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Nonperturbative evolution equation for quantum gravity
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A scale-dependent effective action for gravity is introduced and an exact nonperturbative evolution equation
is derived which governs its renormalization group flow. It is invariant under general coordinate transforma-
tions and satisfies modified Becchi-Rouet-Stora Ward identities. The evolution equation is solved for a simple
truncation of the space of actions. In+2 dimensions, nonperturbative corrections to fdunction of
Newton’s constant are derived and its dependence on the cosmological constant is investigated. In 4 dimen-
sions, Einstein gravity is found to be “antiscreening;” i.e., Newton’s constant increases at large distances.
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[. INTRODUCTION butions of all field modes with momenta smaller tHaare
suppressed. In this manngy, interpolates betwee (for
In many of the traditional approaches to quantum gravityk— ) and the effective actiofi (for k—0). The trajectory
the Einstein-Hilbert term has been regarded as a fundamentil the space of all action functionals can be obtained as the
action which should be quantized along the same lines as thgjution of a certain functional evolution equation, the exact
familiar renormalizable field theories- in flat Spa-Ce, such A¥enormalization group equation. Its form is independent of
QED, for examplg1]. It was soon realized that this program the actionS under consideration. The latter enters via the
is not only technically rather involved but also leads t0 Seqpjtial conditions for the renormalization group trajectory; it
vere conceptual difficulties. In particular, the nonrenormallz—is specified at some UV cutoff scale 'y =S. If Sis a truly
ability of the theory hampers a meaningful pert“rbaﬂvefundamental action) is sent to infinity at the end.
analysis. While this does not rule out the possibility that the The renormaliza’tion group equation can also be used to
theory exists nonperturbatively, not much is known in thisevolve effective actions, known at some poikt towards
direction. However, it could also be argued that gravity, as . . . L
we know it, should not be quantized at all, because Einsteiﬁma”er_ scalek<A. In this caseA is a _ﬂxeq,_ finite scale.
In this framework, thgnonrenormalizability of a theory

gravity is an effective theorf2] which results from quantiz- . o
ing some yet unknown fundamental theory. If so, thelS S€en as a global property of the renormalization group

Einstein-Hilbert term is an effective action analogous to theloW for A—c. The evolution equation by itself is perfectly
Heisenberg-Euler action in QED and it should not be comfinite and well behaved in either case, because it describes
pared to the “microscopic” action of electrodynamics. only infinitesimal changes of the cutoff. _ _

It seems not unreasonable to assume that the truth lies !N this paper we shall give a precise meaning to the notion
somewhere between these two extreme points of view, i.e0f @ scale-dependent gravitational actibglg,,,] and we
that Einstein gravity is an effective theory which is valid Shall derive the associated evolution equation. We employ a
near a certain nonzero momentum sdal@his means that it formulation in which the metric is the fundamental dynami-
arises from the fundamental theory by a “partial quantiza—Ca| yanable. AIterr_lauvg approaches basgd upon the spin con-
tion” in which only excitations with momenta larger than ~ N€ction and the vielbeins are also possible, but they will not
are integrated out, while those with momenta smaller than P& considered here. By using a variant of the background
are not included(The interpretation of the Einstein-Hilbert 92uge technique we are able to mdkgg,,,] invariant un-
term as a fundamental or an ordinary effective action is reder general coordinate transformations. This property is very
covered in the limit&—« andk—0, respectively.An “ef- important if one wants to find nonperturbative solutions of
fective theory at scali,” when evaluated at the tree level the evolution equations in terms of simple truncations of the
should correctly describe all gravitational phenomena whicrsPace of actions. Our construction b{g,,,] parallels the
involve a typical momentum scale acting as a physical definition of the “effective average action4,5] which was

H 1
infrared cutoff. Only if one is interested in processes withWidely used recently6-9]." The remarkable successes of

momentak’ <k, do loop calculations become necessary;this method in flat space are partly due to the fact that it

they amount to integrating out the missing field modes in thé/loWs for nonperturbative solutions when no small expan-
momentum intervalk’,k]. sion parameter is available, and thgthas a built-in infrared

We shall regard the scale-dependent action for gravityCutoff. Therefore the low-momentum behavior @imos}
henceforth denoted’,, as a Wilsonian effective action massless theories can be mvestlgated_even in cases W_here IR
which is obtained from the fundamentéicroscopic”) ac- divergences render standard perturbation theory inapplicable.

tion S by a kind of coarse-graining analogous to the iterated FOF the purposes of quantum gravity, both of these fea-
block-spin transformations which are familiar from lattice

systemg3]. In the continuum]" will be defined in terms of

a modified functional integral ovex™ S in which the contri- IFor related work using similar techniques see REf8, 11, 13.
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tures are very welcome, of course. In fact, in quantum coseonsider the following scale-dependent modification of the
mology one of the most intriguing questions is how quan-generating functional for the connected Green’s functions
tized Einstein gravity behaves at extremely large distances. It L L
has been arguefl3,14 that in the presence of a nonzero exp{Wi[t*", 0", 0, B*" 7,1 9 uul}
cosmological constant there should be very strong renormal-
ization e_ffects in the infr_ared Which_ might even provide_ a ZJ’ DhWDC”DC_M exp{_s[g_Jr h]—ng[h;a
mechanism for a dynamical relaxation of the cosmological
constant. The method which we are going to develop would —— —
be ideally suited to study problems of this type. Since only —Sgfh,CC;g]-AS[h,C,C; 9]~ Ssourcd- (2.2
long distance physics is involved here, there are good - , i i .
chances that this can be done without knowing the microf€re SLy]=S[g+h] is the classical action which is as-
scopic theory of quantum gravitySee Ref[2] for a related sumed to be invariant under the general coordinate transfor-
discussion. mations

The “effective average action” used in this paper should
not be confused with the closely related “average action”

which was introduced earli¢d.5]. The former obeys a more \ nare » denotes the Lie derivative with respect to the vec-
convenient ev_olut|0n equation while the Iatte_r has a SIMPl&qr field v, For the time being let us also assume t8as
interpretation in terms of field averages. Their precise relabositive definite.
tion is explaingd _in Ref{16] The average action has been Furthermore,S;; denotes the gauge-fixing term for the
used in a gravitational context in Ref4.7, 18, but no exact LY —
evolution equation was formulatédThe evolution of the ~9auge conditiorF,(g,h)=0,
effective average action in a gravitational background was 1
studied in Ref[22] in the context of Liouville field theory. Sylh;gl=— f ddx\/EgMVFMFV (2.4)
For a review of the effective average action and its applica- 2a
ton to Yang-Mills theory we refer tp23].

The remaining sections of this paper are organized as fo
lows. In Sec. Il we give the definition df, and derive the ghostsC* andC,,:
exact, nonperturbative renormalization group equation. In
Sec. lll we establish the modified Warq identities satisfieq by S, {h,C,C:g]=— K*lf ddxgaw i
I', and we show that the conventional diffeomorphism J a dhop
Ward identities are recovered in the lirkit- 0. In its general —
form, the evolution equation describes a flow on the infinite XLc(Gapthap)- 29

dimensional space of all action functionals. Approximate . . .
P PP The Faddeev-Popov actidgy, is obtained along the same

nonperturbative solutions can be found by truncating th(?. iy Mills th i i ] P
space of actions, i.e., by projecting the flow on a finite- INES as In yang-iilis theory: one applies a gauge transfor-

dimensional subspace. In Sec. IV we investigate thdnation
“Einstein-Hilbert truncation” where only the operatofs/qg

andf JgR are retained. In Sec. V we determine the resulting

scale dependence of Newton’s constant and of the cosmo-
logical constant. As an example, gravity int2 and in 4
dimensions is discussed in detail.

57/.LV: Ev yuvzvpﬁp'}//.wdl_ auvpypv+ ayUp‘}’Mp ’ (23)

|§md Syn is the iction for the corresponding Faddeev-Popov

5h,u.v: £U Yur= ‘CU( g/.w+ h,u.v)
59—;“/:0 (2.6

to F, and replaces the parameters by the ghost fieldC*.

The integral oveC* andC, provides a representation of the
Faddeev-Popov determinant [d#,/5v"] then. In Eq.(2.5

In this section we introduce the effective average actionwe introduced the constafgroportional to the Planck mass
for Euclidean quantum gravity id dimensions and we de- o
rive the exact renormalization group equation which governs k=(32wG) 12, (2.7
its scale dependence. o

We are going to employ the background gauge fixingwhereG denotes the bare Newtonian constant. In principle
techniqueg[ 24,25, which means that we decompose the inte-our construction works for an arbitrary background gauge
gration variabley,,(x) in the functional integral over all fixing. It is particularly convenient to use B, which is

metrics according to linear in the quantum fielth,,, :

Il. THE RENORMALIZATION GROUP EQUATION

V(0= 80 1, (%) 2.1 F,=vVZkF[g]h,g. 2.9

Hereg_w is a fixed background metric so that the integrationWe shall mostly employ the harmonic coordinate condition
over y,, may be replaced by an integration ovey,. We  for which ]-“ij is the following first order differential opera-

tor constructed frong ,,:

2 N -1
For recent work on related renormalization group flows see also FaB_ sFqerD . — — qeAD 29
Refs.[19, 20, 21. w = 0u97 D, 507D, 2.9
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The covariant derivativd , involves the Christoffel sym-

bolsﬁv of the background metrig_ﬂ,,. For the gauge fix-
ing (2.8) with (2.9) the ghost action reads

Ssource:_J ddX\/g_{t'“’Vh’uv-l-o'_MC'“-i—o"‘C_M
+B*"Le( it hy) +7,C79,CH (219
S h,C,Cig]= —\QJ’ ddX\/EC#M[g,a“VCV, The sourcess”” and 7, couple to the Becchi-Rouet-Stora

2.10 (BRS) variations ofh,,, and C*, respectively. In fact, it is
' not difficult verify that S+ Sy+ Sy, is invariant under the

with the Faddeev-Popov operator BRS transformationse is an anticommuting paramejer
M(g.91*,= 9" g"Ds(8,,D4+9,,D,) SNy =gk Loy =ex 2Le(Quth,,) (217
_?G@AD_Agchp . (21]) 589_/“/:0

The essential piece in Eq2.2) is the IR cutoff for the

M=o, 2CY M
gravitational fieldh,,, and for the ghosts: 0.Ci=ex 7C10,C

1 — _ 58C_:8(CMK)71F .
ASh.C.Cigl= 52 [ d*xgh, RETgTh,, | e m
Given the functionalV,., we introducek-dependent clas-
— _ sical fields
+\QJ dx\gC,RITgICH. (2.2
— 1 W1 W 1 W,
The cutoff operator®¥® and RY" serve the purpose of dis- huv:T—&uw 3 :T—(s— ' ‘f;L:T—(;UM '
Lo i ) g g o0, g
criminating between high-momentum and low-momentum (2.18
modes. Eigenmodes of D? with eigenvaluesp?>k? are '

integrated out in Eq(2.2) without any suppression whereas 5nq we formally solve for the sourcet#‘(,a“,a_u) as func-

modes with small eigenvalugs’<k? are suppressed by a . . e wv oo
kind of momentum-dependent mass term. The operatortsIonals of the fields h’”’g;gﬂ) and of (6,739 ,,).
R and RE“ describe the transition from the high- Then the Legendre transforfy, of W, depends on the clas-

momentum to the low-momentum regime. Either of them hasical fields and parametrically g8, randg:
the structure

Fuh 6 E8mal= | ax Vol R, o8t 0 )

R g]=ZKk?RO(—D?/k?), (2.13
where the dimensionless functi®i® interpolates smoothly ~Wylt,o,0;8,7,9]. (219
betweenR(®(0)=1 and lim,_...R®(u)=0. A convenient - _ , _
choice is, for example, Ey definition, the effective average actidh obtains from
I'y by subtracting the cutoff actiod, S with the classical
RO(u)=u[exp(u)—1]"*. (2.14  fields inserted:

The factorszy are different for the graviton and the ghost T h,& & B mgl=Th.é & B mgl—ASh.6€.9]
cutoff. For the ghosg,=Zz%"is a pure number, whereas for e e R
the metric fluctuatiorZ,= ZJ"®is a tensor constructed from (2.20

the background metrig_,w. In the simplest case one would

take It is convenient to define the metric

(ZEFaV),qu(r:a.Lp?a'ZgraV. (215) gMV(X)Egﬂv(X)+ h,uv(x) (221)

In Sec. IV we shall employ a slightly more refined choice.as the classical analogue of the quantum meftic=g,,,

There we shall also explain how the factad and zg®  +h,, and to considef’y as a functional ofy,,, rather than

should be chosen. Note that the cutoff acti@nl?) is qua- h,,:

dratic in the quantum fieldg,,, C# andC,. This is an _ _

important prerequisite for obtaining a tractable evolution D949, 6 &8, 7]

equation later on. The requirement of a quadrat& forces — — —
Erk[g;.w_g,u,V!gﬂa‘f,u,;BvT;g,u.V]' (222

us to use the covariant Laplacigb®=g*'D,D, in the
backgroundmetric as the operator which discriminates be'The main virtue of the background technique employed here
is that the functional’ is invariant under general coordinate

tween high-momentum and low-momentum modes.
In Eq. (2.2) we coupledh,,,, C* andC,, to the sources transformations where all its arguments transform as tensors

t*", o, ando*, respectively: of the corresponding rank:
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T JD+L,P]=T[D], &= QL ERTE BV LA The derivation of the evolution equation by proceeds
d »PI=TWd ] {9 G & €438 7 as follows. Taking a derivative of the functional integral
(2.23 (2.2) with respect to the renormalization group “timet’

. =In k one obtains, in matrix notation,
Note that in Eq.(2.23), contrary to the “gauge transforma-

tion” (2.6), the background metric also transforms as an or-

1 ~ — ~
dinary tensor fieldsg ,,= £,9,,,. Equation(2.23 is a con- —aWi=7 Trl(h®h)(3iR)mm ]~ TT(C®C)(diRW ¢el-

sequence of (2.27
WL T+ L, =W ], T={t"", "0, 7,:9 .} HereR, is a matrix in field space whose non-zero entries are
(224) (ﬁk)ﬁ_‘éﬂ”: KZ(REraV[a),quU (2 2&
This invariance property follows from E@2.2) if one per- R s ’
forms a compensating transformation on the integration vari- (Rk)gc:ﬁREh[ gl.
ablesh,,, C# andC,. At this point we assume that the

The right-hand sidéRHS) of Eq. (2.27) can be expressed in

measure is diffeomorphism invariant. X ) ,
terms ofl", by noting that the connected two-point function

The general coordinate invarianceldf is of major prac-
tical importance because if we knowa priori that no

symmetry-violating terms are generated during the evolution Gij W Y)=(0C0X; (V) = i) ¢i(Y)

it is sufficient to use truncations which consist of invariant 1 S2W,
combinations of the fields only. The conventionally defined = . kj (2.29
effective action of the metrid;[g,,,], obtains in the limit of g(x)g(y) 9'(x)83(y)

a vanishing IR cut_off by setting the ghosgsand 7 to zero
and by identifyingg ,,, with g,,,,:

F[guv]:lm I‘k[g,u,y :gﬂy,O,O;qu- (225) F(Z)IJ(X y)_

and

5T, 2.30
\/ g(y 5<P|(X)5<P,(Y) .

As a consequencel'[g,,] is invariant under 8g,,

=L,9,,- Even though we are mostly interested in the func-are inverse matrices in the sense that
tional

_ O(x—2)
I {9,,]=T{9,,.9,,,0,0;0,0 (2.26 f dYVa(y)G; (x )T (y,2)= 4| el
9(2)
which depends og,,, only, an exact renormalization group (2.3)

equation can be formulated only if one keeps track of the

dependence og & andg as well. For the derivation of the Here we used the shorthand notatign={h,C, ct J
(modified BRS Ward identities satisfied by, the depen- ={t,o,o} ande;={h,¢, £}. Thus one obtains the evolution
dence onB and 7 must be retained in addition. equation

ol h.& € B,m9]=

I\)Il—‘

T+ Rkwaﬁk)ﬂ— ST+ RI7 — (TR + RO HoORI . (2.32

If one evaluates the RHS of this equation in terms of position-space matrix elemenﬁfﬁhimdefined by a formula similar

to Eq.(2.30 and the integration implied by “Tr” has to be interpretedfat’x v g (x). The matrix elements in the ghost sector
are defined in terms of left derivatives, e.g.,

1 5 1 6T,
Vaix) %) \g(y) 6&,(y)

(T g0 = (2.33

For any cutoff which is qualitatively similar to EqR.14) the traces on the RHS of E(R.32 are well convergent, both in the
IR and the UV. By virtue of the facto&tlik, the dominant contributions come from a narrow band of generalized momenta
centered aroundd. Large momenta are exponentially suppressed.

Solving the evolution equatiof2.32 with the appropriate initial condition at the UV cutoff scale—« is tantamount to
computing the original functional integré2.2). In order to determine the correct initial vallig, we consider the following
integral equation satisfied Hy, :
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- — - — g — oy
exp{—Fk[h,g,g;,B,T;g]}zfDhDCDC ex —S[h,C,C;,B,T;g]an d;j (h,,—h,,) o~
2%

ex{—ASh-h,C-¢C-£9]h. (239

H(ergn) T A, )
T

Here
=S+ S+ Sy J dx\g{B* Le(a,,+h,,) + 7,C79,CH} (2.35

is expressed in terms of the “microscopic” fieldls,C,C_). Equation(2.34) was obtained by inserting the definitionIof into
Eqg. (2.2 and using

T — 5T — T
R T SN 239
sh,, 8¢, 23

The crucial observation is that fdt— the last exponential in Eq2.34) becomes proportional to &functional which
equates the quantum fieldk,C,C) to their classical counterparts:

e S ~ s[h—h]s[C—¢£]5[C— &]. (2.37)

k— o0

As a consequence, the effective average action at the UV cutoffreads

FA[h_vgazﬁlT:a:S[g_+h_]+sgf[Tg]+ng{h_1§l§1—g]_ ddX\/a_{ﬂMV‘C§(g_,uv+h_,u,v)+ T,u,gvayglu}' (238)

It is this actionI", which has to be used as the initial con- zp? where p? is a positive eigenvalue of some covariant
dition for the evolution equation. We note that at the level ofkinetic operator, typically of the form-D2+R terms For
the functionall’,[g] Eq. (2.39 boils down to theories withS>0, the wave function renormalizatiar, is
positive (at least for largek). In this case the general rule
[5,6] is to define the constar, in the cutoffR,, Eq.(2.13),
as Z=z, because this guarantees that for the Ilow-
) : o ) — momentum modes the effective inverse propagalfé‘f)
A_s I'\e’ involves denvauyes with r_espect tn,, at fixedg,, _+R, becomeg,(p2+k?), as it should be.
it is clear that the evolution equation cannot be formulated in - The important question is how, should be chosen i,
terms ofI", alone, however. is negative. If we continue to usg,=z,, the evolution

Up to now we assumed that the fundamental acBos ~ €quation is perfectly well defined because the inverse propa-
positive definite and the Euclidean functional integia) ~ 9ator —|z|(p?+k?) never vanishes, and the traces of Eq.
makes sense as it stands. It is well known that this is not th&2-32 are not suffering from any IR problems. In fact, if we
case for the Einstein-Hilbert action, for example, because th@ite down the perturbative expansion for the functional
conformal factor has a “wrong sign” kinetic term. Clearly it trace, for instance, it is clear that all propagators are correctly

would be desirable to have an evolution equation which Cagﬂ:);):feisnsége IR, and that loop momenta smaller thaare
be applied in such cases as well. It is quite remarkable there> : : _ _ 2
fore that the renormalization group equatith32), with a —k?)ni;rtlreoc(j)lzzgrs gagdhr';convse ssirjleZIEJTaritZk, {gtiekr; g\ﬂ(?he
properl)_/ .Chosef.‘ gutoff, s wellldefined evenSifandFk are  cutoff fails to make trﬁ)e theory Ilg finiteyir?this c’ase.

not positive definite. To see this, let us look at the first trace At first sight the choiceZ, = — z, might have appeared

on the RHS of Eq(2.32 and let us concentrate on the con- more natural because only ifZ,>0 is the factor

tribution of a _flxed mode(,b co_ntameo!zgn t_he r_netrlc. We exp(—AS~exp(— [R.¢?) a damped exponential which sup-
assume thatp is an eigenfunction of’}”’ with eigenvalue presses the low momentum modes in the usual way. In this
paper we shall nevertheless adopt the rgke z, for either
sign ofz,. We shall see that at least for the Einstein-Hilbert
3strictly speaking Eq(2.38 is correct only up to local terms truncation of Sec. IV the evolution equations are well de-
which at most change the bare parameterS.iBecause the value fined and consistent even though it is difficult to give a
of the bare parameters has no physical significance anyhow, w@eaning to the functional integral itself. In the cagg=2z,
ignore these terms here. <0 the factor expt [|RJ#?) unavoidably becomes a grow-

T'A[9,,]1= 50,1 (2.39
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ing exponential and it might seem that this enhances rathdransformationg2.17). Therefore the BRS variation of the
than suppresses the low-momentum modes. However, astal actionS;,=S+ S+ Synt AxS+ Ssourcesl€CEIVES CONtri-
suggested by the perturbative argument above, this conclisutions only from the cutoff and the source terms. If we
sion is probably too naive. Moreover, if one invokes theapply a BRS transformation to the integral definMf and
usual prescription of rotating the contour of integration overassume that the measure is invariant we obtain
¢ so that it is parallel to the imaginary axis, both the kinetic
term and the cutoff lead to damped exponentials.

Furthermore, it is important to note that the constructions (0 Ssourcest 9:4kS) =0, 3.1
in this section can be repeated for metrics on Lorentzian
spacetimes. Then one deals with oscillating exponergid)s
and for arguments like the one leading to E2.37) one has
to employ the Riemann-Lebesgue lemma. Apart from the
obvious substitution¥',— —il",, Rg— — iRy, the evolution
equation remains unaltered. F8g=z, it has all the desired <(9>Ee—ka DhDCDCOe ™ Su, (3.2
features, and, <0 seems not to pose any special problem.

where

lll. MODIFIED WARD IDENTITIES AND CONSISTENT Our goal is to convert Eq(3.1) to a statement about the
TRUNCATIONS average actioll’, . Because the BRS transformati¢hl17) is

We mentioned already that the classical action plus th&ff-shell nilpotent when acting oh,,, and onC* (but not on
gauge-fixing and ghost terms are invariant under the BRE,) one has

5, Sunwest= — k2 | VG L8110~ 0,C70,C4— e Mo (). @3

If we take the expectation value of E(.3) and expressV, in terms ofI", we find

(6, Seonc) = fdd ory ory oIy or'y e 5 3.4
+——+—=Y,, )
Voo Lon,, 08 oe* o7,] 2
with
1 SAS oI, SAS 6y,
Efdd T( : 5,8:v+ 551; 57) . \/—Fn(g h)REg" ¢ (35
Here we defined

and we exploited the equation of motiQﬁStot/BC_ﬂ>=0 which can be cast in the form

1 o — 1 o

— — V29— —|I\{h.& & B.m9]=0. 3.7
Va(x) 8¢, Va(x) 9"
The variation of the cutoff terms gives rise to

& —~
(6:0,8)=— ;z(Yk'*‘Yk). (3.9
with

5T 5T
Yi=«?2 Tr| (RI@)wrpo((2 4] Rk)h —v2 Tr| R X

(F(2)+Rk)§mp
“ VaseNgop Vasegor,

+2a7 M TREFL (TP + RO ], 3.9
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wheregpz{h_,g,g_} is summed over. From E@3.4) and Eq.(3.8) we obtain the Ward identities in their final form:

_Yk . (31@

1 or, or) ory or)
[ o [ i i ol ati]
sh,, OB*" o o1,

Vg
Equation(3.10 has to be compared to the ordinary gravitational Ward iden{iiléswhich are similar to Eq(3.10 but with
a vanishing RHS. In fact, the contributiory is due to the cutoff and therefore it vanishes in the likit0 becausdr,
~k2—0 in this limit. Hence the standard effective actionJimg I, is guaranteed to obey its usual Ward identities, and BRS
invariance is restored fdt—0.

Because the Ward identit{3.10 is derived from the same functional integral as the evolution equation, it is automatically
satisfied for the exact solution of the evolution equation. For approximate solutions of the evolution equation their consistency
with the Ward identity is not guaranteed, and one may even usé€3Ed) to judge the quality of the approximati¢h2,22.

The most important strategy for finding approximabeit still nonperturbativesolutions to the evolution equation is to
truncate the space of action functionals. Typically one works on a finite-dimensional subspace parametrized by only a few

generalized couplings. As a first step towards such a truncation one can try to neglect the evolution of the ghost action. This
amounts to making an ansatz of the following form:

P0.0.6E8,71= 101+ 10,01+ S,{0- 0101+ S0~ 0.6 2101~ | 0T (B L., +7,60,8).
(3.11)

In Eq.(3.11 we pulled out the classic&,; andSy, from I'y, led to rather encouraging results alred8y6,9]. In the next
and the coupling to the BRS variations also has the samgection we shall perform an explicit calculation in this ap-
form as in the bare action. The remaining functional dependgroximation.

— . If one inserts the ansat3.11) into the evolution equation
on bm@“” andg,, . Itis further decomposed &S, +1I' (2.32 one finds the following equation for the evolution of

whereI'y is defined as in Eq(2.26 and I’y contains the T, in the subspace spanned by the ansatz:
deviations forg #g. Hence by definition 4 o o o
i o 9.91=5 T (« 219,91+ RI*[g]) ~*oRI™(g]]
I'\{g,9]=0. (312 L o
=T (- Mg, 9]+R{TgD) *aRITg]l.
fk can be viewed as a quantum correction the gauge fixing (3.19

term which also vanishes fcg_ =g. The ansat£3.11) satis-

fies the initial condition(2.38) if This equation is written down in terms of

I'fg,91=I{9,9,0,0;0,

=T [9]+Sy{9—0:0]+T{g.9]. (3.16

and it satisfies the quantum euntion of mot{8rv) exactly. I'? is the Hessian of ,[g,g] with respect tag,,, at fixed

Equation(3.13 suggests setting’,=0 for all k in a first g ,,. For the harmonic coordinate condition, the classical
approximation. In this case it can be checked that if the ankinetic term of the ghostsM, is given by Eq.(2.11).
satz(3.1)) is inserted into the Ward identit§8.10 its LHS

vanishes identically. Includinﬁk the Ward identity assumes

the form In this section we illustrate the use of E§.15 by means
of a simple example. At the UV scalé we start from the
classical Einstein-Hilbert action id dimensions,

r,=S, T,=0 (3.13

IV. THE EINSTEIN-HILBERT TRUNCATION

oT\[9,9]
d [
fdxﬁggw 50,,(X) Y. (3.149

5= —— [ dix\g{—R(g)+ 21T, 4.0

We see thal',=0 is a good approximation provided we may 167G

neglectY,. The traces which defing, amount to loop inte-  and we evolve it down to smaller scalles.A. For the time
grals, and if we think in terms of a loop expansi¥R is  being we shall not try to sendl to infinity, so the nonrenor-
certainly a higher loop effect and may be neglected in a firspalizability of the theory is not an issue here. We are going
approximation. At the nonperturbative level one can still tryto use a truncation which replaces the bare Newton constant

to setfk=0 and investigate the consequences in concret& and the bare cosmological constantin Eq. (4.1 by
examples. In Yang-Mills theory the analogous truncation hak-dependent functions
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Gy=Znk G (4.2 This ansatz is of the fornt3.16 with T, neglected and the
_ classical gauge-fixing term given by E@.4 with Egs.
and\, respectively: (2.8), (2.9 anda=1/Zy,. (Note thatF2fg,z= F**h , be-
Fk[ngZZKZZNkJ ddx\/g{—R(g)vLZ)\_k} causiDMgaﬁzo.) In ordgr to determinsa the func.tiorﬁ\,k
and N\, we have to project the evolution equation on the

space spanned by the operatqig and JgR. After having
+KZZNkf ddX\/E g“”(}'ﬁﬂgaﬁ)(}“;"gw). inserted the ansatz into the evolution equation we may set

g_w=gw so that the gauge-fixing term in E@.3) vanishes.
(4.3  The LHS of the evolution equation then reads

AT L0.91=2+ | 4G~ R(@)Zick 2042 ) .4

On the RHS of Eq(3.15 we have to perform a derivative expansion and retain only the terms proportioﬁw@t&ndf JoR.
Equating the result to Eq4.4) we can read off the 2 system of ordinary differential equatlonst@Jand}\k They have to be
solved subject to the initial conditiorg, =1 and)\A \. In this manner the renormalization group flow in the space of all
action functionals is projected onto the 2-dimensional subspace parametrizzcig \ .

In the evolution equation we need the second functional derivati\lé([qj,a at fixedg_w. We expand

Nl g+h,gl=T{g,g]+0(h)+TF*Th;g]+0(h?) 4.5
and we find for the piece which is quadratichl_)w:
r3¢h; 9= Zyx? f d\gh,,[—K#* D2+Us  The, 4.6
Here indices are raised and lowered vvg_p,,, and the tensorkK andU are given by
1 -
K“VW=Z[5§“5;+ 846,— 9" o] 4.7
and

1 - - -1 — j — — — —
U”Vp(,:Z[ég&(’;-i-(Sﬁﬁz—g“”gpo](R—Z)\k)+ E[g’“’Rpo—l— gpoR’“’]—Z[égR”(,-i-&ﬁ:R”p%—5;R“0+5;R“p]

- —[RV “AR (4.8
In Eqg. (4.8 all geometrical quantltles are constructed from the background nefmicorder to partlally dlagonallze the
quadratic form(4.6) we write h , as the sum of a traceless teni;gr and a trace part involving= g””h

T —h -15 Arvh —

h,=h,+d 9,6, 9*"h,,=0. (4.9
As a consequence, E¢1.6) becomes

- 1. — — — d—2 d—4
rﬂ”aC[h;g]zszKZJ ddX\/g|§hM,,[—DZ—Z)\k+R]h’“’—(w)qs[—Dz—Z)\kJrT R|¢
R feohe + R oot S R e 41
TRy p+ aBvu + d ¢ nv . ( . @

The equations foZ and)\_k obtain by comparing the coefficients ff/g and/gR on both sides of the evolution equation
atg,,=9,,. For this purpose we may insert an arbitrary family of metggs which is general enough to identify the terms

4 : _ v
We use the conventiorR?,,,=—4,I'} +...,R,,=R?,,, andR=g*"R,,,
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fVg and [{gR and to distinguish them from higher order terms in the derivative expansion, sugh/g&® or

f\/ﬁR’“DMD,,R, for instance. We exploit this freedom by assuming tg_gt, corresponds to a maximally symmetric space,
i.e., that

_ 1 - -
R,uvpo'zm[g,upgvo_gp,(rgvp]R

(4.11

RMV:a gMVR

From now on the curvature scal§parametrizes the family of metrics inserted, and it should be regarded as an externally
prescribed number rather than a functional of the metric. For a maximally symmetric background the quadratic action boils
down to

1 J - .
F‘k‘”a‘[h;g]=§szK2f ddx@[hw[—Dz—zchR]h#”—(W) ¢[-D*-2M+CsRlp(, (412
with
c _d(d-3)+4 c _d-4 it
T= d(d_l) ’ Sl d - ( : a

Before continuing we have to specify the precise form of the cutoff oper&gf and RE“ to be used in the evolution
equation(3.15. Both of them have the structuf@.13 whereby Z, should be adjusted in such a way that for every low-

momentum mode the cutoff combines with the kinetic term of this mode @3 + k? times a constant. Looking at E(t.12
we see that the respective kinetic terms Fﬁgg and ¢ differ by a factor of—(d—2)/2d. This suggests the following choice:

2
(ZF2) 17| (1= Py M7= — = P | Z. (4.14

Here

(Pg),,"=d1g,,g"" (4.19

is the projector on the trace part of the metric. For the traceless tenst4.E4.coincides with Eq(2.15 for Z§®'=2z,,, and
for ¢ the different relative normalization is taken into account. Thus we obtain i ted the¢ sector, respectively:

(k219,914 RE™) 7= Znd — D2+ kRO (~D?k?) — 2\, +CqR],

d-2 _
(k2T P[9,9]+RI™) 4= — g Znd - D2+ k?R©(—D?/k?)— 2\ + CgR]. (4.16

From now on we may sej =g and we omit the bars from into account any renormalization effects in the ghost action

the metric and the curvature. we setz{"=1 in RY" and obtain

The last missing ingredient for the evolution equation is .
the Faddeev-Popov operator. From E211) one obtains, at ~M+RJ"'=-D?+k’R?(-D?%k?)+CyR. (4.19
g=a,

Let us write S, (R) for th_e RHS of the renormalization
M[g,9]*,=8"D?+R*,=— 8 —D?+CR], group equation3.15 with g=g. Inserting Eq.(4.16 and
(4.1 Eq. (4.19 there, we arrive at

with S (R =Tr{{MA+CtR) "]+ Trd MA+CgR) 1]

—2 Try[Np( Ao+ CyR) 1], (4.20

ol

with

In the second part of Eq4.17) we used Eq(4.1]) for a 2 L26:(0) - —
maximally symmetric background. Since we did not take A=—-D"+k"R™(=D/k%) =2\
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N=(2Zy) 1o Zy kRO (—=D?K?)]

k’R®(-D?%k?+D?R"

1
1- 5 (k)

X (—D?k?) (4.21)

where a prime denotes the derivative with respect to the ar-

gument and

n(K)=—d; In Zyy (4.22

is the anomalous dimension of the operafgR. The opera-

tors Ny and A, are defined similarly to Eq4.21) but with
A=0 andZy=1, i.e., nn(k)=0. Equation(4.20 involves
traces of functions of the covariant Laplaciab?
=g*'D,D, acting on traceless symmetric tensa@fsl”),

scalarg* S” ) and vectorg" V" ). Because we need only the
zeroth and the first order in the curvature scalar we can ex-

pand
S(R)=Tr{{NA "+ Trd NA =2 Tr[NoAg Y
—R(Cr Tr{[NA 2]+ Cs Trd NA 2]

—2Cy Trn[MNo A, %)) +O(R?). 4.23

The traces in Eq(4.23 can be evaluated by taking advan-

tage of the heat kernel expansion

i d/i2
—) tr(1)

—isD? —
Trle ] IS

xfddx@{l—%ismomz) .

(4.29
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trT(I)=;(d—1)(d+2).

Considering an arbitrary functioiV with a Fourier transform
W, the expansion of the trace

TW(-D?)]= f dsWs)Tr[e *P]  (4.26
is given by

T{W(—D?)]=(4m)" % tr(l)[lez[W]f d’ Vg

1
+ 5 Quz-1[W] f dxVgR+ O<R2>},

(4.27
with

QuW]= f:ds(—is)—“\TV(s). (4.28

Reexpressing Eq4.28 in terms of W leads to the Mellin
transform >0)

Qo[ W]=W(0) 4.29

_ 1 “ i]*l
QW= 1 fo dz2"W(2).

The next step is to use E@.27) in order to evaluate Eq.
(4.23 and to combineS(R) with the LHS of the evolution
equation, Eq.4.4). From the coefficients of \g we can

read off the following equation:

Herel denotes the unit matrix of the space of fields on which — 1 4
D2 acts. Hence ti( is the number of independent field com-  (Znih ) = (4%~ “(4m) ~“trr(1) Qqrl M A]

ponents and in particular
trs(l): 1
try(1)=d (4.25

+rs(1) Qual MA] =2 try(1) Quial No/ Ao}
(4.30
Likewise [ \/gR gives rise to

WZyk=—(12«%) "2 (4m) " Y trr(1){Quiz— 1[ M A] = 6C1Qul M A 2]} + trg(1){Qqpo— 1[ M A] — 6CsQqpol M.A?]}

— 2 try(){Quz—1[No/ Aol — 6CyQql No AZT}.

In Egs.(4.30 and(4.31), AV and A are considered-number
functions ofz which replaces- D? in Eq. (4.21). For every
cutoff R(®) we define the functionsp=1,2,...)

1 (= _RO(2)-zRY(z2)
qnﬁ(w):W fo dz 271 2 RO2) T w]P

R(O)(Z)
[z+RO(z)+w]P (432

~ 1 o
Pw)= —— -1
dr(w) 0 Jo dz 2

(4.3)

for n>0, and

DP(w)=DP(w)=(1+w)P.

(4.33

In terms of the®’s, Eq. (4.30 assumes the form

SActually Eq. (4.33 follows from Eq.(4.32 in the limit n\,0.
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I Znih ) = (16x2) " 1(47) ~ Y2 2d(d+ 1) DL o — 2N /k?) — 8dDL5(0) —d(d+ 1) DL — 2N /KD)]  (4.34

and Eq.(4.31) becomes

k=~ (24K2)1(47T)d/2kd2[d(d+ 1)

— 1 _
D1 (— 2N /K — EﬂNq)(]j./zl(_z)\k/kz)]

—6d(d— 1)[ Do — 2Ny /K?) — %n@é,z(—zx_k/k%] —4d®gp,_1(0)— 2@3,2@)}. (4.39
Let us introduce the dimensionless, renormalized Newton constant
9=k?72G, =k"2Z G (4.36
and the dimensionless cosmological constant
M=k 2\,. (4.37)

Here GkEZNkflG_is the dimensionful renormalized Newton constant at skal@he evolution ofg, is governed by the
equation

a1Gk=[d =2+ nn(k) 10k - (4.38

From Eq.(4.35 we obtain for the anomalous dimensiaR (k):

n(K) =0kB1 (M) + 7n(K)9kBa( ), (4.39
with

_1 1-dr2 1 2 1 2
Bi(\)= §(47T) [d(d+1)D g 1(— 2N ) —6d(d—1)Dg( —2N,) —4d Dy, _1(0) — 24D 5,,(0)]

(4m) "9 d(d+ 1) D5, 1(— 2N ) —6d(d—1)D3,(— 27\ ]. (4.40

ol -

Boy(A\)=-—

We can solve Eq(4.39 for the anomalous dimension in scalek<A. Although they were derived from a relatively

terms ofg, and\: simple truncation, the above evolution equations encapsulate
nonperturbative effects which go beyond a simple one-loop
gB1(Ny) calculation. This is particularly obvious if one expands Eq.
INT 19BN (441 (4.42), for instance, for small values @ :
The scale derivative of, is related to Eq(4.34 according 77,\,:ngl()\k)[1+ngz()\k)+g§B§()\k)+ 1. (4.49
to

_ We observe thatyy receives contributions from arbitrarily
Ih=— (2= )Nt 321G’k ™ 99 Zieh i), (4.42  high orders of perturbation theory.

so that
V. RUNNING NEWTON'S CONSTANT
1 1—df AND COSMOLOGICAL CONSTANT
IN= = (2= )N+ 5 9(4m) =~ T T2d(d+1) _ _
2 A. Near two dimensions

X DL (— 2N\, ) —8dd3,(0)—d(d+1) 7y In d=2 dimensionsf \gR is a topological invariant pro-
_ portional to the Euler number and the quantum theory under
X <Dcl,,2( —2N0)]. (4.43 consideration has at most finitely mattgpologica) degrees

) ) ) of freedom. Ind=2+ ¢ dimensions, on the other hand, one
Equations(4.38 and (4.43 with Eq. (4.4]) is the set of finds a dynamically nontrivial theory with a nonzey®
differential equations we wanted to derive. Once the initialfynction for g, [27-29:

valuesg, and\, are given, it determines the value of the
running Newton’s constant and cosmological constant at any 30=[¢e+ nn]0k- (5.0
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Gravity in 2+¢ dimensions provides an interesting labora-As a consequence, we obtain the following answer for the
tory for a first test of the evolution equation because here thanomalous dimension:
conformal factor of the metric can have both a conventional -
(¢<0) and a “wrong-sign” E€>0) kinetic term; see Eq. ©_ 3_8 1- 15N 51
(4.12. N T T N (5.19
The anomalous dimension has a power series expansion . . ) )

Equation(5.10 improves on earlier results in Ref27, 28,

=10+ pPe+ pPe?+ - (5.2  29] It takes into account partially resummed higher loop
effects(higher powers ofj,) and it includes the effect of the
and therefore running cosmological constant.
One of the interesting features of Einstein-Hilbert gravity
g =[(1+ 77(Nl))8+ 7](N0)]gk+ O(&?). (5.3 in 2+ ¢ dimensions is that the evolution of Newton’s con-
stant is governed by a fixed poig} at which thes-function
Expanding the functiong4.40 as B, ,=B{)+B{e+--- (5.3 vanishes. To lowest order init is given by
one has .
g =—eBP(\) L. (5.11)
0
20— 9By The A dependence of, is non—universal. FOR©=1 we
N 1-g,BY obtain
3 1-2)\
b= 0B} 4 gB1”'BY” (5.4 9«=3g°® 1_2, " (5.12
" 1-g9BY  (1-gBy)” ' 19
Equation(5.12) is reliable for\  <1. In this regime the fixed
The lowest order terms are point g, is UV stable ife>0 and it is IR stable foe<0.
32 Fore>0 andA =0 this fixed point was discussed by Wein-
B<10>(7\k) =2(1— 2)\k)—1_4¢§( —2N)— — berg[28] in the context of the asymptotic safety scenario for
3

guantum gravity. Our result for the dependencepbn the
cosmological constant can only be obtained in a framework
BN ) =2®3(— 2N\ ) — (1—2\,) % (5.5  with a proper infrared regularization because we are investi-
gating the influence of the relevant dimension-two operator
We remark that for vanishing cosmological consta{f) is ~ on a marginal coupling(in a sense, the role played by the

a universal quantity, i.e., it does not depend on the precisginning cosmological constant is similar to the quadratic
form of R(©): mass renormalization in four-dimensional scalar thedries.

For £>0 the theory is asymptotically free. Near the fixed
0y 38 point the dimensionful Newton consta@,=g, /k® van-
B1(0)=-3" (5.6 ishes fork—oc.
The evolution of\ itself is governed by Eq4.43. For
The reason is that the integrand in the integral representatid#v~9s , whereg, and »y are of ordere, one finds that also
of ®2(0) equals the derivative afiz+R(®)(z)) ~*; hence it the B-function of A has a zero of ordes:
is sufficient to know thatR(®) is bounded everywhere in

3
order to establish that A, =— 3—8<I>}(0)s. (5.13
2 —
$1(0)=1. (57 This fixed point of the\ evolution is UV stable for either

) ) ~> ) N 0) sign of e. We conclude that to first order inand fore>0
Unlike ®%(0), ®7(\,) is sensitive to the shape B even  the combined X,g) system has an UV stable fixed point

for A=0. In order to be more explicit we evaluate B§.5  given by Eq.(5.13 together withg, = (3/38)e.
at A #0 for the constant cutoff functioR(®)(z) = 1. Though

it does not vanish foz—oe, it yields at least qualitatively B. Four dimensions
correct resultg§6,9] as long as it does not introduce UV

) ; _ : ) In d=4 dimensions, the running of Newton’s constant is
divergences into the integral under consideration. @ér

governed by the following functions of the cosmological

and®? this is not the case and one finds constant:
PHw)=Pi(w)=(1+w)* (5.8 1 ap? 1
! ! ’ Bi(N)=— 5 _[18P5(—2\) —5P1(—2)\)
so that ) 1
+6P5(0)+4P(0)] (5.19
(0) 32
Bl '(M)=—2(1=2N\) "= % 1, ~1
3 B2(N) = 5-[18D5(—2)) —5®3(~2N)]. (5.15

BY (M) =(1-2x % (5.9  The dimensionful quantity, evolves according to
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3:Gx= NGy, (5.16

with the anomalous dimension given by E4.41). In order
to get a feeling for the behavior @, , let us restrict our

attention to the lowest order ig\ which amounts to keeping

only the first nontrivial correction of the expansion @k2.
Then 7]N:Bl(7\k)gk+“' , or with gk=k2Gk=sz
+0(G?),

7n=B1(\)GK?+ O(G?). (5.17

983

be closely related t&¥/(r)=—G(r)m;m,/r. It is interesting

to compare Eq(5.21) to what is actually obtained by a dia-
grammatic calculation of the lowest order correction to the
potential. Recently Donoghu@&1] has pointed out that quan-
tized Einstein gravity makes a well-defined prediction for
this quantity which is unaffected by the nonrenormalizability
of the theory. One finds a result of the form

~ Gh
w r2C3 .

m;m;

V(r)=—G : 1— G(my+my)

2c?r

(5.22

First we consider the case where the cosmological constant is

much smaller thark?. Then we may approximate,~0 in
Eq. (5.17), and Eq.(5.16) has the solution
Gy=Go[1—w Gk%+0O(G%kH]. (5.18

Here
1 1 2 1
w=—3B1(0)= c—-[24D5(0)~P1(0)]  (5.19

is a pure number, which depends on the func®®, how-
ever. For the exponential cutoff2.149 we have ®1(0)
= 7?16 andd3(0)=1, so that

4 1 4 0
o= 7|17 12)>0

For different cutoff functions the numerical value ofwill

(5.20

be slightly different but it will still be positive. Therefore Eq.

(5.18 tells us that Newton’s constant decreaseskasn-

The term proportional tor; +m,)/r is a kinematic effect of
classical general relativity; it is independentfofind is not
related to thes-function of G, therefore. However, the last
term in Eq.(5.22, proportional toG#/r?, has precisely the
same structure as E¢5.21). The most recent calculation of

» was performed in Ref:32] with the result

118

—>0. .
15n 0 (5.23

w=

This number has the same sign and is of the same order of
magnitude as the value found originally in R¢81], but

there is no precise agreement yet. In R88],  was calcu-
lated using different method$4,35 and a negative value
was found; this would correspond to “screening” rather than
“antiscreening.” Possible reasons for this discrepancy were
discussed in Ref32]. While the issue is not fully settled yet,

it is believed that by correctly identifying and evaluating the
set of relevant Feynman diagrams, quantum Einstein gravity

creases; it is small in the UV and grows larger as we evolvdiVes rise to an unambiguous value fer From our inves-
it towards the infrared. The sign of this effect is the same adigation of the renormalization group flow we expect this
for the non-Abelian gauge coupling in Yang-Mills theory value to be positive. o _

and it is opposite to the one in QED. The main difference is ©One can use the full nonperturbative information con-

that G, depends quadratically ok while, to lowest order,

tained in Eq.4.41) in order to extend the domain of validity

the gauge coupling in Yang-Mills theory runs only logarith- Of our result tolwards larger vallues of or smaller distances
mically. We see that gravity is “antiscreening” in the sense’- This would involve a numerical solution of E¢.38 on
that at large distances Newton's constant is larger than a¥hich we shall not embark at this point.

small distances. This confirms the intuitive picture that the

In our approach we can study the influence of the cosmo-

gravitational chargémass is not screened by quantum fluc- logical constant on the running G . It is interesting to ask,
tuations but rather receives an additional positive contribufor instance, whether a large can destroy the antiscreening

tion from the virtual particles surrounding it.

Let us consider a gravitationalthoughy experiment
which involves a typical length scale the distance of two
heavy test particles, for instancerd=k ! acts as the effec-
tive IR cutoff scale, Eq(5.18 suggests the following form
of a distance-dependent Newton’s consi{avith factors of#
andc restored:

1
G(r)=G(=) r—4” (5.21)

1 G +0
@ r2ce

We expect that, to leading order in i/ the quantum cor-

character of the gravitational interactiom{<0). Let us
look at Eg.(5.17 with B;(\,) given in Eqg.(5.14. If a
regime exists withnpy>0 (screening then B;(\) must be
positive there. This can only happen if the term
5d1(—2\,) in the brackets on the RHS of E¢5.14) is
larger than the sum of the other terms becauseditseare
always positive. HoweverpP(w) decreases for increasing
and finally vanishes fow— . Therefore a negative cosmo-
logical constant will not change the sign afy since
B;(\) <O for A\ =<0.

For\ >0, the®'s in Eq. (5.14) are evaluated at negative
argumentsv=—2\,.. From Eq.(4.32 it is clear thatdP(w)

rected static Newtonian potential of two test masses shoultllows up forw— — 1. [The functionz+R(®)(z) assumes its

SRecall that in QED the analogous substitutiefir —e?(r ~1)/r

minimum value 1 az=0 and increases monotonically for
z>0.] This signals that our approximation breaks down for

Me=1/2 or A ~k?/2. For moderately large values of,,

correctly reproduces the leading term of the Uehling potential if theB1(\) is still negative. As\, approaches 1/2 from below,

one-loop formula for the running couplirgf(w) is used[30].

only the first two terms on the RHS of E(.14) are impor-
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tant. It might be thaB; turns negative then, but this would
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under general coordinate transformations; no symmetry-

be in a regime where our truncation is no longer reliable, andiolating terms are generated during the evolution. It satisfies

the sign would even depend &i® in general.

a set of modified gravitational Ward identities which ensure

At this point a general remark concerning the domain ofthat, in the limit of a vanishing cutoff, the conventional Ward

validity of our truncation might be in order. In Sec. Ill we

showed that truncations of the for(8.11) with I',=0 are
consistent with the modified Ward identities providéd is
small. For the Einstein-Hilbert truncation we can evaluat
the traces in Eq(3.9 and we can expresg, in terms of the
functions®p(w). It is clear, therefore, that, becomes large
for w— —1, and that our truncation cannot account for this
regime.

The running of thgldimensionfu) cosmological constant
itself is governed by the equation

No= kL i 4 1 oy L2y adl
N = Nt 27Tk Gy [10P5( — 2\ /k?) — 8D 5(0)

—5n®3(— 2N /k?)] (5.24

If we switch off the renormalization group improvement for

a moment and seyNzo,x_k:o on the RHS of Eq(5.29), it
has the solution

N 1 1 /14 4 N
)\k—E@z(O)G(k =A%)+ N\, (5.29
We observe the canonical scale dependexnge k* which
one expects in any naive one-loop calculatiom_,ifstarts off
positive atk= A, its absolute value decreases wlkes low-
ered until it reaches zero and the—m becomes negativéor
A large enough It is obvious that any attempt to fine tune
X\, in such away that li .o \,=0 cannot have a universal
meaning becaus®3(0) depends on the form of the cutoff.
The evolution equatioii5.24) improves on the one-loop re-
sult in two respects: it includes the effect of the runnig,
and via the “threshold function'®3 it describes the back
reaction of the changina on its B-function. In particular,
for A, <0 andk?<|\ | the relevant IR cutoff in the graviton
propagator is})\_k| rather thark?. Then the graviton modes
do not contribute to the running of, any longer, and their
decoupling is described by the functi@é(w). If, on the
other hand, the evolution starts Winh_k>0, the threshold
functions make the coefficient of tHé¢' term in Eq.(5.29
even larger, and the running towards zero is faster than
Eq. (5.25. This effect is counteracted by the termy\

which is negative fory<<0. It cannot prevenk , from over-
shooting zero, however.

VI. CONCLUSION

e

identities are recovered. By virtue of the diffeomorphism in-
variance of the effective action, fairly simple invariant trun-
cations of the space of actions are sufficient to describe the
essential physics in a nonperturbative way. The modified
Ward identities provide a check for the quality of the trun-
cations. The evolution equation can be used both for the
quantization of fundamental theoried {~=~) and for the
evolution of effective theoriegA finite). It is defined in
terms of manifestly finite, ultraviolet convergent functional
traces. The evolution equation by itself is meaningful even if
the action is not positive definite. In this case the original
Euclidean functional integral formulation might be problem-
atic, and the precise relation between the two approaches is
not entirely clear yet.

As a first application, we have tested our method within a
simple truncation which retains only the invariantsgR
andf \/g. Nevertheless, the resulting evolution equations for
Newton’s constant and the cosmological constant contain
nonperturbative information. In2¢ dimensions we found
corrections to the3-function for G, and we determined its
dependence on the cosmological constant. In 4 dimensions
we saw that the3-function for G, depends ork quadrati-
cally, and that Newton's constant increases at large dis-
tances. Within its restricted domain of validity, this result
confirms earlier speculations by Polyak®6] on a possible
gravitational antiscreening.

It would be interesting to allow for a more general trun-
cation and to include more complicated invariants in the an-
satz forI". Not only higher powers of the curvature should
be kept but also, and perhaps more importantly, nonlocal
terms must be includetsimilar to the 2D induced gravity
action f[RD°R, for instancg. This would lead to a better
understanding of quantum gravity in the extreme infrared,
and might help to clarify certain issues in quantum cosmol-
ogy. For instance, it has been proposed that quantum gravi-
tational effects at large distances should be important both in
the context of the dark matter probldi®7] and the cosmo-
logical constant problerfiLl4,36. In fact, it is quite clear that
the nature of the IR divergences, and hence of the renormal-
ization group flow fork— 0, is quite different depending on
whether\ is zero or not[13]. In a perturbative expansion,
one of the traces on the RHS of the evolution equation con-
gists of graviton loops attached to external graviton lines.
The most singulaffor k—0) diagrams are those which in-
volve the vertices obtained by expanding /g, because
they do not contain any momentum factors. Hence Xor
# 0 the renormalization effects should be much stronger than
for A\=0, and this could eventually drive the cosmological
constant to zero. We hope to come back to this point else-

In this paper we proposed a general framework for thevhere.

treatment of quantum gravity along the lines of the Wilso-
nian renormalization group. We

introduced a scale-
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