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The order of the post-Newtonian expansion needed to extract in a reliable and accurate manner the fully
general relativistic gravitational wave signal from inspiraling compact binaries is explored. A class of approxi-
mate wave forms, calleB-approximants, is constructed based on the following two ingatshe introduction
of two new energy-type and flux-type functioe@ ) andf(v), respectively(b) the systematic use of the Pade
approximation for constructing successive approximants(ej and f(v). The newP-approximants are not
only moreeffectual(larger overlapsand morefaithful (smaller biasesthan the standard Taylor approximants,
but also converge faster and monotonically. The presently availaitXaccurate post-Newtonian results
can be used to construetapproximate wave forms that provide overlaps with the exact wave form larger than
96.5%, implying that more than 90% of potential events can be detected with the Ridimgbroximants as
opposed to a mere 10-15 % that would be detectable using standard post-Newtonian approximants.
[S0556-282198)00104-0

PACS numbe(s): 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

I. INTRODUCTION AND METHODOLOGY more optimistic. We show that, starting only from the pres-
ently known @/c)®-accurate(finite mas$ post-Newtonian

Inspiraling compact binaries consisting of neutron stargesults|6—10], but using them in a novel way, we can con-
and/or black holes are among the most promising candidatgiruct new template wave forms having overlaps larger than
sources for interferometric detectors of gravitational wave®6.5% with the “exact” wave forms. Since a reduction in
such as the Laser Interferometric Gravitational Wave Obserthe signal-to-noise ratio by 3.5% only results in a loss in the
vatory (LIGO) and VIRGO. The inspiral wave form enters Number of events by 10%, and since our computations indi-
the detector bandwidth during the last few minutes of thecate that the new templates entail only small biases in the
evolution of the binary. Since the wave form can, in prin-€stimate of signal parametefsee Tables V and IX below
ciple, be calculated accurately, it should be possible to track/e conclude that presently known post-Newtonian results
the signal phase and hence enhance the signal-to-noise ratidll be adequate for many years to come. _
by integrating the signal for the time during which the signal Before entering the details of our construction, let us
lasts in the detector band. This is achieved by filtering theclarify, at the conceptual level, the general methodology of
detector output with a template which is a copy of the ex-this W(_)rk. Central to our discussion is the following data
pected signal. Since in general relativity the two-body prob-2nalysis problem: On the one hand, we have some exact
lem has not been solved, the exact shape of the binary wa\@avitational wave formh(t;x) wherex,, k=1, ... n,,
form is not known and experimenters intend to use as a tenifé the parameters of the sigri@bmprising, notably, the
plate an approximate wave form computed perturbativelynassesm; and m, of the members of the emitting binary
with the aid of a post-Newtonian expansiph—11. Thus, [16]). On the other hand, we have theoretical calculations of
template wave forms used in detection will be different fromthe motion of{17] and gravitational radiation frorf6—10,
the actual signal that may be present in the detector outpupinary systems of compact bodig¢seutron stars or black
As a result the overlap of template and signal wave formd10les. The latter calculations give the post-Newtonian ex-
would be less than what one would expect if they had exactlpansionsiexpansions in powers af/c) of, essentially 18],
matched. two physically important functions: an energy functigfw)

In this paper we explore the order of the post-Newtonian2nd & gravitational flux functiof (v) (see exact definitions
expansion needed to extract in a reliable and accurate maRelow). Here, the dimensionless argumens an invariantly
ner the actual, fully general relativistic signal. Previous at-defined “velocity” [19] related to the instantaneoggavita-
tacks on this problerf2,3,11-14 suggested that a very high tional wavefrequencyf®" (= twice theorbital frequency
post-Newtonian ordefmaybe as high as®/c® beyond the by
leading approximationmight be needed for a reasonably
accurate signal extractiofl5]. Our conclusions are much v=(mTmfCW)13 (1.2
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Space of Wave Forms flux-type functions, sag(v) andf(v), and(ii) the system-

7 é h atic use of Padepproximants(instead of straightforward

L T T Taylor expansionswhen constructing successive approxi-

¥ mants of the intermediate functioe$v), f(v). Let us also

er, I, note that we further differ from previous attacks on the prob-

¥ % lem by using a numericdHiscrete fast Fourier transform to
compute the overlaps between the exact and approximate

wave forms. We find that the previously used analytical sta-

¥ é tionary phase approximation gives only poor estimates of the

E

ep, T,

Elep, 1 Flfp] he, overlaps(see Table ).
One of the aims of the present paper is to show that the

new sequence of templathE(t;)\) is, in several ways, “bet-
" T(t- ; s
FIG. 1. Schematic illustration of our methodology to compute ter” than the standard onle, (t;1). In this respect, it is con-

improved templates. venient to introduce some terminology. We shall say that a
multi-parameter family of approximate wave forms
where m=m;+m, is the total mass of the binary. Let us hA(t ), k=1, . .. N, is aneffectualmodel of some exact
denote byE; andFr_then'-order Taylor approximants of wave form hX(t;\); k=1,...n, (where one allows the
the energy and flux functions: numt_)er of model parameters, to be different from, i.e. in
practice, strictly smaller than,), if the overlap, or normal-
n ized ambiguity function, betweeh*(t;\,) and the time-
Er = > El(n)v*=E(v)+0(v"*?), (1.2 translated familyh™(t— 7; ),
" k=0
hX(t;N),hA(t— 7 1)
- ‘ i AN, i) = max—— < (x (A K >A :
Fr =2 Fdnu*=F()+0("Y), 1.3 ro OGN PN WA ) hA(E )
k=0 (17)
where is, after maximization on the model parameterg [21],

larger than some given threshold, e.g. m(a@(hk,,uk)

_t2 (1.4  =0.965[22]. [In Eq. (1.7) the scalar producth,g) denotes
(my+m,)? the usual Wiener bilinear form involving the noise spectrum
S,(f) (see below.] While aneffectualmodel may be a pre-
is the symmetric mass ratio. For finitg the Taylor approxi-  cjous tool for the successful detection of a signal, it may do
mants(1.2), (1.3) are known fom=5 [17,6-10. In the test 3 poor job in estimating the values of the signal parameters
mass limity—0, E(v) is known exactly andF(v) is known )\, We shall then say that a family of approximate wave
up to the orden=11[1-5,11. (There are logarithmic terms fgrms hA(t;\f), where the\? are now supposed to be in
appearing fom=6 that we shall duly discuss later, but in correspondence wittat least a subset pthe signal param-
this Introduction we simplify the notation by not introducing eters, is &aithful model of hX(t;\,) if the ambiguity func-
them) _ _tion A\, \B), Eq. (1.7, is maximized for values of the
The problem is to construct a sequence of approximaig, , jg parametersﬁ which differ from the exact onek,

wave formshﬁ(t;)\k), starting from the post-Newtonian ex- only by acceptably small bias¢&3]. A necessanj24] cri-
pansiong1.2), (1.3). In formal terms, any such construction tgjon, for faithfulness, and one which is very easy to imple-
defines anapfrom the set of the Taylor coefficients Bfand  ent in practice, is that the “diagonal” ambiguity

F into the (functiona) space of wave formésee Fig. 1L Up A\ A2=)\,) be larger than, say, 0.965,
to now, the literature has considered only the most standard Us’ing this terminology we shall show in this work that

map, sayT, our newly defined map, Eq(1.6), defines approximants
which, for practically all values of we could test, are both
more effectual(larger overlapsand more faithful(smaller
biase$ than the standard approximants E#j.5). A related
ﬁroperty of the approximants defined by E#.6) is that the
convergenceof the sequencehﬁ)neN is both faster and
much more monotonous than that of the standard sequence
(hI)nEN. This will be shown below in th€formal) test mass

limit »— 0 where one knows both the exact functida@ )

m;m;

n

(Er,.Fr) L hi(t.\p), (1.5

obtained by inserting the successive Taylor approximant
[20] (1.2), (1.3 into the integral, giving the time evolution of
the gravitational wave phase; see €.42,13. (Details are
given below) In this work, we shall define a new map, say
“P,” based on a four-stage procedutféig. 1):

(Er ,Fr)—(er,fr)—(ep ,fp )—(E[ep ],F[ep ,fp ]) and(numerically F(v) [13], and their Taylor expansions to
o' T T Tn Fn’ P P Po P orderv!! [11]. The convergence will be studied both “visu-
_>hr'f(t,)\k), (1.6 ally” (by plotting successive approximantsEoandF) and

“metrically” [by using the ambiguity functiofl.7) to de-

The two essential ingredients of our procedure (@r¢he  fine a distance between normalized wave fofriviost of our
introduction, on theoretical grounds, of two new, supposedlyconvergence tests utilize the rich knowledge of the post-

more basic and hopefully better behaved, energy-type andewtonian expansion$l.2), (1.3 in the test mass limit
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n—0. The very significant qualitative and quantitative ad- Il. PHASING FORMULA

vantages of the new sequence of approximants, (Eg, To get an accurate expression for the evolving wave form

over the standard one, qu'g)’ vyhen 7—0, make it plaq- h;;(t) emitted by an inspiraling compact binary one needs, in
S|bleltr_1at the new sequende,( V\{I" also fgre mugh better in principle, to solve two interconnected problem@ One
the finite mass cases#7=3. This question, which we can myst work out(taking into account propagation and nonlin-
call the problem of theobustnesof our results under the ear effecty the way the material source generates a gravita_
deformations brought by a finite value of in the coeffi-  tional wave, andii) one must simultaneously work out the
cientsE,(7), Fx(7) in Egs.(1.2), (1.3), is more difficult to  evolution of the source(taking into account radiation-
investigate, especially because one does not know, in thieaction effects The first problem, which in a sense deals
case, the “exact” results fdE(v; %) andF(v; 7). We could, mainly with the(tensoria] amplitudeof the gravitational sig-
however, check the robustness of our construction in twaal, is presently solved to ordef [6—10]. Such an approxi-
different ways:(i) by studying the “Cauchy criterion” for ~mation on the instantaneous amplitutje seems quite suffi-
the convergence of théshory sequence[h{(7),h5(7), cient in view of the expected sensitivity of the LIGO-VIRGO
h?(7),hP(#)] versus that of the corresponding Taylor se- netw_ork. On the other hand, the second proplem, Whl(;h de-
quence, andii) by introducing a one-parameter family of termines the evolution of thphaseof the gravitational sig-

R g . X X nal, is crucial for a successful detection. For simplicity, we
fiducial “exact” functions eKo(U)’ fKo(v) to model the un shall work here within the “restricted wave form” approxi-

known higher-orderi{=6) »-dependent contributions to the mation[26]; i.e. we shall focus on the main Fourier compo-
post-Newtonian expansior$.2), (1.3) and by studying fora  nent of the signal, schematically(t) =a®"(t)cosp®"(t),
range of values of the parametes the convergence of the where the gravitational wave phag&" is essentially, in the
short sequenc@hg(n), - ,hg(n)] toward the fiducial “ex- case of a circular binary, twice the orbital phase
act” wave formh (7). O: V(1) =2D(1).

Though we believe the work presented below establishes W€ find it conceptually useful to note the analogy be-

the superiority of the new approximan‘tE over the standard twee_n the radio-wave obse(vat|on of binary pul§ars anq the
T . L gravitational-wave observation of a compact binary. High-
onesh, and shows the practical sufficiency of the presentl

5 , o yprecision observations of binary pulsars make a crucial use
knownv-accurate post-Newtonian results, we still think th

i . i : ’ alof an accurate “timing formula’{27]

it is an important(and challengingtask to improve théfi-

nite mas$ post-Newtonian results. Of particular importance dFSREF 01, (2.9
would be the computatiof25] of the v®-accurategequations

of motion and energy function in confirming and improving linking the rotational phase of the spinning pulgatrobo-
our estimate below of the location of the last stable orbit forscopically observed wheg[f=2zn with ne\) to the
7n+# 0. Our calculations also suggest that knowihgndF to  time of arrivalt, on Earth of an electromagnetic pulse and to
v® would further improve the effectualnegsnaximized some parameterp;. Similarly, precise observations of an
overlap larger than 98¥and, more importantly, the faithful- inspiraling compact binary will need an accurate “phasing
ness(diagonal overlap larger than 99.3%6 a level allowing formula,” i.e. an accurate mathematical model of the con-
a loss in the number of detectable events smaller than 1%nuous evolution of the gravitational wave phase

and significantly smaller biasgsmaller than 0.5%in the oW

parameter estimations than the pres@iit°) results(about ¢=T=20=F[t;p;], 2.2
1-59%.

The rest of this paper is organized as follows: In Sec. Il
we briefly discuss the phasing of restricted post-NewtoniarF
gravitational wave forms, wherein corrections are only in-mZ)' . .
cluded to the phase of the wave form and not to the ampli- Heuristically relying on a standard energy-balance argu-
tude, indicating the way in which energy and flux functionsMeNt the “”?e evolution of the orbl|ta| phageis determined
enter the phasing formula. Various forms of energy and flu?Y WO functions: an energy functidB(v) and a flux func-
functions are introduced in Secs. Il and IV, respectively, andion F(v). Here the argument is defined by Eq(1.1) which
their performance compared. The ambiguity function, whicht@" be rewritten in terms of the instantaneousital angular
is the overlap integral of two wave forms as a function of réauencyl:
their parameters, is discussed in Sec. V and some details of
its computation by a numerical fast Fourier transform are

given. In Sec. VI we present the results of our computation§as abovem=m, + m, denotes the total mass of the bingary

in the test mass case while in Sec. VII we investigate thel'he(dimensionlesbenergy functiorE is defined by
robustness of these test mass results as completely as pos-

sible. Section VIII contains our summary and concluding Eixi=m(1+E) (2.9
remarks. The paper concludes with two appendixes. In Ap-

pendix A we discuss the Padgproximants, their relevant whereE,, denotes the total relativistic energgondi mas}
useful properties, and list some useful formulas used in thef the binary system. The flux functioR(v) denotes the
computations. In Appendix B we discuss carefully the issuegravitational luminosity of the systefat the retarded instant
of optimizing over the phases and provide a clear geometriwhere its angular velocitf) is given by Eq.(2.3)]. Note that
cal picture to implement the procedure. the three quantities, E and F are invariantly definedas

involving a set of parametef{®;} carrying information about
he emitting binary systerfsuch as the two masses, and

v=(mQ)B=x" 2.3
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global quantities in the instantaneous center of mass frameThe explicit Newtonian phasing formula is obtained by
so that the two functionsE(v), F(v) are coordinate- eliminatingv and given by

independent constructs. Denoting as above the symmetric
mass ratio bynp=m;m,/(m;+m,)?, the energy balance
equationdE,;/dt= —F gives the following parametric rep-
resentation of the phasing formula, Eg.2) (written here for

t.—t 5/8
Cc
(DN(t):(I)C_< 5r )

the orbital phase where 7= %%m (“chirp time scale”). (2.9
viso . E'(v) The corresponding Newtonian gravitational wave ampli-
t(v)=tc+m| dv Fo) (2.9 tude is(for some constant)
£ (o) agV(v)=Cv?, (2.10
_ Ulso 3 v
P)=Pct | - dvv® o (28 5o that the explicit Newtonian templates read
. . _t\5/8

v_vlje_r_etC and ¢, are integration constants, and where for hN(t)=C’(tc—t)‘”“cos{zcbc—z( c (211
lisibility we have not introduced a new narguch ag ') for ST

the dummy integration variable. Note th&at(v) <0, F(v) o ) )
>0 so that botit and® increase withv. For definiteness, The crucial issue for working beyond the Newtonian ap-
we have written the integrals in EqR.5), (2.6) in terms of ~ Proximation is the ava|lab|I|§y of sufficiently accurate repre-
a specific reference velocity, chosen here to be the velocit§entations for the two functiors’(v) andF(v). In the as-
corresponding to the last stable circular orbit of the binaryrophysically interesting case of two comparable masses
Note that the choice of such a reference point is, in factOrbiting around each other neither of the functidi) or
entirely arbitrary and a matter of convention as one intro+(v) |s_known exaCtly and thus one mus_t'rely on a post-
duces the two integration constatgsand®,, (which will be ~ Newtonian expansion for both these quantities. The question
optimized latey. The choicey o= vs,, Wherev g, is the ve- 1S how accurate should our k_nowledge of the “energy func-
locity at the last stable orbillso), is technically and physi- tion” E(v) and the “flux function”F(v) be so that we have
cally natural as it is the value where the integrand vanishe§Nly an acceptable reduction in the event rate and a tolerable
[because oE’(v)]. The definition(and propertiesof our bias in the estimation of paramete_rs. Given some approxi-
approximants do not depend on this choice and the reader f§ants of the energy and flux functiotas functions otv),

free to use instead his/her favorite reference point. On th&a Ea(v), Fa(v), and given some fiducial velocit28]
other hand, what is not a matter of convention is that, in th@iso» We shall define a corresponding approximate template
absence of information about the coalescence process, we N

shall also us@ ., to define the time when the inspiral wave h®=h"(t;C,t;,®¢.m, ) (212
form shuts off.

The numerical value ob |, in the case of a test mass
orbiting a bla(?k hple{i.e. the limiting casep—0) is 1/\/5. In hA(v)=Cu? cos 2b,(v), 213
the case of binaries of comparable massg# Q) v, is the
value ofv whereE’(v) vanishes. We will discuss below

by the following parametric representation in termsof

A !
ways of estimating (7). Knowledge ofv g, (considered t(v)=t.+ mfv'“’dv Enlv) , (2.19
now has a physical quantity affecting the signal and not as a v Fa(v)
simple reference poijts important in gleaning astrophysical ,
information since the inspiral wave form would shut off at ®.(0)=® u,’;Od s Eav) )
that point and the coalescence wave form, whose shape de- alv)=®ct , v Fa(v)’ (219

pends on equation of state of stars, etc., would begin. One of
the questions we address below is whetlasrhad been sug- To compute explicitly hA(t) we numerically invert Eq.
gested13]) knowledge ofvso( %) is crucial for getting ac- (2.14) to getv=V,(t) and substitute the result in the other
curate inspiraling wave templates. equations:h”(t) = CVA(t) cos[2DA(VA(t))]. Note that we
To warm up, let us recall that in the “Newtonian” ap- yse the Newtonian approximation for the amplitude as a
proximation(i.e. when using the quadrupole formula for the function ofv. We could use a more refined approximation,
gravitational wave emissigrone has such as an effectivémain Fourier modescalar amplitude
aSWV(v)c Q1 F¥?cy 3 F¥%(v). However, our main pur-
- E 2 :3_2 210 pose here being to study the influence of the choice of better
En(v) m*,  Fy nv, 2.7 . . .
2 5 approximants to the phase evolution on the quality of the
overlaps, it is conceptually cleaner to stick to one common
so that the above formulas redu@dter redefining the con-  approximation for the amplitud@onsidered as a function of
stants of integration or, equivalently, formally setting,  our principal independent variabig.
=) to The standard approximants fB(v) andF(v) are simply
to use their successive Taylor approximants, E{s2),
(1.3). Our strategy for constructing new approximants to
E(v) andF(v) is going to be two pronged. On the one hand,

1 1

Y 1
v ° O=0.— 27

-5
37 v o (2.8

S _
t=t.— 2—56m77
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2
and general theoretical information about their mathematical e(x)=e’—1= —-1. (3.4

structure we shall motivate the use of representations of

E(v) and F(v) based on other, supposedly more basic\ote that we assume here that the total instantaneous relativ-
energy-type and flux-type functions, sefv) andf(v). On  stic energy of a binary systefin the center of mass frame

the other hand, we shall construct Payge approximants, can pe defined as a time-symmetric functional of positions
sayep , fp , for the “basic” functionse(v), f(v), instead of  5ng velocities[so thatE(v) depends orv only throughx
straightforward Taylor approximants. We shall then compare=,2], as the quantityEe"®" discussed in Sec. VIl of Ref.

the performance of the various phasing formulas defined by30]_ It remains, however, unclear whether such a quantity is

inoslgzrting igld Egs. (2.13—(2.15 either the standard || defined at very high post-Newtonian orders and whether
Ea =Er, Fa =Fr, Egs.(1.2), (1.3), or the new, two-stage it js then related to the gravitational wave flux by the stan-

using the knowledge of these functions in the test-mass limit ( E2—m—m3

2m;m,

approximants Ex°"= Elep, ], Fa'= Flep,fp ]. [In all  dard balance equation.
cases, the approximant of the derivati&(v) is just Summarizing, our proposal is to use as basimmetrig
d Ex(v)/dv.] energy function the quantite(x), Eq. (3.4), instead of

E(X)=(Ei;;—m;—m,)/(m;+m,). Given any(approximate

or fiducially “exact”) functione(x), we shall then define the

corresponding functiof (x) (with x=v2) entering the phas-
Let us motivate the introduction of a new energy functioning formulas(2.13—(2.19 by solving Eq.(3.4) in terms of

e(v) as a more basic object, hopefully better behaved thafwor= (M1 +my)(1+E). Explicitly, this gives

the total relativistic mass-ener@y,;, Eq.(2.4), of the binary

system. For this, let us consider the limit /m;—0. In this E(x)={1+2n[V1+e(x)-1]}"*- 1. (3.9

test body limit, i.e. a test particl;, moving in the back-

ground of a Schwarzschild black hole of masg, the total

Ill. ENERGY FUNCTION

The associated derivative entering the phasing formula

conserved mass-energy of the binary system reads reads
dE(x de(x
Etor=mM+&E=m;—K,p5, (3.0 E'(v)=2v ( )‘ = on i )‘ .
dx |,_. [1+E()]VI+e(x) 9x |
wherek,, is the time-translation Killing vector, angh the (3.6

4-momentum of the test masShe quantity&,=—k,p5 is
the well-known conserved relativistic energy of a test par

ticle moving in a stationary backgroundAt infinity k* )
g y groun y use, when one knows only the Taylor expansiok (f). For

=pi/my, so that the formal expression & is Ei;=m; ) . . ;
—(p1-p2)/m4. This expression is clearly very asymmetric in guidance, let us note that by inserting @"3) into Eq.(3.4)
the labels 1 and 2 and has bad analytical properties as one gets the following exact expression for the test-mass

function of m;. Both problems are cured by working instead limit of the function e(x):
with the standard Mandelstam variable=EZ,=—(p, 1—4x
+py)2=m2+m5—2(p;-py). Further, it is known that, in  €(X;7=0)=—X 1= 3x
guantum two-body problems, the symmetric quantity

Having defined our new, basic energy functiefx), it re-
mains to define the approximantseffx) that we propose to

=—x(1-x—3x2—9x3—... =3 Ix"—...),
3.2 8.7

The generalization of the expansion, E8.7), to nonzero
is the best energy function to consider when trying to extend/alues of is only known to second post-Newtoni&®2PN)
one-body-in-external-field results to two-body resy®].  accuracy. Using Eq4.25 of Ref.[7], that is,

In the limit my,<m; the quantity e reduces simply toe
=—=(p1-p2)/mmy=E;/my+0(7).

2 2 2 2 .2
= S—my—m; Efor— M1—m;

2mim,  2mym
11112 11112

2

1 1 1 77,
Esz(x)=—§77x 1—1—2(9+ 77)X—§ 27-19p+ —|x°|,

In the case of a test mass in circular orbit around a 3
Schwarzschild black hole the explicit expression of the quan- (3.8
tity e in terms of the invariant argument=v?=(mQ)?3, _ ,

Eq. (2.9, is we compute the 2PN expansion of the functiefx) for a
finite #:
1-2x 35
€= 1-3x 3.3 €pnN(X; )= —X 1—(l+g x—<3—1—277)x2 . (39

The explicit test-mass resulB.3) suggests that théun-  The basic idea behind our proposal is that on the grounds of
known) exact two-body functiore(x) will have also some mathematical continuitf31] between the casge— 0 and the

~ (x—Xo) ~ 2 singularity in the complex plane. This led us case of finitexy one can plausibly expect the exact function
finally to consider, instead of the functian its square or, e(x) to be meromorphically extendable in at least part of the
equivalently, the new energy function complex plane and to admit a simple pole singularity on the
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TABLE |. Location of the last stable circular orbit determined  In summary, our proposal is the following: Given some
by the T- and P-approximants in the test mass case. Theusual Taylor approximant to the normal energy function,
P-approximants predict the exact location at ordetsnd beyond. Er = —%ﬂx(lJr E;x+ E2x2+ ---+Ex"), one first com-

2n

2 o ' -
At orderv“ the last stable orbit is not defined IR+approximants. putes the corresponding Taylor approximant for ¢hfainc-

tion [33], say

n X;T,/Xéo ngl Xiso

n

X _
Xjeo=0.1667 er, = _XkZO axk, (3.12
2 3.0000 — -
4 1.4415 1.0000 in which the only known coefficients are
6 1.1705 1.0000
U 357

ap=1, a;=—-1- 3 a,=—3+ 12 (3.13

real axisoc(x—xpok;)‘1 as the nearest singularity in the com- ' _ . .
plex x plane. We do not know the location of this singularity Then, one defines the improved approximant corresponding
when 7#0, but Pade approximantsare excellent tools for to Eq. (3.12 by taking the diagonal Ry, if n=2m) or
giving accurate representations of functions having such polsubdiagonal Py, ;, if n=2m+1) Padeapproximant of
singularities. For example, if we knew only the 2PN-accurate—x * er, (x):
[i.e. O(v*)] expansion of the test-mass energy functiéh

namely e,pp(X; 7=0)= —x(1—x—3x?), its corresponding m v
v*-accurate diagonal Padepproximant would be uniquely ep, (X)=—XPn, kzo X

defined(see Appendix Aas

n

: (3.19

wheree=0 or 1 depending on whetha=2m-+ € is even or
X1_4X (3.10 odd. For completeness, we recall the definition and basic
1-3x’ properties of Padapproximants in Appendix A. Let us only
mention here that th@[, . approximants are conveniently
obtained as a continued fraction. For instance, the Rade
proximant of the 2PN-appr0ximateT4(x)=—x(ao+a1x

ep,(X;7=0)=—

which coincides with theexactresult, Eq.(3.7). Having re-
constructed the exact functios(x), we have also recon-
structed, using only the information contained in the 2PN- o
accurate expansion, the existence and location of a last stable®2X") 1S
orbit. Indeed, using Eq4$3.6) and(3.10 we find

e (X)= —XCy :—cox(1+c2x) (3.15
1—6p2 Pa 1y G 1+(ci+cy)x :
Eé“(v):_m)(lTvz)W’ (3.11 T T ex

. . : 4
which is the exact test mass expression exhibiting a Iasl?)ll deT”‘f"”Q tEat this agree YV'@U to o,rd.erv we ca.n
stable orbit at,s,=1/,/6. In Table | we have compared at relate thec,'s in the above equation to thg’s in Eq. (3.13:

different post-Newtonian orders the,=v?, predicted by a, a, a
the standard post-Newtonian series and the Rageoxima- Co=ag, Ci1=-— 2 and c,=— ™ + - (3.16
tion to the samefIn the standard post-Newtonian case we 0 1“0

defined the Iso as the location of the minimum of successivgxpncmy this gives
Taylor approximants of the functioB(n),.]
It is important to note that our assumption of structural

stability betweene(x; 7=0) ande(x;7) with 0<7=<3% is Co=1, c=l+3,

internally consistent in the sense that the coefficientx of

and x? in the square brackets of Ed3.9 fractionally 35 9 1,

change, whem is turned on, only by rather small amounts: 3- 127 4- 4 n+ 97

7/3<7=8.3% and 3%/36<35/144=24.3%, respectively. Co=—Cq1— =— , (317
; . ; 1 1

This contrasts with other attempts to consideas a pertur- 1+=7 1+=9

bation parameter, such as RES2]. Indeed, in the quantities 3 3

considered in the latter work several of the 2PN terms hav%
o . . o that
coefficients that vary by very large fractional amounts;as

turned on: some examples being+1297, 2+ 255+ 27, 1 9 1,

4+ 415+ 877% in Egs.(2.2) of the second reference [82]. I+ gn=|4=gntgn|x

Moreover, the fact that many of the coefficients in their Egs. ep (X)=—x (3.18
X . . 4 1 35

(2.2) increasewhen 7 is turned on(like the ones quoted 1+ =9—|3——=7|x

above is not a good sign for the reliability of their approach 3 12

as iF means, roughly, that the radius of convergence.of th%iven a continued fraction approximaeg (x) of the trun-
particular series they consider tends decreaseas 7 is PP n

turned on. We shall attempt below to further test the robustcated Taylor seriesy of the energy functiore(x) the cor-
ness of our proposal. respondinge(x) andE’(x) functions are obtained using
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Ep ()=[1+27(\/1+ep ()~ 1)]"*~1, (3.19 e
' dEPn(X) -0.02 B |
Epn(v)ZZUT I
x=0v2
v 77 depn(x)‘ -0.04 -_ _

C[LEp (01Tten (09X |2

(32® -0.06 —

e(v)

Thus, for instance,

, -0.08 - -

e (o)) [ vé (T) (n=1/4)

EE = ) =1/ N

01 [ A |

| E t (Test M
Co[ 1+ 2¢,02+ (€1t C2)v?] 7 xact (Test Mass) 7
= i [ \\ ]
[1+(C1+C2)vz]2[1+EP4(v2)] V1+ep4(v2) | o.|1 - 0.|2 - o.la — 0.|4 I

v
(3.21

where Ep, is given by Eqg.(3.19. The careted notation in-
troduced on the left-hand side of E(B.21) will again be
used below and indicates that one is dividing some function
of v by its Newtonian approximation: e.gE’(v)
=E'(v)/Ey(v) where, from Eq(2.7), Ey(v)=—7nv.

Having argued thaep (X), Eq. (3.18, and the corre-
spondingEp, () defined by Eq(3.19 are better estimates of >
the finite-mass energy functions than their straightforward @&
post-Newtonian approximations, E¢8.98), (3.9), we can use
our results so far to estimate both the location of the last
unstable circular orbiflight ring) and that of the last stable

circular orbit. The functionp,(v), E;,4(v) are plotted in

-------- vt (T) (n=1/4)

02 -

Fig. 2 together witheT4(v) and Eh(v), both sets fory ——— vt (P) (n=1/4)

=1/4, and compared with the exact functiorév) and | _— Exact (Test Mass) ]
E’(v) in the =0 (i.e. test magscase. We see that the of .
=1/4 P- and T-approximants are smooth deformations of T T T s e
their test-mass limits. Note that the variablev? is, in the v

limit »—0, equal tom/r in Schwarzschild coordinates and _
can be used as a smooth radial coordinate. If we wished, we F'G- 2- Exact energy function&@) e(v) and (b) the Newton-
could also introduce the functiah,(X), giving thex varia- normalizedE’ (v), in the test mass case alidandP-approximants
tion of the total angular momentum. It is indeed related toln the comparable massiith »=1/4) case. Note that the compa-
the total energyE,(x) by the general identityfor circular rable mass caseB-approximant ano_P-approxnmant, are smooth
orbits) dE;,;=QdJ,,; where the circular frequency is given deformations of the test mass function.
by mQ=v°=x%2 The consideratiofeven without knowing
its precise analytical forirof the effective potential for gen- Singularity o(x—xpq9 ~* of E(x), corresponding to a
eral (noncirculay orbits Ey=Ey(r,Jio) in terms of any Simple pole k— Xpo@ in e(x). Applying these general
smooth radial-type variable measuring the distance be- considerations to our specific 2PN-Paufeposal(3.18 one
tween the two bodies allows one to S@ smooth deforma- eaS"y finds that we prEd|Ct the fOllOWIng |Ocat|0n§’in the
tion from the;=0 cas¢ that the minimum off,(x) [which  invariantx variable for both the light ring(corresponding to
necessarily coincides with the minimum df,(x)] defines I =3m for a test mass around a Schwarzschild black hole
the last stable circular orbit. Indeed, it is the confluence of
the one-parameter sequencexahimaof E,(r,J;,) consid- 1
ered as a function of for fixed J,,; (stable circular orbits o 1+ 37
with the one-parameter sequencenséximaof E(r,Jiq) x”é‘ht rlng( n)= xpole( 7;)— W (3.22
1_

(unstable circular orbijs Note also, from Eq(3.20, that the

last stable orbifminimum of E(x)] necessarily coincides

with the minimum of the functiore(x). As for the last un-

stable circular orbit it is clearly defined by the square-rootand for the lastcircularn stable orbit,

3_677
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Xlso("])_6 . 35 \/ 9 1 ,
387 1—E77+§577

(3.23

We recall thatx is invariantly defined in terms of the
orbital circular frequency) =27 f° throughx=(m Q)?3,
so that the gravitational wave frequentyvice the orbital
frequency reads

3/2 Mo
fOW=2foP=__=4397.26x)%°— Hz. (3.29
Tm m

In the equal mass casey€1/4) Egs.(3.22), (3.23 yield
3x_4(3) =156/109=1.4312, 6_4(3)~1.1916, and there-
fore foW=2f"=5719.4fn,/m) Hz. In particular, for a
(1.4my,1.4my) neutron star system, we predidty’
=2f2=2042.6 Hz, and for a (1M, 10M) black hole
system we predict,;,=2f,,,=286.0 Hz. Note that our esti-
mate of the(invariany location of the last stable orbit is
significantly different from that of Ref[32], which esti-
mates, for instance for'=2f2=1420 Hz for a
(1.4mg,1.4mg) system[Actually, we read in the figures of
Ref.[32] a value M f2)*"WW=0.00963 which corresponds
to 6xW=0.925 and f2’=698 Hz (instead of 710 Hz
marked on their figurgsfor the (1.4ng,1.4mg) case]
Qualitatively ourn dependence is different because we fin
that xlzg( 7) increases withy [GXIPSg(n)>1 and increasinp
while Ref.[32] estimates a §w "' (7)<1, decreasing with

DAMOUR, IYER, AND SATHYAPRAKASH

57

—9(1+ k3 n) to model the 3PNy dependence it is not
meaningful to considea priori that k3 can take any values
in the range *«k,=*1 [where we introduceda,(n)
=—3(1+ k5 n) with x,=—35/36]. As the negative value
of k, has indicated an increase of the radius of convergence
with 7 X4 m) =au(n)/ag(n) =5 (1+xy 7)/(1+ k2 7)
with «;=1/3] we would rather expect a value ef such that
agla,~ayla;, i.e. 1+kz p~(1+k, 7)2/(1+k, 5) SO
that k3~ —1.9. A value ofk; very different from this esti-
mate [i.e. a value ofaz(1/4) very different from—4.8]
would mean that the coefficierd,(1/4) was accidentally
smaller than normalin which case our estimate.22),
(3.23 would not be reliablg In conclusion, we think that,
given the presently available information, our estimates are
more internally consistent than previous offehich include
the relevant works quoted in RdB2]), but that, ifa,(7) is
only “accidentally” decreased by turning on, they might
be off the mark. It will be possible to make more precise
statements on the reliability of E¢3.23 only when the 3PN
equations of motion of a binary system are deriy@dwhen
numerical calculations can reliably locate the last stable or-
bit). Anyway, we shall see that a knowledge of the Iso is not
so crucial for extracting the inspiral wave forf\WWe shall
notwithstanding test below the robustness of our overall ap-
proach under possible uncertainties in the locations of
Xpole( 7) @nd Xxso(77).] This is because(a) interferometer
noise rises quadratically beyond a certain frequency; conse-
quently the noise level is pretty high before light binaries,

dsuch as neutron-star—neutron-stBiS-NS and NS-black-
hole (BH), reach the LSO; only in the case of more massive
binaries consisting of black holes and/or supermassive stars
with total mass in excess of Bh,, in the case of initial

7. This is an important physical difference as it means, if WeL|GO’ and 6&/'@ , in the case of advanced L|GO, will the

are right, that binary systems of comparable masses can
closer, orbit faster and emit more gravitational waves befo
plunging in than estimated in Ref32]. As said above, we
think that the “hybrid” approximation used in Ref32] is
not reliable, notably because of the stromgdependence
(and consequent increasef the coefficients in their expan-
sion (see also the related criticism of R¢84]). We think
that our approachin which the expansion coefficients to
e(x) are less strongly modified by and where the crucial
coefficienta, decreases withy which means a larger radius
of convergenckis more likely to indicate the correct trend.

We have tried in several ways to test the robustness of our

9Rkquency at the Iso be in a region where the detector noise is

"fow. In such cases it is important to know the location of the
Iso accurately because it helps in appropriately truncating the
inspiral wave form in search templates so that it would not
produce anticorrelation with the coalescence wave form
which is itself not known, as of now, to any accuracy. In the
case of lighter mass binaries what is really needed is that the
approximate energy function should match the exact one at
frequencies where the detector noise is the least. This is also
true for the flux function as we shall see in the next section.

IV. FLUX FUNCTION

conclusions under the addition of higher post-Newtonian

corrections to Eq(3.9). We think, however, that such at-

Contrary to the case of the energy function where we

tempts are not really conclusive because one does not knogould draw on a lot of theoretical information, we have less
in advance what is the “plausible” range of values of 3PN generala priori information on the structure of the flux func-

and higherz-dependent correctionpVe note in this respect
that the range considered in RE32), | @i|max=|Bilmax= 10, is
clearly too small as it means, for instance,fractional
change in the coefficient off/r)® when 5 changes from 0
to 1/4 of | a5|/16<16%, while theknownfractional change
in the coefficient of (n/r)? is already» 29/12>60%] In
fact, the relative changghe ratio a,(1/4)/a,(0) when

changes from 0 to 1Mof the successive coefficients in any

power series, such as thg(#) in Eq. (3.12), is expected to
increase(or decreaseexponentially with the ordek due to

an »-dependent shift of the convergence radius. For instance,

in our case if we write the 3PN coefficient as;(7)

tion F(v). The exact gravitational wave luminosiyis not
known analytically. It has, however, been computed numeri-
cally with good accuracy in the test particle lirhitl,13 and

we shall use this in our study. In the test particle limit the
flux is also known analytically to a high order in perturbation
theory; to ordew!! [11] we have

11

32
Fv;7=0)=5 709 2, Aw"+(Bew®+Bgw®+Bgv®

+ B, w0+ Bllv“)lnu}, 4.2
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where the various coefficients, and B, can be read off Refs.[1] and[2] that the curved-spacetime effedtmetric
from [11]: coefficients, Green functiondo not play an essential role
and that the origin of the pole can be directly seen in the
Ao=1, source terms, Eqg2.14 of Ref.[1].] Let us consider two
(for simplicity identica) mass points, linked by a relativistic
(Nambu-Got9 string, orbiting around each other on a circle
(the string tensiof providing the centripetal force opposing
centrifugal effects One can easily find the exact solution of
this problem and then estimate the linearized gravitational
waves emitted by the systef85]. Let us keep fixed the rest

A,=—3.711309523809524,

A3;=12.56637061435917,

A= —4.928461199294533, massesn, =m,= m/2 and the radil_Js of the orl:_)R and in-
crease the tensioh so that the particles’ velocitiastend to
As= —38.29283545469344, the velocity of light. In this limit, one finds thaRT~p
=mu/y1-v?/c? and that the gravitational wave amplitude
As=115.7317166756113, he«RT+ p~p. By taking a time derivative and squaring one
sees that, as— c, the gravitational fluf ~Q? h?«p? tends
A,=—101.50959595974186, to infinity like (1—v?/c?) L. This shows that the finding of
Refs.[1,2] is quite general and that, in particular, it is very
Ag=—117.5043907226773, plausible that a binary system of comparable masses will
have a simple pole i (v) when the bodies tend to the light
Ag=1719.1283422334299, ring orbit. We have seen above that the light ring orbit cor-
responds to a simple pobe,,{7) in the new energy func-
Aio=—1216.906991317042, tion e(x; 7). Let us defineﬁe correspondifigvariant “ve-

locity” v poie 7) = VXpoid 7). This motivates the introduction

Aq1=958.934970119567, of the following “factored” flux function:

Bg=—16.3047619047619,

v
Bg=52.74308390022676, f(v;n)= ( 1- )F(v; 7). (4.9
Upole( 7)

By=—204.8916808741229,
Note that multiplying by Tuv/v,ge rather than 1

B10=116.6398765941094, —(vlvpee)? has the advantage of regularizing the structure
of the Taylor series of (v) in introducing a term linear im
B11=473.6244781742307. (4.2 [which is absent in Eqi4.1)]. Two further tricks will allow

s to construct well-converging approximantsf{o). First,
is clear (if we think of v as having the dimension of a
velocity) that one should normalize the velocityentering
the logarithms in Eq(4.1) to some relevant velocity scale

By contrast, in the comparable masses case only the firs
five Taylor approximants of (v; ) are known[6—10]. Ex-
plicitly, B,.(z)=0 (k=<5) and

Ao(m)=1, vo. In the absence of further information the choicg
=vi5o(7) seems justifiedthe other basic choicey=uv e iS
A.(7)=0, numerically less desirable aswill never exceed s, and we
wish to minimize the effect of the logarithmic terinsA
1247 35 second idea, to reduce the problem to a series amenable to
Ax(n)=— 336 127 Padéng, is to factorize the logarithms by writing tHefunc-
tion in the form
As(n)=4m,
44711 9271 65 f(v;p)= 3—2n2v10[1+|n 0 WA EEEE
=t~ pt+—p? ' 5 v )
8191 535 x| 2 ficvk. 4.5
siM="| 672t 22" “3

There is, however, a bit of general information about theThe ellipses in Eq4.5) is meant to represent possible higher
function F(v) which can be used to motivate the consider-powers of In {/v,s5). (Such terms do not show up at order
ation of a transformed flux function, sdyv), as a better v'*when»=0 and will be also of no concern when consid-
behaved object. Indeed, as pointed out in R}, the func-  ering the #0 results at orden®.) The coefficientsf, are
tion F(v; 7=0) has a simple pole at the light ring£3m,  functions ofv s, in general36].

i.e. x=v2=1%). The origin of this pole is simple to under- Finally, we define our approximants to the factored flux
stand physically in a flat spacetime analoduieis seen from  function f(v) as
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fp (vin)=—7' 1+In— > ok
n 5 n(7)\ k=6
Visol 7

n
. Pm+e 2 kak:|,
k=0

(4.9

where v."(7) denotes the Iso velocity=\x,,) for the
v"-accurate Padapproximant ofe(x), and whereP, . de-
notes as before a diagonal or subdiagonal RamgEoximant

with n=2m+e¢€, €e=0 or 1. The corresponding approximant

of the flux F(v) is then defined as

-1
Fpn(v;n)E(l— ) fe (vim, (4.7

P
U pole 77)

wherevggle( 7) denotes the pole velocity defined by thé
Padeapproximant ofe(x). For instance, from Eq3.22)

1 1/2
g 1 1+§7]
Vpoid )= e 35 (4.8
~ 367

Let us now see what this definition gives in practice. In
terms of the original expansion coefficientskofv), A, and
By (considered for anyy) and of the fiducial velocity
=vs0, the coefficients appearing in the definitiogh6) read

/SZBGI

/g=Bg—A,Bq,
/9=Bg— A3Bs,

/10= B1o— Ao/ g = A4Bg,
/11=B11— A/ 9= A3/ g— AsBs. (4.9
We find (remarkably? that in the test particle limit the
O(v®) logarithmic term vanishes identically’q(=0)=0.

The other coefficients are numericallyy€ 0, v = 113,
Vo=Uo=116), fo=1, f;=—1.7320508075689, f,=

—3.7113095238095,  f,=18.994547272212, f,=
—26.694053570105,  f5=—29.756490254383,  f,
=196.66395901720,  f,=—327.26305863109, fg
—11.063926928123, fo=1188.0521512280, f,o=

—2884.9014287843, anid ;= 2823.3603070298. As for the
log factor in Eq.(4.6) we find that when it is not identically

1 (i.e. whenn=6) it is always smaller than about 1.005 for
V=<0,5,=0.40825 and much closer to 1 whers0.2. Al-
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FIG. 3. Newton-normalized gravitational wave luminosity in the
test particle limit:(a) T-approximants andb) P-approximants.

E(v) and F(v) with the new approximants defined above
(with their two-stage constructiof] ep] andF[fp]). Let us
first discuss the case of the flux function which can be stud-
ied in detail in the limiting casej— 0. Indeed, in this case
one knows both the “exact'(numerica) flux function[13],
sayFy(v) and its post-Newtonian expansion up to ordét
[11]. We can then compare directly the approach toward
Fx(v), on the one hand, of the successive standard Taylor
approximantsFr (v; 7=0) [obtained by keeping only the
A, andB, with k<n in Eq. (4.1)] and, on the other hand, of

the new approximantﬁpn(v;n=0) defined by Eqs(4.6).

though it is unpleasant to have logarithms mixing with pow-This comparison of convergence is illustrated in Fig. 3. We

ers, they do not seem to introduce, in the present Gafser
normalization tav |, and factorizatiojy a serious obstacle to
constructing good approximants tév).

Our primary aim in this work is to compare and contrast
the convergence properties of the stand@fBaylor” ) ap-
proximants to the phasing formula and its building blocks

have plotted there, for convenience, the *“Newton-
normalized” flux functions

A Fa(v)

Fav)=c =27 20 WFa0). (410

Fy(v) 32
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It is clear that theP-approximants converge to the exact T ('a) L T
values much faster than the Taylor ones. The monotonicity I
of the convergence of thP-approximants is also striking. 08 [
However, theP-approximants of the flux at certain orders I
(notablyv” andv'% exhibit poles that happen to lie in the i
region of integrationw,<v<v,. SuchP-approximants 07 |
are obviously a bad choice for the construction of templates. I
Nevertheless, this does not mean that one cannot construc
P-approximants at that order at all. Recall that in this study 3; 06
we have only considered diagonal and subdiagonal Bpde " I
proximants of typeP, and P}, ., respectively. It is per-
fectly legitimate to employ other types of Paalgproximants
and in particular thesuperdiagonalPade approximant of
type P €. For instance, there is a pole in the region of
interest in theP3-approximant of the flux while it turns out
that thePé-approximant(which is the one we have used in
this work instead oPﬁ) does not have a pole in the region of
interest. Thus, if one wishes, one may trade off a spurious
zero, in the region of interest, in the denominator of the
function with a zero of the numerator, thereby removing the
troublesome polésee Appendix A for how this may be ac-
complished via some simple properties of the Paplroxi- L
mants. For completeness we exhibit in Fig. 4 the successive %8 [
P-approximants to the factored flux functidwv; »=0).

The other building blocks of the phasing formula, Egs. I
(2.13—(2.19, are the approximants to the functid (v) 07 |-
=dE(v)/dv. As we have constructeElpn(v) so that it co- I

incides forn=4 with the exactEy(v) in the casen=0 it Ol
would not be fair to compare it to the straightforward (.= os -
ETn(U)' We need, therefore, to consider the finite mass case

7+ 0. However, in this case, we only know few PN approxi- I
mations and we do not know the exact result. We can for- 05
mally bypass this problem and have a first test ofrtiaust-

nessof our construction by defining the following fiducial

04 -

“exact” energy functioneio(x): 04 — -
3 35 |,
“o(x; p)=—x| 1—| 1+ = 127)"
B (X=X 3T 131 —rgn)x)’
(4.11

FIG. 4. Newton-normalized factored gravitational wave lumi-
The 2PN expansion d;O(X) coincides by construction with nosity in_ the test particle limit:(@ T-approximants and(b)
that of the “real” e(x; ). The parametek, enters only 3PN P-approximants.

and higher order terms. Note that parametrizes an infinite

number of PN terms in a nonperturbative manner because ito=0 which says that the “exact” pole stays whep-0 at
determines the location of the pole singularity ef°, the test mass valuex3=1 instead of our result above

namely 3x§g|e(%):1.4312. Working again with “Newton-normal-
ized” functions, now

3x50 = ! (4.12
pole — ' '
1—-kom Er ()= EA(u)_ _, _,4EA(v) 4.13
, V)= =—- 1% r—— .
If we believe our 2PN Padestimatg3.22), we would expect A En(v) 7 dv

that a good estimate of the “realk, (when consideringy

= 1) should be such that—1;<§4/4= (1—-35/144)(1+1/12),
i.e. xy4=+47/39=+1.2051. To test formally the conver- T ; _
gence of the sequence &-approximants away from the towrilrd the fiducial “exact’e,’(v) defined by Eq(4.11) for
region where we know by construction that it would con- 7= 3, ko=0. For completeness we exhibit also in Fig. 6 the
verge very fast we shall consider a valuexgfsubstantially ~ successiveP-approximants to the “basic” energy function
different from the Padexpected one, for instance simply ef(o.

we compare in Fig. 5 the convergenceﬁﬁn(v) andIAE;,n(v)
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T T T T T T T also in their shape. For instance, one of them could be a first
post-Newtonian signal corresponding to nonspinning stars
parametrized by masses of the two stars and the other may be
] a second post-Newtonian inspiral wave form corresponding
J to spinning stars parametrized not only by the masses of the
two stars but also by their spins. Let us therefore consider
two wave formsh(t;\y, ¢p) andg(t; uy, ¢4) Where ¢y, and

¢4 denote the constant phases of the two wave forygs,

= k=1,...n,, anduy, k=1,...n,, are the dynamical pa-
rameters of the signals amg andn,, are the corresponding
number of parameters. The scalar product of these two wave
forms is defined in Fourier space by

E(v)

04 —

. dfe2’7Tif’T

Wﬁ( fih i #) 9% (F; ik, )
(5.1

<hvg>(7;)\kuﬂk)EJ'

—

L IEXIaCIt (IFldUICI?I)I ] where 7 is the lag of one of the wave forms relative to the
01 02 03 04 other;h(f; Ny, ¢n) andg(f; uy, ) denote the Fourier trans-
forms [37] of h(t;\y, &) andg(t; uy, ¢g), respectively, the
FIG. 5. Newton-normalizedu(-differentiated energy functions  asterisk denotes complex conjugation &df) is the two-
in the comparable mass case. We compare the convergence of tegled noise power spectral density. The above scalar product
T-approximants and P-approximants. Observe that the js also the statistics of matched filterifigyiener filtep which
P-approximants converge much faster to the fiducial exact energys the strategy used in detecting inspiraling binary signals.
than the standard approximants. S,(f) being a(positive real, even function of the scalar
product (5.1) defines a real bilinear form ih and g. We

The convergence tests performed in_this section havﬁﬂroduce also the norrih||={h,hy. The ambiguity func-
shown at the visual level that tté-approximants behaved o, 4 is defined as the value of the normalized scalar prod-
better than the-ones. However, the real convergence crite- , maximized over the lag parameter

rion we are interested in is that defined by overlaps, to which
we now turn. <h g>

A(M,Mk)=ma>j—. (5.2
V. AMBIGUITY FUNCTION ~o 100 Nl

Central to our discussion is trembiguity functiorwhich  \here optimization over phases of the signal and the tem-
is a measure of the overlap of two wave forms that mayplate is symbolically indicated by (see Appendix B for
differ from each other in not only their parameter values bUTdeta"S_ Here\, can be thought of as the parameters of a
signal whilew, those of a template. The signal to noise ratio
(SNR) for detecting a noise contaminated versionhgt)

1 with a Wiener filter built from g(t—7) reads SNR
] =(h,g)/||g||. Its maximum value is SNR,=(h,h)/|lh|=]nl|
1 when the time-translateglis perfectly matched to the signal:
] g(t—7)=h(t). ThereforeA(\,,u) is thereductionin SNR
i obtained using a template that is not necessarily matched to
the signal.
] The dependences of(\,x) on bothA andu are impor-
il tant in designing detection strategies. The dependence on the
signal parameterk, given some template parametersal-
lows one to define an optimal way of paving the template
] parameter space. The region in the signal parameter space for
which a given template obtains SNRs larger than a certain
value[38] (sometimes called thminimal match39]) is the
] spanof that templatd40] and the templates should be so
3 1 chosen that together they span the entire signal parameter
I Fxact (Fiducial) \‘\ ] space of interest with thg Iea_tst overlap.of one pther’s spans.
PP N T (PN In our case, we are mainly interested in keeping the signal

0.1 0.2 03 0.4 parametersn fixed, and varying the template ongs In

v searching for a coalescing binary signal in the output of a

FIG. 6. Approximants to basic energy functios@) are com-  detector one maximizes over a given bank of templétes
pared with the fiducial exact energy function. Convergence ofover a dense lattice gf values. Thus, the quantity of inter-
P-approximants is apparent. est is the maximum of the ambiguity function over the entire
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parameter space of templates. This maximum, in the case of TABLE Il. Overlap integrals of a test mass wave form whose
identical signals, occurs when the parameters of the templafeourier transform is computed using stationary phase approxima-
and the signal are equal and is equal to 1. However, in realit}jon with the same wave form but whose Fourier transform is com-
the template wave forms are not identical to the fully generaPUted using numerical fast Fourier transfommstands for the order

general be less than(Schwarz inequalityand would occur

not when the parameters are matched but when they are mig- Ao Bo Co
matched: (19,79 (12.79) (19.79)
maxA<1. (53 0 1.000 0.995 0.967
Mk 2 0.999 0.994 0.970
4 0.999 0.990 0.955
If the template wave forms are not “close” to signal wave g 0.999 0.986 0.944
forms, then it is reasonable to expect that the maximum ocg 0.999 0.988 0.945
curs when|\,.— u,| is fractionally rather large. In this case 1o 0.999 0.987 0.940
there is not only a substantial reduction in the maximumy 0.999 0.978 0.918

SNR that can be achieved by using such a bank of templates
but there would also be a large systematic bias in the mea-

surement of parameters. Using the terminology of the Introwave forms when the velocity reaches that of the last stable
duction such template wave forms would be neither effectuabrbit, the overlap integral5.2) reduces to

nor faithful. For detectionpurposes we wish to construct

effectualtemplates, i.e. templates having a large overlap aftesd(\, sk)

maximization overu. For parameter estimationve further

—IhIl-all -1
need to constructaithful templates which have large over- =[nl~lgl
laps whenu=X\. A practical (nonrigorou$ criterion for fleod fE2™ITT_ -
faithfulness is that the “diagonal” ambiguity function ><ma>{2 Wh(f;)\kvd)h)g*(fil-’vkad’g) :
A(\\) be close to 1. né fs
Reduction in the overlap of template wave forms and true (5.5

signals has an effect on the number of detectable events or,

equivalently, loss in the detection probability of a signal of awheref g, is the gravitational wave frequency corresponding
given strength. For a given signal-to-noise ratio, the distancéo the last stable orbit. In order to compute the maximum
up to which a detector can detect depends primarily on theverlap we proceed in the following manner. The evolution
amplitudeh, of the wave. Unavailability of a copy of the of phase as a function of time is obtained by inverting nu-
true signal means that the effective strength of the signamerically v in terms oft from Eq. (2.14 and inserting the
reduces fromh, to .Ahy and hence the span of a detectorresult in Eq.(2.15 and then Eq(2.13. Though the iterative
reduces by the factod. The number of events a detector can procedure in inverting in terms oft is rather computation-
detect being proportional to the cube of the distance, a really intensive, we need to employ it since the inaccuracies
duction in the overlap by a factod means a drop in the introduced by the stationary phase approximation in comput-
number of detectable events, as compared to the case wherg the Fourier transform of the wave form increase with the
a knowledge of the true wave form was available, by a factoorder of approximation especially in the case of NS-BH and
AS. For instance, a 10%20%) loss in the overlap would BH-BH binaries. In Table Il, we give a measure of the inac-
mean a 27%50%) loss in the number of even{89]. The curacies introduced by the stationary phase approximation at
aim of PN calculations is to make this overlap as close to Marious post-Newtonian orders by computing the integral in
as possible. If we demand that we should_be able to detegtq. (5.5 with h(f) being the fast Fourier transform and
with PN templates about 90999 of the signals that we 5y peing the stationary phase approximation of the same
would detect had we known the general relativistic signal,; 2va form. (The three cased,, B, and C, are defined

ghSESWS gsghould have the overlap to be no less than aboye o) The worsened performance of the stationary phase

: (0.999. . N approximation for massive systems is clearly linked to the
As a model for noise above the seismic cuthffwe use  ¢act that such systems emit fewer cycles in the effective

the expected noise power spectral density in the initial LIGQ,,,qwidth centered nedi,. Indeed, from our estimates

interferomete{41]: above the gravitational wave signal from a (9,10Mg)
S, 2 [f\- system shuts off af>'=286 Hz, which is not very much
Sy(f)=——= a+2| —| + _) , f>f, (5.4  higher thanfo, and one should remember that the orbital
at3 fo fo evolution gets faster as one nears the Iso so that fewer cycles

GW

are spent toward higher frequenciesf g, .

whereSy, a andf, are constants that characterize the detec-
tor sensitivity, effective bandwidth and the frequency at
which the detector noise is the lowest, respectively. In the
case of initial LIGOa=2, f;=40 Hz andf,=200 Hz. Be- Having in hand the ambiguity function to measure the
cause of the fact that the noise is essentially infinite belowcloseness of two wave fornig2] we can use it to pursue at

the seismic cutofffg and since we terminate the template a quantitative level the analysis of the convergence of the

VI. RESULTS AND DISCUSSION
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sequence of approximants defined above. TABLE IlI. Faithfulnessof the T- and P-approximants in the

Let us first consider the wave forms defined in the formaltest mass case. Values quoted are riiaimax overlaps[cf. Eq.
test mass limit where one keeps thefactors in front of  (B12)] together with the best possible overldps. Eq. (B11)] in
E(v) andF(v) but neglects the; dependence in the Taylor Parentheses.

coefficients of E’(v) and F(v). Explicitly we mean the
wave forms defined by eliminatingpumerically v between

Ao Bo Co
(Te. X% (PR.X% (Tp.X% (Pp.X% (Tp.X% (P§.X%

h”(v)=Cuv? cos 2P ,(v), (6.2)
4 0.893 0.868 0.713 0.833 0.760 0.964

L (0.894 (0.868 (0.720 (0.839 (0.795 (0.984
5 [, _gEa(vin=0) 0545 0979 0338 0973 049  0.991
t(v)=t, 7 m dov 7% , (6.2
32 v Fa(v;p=0) (0545 (0.980 (0.343 (0.974 (0.514 (0.999
6 0971 0996 0965 0988 0962  0.994
(0972 (0.996 (0.968 (0.990 (0.969 (0.999

(&)]

5  (vse. _Ea(vin=0)
Pp()=Pe— 257 1f v 8—"~—""— " (63 7 098 0997 0858 098 0891  0.993
v Fa(v;7=0) (0.989 (0.998 (0.862 (0.989 (0.924 (0.999
8 0972 0.998 0.711 0.989 0.854  0.992
in which vj5,=v1s(7=0)=1/\/6. Note that the main pur- (0972 (0999 (0.719 (0.992 (0.872 (0.999
pose of the overlap computations made for this formal tes§ o995 0996 0928 0992 0933  0.994
mass limit is tocomparequantitatively the convergence of (0.995 (0.996 (0.933 (0.994 (0.957 (0.999
the P-approximants to that of the-ones. One should keepin 15 (5 ggg . 0.849 o 0.903 _

T e e oy ™ 0% () 0854 () 03 )
taI%es?té Iérggst valehe ?it’)solu?e vzjues of the overlapz are 0988 ~ 1000~ 0858 1.000 0908 ~ 1000
not reliable, though one assumes that the lessons learned (0989 (1000 (0863 (1.000 (0.849 (1.000
from the P/T comparison are. The absolute values of the
overlaps for the (1 ,10mg) case are probably more re-
liable, but this is not clear ag=0.1077 is then only a factor
2.32 smaller thang,,,=0.25. This being said we wish to
compare semi-maximized overlaps that we can denote f
simplicity as

Note that in Eqs(6.4) the approximate template param-
eters are not optimized, but are taken to be equal to that of
the exact signal. In other words we compare the faithfulness

0bf the various approximants together with their convergence
properties. The results are given in Table Ill, for4—11
0 0 [43] as well as for the Newtonian approximants for the pur-
(Ta(mg,mg),X%(my,my)) pose of comparison. The overlaps quoted are rttieimax
overlaps, Eq.(B12), together with the correspondingest
overlaps, Eq(B11), in parentheses below the minimax over-
(6.4) Ia}p. (Thg P_-approxin"_nantPi' corresponding tm=7 has a
singularity in the region of interest and hence we have used
the approximanPg. The Pg—approximant too has a pole and
we have not computed the overlaps in this case though if one
=max_ oA @X<ﬁﬁo(tc,¢§,ml,mz),ﬁxo(oﬁbx,ml,mz)>- desires one can compute otterapproximants, such &35
crere or P¢, at this ordep. We consider three prototype cases, say
(6.5  caseAg[(1.4m,1.4my)], caseBg[(1.4m,10my)], and
caseCy[ (10mg ,10mg)]. We added an index zero to recall
Here the superscript 0 oh, P or X denotes the above de- ihe fact thaty=0 has been used i’ andF. (One should
fined formal =0 limit of Taylor, Padetype or exact wave eep in mind the warning above that the numerical results
forms, respectivelfi.e. A=T, P or X in Egs.(6.1)—-(6.3].  for caseB, are physically more reliable, whikk, andC, are
Here one considers only the same values for the two dynamJUSt mathematical ways of testing the convergence.
cal parameters of those signdise. the explicitm and 7 We performed another convergence testil in the for-
appearing in Eqs6.1)—-(6.3), here expressed in termswh 5] 5.0 limit) of a different nature. It is known in math-
andm in order to psychologically minimize the formal in- ematics that one does not need to know in advance the limit
consistency of setting=0 in part of the formula and keep- of 5 sequence to test its convergence. One can instead use
ing it elsewherg¢and maximize over the kinematical ortés Cauchy’s criterion which say&oughly) that the sequence
®f, tY, ®F. To maximize over the reference times, it is converges if, given some distance functiod(h,g),
sufficient (as indicated aboyeto fix t=0 and maximize d(h,,h,)—0, as bothn and m get large. In our case we
overti=t, (=7, the time lag. Maximizing over the refer- have a distance functid@4] defined by the ambiguity func-
ence phases is more subtle as the overlap depmmigately tion and we can compare the Cauchy convergence of the
on &% and ®X and not only on their difference. There is, and P approximants. Some results are given in Table IV
however, a computationally nonintensive way to do it whichwhere one exhibits the semi-maximizgd the sense of Egs.
. . . . 0 0 0 0
is based on a conceptually simple geometrical formulation of6.4)] best overlaps(T,,T,,1) versus(P;,P,,1), for n
the problem(see Appendix B =4,...,11, and théhree prototype caséy), By, Cp. (As in

A0 ~
=max_ oA ,@é(hz (te, @2, my,m,), X0 X, my,m,)),

(Pg(ml,mz),xo(ml,m2)>
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TABLE IV. Cauchy convergence of the- and P-approximants in the test mass case. Values quoted are
the best possible overlaps.

(T (PEPLY (TR (PUPL) (T (PRA%L

4 0.496 0.918 0.374 0.914 0.653 0.992
5 0.528 0.984 0.330 0.986 0.541 0.999
6 0.953 1.000 0.770 1.000 0.957 1.000
7 0.988 0.999 0.913 0.997 0.982 0.998
8 0.985 0.999 0.833 0.999 0.945 0.999
9 0.997 0.999 0.965 0.994 0.985 0.999
10 1.000 — 0.997 — 0.999 —
Table 1l where appropriate we have used theln our view the most worrying aspect of tfleapproximant

Pé-approximant instead OPE. Since thePg approximant is not that it does not obtain a high overlap but that the
has a pole in the region of interest, the entries correspondingehavior of the approximant is oscillatory in nature. For in-
to n=10 are blank and the entries corresponding+c9 are  stance, th®(v°) T-wave form achieves an overlap, with the
the overlapg P$,PY,).) exact wave form, of about 0.96 which reduce©4b®) to as
The last two tables show very clearly that thelow as 0.71 for systenB, and 0.85 for systenC, (though
P-approximants converge much better than Thenes and  for systemA, it maintains a level of 0.965 increases at
that they provide a much more faithful representation of theo(v9) to about 0.93 for these systems and again drops back
signal. To measure theffectualnessf our approximantsin at O(v') to 0.85 and 0.90 for systeni, andC,, respec-
the technical sense defined abpaad study the biases they tively. One clearly notices tha-approximants do not show
can introduce, we also performed numerical calculations iy cpy an erratic behavior. Recall that, in the test mass case,
which we maximized over all parameters, say we are comparing knownexact wave form with an approxi-
0 0 — 0/ A Ay 0 mate signal model and hence the above conclusions are free
((Tn.X >>(m1'm2)_max“f'm§<1—“(ml M2, XMy, Ma)), from ar?y prejudice. Though the second post-Newtonian
6.6 P-approximant wave form is not a faithful signal model, at
5/2 post-Newtonian order th®-approximant is a faithful
signal model.
6.7 Moreover, P-approximants show an excellent Cauchy

while keeping track of the parameter valuaé,m’z* which, ~ convergence as evident from Table IV. Notice that the
given the signal parameters, ,m,, maximize the overlaps. |-@Pproximants have a poor Cauchy convergence for sys-
The results are presented in Table V for the three prototypémsBo andCy. This makes them ill suited as faithful tem-
casesA,, By, Co and for the most important valu¢tor the ~ Plates.T-approximants are not always effectual signal mod-
near futurg of the order of approximatiom=4, 5 and 6. In  €ls either. Sometimes they do obtain overlaps larger than
this case the overlaps are thenimaxoverlaps. 96.5% but at the cost of producing a very large bias in the
Our test mass results sum up the general behavior of thestimation of total mass. This is to be contrasted with the
different approximants pretty well. First let us note tegen  P-approximants which are effectual @(v*) at the level of
at O(v'Y) T-approximants do not achieve the requisite over-99.7% or better at the cost of very little biadni/m always
lap of 0.965except in the case of light binaries. This is less than 3.5% and less than 1% in most case have also
consistent with the concern often expressed in the literatureomputed the biases in the estimation of the paramgtard
about the need for higher order post-Newtonian wave formsthere too we see a similar trend.

<<P2,XO>>(m1 M) = maxpa ’m/2A<Pg(m/l*,m'2“),X0(ml,m2)>,

TABLE V. Effectualnesof the T- and P-approximants in the test mass case. Values quoted are the
minimaxoverlaps together with the percentage bias in the estimation of total mass-160(in) in paren-

theses.
n A, B, Co
(T X%) (PR, X%) (T X%) (PR, X%) (T X%) ((P2.X%)
4 0.993 0.973 0.971 0.999 0.899 0.998
(0.036) (—0.079) (—18.408) (+3.361) (—2.658) (—0.649)
5 0.824 0.996 0.986 0.999 0.806 0.999
(—0.382) (-0.029) (- 104.846) 1.428) (- 15.040) (0.314)
6 0.990 1.000 0.983 0.997 0.988 0.999

(0.039) (~0.004) (~2.875) (—0.040) (—0.605) (0.000)
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FIG. 7. Newton-normalized gravitational wave luminosity in the

VII. ROBUSTNESS

Up to this point in the paper we have mainly relied on the
test mass limit to assess the quality of our approximants. In
this section we shall try to go beyond this formal limit to
check therobustnes®f our proposal under the turning on of
7.

We can first use all the existing information about the
comparable masses case and see whether turnimgnoodi-
fies in any way the trend we saw above. As a first test
“visual” one) we plot in Fig. 7 the Newton-normalized flux

functions IETn(v;n), IA:pn(v;n) as a function ofv, for the

maximal valuen= 3 and for the cases where we know them,
i.e.n=2, 3, 4 and 5. Using the same information we can
also check they robustness of our Cauchy-convergence cri-
terion. This is done in Table VI where we present the semi-
maximizedbestoverlaps, Eq(B11) (PJ(m,7),PJ(m,7)),
(PJ(m,7),PZ(m,7))..., {(PsP7) and compare them to
their T counterparts for théreal) casesA, B andC.

We also made many attempts at testing the robustness of
our conclusions when taking into account the existence of
(unknown higher-orderz-dependent corrections. There is
no really conclusive way of achieving such a task but here is
our best attempt: Our starting point is to model an infinite
number of (unknown higher-orderPN corrections by just
one (nonperturbative parameterx,. As introduced in Eq.
(4.11) above,k, parametrizes our ignorance about the true
location of the light ring pole ine(x) andF(v)]. Our 2PN
Padeestimates gave us ap-corrected value pe, but we
wish to consider here the possibility that maybe the true
value is quite different from our estimate. More precisely Eq.
(4.11) parametrizes the pole aig,e=(1— g 7)1, while
3xgglez 1.4312 foryp= 3, corresponding t&,=+1.2051. To
explore a very large range of possibilities we shall consider
that the true value ok, (for =0.25) might range between
ko=—1 (meaning X,,.=0.8) and xo=+2 (meaning
3Xpole=2.0). In Table VII we compare the location of the
last stable orbit X,SOEUFSO predicted by the T and
P-approximants to the energy function relative to the exact
locationx,. [Fort-approximants the Iso is defined by mini-
mizing the standard energy functidﬁrn(v).] We see that

comparable mass case. Curves are plotted for three values of ﬂ%—approx_imants capture the location much better than the
mass rati0, 14/129.96 and 1j4with thicker curves corresponding T-approximants.

to larger values of the mass rati¢e) T-approximants andb)
P-approximants. For comparison we have also plotted the test pagdopting the definitior{4.11) for the corresponding fiducial
ticle flux. Note that the T-approximants as well as the “exact” e function, it remains to define a corresponding
P-approximants are continuous deformations of the test mass limifiducial “exact” f function, having the property that the cor-

Having chosen the range af, we shall consider, and

TABLE VI. Cauchy convergence of th€é- and P-approximants in the comparable mass case. Values
quoted are the best possible overlaps, B4.1).

n A

(Te. T (PLPRLY)

(Te.The0)

(PPl (T8.TH)  (PL.PLLY)

3 0.904 0.248
4 0.411 0.863
5 0.536 0.976
6 0.946 0.982

0.482
0.338
0.321
0.736

0.181 0.703 0.374
0.872 0.545 0.985
0.979 0.537 0.995

0.996 0.928 0.999




57 IMPROVED FILTERS FOR GRAVITATIONAL WAVES ...

901

TABLE VII. Location of the last stable circular orbit determined approximants, in Table IX we quote the fully
by the T- and P-approximants in the finite mass case for different optimized but minimax overlaps <<pr’17(m, 7),X7 (m, 77)>>
0

values of the parametex,. At orderv? the last stable orbit is not . - .
defined by P-approximants. At ordersv* and beyond the and((Tn(m,n),XKO(m,n))> again for the cases, B, C, for
ko=—1, 1.2051 and 2 and far=4, 5, 6 and 7.

P-approximants predict the location of Iso pretty well.
From Table VIII we clearly see that-approximants fail

n=1/4 n=14/(11.4} to be faithful signal models even at the third post-Newtonian
order. The second post-Newtonian wave form of this family
n ng/xX XX ng/xX XX i 0 i
Isd XIso Iso’ XIso Isd Xlso Isd' XIso would clearly fail to capture even 20% of all potential
Ko=—1 NS-NS events that would be detectable with the aid of a
family of templates constructed out Bfapproximants. Even
Xiso=0.1600 Xjso=0.1636 when parameter values are extremag£ — 1, and very high
5 2 8852 _ 2.9495 _ massep the pre_sently availaplg 5/2 post-Newtonian energy
' : and flux functions are sufficient to construct a faithful
4 1.5991 1.2415 1.5060 1.0976 P-approximant.
6 1.2652 1.0205 1.2078 1.0035 We observe that except when the parameter values are
Kko= 47139 extreme (very low value of k, and high massesO(v°®)
< - P-approximants are indeed good effectual signal models. In
Xjso=0.1986 Xiso="0.1792 fact in all cases, but one, they obtain an overlap in excess of
99%. Bias in the estimation of the total mass is at worst 7.6%
2 2.3240 - 2.6934 N and in many cases it is below 2%. On the contrary standard
4 1.2881 1.0000 1.3752 1.0023 second posyt-Newtonian approxirﬁants are not e¥fectual in
6 1.1020 1.0000 1.1408 1.0000 .
many cases; when they are effectual they often produce a
Ko=2 relatively large bias. For instance, for syst@&n when «g
" " =47/39, the second post-Newtoni@irapproximant acquires
Xiso=0.2145 Xiso=0.1852 an overlap of 0.98 compared to 1.00 acquired by the
2 21517 _ 2 6060 . P-approximant of the same order. However, the bias is 97%
4 1.1925 0.9258 1.3306 0.9698 in the former case as compared to a tiny 1.1% in the latter
6 1.0568 1.0042 1.1186 10005 case. Similarly, for xo=2, the 2.5 post-Newtonian

T-approximant achieves an overlap of 0.988 at a bias of 75%
while the P-approximant wave form achieves 0.996 overlap
with practically no bias at all. The biases in the estimation of
the n» parameter(not shown are also pretty small when
P-approximants are used as compared {approximants.

A word of caution is in order for those who desire to use
standard post-Newtonian templates: A careful examination
of the above tables reveals that the 2.5 post-Newtonian
T-approximant systematically obtains poorer overlaps and
larger biases. This is of course related to the fact that the 5/2
post-Newtonian flux is very badly behavedf. Fig. 3.
Hence one must never employ the 2.5 post-Newtonian
T-approximant for searches. Howevét;approximants do
not suffer from this predicament. Indeed @&(v°) the
where Ai(7), k<5, are given by Eq(4.3), and the others p-wave form is an excellent effectual signal model. For all
(7=0) by Eq.(4.2). Then we define the corresponding fidu- systems and parameters this model obtains an overlap of bet-
cial “exact” f function by ter than 99.5% at a bias less than 1.5%.

respondingF function coincides, up t@(v®) terms, with
the knownTs expansion ofF. To this effect the simplest
proposal is to define first tHE,; (Taylor tovl) expansion of

f2(v) by

5
> Ad ok
k=0

Tlﬂf;O]ETll[ [1-V3(1—kon)v]

11
+k§_)6 [A(0)v*+B(0)v¥ In U]H )

f)'zo(v;77)Efpll(v;77)E the RHS of Eq(4.6). (7.2
VIIl. CONCLUSIONS

Having defined some fiducial “exacté andf functions we In this work we have studied the convergence properties

have correspondingly defined some “exact” wave fom  of various post-Newtonian templates to detect gravitational
and, using the definitions above, bofhtype andP-type  \aves emitted by inspiraling compact binaries consisting of
approximants of this wave form. We are interested in knoWneutron stars and/or black holes. We have shown that the
ing whether theP-approximants behave better than thegtandard post-Newtonian filters, referred to as the
T-ones even in presence of higher-order effects significantly_approximants that are based on Taylor series, considered
different from the behavior expected from the 2PN Pe&le  in the literature define a badly convergent sequence of ap-
sults. The results of this exercise are p(egentgd in Table Vllbroximants. Even at order! the T-approximants only pro-
where one has computed the semi-optimizgidimaxover-  yide overlaps~0.86 with the exact signal in the case of
laps (P7(m,7), X7 (M, 7)) and (T7(m,5), X7 (M, 7)) for  pinaries consisting ofL.4—10M, systems. Worse, the con-
the casesA, B, C, for ko=—1, 1.2051 and 2 and fon  vergence of the sequence ®fapproximants is oscillatory
=4, 5, 6 and 7. In order to test the effectiveness of therather than monotonous. Our results Drapproximants con-
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TABLE VIII. Robustness of thd - andP-approximants in the comparable mass céai¢hfulnessValues
quoted are theninimaxoverlaps together with the best possible overlaps,(Bfj1), in parentheses. System
D corresponds to a binary consisting of stars of massés2@nd 1.M . In this extreme mass ratio case
the P-approximants aO(v®) arenot faithful (overlaps<96.5%).

n A B C D

(T3 X7y (PLX7) (TEX7) (PLX7) (T X7 (PR.X7) (T4.X7) (P7.X7)

Ko= — 1

4 0.601 0.875 0.882 0.735 0.826 0.825 0.467 0.696
(0.602 (0.875 (0.887 (0.742 (0.860 (0.84) (0.479 (0.705

5 0.528 0.954 0.323 0.875 0.416 0.842 0.272 0.824
(0.528 (0.959 (0.328 (0.88) (0.432 (0.873 (0.279 (0.84)

6 0.989 0.987 0.968 0.990 0.910 0.991 0.896 0.998
(0.990 (0.988 (0.972 (0.992 (0.917 (0.996 (0.900 (0.999

Ko=47/39

4 0.566 0.810 0.908 0.793 0.921 0.954 0.539 0.800
(0.567 (0.810 (0.912 (0.795 (0.946 (0.976 (0.550 (0.813

5 0.553 0.983 0.335 0.975 0.490 0.989 0.283 0.961
(0.559 (0.983 (0.339 (0.975 (0.509 (0.999 (0.290 (0.965

6 0.968 0.998 0.923 0.997 0.974 0.997 0.940 0.990
(0.968 (0.998 (0.926 (0.999 (0.983 (0.999 (0.942 (0.996

Ko= 2

4 0.557 0.779 0.894 0.813 0.896 0.985 0.586 0.843
(0.557 (0.780 (0.896 (0.819 (0.909 (0.989 (0.598 (0.848

5 0.563 0.989 0.339 0.995 0.507 0.978 0.286 0.992
(0.563 (0.989 (0.349 (0.995 (0.53) (0.996 (0.299 (0.992

6 0.964 0.999 0.883 0.978 0.955 0.997 0.939 0.984

(0.965 (0.999 (0.889 (0.978 (0.970 (0.998 (0.949 (0.992

firm previous, less convincing arguments in the literature Such overlaps are enough to guarantee that no more than
which were either based on rough quantitative estimates dt0% of signals may remain undetected. By contrast
on numerical calculations based on the stationary phase ape/c)®-accurateT-approximants only give overlaps of 50%,
proximation for Fourier transforms — an approximation thatand sometimes even as low as 30%, corresponding to a loss
we have shown not to be sufficiently accurate for this pur-of 87.5% and 97% events, respectively. Our results are sum-
pose(see Table I\ marized in Fig. 8 where we have plotted the fraction of
We have defined a new sequence of approximants, reevents which the templates constructed out Tof and
ferred to as theP-approximants, based on two ingredients: P-approximants would detect relative to the total number of
(i) the introduction, on theoretical ground, of two new events that would have been detectable if we have had access
energy-type and flux-type functiore{v) and f(v), instead to the true signal. We clearly notice the superiority of the
of the conventionally use&(v) andF(v) and(ii) the sys- P-approximants. Moreover, our computations indicate that
tematic use of the Padspproximation for constructing suc- the new templates entail only acceptably small biases in the
cessive approximants @&{(v) andf(v). The new sequence estimation of signal parameteisee Tables V and X In the
of P-approximants has been shown to exhibit a systematiterminology introduced in the texB-approximants are both
cally better convergence behavior than thapproximants. more effectuakhigher fully maximized overlagsand more
The overlaps they achieve at a fixed post-Newtonian ordefaithful (smaller biasésthan the usual-approximants. The
are usually much higher, and the convergence is essentialgbove conclusions are primarily based on the study of the
monotonous instead of oscillatoggs pictorially described in  formal test-mass limit and assumes that turningzobrings
Fig. 1 and mathematically measured by the overlaps quotednly a smooth deformation of what happenszat:0. We
in Tables Ill, V, VIII, and IX). From our extensive study of have also studied the effect of turning an(#%+0) in the
the formal “test-mass limit’p=m;m,/(m;+m,)?>=0, i.e.  coefficients of the post-Newtonian expansions. From all our
keeping overally factors but neglectingy in the coefficients checks it seems that the dependence is indeed smooth and
of the post-Newtonian expansions, it appears that the preshould not alter the fact that tie-approximants have a bet-
ently knownO(v/c)®-accurate post-Newtonian results allow ter convergence than tHE-ones. Our construction predicts
one to construct approximants having overlaps larger thathat the last stable circular orbit is closge. larger orbital
96.5% (overlaps corresponding te,=47/39, 2 in Table IX frequency when »#0 [see Eq.(3.23]. This is good news
and all, but one, overlaps in Table )Mith the exact signals. because it improves the efficiency Bfapproximants to be
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TABLE IX. Robustness of th&- andP-approximants in the comparable mass caectualnessvalues
quoted are theninimaxoverlaps, Eq(B12), together with the percentage bias in the estimation of total mass
100(1— mA/m) in parentheses.
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n A B
(Taxny  (PLX7) (TEX) (PR X)) (TEX7)) ((PRLXT))
Ko= — 1
4 0.891 0.970 0.962 0.997 0.881 0.940
(0.268) (~0.089) (- 12.550) 7.582) (~2.217) (~2.779)
5 0.811 0.989 0.713 0.996 0.664 0.932
(—0.400) (- 0.039) (—26.491) (4.907) (—15.860) (2.660)
6 0.995 0.991 0.982 0.999 0.955 0.998
(0.011) (0.025) €0.869) (-0.104) (-0.999) (0.080)
K0:47/39
4 0.868 0.965 0.975 0.999 0.972 0.997
(0.214) (-0.111) (-6.961) (-3.618) (1.406) € 1.524)
5 0.831 0.999 0.981 1.000 0.810 0.999
(—0.429) (-0.032) (~97.241) 1.118) (—23.654) (0.205)
6 0.984 0.998 0.989 0.999 0.996 1.000
(0.025) (0.000) (1.004) €0.157) (0.391) (0.019)
Ko= 2
4 0.863 0.961 0.968 0.998 0.996 0.997
(0.357) (-0.121) (- 1.300) (-2.874) (1.699) £0.450)
5 0.836 1.000 0.983 1.000 0.988 0.996
(—0.339) (-0.025) (-92.233) (-0.056) (- 75.053) (0.000)
6 0.981 0.999 0.993 0.995 0.998 1.000
(0.032) (0.000) (0.688) +£0.708) (1.106) £0.154)
used as filters for detectors having a fixed frequency band.
NS—BH However, we have no independent confirmation of tffés
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FIG. 8. Histogram of fraction of events accessible usingand
P-approximants relative to the case when the true signal is knownon the current study we can be confident that in all cases the

vorable dependence or. We have tested the robustness of
our conclusions against possible very drastic changes
brought by(still unknown #-dependent terms in the higher
post-Newtonian coefficients. In the case where these extreme
changes go in the opposite direction of what is suggested by
presently known result§.e. in the case<g=—1), we find
that the overlaps are worsened compared to our best estimate
range o=47/39). This shows that it is important to extend
the presently availabl®(v°) post-Newtonian results to the
third post-Newtonian levelnotably for the equations of mo-
tion) [25]. This will allow one to check whether the de-
pendence of the 2.5 post-Newtonian results that we use is
typical of the higher termgas our method assumesr ex-
hibits some abnormal behavior for some unforeseeable rea-
son. When third post-Newtonian results are available it is
clearly still advisable to use thé&-approximants: They
have consistently higher overlaps and lower biagéssee
Table 1X).

In this study we have only considered the noise power
spectral density corresponding to initial LIGO interferom-
eters. Naturally, one must study other cases as well. Based
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P-approximant wave forms will fare much better comparedD,(0)=1, i.e.D,(v)=1+q,; v+---, one shows that Pade
to the standard post-Newtonian ones. However, their perforapproximants are uniquely defined by Eé&l). Note that,
mance in absolute terms needs to be reassessed since ottinially, Pg[S,]=S, which indicates that Padepproxi-
interferometers, such as VIRGO, GEO600, and enhanceghants are really useful wheén«0. Actually, it seems that in
LIGO, happen to have effective bandwidths and the fremany cases the most useful Pamroximants are the ones
quency of maximum sensitivity somewhat different from ini- near the “diagonal,”m=Kk, i.e. PP if n=2m is even, and

tial LIGO. In addition, one must also address the perfor—pm+1 or PM. . if n=2m+1 is odd. In this work we shall

mance of P-approximate wave forms with regard 10 yse except when specified otherwise, the diagoR8) @nd
parameter estimation. the “subdiagonal” Py}, ;) approximants. For instance, the
Pﬁ-approximant of the flux function has a pole and therefore
we use instead th@g‘—approximant. The diagonalP() or

It is a pleasure to thank Eric Poisson for providing thesubdiagonal Py, ;) Padeapproximants can be conveniently
numerical test mass flux. B.R.l. thanks the Institut deswritten in a continued fraction forntsee e.g[45]). For ex-
Hautes Etudes Scientifiques, University of Wales Cardiff,ample, given
and the Albert Einstein Institute, Potsdam, while B.S.S.
thanks the Raman Research Institute and Institut des Hautes Sy(v)=ag+av +ayw?, (A2)
Etudes Scientifique for hospitality during different phases of
this work. This work was supported in part by NSF grantone looks for
PHY-9424337. B.S.S. thanks Kip Thorne and his group for
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useful conversations. 1, N Co _ 1+cov
P = =C , A3
l(v) 14 Cv 01+(Cl+02)v ( )
APPENDIX A: PADE APPROXIMANTS 1+cyv

A Padeapproximant to the truncated Taylor series expanjyng given
sion of a function is a rational polynomial with the same
number of coefficients as the latter. The coefficients of the Sy(v)=ay+av +aw’+ag’, (A4)
Padeapproximant are uniquely determined by reexpanding
the Padeapproximant to the same order as the truncategne looks for
Taylor series and demanding that the two agree. In our study

we use a continued fraction form of tkeear diagonalPade Co 1+ (Co+Ca)v

approximant instead of the usual rational polynomial. P%(v)= =Cy >+
Let S,(v)=ap+a; v+---+a, v" be a truncated Taylor 14 lt(eteteg)uteicay

series. A Padapproximant of the function whose Taylor 14 Cov

approximant to ordes" is S, is defined by two integens, k l+cy

such thatm+k=n. If T,[ - - -] denotes the operation of ex- (A5)

panding a function in Taylor series and truncating it to accu-
racyv" (included, the P Padeapproximant ofS, is defined The main advantage of using the continued fraction repre-
by sentations is that the lower order coefficienfsremain un-
changedas we increase the order of the polynomial being
m Nm(v) K B approximated. This is not true for the coefficients of the
Pi(v)= Du(v)’ Tol Pr(v)]=Sh(v), (A1) polynomialsN,,, D, in Eq. (Al). [This is easily seen by
comparing Egs(A3) and(A5).] Thecy’'s are algorithmically
whereN,, and D, are polynomialsin v of orderm andk, obtainable in terms of the coefficienas in S, with /<k.
respectively. If one assumes thag(v) is normalized so that For instance,

CoCi(Cat+cy)?+ag
C3: - ]
CoC1C2

CoC1(Cpt+C1)3+CoC1CoC3(C3+2C,+2C,) —ay

C4_ 1
CoC1C2C3
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CoC1[(Ca+ €)%+ CyC3]%+ CoC1CoC3(Cq+ C3+Cpt €)%+ a5

5 CoC1C5C3Cy ’

_ 5 3 3
Ce= 1€0C1(C1+C5)°+CC1CoC5[ (€1 + Co+C3)°+ 3(Cq+C5)°+3C,C3(Cq+Cp) +C3(Ca—Cq) |

© CoC1CoC3C4Cs
+ CC1C»C5C[ (C1+ Cot C3+C4)?+2(Cq+Cp+ C3) 2+ C3(C4— 2C;) ]+ CoC1C2C5C4C5[ C5+ 2(Cy+ C3+ Co+C1) ] — ag)-
(A6)

The expressions for coefficients,cg, . .. are long and not dowed with the Euclidean metric defined by th&ienep

listed here. Explicitly in terms of tha’s some of the above scalar product. For any givenﬁ, t’é, one sees by expanding

coefficients are the cosines by the usual addition formula that the two-
parameter family of “vectors”hA(CA,¢§) span a 2-plane,

Co= a0, i.e. a two-dimensional linear subspace/®f More explicitly,
a an unnormalized basis of this 2-planehi, h% with
1
Cl_ -,
o A_ A/ ~A A A_pA| ~A A_T
h7=h?(C"=1,¢6.=0), hy=h"C :1'¢°:E ,
= 2y (82)
a; &

the generic vector in the 2-plane beind\(A\*)=\% h}
ag(ajaz—as) +\5 h% with \'=CAcospl, Ny=C"sing>. Similarly, the
2 - (A7) two-parameter family of “exact” vectors can be written as

hX(\X¥) =\ h¥+ A% h¥ with the same definitions as above
A few other properties of the Padgproximants are use- With the labelA being changed intX. Optimizing over the
ful to notice, such as phases means finding the maximum over xteand \* of

C3: .
2
a;(aj—azap)

ey AN A
o= R A e A T e ShY
8 o= 1N T AN [[ATNT +AZN;
Pm [Snl=aotaivPny s Sn-1l, (A9) (B3)

PRLTALf1]=(P[ToLf 11D Y, (A8)

where §=0 or 1 and wheréS, _, is defined by “factoring  whereh? denotes the unit vectdr®(\)/[nA(\)|.

afterv”: S,=ap+a,vS,_;. Equation(A9) shows how to Directly attempting to maximize cOz AN\ is very

obtain the superdiagonal Padeproximant ofS, from the  cumbersome. The problem is, however, reduced to an easy

continued fraction approximants=P™. ) of S This one if one introduces orthonormalized bases in both 2-

PP m e no lanes: A eh) in the A-(2-pl d €,e)) in th

can be iterated t®"" 2, etc.[An alternative way would be, Planes: say & *fZ)A'n e A~( P a;n? and €1 ,€7) in the

from Eq. (A8), to work with the inverse of the serié.] X-one, with (&;,e,)=Jdap=(€;,€y); ab=12. For in-
stance, these orthonormalized bases can be defined as

APPENDIX B: OPTIMIZING OVER THE PHASES eA=||hA||71hA
1= '

The “exact” (label X) and approximatdlabel A) tem-

plate wave forms have the form e5=| It~ h l2Ihs]2—(hy,ho)2]~ 22
WXt ¢y ,C) = Ca(t—t¥) cog g5+ ¢*(t—1)], x{[Ihy]l?hy—(h1,ho)hi}, (B4)
hA(t;tA,¢’§,CA)=CAa(t—t§)co§¢§+ ¢A(t—t§)], for the A-plane and similarly for th&X-plane.
(B1) The overlap(B3) is then the scalar product between two

unit vectors(one in each planewhich can be parametrized

where we denotedy =207, ¢*(1)=20%(t), etc. Thenor- as  co¥,,=(€)€f)  where  e)=cosee}+sinae},
malized overlap betweeh* and h* depends on the time e = cosBel +sinBe; . Let Py denote theorthogonal projec-
differencet, —ty and (separately on the two phases);,  tor onto theX-plane, andp, denote the orthogonal projec-
#% . Here, we show how, for any given time lag-t>—tX  tion of €, i.e. explicitly
(i.e. after having fixed, for instanc&=0, t3=r), one can
maximize the overlap over the two phasgs, ¢ . p.=Px(ed)=(el,el)el+ (e, e5)es. (B5)

To solve this maximization problerf46] it is useful to
think in geometrical terms: Each wave fon(t) is seen as a The scalar producte}, %) is equal to(p,, ,e%). It is maxi-
“vector” h in an infinite-dimensional vector spad¢® en-  mized over$ when eﬁ is parallel top,, in which case its
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value is the norm of,. This shows that the maximum of
COYx is equal to the maximum over of the norm ofp,,:

(COHAX) max= mf>4|pa||- (B6)
On the other hand,
p,=C0sa p;+sina p,, (B7)
where
p1=Px(e})=(e} ef)ef+(ef . e3)e7,
P2=Px(€5)=(e; e)ef+(e).e))e;.  (BY)

In geometrical termsp, describes, as varies, andel-
lipse in the X-plane (the projection of the circlee,
=cosx e +sina &) and the maximum projection onto the

X-plane corresponds to the semi-major axis. The squa

[Pull*=(Pa.Pa) reads

[pal?=A cofa+B sirfa+2C cosa sina, (B9)
where
A=|pf|>= (el &)’ +(e1.e3)%,
B=|Ipall*=(e} ef)?+(e5.€3)%,
C=(p1,p2)=(ef e1)(e2 &) +(ef e;)(e3.€3). (B1O)

Maximizing over a is now easy [using coda=(1
+cos)/2, sirfa=(1—cos)/2, 2sinxcosa=sin2a¢ and
maximizing over 2] and yields finally

2

A+B
+C?

2

A—B

2

(COHax) max= (B11)

1/2] 1/2
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Inserting the definitions of the orthonormalized vectors, Eq.
(B4), into the definitions, EqB10), of A, B andC can allow

one to express (COsx)max ONly in terms of various scalar
products of the initial vectord?, h5, hY, hX. It is easily
checked that the final answer does not depend on the choice
of basis in theA- and X-planes, and cafif wished) be ex-
pressed only in terms of the “2-forms»”=h3/\h5 and
*=h¥/\h} (and of the Euclidean structure ¥).

The result, Eq.(B11), gives the best possible overlap
when optimizing separately over the phases of the exact and
approximate signals. This gives the mathematical measure of
the closeness of the two wave forms. However, in practice
we do not have access to the phase of the exact signal. It
might happen that the latter phase, i.e. equivalently the angle
B, is not optimum. Therefore, a physically more relevant
measure of the closeness of the two wave fofespecially
rfor the purpose of detectigns obtained by first optimizing
Sver a (the parameter we can diand then considering that
B has the worst possible value. In terms of the geometric
reasoning given above one finds that the worst possible case
corresponds to the semi-minor axis of the ellipse given by
Eqg. (B9), i.e.

2

A+B
+C?

=l

2

) A—-B
min max co¥x) = >

B

IIZJ 1/2

3

(B12)

In our simulations we considered both measures of the close-
ness of the two signals. We use EB11) when we study the
mathematical convergence and we use @4.2) when we

are interested in the detection. We shall refer to B4.1) as

the bestoverlap and Eq(B12) as theminimaxoverlap.
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