %3 E3 matrix then assumes a block diagonal SN(z,)=0. (10)
form, with one 1X1 subblock occupied byh;‘plus one 2

X 2 subblock which contains all the “transverse™ Ethat
is, those witha=x,y andA=X,Y. The 3x3 matrix of con-
nections A' assumes a similar block diagonal form. None of
the surviving fields depends onor y.

The local Lorentz indices are vector rather than spinor;
strictly speaking the internal symmetry is(3) rather than

Equation(10) implies thatC(z,) ¢ does not have to vanish.

A statement that “this solution does not obey the constraint
at the boundaries” does not mean necessarily that the solu-
tion is flawed.

II. BONDI-PIRANI-ROBINSON SYMMETRY

SU(2), gauge fixed to @) rather than 1). Often it is con- Bondi, Pirani, and Robinson argue that the metric of a
venient to shift to transverse fields which are eigenstates qfnidirectional plane gravitational wave should be invariant
the surviving gauge invariance(B): under a five-parameter group of symmetries. Their argument
o proceeds essentially as follows. First they point out that a
Bl =[Ex=iEq]/v2, (8)  planeelectromagnetiavave moving in the+z direction is
invariant under a five parameter grojiBesides the obvious
wherea=x,y, and similarly for A . dy, dy, andd, symmetries, there are two “null rotations”
In papers I-lll, | use the letted to denote a constraint which rotate thev = (t+2z)/v2 direction into thex or y di-

(scalar, vector, or Gausdn the present paper | adopt what is rection] Then for gravitational plane waves they construct
becoming a more common convention in the literature andive Killing vectors which have the same Lie algebra as the
use the letteiC to denote a constraint, while reserving the corresponding Killing vectors for the electromagnetic case.
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(More precisely they construct ten Killing vectors, one set ofplane wave metric, the gauge fixing of tiér Gauss con-
five for ct+z waves and a similar set of five fawt—2z  straint andxy spatial diffeomorphism constraints imply that

waves) four more tetrads vanisf22]:
This section constructs the fivet—z vectors and then rr oy
imposes the usual symmetry requirement that the Lie deriva- ex=ey=e;=e;=0. (15

tive of the basic Ashtekar fields must vanish in the direction At the four-di ional level. th . f

of the Killing vectors. In this way one finds that the fields . ° t the four-dimensional level, the requirement of a van-
must obey certain constraints; the section closes with a didSNing Lie derivative in the direction of the Killing vector
cussion of the physical meaning of these constraints in th8'V€S
classical theory.

It is convenient to do the proofs in a gauge which has 0=g e~ gt ef—Ll €]l (16)
been simplified as much as possible using dhesymmetry T 0o v
and then afterwards transform the results to a general gauge. 0=RVA)+0,8&VA+ L, DA,
The plane wave metrics we consider here possess two hyper- 3 ,
surface orthogonal null vectors; if the two hypersurfaces are +L73, WA = 9,00, (17)

labeledu=const andv = const[u andv =(ct*z)/v2], then ] ) ] o
one can always transform the metric to a conformally flatThese equations are not quite the usual Lie derivatives be-

form in the (z,t) sector by usingi andv as coordinategl6]: cause _of the. and £ terms.L and £ are Iocal_ Lorent_z trans-
formations. If§=4,, dy, ord,, noL or L is required. If

() £=¢0, one of the two Killing vectors defined at E(L3),
ds’= —2dudvf(u,v)+2 JapdX@dxP. (11  then a Lorentz transformatioh is required in Eq(16) for
the tetrads; otherwise the symmetry destroys the gauge con-
ditions, Eqgs.(14) and (15). If the tetrads are Lorentz trans-
formed, then for consistency?A in Eq. (17) must undergo
the same Lorentz transformation. SinéA is self-dual, the
Lorentz transformatiorC in Eq. (17) must be the self-dual
version of the Lorentz transformatidn

The sums oven,b,c,... extend overx,y only. If one now
invokes the symmetry unde,, thenf(u,v) depends o

only, and one can remove the functibrby transforming to
a newu coordinate. In this gauge, the Rosen ga[23, the
metric is(not just conformally flat, butflat in the ,t) sec-

tor and non-trivial only in theX,y) sector: 2= LIJ_‘_ié(Ef.‘JMN/ZGTXYZ)LMN. (18)

(2)

4= —2dudv+2 JasddXE. (12 The phased/ e;xy,= * 1 is the duality eigenvalue which de-

termines whether the theory is self-dual or anti-self-dual. Be-
_ » cause | include the extra factor efyyz, EQ.(18) contains
In the Rosen gauge, the five BPR Killing vectors aretwo factors ofe and so is independent of one’s choice of

dy+dy,d, , and phase for this quantity. After the four-dimensional theory is
rewritten in 3+1 form, all results will depend only o#. In
u .
(c)A:Xc(SerJ' cdryydu’ SN 13 the body of the paper | choosé=+1, but Appendix A
¢ v g’ ’ (13 indicates what happens for the opposite chaiee— 1.

. ) It is a straightforward matter to determine the Lorentz
wherec=x ory. These two Killing vectors are the gravita- transformatiorL. which will preserve the gauge conditions of
tional analogues of the electromagnetic “null rotations” gqs. (14) and (15), then solve Eqs(16) and (17). This is

_The constraints imposed by the first thigg d,, andd,  (16) and(17) imply the following constraints on the connec-
Killing vectors are satisfied already, because of the choice ofign A:

gauge. | now work out the constraints which the last two

Killing vectors, Eq.(13), impose on the Ashtekar variables 0=A,,
(in the Rosen gauge first, than in a general gaugsumma-
rize the highlights of the calculation in this section, and 0=—A]+2"“Re” A] (right-moving, (19

move the algebraic details to Appendix A.

It is necessary to calculate the symmetry constraints owherea=x,y only. The connectiorA is now the usual 3
the four-dimensional tetrads and Ashtekar connections first;- 1 connection, not the four-dimensional connectiéMA.
since the Killing vectors are intrinsically four dimensional, ReA;( without the quotes is the usual real part, containing no
and then carry out a-81 decomposition to obtain the con- factors ofi, while
straints on the usual three dimensional densitized triad and

connection. At the four-dimensional level, the three local “Re” Al=(ReA+i ReA])/V2. (20
Lorentz boosts have been gauge fixed by demanding that
three of the tetrads vanish: “Re” A contains a factor of, because of the in the defini-
tion of the X=xiY) O(2) eigenstates, and is no longer real. If
e}, =0,M =space. (14)  one writes out the “Re” and “Im” parts ofA , it is easy to

see that the two constraints of H4.9) are just the complex
The gauge condition of Eq14) is the standard choice, used conjugates of each other. To obtain the constraints for left-
with all metrics[24]. In addition, for the special case of the moving waves, interchange and — in Eq. (19).
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Equation(19) can be interpreted physically by using the [ll. TRANSITION FROM THE CLASSICAL
classical equations of motion to prove theorems about the TO QUANTUM CRITERION
spin behavior of the BPR fields. Again, the required calcula-
tions are done in an appendi&ppendix B, and this section
summarizes the main conclusions.

To interpret the spin content of the four amplitudes which
vanish, one should express the total spin angular momentu
L, of the gravitational wave in terms of the BPR amplitudes
[Eqg. (19) for right-moving waves, plus two more amplitudes
with 4+« — for left-moving wave$ Notel ; cannot be sim- I choose a factor ordering which is natural and simple
ply an integral over these amplitudes: They are not weightvithin the complex connection formalism. The ordering is
one, and therefore integrating them ogerwill not produce  “functional derivatives to the right'{25]. That is, | quantize
a diffeomorphism scalar. In fact the integrand lof is a  in a standard manner, by replacing one-half of the fields by
weighted average over the four weight one combinationgunctional derivatives,

E3A; and B[ A +2“Re’A ;]. One can always recover - .

the original four BPR amplitudes from these four, because it 7——hol oAz,

is always possible to invert thex22 matrix formed from the
transverse components of the densitized trigjlwith B=
X,Y andb=x,y. Equation(B4) of Appendix B expresséels;
in terms of these weight one combinations:

This section lists three issues which arise when converting
a classical expression into a quantum criterion. | summarize
and discuss each issue and then show the application to the
rI%PR criteria.

A. Factor ordering

AM—+h6ISEF (for a=x,y and A=X,Y), (23

and then order the functional derivatives to the right in every
operator or constraint. This approach has the virtue of con-
sistency, since | have used it in two previous papers on quan-

+e¥e,xﬁi[A;+(A;—2“Re”A ;)]}—(x<—>y), B. Semiclassicality

This section discusses the point raised in the Introduc-
(22) tion: The classical constraint (classical BPR amplitude)
_ i . _ =0 probably does not imply the strong constraint
wheree,, ande} are triad and inverse triad fields, respec- (quantized BPR amplitude)=0, but rather the weaker

tively. Out of the four possible combinationsi&, and constraint{quantized BPR amplituge-0, where the aver-
E3[— A +2“Re’A ], only two combinations £A, and  age is taken over a semicla_ssical state. N

E8[—A] +2“Re"A ] contribute to the spin angular mo- h An ex?m_plte frorrt1 bQED W'Il(l be_PheIpruFl)::\rJ e’?f'?'”'”g why
mentum. Since these are the two amplitudes wit®) @elic- € constraint must be weaker. The criteria are essen-

ity =2 in the local Lorentz frame, it is natural to interpret t'a.‘"y f'el.d strength_s fo_r waves moving in a given direction
A . i . with a given polarization. An analogous quantity from flat
EZA, as an amplitude for a wave having helicity2. Both

L@ o S o space QED is
helicity =2 combinations must vanish in order to eliminate
the two polarizations moving in thet+ z direction. F=F"mK,. (29

Two more combinations, A, and E[-A] . _ -
+2"“Re’A [, are helicity zero and also contain the fields of Here]—"” s the self-dual QED field strength ani,{,m,m)

Eq. (19). How does one interpret these helicity zero ampli-'s‘i,[tr?eS U;Cuealcgﬁ So%aécnisngllcly tetzrfalkrir;aggdl mirgrglilrgxz\(jtec;rsse
tudes? Using the Gauss constraint plus the classical equgl- .p ) P - m; ’ _ i
tions of motion in a conformally flat gauge, one can provePolarization vectors alongk(+iy)/v2. Classically, the crite-

that these two constraints collapse to a single constraint, E¢ion for absence of radiation alorigwith polarizationm is
(B10) of Appendix B: F=0. The corresponding quantum criterion for absence of

radiation, obtained after replacing classiéalields by quan-
0=(3,+d,)EZ. 22 tum operatord, is not

_ F=0, (wrong), (25)

Ez=e%e=2e, where Pe is the determinant of the 22

transverse sector of the triad matrix, a scalar function obut rather

(z,t). This function characterizes the background geometry, ~

rather than the wave. In general relativity, however, “back- (semic|Fsemic)=0. (26)

ground” and wave are inseparable, in the sense that the R

“background” is not inert. The wave will scatter off the Since the QED field strengt contains creation as well as

background, in general, unless it obeys the constraint giveannihilation operators, it cannot annihilate any state, and Eqg.

by Eq.(22). (25) is too strong. The classical statemefit 0 merely im-
This completes the survey of the constraints predicted bplies the existence of a corresponding semiclassical state

BPR symmetry and their physical interpretation in the classuch that Eq(26) holds. | have deliberately used the term

sical context. In the next section these classical expressioffsemiclassical” rather than “coherent” to describe the state

are promoted to quantum operators. in Eq. (26), because the latter term conventionally denotes a
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state which is an eigenfunction of the annihilation operator,

and annihilation operators usually are not available in quan- <f|¢|i>:f dkf(k)(k||0)

tum gravity. While annihilation operators may not exist, cer-

tainly semiclassical states will, because of the correspon- ~11 (3D). (3D

dence principle. ) .
Clearly the criterion, Eq(26), is more difficult to apply 1here is no change from Eq30) because the packet is

. . 3 . - -
than Eq.(25), but let us survey the damage; the situation mayormed to unity; thereforg’d°kf(k)(k| is dimensionless.
not be hopeless. To define “semiclassical” without invoking Now switch from ¢ to the gravitational fielch, h a small
coherent states or annihilation operators, one can study fluctuation of the tetrad away from background.

A e~ 3 +1phi. (32)
F|semic) = f(z)|semich+|remaindey, (27)
The explicit factor of Planck length ensures that the overall

A 12 i -
whereF stands for a typical BPR fieldsemic) is normed to factor of 1G5~ 1/ in the Lagrangian cancels out of the qua

. . . . . dratic terms. Therefore the dimensional analysis Hois
unity, althoughlremaindey need not be. | define semiclassi- identical to that ford: h— 1/
cal, not by requiring (z) to be large, but rather by requiring identical to that forg: Lo .
the [remaindey to be small. If | requiref(z) to be large . Now make the transmo.n frorh to the BPR amplitudes
(perhaps reasoning that “classical” means large quantunf- Those amplitudes are linear ®A, A the Ashtekar con-
numbery, then | exclude the vanishing amplitude case,nection ands the Newtonian constaiitisually set to unity in
f(z)=0, where|semic) is the vacuum with respect to a this papey. GA'is linear in the Lorentz connection, , so
given radiation mode. The vacuum is a well-defined statethat
classically, and one expects it to have a quantum analogue.

For |semic) to approximate a classical state, therefore, it is F~GA~w~ode
not necessary that(z) be large, only that the fluctuations ~1_/12 (3D) (33)
away from this state be small. In a theory with three spatial P '
dimensions, these fluctuations are measured by which is Eq.(29). (Again, taking matrix elements does not
change dimensiop.The discussion for the one dimensional
(ﬁTﬁ)—(lA:T)(IA:)=(remaindehremainde) planar case i; identical to the discussion jus} given for the
three dimensional case, except for the very first stepas
<(l,/1)?1% (3D). (28)  dimension 1 rather than|1/Therefore the final answer, Eq.

(29) or Eq. (33), should bel ,/I rather tharl /12,

Here the fluctuations are assumed to be small compared to !N @ classical theory, or in a theory quantized on a flat
the size of typical matrix elements one gets whigrand(f| background, | is a typical length associated with the initial

are few-graviton states arfed is a canonical degree of free- anq final wavepackets. (_)ne m|ght_ask what 1S ”"!ea”t. by a
dom in the linearized theory: typical lengthl, in a quantized and diffeomorphism invariant

theory where no background metric is available. In such a

~ theory, even in the absence of a background metric, length,

(f|Fliy=1,/1? (3D). (299  area, and volume operators can be defif@8i27,2Q, and

the eigenvalues of these geometric operators are dimension-

I, is the Planck length, antiis a typical length or wave- 1SS functions of sping;, times factors ofl, to give the
length. The right hand side of E(9) is the square of the correct dimension. The spins label the irreducible represen-
right hand side of Eq(29). In the planar caséone rather tations of SW2) associated with each holonon(iy the wave
than three spatial dimensionemove one power of length ~ functional s is in connection representation, so thais a
from the denominator of Eq29), and two powers of from  Product of holonomigsor associated with each edge of a
the denominator of Eq29). spin network(if the wavefunctional is a spin network state

| interrupt the flow of the discussion to present the dimen-Thus one expects=Io(j;)l,, 1o dimensionless ang-1.[In
sional analysis needed to establish E2§). [This paragraph the planar case, S is gauge fixed to @) and presumably
and the next could perhaps be skipped on a first readingthe SU2) eigenvalueg will be replaced by the () eigen-
Start by estimating the order of magnitude of the matrixvalues m=spin angular momentum component along

element in Eq(29) whenF is replaced by a massless scalar Evidently, then, to check that E(8) is satisfied, one should

: C - ly the geometric operators to the state first, in order to
field ¢, and the dynamics is small perturbation around freePP T
¢ y b stimatel. One also needs the measure in Hilbert space, but

field th . Th | di ional lysi lied to th o .
'€ eory € usual dimensional analysis applied to in favorable situations one might be able to tell that

quadratic terms in the Lagrangian gives [remaindey is small simply by inspection of Eq27).
Since the criterion of Eg(28) is an inequality, it cannot
¢~11 (3D) (300 pe used to draw sharp distinctions between states. For ex-
ample, in the linearized limit, ifN) denotes an eigenstate of
Since ¢ is a massless field, it contains no built-in length the number operator havirlg quanta of a given polarization
scale;l will come from the length scales associated with theand direction, therf(z) will be zero, while the norm equa-
initial and final states. If the initial state is the vacuum andtion (28) will be orderN(Ip/I)2/I2. There will be uncertain-
the final state is a one-particle wavepacket, ties in estimating, so that the criterion cannot distinguish
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sharply between the vacuum state and a number eigenstgteogress will involve choosing a specific gauge and verifying
having small occupation numbét. that requirementsii) and (iii) above have been met.

The semiclassical criterion works best if one has a mea- The following three paragraphs contain material which at
sure. Here | report some initial steps taken toward construdirst glance may seem to be of only historical interest, but
tion of a measure. The discussion will be in the nature of awill be needed later in Sec. V. | interpret the BPR criteria in
progress repoitresults only, no proojs because more needs a semiclassical sense, 45)=0 rather tharf =0. (From
to be done. However, it is surprisingly easy to construct enow on( ) is understood to indicate an average over a semi-
measure which preserves the reality conditions which musglassical state, unless explicitly indicated otherwidet the

be obeyed by the Ashtekar connection. Hamiltonian constraints are always imposed strongly, as

The wavefunctionals constructed in papers 1l and IlI a”df:iw=0, even thougffin the linearized limit, at leasthe C,

Sec. IV depend on a complete set of commuting observablegre sms of creation and destruction operators, like the BPR
consisting of the four En the 2<2 X,Y sector, plus the field strengths. Why this difference in treatment? This same
complex connection A. This suggests that one should take guestion was posed and answered in a different context, Lor-

the dot product to have the form entz gauge QED, many years ago, and it is worthwhile to
take a moment here to review that discusdi2f]. In Lor-
<¢|¢,>:J &+ yud*Ed2A, (34) entz gauge QED, the analogue of f@eis (the usual Gauss
constraint, plusthe four-divergencéA=0. The analogue of

where d?2A=d ReAZd ImAZ. The measurgs must satisfy the strong requiremert; /=0 would be&AAz/;: 0, and the
several requirementsi) It must guarantee the quantum form analogue of the semiclassical requiremg{)=0 would be

of the reality constraints on the connection: oA* =0, where the superscriptenotes positive frequency
components(Since a splitup into positive and negative fre-
(lAY)+(Ad|h)=2(p|ReAy). (35 quencies is available in QED, there is no need to introduce a
— semiclassical average.
(i) It must guarantee the invariance pfd*Ed*A under Both constraints, the strong and the positive frequency—

transformations generated by the scalar, vector, and Gausgmiclassical, are used in the Lorentz gauge literature. Au-
constraints.(iii) It must contain enough gauge-fixing delta thors who employ the positive frequency constraint tend to
functions to remove the usual unbounded integrations ovegeat the “unphysical” part of the Hilbert space with more
infinite numbers of gauge copies. Note tkiak requires only  respect(Remember that the Lorentz gauge condition is de-
invariance under the Constraints, not invariance under fOUI’signed to eliminate the effects of the unphysicaL |Ongitudina|
dimensional diffeomorphisms. In a+3l formalism, one and timelike componentsHeitler[30] is a typical proponent
does not have the proper set of fields to implement the lattesf this approach: He gives a very careful treatment of the
invariance, essentially because all fields are evaluated on ghphysical sector, including a full discussion of the Gupta-
constant time hyperslice, whereas four-dimensional diffeOB|eu|er formalism. The payoff is that dot products over the

morphisms move fields off the hyperslig28g]. full Hilbert space are well defined, including dot products of
Itis possible to construct a which guarantees the reality |ongitudinal and timelike photons. Authors who employ the
constraintdrequirement(i)]. Set stronger constraint31] pay a price: It is possible to find
;s 7 Xy states which are annihilated by both the annihilatma the
pu=0[AS+AZ*+2w; "] (36)

creation parts ofA, but these states are not normalizable in
w;(Y is the Lorentz connection,«1) times the real part of the unphysical sectd29]. This result is not particularly sur-

A%, so that this delta function enforces thé peality con-  Prising: - Since the creation operators dA create a state
straint. The surprising fact is that it also enforces the realityvith one more timelike or longitudinal photog, must be a
constraints on the remaining, transversg @s well, those SUM over an unbounded, infinite number of longitudinal and
with A=X,Y anda=x,y. | sketch the proof. From the quan- t|_meI|ke occ_upatlon numbers. This infinte sum leads to the
tization rule, Eq.(23), the first term in Eq(35) contains a divergence in the norm. The authors who use the strong con-

. L ~ . straint are well aware of this difficulty, and they circumvent
functional derivative 5/ SE3 acting on the ket wavefunc- y y

tional. When this is functionally integrated by parts, one getsgvbeyr r;r?;sllrg;? é?(i?tgt]i?)r?s? tom;)duct in Hilbert space be taken

— 81 5E, acting on the bra wave functionfdecond term in Returning to the gravitational case, one can now see why
Eq. (39)], plus a term which can be rewritten as the strong criterion will work for th€; , but not for the BPR

, NV, operators. For the moment, imagine the gravitational theory

[—ouloA;]16[2w; 11 G, . (37 to be linearized, so that the analogy to QED is strongest. The

7 ) creation operators for the BPR operators create physical
The 6/ 5A; can be integrated by parts onto the Kdthe bra  qanta, not unphysical. If | impose the strong criterion, | get

depends only on & .) It is then (lengthy bu straightfor-  states which have an infinite norm in the physical sector.

ward to show that There is no way of avoiding this by restricting the measure at
YY) a 5 a later step. If | now pass from the linearized to the full
[8[2w) ]/ SER] S SAZ=2 ReA, . (38 theory, there is no reason why the strong criterion should

7. ) suddenly become applicable. 1 must use the semiclassical
The 6/ 6A;7 in the quantum expression corresponds to a facgyiterion, which is justified using the correspondence prin-

tor of E§ in the classical expression for RéA Further  ciple.
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C. Non-polynomiality

The BPR operators, Eq19), occur in complex conjugate
pairs, and one member of the BPR pair involves QeA
which is a known, but non-polynomial function afj\E In
particular, ReA contains factors of $E, where ®E is the
2% 2 determinant formed from the3Bwith internal indices
A=X,Y and global indices.=x,y. | have dealt with a simi-
lar operator, 1/E, in a previous pap€8], but would just as
soon not do so here.

One can use the fact that the BPR constraints come in

DONALD E. NEVILLE

Zn+1
L dz0(z1,-z)M(Z+1,2)

=1 0

XEZii(Zi)SAi®(Zl_ZO)}M(ZOaZnJrl)- (42
The M are holonomies along,
3 Zn+1 z
M(Zi+lizi):ex | Az(ZI)SZdZ, , (43)
Z

complex conjugate pairs, plus semiclassicality, to prove the

following theorem(and then one uses the theorem to avoid

dealing with the non-polynomialijy Theorem:

(—Al+2ReA ) =(A])*, (39

and similarly for the other BPR pair. This result is just what

tion values of complex operators in ordinary quantum m
chanics(for instance(p+iq)*=(p—iq)) except that here

the basic operators are not Hermitean, so that the proof ié(

slightly longer. Proof: Expand out the ,Aoperators using

A =(AX=iA))IV2

=h(6/ 5E3+i 6/ 6E3)IV2. (40)

Integrate by parts the functional derivative on the left side of

Eq. (39), using

f Wp*h&/;/a'é;i:fM[(—ﬁ)é/ﬁﬁiw*]w

+ f wips 2 ReXp. (42)

Here ¢ is the semiclassical state arige is the measure, a
path integral over the fields ig. u© need not be known in
detall, except that it enforces the reality condition in EHl)
[via (—#)ou/sEa=2ReAn]. Also, u must be real
(u* = ) in order for norms to be real. If one inserts E41)
into the left-hand side of Eq:39) and carries out the com-
plex conjugationusing u* = w), the result is the right-hand
side of Eq.(39).7

IV. ADDITIONAL SOLUTIONS

and theS,, are the usual Hermitian SB) generators. These
can be 2+ 1 dimensional; they need not be Pauli matrices.
The O functions in Eq.(42) are Heaviside step functions
which path-order the integrationg<z,---<z,, 4. For this
section only, the boundary poings andz, are relabeled,
andz, . 1. Although the metric is not flat at the boundaries, it
can be taken as conformally flat at the boundaries, with any

Aadiation present confined to a wavepacket near the origin

Since the full SW2) invariance has been gauge fixed to
2), it is convenient to use basis fields introduced in Eq.
(8), fields which are irreducible representations o020
These are one dimensional, labeled by the eigenval® pof

e.g.,
B2 =(BE3+iB%)/v2,

EiS,=E%S_ or S, . (44)
Because the irreducible representations are one-dimensional,
there is no need to sum over both valuesfef = in Eq.
(42), in order to obtain a Gauss-invariant expression; nor is it
necessary to take the trace in that equation. However, one
must be sure to have an equal numbe®ofandS_ matrices

in the chain, in order to form a closed loop of flux with no
open ends violating Gauss invariance. That is, if one visual-
izes each holonomM! (z . 1,z) as a flux line along from z,

to z;, ;, then the factor in the square brackets, &%), may

be visualized as a flux line from, to z,, . The line varies

in thickness(varies inS, eigenvalug because of thes.
operators encountered along the way, but the f8abalue
atz,, ; must equal the initiaB, value atz, (there must be an
equal number o8, andS_ matrices in the chajn Then the
final holonomy in Eq.(42), M(zy,2,+1). can join the two
ends atzy andz,,, and turn the open flux line into a closed
flux loop. As shown in paper Ill, the wave functional of Eq.
(42) can be made to satisfy all the constraints, by suitable
choice of thea; andA,; .

A set of wave functionals is said to form part of a kine-

In the previous section | derived quantum BPR operatorsmatical basis if the wavefunctionals are annihilated by the
In the present section | construct new solutions to the congayss and spatial diffeomorphism constraints; the wave
straints. In the next section | apply the BPR, ADM energy.functionals are physical if they atkinematical angannihi-
andL ; operators to the solutions constructed in papers Il angated by the scalar constraint as well. In order to obtain a
Ill'and this section. larger, kinematical space, as well as more physical solutions,

| start from the SO|Utj9nS considered in paper 1. TheseOne can S|mp||fy Eq(42) by dropping all® functions. This
are strings of transversei Foperators, ordered along tile  removes the path ordering, éin visual terms this allows
axis, and separated by holonomies: flux lines to double back on themselves.
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Nz _ pler constraint algebra, but again the details of this will not
din=11 dzMm (zi+1,zi)EZ‘_(zi)SAiM (29,Zn41)- be relevant here. The system is quantized by replacing trans-
=1 Jz0 ! x . . . .
verse A and E by functional derivatives, these being the

(45) fields conjugate to the fields iy
Again, the expression is Gauss invariant evely; if = is not . _
summed over, and no trace is needed. A; —h 81 5EZ
To check the spatial diffeomorphism and scalar con- _
straints, one must first obtain these constraints from the 2 —hol AL, (48

Hamiltonian, written out in an @) eigenbasis: ) ] .
The operator orderinfplready adopted in Eq42)] is func-

tional derivatives to the right. The first term in E4.6) con-
tains an inverse operatori):‘l; this is well defined pro-
vided TEéM never vanishes, that is, provided tBg in Eq.
+ST (43) never has eigenvalue zero.
As discussed at Eq9), the physics must be invariant
under smallchangessN in the lapse and shift, so that the

HT:N,

i(2E(ED) teaAr Ay + 2 (DED ?4

+iNZZ B2 R, —iNg| 0,E2— >, (+)B2AD

*

— ! Z
~NCet N ReCet ST (46) constraint should be written as
where
T+ x = N’ + 5NZ . 4
F;b:[ﬁinAg]Ag- (47) 0 de[b‘ CS Cz]wkmv ( 9)
(?)E is the determinant of the 22 transverse subblock of 0=6N'(z,)= 6N%(z,), (50)

the matrix E.. ST denotes surface ternferms evaluated at
the two end points on the axis, z, andz,, ;). The detailed
form of these terms is worked out in paper Il but will not be changed by the transformation of E¢9).

needed here. The primed lapse equals the usual lapse Both theCs and C, constraints in Eq(49) contain terms

multiplied by a factor of &, and correspondingly the scalar proportional to E,, the field strength defined in Eg47).
constraintCg is the usual constraint divided byE As ~ When a typical term of this type acts @nthe result iSup to
shown in paper I, this renormalization leads to a much sim-constants

wherez, is either boundary poing, or z,,, 1. Equation(50)
guarantees that the boundary conditionszatare left un-

f dzéN(z)EiFZ_b[wkin]=fdzéN(z)EiFZ_b f dziMETS_M---}

fdzBNZ EY
I

f dziM(az—iAf)é(z—zi)SM--‘}

~~{~~fdzié(z—zi)(azi—iAf)MSMm}

--{---Jd;&(z—zi)(—iM[sZ,s]MA?—iA§MsM)--ﬂ

=0. (51

On the third line | have changed tide to J,; and integrated tion for ¢, to be physical:C¢ annihilates the state if it
by parts with respect tg; . The surface terms @ =z, van-  contains only two out of the four transverse fields:
ish because théN(z) §(z—z) yields a factor of6N(z,),

which vanishes at boundaries. Thiig, is annihilated by all (eithen AE'i and B only,

constraint terms containing field strengthg, FThis is al-

ready enough to prove that the spatial diffeomorphism con- (o B, and B only. (52)
straintC, annihilatesy;,, and hence}, is at least part of

a kinematical basis, if not a physical basis. If ¢ contains B and B only, for instance, the connection

The state would be phySiC3.| if it were also annihilated bydeterminantsabA;'Ag in CE will necessar“y annihilate the
the first term inCg, which | call C¢ because of thé?E  wavefunctional, since the indicesandb cannot both equal
factor which it contains. The following is a sufficient condi- x. Note that the wavefunctional must have egqualnumber



996 DONALD E. NEVILLE 57

of X and B fields, because Gauss invariance requires ageParated by holonomied(z;,,,z). The solutions in pa-
equal number o8_ andS, operators in the chain. pers Il and Il have additional step functiorz; ,,—z)

The result given in Eq(52) can be generalizedpy, is which path order the integrations over the but thed fac-

hvsical if ever ~§i is th me linear combination tors will play a minor role in the considerations of the
physical if every E is the same linear co atio present section.

—a ~ ~ Consider first the., operator. From paper IV, this may be
Ep = Bt ayEL (53 expanded as

wherea, and ay are constants independentiofin particu-

o = ~ L =2fd EfAT-E_A]
lar, every E! can be either an Eor an'E, where g AE: +
I

E;i:[ﬁxii iEz\i]/x/z. (54) =2h J dZEf6/8ET—E_8/6E"], (56)

These are eigenstates of globalProtations mixingx and  \yhere the fields E are the global (®) eigenstates intro-

y. [All local transformations mixingx andy have been  qyced in Eq(54). From Eq.(56), L, is determined by count-
gauge fixed, but the Hamiltonian continues to be invariant

under global @) rotations] These linear combinations will N9 thg number_ of £ fields in the wave funcu_ong}’/. Eiih

be used in the next section to construct the eigenstates of ttf!Ch field contributes an amoun®4 to Lz, while fields E

L, operator. contribute nothing. Similarly when a connection representa-
One can generate additional physical states, starting frofion is used = y{A], each A field contributes+ 27.

those described by Eqet5) and(52), by applying operators Next consider the ADM energy operator. Often this is
G§ or GY constructed by Husain and Smoli2]. The G2 identified with the surface term in the Hamiltonian, but, as

(a,b=x,y) are integrals ovez of weight one objects: discussed in Appendix C, the volume term can also contrib-
ute. In the present case the volume term typically does con-
a_ [™1, =ana tribute, but its only effect is to double the size of the surface
b™ LO dZEpAy - (59 term, and | will ignore volume contributions. The surface
term is, from Eq.(C4),

Husain and Smolin have shown that the opera@fscom-

— =b AN
mute withH; they are physical. Hence applicationroffac- Hst=—em NEMAbElr
tors of GY to a functionaly [EX ,E* ] replacesmx super- oy o o
y _ b _=b b 2
scripts in the chain by superscripts, but leaves physical. =ih[EZ 6/ 6E- —E 5/5E+]z,- (57)
The operator&; are essentially raising and lowering opera- _
tors for total intrinsic spiff10]. When this operator acts upon a factor df (g)dz in the

| have labeled the generato®, in Eq. (42) using tWo  wave functional, it gives¥i%E2dz times a factor of
quantum numbergandm. (If the generatoS, is one which 5z —z,) or 5(z,— 7). Obviously none of the solutions is an
changesn, them label can be the initiai value, say.Once  gigenfunction of the ADM energy, since thi&function de-
the SU2) symmetry is broken to @), however, thg quan-  |etes one integratiomlz,. One could perhaps construct an
tum number loses significance. | could replace$heby any  ejgenfunction by summing over an infinite number of solu-
other matrix with the samen (andAm) but differentj, and  tjons, each containing one modg; integration. Each addi-
 would change only by a constant factor. tional integration should be multiplied by an additional fac-

Even though thg has no physical significance, it is math- tor of i, to cancel the in Eq. (57) and make the eigenvalue
ematically convenient to usB, having definitej. One can real. Investigation of such sums is beyond the scope of the
then employ the familiar commutation relations of Bein present paper. Without a measure one does not know
calculations. Also, the planar stageis presumably a limit of  hether such a sum converges to a normalizable result.

some three-dimensional state for which the Igblehs mean- If the Gauss constraint
ing. The fact that states of differeftare equivalent in the
planar limit presumably means that the correspondence be- Co=—i[d,Es— emnEZAN] (58)

tween three-dimensional and planar states is many to one.
vanishes at the boundaries, it can be used to simplify the

V. APPLICATION TO SOLUTIONS ADM surface term to
In this section | study the solutions constructed so far by He= —E§ ’Z|Zr
applying several operators to them: the BPR operdfoosm 4
Sec. lll), the ADM energy operatoifrom paper Il and Ap- =h(6/6A§),Z. (59)

pendix Q, the area operator 2Efor areas in thexy plane

(from paper 11), and the operatot, giving the total spin Unwanted factors df are now more of a problem.Z%occurs
angular momentum around theaxis (from paper IV and only in holonomies, where it is always multiplied log real
Appendix B. All the solutions(those constructed in papers matrix S, times a factor ofi, and the & will bring down

Il and Il as well as the new solutions constructed in Seg. IV this factor ofi. Except for the solutions constructed in paper
have the form of strings of transver'sutﬁ‘t &;)S; operators I, there is always at least one boundary where the Gauss
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constraint holds, so that factors o#will be a generic prob- lutions are called into doubt, but this happens for a reason
lem. Of course one could eliminate the problem by discardwhich is fundamentally positive: More is known about how
ing the holonomy structure, but this is a solution almost aso interpret and understand the solutions.
unattractive as the problem. The difficulties with imaginary eigenvalues encountered
The operatorHE,Z occurs in the ADM energy, whilgb;‘ in Sec. V seem to require fundamental revisions in the
itself is the area operator for areas in tkg plane. (  theory, since the difficulties are closely linked to the com-
=ee§=(2)e.) Therefore the area operator also has Ioureplex nature of the connection. As discussed in Sec. V, the
imaginary eigenvalues, a situation already noted in Appendb@peratof%, present in both the area operator and the ADM
D of paper II; see also DePietri and Rovg[B2]. energy operator, has complex eigenvalues because ofithe
Even if one for the moment ignores the factors ofhere  the holonomies, efpAZ---]. Getting rid of thei entails
is another problem with the area operator: At any boundaryiropping or modifying the holonomic structure, not a pleas-
where the Gauss constraint is satisfied, the area operator wiht prospect. Recently Thiema[®0] has proposed an alter-
always give zero. If the Gauss constraint is satisfied, say, atative formalism based upon a real connection. Thiemann’s
the left boundaryz,, then there is no net flux exiting at.  alternative is motivated primarily by issues of regularization,

One can regroup the holonomies until there aréi(@; ,z)), but has the desirable side effect of producing real eigenval-
only M(z,,z); or until every M(z ,z) is paired with an ues for the area operator.

M(z,z) to giveM(z;,z)) M(z,z;)=M(z;,z). Either way, It is a little harder to see how switching to a real connec-
there is no holonomy depending orﬁ@q), and the area tion will cure the problem of zero eigenvalues of the area
operator &(z,) gives zero. operator at boundaries, also uncovered in Sec. V. The zero

Next consider the action of the BPR operators. The solu€igenvalues occur only at boundaries where Gauss invari-
tions given in paper l{and some of those considered in Sec.ance is satisfied. Since;Hs a Gauss invariant, at first sight
IV) contain either & operators or & operators, but not @ny connection between area and Gauss invariance seems
strange. The connection is indirect, via the structure of the
complex connection A=ilmAZ+ReAZ. ImA? is the part

which does not commute withE therefore its presence in
the wave functional gives rise to nonzero area. RéAthe
A zﬂ['Ei]:O. (60) part which transfqrms like a connection und.er Gauss rota-
tions; therefore it is needed in the wavefunctional for gauge
In classical theory, A=0 is a signal that the solution is invariance. The notions of area and gauge invariance are
pure]y left moving, and from this one m|ght expect that"ﬂkEd only because ImA and ReA are linked together to
J[E2] is unidirectional. Conditior(60) is too strong, how- O'M & single(complex connection. At a boundary where

ever. As discussed in E€R6) of Sec. lll, one expects at most t?]alrjlsti |rr1vair|a;]nc§ IS sadt|sf|ed, if ttuere IS ”Otﬂet qug Exmng,
a vanishing semiclassical averag, )=0. In fact from the en there 1S o depencence on the connection and hence no

remarks on Lorentz gauge QED in the concluding para_area. In the Thiemann scheme one still joins ImMA and ReA

2V X . together to form a singlgrea) connection; in fact the
graphs of Sec. Ill, Eq(60) implies thaty is probably not a . R ) .
normalizable state. Thiemann connection is just the Ashtekar connection without

The solutions of paper Il and most of those from Sec. IVthe factor ofi. The real and imaginary parts of the connec-

) py T o tion are separated when constructing the Thiemann con-
contain both & and B, and hence are not annihilated by giraints. Must they be separated when constructing the wave
any BPR operator. One cannot conclude that these solutiofgnctional as well? If the answer is yes, the wave functional
are infinite norm, therefore. However, they do suffer from\yoyid not be purely a product of holonomies.

the problems described previously in this section, those as- gefgre doing anything as drastic as dropping the holo-

both. A wave functional which contains onliy? Eoperators

(for example will be annihilated by gzhé/éﬁi, even
before any semiclassical average is taken:

sociated with the ADM energy and area operators. nomic structure, it is a good idea to investigate what happens
to the zero area argument when it is extrapolated from the
VI. CONCLUSIONS planar case to the full, three-space-dimensional case. The

argument that Gauss invariance leads to zero area depends

Papers Il and Il proposed new solutions to the con-on properties of the wavefunctional at boundaries, and the
straints, and Sec. IV of the present paper proposes still moreehavior at boundaries changes markedly with spatial dimen-
solutions. However, the investigations of Sec. V have demsion.
onstrated that these solutions are less than satisfying in sev- In the full three-dimensional case, the smearing function
eral respects. for the Gauss constraint must vanish at spatial infinity, so

This outcome is perhaps not surprising. In earlier work,that there is no need for the Gauss constraint to annihilate the
simplicity was the primary criterion for choosing the methodwave functional there. As a result, net flux may pass through
of quantization(polarization and factor orderingas well as  the boundary at infinity, and there is no difficulty obtaining
the primary criterion for constructing solutions. Simplicity is finite area at the boundary, even when the wave functional is
the criterion one uses when information is scarce, howevepurely a product of holonomies. This suggests that the zero
In the present paper several operators of physical signifiarea may be a problem which occurs only in the planar limit.
cance were available, and the theory and its solutions can be In fact the area problem may not exist in the planar limit,
held to a standard more demanding than simplicity, the starnf one takes this limit correctly. Imagine the generic three
dard of a reasonable physical interpretation. As a result, sadimensional flux configuration which is well approximated
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by planar symmetry: Near the origin, the flux lines corre-is needed before one can decide between these two alterna-
sponding to holonomies containiniaékxa are finite in cross tives.

section and well collimated along the axis. The planar Apart from the zero area difficulty, there is another reason
wave functionals constructed in papers Il and 1l contain fac-why the transition from three to one space dimension needs
tors of S., presumably relics of Clebsch-Gordan coeffi- more attention. Ultimately one would like to use the planar
cients coupling Adx? holonomies to holonomies containing case as a guide to the behavior of radiation in the full, three
A;‘dxa and A;’dxa. The latter are represented by flux lines Qimensional case. In the.full case, one expects the connec-
lying in planes z const. Although Adx? flux lines are well tions to occur in holonomies, so as to preserve gauge invari-

collimated near the origin, they must diverge far out alang 2nce: In the planar case, the gauge fixing allows the trans-
into the past or future. A sketch of theZd® flux lines  VE'Se connections to occur outside of holonomies. Two key
b a

resembles a drawing depicting radial geodesics near a wor _gdiative properties of Fhe p'af?af solutions, their directiona_l-
hole: The flux lines come in from radial infinity, pass ity and spin, are associated with the transverse sector, which
thI’OL.Igh a narrow “throat” oriented along, and theﬁ di- least resembles the three-dimensional case. It will probably

verge once more to radial infinityThe wavefronts perpen- be necessary to recast the transverse sector in a more holo-

dicular to these rays are constructed froédAa and N;dxa nomic language, in order to understand more clearly what

. . . car happens on passing to the full theory.
holonomies. Altematively, the '%dxa flux lines at infinity For the moment let us overlook any possible difficulties

may not exit through the surface at infjnity, but may IOOpwith zero area and suppose that one shifts to a real connec-
back a_nd. close on them.selve.s, resembling t.he flux lines of flon, in order to eliminate the problem with imaginary eigen-
solenoid in magnetostatics. Either outcome s allowgd by t.h?/alues. One can ask whether the solutions constructed in
boundary conditions on the Gauss smearing function at iny,ners |1 and 111 and Sec. IV are likely to survive the shift to

finity, and for either behavior at infinity, the behavior at the ; a4l connection formalism. The present solutions may not

throat is the same. If one takes a cross section through tWQurvive, if the factor ordering is changed, and it is easy to

pointsz; andz>z at the throat, one finds ngtiﬁxﬁ flux  imagine a reason why one might want to change the factor
through both boundary pointg andz, . If this picture of the  grgering. The scalar constraint usually must be taken to be
three dimensional flux is correct, then in the planar limit ON€non-Hermitian, in a complex connection formalism, whereas
shouldnotimpose Gauss invariance at the boundaries. Plangjjith a real connection one may wish to factor order so as to
solutions would resemble the “open flux” solutions studied j,5ke the constraint Hermitian.
in paper Il. If there is édxa flux thrOUgh the bOUndarieS, the It may be he|pfu| to comment bneﬂy on Why the scalar
zero area problem at boundaries disappears. constraint is difficult to make Hermitian in a complex con-
Even though the Adx? flux lines now extend throughout nection formalism. The usual recipe for constructing a self-
the entire rangeg,<z=z,, one can still construct localized adjoint operator is to factor order it, and then, if the operator
wave packets. In paper Il, | reviewed the geometrodynamicak not self-adjoint, form the averag€¢-Ct)/2. Ct is C,
treatment of the planar problem, and introduced the Szekeragith the order of all operators reversed and the connections
scalar fieldB, W, andA. (Itis a little easier to work out the A replaced byAt; in turn the At are replaced by-A
boundary conditions foB, W, andA, rather than work di- +2 ReA. This last step introduces the unwanted non-
rectly with the Ashtekar fields; as shown in paper I, thepolynomial expressions Reinto theCt term. In the case of
boundary conditions oB, W, andA then imply correspond- the Gauss and spatial diffeomorphism constraints, identities
ing boundary conditions on the Ashtekar variablé&hen  may be used to eliminate the Reontributions, andCt is
only the field A is present, the forces on a cloud of testwell behaved, in fact identical t6. In the case of the scalar
particles are isotropic in the transversey) direction; the  constraint, the unwanted Reerms do not go away. Within
elliptical distortions characteristic of gravitational waves ap-a real connection framework, tht is justA, and the tra-
pear only when th& andW fields are non-zerdln a more  ditional (C+ C*)/2 recipe is easier to implement.
covariant language, the components of the Weyl tensor Although the present solutions may not survive as exact
which give rise to transverse deviations of geodesics argolutions, they may constitute approximate solutions to the
present only wherB andW are non-zerg.One can impose new, modified constraints, solutions valid in the lirit- 0.
wavepacket boundary conditions 8randW (equivalently,  This would happen because the new and old scalar con-
on transverse components of the Weyl tensoequiring  straints presumably will differ only by a reordering of factors
these quantities to vanish at the boundadgs but this re-  and hence will differ by terms of ordék. Also, the G2 op-
quirement tells us nothing about the behavior/ofat the  erators, defined in Eq55) and shown to be constants of the
boundaries. The variablke determines geometrical quantities motion by Husain and Smolif22], are likely to remain con-
such as areas: The Ashtekar area operadds fiist expf).  stants of the motion, in any transition to a new operator
Perhaps one has a “wavepacket,” but not a “geometryordering, because of the close connection betweenGhe
packet.” One may require localized, wavepacket behavioand total spirf10].
for B andW, but not for the more geometrical quantity Even though the complex connection formalism may not
To summarize, there are two possible solutions to the zerbe appropriate for the dynamics, this formalism is the natural
area problem. The first splits the connection, abandoning thene to use when constructing a criterion for the presence of
strict holonomic form for the wave functional. The secondradiation. Note that the BPR operators were derived in Sec.
allows the Gauss constraint to be non-zero at boundaries aridusing only symmetry considerations; no assumptions were
in effect assumes that the “open flux” boundary conditionsmade about the factor ordering or dynamics. Even if one
used in paper Il are generic. Further information and thoughtiropped the Ashtekar connection and used the Thiemann
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connection, one would have to reintroduce the Ashtekar con- Next consider Eq17). In principle, one should be able to
nection in order to express the results of Sec. Il succinctlydetermine all the constraints on the{: Ay solving these
Anyone familiar with the classical results on radiative crite-equations directly, but they are awkward, and it is easier to
ria will not be surprised at this: Much of that work is most adopt an indirect approach. Given the tetrads, compute the
conveniently expressed using the language of complex con-orentz connectionn"” ; then compute®A, which is just
nections. (See for example the work on the Weyl tensorthe self-dual version ob. In this way one finds that many
quoted in Sec. | and Appendix D. components ofYA are identically zero. When this informa-
Classically, exact plane wave solutions are known intion is inserted into Eq(17), that equation reduces to the
which the area operat&zzl%(z)e evolves to zerd16]. In fact  trivial statement 60, for most values of the indices; for a
this collapse behavior appears to be generic; solutions whicemall number of index values the equation is non-trivial and
do not collapse are rare and are unstable under small pertuzan be solved with moderate effort.
bations[33]. The zero area cannot be removed by a change The equation relating to the tetrads is
of coordinates, since typically there is an accompanying sin-
gularity in a scalar polynomial quadratic in components of wijaEeileij'aJ
the Weyl curvature tensor. One can ask whether a quantum-
mechanical effect might prevent this collapse. It is not pos-
sible to answer this question definitively within the present (Ad)
context, because the area operator has imaginary eigenval-
ues. Neverthe_less, one can see t_he outlines of a possibigem this equation, at least oneiofj, or a must beu, since
quantum solution which would avoid a collapse. The quanyerivatives with respect t,y,v are zero. Further, the tetrad
tum area operatorZEacts on holonomies exifa;S,d2); as  matrix in the Rosen gauge isx2 block diagonal, with the
long asS; is not allowed to assume the value zerg,dannot  ztto ZT block containing constants only. This implies tiaat
have the eigenvalue zero. In the solutions constructed in panostone ofi, j, or a must beu. After stripping off the
pers Il and Il and Sec. IV, th&, value in each holonomy (block diagonal tetrads, one finds that the only non-zeso
does not evolve dynamically and therefore remains non-zerare
if chosen to be non-zero initially. It remains to be seen v VA
whether this happy state of affairs will persist to a new for- Wy 0y, (A5)
malism with real eigenvalues for the area operator.

=~ Uaji+ Gaij + €jkIa€] 1/2.

wherea=x,y only andA=X,Y only. Now compute®A
APPENDIX A: DETAILS OF THE BPR CALCULATION from w, using

This appendix solves Eq$16) and (17) for the connec- 2WAN =l +i (e erxyD 0N, (AB)
tion and tetrads obeying BPR symmetry, the invariance
group for unidirectional plane gravitational waves. Whenwhere the duality eigenvaluerxy, equals+1, given my
setting up a complex connection formalism, it is necessary t@onventionsé= eryy,=1. The only non-zerd”A compo-
choose three phases: When defining the Lagrangian at theents are
four-dimensional level, one must choose the duality phaise
and the phase oéryyz [see for example Eq18)], and an WAXY (DATZ (DAY (A7)
additional phase comes in when rewriting the four-
dimensional formalism in &1 canonical form. These At first glance one might think this list is too short; there
phases are explained in Appendix A of paper Il, and | use thehould be non-zeréYAJ* as well, because the*,, term
same phase choices here as in that paper. | begin at the Eq. (A6) will map the VA indices onw;’A into UB (B=
four-dimensional level by solving Eq16) for the Lorentz X Y or +). Duality mapsVX into VY, not UY, however,
transformatiorL ; because of the identities

Lin=—dgé%ey e (A1) ETXYZ= €UVXY= € vy (A8)

| have dropped af”ax_terr_n which is zero becausg®, Ed-  etc., where the last, mixed index tensor with tWts is the
(13), is a linear combination ofy, dy, andd, , all of which  5ne \which occurs in duality relations. This explains why

annihilateef”. In the Rosen gauge, from E(L3), there are ndYAY* ; to see what happened AY ™, note
a_ QU a a + + . +
9pE"= 059"~ 559", (A2) 2WAYE = oV 1i5(eV 2erxy DN
Therefore = (,OZ: + | 5( 6,\/,\1/—1/6TXYZ) wgt
Lin=—elel'+e/ef. (A3) =0y (1£6). (A9)

L is antisymmetric, as it should be. Equatidi6) determines ~ For my phase choicé=+1, “AY~ vanishes.

L, Eg. (A3), but otherwise imposes no new constraints on From Eq.(A7), there is no need to consider=v in Eq.
the tetrads beyond those already imposeddby d,, and  (17). | consider firste=a=x,y. The first term in Eq(17) is
d,=0. a linear combination ob,, d,, andd,, which vanishes for
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any a. The second term vanishes from Ed#?2) and the
absence of anyx=v component ofYA. Then Eq.(17) col-
lapses to

0=0+0+L, @A+’ @AY —0.  (A10)
From Eqgs.(A3) and (18), the only non-zero elements &f
are

KUX:iﬁuy:(e§(+ie$)/2:ei/\/Q (All)

or

Eu+=ec+ y [/U,ZO. (A12)
Inserting this and Eq(A7) into Eq. (A10), one finds that all
the a=a=x,y equations are trivially & 0.

Finally, considera=u. The first term in Eq.(15) van-
ishes as before. The only index pair which does not give

0=0isl1J=VA, A=X,Y only, which gives

0=0+a,8" WAYA+ LY, DAL A+ LA, OAY — g,LVA,
(A13)

Use Eq.(A2) to simplify the first term; use EqA12) to
simplify the remaining terms and to show that tie
=— equation is trivial. Then

0=0+g%AY" —2eS A, " +0,e5

=gCeAY " —2eSABT +5,e8 . (Al14)
| have used the duality relationAVY=—iAXY and
A~ *=iAXY. On the second line, recall that a “plus” index
always pairs with a “minus” index to form the two-
dimensional dot producesAB"=e$A~"+0. TheA, field
in Eq. (A14) is a linear combination of, andA fields, and

the A, fields are non-dynamical Lagrange multipliers for the

Gauss constraints. | therefore eliminate thefield in order
to obtain a constraint on the dynamical field A From
duality and Eqs(A4) and(A5) for w,

26{BAL " =eagl ) +i(82erxy D epney ]
=[e* w,j,+0]
= el e del1/2. (A15)
| solve Eq.(A14) for AVA and insert Eq(A15):
AL =l [0 a5
=el*[2e 3,65 — 9,0ja1/12— 3y€as + 9u0cal’
= 9,004€5% /2. (A16)

The right-hand side of EqA16) is proportional to the part
of AY* which contains na é factor:

2“Re” WAY ' =(wY*+iwy")IV2
=eV(eM+ieV)wij, V2

=e"19,0,/2. (A17)
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Therefore
0=—"AY"+2“Re” WAY*

=@AY* for 6=—1. (A18)

The second line means that the first line is the four dimen-
sional connection computed with the opposite choice for the
duality eigenvalueg= —1 rather thans= +1.

This result is very easy to transform from the Rosen to a
general gauge in thet sector, since the “minus” and &”
indices in thex,y sector remain invariant under such a trans-
formation. In order to maintain the gauge conditi¢h4) and
(15 on the tetrads, it is necessary to combine any four-
dimensional diffeomorphismz(t)—(z’t') with a Lorentz
transformation, as in Eq16). A short calculation shows that
a very simple Lorentz transformatidrl, = dt'/ 9z will main-
tain all the gauge conditions of Eqd.4) and(15). For trans-
forming (’A one needs the correspondidg the only non-
zero matrix elements will b&’, and £%, or, equivalently,
LY, £VY,, and£~ . Thus the coordinate transformation to
the general gauge amounts to a Lorentz transformation
which multiplies Eq.(A18) by an overall factor:

O = A

for 6=—1, (A19)

where everyZ and every®A is to be calculated using the
6=—1 convention. From Eq(A19), the quantity in Eq.
(A18) vanishes in every gauge. Similarly, from E&7), the
following quantities vanish in every gauge:

0=—@AJ* +2Re” WAJY
_ (4 pAV-—
= )Aa

=@WAV~ (A20)

Equations(A20) and (A18) may be rewritten as
0=@WAl"—2“Re” WAT"
=@WAZY —2“Re” (DALY
(AT~

=@®AZ" (A21)
where every connection in EGA21) is evaluated using the
6=+1 convention. For the opposite duality convention,
6=—1, exchange { < —) everywhere in Eq(A21). For
6=+1 but left-moving rather than right moving waves,
again exchange# < —) in Eq. (A21).

So far the calculation has been carried out entirely at the
four-dimensional level. The four-dimensional connection
(“)A is related to the usual-81 connectiorA by the follow-
ing equation from Appendix A of paper I

— e AMN

AS=— e\ AN (A22)

Then the four-dimensional equati@A21) implies the 3+ 1
dimensional equations

0=A;,

0=—A]+2"Re"A . (A23)
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Again, exchange { <+ —) for the opposite duality conven- —
tion or left-moving waves. Lz:_f dZ el e, B2 “Im"A

+ele_E2“Im"A [ —(x—y)]
APPENDIX B: KINEMATICS OF THE A : FIELDS: SPIN

From paper 1V, the integral :if dz{ele [E2[A, +(A; —2"Re"A ;)
+ele B [Al+(A] —2“Re"A )} —(x—y). (B

LZ:'f dZ B/ (A,—ReA) — (x—y)] (BL) i the last line | have writtet., in terms of the weight one

combinations of unidirectional BPR fields introduced in Eq.
(21). This expression for gravitational spin angular momen-

gives the total spin angular momentum of the wave, and is &/m possesses the same coordinate times momentum struc-

constant of the motiofi10]. The integral is over the entire ture as the corresponding expression for electromagnetic spin

wavepacket, that is, from, to z,. As in paper Il, the fields angular momentum:

and Weyl tensor components which produce transverse dis-

placeme.nts of test particles are assu_med to vani_sh at the Eem:(1/47T)J d3x[I§><,5\]

boundaries, with support only in the regipr<z<z, . Itis at

first sight surprising that any conserved quantity associated

with the Lorentz group should be given by a volume integral =— f d3x[II X A]. (B5)

(integral overz) rather than by a surface terfterm evalu-

ated at the end pointg, and z,). However, in the one- . . e o

dimensional pIanaF; casle, the erzxtensive gauge fixing in thghat,fs’ one can mtgrpret the unidirectional quantltleQE

x,y plane removes all gauge freedom, except for rigid rota@nd E(A—2"Re’A) in Eq. (B4) as momenta associated

tions aroundz, and thex,y sector of the theory resembles With waves of definite helicity. This parallel with QED does
special relativity rather than general relativity. not extend too far: These “momenta” have nothing like

This appendix rewrites the integrandlof in terms of the ~ free-field commutation relations with each other or with the

unidirectional fields[Eq. (19) for right-moving waves, and {riad “coordinates.” o

two more amplitudes with < — for left-moving waveg in It is now clear why one wants the two combinations

order to understand the spin content of these fields. Introdude} A, and (—A, +2“Re"A ;)E? to vanish: These two

triadse, and inverse triade3 , and write the integrand df, ~ constraints remove left-moving helicity-2 contributions

as from L,. Why must the remaining helicity zero combina-
tions vanish? The helicity zero combinations afeAE and

=y 3 y — 3 (—A; t2"Re’A ;)Ei. They are complex conjugates of

Bl Im Aj—(xe—y) =[(e)exx— (X y) JE¢ IMAZ each other, so that by adding and subtracting them from each
other one gets pure imaginary and pure real constraints

=[(&fyex)xt+ elseryx— (x—y) JER ImA]. 0=EJ(A5—ReA})—ieng ReAE], (B6)
(B2) o
0=—ieag(AS—ReA)E3+ES ReAS. (B7)

In the last line the term antisymmetric dhK is proportional Now consider the classical equation of motion
to Eﬁ ImA;eJK. This expression is part of the Gauss con-
straint 9,E5+ E2AJe;¢=0, which implies B ImAJe;c=0.
Hence the term antisymmetric ihK can be dropped. The

0=—iE; — SH/6A]

term symmetric inJ,K can be expanded in(@) eigenstates, =— iﬁét—’ngg. (B8)
keeping in mind that every- index must be contracted with
a — index. TheJ#K terms are proportional to On the second line | use the Hamiltonian of E46). | also

use the unidirectionality assumpti¢for the first time in this
section;L is the spin operator also for the scattering gase
ele (+ele, =ehesy and evaluate the Hamiltonian in Rosér at least confor-
_ s mally flat) gauge. The metric in a general gauge has the form
X

=l — 12 z\2 2 z 2
0. (B3) ds2={[ — (N)?+ (N??]dt*+ 2N%dzdt+ d2}g,,
+X,y sector, (Bg)

Hence these terms can be dropped also. The surviving terns® that to obtain conformal gauge, one must thlke-0 and
are products of tensors with=K and therefore helicityt 2 N’ =1 in the Hamiltonian, wherbl? is the shift andN’ is the
in the local Lorentz frame, a reassuring result: renormalized lapse defined following E@6). From the real
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part of Eq.(B8), the EReA term in Eq.(B7) vanishes. The 2acts upory, however, theCs in H is smeared bN' rather

rest of this equation is just the imaginary part of the GausdhanéN’; the former does not vanish at boundaries. Conse-
constraint. o.E2+ ex-AAE2=0. and vanishes also. This quently the volume term can contribute to the ADM energy

' 2=z T “ABTaB R in the quantum case. In the planar case both the Gauss and
leaves Eq(B6). The e ReAE term may be simplified using scalar constraints in the volume term can contribute to the
the real part of the Gauss constraint; theAEReA) term  ADM energy; neitheN’ nor Ng is required to vanish at the
may be simplified using the imaginary part of the equation ofboundaries. In the usual431 dimensional case with flat

motion, Eq.(B8). The result is simply space boundary conditions at infinity, only the scalar con-
_ _ straint in the volume term can contribute; the remaining con-
0=—i(d+d,)E7, (B10)  straints are smeared by, which are required to vanish at

. i o spatial infinity.
in any conformally flat gauge. This equation is discussed = For the plane wave case, the surface terms in the Hamil-
further in Eq.(22) of Sec. II. tonian were computed in Sec. 4 of paper II:

. =b AN|Z
APPENDIX C: THE ADM ENERGY Hgi=— EMNEMAb|ZIr

It is a worthwhile exercise to express the ADM energy in ~ 4 =
terms of BPR operators. In the usual three-space dimensional =I[EZAp —EfA—y]
case, the Hamiltonian expressed in terms of the original b o b b o b2
ADM variables as the sum of a volume integral plus a sur- =in[EZ 6l 6B —E 5/5E+]z| (C4
face termHg, [34,35,

To simplify the boundary term quoted in paper Il, | have
invoked the boundary conditioié’—0, N’ —1 on the shift

and renormalized lapse. Evidently the ADM energy contains
) o the BPR operators which are sensitive to the long-range sca-
In the classical theory, the ADM energy is just the surfaceay potential, which suggests that these operators may play a
term, since the constraints in the volume term must vanishgle even in the presence of waves which are not unidirec-
everywhere when the solution obeys the classical equationgna].

of motion. Often one says that in the quantum case the ADM  The gperator of Eq(C1) gives a finite result when applied
energy is just the surface term also, but this is not quite rights the solutions of papers Il and IIl; there is no need to
as we shall see in a minute. renormalize. However, the solutions are not eigenfunctions

. Inhthe pla.r|1ar,.on§-space di][nenr?ioi?al case, ;[he Iexri)(ressiQﬁ this operator. A typical solution involves integrations
or the Hamiltonian in terms of Ashtekar variables looks Su'dzi over the locations of theﬁi(zi) operators contained in

perficially much the same as E(C1) [8], the wavefunctional, and the ADM operator acts as a “lower-
ing operator,” removing one integration. Hence an eigen-
f dZN'Cg+N*C,+NgCg]+Hy;, (C2)  function would have to be an infinite sum over wavefunc-

tionals of all possible values af. It is beyond the scope of

except for the additional Gauss constraint and the prime off!iS Paper to investigate the finiteness of the norm of such a
N’. (The prime means | have renormalized the usual AshSum-

tekar lapse by absorbing a factor of into the lapse, as

explained in paper I1.In both one and three spatial dimen- APPENDIX D:  THE TRANSVERSE WEYL CRITERION

sions, one might be tempted to drop the volume terms, in the 1. Classification of Wey! tensors

guantum mechanical case, because the consti@jrase re- ) ) ]
quired to annihilate the wavefunctional. However, the state- 1he Weyl tensor is the part of the Reimann tensor which

ment that the scalar constraifgay annihilates the wave- Can be non-zero even in empty space, and certain of its com-
functional means, noCsy=0, or even fdzCsy=0, but ponents induce transverse vibrations when inserted into the

rather equation of geodesic deviatigB6]. It is therefore a natural
object to work with when constructing a criterion for the
presence of radiatiof87]. The construction proceeds in two

f dzoN'Cgyp=0, (C3)  steps. The first step is a straightforward mathematical prob-

lem: Classify Weyl tensors using their algebraic properties.

where 5N’ is a small change in the lapse. The arbitrary!n the second step, one uses physical arguments to determine

changesN’ must preserve the boundary condition at spatiathe Wey! clasges most closely associated with radiation.

infinity, N’—1. HenceSN’—0 there. On the other hand, To begin with the mathematical problem, there are 10

when Cs occurs in the Hamiltonian of EqC2), it is multi-  independent real components of the Weyl tensor, and from

plied by N’ rather thansN’. There is no need foN’ to these one can construct 5 independent complex components

vanish at the boundarie§n fact it becomes unity theye ~ Which have simple duality properties.

Now suppose the evaluation of the action ©@f on ¢ re- . mn

quires an integration by parts with respectztan Eq. (C3), Cabod= [ Capcati(6/2€1xv2) €abmCeq /2, (D)

when the constraint acts upah surface terms at=z, will ) mn

vanish because of the boundary conditiond@ . WhenH Cabcd= 1 (6/2€7xv2) €abmcd - (D2

Hzf d3X[NC+ N'C;]+ Hg. (CY
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Lowercase Roman indices,b,c,... areglobal; uppercase The five combinations in EqD5) are the only ones allowed
Roman indice#,B,C,... arelocal Lorentz.e,pmnis the to- by the duality conventiod= + 1. The expansion for the op-
tally antisymmetric global tensor, while;xy 7 is the corre-  posite duality convention may be obtained from E@35)
sponding local Lorentz quantity, the Levi-Civiteonstant and (D6) by interchangingn andm in Eq. (D6). Equation
tensor. The duality eigenvalue &erxy,= * 1. There is an- (D5) is essentially the expansion given by Szekei@8],
other Levi-Civitatensor hidden in the,pmn, after a relabeling of the basis vectorsk,I(m,m)

—(k,—m,t, t). Since the expansion treaks and | quite
symmetrically, it is valid also for the case tHatrather than
k is the principal null vector.

At this point one turns from the mathematical to the
physical: Which Petrov/Debever cldéss or which ternts)
in Eq. (D5) are most closely associated with radiation? Con-
sider first which of the five tensors in E¢D5) distorts a

_ A B,C.D .
€abmn— €36, €: €4 €aBCD:

thereforeeryxyz and its associated sign convention drop out
after the conversion to Ashtekar variables and thel3
splitup. The final 3+ 1 Hamiltonian contains only the phase
8. My convention isé= +1, but in this paper all results are

stated in a manner which facilitates a conversion to the OPZloud of test particles in the manner expected for gravita-

posi;e conven'gion. of course the combination; with Simp.letional radiation. Szekeres finds that only tBbgandCy terms
duality properties also have simple transformation properties : v

in the local Lorentz frame, which is why one chooses toproduce the transverse displacements inXheplane char-

. . e acteristic of gravitational radiation in the linearized theory.
work with C rather thanC, when attempting a classification. N . .
, . : C, andC, produce longitudinal displacements in t& or
Petrov was the first to classify Weyl tensors by their aI-YZ lanes C, produces a Coulompor tidal force displace-
gebraic propertiegl1], but for present purposes the equiva- b ~3 P b

lent classification scheme due to Debey&2,13 is more ment: (.:3 dis_torts a sphere of particles into an ellipsoid of
convenient. A null vectok is said to be a principal null revolution with axis along’. These facts suggest that g

: and Cy terms signal the presence of radiation.

vector (Debever vectgrof C if There is another set of arguments which suggest that the

K(aCojmnioKayK™K"= 0;Kok3=0. (D3) C, _an_d Cs terms are closely assoc_lated with the presence of

radiation. If the Weyl tensor contairmly a C, or Cgs term,
Debever proved that a Weyl tensor can have up to four disthe tensor is typ&l. (A type N tensor withk as principal null
tinct principal null vectors, and he classified Weyl tensors byvector contains only &, term; a typeN tensor with | as
the number of degeneracies among these vectofd 1]  Principal null vector contains only &g term) Type N is
denotes the Weyl tensors which have 4 distinct Debever veclosely associated with radiation. Along characteristic
tors,[211] the Weyl tensors with two vectors degenerate and-uUrves, when the metric is discontinuous, the discontinuity in
the rest distinct, etc., then the five classes[ael ], [211],  the Weyl tensor is typ&l [38]. In the linearized theory, the
[22], [31], and[4]. (The corresponding five Petrov classestensor associated with unidirectional gravitational radiation
are |, I, D, Ill, and N, respectively. is typeN. At large distances from bounded sources, the sur-
Now supposek is a Debever vector obtained by solving Viving components of the Weyl tensor are tyie(*peeling

Eq.(D3). Make it one leg of a null tetrak,, |, m, m. Choose theorem”[13]).

the Z axis of a local free fall frame so thdt and| have Although theC, andCs terms are closely associated with
spatial components along:Z, while m and m are trans- typeN, it would be better to call these terms transverse Weyl
verse: components, rather than tyfé components, since a tensor
which is not typeN can nevertheless conta@y or Cg terms.
—k,l2=m,mP=1, A [22] (type Il) field containsC,; plus some admixture of
longitudinal component, whilgl111] (type I) containsC,,
K k2=1,12=m,m? C5 andCj; terms. In a theory as nqn—linear as general rela-
tivity, one can expect that a collision betweéy and Cg
=k,m*=1,m?=0. (D4)  transverse waves will produce sor@g (Coulomb compo-

nent, and the tensor will be type | rather than tyge In
C may be expanded in this basis, ambt surprisingly one  asymptotic regions, after the transverse wave has “outrun”
gets five possible terms: its Coulomb companion, presumably the tensor will revert to
typeN, but in general one should be looking 6 andCs,
Cabed™ C1VapVeat Ca(VapM g+ MapVed) + C3(MgpMcq rather than typeN or any other specific Petrov class. One
should describe this radiation criterion as the transverse
~UapVea™ VapUed) + CalUapMeat MapUca) Weyl criterion, rather than the type criterion.
+CsU,pUcq, (D5) | now construct operators which project out tg and
Cs terms:
where

C1=Caped 2mPI°m9,
Vab:2k[amb] 7 1 abcol

N _ b d
Uab:2|[amb], C5_Cabcckam k°m ' (D7)

M ap= 2Kpal b + 2MpaMp; - (D6) C3=—Caped *mPk°m.
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For completeness | have included also the expression for the WEIM=—igsFMy2,
pure Coulomb componeri;. The plane wave case has no
longitudinal componentsZ, andC, vanish identically. (A)FgﬂdN:UGMNSng/Z- (D12)
2. Transition to Ashtekar variables M,N,S=space onlys is a new phase which appears at the

At this point | specialize to the case of plane waves alongs + 1 reduction step. | choose= —1, for reasons explained
the Z axis. By definition, the plane wave metric has two N Appendix A of paper Il. This phaseunlike 6) merely

hypersurface orthogonal null vectors which may serve a§hanges the overall sign of ti& , and I shall not keep track
normals to right- and left-moving wavefronts)=(cT of the o dependence in the future. Useful corollaries of Eq.
—Z)/IV2=const andV=(cT+Z)/vZ=const. | identify these (P12 are
normals withk (right-moving andl (left-moving), so that a

(HpV=E _ +
small change in the wave phase will look like Feq =(i/V2)Fef(6=1)]/2,

k,dx®=(—dT+dZ)/v2=—dU, WEYE=(iV2)F (8% 1)]/2. (D13)

[, dx@=(—dT—-dZ)/v2=—dV. (D8)  If tetrad equationgD9) and (D10) and field strength equa-

tion (D13) are inserted into Eq.D7) for C,, the result for
[Hypersurface orthogonality demanlgdx®«dU, etc.; the S=+1is
normalization conditions force the constants of proportional-
ity to be as shown in Eq(D8), and the overall phase &, C,=i[—FJes+F e51ed /2. (D14
andl, is fixed by the requirement thaf and|° be positive,
i.e. future pointing} Lowercasex denotes a global coordi- (For 6=—1 replace+ by —.) For any metric, typically the
nate; uppercasel(Z,U,V) denotes a coordinate in a local Lorentz boosts are gauge fixed by demanding that three of
Lorentz frame. From the expression for ttieverse tetrads, the tetrads vanish:
epdxP=dXxA, k andl may be identified with the tetrads .

ey=0, M=space. (D15)
ki=—e?Y=+¢d,
For the special case of the plane wave metric, the gauge

a_ga (D9) fixing of the XY Gauss constraint andy spatial diffeomor-
u- . . . .
phism constraints imply that four more tetrads vanish:
Similarly,
y ex=ev=e3=¢e%=0. (D16)
mi=¢e% ,

The tetrad matrix reduces to two<2 subblocks which link
— X,y to X,Y (or =) andz,t to Z,T. Therefore the first term in
ma=ge? (D10) : : +

- Eqg. (D14) (and only the first termcontains arF, term, d
=X ory, with unacceptable time derivatives of the “coordi-
nate” A; . | eliminate this term using the classical equations
of motion, which are

Evidently the quantitie€; are(global scalars andensors in
a Local Lorentz frame.

Equation(D8) places quite a strong restriction on the null
basis, going beyond what is required to maintain the normal- (4EABC _ (D17)
ization equatior(D4). The choice equatiofD9) certainly is cd=AT
not unique. For examplé, remains null if it is rescaled by . after 3+1 splitup, and settin@ = +
an arbitrary function(Simultaneously, must be rescaled by ’ ’

the inverse function, in order to maintain the normalization O=(4)FAd+e§\

condition —k,12=1) Similarly m andm may be rescaled. ¢

The choice equation¢D9) and (D10) facilitate calculations =WF_jeS + DR el + WY €

and lead to highly symmetric formulas f@; andCs. [In e eh e 4 e

this basis,C; is just Cs with some plus and minus indices =Fcqey=FcgertFco€z. (D18

interchanged; see E¢D20) below] For further discussion

of the effect of choice of basis, see the remarks following EqIn the second line théYFU* term vanishes because of Eq.

(D20). (D13), and the WF_;"e% may be dropped because at the
Conversion to the Ashtekar language is straightforwérd. next step the entire term will be contracted with. When

is essentially thefour dimensional Ashtekar field strength, Eg. (D18) is inserted into Eq(D14), the result is

since theC tensor is self-dual, and in empty space the Weyl

tensor is the full Riemann tensor: C,=iFese? . (D19
(WEAB=ghagBbe . (D11))  This is not quite Ashtekar form, because the triads must be

densitized. Also, the index can equat only, because of the
The four-dimensional field strengtHé)F may be replaced gauge condition$D15) and(D16). The final result igfor Cg
by 3+ 1 quantitiesk by using standard formulas: andC; also, since they are calculated similarly
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c _iF+Ed /(Z)E APPENDIX E: CONSISTENCY OF THE BPR
17 zd=+ '
CONSTRAINTS

This appendix calculates the commutators between the
Cs=iF, E4/?E, BPR operators and_ the scalar constraint. The formalism L_Jsed
is geometrodynamicdl7]. One starts from the three-metric
gij and canonical momentum', gauge-fixes two canonical
— airs , %) and , ™% to zero, and then carries out
Ca=F,/2E. (D20) 2 cangﬁ(izcal trznsforgrﬁion tcz)) a set of four variatle®, B,
W with canonical momentar,, 7, mg coshW, and .
Note the unexpected canonical paitrg coshW,B). Also,
(?E is the determinant of the22 XY subblock of the tetrad  since the constraints contaif* more often thanA, it is
matrix. The results fo6= — 1 are the same, except for over- convenient to useit,e”*,e”) rather than ¢,,A) as the
all phases, and interchange #fand — everywhere. canonical pair. It may be helpful to note that in the linearized
In the case that the wave is unidirectional, the resultdimit the variablesA, D disappear, while the variabl& W
(D20) are consistent with the BPR constraints. For examplefepresent the two polarizations of gravitational radiation. In
if the wave is right moving, then the principal vectorks ~ terms of these variables the metric is
_assoc_iated with the _te_nsﬁrl. _From Eq.(_19), A, vanishes, dsZ:{[—(N’)ZJr(NZ)Z]dt2+ZNZdzdt+d22}exp(D—A/2)
implying that(C; is finite, while) C5 vanishes.
TheC; of Eq.(D20) were calculated in a specific basis. In +e”[e® coshWwdxX—2 sinhwdxdy
particular the factors o_fz)E in Eq. (D20) are basis depen- +e B coshwdy?]. (E1)
dent, and will change if the basis is changed. For example,
suppose one shifts from the tetrad basis, &9), to a basis Two constraints survive the gauge fixing: the scalar con-
in which k? is affinely parametrizecdkbka;bz)\ka, N#0). straintCg and the constraint, generating spatial diffeomor-

Then the®®E factor inC, disappears, replaced by a factor of Phisms along:

EZ. _Could such_a chaqge of _basis make kinemz_atical, Cs=2(eM),,,—(eN),,D,,— male™™),,mp
physical, or consisten{Kinematical,C; commutes with the A 5 )
Gauss and spatial diffeomorphism constraints; physical, +e"[(B,; coshW)“+(W,;)]/2
commutes with all the constraints; consistent, the commuta- +e A (mg)2+ (my)2]/2, (E2)
tor (C,, constraink is proportional toC,. Consistency is
relevant only ifC; is to be set equal to zefo. C,=—2(mp),,+ (N, ,ma(e™™),,+D,,mp
It is unlikely thatC, or any transverse operator could be
made consistent or physical. Gravitational radiation is +B,, coshWmrg+W, . (E3

closely identified with transversality only in the linearized . .

theory. In the full classical theory, scattering of two trans-! Will not check explicitly the commutator with th€, con-
verse waves produces@; Coulomb componerftl6]. Pre- straint, since the commutator is trivially consiste[BPR
sumably, then, the commutator or Poisson brackets of an§mplitude.C;] ~d, (BPR amplitudg, just what one would
purely transverse operator with the Hamiltonian will not be®XPect, sinc&, generateg diffeomorphisms. In fact, since
especially simple, even in the classical thedfhis is one the BPR amplitudes are scalar densities, their integral bver

reason why the main body of the paper concentrates on th#ill commute withC, . _ _ , o
BPR operators, rather than the Weyl! tensor. . At a Iat_er pomt in the dlscu55|_on I will need to eliminate
Although it is unlikely that any transverse criterion could time derivatives of A,D,... in favor of momenta
be made physical or consistent, a kinematical criterion for"A:7Dp, - - - by using the classical equatlor_ls of mphon for
transversality should be feasible in some cases and usefl,D. ... . These follow from the Hamiltonian, which is a

for example, to monitor the amount &, amplitude present Sum of the above constraints.

initially, for either caseC;=0 or C;#0. One could rescale

C, by change of basis, until it became density weight unity H :j dZN’'Cg+N?*C,]+S.T. (E4)
and then integrate it over; the resulting expression would

commute with the diffeom_orphism _constraint._ Itis _Iess clearg T genotes the surface term, which was worked o(i7]n
how to make an expression that is Gauss invariant. If they il not be needed explicitly here, since it does not con-
wave were unidirectional, one could multip§,(z) by a  yihyte to the classical equations of motidw! is not quite

holonomy stretching froma to the right-hand boundarflux 6 syl lapsél (and Cs is not quite the usual scalar con-
tube open to the right Since the wave is right moving, no strainy:

signal has reached the right-hand boundary as yet, and the

boundary condition on the Gauss smearing function is flat N’ =N/, (E5)
space,0Ng=0. This means the Gauss constraint does not

have to commute witlC; at the boundary, and the flux ex- In the planar case this renormalization of the scalar con-
iting through the right boundary causes no problems. | do nostraint allows the constraints themselves to be consistent;
know how to handle the scattering case, in which waves ruthat is, a commutator of two constraints is always a sum of
in both directions. constraintq 8].



1006 DONALD E. NEVILLE 57

I now have the constraints; the next step is to calculate the 0=[d;+(N'—N?)4,]A
BPR unidirectionality constraints in terms of the D, B, W , )
variables and their conjugate momenta. One must compute =[d+(N"—=N?)d,]B
the Lie derivatives of the four-dimensional quantitigg, =[3,+(N' =N a,]W. (E11)

along the direction of the BPR Killing vector equati¢h3)
for right-moving waves, and set these derivatives equal t
zero. In the Rosen gauge equatid®) these equations are
easy to solve.

The only non-trivial components are the transverse spac
space components, which obey

?have dropped primes onandt.

The constraints of EqE11) are still second order, but it
é'g, straightforward to eliminate the time derivatives in favor
of the momenta, by using the classical equations of motion
a={q,H} to derive
d,9ap=0,a,b=x.y. (E6)

- . . O:(eA),t_NZ(eA),Z‘f‘N’WD,
The two Killing vectors of equatioril3) therefore give no

new information in the Rosen gaudgand therefore in any 0=B,,—N?B,,— N’ mge~A/coshW
gauge, since we know already that one of the five BPR ’ 'z ’
Killing vectors isd, . Something similar happens in the Ash- 0=W,,—N?W,,— N’ mye . (E12

tekar formalism, where Edq16) for the tetrads gives no new

information about the tetrads, but merely determines the Lor(Remember thatre coshW is the momentum coniugate to
entz transformatioh.. Note that we would be almost done at B Jug

this point, if we were working in a covariant, second orderB') El|m|nat|ng the time derlyatlves b(_etween E_QEll) and .
formalism (g,,, and 4,g,,, as variables, rather thag), and (E12 gives the BPR constraints for right-moving waves, in

S first order form:
mjj, i,j=space. It would only be necessary to transform
Eqg. (E6) from Rosen coordinatesu(v) to a general gauge
(z',t"), and this is easy. The transverse space-space compo-
nentsg,, are scalars under the transformation; it is only

0=mg+B,, coshwWé,

necessary to transfor@), . 0=my+W,,e*,
Since it is so easy to do the calculation in a covariant
second order formalism, | will continue with this formalism 0=—mp+(eh),,. (E13
a bit longer. Shift from the Rosem,, to A, B, W, andD as '
variables; Eq(E6) becomes For left-moving waves usg,, in place ofg,, in Eq. (ES),

replaceN’ by —N’ in Eq. (E11), and change the sign of all
z derivatives in Eq.(E13). One reassuring feature of Eq.
The functionsg,, contain onlyA, B, andW in the Rosen EE13) Ls theirdgauge independence. All factorshf and N*

© h there i trainD=0. In factD i ave dropped out. . .
gauge; hence there Is no constraiy nac 'S Now both the scalar constraint and the BPR amplitudes

identically zero in the Rosen gauge. Sinbeis totally an h b qi trod ical variabl d all
artifact of the gauge transformation from Rosen to general ave been expressed in geometrodynamical variables, and a

coordinates, it can depend on batrando. that remains is to commute the constraint equati®) with

: the amplitude equatiofE13. The first two amplitudes of
Next, transformy, to general coordinates. Note that Eqg. (E13 are the ones which give difficulties. For example,

9,A=3,B=3d,W=0. (E7)

0=g,,=3,X"*3,X""g,,,
[mw+W,,e4,Cq(z')]
=(9,t")[ = N2+ (NH?]+2d,t' 3,2’ N*+(39,2')?,

(E9) =[—ihdé(z—2'),, +ihé(z—2")e Pmp]

—j _7"\a" A Ay
where the second line follows from E6E1) (after priming ihd(z—2")e “mw[(e7),,~ mp]
thez,t variables in that equationThe second line is a prod- +i%8(z—2' )tanhWe A[(7g)2— (e*B,, coshW)?].
uct of two factors, so that (E14

N’d,t"'=N?,t'+4,2', (E9)
The right-hand side of this commutator is of the correct form
where | have chosen the root that reduces correctly in théBPR amplitudes to the righexcept for the square brackets

Rosen limitN’ — 1, N?>-~0. Now note that in the last line. This has them)?>— (q,,Q)? form discussed
, , following Eq. (2). As shown there, this term cannot be re-
Iy =0, + 3,2 9y written with BPR amplitudes to the right, so that the strong

form of consistencyBPR amplitudes annihilate the wave-
functiona) does not hold.
=9y +(N'"=N?)d,, (E10 Before going on to consider the weaker form of consis-
tency, note that this troublesome term is multiplied by a fac-
where the last line follows from EqE9). From this result, tor of tanhW, so that if the wave is linearly polarized/\(
Eqg. (E7) becomes, in the general gauge, =w=0), one might suppose that the BPR constraints are

Ocz?t,-f—[&uz’/&l,t]’&zr
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consistent. However, the next commutator to be studied wiltonsistency of the weaker condition, one should examine an

suggest that a unidirectional wave is unstable even if initiallyamplitude which cannot fluctuate in sign. The amplitude

linearly polarized, since a non-zew can be created out of (my(z)+W,,e")? is the simplest choice, because its com-

the vacuum. mutator can be computed in terms of the known commutator,
As discussed in the Introduction, in order to check for theEq. (E14):

[(mw(2)+W,e%2,Co(2')]= (myw+ W, N[ mw+W,e4,C(2") ]+ [ mw+W,,e*,C(2) ](mw+W, e
=—2ih8(z—2'), (mp(2) + W, € 2+i%8(z— 2 ) 3 mu(2Z) + W, ,&2)2
—2ih8(z— 2" ) (mp(2) + W, 2mp— ik 8(z— ") mwe” Ayt W, e%)

+(mw(2) + W, N mwe A (eM),,— mp]+-- . (E19

The terms indicated by the ellipsis contain theHencew is unlikely to fluctuate in sign even if the left-
(mg)?— (€"B,, coshW)? term in Eq.(E14) and will presum- moving BPR amplitudes fluctuate. Therefore the
ably average to zero. The first two terms of the commutatof my+ W, €)% term in Eq.(E15 is unlikely to average to
resemble the corresponding free-field QED commutatorzero, and the weaker condition also suggests that the amount
which has no production of left-moving waves from the of left-moving BPR amplitude will change with time. Note
vacuum. Several terms are cross terms, products of two BPRat this term creates non-zeYd amplitude even when the
amplitudes, rather than perfect squares. Again, these lines aveave is initially linearly polarizedW=0 initially).

likely to average to zero. This leaves a term on the second It is instructive to repeat these heuristic arguments for the

line from the end, which is a perfect square timgs. Un-  interacting QED case, where Schwinger has worked out the
less the latter function fluctuates, this term is unlikely tocorrect answer. The condition for no left-movirepolarized
average to zero. wave is m,+A*,,=0. The QED Hamiltonian in radiation

At least in classical theorygp is unlikely to fluctuate in  gauge ig39]
sign, in the manner that left-movingg, =, B, and W
fields fluctuate, becausep is quadratic in those fields. For H:f dZf (m )2+ (AX,,)2—2A%*+---1/2, (E17)
orientation, consider calculating in classical theory, in a
conformally flat gaugé*=0, N’ = 1. Since two gauges have \yhere the ellipsis indicates terms which commute with the

been fixed, it is necessary to eliminate two coordinates an . X Ty
their canonical momenta. It is natural to elimin@&eand D PR amplitude, and”=eyy’y is the usual current. Then

and keep the coordinat&andW, since these represent the [+ A%, H]= 1[0, et AX,,) + 1], (E18
two polarizations in the linear limit. If the wave is unidirec-

tional, it is consistent with the equations of motion in this [ (m,+AX, )2 H]=iA[ d,(my+ AX,,)2+ 23+ AX,,)].
gauge to choosB = m,=0. Thene” and 7w may be elimi- (E19
nated by solving the constraintE3). The constraint which

determinesmp is C,=0. This constraint relatesn(;),, to a  The interaction adds additiondf terms which arenot per-
difference ofsquaresof BPR amplitudes for left- and right- fect squares. One expects

moving waves: (I~(xta*n), (E20
— —A 2
C,=—2(mp).,+e (B, coshWe'+ mg)?/4 wherey and 7 are positron and electron two-spinors, and the

— e A(B,, coshWe*— mrg) 24+ e~ AW, e + ) 2/4 right-hand side has the correct .pa'rity be_cause the p_article and
antiparticle have opposite intrinsic parity. The spin of the

—e A(W,,e"— my)?/4. (E16  vacuum should average to zero.
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