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Lagrangian and Hamiltonian formalism for discontinuous fluid and gravitational field

P. Hájı́ček
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The barotropic ideal fluid with step andd-function discontinuities coupled to Einstein’s gravity is studied.
The discontinuities represent star surfaces and thin shells; only nonintersecting discontinuity hypersurfaces are
considered. No symmetry~such as, e.g., the spherical symmetry! is assumed. The symplectic structure as well
as the Lagrangian and the Hamiltonian variational principles for the system are written down. The dynamics is
described completely by the fluid variables and the metric on the fixed background manifold. The Lagrangian
and the Hamiltonian are given in two forms: the volume form, which is identical to that corresponding to the
smooth system, but employs distributions, and the surface form, which is a sum of volume and surface
integrals and employs only smooth variables. The surface form is completely four or three covariant~unlike the
volume form!. The spacelike surfaces of time foliations can have a cusp at the surface of discontinuity.
Geometrical meaning of the surface terms in the Hamiltonian is given. Some of the constraint functions that
result from the shell Hamiltonian cannot be smeared so as to become differentiable functions on the~uncon-
strained! phase space. Generalization of the formulas to more general fluid is straightforward.
@S0556-2821~98!03202-0#

PACS number~s!: 04.40.Nr, 04.20.Fy
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I. INTRODUCTION

Spherically symmetric thin shells or dust stars~such as
the Oppenheimer-Snyder one! are popular models used ex
tensively in the study of a number of phenomena: proper
of classical gravitational collapse@1#, properties of classica
black holes@2#, quantum gravitational collapse@3#, the dy-
namics of domain walls in the early Universe@4#, the back
reaction in the Hawking effect@5#, entropy on black holes
@6#, or quantum theory of black holes@7,8#, to mention just a
few examples.

The classical dynamics of objects with discontinuities
matter density is well understood; it is determined by E
stein’s equations, the matter dynamical equations, and s
jump conditions at the discontinuity. The jump conditions f
the steplike discontinuity require that there are coordinate
which the metric isC1 at the discontinuity surface@9#—for
the thin shells, they were first formulated by Dautcourt@10#;
Dautcourt’s equations have been rewritten in a covar
form by Israel@11#.

In many investigations, however, a variation principle o
Hamiltonian is needed from which this classical dynam
follows. Often, such principles~suitable, e.g., for spherically
symmetric models! are just guessed from the dynamic
equations; some attempts to obtain them from more gen
variational principles are given in@12# and@5#. Indeed, this is
an interesting problem by itself: how is the large number
different one-degree-of-freedom Hamiltonians scattered
the literature related to the Einstein-Hilbert action? Our ov
all picture of the world has to be self-consistent, even if
indulge in using a number of different models, each j
applicable for a situation under study.

In the present paper, we reformulate the dynamics
570556-2821/97/57~2!/914~22!/$15.00
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gravitation and the ideal discontinuous fluid in the Ham
tonian form. That is, we identify the canonical variables~p’s
andq’s! and Lagrange multipliers and write down a Ham
tonian functional of these variables; we show that the c
straints and the canonical equations resulting from t
Hamiltonian are equivalent to the system of Einstein eq
tions and the ideal fluid dynamical equations~plus the Israel
equations in the case of a thin shell!.

To identify the suitable symplectic structure and find t
variational formulas, we employ the methods described
detail in @13# and their application to general relativity a
given in @14#. We will, however, keep the paper sel
contained by motivating and explicitly performing all re
evant derivations.

The model of matter used extensively in this paper is t
of the simplest kind: the barotropic ideal fluid. This can
formulated as a Lagrangian field theory without any co
straints@15#. Generalization to ideal fluid with internal de
grees of freedom~such as@16#! or to any conservative con
tinuum should be straightforward; in any case, t
gravitational parts of our Lagrangians and Hamiltonia
~which represent the solution to the main problem! have gen-
eral validity.

In each particular case, the classical dynamics can be
tained from a variational principle that has the same form
the corresponding variational principle for a smooth syste
if some particular generalized functions are allowed to
scribe the matter distribution: the step function for s
boundaries and thed function for thin shells@12#. This sim-
plicity is, however, traded for the freedom in the choice
coordinates: the generalized function approach works on
the metric isC1 for the step, andC0 for the d discontinuity.
We transform, therefore, the Lagrangians and the Hami
914 © 1997 The American Physical Society
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57 915LAGRANGIAN AND HAMILTONIAN FORMALISM FO R . . .
nians to the so-calledsurface formcontaining only smooth
variables; such Lagrangians and Hamiltonians as well
symplectic forms decompose into sums of volume and s
face integrals. The transformation can best be done in
so-called adapted coordinates; these are coordinates i
which the embedding functions of the surfaces of disco
nuity acquire the simplest possible form. The result, ho
ever, is covariant in the sense that arbitrary smooth coo
nates can be chosen inside of each separated volume~left or
right of the discontinuity surface! as well as along the dis
continuity surface itself.

An important trick is used throughout the paper: we wo
in coordinate systems which are always adapted to the p
tion of the discontinuity surface. This way the discontinu
surface may be considered as a fixed submanifold of
spacetime. Thus, the dynamics of the star surface or
shell is not described by the spacetime coordinates of th
objects but by the evolution of the physical fields such as
metric of matter fields along the surfaces. Then, for exam
the variations and time derivatives of the embedding fu
tions of the two-surfaces of discontinuity in the thre
surfaces of constant time both vanish identically. Our form
las are written only for one hypersurface of discontinuity;
extension to an arbitrary number of hypersurfaces is eas
they do not intersect each other.

Two interesting problems arise. First, we do not show t
the dynamics makes sense even on-shell. By that, we m
that there is to be a well-posed initial value problem. O
ought to be able to define some nice space of initial d
consisting of those values of the canonical variables that
isfy some well-defined set of constraints, jump, and fall
conditions so that a unique solution to the dynamical eq
tions will exist in a neighborhood of the initial surface.
this paper, we shall just assume that the dynamics is all ri
At least in some special cases~such as spherical symmetry!,
the space of classical solutions is well known and it is
large as one expects.

The second problem is to show that the Hamiltonian f
malism defines a~regular! constrained system. This mean
that one can find a phase space~possibly an extension o
ours!, a complete set of constraints, and a Hamiltonian s
isfying the following conditions:~1! the constraints and
Hamiltonian must be differentiable functions on the pha
space so that their Poisson brackets are well defined an~2!
the Hamiltonian must be first class and the constraint
must be split nicely into first and second class constra
~Bergmann-Dirac analysis@17#!. Of course, such an ‘‘off-
shell’’ formulation is necessary as a starting point for Dir
quantization. The difficulty is that some constraints at
shell are not differentiable functions on the phase space e
if they are smeared along the shell, because the smeari
then only two dimensional, whereas the differentiabil
would require a three-dimensional smearing. Without an o
sell formulation, the way to quantum theory need not
barred, however. One can try to solve the singular constra
and to substitute the solution back into the action so tha
variational principle results which leads to equivalent d
namics without the singular constraints@18#. A problem with
such a procedure seems to be that equations quickly g
very messy.

The plan of the paper is as follows. Section II is devot
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to the step and Sec. III to thed-function discontinuities. Sec
tion II A introduces the ideal fluid model and its dynamics
a fixed spacetime~metric! background. Basic formulas of th
Lagrange and Euler pictures concerning Lagrangians, Ha
tonians, stress-energy tensors, and equations of motion
derived; these equations apply to both the step andd-
function discontinuity. The method ofvariation formulasis
presented, which enables us to find the symplectic struc
as well as to generate the equations of motion. The surfac
discontinuity can be moved without problems as long as
metric is fixed. In Sec. II B, the fluid is coupled to the d
namical gravity. Relevant formulas concerning the variat
of the Einstein-Hilbert action are collected. The surfaces
discontinuity are now fixed. This helps us to avoid som
formal problems. The variation formulas for the system a
written in Lagrangian and Hamiltonian form.

In Sec. III A, an action for the thin shell and dynamic
gravity is written down in the Lagrangian formalism; th
shells are fixed and generalized functions are employed
Sec. III B, the adapted coordinates are used to transform
~Lagrange formalism! action into a sum of volume and su
face integrals disposing of the generalized functions a
gaining more coordinate~gauge! freedom~four-covariance!:
arbitrary coordinates can be chosen left to the shell, righ
the shell, and along the shell. In Sec. III C, the variation
the action in the surface form is calculated and the obtai
dynamical equations are listed; they contain the Israel eq
tion. A variation formula is derived which is only three
covariant: the foliation by spacelike surfacest5const must
be such that thet surfaces are continuous but can have a c
at the discontinuity surface; the embedding functions of
discontinuity two-surface in thet surfaces must be time in
dependent. Section III D contains a Legendre transforma
to a Hamiltonian formalism; the general form of the Ham
tonian for the system of thin shells and gravity is present
In Sec. III E, the explicit functional dependence of th
Hamiltonian on the dynamical variables is written down a
the geometrical meaning of the surface terms in the Ham
tonian is disclosed. In Sec. III F, the variation of the Ham
tonian is explicitly calculated so that all canonical equatio
and constraints following from the Hamiltonian can be liste
This not only enables us to check that the Hamiltonian g
erates the desired dynamics~including the Israel equation!
but also to classify the resulting equations into ‘‘canonic
equations’’ and ‘‘constraints.’’ For example, the six relatio
that are equivalent to the Israel equation consist of one su
Hamiltonian constraint, two supermomentum constrain
two singular constraints~these cannot be made differentiab
by smearing!, and one canonical equation. A, necessar
preliminary, discussion of the result is given.

II. FLUID WITH A STEP DISCONTINUITY

Our point of departure in this section is the description
relativistic barotropic perfect fluid as given in Ref.@15# ~ob-
serve that this description is easily extended to any con
vative continuum!. We will extend and modify the method
so that it allows for discontinuous matter distributions adm
ting situations such as a jump of density at the boundary
star ~a step-function type of discontinuity along a timelik
hypersurface!.
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A. Fluid in gravitational field

1. The description of the fluid

The fluid that have just ‘‘mechanical’’ degrees of freedo
consists of identifiable elementary volumes—mass point
the fluid. It can, therefore, be completely described by sp
fying the mass and the spacetime coordinates of eac
these mass points. All mass points form the so-called ma
spaceZ, which is a three-dimensional manifold; letza,
a51,2,3, be some coordinates inZ. Let us denote the space
time byM and letxm, m50,1,2,3 be some coordinates inM .
The state of the fluid can then be described by a m
z:M°Z, in coordinatesza(xm); the particle trajectories ar
then determined byza(x)5const. The matter spaceZ is
equipped with a scalar densityh(z), which determines the
mole or particle density of the fluid, so that the number N
particles or moles in the volumeVz,Z is given by
N(Vz)5*Vz

d3zh. We assume further thath has a step dis-

continuity at a two surfaceSz in Z, defined by the equation
F(z)50, whereF is a smooth function with nonzero grad
ent Fa . Let S:5z21(Sz) be a timelike three-surface sep
ratingM in two open subsetsV1 andV2 so thath@z(x)#.0
for xPV2 andh@z(x)#50 for xPV1. One can make many
more general assumptions~e.g., allowing for several matte
filled regions!, but this will only complicate the descriptio
without requiring any new method of approach.

The mapz and the densityh define mole~particle! current
j m in M by

j m5hemnklzn
1zk

2zl
3 , ~1!

where

zm
a :5

]za

]xm .

j m(x) is discontinuous atS, j mÞ0 in V2, j m50 in V1, and
j 2
m is tangential toS. ~We denote the limits toS from inside

by the superscript minus.! j m is a vector density; it is easy t
show that j m is identically conserved everywhere inM ,
j ,m
m 50.

The current j m(x) defines the spacetime four-veloci
um(x) and the rest mole~particle! scalar densityn of the
fluid in V2 and atS by

j m5Augunum, ~2!

whereg:5det(gmn) andgmnumun521. Hence,

n5
1

Augu
A2gmn j m j n; ~3!

n has a discontinuity of step type atS.
In @15#, it is shown that the fluid equations of motion ca

be obtained from the Lagrange densityLm which is given by

Lm52Augune~n!, ~4!

wheree(n) is the energy per mole in the rest frame of t
fluid andLm is considered as a function ofza, zm

a , andgmn .
of
i-
of
er

p

f

As the specific volumeV ~i.e., the volume of one mole in the
rest frame! is 1/n, we obtain for the presurep of the fluid

p52
]e

]V
5n2e8 ~5!

in V2.

2. Stress energy density

By definition, the stress-energy tensor density of id
fluid ~see, e.g.,@9#! has the form

Tmn5Augu„~r1p!umun1pgmn
…, ~6!

where

r5ne~n! ~7!

is the rest mass density;Tmn has a step discontinuity atS. In
this section, we collect some important formulas valid f
this tensor density.

Let us vary the action of the fluid

I m52E
V2

d4xAugune~n! ~8!

with respect togmn . Using Eq.~3!, we have

d~Augun!5dA2gmn j m j n52
1

2Augu
n21 j m j ndgmn ,

which, together with Eq.~2! and the well-known variation
formula for determinants yields

dn52
1

2
n~gmn1umun!dgmn . ~9!

Then,

dI m5E
V2

d4xAuguS 2
1

2
gmnne1

1

2
n~gmn1umun!

3~e1ne8! D dgmn ,

and a straightforward calculation using Eqs.~7!, ~5!, and~6!
leads to

Tmn~x!52
dI m

dgmn~x!
. ~10!

The next important relation is the Belinfante-Rosenfe
theorem@19–21# applied to our case: the Lagrange dens
Lm must satisfy the following identity:

]Lm

]zm
a zn

a12
]Lm

]gmr
gnr5Lmdn

m . ~11!

This equation is equivalent to the requirement thatLm is a
scalar density, and its derivation is straightforward. From
identity ~11! and the formula~10!, we obtain immediately
that
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Tn
m5Lmdn

m2
]Lm

]zm
a zn

a . ~12!

Thus, the so-called canonical stress-energy tensor densi
the right-hand side is equal to the source of gravitatio
field.

The formulas~10! and ~12! imply the Noether identity

¹mTn
m5S 2]m

]Lm

]zm
a 1

]Lm

]za D zn
a . ~13!

There are counterparts to Eqs.~10!–~13! within any descrip-
tion of any type of ideal fluid. Derivation of Eq.~13! starts
from the equation

¹mTn
m5]mTn

m2Gmn
r Tr

m .

If one substitutes forTn
m from Eq. ~12! into the first term on

the right-hand side and from Eq.~10! into the second one
the identity follows. One consequence of the Noether id
tity is that the four components of the covector¹mTn

m are not
independent:

j n¹mTn
m50,

because the definition ofj m implies the identity j mzm
a [0.

Hence, the equation system¹mTn
m50 contains only three

independent equations~Euler equation!; the energy conser
vation equation

¹m~neum!52p¹mum,

for the fluid is satisfied identicallywithin our description.

3. The variational formula

Let us consider the four-dimensional volumeV enclosed
between two Cauchy surfacesS1 andS2 ; the boundaryS of
the fluid dividesV into two partsV2 andV1 and similarlySi

into Si
2 andSi

1 , i 51,2. We assume thatS1 andS2 areC1

surfaces, that is, the induced metric on, as well as the
normal vector toS1 andS2 are bothC1.

Let us vary the matter actionI m with respect toza(x) and
gmn ; we obtain

dI m5E
dV2

d4xLm1E
V2

d4x]mS ]Lm

]zm
a dzaD 1E

V2
d4x

3S ]Lm

]za 2]m

]Lm

]zm
a D dza1

1

2 E
V2

d4xTmndgmn .

~14!

The first two integrals can be transformed to surface in
grals alongS, S1 , andS2 . With this aim in mind, we use the
coordinatesxm in M that are adapted to the surfaces. Th
means thatx05t i alongSi , i 51,2 and

F„za~x!…5x3 ~15!

alongS, so thatxk, k51,2,3, are coordinates onSi andxa,
a50,1,2, are coordinates onS. Then, the change ofF if we
vary za is given by
on
l

-

it

-

F„za~x!1dza~x!…5x31Fadza,

and the coordinatex3 of S changes by the amount

dx352Fadzaux350 .

Thus, we obtain for the first term

E
dV2

d4xLm52E
S
dx0dx1dx2LmFadza.

For the second term, we have

E
V2

d4x]mS ]Lm

]zm
a dzaD 5E

S
dS

]Lm

]z3
a dza1E

S2

dS
]Lm

]z0
a dza

2E
S1

dS
]Lm

]z0
a dza,

where the abbreviations dS5dx0dx1dx2 and
dS5dx1dx2dx3 are used. Equation~15! implies that
Fazm

a 5dm
3 , so we can write

]Lm

]z3
a 5

]Lm

]zm
a Fbzm

b .

Collecting these results, we obtain the equation

dI m5E
V2

d4xS ]Lm

]za 2]m

]Lm

]zm
a D dza1E

S
dSS ]Lm

]zm
a zm

b

2Lmda
bDFbdza1E

S2

dS
]Lm

]z0
a dza2E

S1

dS
]Lm

]z0
a dza

1
1

2 E
V2

d4xTmndgmn . ~16!

Thus, the field equations consist ofvolumeequations that
hold in V2,

]Lm

]za 2]m

]Lm

]zm
a 50, ~17!

andsurfaceequations that hold atS,

S ]Lm

]zm
a zm

b 2Lmda
bDFb50. ~18!

The surface of the star is an observer independent dynam
element of the system.

Let us discuss the meaning of the field equations. For
volume equation~17!, we just invoke Noether’s identity, Eq
~13!; we can then see that they are equivalent to the con
vation equations¹mTn

m50. The surface equations can be r
written as follows. First, using Eq.~12!, we have

Tn
mzm

b 5S 2
]Lm

]zm
a zm

b 1Lmda
bD zn

a .

Hence,
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Tn
mFbzm

b 5S 2
]Lm

]zm
a zm

b 1Lmda
bDFbzn

a . ~19!

However,Fbzm
b is covector normal toS, so the three surface

equations~18! can be written in a covariant form as

Tm
'uS50, ~20!

whereTm
'5Tm

n m̃n and m̃n is any normal covector toS. Of
these four equations, only three are independent, bec
Tn

' j n is identically zero, as one easily verifies; in fact, t
three equationsTk

'uS50 imply Eq. ~20!. It follows further
from Eq.~6! and fromFbzm

b um50 that Eq.~20! is equivalent
to the condition that the pressure vanishes,p50, at the sur-
face.

Formula~16! is only valid in the adapted coordinates;
particular, the Lagrangian densityLm must be expressed i
these coordinates. Let us pass to more general coordinate
fact, the volume integrals are already in a covariant form
we have just to transform the boundary integrals. Howev
we will need explicitly only the integrals over the Cauch
surfaces.

Let us define

pa :5
]Lm

]z0
a . ~21!

The reader can easily verify that Eq.~21!, which is written in
the adapted coordinates, defines a three-densitypa alongSi
~independent of the adapted coordinates!, because the quan
tity Lm is a four-density.

The field equations~both volume and surface! are, there-
fore, equivalent to the formula

dE
V2

d4xLm5E
S2

d3ypadza2E
S1

d3ypadza

1
1

2 E
V2

d4xTmndgmn ,

and this formula is valid in any coordinatesxm in V2 andyk,
k51,2,3, alongSi . Let us denote the matter occupied part
the Cauchy surfacex05t by St and the corresponding part o
the matter space byZ2. The following coordinates will sim-
plify all calculations: the intersectionStùS is given by
x35x3(t) andSt by x3,x3(t). xk, k51,2,3, are coordinate
on St ; we will call them ‘‘time-dependent adapted coord
nates.’’ Then, we can write

dE
V2

d4xLm5E
t1

t2
dtS d

dt Ex3,x3~ t !
d3xpadza

1
1

2 E
x3,x3~ t !

d3xTmndgmnD .

If we define the LagrangianLm by

Lm5E
St

d3xLm
se

. In
o
r,

f

and go to the limitS2→S1 , we obtain thevariation formula
for the Lagrangian

dLm5E
St

d3x~padza! ˙ 1E
]St

d2xpadzaẋ3

1
1

2 E
St

d3xTmndgmn . ~22!

The variation formula has been derived by careful inclus
of all ‘‘boundary terms’’; this will be the main strategy fo
our derivation of the Lagrangian and Hamiltonian formalis
that admit discontinuities. The role of the variational formu
is to generate all dynamical equations~including the defini-
tion of momenta!: the variation of the left-hand side~LHS! is
to be calculated and compared with the RHS.

Equation~22! is also the point of departure for the tran
formation to the Hamiltonian formalism.

4. The Hamiltonian formalism

Let us disregard the surface term in the formula~22! and
define the Hamiltonian densityHm by a Legendre transfor
mation of the form

Hm :5paża2Lm .

Then we obtain for the variation of the HamiltonianHm ,
which is defined by

Hm :5E
St

d3xHm ,

the relation

dHm5dE
St

d3xpaża2dE
St

d3xLm .

Performing carefully the variation in the first term and su
stituting from Eq.~22! for the second, we have

dHm5E
St

d3x~dpaża2 ṗadza!1E
x35x3~ t !

d2xpa~ żadx3

2 ẋ3dza!2
1

2 E
St

d3xTmndgmn . ~23!

From this equation, not only the canonical equations are
tained, which will consist of volume and of surface equ
tions, but also the symplectic structure of the system can
read off, which is given by the fist two integrals on the RH
these integals can be interpreted asv(dza,dpa ; ża,ṗa),
where v is the symplectic form and„dza(x),dpa(x)…,
„ża(x),ṗa(x)… are two vectors; notice thatv has a surface
part. This is a general and very important observation, wh
will, for instance, help to decide what are the canonical va
ables for the shell in the second part of the paper. The
integral in Eq.~23! represents variation with respect to no
dynamical ‘‘parameters’’gmn(x).

We will need the following relations between the Ham
tonian density and the stress-energy density:
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T0
052Hm , ~24!

Tk
052pazk

a , ~25!

Tl
k5S ]Hm

]pa
pa2HmD d l

k1
]Hm

]zk
a zl

a , ~26!

which are valid in the time-dependent adapted coordina
The first two equations are obtained immediately from E
~12! and the definition ofpa . To derive the last equation, w
first notice that Eq.~23! has the following consequence:

Tmn522
]Hm

]gmn
. ~27!

Second, we derive an equation analogous to Eq.~11! for
Hm ; we use the fact thatHm behaves as a three-density if w
change the coordinatesxk keepingt fixed and thatHm is a
function of za, zm

a , pa andgmn , Hm5Hm(za,zm
a ,pa ,gmn):

]Hm

]zl
a zk

a1
]Hm

]pa
padk

l 12
]Hm

]gr l
grk5Hmdk

l .

Then, Eq.~26! follows immediately. Again, analogons o
Eqs.~24!–~27! are valid for all types of ideal fluids.

To finish the Legendre transformation, we have also
express the velocityża in terms of pa , za, and zk

a in the
Hamiltonian. This is not completely straightforward. To b
gin with, we substitute forLm from Eq.~4! into the definition
~21! of pa :

pa52Augur8
]n

] ża
,

where

r85
dr

dn
.

Equations~2! and ~3! imply

]n

] ża
52

1

Augu
um

] j m

] ża
.

The definition ofj m implies the following identity@15#:

] j m

]zn
a zk

a5 j mdk
n2 j ndk

m . ~28!

Combining the three equations, we easily find

uk52
pazk

a

r8 j 0 , ~29!

where j 0 depends only onza andzk
a @cf. Eq. ~1!#:

j 05h~z!det~zk
a!.

The (311) decomposition of the metric~see, e.g.,@9#!
s.
.

o

g0052N22, g0k5Nk ,

gkl5qkl , g52qN2,

gives, with the help of Eq.~2!,

qklukul5212
~u0!2

g00 5211
1

N2 S j 0

Aq
D 2

.

Substituting foruk from Eq. ~29!, we obtain the identity

1

n2 S j 0

Aq
D 2

511
qklzk

azl
b

r82~ j 0!2 papb . ~30!

This equation determinesn as a function ofpa , za, andzk
a .

The solution depends on the unknown functionr(n) and is
determined only implicitly, in general.

The identity~28! implies that

] j k

] ża
52 j 0xa

k ,

wherexa
k is the matrix inverse tozk

a . As j k depends linearly

on ża, we have

j k52 j 0xa
kża

or

ża52
za

k j k

j 0 .

Substituting forj k from

j k5gkl~ j l2Nl j
0!,

for j l from Eq. ~1! and foruk from Eq. ~29!, we obtain that

ża5N
Aqn

r8~ j 0!2 qklzk
azl

bpb1Nkzk
a .

Then, Eqs.~12! and ~21! yield

T0
052NAqS r1

n

r8~ j 0!2 qklzk
azl

bpapbD2Nkzk
apa . ~31!

According to the formula~24!, this determines the form o
the HamiltonianHm .

5. The Euler picture

At this stage, we have derived all of the important form
las of the Hamiltonian formalism in which the fluid is de
scribed by the functionsza(x); these are Lagrange coord
nates@16# and we can call the formalism the ‘‘Lagrange
picture.’’ Sometimes theEuler picture is more practical,
however. This can be obtained by the following canoni
transformation. The new fieldsxk(z,t) ~Euler coordinates!
are defined by

xk
„z~x,t !,t…5xk, ;xk,t ~32!

and the conjugate momentaPk by
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Pk~z,t !:52X~z,t !zk
a~x~z,t !,t !pa„x~z,t !,t…, ~33!

where

X:5detS ]xk

]zaD .

One easily checks that Eqs.~32! and~33! define a canonica
transformation.

Let us first derive some useful relations. By differentia
ing Eq. ~32! with respect tot at constantxk, we obtain

ẋk52xa
kża, ~34!

where

xa
k :5

]xk

]za .

The derivative of the same equation with respect toxk at
constantt gives

xa
kzl

a5d l
k . ~35!

If the field za(x,t) is changed toz̃a(x,t), then xk(z,t) is
changed tox̃ k(z,t) satisfying

x̃ k
„ z̃~x,t !,t…5xk, ;xk,t.

Thus, if z̃a(x,t)5za(x,t)1dza(x,t), the above equation im
plies that

d* xk52xa
kdza. ~36!

The symbold* is to stress and remind us that this variati
is of a different kind thand, if applied to fields: the former is
obtained by comparing the values of the field at the sa
point of the matter space, that is, at different points of
spacetime; the latter compares the values of the field at
same point of the spacetime.

With the help of the above relations, we can transform
formulas of the Hamiltonian formalism. Let us start with E
~23!. First, the inverse transformation for the momenta f
lows from Eq.~33!:

pa~x,t !52X21~x,t !xa
k
„z~x,t !,t…Pk„z~x,t !t…. ~37!

The time derivative of this equation at constantxk can be
calculated with the result

ṗa5X21~xa
kxb

mzlm
b Pkẋ

l1zl
bxab

k Pkẋ
l1xa

kzl
bPk]bẋl

1xa
kzl

b]bPkẋ
l2Pl]aẋl2xa

kṖk!, ~38!

where we introduced the abbreviation

zkl
a :5

]2za

]xk]xl

and similarlyxab
k . An analogous formula holds for the varia

tion dpa , one just has to replace dots byd’s. Employing
these equations, we obtain after a lenghty but straightforw
calculation
-

e
e
he

ll

-

rd

dpaża2 ṗadza5X21~d* Pkẋ
k2 Ṗkd* xk!

1X21]a~Pkzl
ad* xkẋl !

2X21]a~Plzk
ad* xkẋl !,

or

E
St

d3x~dpaża2 ṗadza!5E
Z2

d3z~d* Pkẋ
k2 Ṗkd* xk!

1E
Z2

d3z]a„~Pkzl
a

2Plzk
a!d* xkẋl

…. ~39!

Then, we transform the second integral on the RHS of
~23!:

E
x35x3~ t !

d2xpa~ żadx32 ẋ3dza!

5E
St

d3x] l„pa~ żad* xl2 ẋldza!…

5E
Z2

d3zXzl
b]b„X21Pk~ ẋkd* xl2 ẋld* xk!…;

we have used Eqs.~34!, ~36!, ~35!, and~37!. Because of the
identity ]b(Xzl

b)50, we obtain finally

E
x35x3~ t !

d2xpa~ żadx32 ẋ3dza!52E
Z2

d3z]b„~Pkzl
b

2Plzk
b!d* xkẋl

…. ~40!

Equations~23!, ~39!, and~40! imply

dHm5E
Z2

d3z~d* Pkẋ
k2 Ṗkd* xk!

1
1

2 E
Z2

d3zXTmndgmn„x~x,t !,t…. ~41!

Thus, the symplectic form has no surface term in the Eu
picture. The variation of the metric in the last term on t
RHS is independent of the other variations, and it is defin
by comparing values of the metric at the same spacet
points.

Let us suppose thatdgmn(x)50, and let us introduce the
transformed Hamiltonian densityHm8 by Hm8 5XHm , so that

Hm5E
Z2

d3zHm8 .

Then,

dHm5E
Z2

d3zd* Hm8 ,

and we have



n
at

s

r

ld.

sor

g.
the
s

ity
of
he
t-
p,
c.
of

is-
,
ill
o a
e

an

-
be

e of

s in
a
ed;
the
at

us

57 921LAGRANGIAN AND HAMILTONIAN FORMALISM FO R . . .
E
Z2

d3zd* Hm8 5E
Z2

d3z~d* Pkẋ
k2 Ṗkd* xk!. ~42!

In this form, the variational formula is suitable for derivatio
of the canonical equations. To this aim, let us calcul
d* Hm8 ; Hm8 is of the formHm8 (xk,xa

k ,Pk), hence

d* Hm8 5S ]Hm8

]xk 2]a

]Hm8

]xa
k D d* xk1

]Hm8

]Pk
d* Pk

1]aS ]Hm8

]xa
k d* xkD .

Thus, the field equations consist of the volume equation

ẋk5
]Hm8

]Pk
, ~43!

2 Ṗk5
]Hm8

]xk 2]a

]Hm8

]xa
k , ~44!

and the surface equations

Fa

]Hm8

]xa
k U

Sz

50. ~45!

Let us check that Eq.~45! is equivalent to Eq.~20!. We have

Hm8 5XHmS za~xl !,zk
a~xb

l !,pa„za~xl !,zk
a~xb

l !,Pk…,gmn~xl ! D ,

so that

]Hm8

]xa
k U

x,P

5Xzk
aHm8 1X

]Hm8

]zl
b U

z,p

]zl
b

]xa
k 1X

]Hm8

]pb
U

z,zk

]pb

]xa
k .

Equations~35! and ~37! imply

]zl
b

]xa
k 52zk

bzl
a ,

]pb

]xa
k 52pbzk

a1db
apczk

c ,

and we obtain easily

]Hm8

]xa
k 5Xzl

aXS Hm2
]Hm

]pb
pbD dk

l 2
]Hm

]zl
b zk

bC1X
]Hm

]pa
pbzk

b .

Application of Eqs.~25! and~26! as well as Eq.~23! simplify
the expression to

]Hm8

]xa
k 52Xzm

a Tk
m . ~46!

Hence, Eq.~45! becomes

Fazm
a Tk

muSz
50,

which is equivalent to Eq.~20!.
Finally, the transformed Eq.~30! reads
e

n21
n2

h2r82 qklPkPl5
h2

qX2 . ~47!

For example, in the case of dust,r5mn, wherem is a con-
stant ~rest mass per mole or particle! and Eq.~47! can be
solved explicitly:

n5
1

AqX

mh2

Am2h21qklPkPl

.

For dust, Eq.~31!, which determines the form of the matte
Hamiltonian, specializes to

T0
052NAm2~ j 0!21qklzk

azl
bpapb2Nkzk

apa . ~48!

B. Gravity becomes dynamical

In the previous sections, gravity was just an external fie
Here, it will become dynamical: the metricgmn(x) will sat-
isfy Einstein’s equations with the fluid stress energy ten
as a source.

1. Description of the system

The main problem which we shall meet is the followin
If the Einstein equations are satisfied, the discontinuity in
distribution of the fluid leads to a discontinuity in derivative
of the metric. Thus, we must allow for such discontinu
from the very beginning. Moreover, a general variation
the metric, which includes a shift of the coordinates of t
discontinuity, will have a jump of higher order than the me
ric itself: if the second derivatives of the metric have a jum
then the first derivative of its variation will have a jump, et
If we write naively the usual expression for the variation
the action in the case ofd function fluid distribution, then
many terms in it look meaningless within the theory of d
tributions~d functions multiplied by discontinuous functions
etc.!. Some ingenious calculation of all variations might st
lead to meaningful expressions. Instead, we resort t
simple trick by which the problem is avoided: we fix th
spacetime coordinates of the discontinuity surfaceS. In this
way, the surface of the discontinuity is formally made to
‘‘externally given’’ boundary. The fieldsza(x) and gmn(x)
will satisfy simple boundary conditions atS, and these con-
ditions will be ‘‘inherited’’ by their variations. Such a strat
egy is possible within the general relativity, because it can
considered as a partial fixing of gauge. Indeed, any chang
the coordinates of the discontinuity surfaceS can be consid-
ered as a superposition of a transformation of coordinate
a neighborhood ofS keeping the physical fields fixed, and
change of the physical fields keeping the coordinates fix
the first step is just a change of gauge. The dynamics of
surface is determined by the form of the metric near and
the surface.

To be more specific about the boundary conditions, let
choose the coordinatesza in Z such thatSz is given by
z350, and the coordinatesxm in M such thatS is defined by
x350. Thus, for the matter fields, we require

z3uS50, dz3uS50. ~49!

It follows that
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x3uSz
50, dx3uSz

50 ~50!

in the Euler picture. We further assume the following.
Condition 1. The spacetime (M ,g) is asymptotically flat

and globally hyperbolic.
Condition 2. The metricgmn(x) is piecewiseC` in M ,

the only discontinuity being that its second derivatives ju
at S.
Then the variationdgmn(x) satisfies analogous condition 2

The total action for our fluid-gravity system i
I 5 Ī m1I g . Here

I g5
1

16pG E
V
d4xAuguR,

where G is the Newton constant andR is the curvature scala
of gmn . The functionR(x) can have a step discontinuity a
S. Ī m is obtained fromI m of Eq. ~8! after the following
substitution:

z3~xa,x350!50, ż3~xa,x350!50, zA
3~xa,x350!50,

~51!

a50,1,2 andA51,2. Thus, Ī m contains less variables tha
I m .

The integration volumeV is chosen to be bounded by tw
Cauchy surfacesS1 and S2 and by a timelike surfaceS1

~which will be eventually pushed to the infinity!. Let the
coordinatesxm be adapted also toS1 so thatS1 is defined
by x35r 1. The matter boundaryS divides V into V2 and
V1, andSi into Si

2 andSi
1 .

2. The variational formula

The variation of the gravity actionI g can be obtained
from the following fundamental lemma that has been sho
in @14#.

Lemma 1. Let the integration volumeV of the actionI g
be bounded by two spacelike surfacesS1 andS2 , and by a
smooth timelike surfaceS; let xm be some coordinates inV,
yk in Si , ja in S, andhA in ]Si5SùSi . Then

dI g52
1

16pG E
V
d4xGmndgmn2

1

16pG E
S2

d3yqkldpkl

1
1

16pG E
S1

d3yqkldpkl1
1

8pG E
]S2

d2hAlda

2
1

8pG E
]S1

d2hAlda2
1

16pG E
S
d3jgabdQab,

~52!

where

Gmn:5AuguS Rmn2
1

2
gmnRD , ~53!

Rmn is the Ricci tensor of the metricgmn , qkl is the induced
metric onSi written with respect to the coordinatesyk, q its
determinant,
p

n

pkl:5Aq~Kqkl2Kkl!,

Kkl52nm;n

]xm

]yk

]xn

]yl ,

K5qklKkl ,

nm is the future directed unit normal toSi so thatKkl is the
second fundamental form of the surfaceSi , gab is the metric
induced onS written with respect to the coordinatesja, g its
determinant

Qab:5Augu~Lgab2Lab!,

Lab5m̃m;n

]xm

]ja

]xm

]jb ,

L5gabLab , ~54!

m̃m is the external~with respect to the volumeV! unit normal
to S so thatLab is the second fundamental form ofS, l is
the determinant of the two-metriclAB induced on]Si writ-
ten with respect to the coordinateshA anda is defined by

a:52arcsinh~gmnnmm̃n!.

Lemma 1 is completely general, independent of the fo
and description of the matter; it determines the ‘‘gravi
tional part’’ of the variation formula that we are going t
derive. For the ‘‘matter part,’’ we can use the formula~16! in
which the surface integral alongS is left out. Indeed,
F(z)5z3 for our special coordinates and the boundary co
dition ~49! givesFadza50. Hence,

dI m5E
V2

d4xS ] L̄ m

]za 2]m

] L̄ m

]zm
a D dza1E

S2
2

dS
] L̄ m

]z0
a dza

2E
S1

2
dS

] L̄ m

]z0
a dza1

1

2 E
V2

d4xTmndgmn . ~55!

Our next task is to rewrite the surface integrals in Eq.~55!
in a covariant way. We define, in analogy with Eq.~21!,

p̄a :5
] L̄ m

] ża
.

By a similar argument as in Sec. II A 3,p̄a are surface den-
sities, and the covariant form of the integrals is

E
S2

2
dS

] L̄ m

]z0
a dza2E

S1
2

dS
] L̄ m

]z0
a dza

5E
S2

2
d3y p̄adza2E

S1
2

d3y p̄adza. ~56!

The relations between the old and new matter mome
will play some role. They can be summarized as follows.
V2, we simply have

p̄a5pa , ~57!
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whereas atS,

p̄A5pA , p35p~ p̄A ,za,zk
a!, ~58!

wherep is some function of the variables indicated. Equati
~57! and the first expression of Eq.~58! follow directly from
the definitions if the substitution~51! is made in the expres
sions on the RHSs. AsL̄ m does not depend onż3 at the
boundary, there isno p̄3uS ; p3uS as given by Eq.~21! with
the substitutions~51!; it is, however, nonzero and it can b
expressed as in the second expression of Eq.~58!. Let us
give a proof. The solution of Eq.~21! with respect toża reads

ża5 ża~pa ,za,zk
a!.

At S, we must haveż350, so we obtain one constraint fo
the functionspauS :

ż3~pa ,za,zk
a!50. ~59!

This can be solved forp3uS ; the second expression of Eq
~58! is the solution.

As an example, we work out the explicit form of Eq.~59!
for dust. We easily obtain from Eq.~1!

j k52hX21xa
kża,

if we observe that the intermediately resulting terms can
expressed by means of thezk

a derivatives of the determinan
of the matrixzk

a . Equation~3! yields

n5
h

XAugu
A2g0012Ñaża2 q̃abż

ażb,

where

Ña :5Nkxa
k ,

q̃ab :5gklxa
kxb

l .

Then, forr5mn, we have from Eqs.~21! and ~4!

pa52m
h2

X2Augu

1

n
~Ña2 q̃abż

b!,

so that

ża5 q̃abS Ñb1
X2Augu

mh2 npbD ,

and the desired constraint~59! reads

Ñ31n
X2NAq

mh2 q̃3apa50, ~60!

where

q̃ab:5qklzk
azl

b

and
e

Ña:5Nkzk
a .

For n, we have to insert from Eq.~30!

1

n
5

X2Aq

mh2
Am2h2X221 q̃abpapb.

Thus, the constraint~60! can be written as a quadratic equ
tion for p3 , whose general solution is

p3652
q̃3A

q̃33
pA6Ñ3Al̃ABpApB1m2h2X22

q̃33
„N2q̃332~Ñ3!2

…

,

where

l̃AB5lCDzC
AzD

B

and

lAB5qAB

is the metric induced on]S. Only the lower sign is admis-
sible, as we can easily see from Eq.~60!. Hence, finally,

p3uS52
q̃3A

q̃33
pA2Ñ3Al̃ABpApB1m2h2X22

q̃33
„N2q̃332~Ñ3!2

…

.

Equations~52!, ~55!, and~56! imply the finalvariational
formula for our gravity-fluid system

dI 5E
V2

d4xS ] L̄ m

]za 2]m

] L̄ m

]zm
a D dza2

1

16pG E
V
d4xGmndgmn

1E
S2

2
d3y p̄adza2E

S1
2

d3y p̄adza

2
1

16pG E
S2

d3yqkldpkl1
1

16pG E
S1

d3yqkldpkl

1
1

8pG E
]S2

d2hAlda2
1

8pG E
]S1

d2hAlda

2
1

16pG E
S
d3jgabdQab1

1

2 E
V2

d4xTmndgmn . ~61!

From the formula~61! we can read off the field equations
within V2, we have

]Lm

]za 2]m

]Lm

]zm
a 50, ~62!

Gmn58pGTmn ~63!

and withinV1, we have

Gmn50. ~64!

Apparently, the surface equation~18! has been lost. How-
ever, using the boundary condition 2, we easily find thatGm

'

is continuous atS. Hence,
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lim
x3502

Gm
'50

and the surface field equation follows from Eq.~63!. We also
observe that the dynamics can be completely shifted to
gravity if the ideal fluid is described by comoving coord
nates everywhere inV2.

Putting everything together, we obtain in a way analogo
to that in Sec. II A 3 that the field equations are equivalen
the following relation~which is an analogon of Eq.~5.16! of
@14#!:

dL5E
S2

d3y~ p̄adza! ˙ 2
1

16pG E
S
d3y~qkldpkl! ˙

1
1

8pG E
]S

d2h~Alda! ˙ 2
1

16pG E
]S

d2hgabdQab,

~65!

whereL is the Lagrangian of the system,

L:5E
S
dS L̄.

Equation~65! is thevariation formulafor our system.

3. The Hamiltonian formalism

Equation~65! is a good starting point for the Legend
transformation to a Hamiltonian formalism. We define one
the conceivable total Hamiltonians for our system by

Ȟ:5E
S2

d3y p̄aża2
1

16pG E
S
d3yqklṗ

kl

1
1

8pG E
]S

d2hAlȧ2L. ~66!

Then the field equations can be obtained from thevariation
formula

dȞ5E
S2

d3y~ żad p̄a2 ṗ̄ adza!1
1

16pG E
S
d3y~ q̇kldpkl

2ṗkldqkl!1
1

8pG E
]S

d2h
1

2Al
~ȧdl2l̇da!

1
1

16pG E
]S

d2hgabdQab. ~67!

To find the explicit form of the Hamiltonian we use th
following lemma.

Lemma 2. In the adapted coordinatesxm defined in Sec.
II B 1, the following identity holds at anyS5St in the vol-
umeV:

E
S
dSqklṗ

kl22E
]S

d]SAlȧ

522E
S
dSAuguR0

022E
]S

d]SAuguL0
0 , ~68!
e

s
o

f

whereLab is the second fundamental form of the bounda
]V corresponding to the normal oriented outwards fromV,
dS5dx1dx2dx3 andd]S5dx1dx2.

The derivation of this identity is given in@14# @Eq. ~6.3!#;
the form ~68! is easily obtained if one uses the equati
QABgAB2Q00g005AuguL0

0, which follows from Eq. ~54!.
We also observe that

E
S2

dS p̄aża2L̄m5H̄m ,

whereH̄m is obtained fromHm as given in Sec. II A 4 by the
substitutions~51!, ~57!, and ~58!. Thus, the substitution for
p3 is discontinuous nearS. It might, therefore, seem that th
corresponding Hamiltonian densityH̄m would not be con-
tinuous atS, but this is not true. The reason is thatHmuS
does not depend onp3 if the conditions~49! are satisfied:

]Hm

]pa
U

S

5 ż3uS50.

Hence, we have from Eq.~24!

H̄m52E
S
dST0

0 .

Collecting all results, we obtain finally

Ȟ5E
S
dSS 2T0

01
1

8pG
G0

0D1
1

8pG E
]S

d]SAuguL0
0 .

~69!

This is the full ‘‘off-shell’’ Hamiltonian of our system. If the
Einstein equations hold, its value is just the surface integ

Let us rewrite the volume integral in a covariant form
Any tensor densityWn

m satisfies the identity

W0
05

1

g00~W002g0kWk
0!.

The unit future-oriented normal covectornm to S has the
componentsnm52Ndm

0 with respect to the adapted coord
nates; it follows that

W0
052Aq~Nw''1Nkwk

'!, ~70!

where

w'':5
1

Augu
Wmnnmnn ,

wk
' :5

1

Augu
Wk

mnm .

Thus, the volume integral can be written as

E
S
dSS 2T0

01
1

8pG
G0

0D5
1

8pG E
S
d3yAq~NC1NkCk!,

~71!

where
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C:52
1

Augu
~Gmn28pGTmn!nmnn ~72!

and

Ck :52
1

Augu
~Gk

m28pGTk
m!nm ~73!

are thesuper-Hamiltonianand thesupermomentumof our
system~or scalar and vector constraint functions!.

Let us return to the formula~67!, which not only implies
the field equations, if we perform the variation on the LH
and compare the result with the RHS, but it also determi
the so-calledcontrol mode~see, e.g.,@13#! and the type of
boundary value problem for the field equations. We obse
that this mode is a kind of ‘‘curvature-control-mode’’;
amounts to keeping fixed~controlling! the external curvature
Qab at the boundaryS1 ~see@14#!. Such a boundary prob
lem for the Einstein equations has not been studied. To p
to a more natural, and in fact more conventional, approa
we have to perform an additional Legendre transformatio
the boundary@14#:

H5Ȟ2
1

16pG E
]S

d2hgABQAB

so that we have finally, also using Eq.~71!,

H5
1

8pG E
S
dSAq~NC1NkCk!2

1

16pG E
]S

d]SQ00g00

~74!

and

dH5E
S2

dS~ żad p̄a2 ṗ̄ adza!1
1

16pG E
S
dS~ q̇kldpkl

2ṗkldqkl!1
1

8pG E
]S

d]S~ ȧdAl2
•

Alda!

1
1

16pG E
]S

d]S~g00dQ0012g0AdQ0A2QABdgAB!.

~75!

The last surface integral in Eq.~74! will result in the
Arnowitt-Deser-Misner~ADM ! energy, if the limitS1→`
is carefully performed~this has been shown in@14#!. The last
one in Eq.~75! defines the way of control:Q00, Q0A, and
gAB are kept fixed at the boundary.

The transformation to the Euler picture in the matter p
of the Hamiltonian is straightforward; let us denote the
sulting Hamiltonian density byH̄m8 . Most formulas of Sec.

II A 5 will result in the analogous formulas forH̄m8 , if the
substitutions~51!, ~57!, and~58! are performed in them. Fo
example, we have to use the modified formula~25!, which
will read atS

TA
052 p̄BzA

B , T3
052 p̄Bz3

B2p~ p̄ ,z!z3
3 ,
s

e

ss
h,
at

t
-

etc. Only those formulas that contain derivatives ofHm8 with

respect to the variables which are not contained inH̄m8 ~such
as p3uS and xA

3 uS! need some care to be properly tran
formed.

We observe finally that the field equations derived fro
Eq. ~75! ~or an analogous equation of the Euler picture! will
have the form ofcanonical equations.This is interesting,
because Eq.~45! does not seem to have such a form. T
variations in Eq.~75! ~or those of the Euler picture! must
satisfy the boundary conditions~49! @or ~50!# and will, there-
fore, lead to trivial surface equations; the volume equatio
alonehave the canonival form. For example, the would b
counterpart of Eq.~45! originates from the term

]H̄m8

]x3
k dxkU

S

in the variation of H̄m8 . As dx3uS50, the only equation
which is implied thereby reads

]H̄m8

]x3
A U

S

50.

Further, a counterpart of Eq.~46! is valid for this derivative,
so the above equation is equivalent to

zm
3 TA

muS50.

Moreover, zB
3 uS50, so the equation reduces toTA

3 uS50.
However, these components ofTn

m vanish identically atS,
becauseu3uS50 @cf. Eq. ~6!#. Thus, there is no surface fiel
equation.

III. FLUID SHELL

In this section, we are going to describe the dynamics o
d-function distribution of fluid. The matter will be coupled t
the dynamical gravity from the start. We shall consider
special case: just one shell in vacuum; a generalization
more shells surrounded by a piecewise smooth matte
straightforward as long as the shells do not intersect.

A. Action in the volume form

The shell can be represented as ad-function singularity in
the mole densityh. The action can then be written as
volume integral of the same form as for a regular distribut
of matter. This holds also for the gravitational part. We sh
give a more detailed description of this volume form a
then transform it to a combinations of volume and surfa
integrals, where nod functions will feature. This may be
useful, because much more general choice of coordinate
then allowed. Indeed, thed-function method works only if
the coordinates are such that the corresponding compon
of the four-metric are continuous. Further, the coordinate
sition of the shell—the three-surface in the spacetimeM and
the two-surface in the matter spaceZ—will be kept fixed.
Here, everything that has already been said in Sec. II
about this point can be repeated.
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The matter spaceZ remains, therefore, three dimension
first. Let Sz be a two-dimensional surface inZ on which the
matter is concentrated. Letza be coordinates adapted toSz

so that the equationz35z0
3 determinesSz . Such coordinates

are determined up to a transformation

z815z81~za!, z825z82~za!,

z835z83~za!, z08
35z83~zA,z0

3!,

wherez08
3 is a constant independent ofzA. Then,

]~z1,z2,z3!

]~z81,z82,z83!
5

]~z1,z2!

]~z81,z82!

]z3

]z83 .

We decompose the molar densityh in the adapted coordi
nates as follows:

h5hsd~z32z0
3!, ~76!

wherehs(z
1,z2) is a two-dimesional density onSz . If we

change the adapted coordinates, we have

h̃5
]~z1,z2,z3!

]~ z̃1, z̃2, z̃3!
h5hs

]~z1,z2!

]~ z̃1, z̃2!
d~z32z0

3!
]z3

] z̃3

5 h̃sd~ z̃32 z̃0
3!,

so the decomposition is independent of the choice of ada
coordinates, and defines, in fact, a two-dimensional ma
spaceSz with a two-dimensional mole densityhs ; later, we
will pass to this space.

In the spacetimeM with coordinatesxm, the matter fields
areza(xm); the shell occupies a three-dimensional surfaceS,
which can be described by the embedding functio
xm5xm(ja), a50,1,2, or by means of the equatio
z3(xm)5z0

3. Later, we will pass to the the matter field
zA5zA(ja), wherezA(ja)5zA

„xm(ja)….
The gravitational field is described by the metricgmn(x);

we require the following conditions.
Condition 18. The spacetime (M ,g) is asymptotically flat

and globally hyperbolic.
Condition 28. There are coordinatesxm in a neighborhood

of each point ofS such that the metricgmn(x) is C0 every-
where, piecewiseC`, so that the only discontinuity is a jum
in the first derivatives atS.

The second derivatives of the metric will then have
d-function singularity atS so that the Einstein equations ca
be satisfied.

The total action for the system consisting of the shell a
the gravitational field can then be written in the form

I 5
1

16pG E
M

d4xAuguR2E
M

d4xAugune~n!. ~77!

One can use this volume form of the action to derive
equations of motion. However, there is also a ‘‘surfa
form’’ of the action which we will derive in the next section
l

ed
er

s

d

e

B. The surface form of the action

The coordinates satisfying condition 28 are not uniquely
determined. We can use this freedom for the derivation
the surface form; the tool will be the adapted spacetime
ordinatesxm, defined by the property

x35z3~x!, ja5xauS .

Then, the induced metricgab on the shell is

gab5gabuS ~78!

and its determinantg is related to the determinantg of the
four-metricgmn by

g5gg33. ~79!

1. Matter action

Formula~1! together with Eq.~76! give

j m5hsd~z32z0
3!emnrszn

1zr
2zs

3 .

Hence, j 350, and asd(z32z0
3)5z3

3d(x32x0
3), j a can be

written as

j a5 j s
ad~x32x0

3!. ~80!

The mole densityn can be calculated from Eq.~3!. We ob-
tain

A2gmn j m j n5A2gab j s
a j s

bd~x32x0
3!

5A2gab j s
a j s

bd~x32x0
3!,

and Eq.~79! yields

n5
1

Augu
A2gab j s

a j s
bAg33d~x32x0

3!.

We define the surface mole densityns by

ns5
1

Augu
A2gab j s

a j s
b ~81!

so that

n5nsAg33d~x32x0
3!, ~82!

where Ag33d(x32x0
3) is already a scalar with respect th

reparametrizations ofx3. For the velocityum, we have the
expansion

um5vaea
m , ~83!

where

ea
m :5

]xm

]ja ,

so that

gabvavb521



i

e
s

co

t-

ta-
s

e

-

.
-

e

rdi-

-

57 927LAGRANGIAN AND HAMILTONIAN FORMALISM FO R . . .
and

j s
a5Augunsv

a, j s
a5hse

abgzb
1zg

2 .

Then the transcription of the matter Lagrangian density
straightforward:

Lm52A2gne~n!52Augunses~ns!d~x32x0
3!,

wherees(ns) is the energy per mole of the shell matter. W
define the surface Lagrange densityLs and the surface mas
densityrs by

Lm :5Lsd~x32x0
3!, rs :5nses~ns!,

so that

Ls52Augurs~ns!. ~84!

If we perform the trivial integration overx3 in I m , the matter
action becomes a surface integral

I m52E
S
d3jAugunses~ns!. ~85!

This expression is invariant under the transformation of
ordinates at the shell.

The actionI m can be varied with respect to the shell me
ric gab with the result

dI m5E
S
d3jS 2

1

2
Augugabrs2Augurs8

]ns

]gab
D dgab .

In analogy with the formula~5!, we obtain

]ns

]gab
52

1

2
ns~gab1vavb!, ~86!

and we have

dI m5
1

2 E
S
d3jTs

abdgab , ~87!

whereTs
ab is the surface stress-energy tensor,

Ts
ab :5Augu„rsv

avb2s~gab1vavb!…, ~88!

and

s:5nsrs82rs52ns
2es8

is the surface tension~negative two-dimensional pressure!.
Moreover, it holds that

Tmn5
]xm

]ja

]xn

]jb Ts
abAg33d~x32x0

3!.

We obtain easily relations analogous to Eqs.~11!–~13!:

Ts
ab~j!52

]Ls

]gab~j!
~89!

@this is a form of Eq.~88!#;
s

-

]Ls

]za
A zb

A12
]Ls

]gag
gbg5Lsdb

a , ~90!

becauseLs is a three-density onS, and the Noether identity

Tsb
a 5Lsdb

a2
]Ls

]za
A zb

A . ~91!

2. Gravitation action

The next task is to rewrite the shell part of the gravi
tional actionI g in the surface form. The following lemma i
vital.

Lemma 3. In the adapted coordinatesxm that satisfy con-
dition 28, the d-function part of the gravitational Lagrang
density is given by

1

16pG
AuguR52

1

8pG
Augu@L#d~x32x0

3!1••• , ~92!

where the dots represent regular terms,L5gabLab, Lab is
the second fundamental form ofS corresponding to the nor
mal oriented outwards ofV2 and the abbreviation
@ f #:5 f 12 f 2 for the jump of a quantityf across the shell is
used.

The proof of this lemma is relegated to Appendix A
Equation~92! implies immediately that the gravitational ac
tion can be transformed to

I g5
1

16pG E
V1øV2

d4xAuguR2
1

8pG E
S
d3jAugu@L#.

~93!

Equations~85! and ~93! give the total action in the surfac
form

I 5
1

16pG E
V2

d4xAuguR1
1

16pG E
V1

d4xAuguR

2
1

8pG E
S
d3jAugu@L#2E

S
d3jAugunses~ns!.

~94!

This action functional is equivalent to that given by Eq.~77!,
if the coordinates satisfy condition 28. It has, however, two
advantages in comparison with Eq.~77!: ~i! all integrands in
Eq. ~94! are smooth and~ii ! it is valid and can be used with
more general coordinates, namely, arbitrary smooth coo
natesx6

m within V6 and arbitrary coordinatesja within S.
The fields in the action~94! are the matter fieldszA(y) on S
~observe that the fictitious fieldz3 disappeared from the ac
tion!, the gravity fieldsgmn(x) in V6, andgab(y) in S. The
metric has to satisfy the so-calledcontinuity relations

gab~j!5S gmn
2

]x2
m

]ja

]x2
n

]jb „x2~j!…D 2

5S gmn
1

]x1
m

]ja

]x1
n

]jb „x1~j!…D 1

, ~95!
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where the symbols ()6 denote the limits from the volume
V6 towardsS. The role of the continuity relations~95! is to
define the configuration space of our system as a con
mode or some falloff conditions do. The embedding fun
tions x6

m (j) are fixed; their variation is zero.
We also have to specify the integration volumes; this w

be done in analogy to Sec. II B 1: the volumeV is chosen to
be bounded by two Cauchy surfacesS1 and S2 , and by a
timelike surfaceS1 ~which will be eventually pushed to th
infinity!; the surfaceS separatesV in two partsV6, and the
surfacesSi into Si

6 ; the intersections ofS with Si will be
denoted by]S i and we will assume that they together for
the complete boundary ofS; the intersections ofS1 with Si
will be denoted by]Si and we will assume that they form th
complete boundary ofS1. This form of the action will be
our starting point to the derivation of the field equations
well as the Hamiltonian formalism.

C. The variational formula

The variation of the matter partI m of the action~94!, if
we calculate in the coordinatesja that are adapted to th
surfaces]S i by j05t i andhA5jA at ]S i , is

dI m5E
S
d3jS ]Ls

]zA 2]a

]Ls

]za
AD dzA1

1

2 E
S
d3jTs

abdgab

1E
]S2

d2h
]Ls

]z0
A dzA2E

]S1

d2h
]Ls

]z0
A dzA.

We define the matter momentapA by

pA :5
]Ls

]z0
A .

As pA is a well-defined two-surface density@cf. the discus-
sion below Eq.~21!#, we obtain the covariant formula

dI m5E
S
d3jS ]Ls

]zA 2]a

]Ls

]za
AD dzA1

1

2 E
S
d3jTs

abdgab

1E
]S2

d2hpAdzA2E
]S1

d2hpAdzA. ~96!

To calculate the variation of the gravitational partI g of
the action~94!, we first rewrite the surface integral inI g with
the help of the trace part of Eq.~54!:

Q52AuguL,

as

2
1

8pG E
S
d3jAugu@L#52

1

16pG E
S
d3jgab@Qab#,

~97!

so that

dS 2
1

8pG E
S
d3jAugu@L# D 52

1

16pG E
S
d3j~dgab@Qab#

1gabd@Qab#!. ~98!
l
-

l

s

Then, we apply lemma 1@Eqs. ~52! and ~54!# and Eq.~98!
with the result

dI g52
1

16pG E
V2

d4xGmndgmn2
1

16pG E
V1

d4xGmndgmn

2
1

16pG E
S
d3j@Qab#dgab2

1

16pG E
S2

d3yqkldpkl

1
1

16pG E
S1

d3yqkldpkl2
1

8pG E
]S2

d2hld@a#

1
1

8pG E
]S1

d2hld@a#1
1

8pG E
]S2

d2hlda

2
1

8pG E
]S1

d2hlda2
1

16pG E
S
d3jgabdQab. ~99!

Here, qkl(y) and dqkl(y) are continuous alongSi , but
pkl(y) anddpkl(y) have a jump at]S i . Equations~96! and
~99! imply the following formula for the total action:

dI 52
1

16pG E
V2

d4xGmndgmn2
1

16pG E
V1

d4xGmndgmn

1E
S
d3jS ]Ls

]zA 2]a

]Ls

]za
AD dzA1

1

16pG E
S
d3j~8pGTs

ab

2@Qab#!dgab2
1

16pG E
S2

d3yqkldpkl

1
1

16pG E
S1

d3yqkldpkl2
1

8pG E
]S2

d2hAld@a#

1
1

8pG E
]S1

d2hAld@a#1E
]S2

d2hpAdzA

2E
]S1

d2hpAdzA1
1

8pG E
]S2

d2hAlda

2
1

8pG E
]S1

d2hAlda2
1

16pG E
S
d3jgabdQab.

~100!

From the variational formula~100!, we can read off the field
equations. InV2 andV1,

Gmn50 ~101!

and atS, we obtain

]Ls

]zA 2]a

]Ls

]za
A 50, ~102!

@Qab#58pGTs
ab . ~103!

Equation ~103! is the well-known dynamical equation fo
thin shells@11#; we shall refer to it as the ‘‘Israels equation’
It may be considered as the singular part of Einstein eq
tions, corresponding tod-like sources. Equation~102! can be
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interpreted as a three-dimensional stress-energy cons
tion: we can show in a way analogous to Sec. II A 2 that

¹aTsb
a 5S ]Ls

]zA 2]a

]Ls

]za
AD zb

A ,

where¹a is a covariant derivative associated with the met
gab . This identity implies that Eq.~102! is equivalent to

¹aTsb
a 50

~which comprises only two independent equations!.
Equation~100! implies a generating formula for the fiel

equations analogous to Eq.~22!. In order to derive this for-
mula, we first have to introduce a foliation of the integrati
volume in Eq.~100!. This is an arbitrary smooth family o
spacelike surfacesSt such thatSi5Sti

; we allow for the sur-

facesSt having a cusp at]S t5SùSt so that the normalnm

can have a step discontinuity there. This leads to jump
pkl anda across]S t .

We also have to introduce adapted cordinatesxm so that
the surfacesSt are given byx05t, S by x350, andS1 by
x35r 1; further, yk5xkuSt

, ja5xauS , ja5xauS1,

hA5xAu]S t
, and hA5xAu]St

. Observe that the full four-
metric need not be continuous acrossS with respect to these
coordinates. Observe thatt5const is a continuous surfac
intersectingS andS1, and]/]t is a continuous vector field
everywhere.

Equation~94! and

I 5E
t1

t2
dtL

imply for L

L5
1

16pG E
St

2
d3yAuguR1

1

16pG E
St

1
d3yAuguR

2
1

8pG E
]St

2
d2hAugu@L#2E

]St
2

d2hAugunses~ns!.

~104!

If we rewrite Eq.~100! in the form

dI 5E
t1

t2
dtdL,

we obtain thevariation formulafor our system:

dL52
1

16pG E
St

d3y~qkldpkl! ˙

2
1

8pG E
]S t

d2h~Ald@a#! ˙ 1E
]S t

d2h~pAdzA! ˙

1
1

8pG E
]St

d2h~Alda! ˙ 2
1

16pG E
]St

d2hgabdQab.

~105!
va-

in

Performing the variation in Eq.~104! and comparing the re
sult with the RHS of Eq.~105! recovers the definition of
momenta and the field equations.

D. The Legendre transformation

Let us define the Hamiltonian in way analogous to S
II B 3:

Ȟ52L2
1

16pG E
S
d3yqklṗ

kl2
1

8pG E
SùS

d2hAl@ȧ#

1
1

8pG E
SùS1

d2hAlȧ1E
SùS

d2hpAżA, ~106!

where@a#:52a12a2 at S, a1 is defined by the norma
to S that is outward toV1 and the future normal toS2, a1

is defined by the normal toS that is outward toV2 and the
future normal toS1.

To calculate the variation ofȞ, we have to regroup term
in Eq. ~105!:

dL5
1

16pG H 2E
S2

d3y~qkldpkl! ˙

12E
S2ùS

d2h~Alda2! ˙ J 1
1

16pG

3H 2E
S1

d3y~qkldpkl! ˙ 12E
S1ùS

d2h~Alda1! ˙

12E
S1ùS1

d2h~Alda! ˙ J 1E
SùS

d2h~pAdzA! ˙

2
1

16pG E
]S

d2hgabdQab.

Then we vary Eq.~106!, substitute fordL the regrouped
expression, and apply lemma 1 to each of the two volum
V6; the result is

dȞ52
1

16pG E
S
d3y~ṗkldqkl2q̇kldpkl!

1
1

16pG E
SùS

d2hAlS l̇

l
d@a#2@ȧ#

dl

l
D

2E
SùS

d2h~ ṗAdzA2 żAdpA!

2
1

16pG E
SùS1

d2hAlS l̇

l
da2ȧ

dl

l
D

1
1

16pG E
SùS1

d2hgabdQab. ~107!

This is the Hamiltonian variation formula for the field equ
tions.

Let us compute the value of the Hamiltonian. To this ai
we insert from Eqs.~94! and ~97! into Eq. ~106! and apply
lemma 2. A simple calculation leads to
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Ȟ5
1

8pG E
S2

d3yG0
01

1

8pG E
S1

d3yG0
0

1
1

8pG E
SùS

d2h@Q0
0#2E

SùS
d2hTs0

0

1
1

8pG E
SùS1

d2hL0
0 . ~108!

The term2 (1/8pG)@Q0
0# has an interesting interpretation.

has been obtained as the sum

2
1

8pG
@Q0

0#52
1

16pG
@Q#1

1

8pG
@L0

0#.

The first summand is thed-function term in the gravitationa
Lagrangian density in the volume form

1

16pG
AuguR,

and the meaning of the second is given by the follow
lemma.

Lemma 4. If the four-metric is continuous in the adapte
coordinates, then we have atS

2
1

8pG
AuguR0

052
1

8pG
@L0

0#d~x32x0
3!1••• ,

~109!

where the dots represent regular terms.
Thus, the term is thed-function part of the expression

2
1

8pG
G0

0

@cf. Eq. ~53!#. If the assumptions of lemma 4 are satisfie
then the three first integrals on the RHS of Eq.~107! can be
written in volume form just as

2
1

8pG E
S
d3yG0

0 .

The Legendre transformation atS1 similar to that in Sec.
II B 3 can be performed exactly as was done there. T
transformation to the Euler picture in the matter part of
shell Hamiltonian~106! is much simpler than the analogou
transformation of the step Hamiltonian~66!, because all for-
mulas of Sec. II A 5 remain valid, they must only be rewr
ten in three spacetime and two matter space dimensions

E. The form of the Hamiltonian

In this section, the Hamiltonian~108! will be expressed as
a functional of the canonical variablesN, Nk , qkl , pkl, l,
anda.

Observe that the formulas~107! and~108! are valid in any
coordinates that are adapted to the foliation and that m
the embedding formulas forS and S1 time independent.
,

e
e

ke

More specifically, the coordinatet must be constant along
the surfacesS, the embedding formulas forS andS1 must
read

t5j0, y6
k 5y6

k ~jK!,

and the embedding formulas forSùS in S is

j05const, jK5hK.

Let us recall that one important point of our method is th
the boundaries are time independent in the above sense
their variations are zero.

The 211 decomposition of the metricgab at S andS1 is
analogous to that ofgmn . In particular, we define the~sur-
face! lapsen and the~surface! shift nK by

gab5S 2
1

n2 ,
nL

n2

nK

n2 , lKL2
nKnL

n2

D
so that

g0052n21lKLnKnL ;

the 211 decomposition of the continuity relations~95! reads

n5AN6
2 2~N6

' !2, ~110!

nK5Nk
6e6K

k , ~111!

lKL5qkl
6e6K

k e6L
l , ~112!

where

N6
' 5Nk

6m6
k , e6K

k 5
]y6

k

]jK ,

andm6
k is the unit normal vector toSùS tangent toS and

oriented fromS2 to S1. From this definition, it follows that

dm6
k 5

1

2
mk

6m6
r m6

s dqrs
6 .

Using the decomposition~70!, we can write for the inte-
grand of the volume terms in Eq.~108!

G0
052AqS N

G''

Augu
1Nk

Gk
'

Augu
D ;

observe that the RHS is invariant with respect to transform
tions of coordinatesyk. The form of G'' and Gk

' is well
known @9#:
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Aq

Augu
G''5

2pklpkl2p2

4Aq
2

Aq

2
R~3!,

Aq

Augu
Gk

'52pku l
l ,

whereR(3) is the curvature scalar of the metricqkl .
Within S andS1, an analogous decomposition yields f

the surface terms

Ts0
0 52

Al

Augu
~nTs

''1nKTsK
' !

and

@Q0
0#52

Al

Augu
~n@Q''#1nK@QK

'# !.

Ts0
0 can be expressed by means of the canonical variableszA,

pA , lKL , n, and nK in a way parallel to Sec. II A 4: the
formulas are independent of the dimension of spacetime
general, the form is only implicit. However, the dependen
of Ts0

0 on lKL , n, andnK can be inferred from the relation

Ts
ab522

]~2Ts0
0 !

]gab
~113!

analogous to Eq.~27!. It follows that

]Ts0
0

]n
52

Al

Augu
Ts

'' , ~114!

]Ts0
0

]nK
52

Al

Augu
TsK

' , ~115!

and

]Ts0
0

]lKL
5

1

2
Ts

KL . ~116!

In particular, (Al/Augu)Ts
'' and (Al/Augu)TsK

' are both in-
dependent ofn andnK .

In a way analogous to Sec. II A 4 we obtain easily

1

ns
2 S j s

0

Al
D 2

511
lKLzK

AzL
BpApB

~ j s
0!2rs8

2

and

Ts0
0 52nS Alns

rs8~ j s
0!2 lKLzK

AzL
BpApB1AlrsD 2nKzK

ApA .

For a dust shell, we have
In
e

1

ns
2

j s
0

Al
511

lKLzK
AzL

BpApB

m2~ j s
0!2

and

Ts0
0 52nAm2~ j s

0!21lKLzK
AzL

BpApB2nKzK
ApA .

Equation~116! then yields

TsKL5n
pApBzK

AzL
B

Am2~ j s
0!21lKLzK

AzL
BpApB

.

The form of@Q0
0# can be given explicitly. Let us observ

@14# that the normalsm̃, n, andm are related by

m̃m5nm sinh a1mm cosha,

ñm5nm cosha1mm sinh a;

recall thatn is the normal toS in M , m is the normal to
SùS in S, ~m is orthogonal ton!, ñ is the normal toSùS

in S, andm̃ is the normal toS in M ~ñ is orthogonal tom̃!.
A simple calculation then confirms that the correspond
second fundamental formsLab , Kkl , and l KL of S in M , S
in M andSùS in S, respectively, satisfy the relations

LabeK
aeL

b52KkleK
k eL

l sinh a1 l KL cosha,

Lab ñaeL
b2Kklm

keL
l 52a ,L .

It follows that

1

Augu
Q''5

1

Aq
p'' sinh a2 l cosha,

1

Augu
QK

'2
1

Aq
pK

'5a ,K .

Hence,

Q0
052n~Alp̃'' sinh a2Al l cosha!

2nK~Alp̃K
'1Ala ,K!, ~117!

where

l 5lKLmku leK
k eL

l 5qklmku l

depends only onqkl and its first derivatives. We use also th
abbreviations

p̃''5
pkl

Aq
mkml , p̃K

'5
pkl

Aq
qlr mkeK

r , p̃KL5
pkl

Aq
eK

k eL
l ,

where

eK
k :5

]yk

]hK .
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Finally, the complete Hamiltonian reads

Ȟ5
1

16pG E
S2

d3yH NS 2pklpkl2p2

2Aq
2AqR~3!D

1Nk~22pku l
l !J 1

1

16pG E
S1

d3yH NS 2pklpkl2p2

2Aq

2AqR~3!D 1Nk~22pku l
l !J

2
1

8pG E
SùS

d2hAl~n@p̃'' sinh a2 l cosha#

1nK@p̃K
'1a ,K# !2E

SùS
d2hTs0

0 1
1

8pG E
SùS1

d2hL0
0 .

~118!

The surface term atS1 is left unchanged; it has to be tran
formed according to the control mode used and/or shifted
infinity.

The surface super-HamiltonianHs and the surface super
momentumHsK at the shell are given by

Hs52
1

8pG
@p̃'' sinh a2 l cosha#1 T̃s

'' ,

HsK52
1

8pG
@p̃K

'1a ,K#1 T̃sK
' ;

here

T̃s
''5

1

Augu
Ts

ab ña ñb ,

T̃sK
' 5

1

Augu
Ts

ab ñaebK .

The geometric meaning of the gravitational part ofHs and
HsK can be inferred from Eq.~54!:

Q''

Augu
52LabeK

aeL
bgKL,

QK
'

Augu
52Lab ñaeK

b .

In particular,LabeK
aeL

b is the second fundamental form of th

two-surfaceSùS corresponding to the normalm̃ ~each two-
surface has two independent second fundamental form
the spacetime!; hence, the gravity part of the surface sup
Hamiltonian is the jump in the~two-!trace of this form.

F. Equations of motion

In this subsection, we calculate the variation of the Ham
tonian ~118! explicitly. In this way, we can check if ou
method leads to the well-known equations of motion; mo
to

in
-

-

-

over, we can study the structure of the canonical equati
and constraints at the surfaceS. In varying the Hamiltonian,
we must carefully deal with boundary terms.

The variation of the volume integrands can be given in
form

d~2G0
0!5CkdNk1CdN1akldqkl1bkldpkl1AqBuk

k ,

where

Ck522pku l
l ,

C5
1

Aq
S pklpkl2

1

2
p2D2AqR~3!,

akl5
N

Aq
S 2pm

k p lm2ppkl2
1

2
pmnpmnq

kl1
1

4
p2qklD

1NAqS R~3!kl2
1

2
R~3!qklD1Aq~Num

mqkl2Nu
kl!

2LNW pkl,

bkl5
N

Aq
~2pkl2pqkl!2LNW qkl ,

and

Br52
1

Aq
~Nkp lr 1Nlpkr2Nrpkl!dqkl

2
2

Aq
Nldp lr 2N~qkldGkl

r 2qkrdGkl
l !

1
1

2
N,s~qrkqsl1qrl qsk22qrsqkl!dqkl .

Here,LXW is the Lie derivative with respect to the vector fie
XW . The comparison with the volume term of Eq.~107! yields
the well-known canonical form of Einstein equations@9#

Ck50, C50,

ṗkl52akl, q̇kl5bkl . ~119!

The divergence term contributes to the variation of the s
face term atSùS by

1

16pG E
SùS

d2hAl~2B1
k mk

11B2
k mk

2!.

The following identity can be easily derived:

qklmr~dGkl
r 2dk

r G ls
s !52d l 12l KLdlKL2lKL~mkeL

l dqkl! iK ,
~120!

where the parallel symbol denotes the covariant deriva
associated with the metriclKL on SùS. Using Eq.~120!
and the continuity relations~111! and ~112!, we can rewrite
the surface term in the 211 form
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AlBkmk52Al~2p̃''N'1p̃'KnK!~mkmldqkl!

22Alp̃''nK~eK
k mldqkl!2Al~p̃'LnK1p̃'KnL

2N'p̃KL1p̃''N'lKL1p̃'MnMlKL

1N,km
klKL2NlKL!dlKL12AlNd l

22Al~N'mkml1nKek
Kml !dp̃kl. ~121!

The variation of the surface term@Q0
0# can be written in

the following way:

dQ0
05dnS 2

Al

Augu
Q''D 2dnKS Al

Augu
QK

'D 1rest.

~122!

Similarly, using Eqs.~114!, ~115! and ~116!, we obtain that

dTs0
0 5dnS 2

Al

Augu
Ts

''D 2dnKS Al

Augu
TsK

' D 1
1

2
Ts

KLdlKL

1S ]Ts0
0

]zA 2
]

]hM

]Ts0
0

]zM
A D dzA1

]Ts0
0

]pA
dpA . ~123!

Comparing the first two terms in Eqs.~121! and ~123!, we
obtain the first three Israel equations:

@Q''#58pGTs
'' , @QK

'#58pGTsK
' . ~124!

The last two terms in Eq.~123!, if compared with the corre-
sponding surface term in Eq.~107! yield the dynamical equa
tions for matter inside the three-dimensional spacetime of
shell surfaceS:

]Ts0
0

]zA 2
]

]hM

]Ts0
0

]zM
A 5 ṗA , ~125!

]Ts0
0

]pA
dpA52 żA. ~126!

What remains from Eq.~107! can be written as follows:

@2rest2AlBkmk#5~8pGTs
KL2Al@ȧ#lKL!dlKL

1AllKLl̇KLd@a#. ~127!

A somewhat lenghty calculation starting with Eqs.~121! and
~117! gives

2rest2AlBkmk522Alp̃''~n sinh a2N'!mkmldqkl

2Al$p̃''lKL~n sinh a2N'!1p̃KLN'

1 l KLN2n llKL cosha1nMlKLa ,M

2N,km
klKL%dlKL12Al~n cosha

2N!d l 22Al~n sinh a2N'!mkmldp̃kl

12Al~2np̃'' cosha1n l sinh a

1n iK
K !da.
e

Substituting this into Eq.~127!, we immediately obtain

n sinh a65N6
' , n cosha65N6 , ~128!

@2p̃'' cosha1 l sinh a#50. ~129!

The remaining equations, simplified by Eqs.~128! and~129!,
read

Al@2p̃KLN'2 l KLN1NllKL1N,km
klKL1nMlKLa ,M

1ȧlKL#58pGTs
KL , ~130!

and

l̇522l~Np̃''2N'l 2n iK
K !. ~131!

From the point of view of physical~or geometrical! con-
tent, Eq. ~128! just reproduces the definition ofa and is
compatible with the continuity relation~110!. The three Eqs.
~130! are equivalent to the remaining three Israel equatio
Finally, Eqs.~129! and ~131! follow from the continuity re-
lations ~110!–~112! and the equation of motion~119!. In-
deed, taking the limit of the second Eq.~119! from both sides
towards the shell and projecting the result byeK

k eL
l , we ob-

tain

l̇KL5H 2NS p̃KL2
1

2
p̃lKLD1NKiL1NLiK12l KLN'J

6

;

~132!

the expression in the brackets on the RHS must be cont
ous, hence

@2N~p̃lKL22p̃KL!12l KLN'#50. ~133!

The trace of Eq.~133! is Eq.~129! and the trace of Eq.~132!
is Eq. ~131!.

Eqs.~124!, ~133!, and the trace-free part of Eq.~130! can
be written in a more symmetric form:

@2KKL sinh a1 l KL cosha#528pGS T̃sKL2
1

2
T̃lKLD ,

~134!

@KKL cosha2 l KL sinh a#50, ~135!

@p̃K
'1a ,K#528pGT̃sK

' , ~136!

where KKL52p̃KL1(1/2)p̃lKL . They give the jumps of
the two independent second fundamental forms of the s
two-surface in the spacetime, one corresponding to the
mal ñ in the direction of the shell motion~continuous!, the
other tom̃, which is perpendicular to the direction of motio

From the point of view of the theory of constraint sy
tems, Eqs.~124!, ~129!, and the trace-free part of Eq.~130!
are constraints. The trace of Eq.~130!,

@ȧ#54pGn T̃s
KLlKL2

1

2
@2N'p̃KLlKL1Nl12N,km

k

12nKa ,K#, ~137!
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934 57P. HÁJÍČEK AND J. KIJOWSKI
Eq. ~131!, and Eqs.~125!, ~126! are canonical equations
Finally, Eqs.~110!–~112! and~128! are defining equations o
the Hamiltonian system, analogous to falloff conditions
control conditions.

It seems that some of the constraints are second class
example, Equation~129! follows from the variation with re-
spect toā5(1/2)(a11a2), which is a Lagrange multiplier
Equation ~129! contains this Lagrange multiplier; thus, i
Poisson bracket withpā , which is the momentum conjugat
to ā , and which is also constrained to vanish, is not zero~if
we extend the system by this momentum!.

Another important observation is that the LHS of E
~129! can be smeared only by a function of two variable
because the domain of definition of the LHS is the sh
surface. On the other hand, Eq.~129! contains so-called vol-
ume quantities, namely,pkl and l KL; a derivative with re-
spect to these variables and the Poisson brackets of t
variables result in three-dimensionald functions. Thus, the
LHS of Eq. ~129! cannotbe smeared so that it becomes
differentiable function on the phase space. We call such c
straints singular. The best way of tackling this constrain
may be to solve it forā and insert the solution back into th
action@18#. A similar procedure exists hopefully for the tw
constraints which result from the tracefree part of Eq.~130!:

8pGS T̃s
KL2

1

2
T̃s

MNlMNlKLD
5F2S p̃KL2

1

2
p̃MNlMNlKLD cosha

2S l KL2
1

2
l MNlMNlKLD sinh aG ;

they together with Eq.~129! exhaust the singular constrain
of our system. It is interesting to observe that the to
Hamiltonian is a differentiable function. Although the sur
face integrals in the Hamiltonian represent two-dimensio
smearing of some volume quantities, the presence of volu
terms and the continuity relations between the surf
(n,nK) and volume (N,Nk) smearing functions guarantee a
effectively three-dimensional smearing of all volume quan
ties.

These difficulties and the related problem of t
Bergmann-Dirac analysis@17# seem to be nontrivial; we will
try to tackle them in a future paper.
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APPENDIX A: PROOF OF LEMMA 3

Let us calculate thed-function terms in the expressio
Lg5hmnRmn , wherehmn is defined by

hmn:5
1

16pG
ugu1/2gmn. ~A1!

For this aim, we have to isolate the second derivative ter
A simple calculation gives

hmnRmn5]r~hmnAmn
r !1••• ,

whereAmn
r is defined by

Amn
l :5Gmn

l 2d (m
l Gn)k

k ~A2!

and the ellipsis represent regular terms. Thus, thed function
term in hmnRmn is given by

hmn@Amn
3 #d~x32x0

3!.

Thus, we prove the identity

hmn@Amn
3 #52

1

8pG
Augu@L#, ~A3!

where Lab is the second fundamental form ofS and
L5gabLab . Observe that the RHS of Eq.~A3! is written in
a three-covariant form. From the definition of Eq.~A2! of the
quantityAmn

r , it follows that

A33
3 52G3a

a , ~A4!

Aa3
3 5

1

2
~G3a

3 2Gba
b !, ~A5!

Aab
3 5Gab

3 . ~A6!

Let mm denote the unit normal vector toS oriented in the
direction of increasingx3, that is outward with respect to
V2:

mm5
1

Ag33
dm

3 . ~A7!

Then,

Lab5ma;b52
Gab

3

Ag33
, ~A8!

so

Aab
3 52Ag33Lab . ~A9!

hmn is a tensor density, hence

¹khmn5h,k
mn1Gkl

m hln1Gkl
n hml2Gkl

l hmn,

but it is a tensor density formed from the components of
metric tensor, thus¹khmn50 for all k,m,n. Setting m53,
n5k5a in this equation and using Eqs.~A4!, ~A8! and
~A9!, we obtain that
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A33
3 5

h,a
3a2Ag33Labhab

h33 . ~A10!

Similarly

Aa3
3 52

h,a
3322Ag33Labh3b

2h33 .

The metricgmn(x) is continuous across the shell, as arehmn

and the tangential derivatives ofhmn. It follows that

@A33
3 #52

gab

Ag33
@Lab#, ~A11!

@Aa3
3 #5

g3b

Ag33
@Lab#, ~A12!

where we also have substituted forhmn from Eq.~A1!. More-
over, using Eq.~A9!, we have that

@Aab
3 #52

g33

Ag33
@Lab#. ~A13!

Equations~A11!–~A13! imply

hmn@Amn
3 #52

1

8pG
Augug33S gab2

g3ag3b

g33 D @Lab#.

However, the following well-known relation holds:

gab5gab2
g3ag3b

g33 ,
from which, if Eq. ~79! is used, the identity~A3! follows
immediately.

APPENDIX B: PROOF OF LEMMA 4

If we rewrite R0
0 in terms of the connection,

R0
05g0m~]rGm0

r 2]0Gmr
r 1••• !,

where the ellipsis represent terms that do not contain sec
derivatives of the metric, we obtain immediately that

R0
05g0m@Gm0

3 #d~x32x0
3!1••• . ~B1!

We easily find

g0m@G0m
3 #52g33g0a@g0a,3#.

The following two equations are easily verified:

gab,35
1

g33Lab ,

Lab5
1

ugu S 1

2
Qgab2QabD .

Then, some computation leads to

g0m@G0m
3 #5

Ag33

Augu
S @Q0

0#2
1

2
@Q# D .

Finally, using Eqs.~79! and ~B1!, we obtain Eq.~109! im-
mediately.
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