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Lagrangian and Hamiltonian formalism for discontinuous fluid and gravitational field
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The barotropic ideal fluid with step angifunction discontinuities coupled to Einstein’s gravity is studied.
The discontinuities represent star surfaces and thin shells; only nonintersecting discontinuity hypersurfaces are
considered. No symmetrfguch as, e.g., the spherical symmgisyassumed. The symplectic structure as well
as the Lagrangian and the Hamiltonian variational principles for the system are written down. The dynamics is
described completely by the fluid variables and the metric on the fixed background manifold. The Lagrangian
and the Hamiltonian are given in two forms: the volume form, which is identical to that corresponding to the
smooth system, but employs distributions, and the surface form, which is a sum of volume and surface
integrals and employs only smooth variables. The surface form is completely four or three covenli&atthe
volume form. The spacelike surfaces of time foliations can have a cusp at the surface of discontinuity.
Geometrical meaning of the surface terms in the Hamiltonian is given. Some of the constraint functions that
result from the shell Hamiltonian cannot be smeared so as to become differentiable functiongumctme
strained phase space. Generalization of the formulas to more general fluid is straightforward.
[S0556-282(198)03202-0

PACS numbd(s): 04.40.Nr, 04.20.Fy

[. INTRODUCTION gravitation and the ideal discontinuous fluid in the Hamil-
tonian form. That is, we identify the canonical variablp%s

Spherically symmetric thin shells or dust stassich as andq’s) and Lagrange multipliers and write down a Hamil-
the Oppenheimer-Snyder onare popular models used ex- tonian functional of these variables; we show that the con-
tensively in the study of a number of phenomena: propertiestraints and the canonical equations resulting from this
of classical gravitational collapdd], properties of classical Hamiltonian are equivalent to the system of Einstein equa-
black holes[2], quantum gravitational collapg&], the dy- tions and the ideal fluid dynamical equatidipdus the Israel
namics of domain walls in the early Univerp4], the back equations in the case of a thin shell
reaction in the Hawking effedi5], entropy on black holes To identify the suitable symplectic structure and find the
[6], or quantum theory of black holé¢g,8], to mention justa variational formulas, we employ the methods described in
few examples. detail in [13] and their application to general relativity as

The classical dynamics of objects with discontinuities ingiven in [14]. We will, however, keep the paper self-
matter density is well understood; it is determined by Ein-contained by motivating and explicitly performing all rel-
stein’s equations, the matter dynamical equations, and someyant derivations.
jump conditions at the discontinuity. The jump conditions for  The model of matter used extensively in this paper is that
the steplike discontinuity require that there are coordinates inf the simplest kind: the barotropic ideal fluid. This can be
which the metric isC! at the discontinuity surfack9]—for ~ formulated as a Lagrangian field theory without any con-
the thin shells, they were first formulated by Dautcqaq|;  straints[15]. Generalization to ideal fluid with internal de-
Dautcourt’'s equations have been rewritten in a covariangrees of freedontsuch aq16)) or to any conservative con-
form by Israel[11]. tinuum should be straightforward; in any case, the

In many investigations, however, a variation principle or agravitational parts of our Lagrangians and Hamiltonians
Hamiltonian is needed from which this classical dynamics(which represent the solution to the main probjdrave gen-
follows. Often, such principlesuitable, e.g., for spherically eral validity.
symmetric models are just guessed from the dynamical In each particular case, the classical dynamics can be ob-
equations; some attempts to obtain them from more gener&hined from a variational principle that has the same form as
variational principles are given {12] and[5]. Indeed, thisis the corresponding variational principle for a smooth system,
an interesting problem by itself: how is the large number ofif some particular generalized functions are allowed to de-
different one-degree-of-freedom Hamiltonians scattered irscribe the matter distribution: the step function for star
the literature related to the Einstein-Hilbert action? Our overboundaries and thé function for thin shell{12]. This sim-
all picture of the world has to be self-consistent, even if weplicity is, however, traded for the freedom in the choice of
indulge in using a number of different models, each justcoordinates: the generalized function approach works only if
applicable for a situation under study. the metric isC? for the step, andC? for the & discontinuity.

In the present paper, we reformulate the dynamics ofVe transform, therefore, the Lagrangians and the Hamilto-
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nians to the so-calledurface formcontaining only smooth to the step and Sec. Il to th&function discontinuities. Sec-
variables; such Lagrangians and Hamiltonians as well ation Il A introduces the ideal fluid model and its dynamics in
symplectic forms decompose into sums of volume and sura fixed spacetimémetric) background. Basic formulas of the
face integrals. The transformation can best be done in thkagrange and Euler pictures concerning Lagrangians, Hamil-
so-called adapted coordinatesthese are coordinates in tonians, stress-energy tensors, and equations of motion are
which the embedding functions of the surfaces of discontiderived; these equations apply to both the step a@hd
nuity acquire the simplest possible form. The result, how-function discontinuity. The method ofariation formulasis
ever, is covariant in the sense that arbitrary smooth coordiPresented, which enables us to find the symplectic structure
nates can be chosen inside of each separated vallefter &S well as _to generate the equf':\tlons of motion. The surface of
right of the discontinuity surfageas well as along the dis- dlscc_)nt_lnu_lty can be moved W|thout_ pr_oblems as long as the
continuity surface itself. metric is fixed. In Sec. Il B, the fluid is coupled to the dy-

An important trick is used throughout the paper: we Worknamical gravity. Relevant formulas concerning the variation

in coordinate systems which are always adapted to the pos?—f the Einstein-Hilbert action are collected. The surfaces of

tion of the discontinuity surface. This way the discontinuity discontinuity are now f'X?d: This helps us to avoid some
surface may be considered as a fixed submanifold of théor_mal problems. '_I'he varlatlon_formulas for the system are
spacetime. Thus, the dynamics of the star surface or thiW”Itteg'n lelalglg\anglan f.md :c-|armltotr1hlan fﬁrrl'r' dd ical
shell is not described by the spacetime coordinates of these n‘t ec. 'tt’ andac lon ?rr] E In she ?n ?(narpltcha
objects but by the evolution of the physical fields such as th@ravity 1s writtén down n tne Lagrangian tormalism, the

metric of matter fields along the surfaces. Then, for examples'he”S are fixed and generalized functions are employed. In

the variations and time derivatives of the embedding func-sec' [l B, the adapted coordinates are used to transform the

tions of the two-surfaces of discontinuity in the three_(Lagrange formalismaction into a sum of volume and sur-

surfaces of constant time both vanish identically. Ourformu—fac_e. integrals d|3|<()j(_)3|rt1g of :)hf gsner(z;llzed func_Uon; and
las are written only for one hypersurface of discontinuity; anddiNing more coordina (auge freedom(four-covarianc

extension to an arbitrary number of hypersurfaces is easy trb'trﬁ“{l coo;dw:ates t(r:]an Ee”chlosgn Ieﬁltg t?ﬁ shel!, t(lght t}?
they do not intersect each other. € shell, and along the shell. In Sec. » the vaniation o

Two interesting problems arise. First, we do not show thafhe action in the surface form is calculated and the obtained

the dynamics makes sense even on-shell. By that, we meé}ynamical equations are listed; they contain the Israel equa-

that there is to be a well-posed initial value problem, Onet'on' A variation formula is derived which is only three-

ought to be able to define some nice space of initial dat covana;]n;[;] t?fh];c’“at]lon by spaceltl_ke surfgd?scor:]st must
consisting of those values of the canonical variables that sa )€ such tha surfaces are continuous but can have a cusp

isfy some well-defined set of constraints, jump, and falloffat the discontinuity surface; the embedding functions of the

conditions so that a unique solution to the dynamical equaglscontlnmty two-surface in the surfaces must be time in-

tions will exist in a neighborhood of the initial surface. In depegder);[. S?Ct'?n i ? co.ntFa]ms a Leglefndre trfarr]]sfol_rlma'gion
this paper, we shall just assume that the dynamics is all righf.0 a "’;m' tﬁman orma;sm, t ﬁ ?leners orm of the Ham _d
At least in some special casésich as spherical symmelry tonian for the system of thin shells and gravity is presented.

the space of classical solutions is well known and it is as" Sec. IITE, the eXpI'C't. functhnal dgpendence of the
large as one expects. amiltonian on the dynamical variables is written down and

The second problem is to show that the Hamiltonian for-the geometrical meaning of the surface terms in the Hamil-

malism defines dregulay constrained system. This means tonian is d|scl_o_sed. In Sec. lll F, the variation .Of bl Hamll-
that one can find a phase spa@®ssibly an extension of tonian is explicitly calculated so that all canonical equations

ours, a complete set of constraints, and a Hamiltonian saténd constraints following from the Hamiltonian can be listed.
isfying the following conditions:(1) the constraints and This not only enables us to check that the Hamiltonian gen-

Hamiltonian must be differentiable functions on the phas rates the deswe_d dynamldm_:ludlng th_e Isrgel ?9“3“‘)?‘
space so that their Poisson brackets are well defined2ind ut also to classify the resulting equations into “canonical

the Hamiltonian must be first class and the constraint segduations” gnd “constraints.” For exa}mple, th.e six relations
must be split nicely into first and second class constraint at are equivalent to the Israel equation consist of one super-

(Bergmann-Dirac analysigL7]). Of course, such an “off- amiltonian constraint, two supermomentum constraints,
shell” formulation is necessary as a starting point for DiractWo singular constraintéhese cannot be made differentiable

quantization. The difficulty is that some constraints at theby _sm_eanng _and one canonical equation. A, necessarily
shell are not differentiable functions on the phase space evei€liminary, discussion of the result is given.
if they are smeared along the shell, because the smearing is
then only two dimensional, whereas the differentiability
would require a three-dimensional smearing. Without an off-
sell formulation, the way to quantum theory need not be Our point of departure in this section is the description of
barred, however. One can try to solve the singular constraintelativistic barotropic perfect fluid as given in R¢15] (ob-
and to substitute the solution back into the action so that aerve that this description is easily extended to any conser-
variational principle results which leads to equivalent dy-vative continuum We will extend and modify the method
namics without the singular constraiffsg]. A problem with  so that it allows for discontinuous matter distributions admit-
such a procedure seems to be that equations quickly groting situations such as a jump of density at the boundary of a
very messy. star (a step-function type of discontinuity along a timelike
The plan of the paper is as follows. Section Il is devotedhypersurfacg

II. FLUID WITH A STEP DISCONTINUITY



916 P. HAJICEK AND J. KIJOWSKI 57

A. Fluid in gravitational field As the specific volum¥ (i.e., the volume of one mole in the

1. The description of the fluid rest frame is 1/n, we obtain for the presurg of the fluid

The fluid that have just “mechanical” degrees of freedom de
consists of identifiable elementary volumes—mass points of P==7v~
the fluid. It can, therefore, be completely described by speci-
fying the mass and the spacetime coordinates of each df V™.
these mass points. All mass points form the so-called matter
spaceZ, which is a three-dimensional manifold; lef, 2. Stress energy density
a=1,2,3, be some coordinatesn Let us denote the space- gy gefinition, the stress-energy tensor density of ideal
time byM and letx*, ©=0,1,2,3 be some coordinatesih fluid (see, e.g.[9]) has the form
The state of the fluid can then be described by a map
{:M—Z, in coordinatez?(x*); the particle trajectories are THy= \/@((er p)Ucu”+ pgr’), (6)
then determined by?(x)=const. The matter spacg is
equipped with a scalar density(z), which determines the where
mole or particle density of the fluid, so that the number N of
particles or moles in the volume/,CZ is given by p=ne(n) ()

= 3 e
N(V?) ,fvzd zh. We assumg further _thm has a step d,ls is the rest mass densit§*” has a step discontinuity at In
continuity at a two surfac, in Z, defined by the equation s section, we collect some important formulas valid for
F(z)=0, whereF is a smooth function with nonzero gradi- {4is tensor density.
entF,. Let3:=7"1(3,) be a timelike three-surface sepa- Let us vary the action of the fluid
ratingM in two open subsetg™ andV~ so thath[z(x)]>0

n%e’ (5)

for xe V™ andh[z(x)]=0 for xe V*. One can make many A
more general assumptiotie.g., allowing for several matter Im=— fv,d x\lg[ne(n) ®
filled regiong, but this will only complicate the description
without requiring any new method of approach. with respect tag,,, . Using Eq.(3), we have
The map¢ and the densith define molgparticle current
j*in M by 1
S(\Igln)=6V=g,,i*j"=- o™ 1%,
j*=he" 27273, (1) 2\lgl

which, together with Eq(2) and the well-known variation

where formula for determinants yields

9z2 1
Za A — mv My v
L NG 5n__§n(g +ufu )6g,u.v (9)

j*(x) is discontinuous &k, j*#0 inV~, j*=0inV™, and  Then,
j* is tangential ta>. (We denote the limits t& from inside
by the superscript minusj* is a vector density; it is easy to
show thatj* is identically conserved everywhere M,
jt.=0.

The currentj#(x) defines the spacetime four-velocity ><(e+ne’))5g
u(x) and the rest moldparticle scalar densityn of the mr
fluid in V™ and atX by

1 1
Sl m= f d4x\/|g|( — 59""ne+ Zn(g"+utu)
v

and a straightforward calculation using E@8), (5), and(6)

jﬂ:\/mnuuy 2) leads to
whereg: =det(@,,) andg,,u“u’=—1. Hence, THY(X)=2 Olm ) (10)
69 ,,.,(X)
1 . L .
n=——-g,i*" (3) The next important relation is the Belinfante-Rosenfeld
\/H 9wl theorem[19—21] applied to our case: the Lagrange density
L, must satisfy the following identity:
n has a discontinuity of step type 3t
In [15], it is shown that the fluid equations of motion can Lm aio Lm Y 11
be obtained from the Lagrange dendity which is given by ‘?Zi Zy agﬂpgw_ moy - 11
Ln=— \/Hne(n), (4)  This equation is equivalent to the requirement thatis a

scalar density, and its derivation is straightforward. From the
wheree(n) is the energy per mole in the rest frame of theidentity (11) and the formula(10), we obtain immediately
fluid andL,, is considered as a function af, zz, andg,,, . that
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F(Z3(x)+ 623(x))=x3+F 623,

TE=L,64— O

P n22. (12

14

a
u and the coordinat&® of 3 changes by the amount

Thus, the so-called canonical stress-energy tensor density on

3_ _ a
the right-hand side is equal to the source of gravitational o=~ Fa02%0-0.

field. . .
The formulas(10) and (12) imply the Noether identity Thus, we obtain for the first term
Ibm  dlm J d*xL,,= —f dxPdxtdx?L  F, 672
v, Th= _’9“_{922 +_aza)zi' (13 . m . mFa

There are counterparts to E4&0)—(13) within any descrip-  For the second term, we have
tion of any type of ideal fluid. Derivation of Eq13) starts

from the equation f d*x9 ‘9Lm52a :f s ‘9Lm52 +f
- M oz s 0Z% S, z0
V. Ty=09,Ty-T% TH. 5
m
If one substitutes folr% from Eq. (12) into the first term on - Jslds Iz8 6z%,

the right-hand side and from E@LO) into the second one,
the identity follows. One consequence of the Noether idenyhere the abbreviations d3 =dx°dxtdx? and
tity is that the four components of the covectiof T, are not  dS=dx'dx?dx® are used. Equation(15) implies that

independent: FaZ,= 5, ., SO we can write
i"v,T,=0, dm lm_
because the definition of* implies the identityj*z%= 3 9z, "o
p y|I©z,=

Hence, the equation system, T#'=0 contains only three
independent equation&uler equatiojy the energy conser-

vation equation Il aL
8l = f d*x

Collecting these results, we obtain the equation

m &Lm

—9,—F | 022+ f d 2’

V,(neu)=—pV u*, I oz, 2( Jz;, “u

for the fluid is satisfied identicallyithin our description L 52) 028+ —

S
3. The variational formula ' °
Let us consider the four-dimensional volurieenclosed + E f d4xT’”59,_w. (16)

between two Cauchy surfac8s andS,; the boundang, of 2 Jv-

the fluid dividesV into two partsV~ andV* and similarlyS;
into S” andS", i=1,2. We assume th&, andS, are C*
surfaces, that is, the induced metric on, as well as the un
normal vector taS; andS, are bothC?.

Thus, the field equations consist wblume equations that
Rold inVv™,

Ly Ly

Let us vary the matter actidn, with respect t@?(x) and ALY Sk L 17
g,,; We obtain gz*  *az
nvo
oL m andsurfaceequations that hold &,
5|m=f d4me+J d*xd,| —= f d*
VT v~ 0z
" L »
—Lm82|Fp=0. (18)
8ZM

(&Lm Il
a Ou . _a
0z ﬁZM

572+ 1 f d*xT#" g
2 Jv- my
The surface of the star is an observer independent dynamical

(14 element of the system.

Let us discuss the meaning of the field equations. For the
volume equatior{17), we just invoke Noether’s identity, Eq.
(13); we can then see that they are equivalent to the conser-
vation equation&’ , T/'=0. The surface equations can be re-
written as follows. First, using Eq12), we have

The first two integrals can be transformed to surface inte-
grals along®, S;, andS,. With this aim in mind, we use the
coordinatesx* in M that are adapted to the surfaces. This
means thak’=t; alongS;, i=1,2 and

F(Z3(x))=x3 (15)

ngg:( -+l 5b)

along3, so thatx¥, k=1,2,3, are coordinates d§ andx?, 0z
a=0,1,2, are coordinates ai Then, the change d¥ if we

vary z2 is given by Hence,

a
,u
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b Lm b A and go to the limitS,— S;, we obtain thevariation formula
ToFuz,=| — 72 Zut Lmda|FoZ, . (19 for the Lagrangian
"
However,Fyz5, is covector normal t&, so the three surface 6£m=f d3x(p,6z%)° +f d?xp,822x°
equationg18) can be written in a covariant form as St IS

1
T,ls=0, (20 +5 L{dg’xTWﬁgW- (22)

wherethTZm,, f"md m, 1S any normal_covector . of The variation formula has been derived by careful inclusion
thle_se_ four equations, only three are independent, becauge ) «poundary terms”; this will be the main strategy for
Ti"is |den_t|caIILy zero, as one easily verifies; in fact, the o gerivation of the Lagrangian and Hamiltonian formalism
three equationd [s=0 imply Eqg. (20). It follows further  that admit discontinuities. The role of the variational formula
from Eq.(6) and fromFyz5,u#=0 that Eq.(20) is equivalent s to generate all dynamical equatiofiscluding the defini-
to the condition that the pressure vanishes,0, at the sur-  tion of moment the variation of the left-hand sideHS) is
face. to be calculated and compared with the RHS.

Formula(16) is only valid in the adapted coordinates; in  Equation(22) is also the point of departure for the trans-
particular, the Lagrangian density,, must be expressed in formation to the Hamiltonian formalism.
these coordinates. Let us pass to more general coordinates. In
fact, the volume integrals are already in a covariant form, so 4. The Hamiltonian formalism
we have just to transform the boundary integrals. However,
we will need explicitly only the integrals over the Cauchy de
surfaces.

Let us define

Let us disregard the surface term in the form(#3) and
fine the Hamiltonian densityl,, by a Legendre transfor-
mation of the form

- o1 Hm:=paz®—Lp.
izg Then we obtain for the variation of the Hamiltonigt,,,
which is defined by

Pa:

The reader can easily verify that E@1), which is written in

the adapted coordinates, defines a three-depgitglong S; s

(independent of the adapted coordinaté®cause the quan- ’Hm::f d°xHp,

tity L, is a four-density. %
The field equationgboth volume and surfageare, there-

fore, equivalent to the formula

the relation

oH :5f d3x 'za—a‘f d3xL,.
5fv_d4me= fszd?’ypa&za— L d3y p,622 " S Pa S "
1

Performing carefully the variation in the first term and sub-

+% J' d4x-|-uv,ggw, stituting from Eq.(22) for the second, we have
v-
and this formula is valid in any coordinate4 in V~ andy¥, M= L{d3x( 8Paz®— Padz®) + J , 3(t)d2xpa(2a6x3
XT=X

k=1,2,3, alongS; . Let us denote the matter occupied part of
the Cauchy surface’=t by S, and the corresponding part of , 1
the matter space b¥~. The following coordinates will sim- —x362%) > f d>xT#"8g,,, . (23
plify all calculations: the intersectiors,N2 is given by S
x3=x3(t) andS; by x3<x3(t). x, k=1,2,3, are coordinates
on S;; we will call them “time-dependent adapted coordi-
nates.” Then, we can write

From this equation, not only the canonical equations are ob-

tained, which will consist of volume and of surface equa-

tions, but also the symplectic structure of the system can be

N read off, which is given by the fist two integrals on th_e RHS;

5f d"'me:f dt(— f d3xp,6z2 these integals can be interpreted a$6z2 8p,;z%Pa),

v R U where o is the symplectic form and(6z3(x),dpa(X)),

(Z3(x),pa(X)) are two vectors; notice thab has a surface

d3XT“V59,w> : part. This is a general and very important observation, which
will, for instance, help to decide what are the canonical vari-
ables for the shell in the second part of the paper. The last
integral in EQ.(23) represents variation with respect to non-
dynamical “parameters’g,,,(x).

gm:f d3xL, We will need the following relations between the Hamil-

St tonian density and the stress-energy density:

1
+ J—
2 x3<x3(t)

If we define the Lagrangiag,, by
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To=—Hpn, (24)

Th=—Paz;, (25
dH OH

T:(:<(9_papa_Hm 5:(_’_(9_2&12?1 (26)

which are valid in the time-dependent adapted coordinates.
The first two equations are obtained immediately from Eq'Substituting foru
(12) and the definition op,. To derive the last equation, we k

first notice that Eq(23) has the following consequence:

IHp,

MV —=
T Z&g

(27)

mv

Second, we derive an equation analogous to @4) for
H.,; we use the fact that ,, behaves as a three-density if we
change the coordinate& keepingt fixed and thatH,, is a

function of 2%, zj, p, andg,,, . Hm=Hm(za,zi,pa,gM):

Mm . Hn
2 —padit+
0z Z pa Padt+2

Hm

_ |
_5gp| 9pk=Hmd -

Then, Eq.(26) follows immediately. Again, analogons o

Egs.(24)—(27) are valid for all types of ideal fluids.

To finish the Legendre transformation, we have also to J

express the velocitg® in terms ofp,, z%, andz® in the
Hamiltonian. This is not completely straightforward. To be-
gin with, we substitute fok ,, from Eq.(4) into the definition

(21) of p,:
an
Pa=— \/@P' E
where
,_dp
P~ dn
Equations(2) and (3) imply
an 1 aj#

—_—=———u,—.
o2 gl * oz

The definition ofj# implies the following identity{ 15]:

&JM a H v R4
EZFJ“&(—J o (28)

Combining the three equations, we easily find

PaZk
U=——"7, 29
K= 0 (29)
wherej® depends only oz? andz? [cf. Eq. (1)]:
j9=h(z)de(z).

The (3+1) decomposition of the metrisee, e.g.[9])

9%=-N"2 go=Ny,
Ou=0u, 9=—qN?
gives, with the help of Eq2),
2
(u%)? j°
Muu=—1-—g=—1+—5 | =] .
q-ugy g% N2 \/a

from Eq. (29), we obtain the identity

10V d'ge
e \/—a :1+p—lwpapb- (30)

This equation determines as a function op,, z?, andz .
The solution depends on the unknown functjgfm) and is
determined only implicitly, in general.

The identity(28) implies that

aj*

9z2

— 0k
=—] Xa'

wherex,‘;l is the matrix inverse tag. As j¥ depends linearly

¢ on 22, we have

ik— _ J Oxgza

or

Substituting forj¥ from
j*=g"(j1—Nj9),
for j, from Eq. (1) and foru, from Eq. (29), we obtain that

. Jan
=N mkuZﬁZpr'f‘ NkZﬁl .
Then, Egs(12) and(21) yield

n
To=—Nva| p+ qulzﬁzFPapb —NZfp,. (31)

According to the formula24), this determines the form of
the HamiltonianH,,, .

5. The Euler picture

At this stage, we have derived all of the important formu-
las of the Hamiltonian formalism in which the fluid is de-
scribed by the functiong?®(x); these are Lagrange coordi-
nates[16] and we can call the formalism theLAgrange
picture” Sometimes theEuler picture is more practical,
however. This can be obtained by the following canonical
transformation. The new fields*(z,t) (Euler coordinates

are defined by
xK(z(x,1),)=xK,  VxKt (32

and the conjugate momeniy, by
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Pu(z,1):=—X(z,1)Zx(x(z,1), 1) p(X(Z,1),1), (33 OPAZ2— Padz2=X"1(8, P x*— P8, x¥)
where + X 10,(Pz26, x*X)
k .
X::de(ai)_ _Xil&a(PIZE‘S*XkXI)y
0z2
or

One easily checks that Eq82) and(33) define a canonical
transformation. . o

Let us first derive some useful relations. By differentiat- f d3x(Spaz®— Pa52a)=f _d%2( 8, Pyx = P8, x¥)
ing Eq. (32) with respect tat at constank®, we obtain St ‘

Xe= —xkza, (34) + Lid3zaa((szf"

where —P,1Z2) 8, x). (39
o OxK ,
Xa:i= 23 Then, we transform the second integral on the RHS of Eq.
z (23):
The derivative of the same equation with respecix‘oat
constantt gives f d?xp,(z22ox3—x362%)
x3=x3(t)
xz8= 5. (35

- = | d3%d,(pa(z25, X' —x'52%))

If the field z3(x,t) is changed t673(x,t), thenxX(z,t) is Lt ((Pal 270

changed tox*(z,t) satisfying ' .
o :J d3zXA (X IP (X6, X — X' 5, xK));
xK(Z(x,1),t)=xK,  V¥xKt. z

we have used Eq$34), (36), (35), and(37). Because of the

Thus, if Z3(x,t) = 22(x,t) + 623(x,t), the ab tionim- - " ° N
us, if2%(x,1) =2%(x,t) + 62°(x,1), the above equation im identity 9,(Xz°) =0, we obtain finally

plies that

k
8, X= —xq82". (36 fa , dzxpa('za6x3—>'<352a)=—f d%20,((P 2
The symbolé, is to stress and remind us that this variation e ) ‘

is of a different kind thars, if applied to fields: the former is —P,12D) 8, XX'). (40)
obtained by comparing the values of the field at the same

point of the matter space, that is, at different points of theEquations(23), (39), and(40) imply

spacetime; the latter compares the values of the field at the
same point of the spacetime.

With the help of the above relations, we can transform all
formulas of the Hamiltonian formalism. Let us start with Eq. 1
(23). First, the inverse transformation for the momenta fol- 3 v
lows from Eq.(33): * 2 Lfd ZXTH80,,(X(X,1),1). (41)

SHm= f d3z(8, Px*— P8, xX)
,-

Pa(X,t)= = X2, DX§E(X,1),DP@(X, D). (37 Thus, the symplectic form has no surface term in the Euler
picture. The variation of the metric in the last term on the
RHS is independent of the other variations, and it is defined
by comparing values of the metric at the same spacetime
points.

Let us suppose thaig,,(x) =0, and let us introduce the

The time derivative of this equation at constaitcan be
calculated with the result

L y—1.okymob o Ll obok o Ul Jkob Ll
Pa= X" (X5Xp ZimPiX' + 27 X5,P X + X532 PrdpX

+x';z,bﬁbPk5<' —PaX —x';I':’k), (38) transformed Hamiltonian density/, by H/,=XH,,, so that
where we introduced the abbreviation Hm:f _dSZHr,n'
P*z2 ‘
L= c?XR(?X Then,

and similarlyxX, . An analogous formula holds for the varia-

tion 8p,, one just has to replace dots I#s. Employing

these equations, we obtain after a lenghty but straightforward

calculation and we have

SHm= f d3z8,H/,,
-
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3 3 Kk E K n’ ?
ffd 28, H/ = szd 2(8, Pxk =P8, x5). (42 n2+qu'PkP|=q—xz. (47

In this form, the variational formula is suitable for derivation For example, in the case of dugt= un, whereu is a con-
of the canonical equations. To this aim, let us calculatestant (rest mass per mole or partitland Eq.(47) can be

S, H/.; H] is of the formH/ (x,xX,P,), hence

!

aH;, aH;,

m
&k__5a _k_) 5*Xk+ 19_Pk5*Pk

S6,H = o
a

+d,

aH/,

— B, XK.

aXa * )

Thus, the field equations consist of the volume equations

AH /[,
9P,

xK (43)

5 aH[, aH [, a4
- k_ﬁk__aagak_y (44)

and the surface equations

H/

Fa&g— :0. (45)

P

z

Let us check that Eq45) is equivalent to Eq(20). We have

H,’n=><Hm( 22(x"),22(x}),Pa@3(X), Z8(Xb), Pi), G u(X')

so that
aH/, oz oHL apy
—r| =XZHL+X—p +X—— :
ok | XA X, ok
Equations(35) and (37) imply
b
dz, ba
=—277
&_XE K2l
Py
K PvZk+ BpPcZk »
Xa
and we obtain easily
aH/, IH ) IHp, ) IHpm
=XZA|{|Hy— —py | 6 — 22+ X—p,z°.
_k‘&xa Z|a(( m pn Py | ok _b_&z| K pa PbZy

Application of Egs(25) and(26) as well as Eq(23) simplify
the expression to

Hn
a

Hence, Eq(45) becomes
FazszEZ: 0,

which is equivalent to Eq(20).
Finally, the transformed Ed30) reads

solved explicitly:

ph?

1
n= :
VaX Ju*h?+ PP,

For dust, Eq(31), which determines the form of the matter
Hamiltonian, specializes to

To=—NVu2(j9)%+ "z z p.p,—N*z}p,. (49

B. Gravity becomes dynamical

In the previous sections, gravity was just an external field.
Here, it will become dynamical: the metrg;,,(x) will sat-
isfy Einstein’s equations with the fluid stress energy tensor
as a source.

1. Description of the system

The main problem which we shall meet is the following.

If the Einstein equations are satisfied, the discontinuity in the
distribution of the fluid leads to a discontinuity in derivatives
of the metric. Thus, we must allow for such discontinuity
from the very beginning. Moreover, a general variation of
the metric, which includes a shift of the coordinates of the
discontinuity, will have a jump of higher order than the met-
ric itself: if the second derivatives of the metric have a jump,
then the first derivative of its variation will have a jump, etc.
If we write naively the usual expression for the variation of
the action in the case of function fluid distribution, then
many terms in it look meaningless within the theory of dis-
tributions (& functions multiplied by discontinuous functions,
etc). Some ingenious calculation of all variations might still
lead to meaningful expressions. Instead, we resort to a
simple trick by which the problem is avoided: we fix the
spacetime coordinates of the discontinuity surfacén this
way, the surface of the discontinuity is formally made to an
“externally given” boundary. The fieldg®(x) andg,,(x)

will satisfy simple boundary conditions &t and these con-
ditions will be “inherited” by their variations. Such a strat-
egy is possible within the general relativity, because it can be
considered as a partial fixing of gauge. Indeed, any change of
the coordinates of the discontinuity surfatean be consid-
ered as a superposition of a transformation of coordinates in
a neighborhood oF, keeping the physical fields fixed, and a
change of the physical fields keeping the coordinates fixed;
the first step is just a change of gauge. The dynamics of the
surface is determined by the form of the metric near and at
the surface.

To be more specific about the boundary conditions, let us
choose the coordinates® in Z such that3, is given by
2°=0, and the coordinateg* in M such thats, is defined by
x3=0. Thus, for the matter fields, we require

Z8|s=0, 62%s=0. (49

It follows that
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x3|22= 0, 5x3|22=0 (50)
in the Euler picture. We further assume the following.
Condition 1. The spacetimeNl,qg) is asymptotically flat
and globally hyperbolic.
Condition 2. The metricg,,,(X) is piecewiseC™ in M,

P. HAJICEK AND J.
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Va(kg - K<)
K IXH gx
N y< oy
K qlein

the only discontinuity being that its second derivatives jump

at>.

Then the variationsg,,,(x) satisfies analogous condition 2.
fluid-gravity system is

The total action for
I=1n+1g. Here

our

4
lg= 1677_Gde\/_R

where G is the Newton constant aRds the curvature scalar
of g,,. The functionR(x) can have a step discontinuity at

3. |, is obtained froml,, of Eq. (8) after the following
substitution:
(x*x3=0)=0,

22(x*,x3=0)=0, (x4, x3=0)=0,

(51)

a=0,1,2 andA=1,2. Thus,l_m contains less variables than

.-

The integration volum# is chosen to be bounded by two

Cauchy surface$, and S, and by a timelike surfac& ™
(which will be eventually pushed to the infinjtyLet the
coordinatesx* be adapted also t8* so thatS " is defined
by x3=r"*. The matter boundar¥, dividesV into V™ and
V*, andS; into S~ andS'.

2. The variational formula

The variation of the gravity actioh, can be obtained
from the following fundamental lemma that has been shown

in [14].

Lemma 1 Let the integration volum¥ of the actionl g
be bounded by two spacelike surfac®sandS,, and by a
smooth timelike surfacg; let x* be some coordinates M,
ykin'S, é¥in 3, and7” in 9S=3NS;. Then

P d*xG** 59 — fd3yq st
9 16nG Jv #16mG Js, TN
+ d3yq 57Tk|+if dzn\/xé‘a
167G Js, ° ¢ 87G Jss,

1
R 2 _ 3 aﬁ
G led VN S 16-G f d°¢y,50Q

(52

where

(53

1
Gr= m( Ri— ngR),

R#" is the Ricci tensor of the metrig,,,, gy is the induced
metric onS, written with respect to the coordinatg, q its
determinant,

n, is the future directed unit normal § so thatK,, is the
second fundamental form of the surfége v, is the metric
induced o, written with respect to the coordinaté®, v its
determinant

Q¥ =\[y[(Ly*F—LF),

~  OxXH ox#
oo =i G G
L = yaﬂl—aﬁ 1] (54)
m,, is the externa{with respect to the volum¥) unit normal
to 2 so thatl 4 is the second fundamental form Bf \ is

the determinant of the two-metric,g induced ondS; writ-
ten with respect to the coordinated and a is defined by

a:= —arcsintig,, ,n*m”).

Lemma 1 is completely general, independent of the form
and description of the matter; it determines the “gravita-
tional part” of the variation formula that we are going to
derive. For the “matter part,” we can use the form(l®) in
which the surface integral alond is left out. Indeed,
F(2)=2° for our special coordinates and the boundary con-
dition (49) givesF,6z%=0. Hence,

s— f 4 aL_ aL_
m= Vs X 972 ﬁ

[, o

S, (?ZS

Our next task is to rewrite the surface integrals in &)
in a covariant way. We define, in analogy with Eg1),

5z+f dS a
O

1J d*XTHY S 55
E v- X g,uv' ( )

— il
P

By a similar argument as in Sec. Il A ®, are surface den-
sities, and the covariant form of the integrals is

=J7d3yE52a—J d3y p,oza. (56)
S2 S1

The relations between the old and new matter momenta
will play some role. They can be summarized as follows. In
V™, we simply have

Pa=Pa. (57)



whereas ab,,

Pa=Pa, P3=p(Pa,2%2), (58)

wherep is some function of the variables indicated. Equation
(57) and the first expression of E(8) follow directly from
the definitions if the substitutio(b1) is made in the expres-
sions on the RHSs. A& ,, does not depend om® at the
boundary, there i®0 ps|s; ps|s as given by Eq(21) with

the substitutiong51); it is, however, nonzero and it can be

n_ wh?

expressed as in the second expression of (B§).. Let us a3A
give a proof. The solution of E¢21) with respect t@® reads P3-=— ?PA
Sa_ oa a a
2'=2%(pa, 2% 2 where
At 3, we must have®=0, so we obtain one constraint for
the functionsp,|s :
and

Z%(pa,23,28)=0. (59
This can be solved fops|s ; the second expression of Eq.
(58) is the solution.

As an example, we work out the explicit form of E§9)
for dust. We easily obtain from Eq1)

sible, as we can eas

~3A
—__Pa—
g%

j=—hx"ixgz? Pals=—

if we observe that the intermediately resulting terms can be
expressed by means of ta derivatives of the determinant
of the matrixz; . Equation(3) yields

h_J = A= Tap 5|—f d4x(aL_m g —ﬂL_m) 623 —fd‘*xewag
= —— V= Qoo+ 2Naz®— q4p2°2°, = - a 9w A - v
X\/@ Joo a Qab V; 0z 07ZM 167G
where +fszd3yE52a— Lfd%@&za
1
Ny =NxK,
) b d3y g o7+ f d3yqy o7
T gl 167G Js, ¢ 167G Js, * X
ab-— Yklratb -
Then, forp=un, we have from Eqs(21) and (4) t8a dzn\/_&v— 8-G d25\ Sa
B h? 1 ST
pa__MXZ\/E n Qabz ) 1677G f g'yaﬁtsQaﬁ“l‘ f d4 T#V(sg'uv (61)
so that From the formula(61) we can read off the field equations;
within V™, we have
2 L
Sa__Hab ’N’ + X \/@
z7=q b 2 NPy, JL JL
uh m m
= (62
and the desired constraif®9) reads ”
- GH'=8nmGTH" (63)
N3 T3an —
N*+n a7pa=0, (60) and withinV*, we have
where G*'=0. (64)
q20: =gz b Apparently, the surface equatiqi8) has been lost. How-
ever, using the boundary condition 2, we easily find @gt
and is continuous ab. Hence,

LAGRANGIAN AND HAMILTONIAN FORMALISM FOR.. ..
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N&: =Nz,

Forn, we have to insert from Eq30)

1 X%Jq

V2hX 24 G0,y

Thus, the constrain®0) can be written as a quadratic equa-
tion for p3, whose general solution is

NABpapg+ u?h?X 2

3
\/ ass(Nzasa_ (Ns)z) '

=N

D

Aag=0aB

is the metric induced odS. Only the lower sign is admis-

ily see from E0). Hence, finally,

NABpapg+ u2h2X 2

.

ass(Nza'ss_ (N3)?) '

Equations(52), (55), and(56) imply the finalvariational
formulafor our gravity-fluid system
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lim Gt:o whereL“# is the second fundamental form of the boundary
x3=0— dV corresponding to the normal oriented outwards frgm

_ _ dS=dx*dx?dx® anddgS=dx'dx?.
and the surface field equation follows from EQ3) We also The derivation of this |dent|ty is g|\/en |E‘j]_4:| [Eq (6 3)]
observe that the dynamics can be completely shifted to thghe form (68) is easily obtained if one uses the equation
gravity if the ideal fluid is described by comoving coordi- QABg, . Q% = /LS, which follows from Eq. (54).

nates everywhere i~ o We also observe that
Putting everything together, we obtain in a way analogous

to that in Sec. Il A 3 that the field equations are equivalent to

the following relation(which is an analogon of E@5.16) of

[14]):

o= [_ay(pao) ~ o [ (@uomy

oG | d77ap0Q,

e Lsdzm \éa)’

(65)

where L is the Lagrangian of the system,

czfdsf
S

Equation(65) is thevariation formulafor our system.

3. The Hamiltonian formalism

Equation(65) is a good starting point for the Legendre

transformation to a Hamiltonian formalism. We define one of

the conceivable total Hamiltonians for our system by
Y. 3yn sa_ 3
H'_ 157d ypaz 167G f d qu|7T

dzﬂ\/XC-Z_

87TG (66

Then the field equations can be obtained fromthgation
formula

Y 3y, 5a8m _ 1 ooa . ki
5= Py (5ma= Pas + o | Pyiaus
K SOu) + o= ! d ! (ad\—\da)
_77 — (o - o
ki 877G 7]2\/X
2 af
+Toma | A 77apdQ’. (67)

To find the explicit form of the Hamiltonian we use the
following lemma.

Lemma 2 In the adapted coordinate$ defined in Sec.
Il B 1, the following identity holds at any=S; in the vol-
umeV:

deoKlérk'—zf doSV\a
S S
—2fd&/|g|R8—2f daSy|y|LS, (68
S JS

|_dspi-Eo-,,
_

whereH,, is obtained front,, as given in Sec. Il A 4 by the
substitutions(51), (57), and (58). Thus, the substitution for
ps is discontinuous nea. It might, therefore, seem that the
corresponding Hamiltonian density,, would not be con-
tinuous at3, but this is not true. The reason is thdt,|s
does not depend op; if the conditions(49) are satisfied:

dHn,

Hence, we have from Eq24)

Hm=—fd818.
S

Collecting all results, we obtain finally
0 0
Hfs(TO+SG fdasFL

(69)
This is the full “off-shell” Hamiltonian of our system. If the
Einstein equations hold, its value is just the surface integral.
Let us rewrite the volume integral in a covariant form.
Any tensor densityV! satisfies the identity

1
Wo= oW g™ W),

The unit future-oriented normal covectar, to S has the

components, = — Néz with respect to the adapted coordi-
nates; it follows that
WI=— Ja(Nw-* + Nkwy), (70)
where
wht:= L WHn n
ol "
Wi ! WY
Kk = k n
Vigl

Thus, the volume integral can be written as

1 1
fsd5<‘T3+ %Gg) - oG | ey,
71

where
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1
Ci=——=(G*"—8nGT*")n,n,

Vigl

(72
and
Cx:=———=(G{—87GT{)n, (73

are thesuper-Hamiltonianand thesupermomentunof our
system(or scalar and vector constraint functigns
Let us return to the formul&7), which not only implies

925

etc. Only those formulas that contain derivativedHgf with

respect to the variables which are not containeHi jn(such
as psls and xf;lz) need some care to be properly trans-
formed.

We observe finally that the field equations derived from
Eq. (75 (or an analogous equation of the Euler picjund|
have the form ofcanonical equationsThis is interesting,
because Eq(45) does not seem to have such a form. The
variations in Eq.(75) (or those of the Euler pictuyemust
satisfy the boundary conditiori¢9) [or (50)] and will, there-
fore, lead to trivial surface equations; the volume equations
alonehavethe canonival form. For example, the would be

the field equations, if we perform the variation on the LHS coynterpart of Eq(45) originates from the term
and compare the result with the RHS, but it also determines

the so-calledcontrol mode(see, e.g.[13]) and the type of

boundary value problem for the field equations. We observe
that this mode is a kind of “curvature-control-mode”; it
amounts to keeping fixe@ontrolling) the external curvature
Q“# at the boundary, ™ (see[14]). Such a boundary prob-

IH]

8Xk
X

3

in the variation ofH, . As &x3]s=0, the only equation

lem for the Einstein equations has not been studied. To pasghich is implied thereby reads
to a more natural, and in fact more conventional, approach,

we have to perform an additional Legendre transformation at

the boundanf14]:

. 1
[ Y 2 AB
H=H 167G J:?Sd 777ABQ
so that we have finally, also using E@.1),

1 1
_ - k - 0,
H= e deS\/q(NC+N Cy) T6mG Lsd&SQO Yoo
(74

and

L e 1 .
SH= Jsde(zaépa— pab‘za)+ﬁ JSdS(Qk|57Tk|

. 1 : :
— m5g,) + e LsdaS(aéJX— J\Sa)

1
+ % asdas( 7’005Q00+ 2 70A5Q0A_ QAB57AB)-
(79

The last surface integral in Eq.74) will result in the
Arnowitt-Deser-Misnei(ADM) energy, if the limitS* —oo
is carefully performedthis has been shown [14]). The last
one in Eq.(75) defines the way of controR®, Q% and
vag are kept fixed at the boundary.

oH!
—=| =0.

3

Further, a counterpart of E§46) is valid for this derivative,
so the above equation is equivalent to

Moreover, z3|s =0, so the equation reduces f|s=0.
However, these components ®f vanish identically at,,
becausai®|s =0 [cf. Eq.(6)]. Thus, there is no surface field
equation.

lll. FLUID SHELL

In this section, we are going to describe the dynamics of a
S-function distribution of fluid. The matter will be coupled to
the dynamical gravity from the start. We shall consider a
special case: just one shell in vacuum; a generalization to
more shells surrounded by a piecewise smooth matter is
straightforward as long as the shells do not intersect.

A. Action in the volume form

The shell can be represented a&fnction singularity in
the mole densityh. The action can then be written as a
volume integral of the same form as for a regular distribution
of matter. This holds also for the gravitational part. We shall
give a more detailed description of this volume form and

The transformation to the Euler picture in the matter parthen transform it to a combinations of volume and surface
of the Hamiltonian is straightforward; let us denote the re-'nte?flaﬂf), where nas rf]unctlons will flear:ure. T?|s mgy be
sulting Hamiltonian density byl/,. Most formulas of Sec, USeful, because much more general choice of coordinates is

g . . Y b¥in — then allowed. Indeed, thé-function method works only if
I A5 will result in the analogous formulas fdf,,, if the

(W ' the coordinates are such that the corresponding components
substitutiong51), (57), and(58) are performed in them. For

/< : of the four-metric are continuous. Further, the coordinate po-
exl?mplg, ‘f["ze have to use the modified form(@s), which  gjion of the shell—the three-surface in the spacetivhand
will read al

the two-surface in the matter spaZe—will be kept fixed.
Here, everything that has already been said in Sec. 1B 1
about this point can be repeated.

TR=—psza, To=—pez—p(p.2)z,
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The matter spacg& remains, therefore, three dimensional B. The surface form of the action
first. Le.tEZ be a two-dimensional surfgce Hhon which the The coordinates satisfying conditiorl are not uniquely
matter IS concen_trated.sLef be coordinates adapted ¥, jetermined. We can use this freedom for the derivation of
so that the equatior’=z; determinest,. Such coordinates  the surface form; the tool will be the adapted spacetime co-

are determined up to a transformation ordinatesx*, defined by the property
Z!lzzll(za), Zr2:ZIZ(Za), X3223(X), fa:Xa|E-
7'3=7'3(z%), 263:ZIS(ZA128), Then, the induced metrig,; on the shell is

: . ap=Ya (78)
wherez(® is a constant independent of. Then, Vap=Qals

and its determinany is related to the determinangt of the
a(z*,2%,2%) a(zt,2%) o four-metricg,,, by
a(z'Y,2'%,2'%  a(z'1,2'?) 92’3

y=99%. (79
We decompose the molar denslyin the adapted coordi- 1. Matter action

nates as follows: . .

Formula(1) together with Eq(76) give

h= hsé( AR Zg), (76) J M hS(S( 73— Zg) E,uvpo-ZlZZZ?:

where hy(z2,7?) is a two-dimesional density oB,. If we  Hence,3=0, and asé(z®—z3)=2z36(x*—x3), j* can be

change the adapted coordinates, we have written as
WL AP a(Z4,22) 973 jr=jgo(x® —XO) (80)
e e h=h, 0 7)) = .
d(z+,2%,2%) (z+,z%) dz The mole densityr can be calculated from Eg3). We ob-

tain

V=0 M7=V = 0,41 812603 - x3)
so the decomposition is independent of the choice of adapted

coordinates, and defines, in fact, a two-dimensional matter == Yapl G150 =x3),
spaceX, with a two-dimensional mole density,; later, we )
will pass to this space. and Eq.(79) yields

In the spacetimé with coordinates*, the matter fields 1
arez?(x*); the shell occupies a three-dimensional surface _ @B [33su3_ o3
which can be described by the embedding functions : NEY YaplsIs NG X0)

xt=x*(&%), «=0,1,2, or by means of the equation
Z(x*)=2z5. Later, we will pass to the the matter fields We define the surface mole density by
A =77(£%), wherez (&%) =ZA(x*(&9)).

The gravitational field is described by the mefgi¢,(x); 1 —
we require the following conditions. - ”s:ﬁ V= Yapi $i8 (8D
Condition 1. The spacetimeNl,g) is asymptotically flat Y
and globally hyperbolic. so that
Condition 2. There are coordinateg’ in a neighborhood
of each point of% such that the metrig,,,(x) is C? every- nzns\/gﬁﬁ(xa’—xg), (82
where, piecewis€”, so that the only discontinuity is a jump
in the first derivatives ak. where \g®s(x3—x3) is already a scalar with respect the

The second derivatives of the metric will then have areparametrizations af®. For the velocityu”, we have the
S&function singularity a& so that the Einstein equations can expansion

be satisfied.
The total action for the system consisting of the shell and ut=v“el, (83
the gravitational field can then be written in the form
where
4 4 IXH
= 167G dx\/_R JMd x\|glne(n). (77 eg_:a_ga,

One can use this volume form of the action to derive thesg that
equations of motion. However, there is also a “surface
form” of the action which we will derive in the next section. Yapl aph=—1
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and dls L

o A — ¥py=LsOg, (90)
= |7|nsva- jg:hsfaﬁyzl};Zi. é)za a‘}/ay 4 sUh

Then the transcription of the matter Lagrangian density if€causé  is a three-density o, and the Noether identity
straightforward:

a _ a__ o')LS A
Lm=—=gne(n)=—[yInse(ng) 50 -x3), Tp=bs0p™ 5% D

whereeg(ng) is the energy per mole of the shell matter. We

define the surface Lagrange dendityand the surface mass 2. Gravitation action

densitypg by The next task is to rewrite the shell part of the gravita-
s 3 tional actionl in the surface form. The following lemma is
Lin:=Lsd(X°=Xp), ps:=Ns€s(Ng), vital.
Lemma 3 Inthe adapted coordinat® that satisfy con-
so that dition 2’, the sfunction part of the gravitational Lagrange
density is given b
—[lpe(ny). (84) Y15 gen by
R . . 1 1
If we perform the trivial integration ovet®in |, the matter —— J[g|lR=- —= /|y|[L]5(x3—x8)+-~- , (92
action becomes a surface integral 167G
3 where the dots represent regular terms; y,zL*#, L* is
f d”&vlvinses(ng) (85 the second fundamental form Bfcorresponding to the nor-

mal oriented outwards ofV~ and the abbreviation
This expression is invariant under the transformation of cof f]:=f, —f_ for the jump of a quantity across the shell is

ordinates at the shell. used. . ' '
The actionl,, can be varied with respect to the shell met- The proof of this lemma is relegated to Appendix A.
ric y,p With the result Equation(92) implies immediately that the gravitational ac-

tion can be transformed to

1 an
=Ld3§< =5 Irlyps—Ilp¢ —aysﬁ 3Yap- 1 ] L [
|QZR v+uv‘d X\/HR—% J;d EVYIIL].

In analogy with the formuld5), we obtain (93
dng __ }ns( yaﬁJrvaU/a)’ (86) Equations(85) and (93) give the total action in the surface
IYap form

and we have 1
4 4

L = 167G d xv|g|R+ 1617Gf d*xv|g|R

Slm=7 LdB‘ﬁTiﬁﬁvaﬁ, (87

1
"84G Ld%ﬂ[u—]zd%mns%(ns)

WhereT§B is the surface stress-energy tensor,

(94)
T8 =Moo “vP = o(yaptvv?), (89
This action functional is equivalent to that given by Efy/),
and if the coordinates satisfy condition’ 2It has, however, two
26! advantages in comparison with E@7): (i) all integrands in
01 =Ngpg— ps= — N5 Eq. (94) are smooth andi) it is valid and can be used with

more general coordinates, namely, arbitrary smooth coordi-
natesx” within V* and arbitrary coordinate&” within X.

The fields in the actiori94) are the matter fields*(y) on3,

oxk ox” (observe that the fictitious field® disappeared from the ac-
TH=—0 — T2\ gB6(x3—x3). tion), the gravity fieldsy,,,(x) in V=, andy,4(y) in . The
metric has to satisfy the so-calledntinuity relations

is the surface tensiofnegative two-dimensional pressyre
Moreover, it holds that

We obtain easily relations analogous to E@sl)—(13):

(&)= ( SRl @))_

’Vaﬁ g v gea B X

(89 #ragt ot

aﬁ(é) . &Xli &X:_ +
= gwa—gaa—gg(m(@) ,

Th(&)= 2

[this is a form of Eq(88)]; (95
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where the symbols ) denote the limits from the volumes Then, we apply lemma [[Egs. (52) and(54)] and Eq.(98)

V= towardsZ. The role of the continuity relation®5) is to

with the result

definethe configuration space of our system as a control

mode or some falloff conditions do. The embedding func-

tions x4 (&) are fixed; their variation is zero.

We also have to specify the integration volumes; this will

be done in analogy to Sec. Il B 1: the voluides chosen to
be bounded by two Cauchy surfac8s and S,, and by a

timelike surface ™ (which will be eventually pushed to the

infinity); the surface separate¥ in two partsV=, and the
surfacesS; into S ; the intersections oF with S; will be

denoted bys3; and we will assume that they together form

the complete boundary &; the intersections of * with S

will be denoted byS; and we will assume that they form the

complete boundary of*. This form of the action will be

our starting point to the derivation of the field equations as

well as the Hamiltonian formalism.

C. The variational formula

The variation of the matter palt, of the action(94), if

we calculate in the coordinates' that are adapted to the

surfacess3; by ¢°=t; and n*=¢&" at g3, is

oo e o0

JL JL
+f d277 —AS&A—j d277 —:(‘)‘ZA.
(922 (920 (921 0720

S+ = f BETEP Sy,

We define the matter momenga by

JLs

DA-:&—Z/()\-

As p, is a well-defined two-surface densifgf. the discus-
sion below Eq.21)], we obtain the covariant formula

—fd3 dlg a&L
_ggﬁzA * 9z

a

1
A 3eT@
52+ 5 Ld ETSP 6V ap

+j dznpA(SzA—f d2ppadzh. (96)
3, a3,

To calculate the variation of the gravitational pagtof
the action(94), we first rewrite the surface integral ig with
the help of the trace part of E¢G4):

Q=2\]vL,

as

3§7aﬁ[Q“ﬁ],
97

- 87G J d*eVIAIL)=~ 167G

so that

( 87G f d3§\/_[L]> 164G f P*6(07.,1Q"]

+Yapdl Q1) (99)

ol 1 d*xG* 59 —LJ d*xG** 59
9 167G \Vau “r16mG vt wy
= d*Q**15y - f d3y gy S
167G Js “b16mG Js, ° ¥
1 1
- 3 kl_ = 2
+ 167G Sld qu|57T 87G J;')Ezd 7])\5[“]
f d?y\ Sa

f d*nndlal+ g5

2 _ aB
e led 7\ S 16.G f d3¢y,50Q (99)

Here, q,(y) and 8q,,(y) are continuous alonds;, but
m!(y) and87'(y) have a jump a#3;. Equations96) and
(99 imply the following formula for the total action:

— 4 Y732 4 ya%
Sl 1677Gf d*xG*"ég,,,— 167 Gj d*xG*"89,,,
aL
3 S
J’d g(&z’“ 52’2

1
—[Q*])8Yap— 167G degy%ﬁﬂkl

SN+

3 aB
167G f d°¢(87wGTy

16 GJ d3qu|5ﬁk|——f d277\/—5[a]

1
4+ —

dznﬁa[a]+f d2ppadz®
8 G (722

f dzr]\/—ﬁa

J' d27]pA52 +

&Koo s j o£7,55Q.

(100

871G Js,

From the variational formul&100), we can read off the field
equations. Inv~ andV™,

GH'=0 (101
and at3,, we obtain
s dlg
A Ya 19_22 =0, (102
[Q*F]=87GTZP. (103

Equation (103 is the well-known dynamical equation for
thin shellg/11]; we shall refer to it as the “Israels equation”.

It may be considered as the singular part of Einstein equa-

tions, corresponding té-like sources. Equatioi02) can be
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interpreted as a three-dimensional stress-energy conserv@erforming the variation in Eq104) and comparing the re-
tion: we can show in a way analogous to Sec. Il A2 that sult with the RHS of Eq.(105 recovers the definition of
momenta and the field equations.

A

— dlg ] .
alsp™\ gA “0_2’2 B D. The Legendre transformation
Let us define the Hamiltonian in way analogous to Sec.
whereV, is a covariant derivative associated with the metric)| g 3.

Yap - Th|s identity implies that Eq(102) is equivalent to . .
a _ Y "kl T 2 )
V,T8=0 H=—L- g5 | dyam— g = and 7V\[a]

(which comprises only two independent equatjons 1 _ i
Equation(100) implies a generating formula for the field t8.G +d277\/Xa+f d?npaz”, (106)
equations analogous to E¢22). In order to derive this for- sn= sn=
mula, we first have to introduce a foliation of the integration
volumg in Eq.(100). This is an arbitrary smooth family of toS that is outward to/* and the future normal t6~,
spacelike surfaces, such thaﬁ:sﬁ; we allow for the sur- is defined by the normal t& that is outward tov~ and the
facesS; having a cusp a#3;=2NS; so that the normah*  fyture normal toS*.
can have a step discontinuity there. This leads to jumps in To calculate the variation df. we have to regroup terms
7 and « acrossss, . in Eq. (105 ’
We also have to introduce adapted cordinatésso that ' '

where[a]:=—a,—a_ at2, a, is defined by the normal

the surfacesS, are given byx°=t, 3 by x3=0, and3 ™" by 1 , .
x*=r*;  further, y*=xNg, £=xy, £=x%s-, oL= %{ - L,d y(Qu o7 )
7*=x;s, and 7*=x";5. Observe that the full four-

metric need not be continuous acrassvith respect to these f 2

coordinates. Observe that const is a continuous surface +2 dn( Woa - 167G

intersecting®, and>*, andd/ét is a continuous vector field

everywhere. B 5 - , _
Equation(94) and X{ Lﬂ y(Qgom) +2L+mzd n(\\éa,)

t
|:f2dw +2f+ _dp(\Noa)’ +f A2 n(padzh)’
tg s'ny sny
imply for £ f 2 ap
164G J o0 778
1
3 .
L= 16-G yV|g|R+ ——= 167G St+d yv|g|R Then we vary Eq.(106), substitute foréL the regrouped

expression, and apply lemma 1 to each of the two volumes
V*; the result is

876 Lst—dWM— [ o Tnena,

i 3 ki
(104 H=~16-G f d3y (7 Sa — gy d7)
If we rewrite EqQ.(100) in the form 1 f ) 2
* 176G | 9 W' < dlal- [a]

t
sl= f “dtac, . .
1 —f d?n(padz*—2"6pp)
sNy

we obtain thevariation formulafor our system:

1 Y
- = 5(1 a—
167G J d ”(( ) )
_ 3 ki SN
" 16nG f oy & 77as0Q (109

S f y(Rola)) + || cnpaoe)
This is the Hamiltonian variation formula for the field equa-
1 tions.
t8.G j d?n(VNSa)" - m f d%77450Q°°. Let us compute the value of the Hamiltonian. To this aim,
S we insert from Eqs(94) and (97) into Eq. (106 and apply
(105 lemma 2. A simple calculation leads to
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. . . More specifically, the coordinate must be constant along
H= d yGo+ o—= d yGo the surfacesS, the embedding formulas f& and3* must
87G 9
read
1
4+ — d2 0 _f d2 -I-O
876 oy @ M7 g @7 s0 =, yE=yh(e),
and the embedding formulas f&N 3 in 3, is
Y06 Jony 4O (108 ’ e

The term— (1/87TG)[Q8] has an interesting interpretation. It
has been obtained as the sum

1

87

E=const, &=yX.

Let us recall that one important point of our method is that
the boundaries are time independent in the above sense and
their variations are zero.

07_ _ 0

G[QO]_ 1677(;[(-*)]+ 877(;“‘0]' The 2+ 1 decomposition of the metrig, ; at % and> " is
analogous to that of,, . In particular, we define thesur-

The first summand is thé-function term in the gravitational face lapsev and the(surface shift v by
Lagrangian density in the volume form

1 vt
\/_R af ;2, ;2
167G Y=l K KL
: o _ —,  AKb-=
and the meaning of the second is given by the following v? v?
lemma.
Lemma 4 If the four-metric is continuous in the adapted so that

coordinates, t

where the dots represent regular terms.

hen we have 3t
’)/00: - V2+)\KLVKV|_ X

\/_ 0= —[Lo] 8(x° —Xo) e the 2+ 1 decomposition of the continuity relatiof85) reads

(109
v=yNI-(N)? (110

Thus, the term is thé-function part of the expression

ve=Ngek (112)
_ Leg
87G ML= kel (112
[cf. Eq. (53)]. If the assumptions of lemma 4 are satisﬁed,Where
then the three first integrals on the RHS of Ef07) can be
written in volume form just as
k
Kk ayt

The Legendre transformation Bt” similar to that in Sec.

B3 can be

L NEmK
NZ=Nymi, eiyx=

[

"84G f dyGs.
and m'; is the unit normal vector t& NS tangent toS and

oriented fromS™ to S*. From this definition, it follows that
performed exactly as was done there. The

transformation to the Euler picture in the matter part of the . e e
shell Hamiltonian(106) is much simpler than the analogous 5mt=§mg M. M3 60 -
transformation of the step Hamiltoni#66), because all for-

mulas of Sec.

ten in three spacetime and two matter space dimensions.

Il A5 remain valid, they must only be rewrit- Using the decompositiofi70), we can write for the inte-

grand of the volume terms in E¢L08)

E. The form of the Hamiltonian

11 L
In this section, the Hamiltoniaf108) will be expressed as GI=- \/a( N & + Nki) :
a functional of the canonical variablés Ny, gy, 7, A, Jal NIl
and a.
Observe that the formuld407) and(109 are valid in any  observe that the RHS is invariant with respect to transforma-

coordinates that are adapted to the foliation and that makéons of coordinateg®. The form of G** and Gy is well
the embedding formulas fof and =% time independent. known[9]:
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ﬂeuzm_ \/_aR«s)
Vigl 4q 2
\/a |
mGi: T

whereR®) is the curvature scalar of the metxig, .

Within 3 and2 ™, an analogous decomposition yields for

the surface terms

NN
To=— W( pTot+0KTL)
and
JN
[Q81=- W(V[Q“HVK[QH)-

T2, can be expressed by means of the canonical variables
Pas AkL, ¥, and vy in a way parallel to Sec. Il A 4: the
formulas are independent of the dimension of spacetime. |

931

)\KLZQZEPAPB
©3(j2)2

and

Tgoz - V\/#Z(jg)2+ N ZezPpaps — YR ZEpa.-

Equation(116) then yields

, PAPBZKZ}
V(192 + 2K 2z paps
The form of[ Q3] can be given explicitly. Let us observe
[14] that the normalsn, n, andm are related by

TskL=

m“=n* sinh @+ m* cosha,

N“=n* cosha+m* sinh a;

recall thatn is the normal toS in M, m is the normal to

éﬂi in S, (m is orthogonal tan), 1 is the normal tosSN'S,

general, the form is only implicit. However, the dependencd” % andm is the normal ta in M (n is orthogonal tam).

of Tgo on\g., v, andvy can be inferred from the relation

A—TS)
TP=-2 (113
s ﬂ’}/aﬁ
analogous to Eq27). It follows that
0
aTsO__ \/XTLL (114)
N PR
0
Moo _ £T§K, (115
v ]yl
and
TS, 1
m\;‘i =5TEm (11

In particular, (/N V[y]) T+ and (/N[ y]) Tik are both in-
dependent of and v .
In a way analogous to Sec. Il A 4 we obtain easily

. 2
12
— =) =1+
ni(ﬁ)

)\KLZQZEPAPB
(19)%ps?

and

JAn

S
T:(;)O: - V(mo—zAKLZﬁZEPAPBJF \/Xps - VKZ/QPA-
S S

For a dust shell, we have

A simple calculation then confirms that the corresponding
second fundamental forms, 5, Ky, andly, of 2 in M, S
in M and>NSin S, respectively, satisfy the relations

L.seref=—Kyekel sinha+ly, coshe,
Logn®ef—Kgmke = —a .

It follows that

1
— — 7'+ sinha—1 cosha,

N

1 s 1 L
WQK_ \/_aﬂ'K:a,K-
Hence,
Q3= — v(\\ 7" sinh a— Al cosha)
— (TR N, (117)
where

_\KL Kl _ okl
I =N""my ee =g my

depends only o, and its first derivatives. We use also the

abbreviations
7Tk| -~ 71_kI } _ 71_kI
=—=mdmy, T=—"F=0qME, TKL=F=
Vo Vo

Va

k Al

11
€keL

J!

where
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Finally, the complete Hamiltonian reads over, we can study the structure of the canonical equations
and constraints at the surfaZe In varying the Hamiltonian,
. 1 3 2K — 3 we must carefully deal with boundary terms.
H= 167G y 2 \/— —oR The variation of the volume integrands can be given in the
form
NN =2y b 1 j d3vi N 2mlmg— 8(2GY) = C SN¥+ CN+ak! 5qy, + by o7+ q B
( Wk“) 167G ot y 2\/— 0 k ki kl [k
where
_\/aR(g) +Nk(_277|k|l)] Ck:_2’7TL|| )
N d2p N (v[ 7t sinha—1 cosha] c:i s —1772 —JgrR®
87G ns \/a ki 2 ’
[+ a]) - f ! d?y9Lg N 1 1
K K 77 sO 87G ss+ 7Llo- akl=— 277;77'”"—7777"'— _,n_mnﬂ_mnqkl_'_ _quld
NG 2 4
(118
1
The surface term & * is left unchanged; it has to be trans- +qu< ROK — ER(s)qk' +Va(Njg< =N
formed according to the control mode used and/or shifted to
infinity. — Ly,

The surface super-Hamiltonidtis and the surface super-
momentumHk at the shell are given by N
by =—=(2my— mqx) — LNk »

Va

1
He=—g— G[7-rLL sinha—I cosha]+Tit,
and
H =—i[7%+a 1+ T 1
sK 87G K K sK» Br:_\/_E(Nk’iTlr‘f'Nl’ITkr_Nerl)éqH
here
2 Ir kl r kr
Tl =—=T2n,n,, q
K 1
+ EN,s(quqSLI' quqsk_ qusqk|)5qk| )
Tok= T n a€pK - . . I . .
\/_ Here, Ly is the Lie derivative with respect to the vector field

) ) o X. The comparison with the volume term of E§07) yields
The geometric meaning of the gravitational part’éf and  tne well-known canonical form of Einstein equatidisg
Hsk can be inferred from Eq54):

C=0, C=0,
QJ.J_
——=—Lgeref Y, : :
Vil ALY mi=—a, qy=by. (119
o The divergence term contributes to the variation of the sur-
K Lognef. face term alSNs by
V1Yl .
2 _nk K
In particular,Laﬁeﬁeﬁ is the second fundamental form of the 167G mzd 7N(—BSm +B m,).

two-surfaceSN’S, corresponding to the normai (each two-

surface has two independent second fundamental forms ihhe following identity can be easily derived:

the spacetime hence, the gravity part of the surface super- " "
Hamiltonian is the jump in thétwo-)trace of this form. g“'m, (8T} — &5 =261 + 216N = NH(m equk'()fE())

F. Equations of motion where the parallel symbol denotes the covariant derivative

In this subsection, we calculate the variation of the Hamil-associated with the metrigx, on SN3. Using Eq.(120
tonian (118 explicitly. In this way, we can check if our and the continuity relation€l11) and(112), we can rewrite
method leads to the well-known equations of motion; morethe surface term in the21 form
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UABK M, = — VN (27 NS + 7 Ky ) (mfm 8q,)
—2 W\ R (efkm! gy ) — VN (T LR+ TRt
—NL;KL-F:TLLNL)\KL-FTTLMVM)\KL

+NmAAKE— NIKS) Ny +2 AN S

— 2 N(NEmymy + veellm)) 874, (121)

The variation of the surface terﬁQg] can be written in
the following way:

0_ _ﬂ 11| o K ﬂ 1
‘5Q°‘5”( Ch ) ’”(mQK

+rest.

(122
Similarly, using Eqs(114), (115 and(116), we obtain that

& =

5TH=10 ( - —T“) - 5VK<
) EZ VIl
ITY

ity 9 ITY
o an™M oz, pa

1
Tok| +5Ts Nk

Spa. (123

) 577+

Comparing the first two terms in Eq6l21) and (123, we

obtain the first three Israel equations:
[Q**]=8nGTy",

[Qk]=87GTg. (129

The last two terms in Eq123), if compared with the corre-

933

Substituting this into Eq(127), we immediately obtain

vsinha.=N:, »cosha.=N., (128

[~7* cosha+| sinha]=0. (129

The remaining equations, simplified by E¢$28) and(129),
read

VAL =7 ENE = TENENINKE+ N mKE 4+ oM\ KR

+ankt]1=87GTK", (130

and

A= =20 (N7 =N = o). (13D

From the point of view of physicdlor geometrical con-
tent, Eq. (128 just reproduces the definition af and is
compatible with the continuity relatiof110). The three Egs.
(130 are equivalent to the remaining three Israel equations.
Finally, Egs.(129 and(131) follow from the continuity re-
lations (110—(112) and the equation of motiofl19. In-
deed, taking the limit of the second Eq19) from both sides
towards the shell and projecting the resultdfe| , we ob-
tain

: - 1_-
)\KL:(ZN( TKL— E 7T)\K|_ +NKHL+ NLHK+ 2|KLNL )

(132

sponding surface term in E€LO7) yield the dynamical equa- the expression in the brackets on the RHS must be continu-
tions for matter inside the three-dimensional spacetime of theus, hence

shell surfaces:

oty 9 ITY

o~ o oz =Pa (129
aT? .
aps,f Spp=—72". (126)

What remains from Eq(107) can be written as follows:
[2rest- \AB*my]= (87 GTK — A[ @]\ L) 6Ny,
+ UNNKEN G S a]. (127)

A somewhat lenghty calculation starting with E¢521) and
(117 gives

2rest- \AB¥m,= — 2\ 7 (v sinh a— N*)mFm! g
— TN (v sinh a— NY) + KNS
+1XEN—2INKE cosha+ vMAKLay,
— N, m\KL SN+ 2\ (v cosha
—N) 8l — 2\ (v sinh a— N+ )m,m, 574
+2N(— vt cosha+ vl sinha

+ v|||<K)5a.

[_N(;)\KL_ZEKL)_FZIKLNL]:O. (133)
The trace of Eq(133) is Eq.(129 and the trace of Eq132)
is Eq.(131).

Eqgs.(124), (133, and the trace-free part of EGL30) can
be written in a more symmetric form:

1_
[_KKL S|nh a+|K|_ COSha]= _87TG( TSKL_ ~ T)\KL),

2
(139
[KkL cosha—I, sinha]=0, (135
[7k+ax]=—8mGTe, (136

where Ky = — g+ (1/2)m\¢. . They give the jumps of
the two independent second fundamental forms of the shell
two-surface in the spacetime, one corresponding to the nor-

mal 1 in the direction of the shell motiofcontinuous, the

other tom, which is perpendicular to the direction of motion.

From the point of view of the theory of constraint sys-
tems, Egs(124), (129, and the trace-free part of EGL30)
are constraints. The trace of E3d.30),

: ~ 1 ~
[a]=4mGrT N = 5[ =N N +NI+2N ym¥

+2VK(1'K], (137
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Eq. (131, and Egs.(125, (126) are canonical equations. APPENDIX A: PROOF OF LEMMA 3
Finally, Egs.(110—(112 and(128 are defining equations of

the Hamiltonian system, analogous to falloff conditions or Let us calculate the>function terms in the expression

L,=h*’R,,, whereh*” is defined by

control conditions. 9 uve
It seems that some of the constraints are second class. For 1
example, Equatiorf129 follows from the variation with re- h#v: = %|g|1’zg’”. (A1)

spect toa=(1/2) (a4 + a_), which is a Lagrange multiplier.

Equation (129 contains this Lagrange multiplier; thus, its For this aim, we have to isolate the second derivative terms.
Poisson bracket withr,, which is the momentum conjugate A simple calculation gives

to «, and which is also constrained to vanish, is not zéro

we extend the system by this momenjum h 'R, =0 (N*"AL, )+,

Another important observation is that the LHS of Eq.
(129 can be smeared only by a function of two variables,
because the domain of definition of the LHS is the shell AN =T _ g\ ¥ (A2)
surface. On the other hand, E429) contains so-called vol- R ol
ume quantities, namelys* and1; a derivative with re-  and the ellipsis represent regular terms. Thus,&fenction
spect to these variables and the Poisson brackets of theggm inh#*R, is given by
variables result in three-dimensionélifunctions. Thus, the .

LHS of Eq. (129 cannotbe smeared so that it becomes a h#AS18(x3=X3).
differentiable function on the phase space. We call such con-
straints singular. The best way of tackling this constraint Thus, we prove the identity

may be to solve it forr and insert the solution back into the

action[18]. A sjmilar procedure exists hopefully for the two hW[Ai - ﬁ TyI[L], (A3)
constraints which result from the tracefree part of BR0): ™

whereA?, , is defined by

where L,z is the second fundamental form & and

_ 1. L= y“'BLaﬁ. Observe that the RHS of EGA3) is written in
87TG( TR > TQ"N)\MN)\KL) a three-covariant form. From the definition of E42) of the
quantity A7, it follows that
- 1.

:{—(WKL—E WMN)\MN)\KL)COSha A3=-T4,, (A4)

ke_ 1w KL | o s _Lops B
= | 1= S MM\ [sinha | Aas=5 (N3a=Tga), (A5)
AS=T3,. (AB)

they together with Eq(129 exhaust the singular constraints ) . .
of our system. It is interesting to observe that the total-€t M, denote the _unltsnormal_ vector B oriented in the
Hamiltonianis a differentiable function. Although the sur- direction of increasingc, that is outward with respect to
face integrals in the Hamiltonian represent two-dimensionaV -
smearing of some volume quantities, the presence of volume
terms and the continuity relations between the surface 1 58 (A7)
(»,v%) and volume N,N¥) smearing functions guarantee an g we
effectively three-dimensional smearing of all volume quanti-
ties. Then,
These difficulties and the related problem of the
Bergmann-Dirac analys{d.7] seem to be nontrivial; we will B B I‘iﬁ
try to tackle them in a future paper. Lap=Ma;p=— ng (A8)
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3a [ a
h'a - gssLth B
h33 .

Ad= (A10)

Similarly

33 [~33 3
3 _hya_z g Laﬁh’g

Aa3_ 2h33

The metricg,,,(X) is continuous across the shell, as af¢
and the tangential derivatives bf”. It follows that

B
(A=~ (L], (AL1)
Vo=
3B
9 (A12)

[Als]= FQ[LQ,B],

where we also have substituted fot” from Eq.(Al1). More-
over, using Eq(A9), we have that

33

[AS51=— %%[Laﬁ]. (A13)
Equations(A11)—(A13) imply
, 1 g2
hALI=~ 3.5 Vlglg (gaﬁ— T)[Laﬁ]-

However, the following well-known relation holds:
3ag3B

wg 9
p- RECHR

y*$=g

from which, if Eq. (79) is used, the identitfA3) follows
immediately.

APPENDIX B: PROOF OF LEMMA 4

If we rewrite RS in terms of the connection,

RB=0% (7, dol ),

where the ellipsis represent terms that do not contain second

derivatives of the metric, we obtain immediately that
R= [T 361603 =x9) + -+ . (B1)
We easily find

9%[T'3,1= = 0%y°[doaal.

The following two equations are easily verified:

9up,3~= 933Laﬁ )

1/1

Laﬁzm(zanﬁ_QaB) .

Then, some computation leads to

2
g%{T3,1=

A

Finally, using Egs(79) and(B1), we obtain Eq.(109 im-
mediately.

0. 1
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