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Stellar model in a fourth order theory of gravity

Daniel E. Barraco and Victor H. Hamity
Fa.M.A.F., Universidad Nacional de Co´rdoba, Ciudad Universitaria, Co´rdoba 5000, Argentina

~Received 26 March 1997; published 22 December 1997!

Within a fourth order theory of gravity, we obtain the approximation equations in first order of the coupling
constanta of the quadratic term in the curvature and apply these equations to discuss a spherically symmetric
perfect fluid stellar model in a weak field limit up to second order in the mass densityr. We find, unlike
general relativity~GR!, that the continuity of the metric does not allow for a discontinuous mass density; i.e.,
for any bounded distribution of matter the pressureand the mass density have to be zero at the boundary. We
show that the active mass of the fourth order theory is different than the active mass in GR. Furthermore, for
a hard core star model, we find the explicit solution for the pressure and investigate the upper bound on the
active mass of the star by assuming that matter couples minimally in the Jordan conformal frame and by
applying the dominant energy condition to the perfect fluid at the center of the star. We show that there exist
values of a and of the radiusR for which this mass of the system does not have an upper bound.
@S0556-2821~98!02602-2#

PACS number~s!: 04.50.1h, 04.20.Cv, 04.25.Nx
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I. INTRODUCTION

Higher order theories of gravity are the generally cova
ant extensions of general relativity~GR! when we consider
in the Lagrangian density nonlinear terms in the curvatu
The field equations derived by second order variations of
Lagrangian contain derivatives of the metric of an ord
higher than the second.@However, the field equations are o
second order when we use the first order formalism~inde-
pendent variations of the metric and the connection! @1,2#.#

The most general action containing the Einstein p
Gauss-Bonnet terms is~for a vacuum!

S5E A2g~R1aR21bRcdR
cd!d4x, ~1!

where we have not considered surface terms since they
not contribute to the analysis of the field equations we w
perform. The factorsa andb are new universal constants~a
Riemann-squared term can be eliminated using the Ga
Bonet identity; the term linear inR is necessary for a prope
Newtonian limit @3#!.

The field equations derived by extremizing the action
given by

Rmn2 1
2 Rgmn1aKmn1bLmn58pGTmn , ~2!

where

Kmn522R;mn12gmnhR2 1
2 gmnR212RRmn , ~3!

Lmn522Rm;na
a 1hRmn1 1

2 gmnhR12Rm
aRan

2 1
2 gmnRabRab. ~4!

On the classical level, according to Noakes@4#, the fourth
order theories satisfy one major criterion for the physi
acceptability of a gravitational theory; that is, the initi
value formulation is well posed.
570556-2821/97/57~2!/954~7!/$15.00
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On the other hand, attempts to quantize GR or to regu
ize the stress-energy-momentum tensor of quantum fi
propagating in curved spacetimes have led investigator
consider gravitational actions involving curvature squa
terms @5#. Higher derivative theories appear to enjoy bet
renormalizability properties than GR@6#. Although the cor-
rect quantum theory is not yet known, the string theory,
example, suggests in addition to the Einstein action a q
dratic and even higher order terms in the curvature.

In modern cosmology inflation has become standard si
there is no doubt that the existence of an inflationary per
@7–9# ~exponential expansion of the cosmic scale fact!
solves a lot of problems connected with the standard
bang model of the Universe. So it is no wonder that t
Starobinsky model~in which curvature-squared terms lea
automatically to the desired inflationary period! enjoyed so
much interest in recent years.

We propose here to analyze the properties of the effec
gravity theory characterized by the action~1!. We study the
caseb50 and consider only small values of the parametea
(uau!1) @8#. Thus, in Sec. II we obtain approximate sol
tions to the field equations in first order ofa. In Sec. III we
particularize these equations for a spherically symmetric s
lar model~as a perfect fluid source! and in Sec. IV we obtain
solutions for this model in different approximations ofr ~the
mass density! andp ~the pressure!.

The fourth order equations corresponding to the ab
Lagrangian density share with GR its vacuum solutions. T
may suggest that the classical test of GR is automatic
satisfied through the Schwarzschild solution@10,11#. How-
ever, the empty space solutions are to be matched to inte
solutions and it may well occur that the matching conditio
are not satisfied@12,13#. Higher order theories have a riche
set of vacuum solutions than GR@14,15#; in other words, the
vacuum solutions of GR are also solutions of higher or
theories but the converse is in general not true. If we c
SVHO the set of vacuum solutions of higher order theory a
SVGR the same set but to GR, its differenceSDV5SVHO
2SVGR is in general a nonempty set. Unlike lower deriv
954 © 1997 The American Physical Society
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57 955STELLAR MODEL IN A FOURTH ORDER THEORY OF GRAVITY
tive corrections, however, it is false to assume that addin
higher derivative correction term, with a small coefficie
will only perturb the original theory. The presence of
unconstrained higher derivative term, no matter how sma
may naively appear, makes the new theory dramatically
ferent from the original. We give an example of this rema
later on in Sec. IV.

Finally, in Sec. V, for a hard core star model we find t
explicit solution for the pressure and investigate the up
bound on the mass of the star, by assuming the validity of
dominant energy condition at its center. We show that th
exist values ofa and of the radiusR for which the active
mass of the system does not have an upper bound.

II. APPROXIMATE FIELD EQUATIONS

In our case the field equation is

Rmn2 1
2 gmnR12aR~Rmn2 1

4 gmnR!22a~R,m;n2gmnhR!

58pGTmn . ~5!

The contraction of this equation is

R56ahR28pGT. ~6!

Using Eq. ~6! on the left-hand side of Eqs.~5! we get, to
ordera ~from now on we shall only keep terms up to ord
a),

Rmn~1216pGaT!23agmnhR58pG~Tmn2 1
2 Tgmn!

116pGa~2pGgmnT21gmnhT2T,m;n!. ~7!

Dividing this equation by (1216pGaT), we obtain

Rmn23agmnhR58pG~Tmn2 1
2 T!116pGaT~8pGTmn

24pGgmnT!116paG~2pGT2gmn

1gmnhT2T,m;n!. ~8!

Using the d’Alembertian of Eq.~6!, we can put the last equa
tion, in terms ofRmn , T, andTmn , as

Rmn58pG~Tmn2 1
2 gmnT!116paGT~8pGTmn

22pGgmnT!216paG~ 1
2 gmnhT1T,m;n!. ~9!

The last equation is the first order approximation of o
method; if we puta50, we obtain GR.

III. SPHERICAL SYMMETRIC EQUATIONS

Let us consider now a static, spherically symmetric spa
time manifold with a metric in the ‘‘standard’’ form:

ds25A~r !dr21r 2~du21sin2udf2!2B~r !dt2, ~10!

with functionsA(r ) andB(r ), which are to be determined b
solving the field equations~9!. Since we are interested in th
gravitational field of a bounded source, we shall further
sume that the manifold is asymptotically flat at spatial infi
ity. We assume a perfect fluid energy-momentum tensor

Tmn5pgmn1~p1r!UmUn , ~11!
a
,

it
f-

r
e

re

r

e-

-
-

with p the pressure,r the total energy density, andUm the
velocity four-vector, defined so thatUmUm521. Since the
fluid is at rest, we take

Ur5Uu5Uf50, Ut52AB~r !. ~12!

Our assumptions of time independence and spherical s
metry imply thatp and r are functions only of the radia
coordinater . A first step in solving Eq.~9! is to derive an
equation forA(r ) alone, by forming the quantity

Rrr

2A
1

Rtt

2B
1

Ruu

r 2
5

A,r

rA2
1

1

r 2
2

1

Ar2
. ~13!

Using Eq.~9! and substituting the covariant derivative
T, we get

1

A
212

rA,r

A2
216paGr2

T,rr

A
2

8paG

r 2 S r 4

A D
,r

T,r

58pG@Tt
tr 224paGr2T~T24Tt

t!#. ~14!

It is not difficult to rewrite this equation as a linear differe
tial equation:

S,r1SS 1216paG~r 2Trr 12rT ,r !

r 28paGr2T,r
D

58pGS r 2Tt
t24paGr2T~T24Tt

t!

r ~128paGrT,r !
D 1

1

r ~128paGT,r !
,

~15!

whereS51/A.
Now we can expand Eq.~15! up to first order in the pa-

rametera to obtain

S,r1SQ~r !5q01q1 , ~16!

where

Q~r !5
1

r
216paG~rTrr 12T,r !18paGT,r ,

q058pGrTt
t1

1

r
, ~17!

q158paG@8pGT,r r
2Tt

t24prTG~T24Tt
t!#.

The solution of Eq.~16! is

S~r !5e2*Q~r !drE
0

r

e*Q~ ŕ !dŕ@q0~ ŕ !1q1~ ŕ !#dŕ. ~18!

The metric have to be smooth atr 50, thus we integrate
between zero andr . In the first order approximation Eq.~18!
becomes
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S5
1

r E0

r

q0~ ŕ ! ŕ d ŕ1
16paG~rT ,r11/2T!

r E
0

r

q1~ ŕ ! ŕ d ŕ

2
16paG

r E
0

r

q0~ ŕ ! ŕ ~ ŕ T, ŕ11/2T!dŕ1
1

r E0

r

q1~ ŕ ! ŕ d ŕ.

~19!

Using Eq.~11! and substituting Eq.~17! in the last expres-
sion, we get

S512
2Gm~r !

r
116parT ,r232paG2

m~r !

r
~rT ,r11/2T!

2
~8pG!2a

r E
0

r

T, ŕ ŕ
3Tt

tdŕ1
~8paG!2

r E
0

r

ŕ 2TTt
tdŕ

2
~8paG!2

2r E
0

r

4p ŕ 2T2dŕ, ~20!

where

m~r !5E
0

r

4p ŕ 2r~ ŕ !dŕ. ~21!
a
a

in
ra

p

ea
It is important to notice that there is a factora in front of the
termsO(r2).

On the other hand, theRuu corresponding equation is

211SS B,r r

2B
11D1

rS,r

2
528pGS Tuu2

1

2
guuTD

216paGT~8pGTuu

22pGguuT!

116pGa~ 1
2 guuhT1SrT,r !.

~22!

In this theory, as in GR, the Bianchi identity gives

B,r

B
52

2p,r

p1r
. ~23!

The d’Alembertian ofT, hT, becomes

hT5ST,rr 1S 1

2
S,r1

2

r
S1

SB,r

2B DT,r . ~24!

Using Eqs.~23! and ~24! in Eq. ~22!, and writing p5p0
1ap1, we obtain, in first order of the parametera,
211
rS,r

2
1SS 12

p,r r

p1r D528pGF r 2p2
r 2

2
~3p2r!G216paG~3p02r!@8pGr2p022pGr2~3p02r!#

116pGaH 1

2
r 2F S 12

2Gm

r D ~3p0,rr 2r ,rr !1S 1

2
S,r1

2S

r
1

SB,r

2B DT,r G2SrT,r J . ~25!
-

the
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ed.
the
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um
e
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This is the generalization of the Oppenheimer-Volkoff equ
tion. Fora50 we obtain the corresponding GR equation,
it is expected:

p0,r52~p01r!G
m~r !14pr 3p0

r ~r 22Gm!
. ~26!

Thus, for fluid matter with a given equation of state,p
5p(r), the equilibrium configurations can be determined
a similar way as in GR: We arbitrarily prescribe a cent
densityrc , and hence a central pressurepc5p(rc). Then we
integrate Eqs.~25!, ~20!, and~23! outward until we reach the
surface of the star,p50,r50, where we join the interior
solution to a vacuum solution.

The solutions of Eq.~25! are, in general, very difficult to
obtain; we solve it, in the next section, in a weak field a
proximation beyond the linear case.

IV. WEAK FIELD APPROXIMATION

We want to obtain an approximation better than the lin
one which has just been done by Stelle@6# and other authors
-
s

l

-

r

@1#. Let us consider the case 0,r!1. We will assume that
the energy-momentum tensorTmn obeys the dominant en
ergy condition@16,18#, so that upu<r. Then, we havep2

<upur<r2<r.
If one includes in the total energy-momentum tensor

effective scalar degree of freedom of the fourth order the
@19#, then the dominant energy condition is never satisfi
Our aim, however, is to explore the consequences of
‘‘Jordan conformal frame’’ being the physical one, and th
matter will be assumed to couple minimally as above, w
energy conditions imposed only on the energy-moment
tensor of the perfect fluid~see also the last comment in th
Conclusions!.

We shall develop the approximation up to terms of ord
O(pr). Using Eq.~26! we can write

p0,r}O~r2!, p0,rr }O~r2!, ~27!

where we have assumed thatr ,r}O(r). Then, Eq.~20! up to
this order is
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S512
2Gm~r !

r
116aGrp~3p02r! ,r

1
32paG2m~r !

r
~rr ,r1r/2!2

1

2
a~8pGrr!2

1
2~8pG!2a

r E
0

r

ŕ 2r2dŕ1O~pr!. ~28!

Using this result, we can calculate the d’Alembertian ofT:
hT5~3p0,rr 2r ,rr !1
2Gmr ,rr

r
1

6p0,r

r

2r ,rS 2

r
2

3Gm

r 2
24pGrr2

p0,r

r1p0
D 1O~pr!.

~29!

Finally, we write Eq.~25! in the form
ies.
tion of

us

the star

the
2S 12
2Gm

r D rp ,r

p1r
5

Gm

r
14pGr2p28pGarr ,r2

32pG2am~r !r

r
28paG213m~r !r ,r2~8pG!2ar 2r2

2
~8pG!2

r
aE

0

r

ŕ 2r2dŕ1O~pr!. ~30!

Now we are ready to solve Eq.~23!. The solution is

lnB52E
r

`S 2Gm

ŕ 2
18pGŕp1

4G2m2

ŕ 3
280pG2a

mr

ŕ 2
22a~8pG!2ŕr2216paGr , ŕ2224pG2a

mr , ŕ

ŕ

2
2~8pG!2

ŕ 2
aE

0

ŕ
r̃ 2r2d r̃ D dŕ1O~pr!, ~31!

where we have chosen the limits of the integral to satisfy the boundary conditionB→1 whenr→`. On the other hand,

E
r

`m

ŕ
r , ŕd ŕ52

rm

r
1E

r

`S rm

ŕ 2
24p ŕr2D dŕ. ~32!

From Eqs.~31! and ~32! to orderO(pr) we obtain

B512E
r

`S 2Gm

ŕ 2
18pGŕpD dŕ216pGarS 11

14mG

r D12GS F E
r

` m

ŕ 2
dŕG 2

22E
r

`m2

ŕ 3
dŕ D 2E

r

`S 896G2p2a ŕr2

2304pG2a
mr

ŕ 2
22~8pG!2a ŕr22

2~8pG!2a

ŕ 2 E
0

ŕ
r̃ 2r2d r̃ D dŕ. ~33!

From Eq.~33! we can see thatB would be continuous ifr is continuous. This is an important property of fourth order theor
Unlike GR, the continuity of the metric does not allow for a discontinuous mass density; i.e., for any bounded distribu
matter the pressureand the mass density have to be zero at the boundary. Let us assume that the star has a finite radiR and
defineM5m(R). Then the metricoutsidethe star (r .R), wherep50 andr50, will be

B~r !512
2G

r
M1O~pr!, A215S~r !5B~r !, M5M2~8p!2GaE

0

R

ŕ 2r2dŕ. ~34!

M is the mass that governs the Keplerian motion of a test body in the distant Newtonian gravitational field; i.e., it is
active mass and it is different to the active mass of GR identified withM . In a general nonlinear theory the active massM is
not necessarily equal to the total mass and energy~or inertial mass!, obtained as the conserved quantity associated with
time symmetry of the model@17#.

Let us study now theinterior solution (r ,R). From Eq.~33!, we have

B~r !512E
r

RS 2Gm

ŕ 2
18pGŕpD dŕ2

2GM

R
216pGarS 11

14m

r D12GF S E
r

Rm

ŕ 2
dŕ D 2

1
M

r Er

Rm

ŕ 2
dŕ22E

r

Rm2

ŕ 3
dŕG

2E
r

R

768ap2G2ŕr2dŕ1E
r

R

304paG2
mr

ŕ 2
dŕ12a~8pG!2

*0
Rŕ 2r2dŕ

R
12a~8pG!2E

r

RS 1

ŕ 2E0

ŕ
r̃ 2r2d r̃ D dŕ ~35!
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At the border of the star,r 5R, the functionB(r ) becomes

B~R!512
2GM

R
216pGarS 11

14m

r D
12a~8pG!2

*0
Rr 2r2dr

R
. ~36!

If r is continuous through the star border, thenr(R)50 and
the last equation becomes Eqs.~34!, which represents the
exterior solution at the same point. To obtain a particu
solution it is necessary to give a state equation and solve
generalization of the Oppenheimer-Volkoff equation. W
will present a particular case in the next section.

If we take the Newtonian limitp!r!1, Eqs.~33! and
~28! become

B5122E
r

`Gm~ ŕ !

ŕ 2
dŕ216paGr, ~37!

S~r !5S 12
2Gm~r !

r D216paGrr ,r . ~38!

From T;m
m 50 applied to a test particle in the Newtonia

limit, we obtain

d2xi

dt
5

1

2

]F

]xi
, ~39!

where

F52E
r

`Gm~ ŕ !

ŕ 2
dŕ28paGr[VN28paGr. ~40!

We have a departure of the acceleration of a test body f
the Newtonian theory value which is proportional to the g
dient of the mass density. This departure from the Newton
value has to be measured when the body is mov
‘‘through’’ a matter-filled region. Of course this stateme
can only be considered in the statistical sense. This resu
also in agreement with the Newtonian limit of the genera
zation of the Oppenheimer-Volkoff equation:

p,r52r
Gm

r 2
18paGrr r , ~41!

where we have used that in the Newtonian approxima
m(r )!r .

On the other hand, it is interesting to notice@2# that in the
Newtonian limit of the fourth order theory, the gravitation
potential is@6#

V52GE S 11 1
3 e2r /A6a

r
D rd3x; ~42!

thus, in the linear order ina we obtain
r
he

m
-
n
g

is
-

n

V→VN2
G

3
6a lim

a→0
E e2r /A6a

6ar
rd3x5VN28paGr.

~43!

V. INCOMPRESSIBLE FLUID SOLUTIONS

Just as in GR we find an interesting application of t
present theory to the class of stable stars consisting o
incompressible fluid, with equation of stater5r0u(R2r ).
Actually these stars do not represent realistic models,
they are simple enough to allow us to find the explicit so
tions to the above equations, and to set an upper limit on
value ofMG/R, and through it onM . In this case, Eq.~30!
becomes~we drop the index zero inr0 for simplicity!

2p,r

p1r
54pGr

r/31p232paGr2

12 8
3 pGrr 2

1O~pr!, ~44!

wherer ,R. This equation is separable forp; the solution is

S r/3232paGr21p

p1r D5CS 12
8

3
pGr2r D ~1/2124paGr!

.

~45!

The constantC can be obtained from the conditionp(R)
50, and then

C5~1/3232paGr!~128/3pGR2r!2~1/2124paGr!.
~46!

Using this value ofC and Eq.~45!, we obtain

p~r !5r
N

D
, ~47!

where

N5~128/3pGr2r!~1/2124paGr!

2~128/3pGR2r!~1/2124paGr!,

D5~1/3232paGr!21~128/3pGR2r!~1/2124paGr!

2~128/3pGr2r!~1/2124paGr!.

The above solution, according to Eq.~44!, is valid up to
order O(r4); then we have to expand Eq.~47! up to this
order:

p~r !5
2

3
pGr2~R22r 2!1

4

3
p2G2r3~R22r 2!S R22

r 2

3

248a D1
4

9
G2p2~R42r 4!r3, r ,R. ~48!

It is interesting to notice that the first terms in Eq.~48! are
the corresponding Newtonian solution as would be expec
We assume now, in agreement with the GR limit, that
energy-momentum tensor satisfies the strong energy co
tion @18# and thatuauGr2!r; thus, from Eqs.~44! and~48!
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57 959STELLAR MODEL IN A FOURTH ORDER THEORY OF GRAVITY
we may infer that the pressure is a positive definite functi
decreasing withr , and it has a maximum at the origin:

0,p~0!5 2
3 pGr2R21 16

9 p2G2r3R4264p2aG2R2r3.
~49!

Let us apply now the dominant energy condition@18# at the
origin:

r.p~0!. ~50!

Using Eq.~49! in condition ~50! we have

12
1

2S GM

R D1S 36a

R2
21D S GM

R D 2

.0. ~51!

As we said at the beginning the constantuau has to be very
small, according to experimental evidence@8#. However, we
may study condition~51! for any value ofa/R2. To this end
it is convenient to introduce the auxiliary variablesx
5GM/R.0 andb5(36a/R2)21. A straightforward analy-
sis shows the following.

~i! b.0. For b.1/16 the condition~50! is always satis-
fied, all values ofx are possible, and the system is free fro
singularities@20#. For 0,b<1/16 there exist values (x1 ,x2)
such that forx1<x<x2 the dominant energy condition i
violated;x1 andx2 are the roots of Eq.~51!, equal zero, and
they satisfy 2<x1<4, 4<x2,`. We can conjecture tha
given a value ofR, we would have stable configurations fo
x¹@x1 ,x2#; i.e., if xP@x1 ,x2#, the ~mini!star may become
stable by accretion of mass or through an explosion to ge
of any excess of mass to reach anx,x1.

~ii ! b→0. In this casex1→2 and x2→` and the only
stable solutions are forx,2; i.e.,GM/R,2.

~iii ! b,0. There existsx0(ubu).0 such that forx>x0 the
energy condition is again violated. The functionx0(ubu)
5@(1116ubu)1/221#/4ubu. We have 0,x0<2 for `.ubu
>0.

VI. CONCLUSIONS

Within a fourth order theory of gravity we have obtaine
an approximation in first order of the coupling constant
the quadratic term in the curvature and in second order in
mass density for a perfect fluid source representing
bounded object~the star!. We have found, unlike GR, tha
the continuity of the metric does not allow for a discontin
ous mass density; i.e., for any bounded distribution of ma
the pressureand the mass density have to be zero at t
boundary. We have shown that the active mass of the fo
order theory is different to the active mass of the sa
source in GR. The main equation derived in our work is
generalization of the Oppenheimer-Volkoff equation whi
we solve for the pressure in the hard core model~constant
density!. In the r5const model, using the dominant ener
condition at the center of the star we find that there e
values ofa and of the radiusR for which the system is free
from singularities for any value of the total active mass
the star.

Finally, we comment briefly on the possibility of descri
ing our system in a different frame. Namely, it has be
,

id

f
e
a

r

th
e
a

t

f

n

known for some time that nonlinear theories of gravity w
LagrangianL5 f (R)A2g share the property that acting o
the metric by a suitable conformal transformation, the fie
equations can be recast into the Einstein equations for
rescaled metric, interacting with a scalar field. The origin
set of variables is commonly called the Jordan conform
frame, while the transformed set, whose dynamics is
scribed by Einstein equations, is called the Einstein con
mal frame. A problem thus arises of which is the met
structure of space-time that is the physical one.

We have chosen to study our model in the Jordan fram
which gravity is entirely described by the~original! metric
tensorg. The Lagrangian for gravity and matterfields@19#
can be written as

L5@R1aR212Lmat#A2g. ~52!

The gravitational field equations are given by Eq.~5!. More-
over, we only consider the approximate field equations,
ordera, which are obtained from Eq.~5! as given by Eq.~9!.

On the other hand, using the general procedure descr
by Magnano and Sokolowski@19#, upon rescaling the metric
we get the Einstein frame Lagrangian dynamically equi
lent to Eq.~52! which contains a minimally coupled scala
field and a matter Lagrangian which contains explicitly t
scalar field.

The field equations can be written in the form@19#

G̃ab5tab1e2A2/3fTab~mat var,f, g̃ !,

where

tab5f ,af ,b2
1

2
g̃abg̃cdf ,cf ,d2V~f! g̃ab ,

h̃f5
dV

df
1

1

A6
e2A2/3f g̃abTab~mat var,f, g̃ !,

V~f!5
~eA2/3f21!2

8ae2/3f2 .

In this picture the scalar field influences the motion of a
gravitating matter, in particular the perfect fluid of ou
model.

However, another viewpoint is possible: If we assum
that the rescaled metricg̃ is the physical one and the vacuu
Lagrangian is transformed first into the correspond
Einstein-frame Lagrangian, and then a minimal coupling L
grangian for matter is added, we obtain a theory in which
stress-energy tensor for matter is conserved. The field e
tions are:

G̃ab5tab1Tab~mat var,g̃ !,

h̃f5
dV

df
.
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In the Einstein conformal frame the departures from g
eral relativity and the standard Newtonian limit which w
have found can therefore be viewed as a direct result of
nonminimal coupling between the effective scalar degree
freedomf and ‘‘ordinary’’ matter, which leads to a devia
tion from the equivalence principle. The authors of@19#
might argue that, on grounds of positivity of energy, t
Einstein conformal frame is the preferred one and ma
couplings should be made minimal in that frame, rather th
d

-

e
of

r
n

in the Jordan conformal frame as is the case here. That w
lead to an entirely different model which we are not cons
ering in this paper.
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