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Nonperturbative evolution equation for quantum gravity

M. Reuter
Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany

~Received 11 August 1997; published 26 November 1997!

A scale-dependent effective action for gravity is introduced and an exact nonperturbative evolution equation
is derived which governs its renormalization group flow. It is invariant under general coordinate transforma-
tions and satisfies modified Becchi-Rouet-Stora Ward identities. The evolution equation is solved for a simple
truncation of the space of actions. In 21« dimensions, nonperturbative corrections to theb function of
Newton’s constant are derived and its dependence on the cosmological constant is investigated. In 4 dimen-
sions, Einstein gravity is found to be ‘‘antiscreening;’’ i.e., Newton’s constant increases at large distances.
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I. INTRODUCTION

In many of the traditional approaches to quantum grav
the Einstein-Hilbert term has been regarded as a fundame
action which should be quantized along the same lines as
familiar renormalizable field theories in flat space, such
QED, for example@1#. It was soon realized that this progra
is not only technically rather involved but also leads to
vere conceptual difficulties. In particular, the nonrenorma
ability of the theory hampers a meaningful perturbat
analysis. While this does not rule out the possibility that
theory exists nonperturbatively, not much is known in th
direction. However, it could also be argued that gravity,
we know it, should not be quantized at all, because Eins
gravity is an effective theory@2# which results from quantiz-
ing some yet unknown fundamental theory. If so, t
Einstein-Hilbert term is an effective action analogous to
Heisenberg-Euler action in QED and it should not be co
pared to the ‘‘microscopic’’ action of electrodynamics.

It seems not unreasonable to assume that the truth
somewhere between these two extreme points of view,
that Einstein gravity is an effective theory which is val
near a certain nonzero momentum scalek. This means that it
arises from the fundamental theory by a ‘‘partial quantiz
tion’’ in which only excitations with momenta larger thank
are integrated out, while those with momenta smaller thak
are not included.~The interpretation of the Einstein-Hilbe
term as a fundamental or an ordinary effective action is
covered in the limitsk→` andk→0, respectively.! An ‘‘ef-
fective theory at scalek, ’’ when evaluated at the tree leve
should correctly describe all gravitational phenomena wh
involve a typical momentum scalek acting as a physica
infrared cutoff. Only if one is interested in processes w
momentak8!k, do loop calculations become necessa
they amount to integrating out the missing field modes in
momentum interval@k8,k#.

We shall regard the scale-dependent action for grav
henceforth denotedGk , as a Wilsonian effective action
which is obtained from the fundamental~‘‘microscopic’’! ac-
tion S by a kind of coarse-graining analogous to the itera
block-spin transformations which are familiar from lattic
systems@3#. In the continuum,Gk will be defined in terms of
a modified functional integral overe2S in which the contri-
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butions of all field modes with momenta smaller thank are
suppressed. In this mannerGk interpolates betweenS ~for
k→`! and the effective actionG ~for k→0!. The trajectory
in the space of all action functionals can be obtained as
solution of a certain functional evolution equation, the ex
renormalization group equation. Its form is independent
the actionS under consideration. The latter enters via t
initial conditions for the renormalization group trajectory;
is specified at some UV cutoff scaleL: GL5S. If S is a truly
fundamental action,L is sent to infinity at the end.

The renormalization group equation can also be used
evolve effective actions, known at some pointL, towards
smaller scalesk,L. In this caseL is a fixed, finite scale.

In this framework, the~non!renormalizability of a theory
is seen as a global property of the renormalization gro
flow for L→`. The evolution equation by itself is perfectl
finite and well behaved in either case, because it descr
only infinitesimal changes of the cutoff.

In this paper we shall give a precise meaning to the not
of a scale-dependent gravitational actionGk@gmn# and we
shall derive the associated evolution equation. We emplo
formulation in which the metric is the fundamental dynam
cal variable. Alternative approaches based upon the spin
nection and the vielbeins are also possible, but they will
be considered here. By using a variant of the backgro
gauge technique we are able to makeGk@gmn# invariant un-
der general coordinate transformations. This property is v
important if one wants to find nonperturbative solutions
the evolution equations in terms of simple truncations of
space of actions. Our construction ofGk@gmn# parallels the
definition of the ‘‘effective average action’’@4,5# which was
widely used recently@6–9#.1 The remarkable successes
this method in flat space are partly due to the fact tha
allows for nonperturbative solutions when no small expa
sion parameter is available, and thatGk has a built-in infrared
cutoff. Therefore the low-momentum behavior of~almost!
massless theories can be investigated even in cases whe
divergences render standard perturbation theory inapplica

For the purposes of quantum gravity, both of these f

1For related work using similar techniques see Refs.@10, 11, 12#.
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972 57M. REUTER
tures are very welcome, of course. In fact, in quantum c
mology one of the most intriguing questions is how qua
tized Einstein gravity behaves at extremely large distance
has been argued@13,14# that in the presence of a nonze
cosmological constant there should be very strong renorm
ization effects in the infrared which might even provide
mechanism for a dynamical relaxation of the cosmologi
constant. The method which we are going to develop wo
be ideally suited to study problems of this type. Since o
long distance physics is involved here, there are go
chances that this can be done without knowing the mic
scopic theory of quantum gravity.~See Ref.@2# for a related
discussion.!

The ‘‘effective average action’’ used in this paper shou
not be confused with the closely related ‘‘average actio
which was introduced earlier@15#. The former obeys a more
convenient evolution equation while the latter has a sim
interpretation in terms of field averages. Their precise re
tion is explained in Ref.@16#. The average action has bee
used in a gravitational context in Refs.@17, 18#, but no exact
evolution equation was formulated.2 The evolution of the
effective average action in a gravitational background w
studied in Ref.@22# in the context of Liouville field theory.
For a review of the effective average action and its appli
ton to Yang-Mills theory we refer to@23#.

The remaining sections of this paper are organized as
lows. In Sec. II we give the definition ofGk and derive the
exact, nonperturbative renormalization group equation.
Sec. III we establish the modified Ward identities satisfied
Gk , and we show that the conventional diffeomorphis
Ward identities are recovered in the limitk→0. In its general
form, the evolution equation describes a flow on the infin
dimensional space of all action functionals. Approxima
nonperturbative solutions can be found by truncating
space of actions, i.e., by projecting the flow on a fini
dimensional subspace. In Sec. IV we investigate
‘‘Einstein-Hilbert truncation’’ where only the operators*Ag
and*AgR are retained. In Sec. V we determine the result
scale dependence of Newton’s constant and of the cos
logical constant. As an example, gravity in 21« and in 4
dimensions is discussed in detail.

II. THE RENORMALIZATION GROUP EQUATION

In this section we introduce the effective average act
for Euclidean quantum gravity ind dimensions and we de
rive the exact renormalization group equation which gove
its scale dependence.

We are going to employ the background gauge fix
technique@24,25#, which means that we decompose the in
gration variablegmn(x) in the functional integral over al
metrics according to

gmn~x!5 ḡmn~x!1hmn~x!. ~2.1!

Here ḡmn is a fixed background metric so that the integrati
over gmn may be replaced by an integration overhmn . We

2For recent work on related renormalization group flows see a
Refs.@19, 20, 21#.
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consider the following scale-dependent modification of
generating functional for the connected Green’s function

exp$Wk@ tmn,sm,s̄m ;bmn,tm ; ḡmn#%

5E DhmnDCmDC̄m exp$2S@ ḡ1h#2Sgf@h; ḡ #

2Sgh@h,CC̄; ḡ #2DkS@h,C,C̄; ḡ #2Ssource%. ~2.2!

Here S@g#5S@ ḡ1h# is the classical action which is as
sumed to be invariant under the general coordinate trans
mations

dgmn5Lvgmn[vr]rgmn1]mvrgrn1]nvrgmr , ~2.3!

whereLv denotes the Lie derivative with respect to the ve
tor field vm. For the time being let us also assume thatS is
positive definite.

Furthermore,Sgf denotes the gauge-fixing term for th
gauge conditionFm( ḡ ,h)50,

Sgf@h; ḡ #5
1

2a E ddxAḡ ḡmnFmFn ~2.4!

and Sgh is the action for the corresponding Faddeev-Pop
ghostsCm and C̄m :

Sgh@h,C,C̄; ḡ #52k21E ddxC̄m ḡmn
]Fn

]hab

3LC~ ḡab1hab!. ~2.5!

The Faddeev-Popov actionSgh is obtained along the sam
lines as in Yang-Mills theory: one applies a gauge transf
mation

dhmn5Lvgmn5Lv~ ḡmn1hmn!

d ḡmn50 ~2.6!

to Fm and replaces the parametersvm by the ghost fieldCm.
The integral overCm andC̄m provides a representation of th
Faddeev-Popov determinant det@dFm /dvn# then. In Eq.~2.5!
we introduced the constant~proportional to the Planck mass!

k[~32pḠ!21/2, ~2.7!

whereḠ denotes the bare Newtonian constant. In princi
our construction works for an arbitrary background gau
fixing. It is particularly convenient to use aFm which is
linear in the quantum fieldhmn :

Fm5&kF m
ab@ ḡ #hab . ~2.8!

We shall mostly employ the harmonic coordinate conditi
for whichF m

ab is the following first order differential opera

tor constructed fromḡmn :

F m
ab5dm

b ḡagD̄g2
1

2
ḡabD̄m . ~2.9!o
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57 973NONPERTURBATIVE EVOLUTION EQUATION FOR . . .
The covariant derivativeD̄m involves the Christoffel sym-

bols Ḡmn
r of the background metricḡmn . For the gauge fix-

ing ~2.8! with ~2.9! the ghost action reads

Sgh@h,C,C̄; ḡ #52&E ddxAḡ C̄mM@g, ḡ #m
nCn,

~2.10!

with the Faddeev-Popov operator

M@g, ḡ #m
n5 ḡmr ḡslD̄l~grnDs1gsnDr!

2 ḡ rs ḡmlD̄lgsnDr . ~2.11!

The essential piece in Eq.~2.2! is the IR cutoff for the
gravitational fieldhmn and for the ghosts:

DkS@h,C,C̄; ḡ #5
1

2
k2E ddxAḡhmnRk

grav@ ḡ #mnrshrs

1&E ddxAḡ C̄mRk
gh@ ḡ #Cm. ~2.12!

The cutoff operatorsRk
grav andRk

gh serve the purpose of dis
criminating between high-momentum and low-moment
modes. Eigenmodes of2D̄2 with eigenvaluesp2@k2 are
integrated out in Eq.~2.2! without any suppression wherea
modes with small eigenvaluesp2!k2 are suppressed by
kind of momentum-dependent mass term. The opera
Rk

grav and Rk
gh describe the transition from the high

momentum to the low-momentum regime. Either of them h
the structure

Rk@ ḡ #5Zkk
2R~0!~2D̄2/k2!, ~2.13!

where the dimensionless functionR(0) interpolates smoothly
betweenR(0)(0)51 and limu→`R(0)(u)50. A convenient
choice is, for example,

R~0!~u!5u@exp~u!21#21. ~2.14!

The factorsZk are different for the graviton and the gho
cutoff. For the ghostZk[Zk

gh is a pure number, whereas fo
the metric fluctuationZk[Z k

grav is a tensor constructed from

the background metricḡmn . In the simplest case one woul
take

~Z k
grav!mnrs5 ḡmr ḡ nsZk

grav. ~2.15!

In Sec. IV we shall employ a slightly more refined choic
There we shall also explain how the factorsZk

gh and Zk
grav

should be chosen. Note that the cutoff action~2.12! is qua-
dratic in the quantum fieldshmn , Cm and C̄m . This is an
important prerequisite for obtaining a tractable evoluti
equation later on. The requirement of a quadraticDkS forces
us to use the covariant LaplacianD̄2[ ḡmnD̄mD̄n in the
backgroundmetric as the operator which discriminates b
tween high-momentum and low-momentum modes.

In Eq. ~2.2! we coupledhmn , Cm and C̄m to the sources
tmn, s̄m andsm, respectively:
rs

s

.

-

Ssource52E ddxAḡ$tmnhmn1 s̄mCm1smC̄m

1bmnLC~ ḡmn1hmn!1tmCn]nCm%. ~2.16!

The sourcesbmn and tm couple to the Becchi-Rouet-Stor
~BRS! variations ofhmn and Cm, respectively. In fact, it is
not difficult verify that S1Sgf1Sgh is invariant under the
BRS transformations~« is an anticommuting parameter!

d«hmn5«k22LCgmn5«k22LC~ ḡmn1hmn! ~2.17!

d« ḡmn50

d«Cm5«k22Cn]nCm

d«C̄m5«~ak!21Fm .

Given the functionalWk , we introducek-dependent clas-
sical fields

h̄mn5
1

Aḡ

dWk

dtmn , jm5
1

Aḡ

dWk

ds̄m

, j̄ m5
1

Aḡ

dWk

dsm ,

~2.18!

and we formally solve for the sources (tmn,sm,s̄m) as func-
tionals of the fields (h̄mn ,jm, j̄ m) and of (bmn,tm ; ḡmn).

Then the Legendre transformG̃k of Wk depends on the clas
sical fields and parametrically onb, t and ḡ :

G̃k@ h̄ ,j, j̄ ;b,t; ḡ #5E ddxAḡ$tmn h̄mn1 s̄mjm1sm j̄ m%

2Wk@ t,s,s̄ ;b,t; ḡ #. ~2.19!

By definition, the effective average actionGk obtains from

G̃k by subtracting the cutoff actionDkS with the classical
fields inserted:

Gk@ h̄ ,j, j̄ ;b,t; ḡ #5G̃k@ h̄ ,j, j̄ ;b,t; ḡ #2DkS@ h̄ ,j, j̄ ; ḡ #,

~2.20!

It is convenient to define the metric

gmn~x![ ḡmn~x!1 h̄mn~x! ~2.21!

as the classical analogue of the quantum metricgmn[ ḡmn

1hmn and to considerGk as a functional ofgmn rather than
h̄mn :

Gk@gmn , ḡmn ,jm, j̄ m ;b,t#

[Gk@gmn2 ḡmn ,jm, j̄ m ;b,t; ḡmn#. ~2.22!

The main virtue of the background technique employed h
is that the functionalGk is invariant under general coordina
transformations where all its arguments transform as ten
of the corresponding rank:
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974 57M. REUTER
Gk@F1LvF#5Gk@F#, F[$gmn , ḡmn ,jm, j̄ m ;bmn,tm%.

~2.23!

Note that in Eq.~2.23!, contrary to the ‘‘gauge transforma
tion’’ ~2.6!, the background metric also transforms as an
dinary tensor field:d ḡmn5Lv ḡmn . Equation~2.23! is a con-
sequence of

Wk@J1LvJ#5Wk@J#, J[$tmn,sm,s̄m ;bmn,tm ; ḡmn%.

~2.24!

This invariance property follows from Eq.~2.2! if one per-
forms a compensating transformation on the integration v
ableshmn , Cm and C̄m . At this point we assume that th
measure is diffeomorphism invariant.

The general coordinate invariance ofGk is of major prac-
tical importance because if we knowa priori that no
symmetry-violating terms are generated during the evolu
it is sufficient to use truncations which consist of invaria
combinations of the fields only. The conventionally defin
effective action of the metric,G@gmn#, obtains in the limit of
a vanishing IR cutoff by setting the ghostsb and t to zero
and by identifyingḡmn with gmn :

G@gmn#5 lim
k→0

Gk@gmn ,gmn,0,0;0,0#. ~2.25!

As a consequence,G@gmn# is invariant under dgmn

5Lvgmn . Even though we are mostly interested in the fun
tional

Ḡ k@gmn#[Gk@gmn ,gmn,0,0;0,0# ~2.26!

which depends ongmn only, an exact renormalization grou
equation can be formulated only if one keeps track of
dependence onj, j̄ and ḡ as well. For the derivation of the
~modified! BRS Ward identities satisfied byGk the depen-
dence onb andt must be retained in addition.
r-

i-

n
t

-

e

The derivation of the evolution equation forGk proceeds
as follows. Taking a derivative of the functional integr
~2.2! with respect to the renormalization group ‘‘time’’t
[ ln k one obtains, in matrix notation,

2] tWk5
1

2
Tr@^h^ h&~] tR̂k! h̄ h̄#2Tr@^C̄^ C&~] tR̂k! j̄ j#.

~2.27!

HereR̂k is a matrix in field space whose non-zero entries

~R̂k! h̄ h̄
mnrs

5k2~Rk
grav@ ḡ # !mnrs

~2.28!

~R̂k! j̄ j5&Rk
gh@ ḡ #.

The right-hand side~RHS! of Eq. ~2.27! can be expressed in
terms ofGk by noting that the connected two-point functio

Gi j ~x,y![^x i~x!x j~y!&2w i~x!w j~y!

5
1

Aḡ~x! ḡ~y!

d2Wk

dJi~x!dJj~y!
~2.29!

and

G̃k
~2!i j ~x,y![

1

Aḡ~x! ḡ~y!

d2G̃k

dw i~x!dw j~y!
~2.30!

are inverse matrices in the sense that

E ddyAḡ~y!Gi j ~x,y!G̃k
~2! j l ~y,z!5d i

l d~x2z!

Aḡ~z!
.

~2.31!

Here we used the shorthand notationx i[$h,C,C̄%, Ji

[$t,s,s̄ % andw i[$ h̄ ,j, j̄ %. Thus one obtains the evolutio
equation
or

enta
] tGk@ h̄ ,j, j̄ ;b,t; ḡ #5
1

2
Tr@~Gk

~2!1R̂k! h̄ h̄
21

~] tR̂k! h̄ h̄#2
1

2
Tr@$~Gk

~2!1R̂k! j̄ j
21

2~Gk
~2!1R̂k!j j̄

21
%~] tR̂k! j̄ j#. ~2.32!

If one evaluates the RHS of this equation in terms of position-space matrix elements thenGk
(2) is defined by a formula similar

to Eq.~2.30! and the integration implied by ‘‘Tr’’ has to be interpreted as*ddxAḡ (x). The matrix elements in the ghost sect
are defined in terms of left derivatives, e.g.,

~~Gk
~2!! j̄ j!mx

ny5
1

A ḡ~x!

d

djm~x!

1

A ḡ~y!

dGk

d j̄ n~y!
. ~2.33!

For any cutoff which is qualitatively similar to Eq.~2.14! the traces on the RHS of Eq.~2.32! are well convergent, both in the
IR and the UV. By virtue of the factor] tR̂k , the dominant contributions come from a narrow band of generalized mom
centered aroundk. Large momenta are exponentially suppressed.

Solving the evolution equation~2.32! with the appropriate initial condition at the UV cutoff scaleL→` is tantamount to
computing the original functional integral~2.2!. In order to determine the correct initial valueGL we consider the following
integral equation satisfied byGk :
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exp$2Gk@ h̄ ,j, j̄ ;b,t; ḡ #%5E DhDCDC̄ expF2 S̃@h,C,C̄;b,t; ḡ #1E ddxH ~hmn2 h̄mn!
dGk

d h̄mn

1~Cm2jm!
dGk

djm
1~C̄m2 j̄ m!

dGk

d j̄ m
J Gexp$2DkS@h2 h̄ ,C2j,C̄2j; ḡ #%. ~2.34!

Here

S̃[S1Sgf1Sgh2E ddxAḡ$bmnLC~ ḡmn1hmn!1tmCn]nCm% ~2.35!

is expressed in terms of the ‘‘microscopic’’ fields (h,C,C̄). Equation~2.34! was obtained by inserting the definition ofGk into
Eq. ~2.2! and using

dG̃k

d h̄mn

5Aḡmn,
dG̃k

d j̄ m

52Aḡsm,
dG̃k

djm
52Aḡ s̄m . ~2.36!

The crucial observation is that fork→` the last exponential in Eq.~2.34! becomes proportional to ad-functional which
equates the quantum fields (h,C,C̄) to their classical counterparts:

e2DkS ;
k→`

d@h2 h̄ #d@C2j#d@C̄2 j̄ #. ~2.37!

As a consequence, the effective average action at the UV cutoff reads3

GL@ h̄ ,j, j̄ ;b,t; ḡ #5S@ ḡ1 h̄ #1Sgf@ h̄ ; ḡ #1Sgh@ h̄ ,j, j̄ ; ḡ #2E ddxAḡ$bmnLj~ ḡmn1 h̄mn!1tmjn]njm%. ~2.38!
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It is this actionGL which has to be used as the initial co
dition for the evolution equation. We note that at the level

the functionalḠ k@g# Eq. ~2.38! boils down to

ḠL@gmn#5S@gmn#. ~2.39!

As Gk
(2) involves derivatives with respect togmn at fixed ḡmn

it is clear that the evolution equation cannot be formulated

terms ofḠ k alone, however.
Up to now we assumed that the fundamental actionS is

positive definite and the Euclidean functional integral~2.2!
makes sense as it stands. It is well known that this is not
case for the Einstein-Hilbert action, for example, because
conformal factor has a ‘‘wrong sign’’ kinetic term. Clearly
would be desirable to have an evolution equation which
be applied in such cases as well. It is quite remarkable th
fore that the renormalization group equation~2.32!, with a
properly chosen cutoff, is well defined even ifS andGk are
not positive definite. To see this, let us look at the first tra
on the RHS of Eq.~2.32! and let us concentrate on the co
tribution of a fixed modef contained in the metric. We
assume thatf is an eigenfunction ofGk

(2) with eigenvalue

3Strictly speaking Eq.~2.38! is correct only up to local terms
which at most change the bare parameters inS. Because the value
of the bare parameters has no physical significance anyhow
ignore these terms here.
f

n

e
e

n
e-

e

zkp
2 where p2 is a positive eigenvalue of some covaria

kinetic operator, typically of the form2D̄21R terms. For
theories withS.0, the wave function renormalizationzk is
positive ~at least for largek!. In this case the general rul
@5,6# is to define the constantZk in the cutoffRk , Eq.~2.13!,
as Zk5zk because this guarantees that for the lo
momentum modes the effective inverse propagatorG (2)

1Rk becomeszk(p21k2), as it should be.
The important question is howZk should be chosen ifzk

is negative. If we continue to useZk5zk , the evolution
equation is perfectly well defined because the inverse pro
gator 2uzku(p21k2) never vanishes, and the traces of E
~2.32! are not suffering from any IR problems. In fact, if w
write down the perturbative expansion for the function
trace, for instance, it is clear that all propagators are corre
cut off in the IR, and that loop momenta smaller thank are
suppressed.

On the other hand, if we setZk52zk , then 2uzku(p2

2k2) introduces a spurious singularity atp25k2, and the
cutoff fails to make the theory IR finite in this case.

At first sight the choiceZk52zk might have appeared
more natural because only ifZk.0 is the factor
exp(2DkS);exp(2*Rkf

2) a damped exponential which sup
presses the low momentum modes in the usual way. In
paper we shall nevertheless adopt the ruleZ5zk for either
sign ofzk . We shall see that at least for the Einstein-Hilbe
truncation of Sec. IV the evolution equations are well d
fined and consistent even though it is difficult to give
meaning to the functional integral itself. In the caseZk5zk
,0 the factor exp(1*uRkuf2) unavoidably becomes a grow
e
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976 57M. REUTER
ing exponential and it might seem that this enhances ra
than suppresses the low-momentum modes. However
suggested by the perturbative argument above, this con
sion is probably too naive. Moreover, if one invokes t
usual prescription of rotating the contour of integration ov
f so that it is parallel to the imaginary axis, both the kine
term and the cutoff lead to damped exponentials.

Furthermore, it is important to note that the constructio
in this section can be repeated for metrics on Lorentz
spacetimes. Then one deals with oscillating exponentialseiS,
and for arguments like the one leading to Eq.~2.37! one has
to employ the Riemann-Lebesgue lemma. Apart from
obvious substitutionsGk→2 iGk , Rk→2 iRk , the evolution
equation remains unaltered. ForZk5zk it has all the desired
features, andzk,0 seems not to pose any special problem

III. MODIFIED WARD IDENTITIES AND CONSISTENT
TRUNCATIONS

We mentioned already that the classical action plus
gauge-fixing and ghost terms are invariant under the B
er
as
lu-

r

s
n

e

.

e
S

transformations~2.17!. Therefore the BRS variation of th
total actionStot[S1Sgf1Sgh1DkS1Ssourcesreceives contri-
butions only from the cutoff and the source terms. If w
apply a BRS transformation to the integral definingWk and
assume that the measure is invariant we obtain

^d«Ssources1d«DkS&50, ~3.1!

where

^O&[e2WkE DhDCDC̄Oe2Stot. ~3.2!

Our goal is to convert Eq.~3.1! to a statement about th
average actionGk . Because the BRS transformation~2.17! is
off-shell nilpotent when acting onhmn and onCm ~but not on
C̄m! one has
d«Ssources52«k22E ddxAḡ$tmnLC~ ḡmn1hmn!2 s̄mCn]nCm2ka21smFm~ ḡ ,h!%. ~3.3!

If we take the expectation value of Eq.~3.3! and expressWk in terms ofGk we find

^d«Ssource&5
e

k2 E ddx
1

A ḡ~x!
H dGk8

d h̄mn

dGk8

dbmn
1

dGk8

djm

dGk8

dtm
J 1

«

k2
Ỹk , ~3.4!

with

Ỹk[E ddxH 1

A ḡ
S dDkS

d h̄mn

dGk8

dbmn
1

dDkS

djm

dGk8

dtm
D 2&

k

a
A ḡFm~ ḡ , h̄ !Rk

ghjmJ . ~3.5!

Here we defined

Gk8[Gk2Sgf@ h̄ ; ḡ # ~3.6!

and we exploited the equation of motion^dStot /dC̄m&50 which can be cast in the form

F 1

A ḡ~x!

d

d j̄ m~x!
2& ḡmnF n

rs
1

A ḡ~x!

d

dbrs~x!
GGk@ h̄ ,j, j̄ ;b,t; ḡ #50. ~3.7!

The variation of the cutoff terms gives rise to

^d«DkS&52
«

k2 ~Yk1Ỹk!, ~3.8!

with

Yk[k2 TrF ~Rk
grav!mnrs~Gk

~2!1R̂k! h̄rsw
21 d2Gk

AḡdwAḡdbmn
G2& TrFRk

gh~Gk
~2!1R̂k!jmw

21 d2Gk

AḡdwAḡdtm

G
12a21k2 Tr@Rk

ghF m
rs~Gk

~2!1R̂k! h̄rs j̄ m

21
#, ~3.9!
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wherew[$ h̄ ,j, j̄ % is summed over. From Eq.~3.4! and Eq.~3.8! we obtain the Ward identities in their final form:

E ddx
1

A ḡ
H dGk8

d h̄mn

dGk8

dbmn
1

dGk8

djm

dGk8

dtm
J 5Yk . ~3.10!

Equation~3.10! has to be compared to the ordinary gravitational Ward identities@26# which are similar to Eq.~3.10! but with
a vanishing RHS. In fact, the contributionYk is due to the cutoff and therefore it vanishes in the limitk→0 becauseRk
;k2→0 in this limit. Hence the standard effective action limk→0 Gk is guaranteed to obey its usual Ward identities, and B
invariance is restored fork→0.

Because the Ward identity~3.10! is derived from the same functional integral as the evolution equation, it is automat
satisfied for the exact solution of the evolution equation. For approximate solutions of the evolution equation their con
with the Ward identity is not guaranteed, and one may even use Eq.~3.10! to judge the quality of the approximation@12,22#.

The most important strategy for finding approximate~but still nonperturbative! solutions to the evolution equation is t
truncate the space of action functionals. Typically one works on a finite-dimensional subspace parametrized by on
generalized couplings. As a first step towards such a truncation one can try to neglect the evolution of the ghost act
amounts to making an ansatz of the following form:

Gk@g, ḡ ,j, j̄ ;b,t#5 Ḡ k@g#1Ĝk@g, ḡ #1Sgf@g2 ḡ ; ḡ #1Sgh@g2 ḡ ,j, j̄ ; ḡ #2E ddxAḡ $bmnLjgmn1tmjn]njm%.

~3.11!
m
nd

in

an

s

y

r
try

re
ha

p-

f

cal

ing
tant
In Eq. ~3.11! we pulled out the classicalSgf andSgh from Gk ,
and the coupling to the BRS variations also has the sa
form as in the bare action. The remaining functional depe

on bothgmn and ḡmn . It is further decomposed asḠ k1Ĝk

where Ḡ k is defined as in Eq.~2.26! and Ĝk contains the
deviations forḡÞg. Hence by definition

Ĝk@g,g#50. ~3.12!

Ĝk can be viewed as a quantum correction the gauge fix
term which also vanishes forḡ5g. The ansatz~3.11! satis-
fies the initial condition~2.38! if

ḠL5S, ĜL50 ~3.13!

and it satisfies the quantum equation of motion~3.7! exactly.

Equation ~3.13! suggests settingĜk50 for all k in a first
approximation. In this case it can be checked that if the
satz~3.11! is inserted into the Ward identity~3.10! its LHS

vanishes identically. IncludingĜk the Ward identity assume
the form

E ddxLjgmn

dĜk@g, ḡ #

dgmn~x!
52Yk . ~3.14!

We see thatĜk50 is a good approximation provided we ma
neglectYk . The traces which defineYk amount to loop inte-
grals, and if we think in terms of a loop expansionYk is
certainly a higher loop effect and may be neglected in a fi
approximation. At the nonperturbative level one can still

to set Ĝk50 and investigate the consequences in conc
examples. In Yang-Mills theory the analogous truncation
e
s

g

-

st

te
s

led to rather encouraging results already@5,6,9#. In the next
section we shall perform an explicit calculation in this a
proximation.

If one inserts the ansatz~3.11! into the evolution equation
~2.32! one finds the following equation for the evolution o
Gk in the subspace spanned by the ansatz:

] tGk@g, ḡ #5
1

2
Tr@~k22Gk

~2!@g, ḡ #1Rk
grav@ ḡ # !21] tRk

grav@ ḡ ##

2Tr@~2M@g, ḡ #1Rk
gh@ ḡ # !21] tRk

gh@ ḡ ##.

~3.15!

This equation is written down in terms of

Gk@g, ḡ #5Gk@g, ḡ ,0,0;0,0#

5 Ḡ k@g#1Sgf@g2 ḡ ; ḡ #1Ĝk@g, ḡ #. ~3.16!

Gk
(2) is the Hessian ofGk@g, ḡ # with respect togmn at fixed

ḡmn . For the harmonic coordinate condition, the classi
kinetic term of the ghosts,M, is given by Eq.~2.11!.

IV. THE EINSTEIN-HILBERT TRUNCATION

In this section we illustrate the use of Eq.~3.15! by means
of a simple example. At the UV scaleL we start from the
classical Einstein-Hilbert action ind dimensions,

S5
1

16pḠ
E ddxAg$2R~g!12l̄ %, ~4.1!

and we evolve it down to smaller scalesk,L. For the time
being we shall not try to sendL to infinity, so the nonrenor-
malizability of the theory is not an issue here. We are go
to use a truncation which replaces the bare Newton cons
Ḡ and the bare cosmological constantl̄ in Eq. ~4.1! by
k-dependent functions
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Gk[ZNk
21Ḡ ~4.2!

and l̄ k , respectively:

Gk@g, ḡ #52k2ZNkE ddxAg$2R~g!12l̄ k%

1k2ZNkE ddxAḡ ḡmn~F m
abgab!~F n

rsgrs!.

~4.3!
This ansatz is of the form~3.16! with Ĝk neglected and the
classical gauge-fixing term given by Eq.~2.4! with Eqs.

~2.8!, ~2.9! anda51/ZNk . ~Note thatF m
abgab5F m

ab h̄ab be-

causeD̄m ḡab50.! In order to determine the functionsZNk

and l̄ k we have to project the evolution equation on t
space spanned by the operatorsAg andAgR. After having
inserted the ansatz into the evolution equation we may
ḡmn5gmn so that the gauge-fixing term in Eq.~4.3! vanishes.
The LHS of the evolution equation then reads
all

n
s

] tGk@g,g#52k2E ddxAg@2R~g!] tZNk12] t~ZNkl̄ k!#. ~4.4!

On the RHS of Eq.~3.15! we have to perform a derivative expansion and retain only the terms proportional to*Ag and*AgR.
Equating the result to Eq.~4.4! we can read off the system of ordinary differential equations forZNk and l̄ k . They have to be
solved subject to the initial conditionsZNL51 andl̄ L5 l̄ . In this manner the renormalization group flow in the space of
action functionals is projected onto the 2-dimensional subspace parametrized byḠ and l̄ .

In the evolution equation we need the second functional derivative ofGk@g, ḡ # at fixed ḡmn . We expand

Gk@ ḡ1 h̄ , ḡ #5Gk@ ḡ , ḡ #1O~ h̄ !1Gk
quad@ h̄ ; ḡ #1O~ h̄3! ~4.5!

and we find for the piece which is quadratic inh̄mn :

Gk
quad@ h̄ ; ḡ #5ZNkk

2E ddxAḡ h̄mn@2Kmn
rsD̄21Umn

rs# h̄ rs. ~4.6!

Here indices are raised and lowered withḡmn , and the tensorsK andU are given by

Kmn
rs5

1

4
@dr

mds
n 1ds

mdr
n2 ḡmn ḡ rs# ~4.7!

and

Umn
rs5

1

4
@dr

mds
n 1ds

mdr
n2 ḡmn ḡ rs#~ R̄22l̄ k!1

1

2
@ ḡmnR̄rs1 ḡ rsR̄mn#2

1

4
@dr

mR̄n
s1ds

mR̄n
r1dr

nR̄m
s1ds

n R̄m
r#

2
1

2
@ R̄n

r
m

s1R̄n
s

m
r#. ~4.8!

In Eq. ~4.8! all geometrical quantities are constructed from the background metric.4 In order to partially diagonalize the
quadratic form~4.6! we write h̄mn as the sum of a traceless tensorĥmn and a trace part involvingf[ ḡmn h̄mn :

h̄mn5ĥmn1d21 ḡmnf, ḡmnĥmn50. ~4.9!

As a consequence, Eq.~4.6! becomes

Gk
quad@ h̄ ; ḡ #5ZNkk

2E ddxAḡ H 1

2
ĥmn@2D̄222l̄ k1R̄#ĥmn2S d22

4d DfF2D̄222l̄ k1
d24

d
R̄Gf

2R̄mnĥnrĥm
r1R̄abnmĥbnĥam1

d24

d
fR̄mnĥmnJ . ~4.10!

The equations forZNk and l̄ k obtain by comparing the coefficients of*Ag and*AgR on both sides of the evolution equatio
at ḡmn5gmn . For this purpose we may insert an arbitrary family of metricsgmn which is general enough to identify the term

4We use the conventionsRs
rmn52]nGmr

s 1 . . . , Rmn5Rs
msn andR5gmnRmn .
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*Ag and *AgR and to distinguish them from higher order terms in the derivative expansion, such as*AgR2 or
*AgRmnDmDnR, for instance. We exploit this freedom by assuming thatḡmn corresponds to a maximally symmetric spac
i.e., that

R̄mnrs5
1

d~d21!
@ ḡmr ḡ ns2 ḡms ḡ nr#R̄

~4.11!

R̄mn5
1

d
ḡmnR̄.

From now on the curvature scalarR̄ parametrizes the family of metrics inserted, and it should be regarded as an exte
prescribed number rather than a functional of the metric. For a maximally symmetric background the quadratic acti
down to

Gk
quad@ h̄ ; ḡ #5

1

2
ZNkk

2E ddxAḡ H ĥmn@2D̄222l̄ k1CTR̄#ĥmn2S d22

2d Df@2D̄222l̄ k1CSR̄#fJ , ~4.12!

with

CT[
d~d23!14

d~d21!
, CS[

d24

d
. ~4.13!

Before continuing we have to specify the precise form of the cutoff operatorsRk
grav and Rk

gh to be used in the evolution
equation~3.15!. Both of them have the structure~2.13! wherebyZk should be adjusted in such a way that for every lo
momentum mode the cutoff combines with the kinetic term of this mode to2D̄21k2 times a constant. Looking at Eq.~4.12!
we see that the respective kinetic terms forĥmn andf differ by a factor of2(d22)/2d. This suggests the following choice

~Z k
grav!mnrs5F ~ I 2Pf!mnrs2

d22

2d
Pf

mnrsGZNk . ~4.14!

Here

~Pf!mn
rs5d21 ḡmn ḡ rs ~4.15!

is the projector on the trace part of the metric. For the traceless tensor Eq.~4.14! coincides with Eq.~2.15! for Zk
grav5ZNk , and

for f the different relative normalization is taken into account. Thus we obtain in theĥ and thef sector, respectively:

~k22Gk
~2!@g,g#1Rk

grav! ĥĥ5ZNk@2D21k2R~0!~2D2/k2!22l̄ k1CTR#,

~k22Gk
~2!@g,g#1Rk

grav!ff52
d22

2d
ZNk@2D21k2R~0!~2D2/k2!22l̄ k1CSR#. ~4.16!
is

ke

ion
From now on we may setḡ5g and we omit the bars from
the metric and the curvature.

The last missing ingredient for the evolution equation
the Faddeev-Popov operator. From Eq.~2.11! one obtains, at
ḡ5g,

M@g,g#m
n5dn

mD21Rm
n52dn

m@2D21CVR#,
~4.17!

with

CV[2
1

d
. ~4.18!

In the second part of Eq.~4.17! we used Eq.~4.11! for a
maximally symmetric background. Since we did not ta
into account any renormalization effects in the ghost act
we setZk

gh[1 in Rk
gh and obtain

2M1Rk
gh52D21k2R~0!~2D2/k2!1CVR. ~4.19!

Let us writeSk(R) for the RHS of the renormalization
group equation~3.15! with ḡ5g. Inserting Eq.~4.16! and
Eq. ~4.19! there, we arrive at

Sk~R!5TrT@N~A1CTR!21#1TrS@N~A1CSR!21#

22 TrV@N0~A01CVR!21#, ~4.20!

with

A[2D21k2R~0!~2D2/k2!22l̄ k
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N[~2ZNk!
21] t@ZNkk

2R~0!~2D2/k2!#

5F12
1

2
hN~k!Gk2R~0!~2D2/k2!1D2R~0!8

3~2D2/k2! ~4.21!

where a prime denotes the derivative with respect to the
gument and

hN~k![2] t ln ZNk ~4.22!

is the anomalous dimension of the operatorAgR. The opera-
torsN0 andA0 are defined similarly to Eq.~4.21! but with
l50 andZNk51, i.e., hN(k)50. Equation~4.20! involves
traces of functions of the covariant LaplacianD2

[gmnDmDn acting on traceless symmetric tensors~‘‘ T’’ !,
scalars~‘‘ S’’ ! and vectors~‘‘ V’’ !. Because we need only th
zeroth and the first order in the curvature scalar we can
pand

Sk~R!5TrT@NA21#1TrS@NA21#22 TrV@N0A 0
21#

2R~CT TrT@NA22#1CS TrS@NA22#

22CV TrV@N0A 0
22# !1O~R2!. ~4.23!

The traces in Eq.~4.23! can be evaluated by taking adva
tage of the heat kernel expansion

Tr@e2 isD2
#5S i

4psD
d/2

tr~ I !

3E ddxAgH 12
1

6
isR1O~R2!J .

~4.24!

HereI denotes the unit matrix of the space of fields on wh
D2 acts. Hence tr(I ) is the number of independent field com
ponents and in particular

trS~ I !51

trV~ I !5d ~4.25!
r-

x-

trT~ I !5
1

2
~d21!~d12!.

Considering an arbitrary functionW with a Fourier transform
W̃, the expansion of the trace

Tr@W~2D2!#5E
2`

`

dsW̃~s!Tr@e2 isD2
# ~4.26!

is given by

Tr@W~2D2!#5~4p!2d/2 tr~ I !H Qd/2@W#E ddx Ag

1
1

6
Qd/221@W#E ddxAgR1O~R2!J ,

~4.27!

with

Qn@W#[E
2`

`

ds~2 is!2nW̃~s!. ~4.28!

Reexpressing Eq.~4.28! in terms ofW leads to the Mellin
transform (n.0)

Q0@W#5W~0!
~4.29!

Qn@W#5
1

G~n!
E

0

`

dzzn21W~z!.

The next step is to use Eq.~4.27! in order to evaluate Eq
~4.23! and to combineS(R) with the LHS of the evolution
equation, Eq.~4.4!. From the coefficients of*Ag we can
read off the following equation:

] t~ZNkl̄ k!5~4k2!21~4p!2d/2$trT~ I !Qd/2@N/A#

1trS~ I !Qd/2@N/A#22 trV~ I !Qd/2@N0 /A0#%.

~4.30!

Likewise *AgR gives rise to
] tZNk52~12k2!21~4p!2d/2@ trT~ I !$Qd/221@N/A#26CTQd/2@N/A 2#%1trS~ I !$Qd/221@N/A#26CSQd/2@N/A 2#%

22 trV~ I !$Qd/221@N0 /A0#26CVQd/2@N0 /A 0
2#%#. ~4.31!
In Eqs.~4.30! and~4.31!, N andA are consideredc-number
functions ofz which replaces2D2 in Eq. ~4.21!. For every
cutoff R(0) we define the functions (p51,2, . . . )

Fn
p~w!5

1

G~n!
E

0

`

dz zn21
R~0!~z!2zR~0!8~z!

@z1R~0!~z!1w#p

F̃n
p~w!5

1

G~n!
E

0

`

dz zn21
R~0!~z!

@z1R~0!~z!1w#p ~4.32!
for n.0, and5

F0
p~w!5F̃0

p~w!5~11w!2p. ~4.33!

In terms of theF’s, Eq. ~4.30! assumes the form

5Actually Eq. ~4.33! follows from Eq.~4.32! in the limit n↘0.
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] t~ZNkl̄ k!5~16k2!21~4p!2d/2kd@2d~d11!Fd/2
1 ~22l̄ k /k2!28dFd/2

1 ~0!2d~d11!hNF̃d/2
1 ~22l̄ k /k2!# ~4.34!

and Eq.~4.31! becomes

] tZNk52~24k2!21~4p!2d/2kd22Fd~d11!H Fd/221
1 ~22l̄ k /k2!2

1

2
hNF̃d/221

1 ~22l̄ k /k2!J
26d~d21!H Fd/2

2 ~22l̄ k /k2!2
1

2
hNF̃d/2

2 ~22l̄ k /k2!J 24dFd/221
1 ~0!224Fd/2

2 ~0!G . ~4.35!

Let us introduce the dimensionless, renormalized Newton constant

gk[kd22Gk[kd22ZNk
21Ḡ ~4.36!

and the dimensionless cosmological constant

lk[k22l̄ k . ~4.37!

Here Gk[ZNk
21Ḡ is the dimensionful renormalized Newton constant at scalek. The evolution ofgk is governed by the

equation

] tgk5@d221hN~k!#gk . ~4.38!

From Eq.~4.35! we obtain for the anomalous dimensionhN(k):

hN~k!5gkB1~lk!1hN~k!gkB2~lk!, ~4.39!

with

B1~lk![
1

3
~4p!12d/2@d~d11!Fd/221

1 ~22lk!26d~d21!Fd/2
2 ~22lk!24dFd/221

1 ~0!224Fd/2
2 ~0!#

B2~lk![2
1

6
~4p!12d/2@d~d11!F̃d/221

1 ~22lk!26d~d21!F̃d/2
2 ~22lk!#. ~4.40!
n

tia
e
an

y
late
op
q.

der

e

We can solve Eq.~4.39! for the anomalous dimension i
terms ofgk andlk :

hN5
gkB1~lk!

12gkB2~lk!
. ~4.41!

The scale derivative oflk is related to Eq.~4.34! according
to

] tlk52~22hN!lk132pgkk
2k2d] t~ZNkl̄ k!, ~4.42!

so that

] tlk52~22hN!lk1
1

2
gk~4p!12d/2@2d~d11!

3Fd/2
1 ~22lk!28dFd/2

1 ~0!2d~d11!hN

3F̃d/2
1 ~22lk!#. ~4.43!

Equations~4.38! and ~4.43! with Eq. ~4.41! is the set of
differential equations we wanted to derive. Once the ini
valuesgL and lL are given, it determines the value of th
running Newton’s constant and cosmological constant at
l

y

scalek<L. Although they were derived from a relativel
simple truncation, the above evolution equations encapsu
nonperturbative effects which go beyond a simple one-lo
calculation. This is particularly obvious if one expands E
~4.41!, for instance, for small values ofgk :

hN5gkB1~lk!@11gkB2~lk!1gk
2B2

2~lk!1•••#. ~4.44!

We observe thathN receives contributions from arbitrarily
high orders of perturbation theory.

V. RUNNING NEWTON’S CONSTANT
AND COSMOLOGICAL CONSTANT

A. Near two dimensions

In d52 dimensions*AgR is a topological invariant pro-
portional to the Euler number and the quantum theory un
consideration has at most finitely many~topological! degrees
of freedom. Ind521« dimensions, on the other hand, on
finds a dynamically nontrivial theory with a nonzerob-
function for gk @27–29#:

] tgk5@«1hN#gk . ~5.1!
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Gravity in 21« dimensions provides an interesting labor
tory for a first test of the evolution equation because here
conformal factor of the metric can have both a conventio
(«,0) and a ‘‘wrong-sign’’ («.0) kinetic term; see Eq
~4.12!.

The anomalous dimension has a power series expans

hN5hN
~0!1hN

~1!«1hN
~2!«21••• ~5.2!

and therefore

] tgk5@~11hN
~1!!«1hN

~0!#gk1O~«2!. ~5.3!

Expanding the functions~4.40! as B1,25B1,2
(0)1B1,2

(1)«1•••
one has

hN
~0!5

gkB1
~0!

12gkB2
~0!

hN
~1!5

gkB1
~1!

12gkB2
~0! 1

gk
2B1

~0!B2
~1!

~12gkB2
~0!!2 . ~5.4!

The lowest order terms are

B1
~0!~lk!52~122lk!

2124F1
2~22lk!2

32

3

B2
~0!~lk!52F̃1

2~22lk!2~122lk!
21. ~5.5!

We remark that for vanishing cosmological constant,B1
(0) is

a universal quantity, i.e., it does not depend on the pre
form of R(0):

B1
~0!~0!52

38

3
. ~5.6!

The reason is that the integrand in the integral representa
of F1

2(0) equals the derivative ofz„z1R(0)(z)… 21; hence it
is sufficient to know thatR(0) is bounded everywhere in
order to establish that

F1
2~0!51. ~5.7!

Unlike F1
2(0), F̃1

2(lk) is sensitive to the shape ofR(0) even
for lk50. In order to be more explicit we evaluate Eq.~5.5!
at lÞ0 for the constant cutoff functionR(0)(z)51. Though
it does not vanish forz→`, it yields at least qualitatively
correct results@6,9# as long as it does not introduce U
divergences into the integral under consideration. ForF1

2

andF̃1
2 this is not the case and one finds

F1
2~w!5F̃1

2~w!5~11w!21, ~5.8!

so that

B1
~0!~lk!522~122lk!

212
32

3

B2
~0!~lk!5~122lk!

21. ~5.9!
-
e
l

n

e

on

As a consequence, we obtain the following answer for
anomalous dimension:

hN
~0!52

38

3
gk

12 32
19 lk

12gk22lk
. ~5.10!

Equation~5.10! improves on earlier results in Refs.@27, 28,
29#. It takes into account partially resummed higher lo
effects~higher powers ofgk! and it includes the effect of the
running cosmological constant.

One of the interesting features of Einstein-Hilbert grav
in 21« dimensions is that the evolution of Newton’s co
stant is governed by a fixed pointg* at which theb-function
~5.3! vanishes. To lowest order in« it is given by

g* 52«B1
~0!~lk!

21. ~5.11!

The l dependence ofg* is non–universal. ForR(0)51 we
obtain

g* 5
3

38
«

122lk

12 32
19 lk

. ~5.12!

Equation~5.12! is reliable forlk!1. In this regime the fixed
point g* is UV stable if «.0 and it is IR stable for«,0.
For «.0 andlk[0 this fixed point was discussed by Wein
berg@28# in the context of the asymptotic safety scenario
quantum gravity. Our result for the dependence ofgk on the
cosmological constant can only be obtained in a framew
with a proper infrared regularization because we are inve
gating the influence of the relevant dimension-two opera
on a marginal coupling.~In a sense, the role played by th
running cosmological constant is similar to the quadra
mass renormalization in four-dimensional scalar theorie!
For «.0 the theory is asymptotically free. Near the fixe
point the dimensionful Newton constantGk5g* /k« van-
ishes fork→`.

The evolution oflk itself is governed by Eq.~4.43!. For
gk'g* , wheregk andhN are of order«, one finds that also
the b-function of l has a zero of order«:

l* 52
3

38
F1

1~0!«. ~5.13!

This fixed point of thel evolution is UV stable for either
sign of «. We conclude that to first order in« and for«.0
the combined (l,g) system has an UV stable fixed poin
given by Eq.~5.13! together withg* 5(3/38)«.

B. Four dimensions

In d54 dimensions, the running of Newton’s constant
governed by the following functions of the cosmologic
constant:

B1~l!52
1

3p
@18F2

2~22l!25F1
1~22l!

16F2
2~0!14F1

1~0!# ~5.14!

B2~l!5
1

6p
@18F̃2

2~22l!25F̃1
1~22l!#. ~5.15!

The dimensionful quantityGk evolves according to
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] tGk5hNGk , ~5.16!

with the anomalous dimension given by Eq.~4.41!. In order
to get a feeling for the behavior ofGk , let us restrict our
attention to the lowest order ingk which amounts to keeping
only the first nontrivial correction of the expansion inḠk2.
Then hN5B1(lk)gk1••• , or with gk5k2Gk5k2Ḡ

1O(Ḡ2),

hN5B1~lk!Ḡk21O~Ḡ2!. ~5.17!

First we consider the case where the cosmological consta
much smaller thank2. Then we may approximatelk'0 in
Eq. ~5.17!, and Eq.~5.16! has the solution

Gk5G0@12v Ḡk21O~Ḡ2k4!#. ~5.18!

Here

v[2
1

2
B1~0!5

1

6p
@24F2

2~0!2F1
1~0!# ~5.19!

is a pure number, which depends on the functionR(0), how-
ever. For the exponential cutoff~2.14! we have F1

1(0)
5p2/6 andF2

2(0)51, so that

v5
4

p S 12
p2

144D.0. ~5.20!

For different cutoff functions the numerical value ofv will
be slightly different but it will still be positive. Therefore Eq
~5.18! tells us that Newton’s constant decreases ask2 in-
creases; it is small in the UV and grows larger as we evo
it towards the infrared. The sign of this effect is the same
for the non-Abelian gauge coupling in Yang-Mills theo
and it is opposite to the one in QED. The main difference
that Gk depends quadratically onk while, to lowest order,
the gauge coupling in Yang-Mills theory runs only logarit
mically. We see that gravity is ‘‘antiscreening’’ in the sen
that at large distances Newton’s constant is larger tha
small distances. This confirms the intuitive picture that
gravitational charge~mass! is not screened by quantum fluc
tuations but rather receives an additional positive contri
tion from the virtual particles surrounding it.

Let us consider a gravitational~thought! experiment
which involves a typical length scaler , the distance of two
heavy test particles, for instance. Ifr[k21 acts as the effec
tive IR cutoff scale, Eq.~5.18! suggests the following form
of a distance-dependent Newton’s constant~with factors of\
andc restored!:

G~r !5G~`!F12v
Ḡ\

r 2c3 1OS 1

r 4D G . ~5.21!

We expect6 that, to leading order in 1/r , the quantum cor-
rected static Newtonian potential of two test masses sho

6Recall that in QED the analogous substitutione2/r→e2(r 21)/r
correctly reproduces the leading term of the Uehling potential if
one-loop formula for the running couplinge2(m) is used@30#.
t is

e
s

s

at
e

-

ld

be closely related toV(r )52G(r )m1m2 /r . It is interesting
to compare Eq.~5.21! to what is actually obtained by a dia
grammatic calculation of the lowest order correction to t
potential. Recently Donoghue@31# has pointed out that quan
tized Einstein gravity makes a well-defined prediction f
this quantity which is unaffected by the nonrenormalizabil
of the theory. One finds a result of the form

V~r !52G
m1m2

r F12
G~m11m2!

2c2r
2ṽ

G\

r 2c3G .
~5.22!

The term proportional to (m11m2)/r is a kinematic effect of
classical general relativity; it is independent of\ and is not
related to theb-function of Gk therefore. However, the las
term in Eq.~5.22!, proportional toG\/r 2, has precisely the
same structure as Eq.~5.21!. The most recent calculation o
ṽ was performed in Ref.@32# with the result

ṽ5
118

15p
.0. ~5.23!

This number has the same sign and is of the same orde
magnitude as the value found originally in Ref.@31#, but
there is no precise agreement yet. In Ref.@33#, ṽ was calcu-
lated using different methods@34,35# and a negative value
was found; this would correspond to ‘‘screening’’ rather th
‘‘antiscreening.’’ Possible reasons for this discrepancy w
discussed in Ref.@32#. While the issue is not fully settled ye
it is believed that by correctly identifying and evaluating t
set of relevant Feynman diagrams, quantum Einstein gra
gives rise to an unambiguous value forṽ. From our inves-
tigation of the renormalization group flow we expect th
value to be positive.

One can use the full nonperturbative information co
tained in Eq.~4.41! in order to extend the domain of validit
of our result towards larger values ofgk or smaller distances
r . This would involve a numerical solution of Eq.~4.38! on
which we shall not embark at this point.

In our approach we can study the influence of the cosm
logical constant on the running ofGk . It is interesting to ask,
for instance, whether a largelk can destroy the antiscreenin
character of the gravitational interaction (hN,0). Let us
look at Eq. ~5.17! with B1(lk) given in Eq. ~5.14!. If a
regime exists withhN.0 ~screening! then B1(l) must be
positive there. This can only happen if the ter
5F1

1(22lk) in the brackets on the RHS of Eq.~5.14! is
larger than the sum of the other terms because theF’s are
always positive. However,Fn

p(w) decreases for increasingw
and finally vanishes forw→`. Therefore a negative cosmo
logical constant will not change the sign ofhN since
B1(lk),0 for lk<0.

For lk.0, theF’s in Eq. ~5.14! are evaluated at negativ
argumentsw[22lk . From Eq.~4.32! it is clear thatFn

p(w)
blows up forw→21. @The functionz1R(0)(z) assumes its
minimum value 1 atz50 and increases monotonically fo
z.0.# This signals that our approximation breaks down
lk'1/2 or l̄ k'k2/2. For moderately large values oflk ,
B1(lk) is still negative. Aslk approaches 1/2 from below
only the first two terms on the RHS of Eq.~5.14! are impor-

e
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tant. It might be thatB1 turns negative then, but this woul
be in a regime where our truncation is no longer reliable, a
the sign would even depend onR(0) in general.

At this point a general remark concerning the domain
validity of our truncation might be in order. In Sec. III w

showed that truncations of the form~3.11! with Ĝk50 are
consistent with the modified Ward identities providedYk is
small. For the Einstein-Hilbert truncation we can evalu
the traces in Eq.~3.9! and we can expressYk in terms of the
functionsFn

p(w). It is clear, therefore, thatYk becomes large
for w→21, and that our truncation cannot account for th
regime.

The running of the~dimensionful! cosmological constan
itself is governed by the equation

] t l̄ k5hNl̄ k1
1

2p
k4Gk@10F2

1~22l̄ k /k2!28F2
1~0!

25hNF2
1~22l̄ k /k2!# ~5.24!

If we switch off the renormalization group improvement f
a moment and sethN50, l̄ k50 on the RHS of Eq.~5.24!, it
has the solution

l̄ k5
1

4p
F2

1~0!Ḡ~k42L4!1 l̄ L . ~5.25!

We observe the canonical scale dependencel̄ k;k4 which
one expects in any naive one-loop calculation: ifl̄ k starts off
positive atk5L, its absolute value decreases whenk is low-
ered until it reaches zero and thenl̄ k becomes negative~for
L large enough!. It is obvious that any attempt to fine tun
l̄ L in such a way that limk→0 l̄ k50 cannot have a universa
meaning becauseF2

1(0) depends on the form of the cutof
The evolution equation~5.24! improves on the one-loop re
sult in two respects: it includes the effect of the runningGk ,
and via the ‘‘threshold function’’F2

1 it describes the back

reaction of the changingl̄ k on its b-function. In particular,
for l̄ k,0 andk2!u l̄ ku the relevant IR cutoff in the graviton
propagator isu l̄ ku rather thank2. Then the graviton mode
do not contribute to the running ofl̄ k any longer, and their
decoupling is described by the functionF2

1(w). If, on the

other hand, the evolution starts withl̄ k.0, the threshold
functions make the coefficient of thek4 term in Eq.~5.24!
even larger, and the running towards zero is faster tha
Eq. ~5.25!. This effect is counteracted by the termhNl̄ k

which is negative forhN,0. It cannot preventl̄ k from over-
shooting zero, however.

VI. CONCLUSION

In this paper we proposed a general framework for
treatment of quantum gravity along the lines of the Wils
nian renormalization group. We introduced a sca
dependent effective action and we derived an exact re
malization group equation which describes its dependenc
the built-in infrared cutoff. The effective action is invaria
d

f

e

in

e
-
-
r-

on

under general coordinate transformations; no symme
violating terms are generated during the evolution. It satis
a set of modified gravitational Ward identities which ensu
that, in the limit of a vanishing cutoff, the conventional Wa
identities are recovered. By virtue of the diffeomorphism
variance of the effective action, fairly simple invariant tru
cations of the space of actions are sufficient to describe
essential physics in a nonperturbative way. The modifi
Ward identities provide a check for the quality of the tru
cations. The evolution equation can be used both for
quantization of fundamental theories (L→`) and for the
evolution of effective theories~L finite!. It is defined in
terms of manifestly finite, ultraviolet convergent function
traces. The evolution equation by itself is meaningful even
the action is not positive definite. In this case the origin
Euclidean functional integral formulation might be problem
atic, and the precise relation between the two approache
not entirely clear yet.

As a first application, we have tested our method within
simple truncation which retains only the invariants*AgR
and*Ag. Nevertheless, the resulting evolution equations
Newton’s constant and the cosmological constant con
nonperturbative information. In 21« dimensions we found
corrections to theb-function for Gk and we determined its
dependence on the cosmological constant. In 4 dimens
we saw that theb-function for Gk depends onk quadrati-
cally, and that Newton’s constant increases at large
tances. Within its restricted domain of validity, this resu
confirms earlier speculations by Polyakov@36# on a possible
gravitational antiscreening.

It would be interesting to allow for a more general tru
cation and to include more complicated invariants in the
satz forGk . Not only higher powers of the curvature shou
be kept but also, and perhaps more importantly, nonlo
terms must be included~similar to the 2D induced gravity
action *RD22R, for instance!. This would lead to a bette
understanding of quantum gravity in the extreme infrar
and might help to clarify certain issues in quantum cosm
ogy. For instance, it has been proposed that quantum gr
tational effects at large distances should be important bot
the context of the dark matter problem@37# and the cosmo-
logical constant problem@14,36#. In fact, it is quite clear that
the nature of the IR divergences, and hence of the renorm
ization group flow fork→0, is quite different depending on
whetherl is zero or not@13#. In a perturbative expansion
one of the traces on the RHS of the evolution equation c
sists of graviton loops attached to external graviton lin
The most singular~for k→0! diagrams are those which in
volve the vertices obtained by expandingl*Ag, because
they do not contain any momentum factors. Hence forl
Þ0 the renormalization effects should be much stronger t
for l50, and this could eventually drive the cosmologic
constant to zero. We hope to come back to this point e
where.
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