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Stellar model in a fourth order theory of gravity

Daniel E. Barraco and Victor H. Hamity
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Within a fourth order theory of gravity, we obtain the approximation equations in first order of the coupling
constantw of the quadratic term in the curvature and apply these equations to discuss a spherically symmetric
perfect fluid stellar model in a weak field limit up to second order in the mass demsitye find, unlike
general relativity GR), that the continuity of the metric does not allow for a discontinuous mass density; i.e.,
for any bounded distribution of matter the pressamnel the mass density have to be zero at the boundary. We
show that the active mass of the fourth order theory is different than the active mass in GR. Furthermore, for
a hard core star model, we find the explicit solution for the pressure and investigate the upper bound on the
active mass of the star by assuming that matter couples minimally in the Jordan conformal frame and by
applying the dominant energy condition to the perfect fluid at the center of the star. We show that there exist
values of @ and of the radiusR for which this mass of the system does not have an upper bound.
[S0556-282(98)02602-2

PACS numbses): 04.50:+h, 04.20.Cv, 04.25.Nx

[. INTRODUCTION On the other hand, attempts to quantize GR or to regular-
ize the stress-energy-momentum tensor of quantum fields
Higher order theories of gravity are the generally covari-propagating in curved spacetimes have led investigators to
ant extensions of general relativitGR) when we consider consider gravitational actions involving curvature squared
in the Lagrangian density nonlinear terms in the curvatureterms[5]. Higher derivative theories appear to enjoy better
The field equations derived by second order variations of thisenormalizability properties than GF]. Although the cor-
Lagrangian contain derivatives of the metric of an orderrect quantum theory is not yet known, the string theory, for
higher than the seconflHowever, the field equations are of example, suggests in addition to the Einstein action a qua-
second order when we use the first order formaliamle-  dratic and even higher order terms in the curvature.

pendent variations of the metric and the connegt{dn2].] In modern cosmology inflation has become standard since
The most general action containing the Einstein plusthere is no doubt that the existence of an inflationary period
Gauss-Bonnet terms {$or a vacuum [7-9] (exponential expansion of the cosmic scale factor

solves a lot of problems connected with the standard big
_ 5 ch 14 bang model of the Universe. So it is no wonder that the
S—f V=g(R+ aR?+ BR. R d*, (1) starobinsky modelin which curvature-squared terms lead
automatically to the desired inflationary periaghjoyed so
where we have not considered surface terms since they withuch interest in recent years.
not contribute to the analysis of the field equations we will We propose here to analyze the properties of the effective
perform. The factorgr and 8 are new universal constarts  gravity theory characterized by the acti@). We study the
Riemann-squared term can be eliminated using the GaussaseB=0 and consider only small values of the parameter
Bonet identity; the term linear iR is necessary for a proper (|a|<1) [8]. Thus, in Sec. Il we obtain approximate solu-

Newtonian limit[3]). tions to the field equations in first order af In Sec. Il we
The field equations derived by extremizing the action areparticularize these equations for a spherically symmetric stel-
given by lar model(as a perfect fluid sour¢and in Sec. IV we obtain
solutions for this model in different approximationsmfthe
R,,—3Rg,,+aK,, +BL,,=87GT,,, (20  mass densityandp (the pressune
The fourth order equations corresponding to the above
where Lagrangian density share with GR its vacuum solutions. This
may suggest that the classical test of GR is automatically
K,,=—2R,,+29,,0R-39,,R*+2RR,,, (3) satisfied through the Schwarzschild solutid®,11]. How-
ever, the empty space solutions are to be matched to interior
_ _opa 1 a solutions and it may well occur that the matching conditions
Lur= = 2Ruat DR+ 20, HR+ 2R, Rey are not satisfief12,13. Higher order theories have a richer
—30,,R.R. (4)  set of vacuum solutions than GR4,15; in other words, the

vacuum solutions of GR are also solutions of higher order

On the classical level, according to Noakés the fourth  theories but the converse is in general not true. If we call

order theories satisfy one major criterion for the physical2yvno the set of vacuum solutions of higher order theory and
acceptability of a gravitational theory; that is, the initial 2ygr the same set but to GR, its differenge,=2yno

value formulation is well posed. —23ygr is in general a nonempty set. Unlike lower deriva-

0556-2821/97/52)/954(7)/$15.00 57 954 © 1997 The American Physical Society



57 STELLAR MODEL IN A FOURTH ORDER THEORY OF GRAVITY 955

tive corrections, however, it is false to assume that adding aith p the pressurep the total energy density, afd* the

higher derivative correction term, with a small coefficient, velocity four-vector, defined so that,U*=—1. Since the
will only perturb the original theory. The presence of anfluid is at rest, we take

unconstrained higher derivative term, no matter how small it

may naively appear, makes the new theory dramatically dif- U,=Uy=U,=0, U=— JB(1). (12)

ferent from the original. We give an example of this remark

later on in Sec. IV. Our assumptions of time independence and spherical sym-

Finally, in Sec. V, for a hard core star model we find the ya(ry imply thatp and p are functions only of the radial
explicit solution for the pressure and investigate the uppeg o dinater. A first step in solving Eq(9) is to derive an

bound on the mass of the star, by assuming the validity of th%quation forA(r) alone, by forming the quantity
dominant energy condition at its center. We show that there '
exist values ofe and of the radiuR for which the active
mass of the system does not have an upper bound. & & %: i i_i (13)
2A 2B 2 (A% (2 ArZ
Il. APPROXIMATE FIELD EQUATIONS

In our case the field equation is Using Eqg.(9) and substituting the covariant derivative of

T, we get
R,uv_%g,u,VR_’_ZaR(R,uV_%gMyR)_za(R,M;V_gMVDR) 1 A T 8 G 4
rA,r TaG(r
=87GT,,. 5 S - 200 —
7GT, ) A1 2 16maGr®— 2 (A)rTr
The contraction of this equation is '
=87G[Tir?—4maGr2T(T—4T})]. (14)

R=6a0R—-87GT. (6)
It is not difficult to rewrite this equation as a linear differen-

Using Eq.(6) on the left-hand side of Egq$5) we get, to tial equation:

order a (from now on we shall only keep terms up to order

@), 1-167aG(r2T, +2rT )
R,,(1-167GaT)—3ag,,[0R=87G(T,,~Tg,,) Si+S 87aGrT,
+167Ga(27Gg,, T?+9,, 07T ,.,). (7) (2T 4maGrT(T—4T) 1
Dividing this equation by (+ 167GaT), we obtain :8”G< r(1-87aGrT,) ) r(1-8waGT,)’
R,,~3ag,,(0R=87G(T,,~ iT)+167GaT(87GT,, (15
—47Gg,,T)+16maG(27GT?g,,, whereS=1/A.
Now we can expand Eq15) up to first order in the pa-

0, HT=T ) ®  rametera to obtain

Using the d’Alembertian of Eq6), we can put the last equa-
tion, in terms ofR,,,, T, andT,,, as S, +SQr)=0de+ay, (16)

uvo s

R,,=87G(T,,~1g,,T)+16maGT(87GT,, where

—2wGg,,T)—16maG(59,,0T+T ,.,). (9 1
Q(r)=——16waG(rT; +2T,)+8mwaGT,,
The last equation is the first order approximation of our r
method; if we pute=0, we obtain GR.

1
=87GrTi+ —, 1
Ill. SPHERICAL SYMMETRIC EQUATIONS Yo ™ Uy (17
Let us consider now a static, spherically symmetric space- B ot ‘
time manifold with a metric in the “standard” form: 9, =87aG[8mGT, r“T,—4mrTG(T—4Ty)].

ds?=A(r)dr2+r2(d@?+sirfdd¢?)—B(r)dt?, (100  The solution of Eq(16) is

with functionsA(r) andB(r), which are to be determined by r o ) o

solving the field equation&®). Since we are interested in the S(r)ze*medrf el g (F)+qq(r)]dr.  (18)
gravitational field of a bounded source, we shall further as- 0

sume that the manifold is asymptotically flat at spatial infin-

ity. We assume a perfect fluid energy-momentum tensor The metric have to be smooth &0, thus we integrate
between zero and. In the first order approximation E¢L8)

Tw=Pgu,t(P+p)U,U,, (11)  becomes
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1677aG(rT +1/2T)

1 ., .
S:Ff Qo(r)rdr+ Jql(r)rdr
0

167aG

fqo(r)r(rT +1/2T)dr + fql(r)rdr
(19

Using Eq.(11) and substituting Eg(17) in the last expres-
sion, we get

2Gm(r) 2m(r)
S=1- +16marT ,—327aG T(rT’,-i-l/ZT)
87G)2u (v | 3 2
_(876) e fT;r3T{dr+—( ) f 2T Tidr
r o r
8maG)?
_ (BmeG) f 471 2T2dr, (20
2r
where
r ’ ’ ’
m(r)=f A7rr2p(r)dr. (22)
0
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It is important to notice that there is a fact@rin front of the
termsO(p?).

On the other hand, thR,, corresponding equation is

B,r rs, 1
-1+ S| ﬁ-}—l +T:—87TG ng—zgggT
—16mraGT(87GTyy
_27TG900T)

+16mGa(gyydT+SIT,).

(22)
In this theory, as in GR, the Bianchi identity gives
B 2
St Zhe (23
B p+p
The d’Alembertian ofT, (OT, becomes
SB,
OT=STr+|5 s +- s 5B )T (24)

Using Egs.(23) and (24) in Eg. (22), and writing p=pq
+ ap,, we obtain, in first order of the parameter

rS, P, , 1P ) ,
> 1-—— 0+ p =—-8nG|r p—5(3p—p) —16maG(3py—p)[87Grpy—27Gri(3py—p)]
1 2Gm 1. 28 SB
+167Ga 512 (3Posr =P |58+ —+ 55| Te| =SITry- (29

This is the generalization of the Oppenheimer-Volkoff equa{1]. Let us consider the casep<1. We will assume that

tion. For =0 we obtain the corresponding GR equation, asthe energy-momentum tensar,

it is expected:

m(r)+4mr3p,

r(r—2Gm) (26)

or=—(Potp)G

Thus, for fluid matter with a given equation of stae,
=p(p), the equilibrium configurations can be determined in
a similar way as in GR: We arbitrarily prescribe a central
densityp., and hence a central pressie=p(p.). Then we
integrate Eqs(25), (20), and(23) outward until we reach the
surface of the starp=0,0=0, where we join the interior
solution to a vacuum solution.

The solutions of Eq(25) are, in general, very difficult to

obtain; we solve it, in the next section, in a weak field ap-

proximation beyond the linear case.

IV. WEAK FIELD APPROXIMATION

r,, obeys the dominant en-
ergy condition[16,18, so that|p|<p. Then, we havep?
<|plp=p?<p.

If one includes in the total energy-momentum tensor the
effective scalar degree of freedom of the fourth order theory
[19], then the dominant energy condition is never satisfied.
Our aim, however, is to explore the consequences of the
“Jordan conformal frame” being the physical one, and thus
matter will be assumed to couple minimally as above, with
energy conditions imposed only on the energy-momentum
tensor of the perfect fluigsee also the last comment in the
Conclusions

We shall develop the approximation up to terms of order
O(pp). Using Eq.(26) we can write

pO’er(pz)' pO’”ocO(pz), (27)

We want to obtain an approximation better than the lineawhere we have assumed that=O(p). Then, Eq(20) up to

one which has just been done by Stébé and other authors

this order is
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2Gm(r 2Gm, 6
S=1- r( )+16aGr77(3p0—p)'r DT=(3pO“—p,n)+%+ F:‘”
32maG?’m(r) 1 5 2 3Gm 0
++(rp'r+p/2)—§a(8ﬂ'6rp) Pl T 7TGrp—+—'Fr)O O(pp)
2(87G)2%a (1, ,
+¥f r2p2dt+O(pp). (29 29
0

Using this result, we can calculate the d’Alembertiadof ~ Finally, we write Eq.(25) in the form

; = —+4nGr’p—8nGarp ,— —8maG?13m(r)p ,— (87G)?ar?p?

p+p r r
(87G)?

( ZGm) rp, Gm 32w G2am(r)p

r

e[ P70+ 0(pp). (30
0

Now we are ready to solve EqR3). The solution is

mp ;

r

=(2Gm . 4Gm? , Mp 2 2 2
InBz—f —— +87Grp+ 3 —807G a?—Zoz(Sﬂ'G) rp*—16maGp ; — 2247G*«a
r r r r

2(8wG)?  (tmy , =) .
_f—Zafor pdr |dr+O(pp), (31

where we have chosen the limits of the integral to satisfy the boundary conBitieh whenr —co. On the other hand,

°m m (<[ pm , ,
,—p;dr=—p—+j p,——4'n'rp2 dr. (32
rr’ r r 2
From Egs.(31) and(32) to orderO(pp) we obtain
~(2Gm N\ G em |2 _em2 L\ (= ,
B=1—f —+87Grp |dr—167Gap| 1+ +2G f —dr —2] —dr —f 896G272af p?
r o2 rr2 rors r
m 3 2(87G) % (- ~\
~3047G2a —y —2(87G)af p- %f'r 2p2dT ) df. 33
r r 0

From Eq.(33) we can see tha@ would be continuous if is continuous. This is an important property of fourth order theories.
Unlike GR, the continuity of the metric does not allow for a discontinuous mass density; i.e., for any bounded distribution of
matter the pressur@ndthe mass density have to be zero at the boundary. Let us assume that the star has a finfeaadius
defineM =m(R). Then the metrioutsidethe star (>R), wherep=0 andp=0, will be

2G R, ;
B(r)=1—TM+O(pp), A 1=S(r)=B(r), M=M—(8w)26afor2p2dr. (34)

M is the mass that governs the Keplerian motion of a test body in the distant Newtonian gravitational field; i.e., it is the star
active mass and it is different to the active mass of GR identified Mithn a general nonlinear theory the active magsis
not necessarily equal to the total mass and enéogynertial masy obtained as the conserved quantity associated with the
time symmetry of the modéglL7].

Let us study now thénterior solution {<R). From Eq.(33), we have

14m
1+ ——|+2G

R

R(2Gm o\ . 26M rRm _\*> M (Rm RmM2 |
B(r)zl—J’ ——+8nGrp |dr— ———167Gap f —dr +—f ,_dr_zf —dr
r r? rr? rJrr2 rrd
Rl',2p2di.

R , - R mp , 0 R(1 (re —~ ,
—f 768a77262rp2dr+f 3047TaG27dr+2a(877G)2T+2a(87‘rG)zf 7f r2p?dr |dr (35
r r r r r 0
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At the border of the star,=R, the functionB(r) becomes G e~ 1\6a
V—Vy— §6a|im J 6 pd3x=Vy—8maGp.
2GM 14m a—o’) AT
B(R)=1—T—1677Gap 1+T (43
2f(Ffl’szdl‘ V. INCOMPRESSIBLE FLUID SOLUTIONS
+2a(87G) - (36)

Just as in GR we find an interesting application of the
. ) present theory to the class of stable stars consisting of an
If p is continuous through the star border, thei) =0 and jncompressible fluid, with equation of stape= po#(R—r).
the last equation becomes Ed84), which represents the acyally these stars do not represent realistic models, but
exterior solution at the same point. To obtain a parucularthey are simple enough to allow us to find the explicit solu-

solution_ it i§ necessary to give a'state equation and. solve the)ns to the above equations, and to set an upper limit on the
generalization of the Oppenheimer-Volkoff equation. Weyalue ofM GIR, and through it onM . In this case, Eq(30)

will present a particular case in the next section. becomes(we drop the index zero ip,, for simplicity)
If we take the Newtonian limip<p<1, Egs.(33) and

(28) become - 13+ p—32maGp?
24 PP TR L Opp), (4
“Gm(r) p+p 1- & #Gpr
B=1—2J ~ dr—16waGp, (37)
rr wherer <R. This equation is separable fpr the solution is
2Gm(r) pl3—32waGp?+p 8 , | (Har2dmaCe)
S(r)=(1- —16mwaGrp . (38 0t p =C 1—§7TGI' p

(45
From T, =0 applied to a test particle in the Newtonian

limit, we obtain The constaniC can be obtained from the conditignR)

=0, and then
o
X100 39 C=(1/3-32waGp)(1—8/3mGRp) ~ (12 247aCp),
dt 2 Ix' ' (46)
where Using this value ofC and Eq.(45), we obtain
Gm(r) (r) k (47)
*Gm(r) , rN=p—,
CDZ—f - dr—8maGp=Vy—8maGp. (40 P ’D
ror
where
We have a departure of the acceleration of a test body from o (125 A
the Newtonian theory value which is proportional to the gra- N=(1-8/37Gr?p) maGp)

dient of the mass density. This departure from the Newtonian
value has to be measured when the body is moving
“through” a matter-filled region. Of course this statement _ _ 14 2 \(1/2+ 24maGp)
can only be considered in the statistical sense. This result is © ~ (1/3=32maGp) *(1-8/37GR'p)

also in agreement with the Newtonian limit of the generali- —(1—8/37Gr2p) L2+ 24maCp)

zation of the Oppenheimer-Volkoff equation:

— (1_ 8/37G RZP)(1/2+2447aGp),

The above solution, according to E@4), is valid up to
Gm order O(p*); then we have to expand E¢47) up to this
Pr= _Pr_z +8maGppy, (41) order:

. . . 2 4 r?
where we have used that in the Newtonian approximation p(r)=§wGp2(R2—r2)+§sz2p3(R2—r2) R2—§
m(r)<r.

On the other hand, it is interesting to not{& that in the 4
Newtonian limit of the fourth order theory, the gravitational —48a | + §sz2(R4—r4)p3, r<Rr. (48)

potential is[6]
V=-G f . . -
We assume now, in agreement with the GR limit, that the
energy-momentum tensor satisfies the strong energy condi-
thus, in the linear order i we obtain tion [18] and that| a|Gp?<p; thus, from Eqs(44) and (48)

It is interesting to notice that the first terms in E¢8) are
the corresponding Newtonian solution as would be expected.

1+ e 1/Ba
— | pdx; (42
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we may infer that the pressure is a positive definite functionknown for some time that nonlinear theories of gravity with

decreasing withr, and it has a maximum at the origin: LagrangianL =f(R)+/—g share the property that acting on
the metric by a suitable conformal transformation, the field
0<p(0)= % 7Gp?R2%+ ¥ 7?G?p3R*— 64m2aG?R?p>. equations can be recast into the Einstein equations for the

(49  rescaled metric, interacting with a scalar field. The original
. _ set of variables is commonly called the Jordan conformal
Let us apply now the dominant energy conditid8] at the  frame, while the transformed set, whose dynamics is de-

origin: scribed by Einstein equations, is called the Einstein confor-
mal frame. A problem thus arises of which is the metric
p>p(0). (50) structure of space-time that is the physical one.

) . . We have chosen to study our model in the Jordan frame in

Using Eq.(49) in condition(50) we have which gravity is entirely described by th@riginal) metric

tensorg. The Lagrangian for gravity and matterfielfk9]

1 1<GM) 36a (GM)Z can be written as
—=|—=|+|—-1||—=—] >0. (51
2\ R R2 R
L=[R+ aR?+2L o] V—0. (52)

As we said at the beginning the constéat has to be very
small, according to experimental evideri&. However, we
may study conditior{51) for any value ofa/R?. To this end
it is convenient to introduce the auxiliary variables
=GM/R>0 andb=(36a/R?)— 1. A straightforward analy-
sis shows the following.

(i) b>0. Forb>1/16 the condition50) is always satis-
fied, all values ok are possible, and the system is free from
singularities[20]. For 0<<b=<1/16 there exist values(,x,)
such that forx;<x=<x, the dominant energy condition is
violated;x; andx, are the roots of Eq51), equal zero, and
they satisfy 2<x;<4, 4<x,<®. We can conjecture that
given a value oR, we would have stable configurations for
Xe&[Xq,X,]; i.e., if xe[Xq,X,], the (mini)star may become
stable by accretion of mass or through an explosion to get rig,here
of any excess of mass to reachafx;.

(i) b—0. In this casex;—2 andx,— and the only
stable solutions are for<2; i.e., GM/R<2. 1. - -

(iii ) b<0. There existxq(|b|) >0 such that fox=x, the tap=dadp— Egabng¢,c¢,d_V(¢)gaba
energy condition is again violated. The functiog(|b|)
=[(1+16/b|)¥?—1]/4|b|. We have G<x,<2 for =>|b]

The gravitational field equations are given by E5). More-
over, we only consider the approximate field equations, in
ordera, which are obtained from E@5) as given by Eq(9).

On the other hand, using the general procedure described
by Magnano and Sokolowski 9], upon rescaling the metric,
we get the Einstein frame Lagrangian dynamically equiva-
lent to Eq.(52) which contains a minimally coupled scalar
field and a matter Lagrangian which contains explicitly the
scalar field.

The field equations can be written in the fofdB]

éab: tapt e VW‘%Tab( mat var, ¢7§)1

=0. dv 1
O¢= TR 2RéGabT_ (mat var, ¢,9),
VI. CONCLUSIONS ‘/6
Within a fourth order theory of gravity we have obtained
an approximation in first order of the coupling constant of (e'2Bd_1)2
the quadratic term in the curvature and in second order in the V(g)=

- X . 2/3¢2
mass density for a perfect fluid source representing a 8ae

bounded objectthe stay. We have found, unlike GR, that
the continuity of the metric does not allow for a discontinu-
ous mass density; i.e., for any bounded distribution of mattemodel
the pressureand the mass density have to be zero at the ' . o I

bour?dary. We have shown that thye active mass of the fourth However, another’_\ynfawpomt 'S_ possible: If we assume
order theory is different to the active mass of the samdhat the rescaled metrg is the physical one and the vacuum
source in GR. The main equation derived in our work is ab@drangian is transformed first into the corresponding
generalization of the Oppenheimer-Volkoff equation whichEinstein-frame Lagrangian, and then a minimal coupling La-
we solve for the pressure in the hard core mo@ehstant ~9rangian for matter is added, we obtain a theory in whlch the
density. In the p=const model, using the dominant energy stress-energy tensor for matter is conserved. The field equa-

condition at the center of the star we find that there exisfions are:
values ofa and of the radiu®R for which the system is free

In this picture the scalar field influences the motion of any
gravitating matter, in particular the perfect fluid of our

from singularities for any value of the total active mass of Gap=tapt Tap(matvarg),
the star.
Finally, we comment briefly on the possibility of describ- ﬁ¢= dv

%.

ing our system in a different frame. Namely, it has been
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In the Einstein conformal frame the departures from genin the Jordan conformal frame as is the case here. That would
eral relativity and the standard Newtonian limit which we lead to an entirely different model which we are not consid-
have found can therefore be viewed as a direct result of thering in this paper.
nonminimal coupling between the effective scalar degree of
f_reedom¢> and “ort_jlnary” matfcer,_ which leads to a devia- ACKNOWLEDGMENTS
tion from the equivalence principle. The authors [48]
might argue that, on grounds of positivity of energy, the We are grateful to the Consejo Nacional de Investiga-
Einstein conformal frame is the preferred one and matteciones Cienficas y Tenicas and to CONICOR for financial
couplings should be made minimal in that frame, rather tharsupport.
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