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Improved filters for gravitational waves from inspiraling compact binaries
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The order of the post-Newtonian expansion needed to extract in a reliable and accurate manner the fully
general relativistic gravitational wave signal from inspiraling compact binaries is explored. A class of approxi-
mate wave forms, calledP-approximants, is constructed based on the following two inputs:~a! the introduction
of two new energy-type and flux-type functionse(v) and f (v), respectively,~b! the systematic use of the Pade´
approximation for constructing successive approximants ofe(v) and f (v). The newP-approximants are not
only moreeffectual~larger overlaps! and morefaithful ~smaller biases! than the standard Taylor approximants,
but also converge faster and monotonically. The presently available (v/c)5-accurate post-Newtonian results
can be used to constructP-approximate wave forms that provide overlaps with the exact wave form larger than
96.5%, implying that more than 90% of potential events can be detected with the aid ofP-approximants as
opposed to a mere 10–15 % that would be detectable using standard post-Newtonian approximants.
@S0556-2821~98!00104-0#

PACS number~s!: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym
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I. INTRODUCTION AND METHODOLOGY

Inspiraling compact binaries consisting of neutron st
and/or black holes are among the most promising candi
sources for interferometric detectors of gravitational wa
such as the Laser Interferometric Gravitational Wave Ob
vatory ~LIGO! and VIRGO. The inspiral wave form enter
the detector bandwidth during the last few minutes of
evolution of the binary. Since the wave form can, in pr
ciple, be calculated accurately, it should be possible to tr
the signal phase and hence enhance the signal-to-noise
by integrating the signal for the time during which the sign
lasts in the detector band. This is achieved by filtering
detector output with a template which is a copy of the e
pected signal. Since in general relativity the two-body pro
lem has not been solved, the exact shape of the binary w
form is not known and experimenters intend to use as a t
plate an approximate wave form computed perturbativ
with the aid of a post-Newtonian expansion@1–11#. Thus,
template wave forms used in detection will be different fro
the actual signal that may be present in the detector out
As a result the overlap of template and signal wave for
would be less than what one would expect if they had exa
matched.

In this paper we explore the order of the post-Newton
expansion needed to extract in a reliable and accurate m
ner the actual, fully general relativistic signal. Previous
tacks on this problem@2,3,11–14# suggested that a very hig
post-Newtonian order~maybe as high asv9/c9 beyond the
leading approximation! might be needed for a reasonab
accurate signal extraction@15#. Our conclusions are muc
570556-2821/97/57~2!/885~23!/$15.00
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more optimistic. We show that, starting only from the pre
ently known (v/c)5-accurate~finite mass! post-Newtonian
results@6–10#, but using them in a novel way, we can co
struct new template wave forms having overlaps larger t
96.5% with the ‘‘exact’’ wave forms. Since a reduction
the signal-to-noise ratio by 3.5% only results in a loss in
number of events by 10%, and since our computations in
cate that the new templates entail only small biases in
estimate of signal parameters~see Tables V and IX below!,
we conclude that presently known post-Newtonian res
will be adequate for many years to come.

Before entering the details of our construction, let
clarify, at the conceptual level, the general methodology
this work. Central to our discussion is the following da
analysis problem: On the one hand, we have some e
gravitational wave formhX(t;lk) wherelk , k51, . . . ,nl ,
are the parameters of the signal~comprising, notably, the
massesm1 and m2 of the members of the emitting binar
@16#!. On the other hand, we have theoretical calculations
the motion of@17# and gravitational radiation from@6–10#,
binary systems of compact bodies~neutron stars or black
holes!. The latter calculations give the post-Newtonian e
pansions~expansions in powers ofv/c) of, essentially@18#,
two physically important functions: an energy functionE(v)
and a gravitational flux functionF(v) ~see exact definitions
below!. Here, the dimensionless argumentv is an invariantly
defined ‘‘velocity’’ @19# related to the instantaneousgravita-
tional wavefrequencyf GW (5 twice theorbital frequency!
by

v5~pm fGW!1/3, ~1.1!
885 © 1997 The American Physical Society
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886 57DAMOUR, IYER, AND SATHYAPRAKASH
where m[m11m2 is the total mass of the binary. Let u
denote byETn

andFTn
the nth-order Taylor approximants o

the energy and flux functions:

ETn
5 (

k50

n

Ek~h!vk5E~v !1O~vn11!, ~1.2!

FTn
5 (

k50

n

Fk~h!vk5F~v !1O~vn11!, ~1.3!

where

h[
m1m2

~m11m2!2
~1.4!

is the symmetric mass ratio. For finiteh, the Taylor approxi-
mants~1.2!, ~1.3! are known forn<5 @17,6–10#. In the test
mass limith→0, E(v) is known exactly andF(v) is known
up to the ordern511 @1–5,11#. ~There are logarithmic term
appearing forn>6 that we shall duly discuss later, but
this Introduction we simplify the notation by not introducin
them.!

The problem is to construct a sequence of approxim
wave formshn

A(t;lk), starting from the post-Newtonian ex
pansions~1.2!, ~1.3!. In formal terms, any such constructio
defines amapfrom the set of the Taylor coefficients ofE and
F into the~functional! space of wave forms~see Fig. 1!. Up
to now, the literature has considered only the most stand
map, sayT,

~ETn
,FTn

!→
T hn

T~ t,lk!, ~1.5!

obtained by inserting the successive Taylor approxima
@20# ~1.2!, ~1.3! into the integral, giving the time evolution o
the gravitational wave phase; see e.g.@12,13#. ~Details are
given below.! In this work, we shall define a new map, sa
‘‘ P,’’ based on a four-stage procedure~Fig. 1!:

~ETn
,FTn

!→~eTn
, f Tn

!→~ePn
, f Pn

!→~E@ePn
#,F@ePn

, f Pn
# !

→hn
P~ t,lk!. ~1.6!

The two essential ingredients of our procedure are~i! the
introduction, on theoretical grounds, of two new, suppose
more basic and hopefully better behaved, energy-type

FIG. 1. Schematic illustration of our methodology to compu
improved templates.
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flux-type functions, saye(v) and f (v), and~ii ! the system-
atic use of Pade´ approximants~instead of straightforward
Taylor expansions! when constructing successive approx
mants of the intermediate functionse(v), f (v). Let us also
note that we further differ from previous attacks on the pro
lem by using a numerical~discrete! fast Fourier transform to
compute the overlaps between the exact and approxim
wave forms. We find that the previously used analytical s
tionary phase approximation gives only poor estimates of
overlaps~see Table II!.

One of the aims of the present paper is to show that
new sequence of templateshn

P(t;l) is, in several ways, ‘‘bet-
ter’’ than the standard onehn

T(t;l). In this respect, it is con-
venient to introduce some terminology. We shall say tha
multi-parameter family of approximate wave form
hA(t;mk), k51, . . . ,nm , is aneffectualmodel of some exac
wave form hX(t;lk); k51, . . . ,nl ~where one allows the
number of model parametersnm to be different from, i.e. in
practice, strictly smaller thannl), if the overlap, or normal-
ized ambiguity function, betweenhX(t;lk) and the time-
translated familyhA(t2t;mk),

A~lk ,mk!5max
t,f

^hX~ t;l!,hA~ t2t;m!&

A^hX~ t;l!,hX~ t;l!&^hA~ t;m!,hA~ t;m!&
,

~1.7!

is, after maximization on the model parametersmk @21#,
larger than some given threshold, e.g. maxmk

A(lk ,mk)

>0.965 @22#. @In Eq. ~1.7! the scalar product̂h,g& denotes
the usual Wiener bilinear form involving the noise spectru
Sn( f ) ~see below!.# While aneffectualmodel may be a pre-
cious tool for the successful detection of a signal, it may
a poor job in estimating the values of the signal parame
lk . We shall then say that a family of approximate wa
forms hA(t;lk

A), where thelk
A are now supposed to be i

correspondence with~at least a subset of! the signal param-
eters, is afaithful model ofhX(t;lk) if the ambiguity func-
tion A(lk ,lk

A), Eq. ~1.7!, is maximized for values of the
model parameterslk

A which differ from the exact oneslk

only by acceptably small biases@23#. A necessary@24# cri-
terion for faithfulness, and one which is very easy to imp
ment in practice, is that the ‘‘diagonal’’ ambiguit
A(lk ,lk

A5lk) be larger than, say, 0.965.
Using this terminology, we shall show in this work th

our newly defined map, Eq.~1.6!, defines approximants
which, for practically all values ofn we could test, are both
more effectual~larger overlaps! and more faithful~smaller
biases! than the standard approximants Eq.~1.5!. A related
property of the approximants defined by Eq.~1.6! is that the
convergenceof the sequence (hn

P)nPN is both faster and
much more monotonous than that of the standard sequ
(hn

T)nPN . This will be shown below in the~formal! test mass
limit h→0 where one knows both the exact functionsE(v)
and~numerically! F(v) @13#, and their Taylor expansions t
orderv11 @11#. The convergence will be studied both ‘‘visu
ally’’ ~by plotting successive approximants toE andF) and
‘‘metrically’’ @by using the ambiguity function~1.7! to de-
fine a distance between normalized wave forms#. Most of our
convergence tests utilize the rich knowledge of the po
Newtonian expansions~1.2!, ~1.3! in the test mass limit
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57 887IMPROVED FILTERS FOR GRAVITATIONAL WAVES . . .
h→0. The very significant qualitative and quantitative a
vantages of the new sequence of approximants, Eq.~1.6!,
over the standard one, Eq.~1.5!, whenh→0, make it plau-
sible that the new sequence (hn

P) will also fare much better in
the finite mass case 0Þh< 1

4. This question, which we can
call the problem of therobustnessof our results under the
deformations brought by a finite value ofh in the coeffi-
cientsEk(h), Fk(h) in Eqs.~1.2!, ~1.3!, is more difficult to
investigate, especially because one does not know, in
case, the ‘‘exact’’ results forE(v;h) andF(v;h). We could,
however, check the robustness of our construction in
different ways:~i! by studying the ‘‘Cauchy criterion’’ for
the convergence of the~short! sequence@h0

P(h),h2
P(h),

h4
P(h),h5

P(h)] versus that of the corresponding Taylor s
quence, and~ii ! by introducing a one-parameter family o
fiducial ‘‘exact’’ functionsek0

X (v), f k0

X (v) to model the un-

known higher-order (n>6) h-dependent contributions to th
post-Newtonian expansions~1.2!, ~1.3! and by studying for a
range of values of the parameterk0 the convergence of the
short sequence@h0

P(h), . . . ,h5
P(h)# toward the fiducial ‘‘ex-

act’’ wave formhk0

X (h).

Though we believe the work presented below establis
the superiority of the new approximantshn

P over the standard
oneshn

T and shows the practical sufficiency of the presen
knownv5-accurate post-Newtonian results, we still think th
it is an important~and challenging! task to improve the~fi-
nite mass! post-Newtonian results. Of particular importan
would be the computation@25# of thev6-accurate~equations
of motion and! energy function in confirming and improvin
our estimate below of the location of the last stable orbit
hÞ0. Our calculations also suggest that knowingE andF to
v6 would further improve the effectualness~maximized
overlap larger than 98%! and, more importantly, the faithful
ness~diagonal overlap larger than 99.5%! to a level allowing
a loss in the number of detectable events smaller than
and significantly smaller biases~smaller than 0.5%! in the
parameter estimations than the presentO(v5) results~about
1–5 %!.

The rest of this paper is organized as follows: In Sec
we briefly discuss the phasing of restricted post-Newton
gravitational wave forms, wherein corrections are only
cluded to the phase of the wave form and not to the am
tude, indicating the way in which energy and flux functio
enter the phasing formula. Various forms of energy and fl
functions are introduced in Secs. III and IV, respectively, a
their performance compared. The ambiguity function, wh
is the overlap integral of two wave forms as a function
their parameters, is discussed in Sec. V and some detai
its computation by a numerical fast Fourier transform
given. In Sec. VI we present the results of our computati
in the test mass case while in Sec. VII we investigate
robustness of these test mass results as completely as
sible. Section VIII contains our summary and concludi
remarks. The paper concludes with two appendixes. In
pendix A we discuss the Pade´ approximants, their relevan
useful properties, and list some useful formulas used in
computations. In Appendix B we discuss carefully the iss
of optimizing over the phases and provide a clear geome
cal picture to implement the procedure.
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II. PHASING FORMULA

To get an accurate expression for the evolving wave fo
hi j (t) emitted by an inspiraling compact binary one needs
principle, to solve two interconnected problems:~i! One
must work out~taking into account propagation and nonli
ear effects! the way the material source generates a grav
tional wave, and~ii ! one must simultaneously work out th
evolution of the source~taking into account radiation
reaction effects!. The first problem, which in a sense dea
mainly with the~tensorial! amplitudeof the gravitational sig-
nal, is presently solved to orderv5 @6–10#. Such an approxi-
mation on the instantaneous amplitudehi j seems quite suffi-
cient in view of the expected sensitivity of the LIGO-VIRG
network. On the other hand, the second problem, which
termines the evolution of thephaseof the gravitational sig-
nal, is crucial for a successful detection. For simplicity, w
shall work here within the ‘‘restricted wave form’’ approx
mation@26#; i.e. we shall focus on the main Fourier comp
nent of the signal, schematicallyh(t)5aGW(t)cosfGW(t),
where the gravitational wave phasefGW is essentially, in the
case of a circular binary, twice the orbital pha
F: fGW(t)52F(t).

We find it conceptually useful to note the analogy b
tween the radio-wave observation of binary pulsars and
gravitational-wave observation of a compact binary. Hig
precision observations of binary pulsars make a crucial
of an accurate ‘‘timing formula’’@27#

fn
PSR5F@ tn ;pi #, ~2.1!

linking the rotational phase of the spinning pulsar~strobo-
scopically observed whenfn

PSR52pn with nPN) to the
time of arrivaltn on Earth of an electromagnetic pulse and
some parameterspi . Similarly, precise observations of a
inspiraling compact binary will need an accurate ‘‘phasi
formula,’’ i.e. an accurate mathematical model of the co
tinuous evolution of the gravitational wave phase

fGW52F5F@ t;pi #, ~2.2!

involving a set of parameters$pi% carrying information about
the emitting binary system~such as the two massesm1 and
m2).

Heuristically relying on a standard energy-balance ar
ment, the time evolution of the orbital phaseF is determined
by two functions: an energy functionE(v) and a flux func-
tion F(v). Here the argumentv is defined by Eq.~1.1! which
can be rewritten in terms of the instantaneousorbital angular
frequencyV:

v[~mV!1/3[x1/2 ~2.3!

~as abovem[m11m2 denotes the total mass of the binary!.
The ~dimensionless! energy functionE is defined by

Etot5m~11E! ~2.4!

whereEtot denotes the total relativistic energy~Bondi mass!
of the binary system. The flux functionF(v) denotes the
gravitational luminosity of the system@at the retarded instan
where its angular velocityV is given by Eq.~2.3!#. Note that
the three quantitiesv, E and F are invariantly defined~as
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888 57DAMOUR, IYER, AND SATHYAPRAKASH
global quantities in the instantaneous center of mass fram!,
so that the two functionsE(v), F(v) are coordinate-
independent constructs. Denoting as above the symm
mass ratio byh[m1m2 /(m11m2)2, the energy balance
equationdEtot /dt52F gives the following parametric rep
resentation of the phasing formula, Eq.~2.2! ~written here for
the orbital phase!:

t~v !5tc1mE
v

v lso
dv

E8~v !

F~v !
, ~2.5!

F~v !5Fc1E
v

v lso
dvv3

E8~v !

F~v !
, ~2.6!

where tc and Fc are integration constants, and where f
lisibility we have not introduced a new name~such asv8) for
the dummy integration variable. Note thatE8(v),0, F(v)
.0 so that botht and F increase withv. For definiteness
we have written the integrals in Eqs.~2.5!, ~2.6! in terms of
a specific reference velocity, chosen here to be the velo
corresponding to the last stable circular orbit of the bina
Note that the choice of such a reference point is, in fa
entirely arbitrary and a matter of convention as one int
duces the two integration constantstc andFc ~which will be
optimized later!. The choicev ref5v lso, wherev lso is the ve-
locity at the last stable orbit~lso!, is technically and physi-
cally natural as it is the value where the integrand vanis
@because ofE8(v)#. The definition~and properties! of our
approximants do not depend on this choice and the read
free to use instead his/her favorite reference point. On
other hand, what is not a matter of convention is that, in
absence of information about the coalescence process
shall also usev lso to define the time when the inspiral wav
form shuts off.

The numerical value ofv lso in the case of a test mas
orbiting a black hole~i.e. the limiting caseh→0) is 1/A6. In
the case of binaries of comparable masses (hÞ0) v lso is the
value of v where E8(v) vanishes. We will discuss below
ways of estimatingv lso(h). Knowledge ofv lso ~considered
now has a physical quantity affecting the signal and not a
simple reference point! is important in gleaning astrophysica
information since the inspiral wave form would shut off
that point and the coalescence wave form, whose shape
pends on equation of state of stars, etc., would begin. On
the questions we address below is whether~as had been sug
gested@13#! knowledge ofv lso(h) is crucial for getting ac-
curate inspiraling wave templates.

To warm up, let us recall that in the ‘‘Newtonian’’ ap
proximation~i.e. when using the quadrupole formula for th
gravitational wave emission! one has

EN~v !52
1

2
hv2, FN5

32

5
h2v10, ~2.7!

so that the above formulas reduce~after redefining the con
stants of integration or, equivalently, formally settingv lso
5`) to

t5tc2
5

256
mh21v28, F5Fc2

1

32
h21v25. ~2.8!
e
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The explicit Newtonian phasing formula is obtained
eliminatingv and given by

FN~ t !5Fc2S tc2t

5t D 5/8

where t[h3/5m ~ ‘‘chirp time scale’’!. ~2.9!

The corresponding Newtonian gravitational wave amp
tude is~for some constantC)

aN
GW~v !5Cv2, ~2.10!

so that the explicit Newtonian templates read

hN~ t !5C8~ tc2t !21/4cosF2Fc22S tc2t

5t D 5/8G . ~2.11!

The crucial issue for working beyond the Newtonian a
proximation is the availability of sufficiently accurate repr
sentations for the two functionsE8(v) andF(v). In the as-
trophysically interesting case of two comparable mas
orbiting around each other neither of the functionsE(v) or
F(v) is known exactly and thus one must rely on a po
Newtonian expansion for both these quantities. The ques
is how accurate should our knowledge of the ‘‘energy fun
tion’’ E(v) and the ‘‘flux function’’ F(v) be so that we have
only an acceptable reduction in the event rate and a toler
bias in the estimation of parameters. Given some appr
mants of the energy and flux functions~as functions ofv),
say EA(v), FA(v), and given some fiducial velocity@28#
v lso

A , we shall define a corresponding approximate templa

hA5hA~ t;C,tc ,Fc ,m,h! ~2.12!

by the following parametric representation in terms ofv:

hA~v !5Cv2 cos 2FA~v !, ~2.13!

t~v !5tc1mE
v

v lso
A

dv
EA8 ~v !

FA~v !
, ~2.14!

FA~v !5Fc1E
v

v lso
A

dvv3
EA8 ~v !

FA~v !
. ~2.15!

To compute explicitly hA(t) we numerically invert Eq.
~2.14! to getv5VA(t) and substitute the result in the oth
equations:hA(t)5CVA

2(t) cos@2FA„VA(t)…#. Note that we
use the Newtonian approximation for the amplitude as
function of v. We could use a more refined approximatio
such as an effective~main Fourier mode! scalar amplitude
aA

GW(v)}V21 FA
1/2}v23 FA

1/2(v). However, our main pur-
pose here being to study the influence of the choice of be
approximants to the phase evolution on the quality of
overlaps, it is conceptually cleaner to stick to one comm
approximation for the amplitude~considered as a function o
our principal independent variablev).

The standard approximants forE(v) andF(v) are simply
to use their successive Taylor approximants, Eqs.~1.2!,
~1.3!. Our strategy for constructing new approximants
E(v) andF(v) is going to be two pronged. On the one han
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57 889IMPROVED FILTERS FOR GRAVITATIONAL WAVES . . .
using the knowledge of these functions in the test-mass l
and general theoretical information about their mathemat
structure we shall motivate the use of representations
E(v) and F(v) based on other, supposedly more ba
energy-type and flux-type functions, saye(v) and f (v). On
the other hand, we shall construct Pade´-type approximants,
sayePn

, f Pn
, for the ‘‘basic’’ functionse(v), f (v), instead of

straightforward Taylor approximants. We shall then comp
the performance of the various phasing formulas defined
inserting in Eqs. ~2.13!–~2.15! either the standard
EA

old5ETn
, FA

old5FTn
, Eqs.~1.2!, ~1.3!, or the new, two-stage

approximants EA
new5E@ePn

#, FA
new5F@ePn

, f Pn
#. @In all

cases, the approximant of the derivativeEA8 (v) is just
d EA(v)/dv.#

III. ENERGY FUNCTION

Let us motivate the introduction of a new energy functi
e(v) as a more basic object, hopefully better behaved t
the total relativistic mass-energyEtot , Eq.~2.4!, of the binary
system. For this, let us consider the limitm2 /m1→0. In this
test body limit, i.e. a test particlem2 moving in the back-
ground of a Schwarzschild black hole of massm1, the total
conserved mass-energy of the binary system reads

Etot5m11E25m12kmp2
m , ~3.1!

wherekm is the time-translation Killing vector, andp2
m the

4-momentum of the test mass.~The quantityE2[2kmp2
m is

the well-known conserved relativistic energy of a test p
ticle moving in a stationary background.! At infinity km

5p1
m/m1, so that the formal expression ofEtot is Etot5m1

2(p1•p2)/m1. This expression is clearly very asymmetric
the labels 1 and 2 and has bad analytical properties a
function ofm1. Both problems are cured by working instea
with the standard Mandelstam variables5Etot

2 52(p1

1p2)25m1
21m2

222(p1•p2). Further, it is known that, in
quantum two-body problems, the symmetric quantity

e[
s2m1

22m2
2

2m1m2
[

Etot
2 2m1

22m2
2

2m1m2
~3.2!

is the best energy function to consider when trying to exte
one-body-in-external-field results to two-body results@29#.
In the limit m2!m1 the quantity e reduces simply toe
52(p1•p2)/m1m25E2 /m21O(h).

In the case of a test mass in circular orbit around
Schwarzschild black hole the explicit expression of the qu
tity e in terms of the invariant argumentx5v2[(mV)2/3,
Eq. ~2.3!, is

e5
122x

A123x
. ~3.3!

The explicit test-mass result~3.3! suggests that the~un-
known! exact two-body functione(x) will have also some
;(x2x0)21/2 singularity in the complexx plane. This led us
finally to consider, instead of the functione, its square or,
equivalently, the new energy function
it
al
of
c

e
y

n

-

a

d

a
-

e~x![e221[S Etot
2 2m1

22m2
2

2m1m2
D 2

21. ~3.4!

Note that we assume here that the total instantaneous rel
istic energy of a binary system~in the center of mass frame!
can be defined as a time-symmetric functional of positio
and velocities@so thatE(v) depends onv only throughx

[v2#, as the quantityẼeven discussed in Sec. VII of Ref
@30#. It remains, however, unclear whether such a quantit
well defined at very high post-Newtonian orders and whet
it is then related to the gravitational wave flux by the sta
dard balance equation.

Summarizing, our proposal is to use as basic~symmetric!
energy function the quantitye(x), Eq. ~3.4!, instead of
E(x)[(Etot2m12m2)/(m11m2). Given any~approximate
or fiducially ‘‘exact’’! functione(x), we shall then define the
corresponding functionE(x) ~with x[v2) entering the phas-
ing formulas~2.13!–~2.15! by solving Eq.~3.4! in terms of
Etot[(m11m2)(11E). Explicitly, this gives

E~x!5$112h@A11e~x!21#%1/221. ~3.5!

The associatedv derivative entering the phasing formu
reads

E8~v !52v
dE~x!

dx U
x5v2

5
vh

@11E~x!#A11e~x!

de~x!

dx U
x5v2

.

~3.6!

Having defined our new, basic energy functione(x), it re-
mains to define the approximants ofe(x) that we propose to
use, when one knows only the Taylor expansion ofE(x). For
guidance, let us note that by inserting Eq.~3.3! into Eq.~3.4!
one gets the following exact expression for the test-m
limit of the functione(x):

e~x;h50!52x
124x

123x

52x~12x23x229x32•••23n21xn2••• !.

~3.7!

The generalization of the expansion, Eq.~3.7!, to nonzero
values ofh is only known to second post-Newtonian~2PN!
accuracy. Using Eq.~4.25! of Ref. @7#, that is,

E2PN~x!52
1

2
hxF12

1

12
~91h!x2

1

8S 27219h1
h2

3 D x2G ,
~3.8!

we compute the 2PN expansion of the functione(x) for a
finite h:

e2PN~x;h!52xF12S 11
h

3 D x2S 32
35

12
h D x2G . ~3.9!

The basic idea behind our proposal is that on the ground
mathematical continuity@31# between the caseh→0 and the
case of finiteh one can plausibly expect the exact functio
e(x) to be meromorphically extendable in at least part of
complex plane and to admit a simple pole singularity on
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real axis}(x2xpole)
21 as the nearest singularity in the com

plex x plane. We do not know the location of this singulari
when hÞ0, but Padéapproximantsare excellent tools for
giving accurate representations of functions having such p
singularities. For example, if we knew only the 2PN-accur
@i.e. O(v4)# expansion of the test-mass energy function~6!,
namely e2PN(x;h50)52x(12x23x2), its corresponding
v4-accurate diagonal Pade´ approximant would be uniquely
defined~see Appendix A! as

eP4
~x;h50!52x

124x

123x
, ~3.10!

which coincides with theexactresult, Eq.~3.7!. Having re-
constructed the exact functione(x), we have also recon
structed, using only the information contained in the 2P
accurate expansion, the existence and location of a last s
orbit. Indeed, using Eqs.~3.6! and ~3.10! we find

EP4
8 ~v !52hv

126v2

~123v2!3/2
, ~3.11!

which is the exact test mass expression exhibiting a
stable orbit atv lso51/A6. In Table I we have compared a
different post-Newtonian orders thexlso[v2

lso predicted by
the standard post-Newtonian series and the Pade´ approxima-
tion to the same.@In the standard post-Newtonian case w
defined the lso as the location of the minimum of success
Taylor approximants of the functionE(n)v.#

It is important to note that our assumption of structu
stability betweene(x;h50) and e(x;h) with 0,h< 1

4 is
internally consistent in the sense that the coefficients ox
and x2 in the square brackets of Eq.~3.9! fractionally
change, whenh is turned on, only by rather small amount
h/3< 1

12 .8.3% and 35h/36<35/144.24.3%, respectively.
This contrasts with other attempts to considerh as a pertur-
bation parameter, such as Ref.@32#. Indeed, in the quantities
considered in the latter work several of the 2PN terms h
coefficients that vary by very large fractional amounts ash is
turned on: some examples being 12129h, 2125h12h2,
4141h18h2 in Eqs.~2.2! of the second reference in@32#.
Moreover, the fact that many of the coefficients in their E
~2.2! increasewhen h is turned on~like the ones quoted
above! is not a good sign for the reliability of their approac
as it means, roughly, that the radius of convergence of
particular series they consider tends todecreaseas h is
turned on. We shall attempt below to further test the robu
ness of our proposal.

TABLE I. Location of the last stable circular orbit determine
by the T- and P-approximants in the test mass case. T
P-approximants predict the exact location at ordersv4 and beyond.
At order v2 the last stable orbit is not defined byP-approximants.

n xlso
Tn/xlso

X xlso
Pn/xlso

X

xlso
X 50.1667

2 3.0000 —
4 1.4415 1.0000
6 1.1705 1.0000
le
e

-
ble

st

e
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e

.

e
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In summary, our proposal is the following: Given som
usual Taylor approximant to the normal energy functio
ET2n

52 1
2 hx(11E1x1E2x21•••1Enxn), one first com-

putes the corresponding Taylor approximant for thee func-
tion @33#, say

eT2n
52x(

k50

n

akx
k, ~3.12!

in which the only known coefficients are

a051, a15212
h

3
, a25231

35h

12
. ~3.13!

Then, one defines the improved approximant correspond
to Eq. ~3.12! by taking the diagonal (Pm

m , if n52m) or
subdiagonal (Pm11

m , if n52m11) Pade´ approximant of
2x21 eT2n

(x):

eP2n
~x![2xPm1e

m F (
k50

n

akx
kG , ~3.14!

wheree50 or 1 depending on whethern[2m1e is even or
odd. For completeness, we recall the definition and ba
properties of Pade´ approximants in Appendix A. Let us only
mention here that thePm1e

m approximants are convenientl
obtained as a continued fraction. For instance, the Pade´ ap-
proximant of the 2PN-approximateeT4

(x)52x(a01a1x

1a2x2) is

eP4
~x!5

2xc0

11
c1x

11c2x

5
2c0x~11c2x!

11~c11c2!x
. ~3.15!

By demanding that this agree witheT4
to orderv4 we can

relate thecn’s in the above equation to thean’s in Eq. ~3.13!:

c05a0 , c152
a1

a0
, and c252

a2

a1
1

a1

a0
. ~3.16!

Explicitly, this gives

c051, c1511
h

3
,

c252c12

32
35

12
h

11
1

3
h

52

42
9

4
h1

1

9
h2

11
1

3
h

, ~3.17!

so that

eP4
~x!52x

11
1

3
h2S 42

9

4
h1

1

9
h2D x

11
1

3
h2S 32

35

12
h D x

. ~3.18!

Given a continued fraction approximantePn
(x) of the trun-

cated Taylor serieseTn
of the energy functione(x) the cor-

respondingE(x) andE8(x) functions are obtained using
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EPn
~x!5@112h„A11ePn

~x!21…#1/221, ~3.19!

EPn
8 ~v !52v

dEPn
~x!

dx
U

x5v2

5
vh

@11EPn
~x!#A11ePn

~x!

dePn
~x!

dx
U

x5v2

.

~3.20!

Thus, for instance,

ÊP4
8 ~v ![

2EP4
8 ~v !

hv

5
c0@112c2v21~c1c21c2

2!v4#

@11~c11c2!v2#2@11EP4
~v2!#A11eP4

~v2!
,

~3.21!

whereEPn
is given by Eq.~3.19!. The careted notation in

troduced on the left-hand side of Eq.~3.21! will again be
used below and indicates that one is dividing some func
of v by its Newtonian approximation: e.g.Ê8(v)
[E8(v)/EN8 (v) where, from Eq.~2.7!, EN8 (v)52h v.

Having argued thateP4
(x), Eq. ~3.18!, and the corre-

spondingEP4
(x) defined by Eq.~3.19! are better estimates o

the finite-mass energy functions than their straightforw
post-Newtonian approximations, Eqs.~3.8!, ~3.9!, we can use
our results so far to estimate both the location of the
unstable circular orbit~light ring! and that of the last stabl
circular orbit. The functionseP4

(v), ÊP4
8 (v) are plotted in

Fig. 2 together witheT4
(v) and ÊT4

8 (v), both sets forh

51/4, and compared with the exact functionse(v) and
Ê8(v) in the h50 ~i.e. test mass! case. We see that theh
51/4 P- and T-approximants are smooth deformations
their test-mass limits. Note that the variablex[v2 is, in the
limit h→0, equal tom/r in Schwarzschild coordinates an
can be used as a smooth radial coordinate. If we wished
could also introduce the functionJtot(x), giving thex varia-
tion of the total angular momentum. It is indeed related
the total energyEtot(x) by the general identity~for circular
orbits! dEtot5VdJtot where the circular frequency is give
by mV5v35x3/2. The consideration~even without knowing
its precise analytical form! of the effective potential for gen
eral ~noncircular! orbits Etot5Etot(r ,Jtot) in terms of any
smooth radial-type variabler measuring the distance be
tween the two bodies allows one to see~by smooth deforma-
tion from theh50 case! that the minimum ofEtot(x) @which
necessarily coincides with the minimum ofJtot(x)# defines
the last stable circular orbit. Indeed, it is the confluence
the one-parameter sequence ofminimaof Etot(r ,Jtot) consid-
ered as a function ofr for fixed Jtot ~stable circular orbits!
with the one-parameter sequence ofmaximaof Etot(r ,Jtot)
~unstable circular orbits!. Note also, from Eq.~3.20!, that the
last stable orbit@minimum of E(x)# necessarily coincides
with the minimum of the functione(x). As for the last un-
stable circular orbit it is clearly defined by the square-ro
n

d

t

f

e

o

f

t

singularity }(x2xpole)
21/2 of E(x), corresponding to a

simple pole (x2xpole)
21 in e(x). Applying these genera

considerations to our specific 2PN-Pade´ proposal~3.18! one
easily finds that we predict the following ‘‘locations’’~in the
invariantx variable! for both the light ring~corresponding to
r 53m for a test mass around a Schwarzschild black hol!,

xlight ring
P4 ~h!5xpole

P4 ~h!5
1

3

S 11
1

3
h D

S 12
35

36
h D , ~3.22!

and for the last~circular! stable orbit,

FIG. 2. Exact energy functions~a! e(v) and ~b! the Newton-

normalizedÊ8(v), in the test mass case andT- andP-approximants
in the comparable mass~with h51/4) case. Note that the compa
rable mass casesT-approximant andP-approximant, are smooth
deformations of the test mass function.
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xlso
P4~h!5

1

6

S 11
1

3
h D

S 12
35

36
h DF 22

S 11
1

3
h D

A12
9

16
h1

1

36
h2
G .

~3.23!

We recall thatx is invariantly defined in terms of the
orbital circular frequencyV52p f orb throughx5(m V)2/3,
so that the gravitational wave frequency~twice the orbital
frequency! reads

f GW52 f orb5
x3/2

pm
54397.2~6x!3/2

m(

m
Hz. ~3.24!

In the equal mass case (h51/4) Eqs.~3.22!, ~3.23! yield

3xpole
P4 ( 1

4 )5156/109.1.4312, 6xlso
P4( 1

4 ).1.1916, and there
fore f lso

GW52 f lso
orb55719.4(m( /m) Hz. In particular, for a

(1.4m( ,1.4m() neutron star system, we predictf lso
GW

52 f lso
orb52042.6 Hz, and for a (10M (, 10M () black hole

system we predictf lso52 f orb5286.0 Hz. Note that our esti
mate of the~invariant! location of the last stable orbit i
significantly different from that of Ref.@32#, which esti-
mates, for instance f lso

GW52 f lso
orb51420 Hz for a

(1.4m( ,1.4m() system.@Actually, we read in the figures o
Ref. @32# a value (m flso

orb)KWW.0.00963 which correspond
to 6xlso

KWW.0.925 and f lso
orb.698 Hz ~instead of 710 Hz

marked on their figures! for the (1.4m( ,1.4m() case.#
Qualitatively ourh dependence is different because we fi
that xlso

P4(h) increases withh @6xlso
P4(h).1 and increasing#

while Ref. @32# estimates a 6xlso
KWW(h),1, decreasing with

h. This is an important physical difference as it means, if
are right, that binary systems of comparable masses can
closer, orbit faster and emit more gravitational waves bef
plunging in than estimated in Ref.@32#. As said above, we
think that the ‘‘hybrid’’ approximation used in Ref.@32# is
not reliable, notably because of the strongh dependence
~and consequent increase! of the coefficients in their expan
sion ~see also the related criticism of Ref.@34#!. We think
that our approach@in which the expansion coefficients t
e(x) are less strongly modified byh and where the crucia
coefficienta2 decreases withh which means a larger radiu
of convergence# is more likely to indicate the correct trend
We have tried in several ways to test the robustness of
conclusions under the addition of higher post-Newton
corrections to Eq.~3.9!. We think, however, that such a
tempts are not really conclusive because one does not k
in advance what is the ‘‘plausible’’ range of values of 3P
and higherh-dependent corrections.@We note in this respec
that the range considered in Ref.@32#, ua i umax5ubiumax510, is
clearly too small as it means, for instance, afractional
change in the coefficient of (m/r )3 whenh changes from 0
to 1/4 ofhua3u/16,16%, while theknownfractional change
in the coefficient of (m/r )2 is alreadyh 29/12.60%.# In
fact, the relative change@the ratio ak(1/4)/ak(0) when h
changes from 0 to 1/4# of the successive coefficients in an
power series, such as theak(h) in Eq. ~3.12!, is expected to
increase~or decrease! exponentially with the orderk due to
anh-dependent shift of the convergence radius. For insta
in our case if we write the 3PN coefficient asa3(h)
e
get
e

ur
n

ow

e,

529(11k3 h) to model the 3PNh dependence it is no
meaningful to considera priori that k3 can take any values
in the range 6k2.61 @where we introduceda2(h)
523(11k2 h) with k25235/36#. As the negative value
of k2 has indicated an increase of the radius of converge
with h @xpole

P4 (h)5a1(h)/a2(h)5 1
3 (11k1 h)/(11k2 h)

with k151/3# we would rather expect a value ofk3 such that
a3 /a2;a2 /a1, i.e. 11k3 h;(11k2 h)2/(11k1 h) so
that k3;21.9. A value ofk3 very different from this esti-
mate @i.e. a value ofa3(1/4) very different from24.8#
would mean that the coefficienta2(1/4) was accidentally
smaller than normal@in which case our estimates~3.22!,
~3.23! would not be reliable#. In conclusion, we think that,
given the presently available information, our estimates
more internally consistent than previous ones~which include
the relevant works quoted in Ref.@32#!, but that, ifa2(h) is
only ‘‘accidentally’’ decreased by turning onh, they might
be off the mark. It will be possible to make more preci
statements on the reliability of Eq.~3.23! only when the 3PN
equations of motion of a binary system are derived~or when
numerical calculations can reliably locate the last stable
bit!. Anyway, we shall see that a knowledge of the lso is n
so crucial for extracting the inspiral wave form.@We shall
notwithstanding test below the robustness of our overall
proach under possible uncertainties in the locations
xpole(h) and xlso(h).# This is because,~a! interferometer
noise rises quadratically beyond a certain frequency; con
quently the noise level is pretty high before light binarie
such as neutron-star–neutron-star~NS-NS! and NS–black-
hole ~BH!, reach the LSO; only in the case of more mass
binaries consisting of black holes and/or supermassive s
with total mass in excess of 25M ( , in the case of initial
LIGO, and 60M ( , in the case of advanced LIGO, will th
frequency at the lso be in a region where the detector nois
low. In such cases it is important to know the location of t
lso accurately because it helps in appropriately truncating
inspiral wave form in search templates so that it would n
produce anticorrelation with the coalescence wave fo
which is itself not known, as of now, to any accuracy. In t
case of lighter mass binaries what is really needed is that
approximate energy function should match the exact on
frequencies where the detector noise is the least. This is
true for the flux function as we shall see in the next secti

IV. FLUX FUNCTION

Contrary to the case of the energy function where
could draw on a lot of theoretical information, we have le
generala priori information on the structure of the flux func
tion F(v). The exact gravitational wave luminosityF is not
known analytically. It has, however, been computed num
cally with good accuracy in the test particle limit@11,13# and
we shall use this in our study. In the test particle limit t
flux is also known analytically to a high order in perturbatio
theory; to orderv11 @11# we have

F~v;h50!5
32

5
h2v10F (

k50

11

Akv
k1~B6v61B8v81B9v9

1B10v
101B11v

11!lnvG , ~4.1!



fi

th
er

-

e
the

c
le
g
of
nal
t

e
e

f
ry
will
t

or-

re

a

e

le to

er
er
d-

ux

57 893IMPROVED FILTERS FOR GRAVITATIONAL WAVES . . .
where the various coefficientsAk and Bk can be read off
from @11#:

A051,

A150,

A2523.711309523809524,

A3512.56637061435917,

A4524.928461199294533,

A55238.29283545469344,

A65115.7317166756113,

A752101.5095959597416,

A852117.5043907226773,

A95719.1283422334299,

A10521216.906991317042,

A115958.934970119567,

B65216.3047619047619,

B8552.74308390022676,

B952204.8916808741229,

B105116.6398765941094,

B115473.6244781742307. ~4.2!

By contrast, in the comparable masses case only the
five Taylor approximants ofF(v;h) are known@6–10#. Ex-
plicitly, Bk(h)50 (k<5) and

A0~h!51,

A1~h!50,

A2~h!52
1247

336
2

35

12
h,

A3~h!54p,

A4~h!52
44711

9072
1

9271

504
h1

65

18
h2,

A5~h!52S 8191

672
1

535

24
h Dp. ~4.3!

There is, however, a bit of general information about
function F(v) which can be used to motivate the consid
ation of a transformed flux function, sayf (v), as a better
behaved object. Indeed, as pointed out in Ref.@2#, the func-
tion F(v;h50) has a simple pole at the light ring (r 53m,
i.e. x[v25 1

3 ). The origin of this pole is simple to under
stand physically in a flat spacetime analogue.@It is seen from
rst

e
-

Refs. @1# and @2# that the curved-spacetime effects~metric
coefficients, Green function! do not play an essential rol
and that the origin of the pole can be directly seen in
source terms, Eqs.~2.14! of Ref. @1#.# Let us consider two
~for simplicity identical! mass points, linked by a relativisti
~Nambu-Goto! string, orbiting around each other on a circ
~the string tensionT providing the centripetal force opposin
centrifugal effects!. One can easily find the exact solution
this problem and then estimate the linearized gravitatio
waves emitted by the system@35#. Let us keep fixed the res
massesm15m25m/2 and the radius of the orbitR and in-
crease the tensionT so that the particles’ velocitiesv tend to
the velocity of light. In this limit, one finds thatRT;p
5mv/A12v2/c2 and that the gravitational wave amplitud
h}RT1p;p. By taking a time derivative and squaring on
sees that, asv→c, the gravitational fluxF;V2 h2}p2 tends
to infinity like (12v2/c2)21. This shows that the finding o
Refs. @1,2# is quite general and that, in particular, it is ve
plausible that a binary system of comparable masses
have a simple pole inF(v) when the bodies tend to the ligh
ring orbit. We have seen above that the light ring orbit c
responds to a simple polexpole(h) in the new energy func-
tion e(x;h). Let us define the corresponding~invariant! ‘‘ve-
locity’’ vpole(h)[Axpole(h). This motivates the introduction
of the following ‘‘factored’’ flux function:

f ~v;h![S 12
v

vpole~h! DF~v;h!. ~4.4!

Note that multiplying by 12v/vpole rather than 1
2(v/vpole)

2 has the advantage of regularizing the structu
of the Taylor series off (v) in introducing a term linear inv
@which is absent in Eq.~4.1!#. Two further tricks will allow
us to construct well-converging approximants tof (v). First,
it is clear ~if we think of v as having the dimension of
velocity! that one should normalize the velocityv entering
the logarithms in Eq.~4.1! to some relevant velocity scal
v0. In the absence of further information the choicev0
5v lso(h) seems justified~the other basic choicev05vpole is
numerically less desirable asv will never exceedv lso and we
wish to minimize the effect of the logarithmic terms!. A
second idea, to reduce the problem to a series amenab
Padéing, is to factorize the logarithms by writing thef func-
tion in the form

f ~v;h!5
32

5
h2v10F11 ln

v
v lso~h!S (k

l kv
kD 1•••G

3F(
k

f k vkG . ~4.5!

The ellipses in Eq.~4.5! is meant to represent possible high
powers of ln (v/vlso). ~Such terms do not show up at ord
v11 whenh50 and will be also of no concern when consi
ering thehÞ0 results at orderv6.! The coefficientsf k are
functions ofv lso in general@36#.

Finally, we define our approximants to the factored fl
function f (v) as
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f Pn
~v;h![

32

5
h2v10F11 ln

v

v lso
Pn~h!

S (
k>6

l kv
kD

1•••GPm1e
m F (

k50

n

f kv
kG , ~4.6!

where v lso
Pn(h) denotes the lso velocity ([Axlso) for the

vn-accurate Pade´ approximant ofe(x), and wherePm1e
m de-

notes as before a diagonal or subdiagonal Pade´ approximant
with n[2m1e, e50 or 1. The corresponding approxima
of the flux F(v) is then defined as

FPn
~v;h![S 12

v

vpole
Pn ~h!

D 21

f Pn
~v;h!, ~4.7!

wherevpole
Pn (h) denotes the pole velocity defined by thevn

Padéapproximant ofe(x). For instance, from Eq.~3.22!

vpole
P4 ~h!5

1

A3S 11
1

3
h

12
35

36
h
D 1/2

. ~4.8!

Let us now see what this definition gives in practice.
terms of the original expansion coefficients ofF(v), Ak and
Bk ~considered for anyh) and of the fiducial velocityv0
[v lso, the coefficients appearing in the definition~4.6! read

l 65B6 ,

l 750,

l 85B82A2B6 ,

l 95B92A3B6 ,

l 105B102A2l 82A4B6 ,

l 115B112A2l 92A3l 82A5B6 . ~4.9!

We find ~remarkably?! that in the test particle limit the
O(v9) logarithmic term vanishes identically:l 9(h50)[0.
The other coefficients are numerically (h50, vpole51/A3,
v05v lso51/A6), f 051, f 1521.7320508075689, f 25
23.7113095238095, f 3518.994547272212, f 45
226.694053570105, f 55229.756490254383, f 6
5196.66395901720, f 752327.26305863109, f 8
511.063926928123, f 951188.0521512280, f 105
22884.9014287843, andf 1152823.3603070298. As for th
log factor in Eq.~4.6! we find that when it is not identically
1 ~i.e. whenn>6) it is always smaller than about 1.005 fo
v<v lso.0.40825 and much closer to 1 whenv&0.2. Al-
though it is unpleasant to have logarithms mixing with po
ers, they do not seem to introduce, in the present case~after
normalization tov lso and factorization!, a serious obstacle to
constructing good approximants tof (v).

Our primary aim in this work is to compare and contra
the convergence properties of the standard~‘‘Taylor’’ ! ap-
proximants to the phasing formula and its building bloc
-

t

E(v) and F(v) with the new approximants defined abov
~with their two-stage constructionE@eP# andF@ f P#). Let us
first discuss the case of the flux function which can be st
ied in detail in the limiting caseh→0. Indeed, in this case
one knows both the ‘‘exact’’~numerical! flux function @13#,
sayFX(v) and its post-Newtonian expansion up to orderv11

@11#. We can then compare directly the approach tow
FX(v), on the one hand, of the successive standard Ta
approximantsFTn

(v;h50) @obtained by keeping only the

Ak andBk with k<n in Eq. ~4.1!# and, on the other hand, o
the new approximantsFPn

(v;h50) defined by Eqs.~4.6!.
This comparison of convergence is illustrated in Fig. 3. W
have plotted there, for convenience, the ‘‘Newto
normalized’’ flux functions

F̂A~v ![
FA~v !

FN~v !
[

5

32
h22v210FA~v !. ~4.10!

FIG. 3. Newton-normalized gravitational wave luminosity in th
test particle limit:~a! T-approximants and~b! P-approximants.
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It is clear that theP-approximants converge to the exa
values much faster than the Taylor ones. The monotoni
of the convergence of theP-approximants is also striking
However, theP-approximants of the flux at certain orde
~notably v7 and v10) exhibit poles that happen to lie in th
region of integration:v low,v,v lso. Such P-approximants
are obviously a bad choice for the construction of templa
Nevertheless, this does not mean that one cannot cons
P-approximants at that order at all. Recall that in this stu
we have only considered diagonal and subdiagonal Pade´ ap-
proximants of typePm

m and Pm1e
m , respectively. It is per-

fectly legitimate to employ other types of Pade´ approximants
and in particular thesuperdiagonalPadé approximant of
type Pm

m1e . For instance, there is a pole in the region
interest in theP4

3-approximant of the flux while it turns ou
that theP3

4-approximant~which is the one we have used
this work instead ofP4

3) does not have a pole in the region
interest. Thus, if one wishes, one may trade off a spuri
zero, in the region of interest, in the denominator of t
function with a zero of the numerator, thereby removing
troublesome pole~see Appendix A for how this may be ac
complished via some simple properties of the Pade´ approxi-
mants!. For completeness we exhibit in Fig. 4 the success
P-approximants to the factored flux functionf (v;h50).

The other building blocks of the phasing formula, Eq
~2.13!–~2.15!, are the approximants to the functionE8(v)
5dE(v)/dv. As we have constructedEPn

(v) so that it co-

incides forn>4 with the exactEX(v) in the caseh50 it
would not be fair to compare it to the straightforwa
ETn

(v). We need, therefore, to consider the finite mass c

hÞ0. However, in this case, we only know few PN appro
mations and we do not know the exact result. We can
mally bypass this problem and have a first test of therobust-
nessof our construction by defining the following fiducia
‘‘exact’’ energy functioneX

k0(x):

eX
k0~x;h![2xF 12S 11

h

3 D x2

S 32
35

12
h D x2

123~12k0h!x
G .

~4.11!

The 2PN expansion ofeX
k0(x) coincides by construction with

that of the ‘‘real’’ e(x;h). The parameterk0 enters only 3PN
and higher order terms. Note thatk0 parametrizes an infinite
number of PN terms in a nonperturbative manner becau
determines the location of the pole singularity ofeX

k0 ,
namely

3xpole
k0 5

1

12k0h
. ~4.12!

If we believe our 2PN Pade´ estimate~3.22!, we would expect
that a good estimate of the ‘‘real’’k0 ~when consideringh
5 1

4 ) should be such that 12k0
P4/45(1235/144)/~111/12!,

i.e. k0
P45147/39.11.2051. To test formally the conver

gence of the sequence ofP-approximants away from the
region where we know by construction that it would co
verge very fast we shall consider a value ofk0 substantially
different from the Pade´-expected one, for instance simp
ty

s.
uct
y

f

s

e

e

.

se

r-

itk050 which says that the ‘‘exact’’ pole stays whenhÞ0 at
the test mass value 3x51 instead of our result abov

3xpole
P4 ( 1

4 ).1.4312. Working again with ‘‘Newton-normal
ized’’ functions, now

ÊA8 ~v ![
EA8 ~v !

EN8 ~v !
[2h21v21

dEA~v !

dv
, ~4.13!

we compare in Fig. 5 the convergence ofÊTn
8 (v) andÊPn

8 (v)

toward the fiducial ‘‘exact’’eX
k0(v) defined by Eq.~4.11! for

h5 1
4, k050. For completeness we exhibit also in Fig. 6 t

successiveP-approximants to the ‘‘basic’’ energy functio
eX

k0 .

FIG. 4. Newton-normalized factored gravitational wave lum
nosity in the test particle limit:~a! T-approximants and~b!
P-approximants.
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896 57DAMOUR, IYER, AND SATHYAPRAKASH
The convergence tests performed in this section h
shown at the visual level that theP-approximants behave
better than theT-ones. However, the real convergence cri
rion we are interested in is that defined by overlaps, to wh
we now turn.

V. AMBIGUITY FUNCTION

Central to our discussion is theambiguity functionwhich
is a measure of the overlap of two wave forms that m
differ from each other in not only their parameter values

FIG. 5. Newton-normalized (v-differentiated! energy functions
in the comparable mass case. We compare the convergence o
T-approximants and P-approximants. Observe that th
P-approximants converge much faster to the fiducial exact ene
than the standard approximants.

FIG. 6. Approximants to basic energy functionse(v) are com-
pared with the fiducial exact energy function. Convergence
P-approximants is apparent.
e

-
h

y
t

also in their shape. For instance, one of them could be a
post-Newtonian signal corresponding to nonspinning s
parametrized by masses of the two stars and the other ma
a second post-Newtonian inspiral wave form correspond
to spinning stars parametrized not only by the masses of
two stars but also by their spins. Let us therefore consi
two wave formsh(t;lk,fh) andg(t;mk,fg) wherefh and
fg denote the constant phases of the two wave forms,lk ,
k51, . . . ,nl , andmk , k51, . . . ,nm , are the dynamical pa
rameters of the signals andnl andnm are the corresponding
number of parameters. The scalar product of these two w
forms is defined in Fourier space by

^h,g&~t;lk ,mk![E
2`

` d f e2p i f t

Sn~ f !
h̃~ f ;lk,fh! g̃* ~ f ;mk,fg!

~5.1!

wheret is the lag of one of the wave forms relative to th
other; h̃( f ;lk,fh) and g̃( f ;mk,fg) denote the Fourier trans
forms @37# of h(t;lk,fh) andg(t;mk,fg), respectively, the
asterisk denotes complex conjugation andSn( f ) is the two-
sided noise power spectral density. The above scalar pro
is also the statistics of matched filtering~Wiener filter! which
is the strategy used in detecting inspiraling binary signa
Sn( f ) being a~positive! real, even function off the scalar
product ~5.1! defines a real bilinear form inh and g. We
introduce also the normihi[A^h,h&. The ambiguity func-
tion A is defined as the value of the normalized scalar pr
uct maximized over the lag parametert:

A~lk ,mk!5max
t,f

^h,g&
ihi igi , ~5.2!

where optimization over phases of the signal and the te
plate is symbolically indicated byf ~see Appendix B for
details!. Here lk can be thought of as the parameters o
signal whilemk those of a template. The signal to noise ra
~SNR! for detecting a noise contaminated version ofh(t)
with a Wiener filter built from g(t2t) reads SNR
5^h,g&/igi . Its maximum value is SNRmax5^h,h&/ihi5ihi
when the time-translatedg is perfectly matched to the signa
g(t2t)5h(t). ThereforeA(lk ,mk) is thereductionin SNR
obtained using a template that is not necessarily matche
the signal.

The dependences ofA(l,m) on bothl andm are impor-
tant in designing detection strategies. The dependence on
signal parametersl, given some template parametersm, al-
lows one to define an optimal way of paving the templa
parameter space. The region in the signal parameter spac
which a given template obtains SNRs larger than a cer
value @38# ~sometimes called theminimal match@39#! is the
span of that template@40# and the templates should be s
chosen that together they span the entire signal param
space of interest with the least overlap of one other’s spa
In our case, we are mainly interested in keeping the sig
parametersl fixed, and varying the template onesm. In
searching for a coalescing binary signal in the output o
detector one maximizes over a given bank of templates~i.e.
over a dense lattice ofm values!. Thus, the quantity of inter-
est is the maximum of the ambiguity function over the ent

the

y

f
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parameter space of templates. This maximum, in the cas
identical signals, occurs when the parameters of the temp
and the signal are equal and is equal to 1. However, in rea
the template wave forms are not identical to the fully gene
relativistic signal and hence the maximum overlap will
general be less than 1~Schwarz inequality! and would occur
not when the parameters are matched but when they are
matched:

max
mk

A<1. ~5.3!

If the template wave forms are not ‘‘close’’ to signal wav
forms, then it is reasonable to expect that the maximum
curs whenulk2mku is fractionally rather large. In this cas
there is not only a substantial reduction in the maxim
SNR that can be achieved by using such a bank of templ
but there would also be a large systematic bias in the m
surement of parameters. Using the terminology of the In
duction such template wave forms would be neither effec
nor faithful. For detectionpurposes we wish to construc
effectualtemplates, i.e. templates having a large overlap a
maximization overm. For parameter estimationwe further
need to constructfaithful templates which have large ove
laps whenm.l. A practical ~nonrigorous! criterion for
faithfulness is that the ‘‘diagonal’’ ambiguity functio
A~l,l! be close to 1.

Reduction in the overlap of template wave forms and t
signals has an effect on the number of detectable event
equivalently, loss in the detection probability of a signal o
given strength. For a given signal-to-noise ratio, the dista
up to which a detector can detect depends primarily on
amplitudeh0 of the wave. Unavailability of a copy of the
true signal means that the effective strength of the sig
reduces fromh0 to Ah0 and hence the span of a detect
reduces by the factorA. The number of events a detector c
detect being proportional to the cube of the distance, a
duction in the overlap by a factorA means a drop in the
number of detectable events, as compared to the case w
a knowledge of the true wave form was available, by a fac
A3. For instance, a 10%~20%! loss in the overlap would
mean a 27%~50%! loss in the number of events@39#. The
aim of PN calculations is to make this overlap as close t
as possible. If we demand that we should be able to de
with PN templates about 90%~99%! of the signals that we
would detect had we known the general relativistic sign
then we should have the overlap to be no less than a
0.965~0.997!.

As a model for noise above the seismic cutofff s we use
the expected noise power spectral density in the initial LIG
interferometer@41#:

Sn~ f !5
S0

a13Fa12S f

f 0
D 2

1S f

f 0
D 24G , f . f s ~5.4!

whereS0 , a and f 0 are constants that characterize the det
tor sensitivity, effective bandwidth and the frequency
which the detector noise is the lowest, respectively. In
case of initial LIGOa52, f s540 Hz andf 05200 Hz. Be-
cause of the fact that the noise is essentially infinite be
the seismic cutofff s and since we terminate the templa
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wave forms when the velocity reaches that of the last sta
orbit, the overlap integral~5.2! reduces to

A~lk ,mk!

5ihi21igi21

3max
t,f

F2E
f s

f lsod f e2p i f t

Sn~ f !
h̃~ f ;lk,fh! g̃* ~ f ;mk,fg!G ,

~5.5!

wheref lso is the gravitational wave frequency correspondi
to the last stable orbit. In order to compute the maximu
overlap we proceed in the following manner. The evoluti
of phase as a function of time is obtained by inverting n
merically v in terms of t from Eq. ~2.14! and inserting the
result in Eq.~2.15! and then Eq.~2.13!. Though the iterative
procedure in invertingv in terms oft is rather computation-
ally intensive, we need to employ it since the inaccurac
introduced by the stationary phase approximation in comp
ing the Fourier transform of the wave form increase with t
order of approximation especially in the case of NS-BH a
BH-BH binaries. In Table II, we give a measure of the ina
curacies introduced by the stationary phase approximatio
various post-Newtonian orders by computing the integra
Eq. ~5.5! with h̃( f ) being the fast Fourier transform an
g̃( f ) being the stationary phase approximation of the sa
wave form. ~The three casesA0 , B0 and C0 are defined
below.! The worsened performance of the stationary ph
approximation for massive systems is clearly linked to
fact that such systems emit fewer cycles in the effect
bandwidth centered nearf 0. Indeed, from our estimate
above the gravitational wave signal from a (10M (,10M ()
system shuts off atf lso

GW.286 Hz, which is not very much
higher thanf 0, and one should remember that the orbi
evolution gets faster as one nears the lso so that fewer cy
are spent toward higher frequenciesf < f lso

GW.

VI. RESULTS AND DISCUSSION

Having in hand the ambiguity function to measure t
closeness of two wave forms@42# we can use it to pursue a
a quantitative level the analysis of the convergence of

TABLE II. Overlap integrals of a test mass wave form who
Fourier transform is computed using stationary phase approxi
tion with the same wave form but whose Fourier transform is co
puted using numerical fast Fourier transform.n stands for the order
of the Taylor approximant withX denoting the exact wave form.

n A 0 B0 C0

^Tn
0 ,Tn

0& ^Tn
0 ,Tn

0& ^Tn
0 ,Tn

0&

0 1.000 0.995 0.967
2 0.999 0.994 0.970
4 0.999 0.990 0.955
6 0.999 0.986 0.944
8 0.999 0.988 0.945
10 0.999 0.987 0.940
X 0.999 0.978 0.918
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898 57DAMOUR, IYER, AND SATHYAPRAKASH
sequence of approximants defined above.
Let us first consider the wave forms defined in the form

test mass limit where one keeps theh factors in front of
E(v) andF(v) but neglects theh dependence in the Taylo
coefficients of Ê8(v) and F̂(v). Explicitly we mean the
wave forms defined by eliminating~numerically! v between

hA~v !5Cv2 cos 2FA~v !, ~6.1!

t~v !5tc2
5

32
h21mE

v

v lso
dvv29

ÊA8 ~v;h50!

F̂A~v;h50!
, ~6.2!

FA~v !5Fc2
5

32
h21E

v

v lso
dvv26

ÊA8 ~v;h50!

F̂A~v;h50!
, ~6.3!

in which v lso5v lso(h50)51/A6. Note that the main pur
pose of the overlap computations made for this formal
mass limit is tocomparequantitatively the convergence o
theP-approximants to that of theT-ones. One should keep i
mind that when studying below in the formal test mass lim
(1.4m( ,1.4m() or (10m( ,10m() systems~for which h
takes its largest value! the absolute values of the overlaps a
not reliable, though one assumes that the lessons lea
from the P/T comparison are. The absolute values of t
overlaps for the (1.4m( ,10m() case are probably more re
liable, but this is not clear ash.0.1077 is then only a facto
2.32 smaller thanhmax50.25. This being said we wish t
compare semi-maximized overlaps that we can denote
simplicity as

^Tn
0~m1 ,m2!,X0~m1 ,m2!&

[maxtc ,F
c
A ,F

c
X^ĥn

T0
~ tc,Fc

A ,m1 ,m2!,ĥX0
~0,Fc

X ,m1,m2!&,

~6.4!

^Pn
0~m1 ,m2!,X0~m1 ,m2!&

[maxtc ,F
c
A ,F

c
X^ĥn

P0
~ tc,Fc

A ,m1 ,m2!,ĥX0
~0,Fc

X ,m1 ,m2!&.

~6.5!

Here the superscript 0 onT, P or X denotes the above de
fined formalh50 limit of Taylor, Pade´-type or exact wave
forms, respectively@i.e. A5T, P or X in Eqs. ~6.1!–~6.3!#.
Here one considers only the same values for the two dyna
cal parameters of those signals@i.e. the explicitm and h
appearing in Eqs.~6.1!–~6.3!, here expressed in terms ofm1
andm2 in order to psychologically minimize the formal in
consistency of settingh50 in part of the formula and keep
ing it elsewhere# and maximize over the kinematical onestc

A ,
Fc

A , tc
X , Fc

X . To maximize over the reference times, it
sufficient ~as indicated above! to fix tc

X50 and maximize
over tc

A5tc ~5t, the time lag!. Maximizing over the refer-
ence phases is more subtle as the overlap dependsseparately
on Fc

A and Fc
X and not only on their difference. There i

however, a computationally nonintensive way to do it whi
is based on a conceptually simple geometrical formulation
the problem~see Appendix B!.
l

st

t

ed
e
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Note that in Eqs.~6.4! the approximate template param
eters are not optimized, but are taken to be equal to tha
the exact signal. In other words we compare the faithfuln
of the various approximants together with their converge
properties. The results are given in Table III, forn54211
@43# as well as for the Newtonian approximants for the p
pose of comparison. The overlaps quoted are theminimax
overlaps, Eq.~B12!, together with the correspondingbest
overlaps, Eq.~B11!, in parentheses below the minimax ove
lap. ~The P-approximantP4

3 corresponding ton57 has a
singularity in the region of interest and hence we have u
the approximantP3

4 . TheP5
5-approximant too has a pole an

we have not computed the overlaps in this case though if
desires one can compute otherP-approximants, such asP4

6

or P6
4, at this order.! We consider three prototype cases, s

case A0@(1.4m(,1.4m()#, case B0@(1.4m( ,10m()#, and
caseC0@(10m( ,10m()#. We added an index zero to reca
the fact thath50 has been used inÊ8 and F̂. ~One should
keep in mind the warning above that the numerical res
for caseB0 are physically more reliable, whileA0 andC0 are
just mathematical ways of testing the convergence.!

We performed another convergence test~still in the for-
mal h→0 limit! of a different nature. It is known in math
ematics that one does not need to know in advance the l
of a sequence to test its convergence. One can instead
Cauchy’s criterion which says~roughly! that the sequence
converges if, given some distance functiond(h,g),
d(hn ,hm)→0, as bothn and m get large. In our case we
have a distance function@44# defined by the ambiguity func
tion and we can compare the Cauchy convergence of thT
and P approximants. Some results are given in Table
where one exhibits the semi-maximized@in the sense of Eqs
~6.4!# best overlaps ^Tn

0 ,Tn11
0 & versus ^Pn

0 ,Pn11
0 &, for n

54, . . . ,11, and thethree prototype casesA0, B0, C0. ~As in

TABLE III. Faithfulnessof the T- and P-approximants in the
test mass case. Values quoted are theminimax overlaps@cf. Eq.
~B12!# together with the best possible overlaps@cf. Eq. ~B11!# in
parentheses.

n A 0 B0 C0

^Tn
0 ,X0& ^Pn

0 ,X0& ^Tn
0 ,X0& ^Pn

0 ,X0& ^Tn
0 ,X0& ^Pn

0 ,X0&

4 0.893 0.868 0.713 0.833 0.760 0.964
~0.894! ~0.868! ~0.720! ~0.838! ~0.795! ~0.984!

5 0.545 0.979 0.338 0.973 0.496 0.991
~0.545! ~0.980! ~0.343! ~0.974! ~0.514! ~0.998!

6 0.971 0.996 0.965 0.988 0.962 0.994
~0.972! ~0.996! ~0.968! ~0.990! ~0.968! ~0.999!

7 0.989 0.997 0.858 0.986 0.891 0.993
~0.989! ~0.998! ~0.862! ~0.988! ~0.924! ~0.999!

8 0.972 0.998 0.711 0.989 0.854 0.992
~0.972! ~0.999! ~0.717! ~0.992! ~0.872! ~0.999!

9 0.995 0.996 0.928 0.992 0.933 0.994
~0.995! ~0.996! ~0.933! ~0.994! ~0.957! ~0.999!

10 0.988 — 0.849 — 0.903 —
~0.988! ~—! ~0.854! ~—! ~0.937! ~—!

11 0.988 1.000 0.858 1.000 0.908 1.000
~0.989! ~1.000! ~0.862! ~1.000! ~0.940! ~1.000!
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TABLE IV. Cauchy convergence of theT- andP-approximants in the test mass case. Values quoted
the best possible overlaps.

n A 0 B0 C0

^Tn
0 ,Tn11

0 & ^Pn
0 ,Pn11

0 & ^Tn
0 ,Tn11

0 & ^Pn
0 ,Pn11

0 & ^Tn
0 ,Tn11

0 & ^Pn
0 ,Pn11

0 &

4 0.496 0.918 0.374 0.914 0.653 0.992
5 0.528 0.984 0.330 0.986 0.541 0.999
6 0.953 1.000 0.770 1.000 0.957 1.000
7 0.988 0.999 0.913 0.997 0.982 0.998
8 0.985 0.999 0.833 0.999 0.945 0.999
9 0.997 0.999 0.965 0.994 0.985 0.999
10 1.000 — 0.997 — 0.999 —
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Table III where appropriate we have used t
P3

4-approximant instead ofP4
3 . Since theP5

5 approximant
has a pole in the region of interest, the entries correspon
to n510 are blank and the entries corresponding ton59 are
the overlapŝ P9

0 ,P11
0 &.!

The last two tables show very clearly that th
P-approximants converge much better than theT-ones and
that they provide a much more faithful representation of
signal. To measure theeffectualnessof our approximants~in
the technical sense defined above! and study the biases the
can introduce, we also performed numerical calculations
which we maximized over all parameters, say

^^Tn
0 ,X0&&~m1 ,m2![maxm

1
A ,m

2
A^Tn

0~m1
A ,m2

A!,X0~m1 ,m2!&,
~6.6!

^^Pn
0 ,X0&&~m1 ,m2![maxm

1
A ,m

2
A^Pn

0~m1
A ,m2

A!,X0~m1 ,m2!&,
~6.7!

while keeping track of the parameter valuesm1
A ,m2

A which,
given the signal parametersm1 ,m2, maximize the overlaps
The results are presented in Table V for the three protot
casesA0, B0, C0 and for the most important values~for the
near future! of the order of approximation:n54, 5 and 6. In
this case the overlaps are theminimaxoverlaps.

Our test mass results sum up the general behavior of
different approximants pretty well. First let us note thateven
at O(v11) T-approximants do not achieve the requisite ov
lap of 0.965except in the case of light binaries. This
consistent with the concern often expressed in the litera
about the need for higher order post-Newtonian wave for
ng

e

in

e

he

-

re
s.

In our view the most worrying aspect of theT-approximant
is not that it does not obtain a high overlap but that t
behavior of the approximant is oscillatory in nature. For
stance, theO(v6) T-wave form achieves an overlap, with th
exact wave form, of about 0.96 which reduces atO(v8) to as
low as 0.71 for systemB0 and 0.85 for systemC0 ~though
for systemA0 it maintains a level of 0.965!, increases at
O(v9) to about 0.93 for these systems and again drops b
at O(v11) to 0.85 and 0.90 for systemsB0 andC0 , respec-
tively. One clearly notices thatP-approximants do not show
such an erratic behavior. Recall that, in the test mass c
we are comparing aknownexact wave form with an approxi
mate signal model and hence the above conclusions are
from any prejudice. Though the second post-Newton
P-approximant wave form is not a faithful signal model,
5/2 post-Newtonian order theP-approximant is a faithful
signal model.

Moreover, P-approximants show an excellent Cauc
convergence as evident from Table IV. Notice that t
T-approximants have a poor Cauchy convergence for s
temsB0 andC0 . This makes them ill suited as faithful tem
plates.T-approximants are not always effectual signal mo
els either. Sometimes they do obtain overlaps larger t
96.5% but at the cost of producing a very large bias in
estimation of total mass. This is to be contrasted with
P-approximants which are effectual atO(v4) at the level of
99.7% or better at the cost of very little bias (dm/m always
less than 3.5% and less than 1% in most cases!. We have also
computed the biases in the estimation of the parameterh and
there too we see a similar trend.
the
TABLE V. Effectualnessof the T- and P-approximants in the test mass case. Values quoted are
minimaxoverlaps together with the percentage bias in the estimation of total mass 100(12mA/m) in paren-
theses.

n A 0 B0 C0

^^Tn
0 ,X0&& ^^Pn

0 ,X0&& ^^Tn
0 ,X0&& ^^Pn

0 ,X0&& ^^Tn
0 ,X0&& ^^Pn

0 ,X0&&

4 0.993 0.973 0.971 0.999 0.899 0.998
(0.036) (20.079) (218.408) (23.361) (22.658) (20.649)

5 0.824 0.996 0.986 0.999 0.806 0.999
(20.382) (20.029) (2104.846) (21.428) (215.040) (20.314)

6 0.990 1.000 0.983 0.997 0.988 0.999
(0.039) (20.004) (22.875) (20.040) (20.605) (0.000)
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FIG. 7. Newton-normalized gravitational wave luminosity in t
comparable mass case. Curves are plotted for three values o
mass ratio~0, 14/129.96 and 1/4! with thicker curves correspondin
to larger values of the mass ratio.~a! T-approximants and~b!
P-approximants. For comparison we have also plotted the test
ticle flux. Note that the T-approximants as well as th
P-approximants are continuous deformations of the test mass l
VII. ROBUSTNESS

Up to this point in the paper we have mainly relied on t
test mass limit to assess the quality of our approximants
this section we shall try to go beyond this formal limit
check therobustnessof our proposal under the turning on o
h.

We can first use all the existing information about t
comparable masses case and see whether turning onh modi-
fies in any way the trend we saw above. As a first test~a
‘‘visual’’ one! we plot in Fig. 7 the Newton-normalized flu
functions F̂Tn

(v;h), F̂Pn
(v;h) as a function ofv, for the

maximal valueh5 1
4 and for the cases where we know them

i.e. n52, 3, 4 and 5. Using the same information we c
also check theh robustness of our Cauchy-convergence c
terion. This is done in Table VI where we present the se
maximizedbest overlaps, Eq.~B11! ^P3

h(m,h),P4
h(m,h)&,

^P4
h(m,h),P5

h(m,h)&. . . , ^P6,P7& and compare them to
their T counterparts for the~real! casesA, B andC.

We also made many attempts at testing the robustnes
our conclusions when taking into account the existence
~unknown! higher-orderh-dependent corrections. There
no really conclusive way of achieving such a task but her
our best attempt: Our starting point is to model an infin
number of~unknown! higher-orderPN corrections by just
one ~nonperturbative! parameterk0. As introduced in Eq.
~4.11! above,k0 parametrizes our ignorance about the tr
location of the light ring@pole in e(x) andF(v)#. Our 2PN
Padéestimates gave us anh-corrected valuevpole, but we
wish to consider here the possibility that maybe the t
value is quite different from our estimate. More precisely E
~4.11! parametrizes the pole at 3xpole5(12k0 h)21, while
3xpole

P4 .1.4312 forh5 1
4, corresponding tok0.11.2051. To

explore a very large range of possibilities we shall consi
that the true value ofk0 ~for h50.25) might range between
k0521 ~meaning 3xpole50.8) and k0512 ~meaning
3xpole52.0). In Table VII we compare the location of th
last stable orbit xlso[v lso

2 predicted by the T and
P-approximants to the energy function relative to the ex
locationxlso

X . @For t-approximants the lso is defined by min
mizing the standard energy functionETn

(v).] We see that

P-approximants capture the location much better than
T-approximants.

Having chosen the range ofk0 we shall consider, and
adopting the definition~4.11! for the corresponding fiducia
‘‘exact’’ e function, it remains to define a correspondin
fiducial ‘‘exact’’ f function, having the property that the co

the

r-

it.
ues
TABLE VI. Cauchy convergence of theT- and P-approximants in the comparable mass case. Val
quoted are the best possible overlaps, Eq.~B11!.

n A B C

^Tn
h ,Tn11

h & ^Pn
h ,Pn11

h & ^Tn
h ,Tn11

h & ^Pn
h ,Pn11

h & ^Tn
h ,Tn11

h & ^Pn
h ,Pn11

h &

3 0.904 0.248 0.482 0.181 0.703 0.374
4 0.411 0.863 0.338 0.872 0.545 0.985
5 0.536 0.976 0.321 0.979 0.537 0.995
6 0.946 0.982 0.736 0.996 0.928 0.999
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respondingF function coincides, up toO(v6) terms, with
the knownT5 expansion ofF. To this effect the simples
proposal is to define first theT11 ~Taylor tov11) expansion of
f X

k0(v) by

T11@ f X
k0#[T11H @12A3~12k0h!v#F (

k50

5

Ak~h!vk

1 (
k56

11

@Ak~0!vk1Bk~0!vk ln v#G J , ~7.1!

whereAk(h), k<5, are given by Eq.~4.3!, and the others
(h50) by Eq.~4.2!. Then we define the corresponding fid
cial ‘‘exact’’ f function by

f X
k0~v;h![ f P11

~v;h![ the RHS of Eq.~4.6!. ~7.2!

Having defined some fiducial ‘‘exact’’e and f functions we
have correspondingly defined some ‘‘exact’’ wave formhX

k0

and, using the definitions above, bothT-type andP-type
approximants of this wave form. We are interested in kno
ing whether theP-approximants behave better than t
T-ones even in presence of higher-order effects significa
different from the behavior expected from the 2PN Pade´ re-
sults. The results of this exercise are presented in Table
where one has computed the semi-optimizedminimaxover-
laps ^Pn

h(m,h),Xk0

h (m,h)& and ^Tn
h(m,h),Xk0

h (m,h)& for

the casesA, B, C, for k0521, 1.2051 and 2 and forn
54, 5, 6 and 7. In order to test the effectiveness of

TABLE VII. Location of the last stable circular orbit determine
by theT- and P-approximants in the finite mass case for differe
values of the parameterk0. At order v2 the last stable orbit is no
defined by P-approximants. At ordersv4 and beyond the
P-approximants predict the location of lso pretty well.

h51/4 h514/(11.4)2

n xlso
Tn/xlso

X xlso
Pn/xlso

X xlso
Tn/xlso

X xlso
Pn/xlso

X

k0521

xlso
X 50.1600 xlso

X 50.1636

2 2.8852 — 2.9495 —
4 1.5991 1.2415 1.5060 1.0976
6 1.2652 1.0205 1.2078 1.0035

k0547/39

xlso
X 50.1986 xlso

X 50.1792

2 2.3240 — 2.6934 —
4 1.2881 1.0000 1.3752 1.0023
6 1.1020 1.0000 1.1408 1.0000

k052

xlso
X 50.2145 xlso

X 50.1852

2 2.1517 — 2.6060 —
4 1.1925 0.9258 1.3306 0.9698
6 1.0568 1.0042 1.1186 1.0005
-

ly

III

e

approximants, in Table IX we quote the full
optimized but minimax overlaps ^^Pn

h(m,h),Xk0

h (m,h)&&
and^^Tn

h(m,h),Xk0

h (m,h)&& again for the casesA, B, C, for

k0521, 1.2051 and 2 and forn54, 5, 6 and 7.
From Table VIII we clearly see thatT-approximants fail

to be faithful signal models even at the third post-Newton
order. The second post-Newtonian wave form of this fam
would clearly fail to capture even 20% of all potenti
NS-NS events that would be detectable with the aid o
family of templates constructed out ofP-approximants. Even
when parameter values are extreme (k0521, and very high
masses! the presently available 5/2 post-Newtonian ener
and flux functions are sufficient to construct a faithf
P-approximant.

We observe that except when the parameter values
extreme ~very low value of k0 and high masses! O(v5)
P-approximants are indeed good effectual signal models
fact in all cases, but one, they obtain an overlap in exces
99%. Bias in the estimation of the total mass is at worst 7.
and in many cases it is below 2%. On the contrary stand
second post-Newtonian approximants are not effectua
many cases; when they are effectual they often produc
relatively large bias. For instance, for systemB, when k0
547/39, the second post-NewtonianT-approximant acquires
an overlap of 0.98 compared to 1.00 acquired by
P-approximant of the same order. However, the bias is 9
in the former case as compared to a tiny 1.1% in the la
case. Similarly, for k052, the 2.5 post-Newtonian
T-approximant achieves an overlap of 0.988 at a bias of 7
while theP-approximant wave form achieves 0.996 overl
with practically no bias at all. The biases in the estimation
the h parameter~not shown! are also pretty small when
P-approximants are used as compared toT-approximants.

A word of caution is in order for those who desire to u
standard post-Newtonian templates: A careful examina
of the above tables reveals that the 2.5 post-Newton
T-approximant systematically obtains poorer overlaps a
larger biases. This is of course related to the fact that the
post-Newtonian flux is very badly behaved~cf. Fig. 3!.
Hence one must never employ the 2.5 post-Newton
T-approximant for searches. However,P-approximants do
not suffer from this predicament. Indeed atO(v5) the
P-wave form is an excellent effectual signal model. For
systems and parameters this model obtains an overlap of
ter than 99.5% at a bias less than 1.5%.

VIII. CONCLUSIONS

In this work we have studied the convergence proper
of various post-Newtonian templates to detect gravitatio
waves emitted by inspiraling compact binaries consisting
neutron stars and/or black holes. We have shown that
standard post-Newtonian filters, referred to as
T-approximants that are based on Taylor series, consid
in the literature define a badly convergent sequence of
proximants. Even at orderv11 the T-approximants only pro-
vide overlaps;0.86 with the exact signal in the case
binaries consisting of~1.4–10!M ( systems. Worse, the con
vergence of the sequence ofT-approximants is oscillatory
rather than monotonous. Our results onT-approximants con-

t
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TABLE VIII. Robustness of theT- andP-approximants in the comparable mass case:faithfulness. Values
quoted are theminimaxoverlaps together with the best possible overlaps, Eq.~B11!, in parentheses. System
D corresponds to a binary consisting of stars of masses 20M ( and 1.4M ( . In this extreme mass ratio cas
the P-approximants atO(v5) arenot faithful ~overlaps,96.5%).

n A B C D

^Tn
h ,Xh& ^Pn

h ,Xh& ^Tn
h ,Xh& ^Pn

h ,Xh& ^Tn
h ,Xh& ^Pn

h ,Xh& ^Tn
h ,Xh& ^Pn

h ,Xh&

k0521

4 0.601 0.875 0.882 0.735 0.826 0.825 0.467 0.696
~0.602! ~0.875! ~0.887! ~0.742! ~0.860! ~0.841! ~0.476! ~0.705!

5 0.528 0.954 0.323 0.875 0.416 0.842 0.272 0.824
~0.528! ~0.954! ~0.328! ~0.881! ~0.432! ~0.873! ~0.279! ~0.841!

6 0.989 0.987 0.968 0.990 0.910 0.991 0.896 0.998
~0.990! ~0.988! ~0.972! ~0.992! ~0.917! ~0.996! ~0.900! ~0.999!

k0547/39

4 0.566 0.810 0.908 0.793 0.921 0.954 0.539 0.800
~0.567! ~0.810! ~0.912! ~0.795! ~0.946! ~0.976! ~0.550! ~0.813!

5 0.553 0.983 0.335 0.975 0.490 0.989 0.283 0.961
~0.554! ~0.983! ~0.339! ~0.975! ~0.509! ~0.999! ~0.290! ~0.965!

6 0.968 0.998 0.923 0.997 0.974 0.997 0.940 0.990
~0.968! ~0.998! ~0.926! ~0.999! ~0.983! ~0.999! ~0.942! ~0.996!

k052

4 0.557 0.779 0.894 0.813 0.896 0.985 0.586 0.843
~0.557! ~0.780! ~0.896! ~0.817! ~0.905! ~0.989! ~0.598! ~0.848!

5 0.563 0.989 0.339 0.995 0.507 0.978 0.286 0.992
~0.563! ~0.989! ~0.344! ~0.995! ~0.531! ~0.996! ~0.294! ~0.992!

6 0.964 0.999 0.883 0.978 0.955 0.997 0.939 0.984
~0.965! ~0.999! ~0.889! ~0.978! ~0.970! ~0.998! ~0.949! ~0.992!
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firm previous, less convincing arguments in the literatu
which were either based on rough quantitative estimate
on numerical calculations based on the stationary phase
proximation for Fourier transforms — an approximation th
we have shown not to be sufficiently accurate for this p
pose~see Table II!.

We have defined a new sequence of approximants,
ferred to as theP-approximants, based on two ingredien
~i! the introduction, on theoretical ground, of two ne
energy-type and flux-type functionse(v) and f (v), instead
of the conventionally usedE(v) andF(v) and ~ii ! the sys-
tematic use of the Pade´ approximation for constructing suc
cessive approximants ofe(v) and f (v). The new sequence
of P-approximants has been shown to exhibit a system
cally better convergence behavior than theT-approximants.
The overlaps they achieve at a fixed post-Newtonian or
are usually much higher, and the convergence is essent
monotonous instead of oscillatory~as pictorially described in
Fig. 1 and mathematically measured by the overlaps quo
in Tables III, V, VIII, and IX!. From our extensive study o
the formal ‘‘test-mass limit’’h[m1m2 /(m11m2)2⇒0, i.e.
keeping overallh factors but neglectingh in the coefficients
of the post-Newtonian expansions, it appears that the p
ently knownO(v/c)5-accurate post-Newtonian results allo
one to construct approximants having overlaps larger t
96.5%~overlaps corresponding tok0547/39, 2 in Table IX
and all, but one, overlaps in Table IX! with the exact signals
,
or
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:
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n

Such overlaps are enough to guarantee that no more
10% of signals may remain undetected. By contr
(v/c)5-accurateT-approximants only give overlaps of 50%
and sometimes even as low as 30%, corresponding to a
of 87.5% and 97% events, respectively. Our results are s
marized in Fig. 8 where we have plotted the fraction
events which the templates constructed out ofT and
P-approximants would detect relative to the total number
events that would have been detectable if we have had ac
to the true signal. We clearly notice the superiority of t
P-approximants. Moreover, our computations indicate t
the new templates entail only acceptably small biases in
estimation of signal parameters~see Tables V and IX!. In the
terminology introduced in the text,P-approximants are both
more effectual~higher fully maximized overlaps! and more
faithful ~smaller biases! than the usualT-approximants. The
above conclusions are primarily based on the study of
formal test-mass limit and assumes that turning onh brings
only a smooth deformation of what happens ath→0. We
have also studied the effect of turning onh (hÞ0) in the
coefficients of the post-Newtonian expansions. From all
checks it seems that theh dependence is indeed smooth a
should not alter the fact that theP-approximants have a bet
ter convergence than theT-ones. Our construction predict
that the last stable circular orbit is closer~i.e. larger orbital
frequency! when hÞ0 @see Eq.~3.23!#. This is good news
because it improves the efficiency ofP-approximants to be
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TABLE IX. Robustness of theT- andP-approximants in the comparable mass case:effectualness. Values
quoted are theminimaxoverlaps, Eq.~B12!, together with the percentage bias in the estimation of total m
100(12mA/m) in parentheses.

n A B C

^^Tn
h ,Xh&& ^^Pn

h ,Xh&& ^^Tn
h ,Xh&& ^^Pn

h ,Xh&& ^^Tn
h ,Xh&& ^^Pn

h ,Xh&&

k0521

4 0.891 0.970 0.962 0.997 0.881 0.940
(0.268) (20.089) (212.550) (27.582) (22.217) (22.779)

5 0.811 0.989 0.713 0.996 0.664 0.932
(20.400) (20.039) (226.491) (24.907) (215.860) (22.660)

6 0.995 0.991 0.982 0.999 0.955 0.998
(0.011) (0.025) (20.869) (20.104) (20.999) (0.080)

k0547/39

4 0.868 0.965 0.975 0.999 0.972 0.997
(0.214) (20.111) (26.961) (23.618) (1.406) (21.524)

5 0.831 0.999 0.981 1.000 0.810 0.999
(20.429) (20.032) (297.241) (21.118) (223.654) (20.205)

6 0.984 0.998 0.989 0.999 0.996 1.000
(0.025) (0.000) (1.004) (20.157) (0.391) (0.019)

k052

4 0.863 0.961 0.968 0.998 0.996 0.997
(0.357) (20.121) (21.300) (22.874) (1.699) (20.450)

5 0.836 1.000 0.983 1.000 0.988 0.996
(20.339) (20.025) (292.233) (20.056) (275.053) (0.000)

6 0.981 0.999 0.993 0.995 0.998 1.000
(0.032) (0.000) (0.688) (20.708) (1.106) (20.154)
nd.
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FIG. 8. Histogram of fraction of events accessible usingT- and
P-approximants relative to the case when the true signal is kno
used as filters for detectors having a fixed frequency ba
However, we have no independent confirmation of this~fa-
vorable! dependence onh. We have tested the robustness
our conclusions against possible very drastic chan
brought by~still unknown! h-dependent terms in the highe
post-Newtonian coefficients. In the case where these extr
changes go in the opposite direction of what is suggested
presently known results~i.e. in the casek0521), we find
that the overlaps are worsened compared to our best esti
range (k0547/39). This shows that it is important to exten
the presently availableO(v5) post-Newtonian results to th
third post-Newtonian level~notably for the equations of mo
tion! @25#. This will allow one to check whether theh de-
pendence of the 2.5 post-Newtonian results that we us
typical of the higher terms~as our method assumes! or ex-
hibits some abnormal behavior for some unforeseeable
son. When third post-Newtonian results are available it
clearly still advisable to use theP-approximants: They
have consistently higher overlaps and lower biases~cf. see
Table IX!.

In this study we have only considered the noise pow
spectral density corresponding to initial LIGO interferom
eters. Naturally, one must study other cases as well. Ba
on the current study we can be confident that in all casesn.
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P-approximant wave forms will fare much better compar
to the standard post-Newtonian ones. However, their per
mance in absolute terms needs to be reassessed since
interferometers, such as VIRGO, GEO600, and enhan
LIGO, happen to have effective bandwidths and the f
quency of maximum sensitivity somewhat different from in
tial LIGO. In addition, one must also address the perf
mance of P-approximate wave forms with regard t
parameter estimation.
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APPENDIX A: PADÉ APPROXIMANTS

A Padéapproximant to the truncated Taylor series exp
sion of a function is a rational polynomial with the sam
number of coefficients as the latter. The coefficients of
Padéapproximant are uniquely determined by reexpand
the Pade´ approximant to the same order as the trunca
Taylor series and demanding that the two agree. In our st
we use a continued fraction form of the~near diagonal! Padé
approximant instead of the usual rational polynomial.

Let Sn(v)5a01a1 v1•••1an vn be a truncated Taylo
series. A Pade´ approximant of the function whose Taylo
approximant to ordervn is Sn is defined by two integersm,k
such thatm1k5n. If Tn@•••# denotes the operation of ex
panding a function in Taylor series and truncating it to ac
racyvn ~included!, thePk

m Padéapproximant ofSn is defined
by

Pk
m~v !5

Nm~v !

Dk~v !
, Tn@Pm

k ~v !#[Sn~v !, ~A1!

whereNm and Dk are polynomialsin v of order m and k,
respectively. If one assumes thatDk(v) is normalized so tha
r-
ther
ed
-

-

s
,
.
tes
f
t
r

-

e
g
d
dy

-

Dk(0)51, i.e. Dk(v)511q1 v1•••, one shows that Pad´
approximants are uniquely defined by Eq.~A1!. Note that,
trivially, P0

n@Sn#[Sn which indicates that Pade´ approxi-
mants are really useful whenkÞ0. Actually, it seems that in
many cases the most useful Pade´ approximants are the one
near the ‘‘diagonal,’’m5k, i.e. Pm

m if n52m is even, and
Pm

m11 or Pm11
m if n52m11 is odd. In this work we shall

use, except when specified otherwise, the diagonal (Pm
m) and

the ‘‘subdiagonal’’ (Pm11
m ) approximants. For instance, th

P4
3-approximant of the flux function has a pole and therefo

we use instead theP3
4-approximant. The diagonal (Pm

m) or
subdiagonal (Pm11

m ) Padéapproximants can be convenient
written in a continued fraction form~see e.g.@45#!. For ex-
ample, given

S2~v !5a01a1v1a2v2, ~A2!

one looks for

P1
1~v !5

c0

11
c1v

11c2v

5c0

11c2v
11~c11c2!v

, ~A3!

and given

S3~v !5a01a1v1a2v21a3v3, ~A4!

one looks for

P2
1~v !5

c0

11
c1v

11
c2v

11c3v

5c0

11~c21c3!v

11~c11c21c3!v1c1c3v2
.

~A5!

The main advantage of using the continued fraction rep
sentations is that the lower order coefficientsck remain un-
changedas we increase the order of the polynomial bei
approximated. This is not true for the coefficients of t
polynomialsNm , Dk in Eq. ~A1!. @This is easily seen by
comparing Eqs.~A3! and~A5!.# Theck’s are algorithmically
obtainable in terms of the coefficientsal in Sn with l <k.
For instance,
c05a0 ,

c152
a1

c0
,

c252
c0c1

22a2

c0c1
,

c352
c0c1~c21c1!21a3

c0c1c2
,

c452
c0c1~c21c1!31c0c1c2c3~c312c212c1!2a4

c0c1c2c3
,
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c552
c0c1@~c21c1!21c2c3#21c0c1c2c3~c41c31c21c1!21a5

c0c1c2c3c4
,

c652
1

c0c1c2c3c4c5
$c0c1~c11c2!51c0c1c2c3@~c11c21c3!313~c11c2!313c2c3~c11c2!1c3~c22c1!#

1c0c1c2c3c4@~c11c21c31c4!212~c11c21c3!21c3~c422c1!#1c0c1c2c3c4c5@c512~c41c31c21c1!#2a6%.

~A6!
t

-

,

g
o-

s
e

asy
2-

o
d

-

The expressions for coefficientsc7,c8, . . . are long and no
listed here. Explicitly in terms of thea’s some of the above
coefficients are

c05a0 ,

c152
a1

a0
,

c252
a2

a1
1

a1

a0
,

c35
a0~a1a32a2

2!

a1~a1
22a2a0!

. ~A7!

A few other properties of the Pade´ approximants are use
ful to notice, such as

Pk
m@Tn@ f ##5~Pm

k @Tn@ f 21## !21, ~A8!

Pm
m1d@Sn#5a01a1vPm1d

m @ S̃n21#, ~A9!

whered50 or 1 and whereS̃n21 is defined by ‘‘factoring
after v ’’: Sn5a01a1v S̃n21. Equation~A9! shows how to
obtain the superdiagonal Pade´ approximant ofSn from the
continued fraction approximants ([Pm1d

m ) of S̃n21. This
can be iterated toPn

n12 , etc. @An alternative way would be
from Eq. ~A8!, to work with the inverse of the seriesSn .#

APPENDIX B: OPTIMIZING OVER THE PHASES

The ‘‘exact’’ ~label X) and approximate~label A) tem-
plate wave forms have the form

hX~ t;tc
X ,fc

X ,CX!5CXa~ t2tc
X!cos@fc

X1fX~ t2tc
X!#,

hA~ t;tc
A ,fc

A ,CA!5CAa~ t2tc
A!cos@fc

A1fA~ t2tc
A!#,

~B1!

where we denotedfc
X[2Fc

X , fX(t)[2FX(t), etc. The nor-
malized overlap betweenhX and hA depends on the time
difference tc

A2tc
X and ~separately! on the two phasesfc

X ,
fc

A . Here, we show how, for any given time lagt5tc
A2tc

X

~i.e. after having fixed, for instance,tc
X50, tc

A5t), one can
maximize the overlap over the two phasesfc

A , fc
X .

To solve this maximization problem@46# it is useful to
think in geometrical terms: Each wave formh(t) is seen as a
‘‘vector’’ h in an infinite-dimensional vector spaceW en-
dowed with the Euclidean metric defined by the~Wiener!
scalar product. For any giventc

X , tc
A , one sees by expandin

the cosines by the usual addition formula that the tw
parameter family of ‘‘vectors’’hA(CA,fc

A) span a 2-plane,
i.e. a two-dimensional linear subspace ofW. More explicitly,
an unnormalized basis of this 2-plane ish1

A , h2
A with

h1
A[hA~CA51,fc

A50!, h2
A[hAS CA51,fc

A5
p

2 D ,

~B2!

the generic vector in the 2-plane beinghA(lA)5l1
A h1

A

1l2
A h2

A with l1
A5CAcosfc

A , l2
A5CAsinfc

A . Similarly, the
two-parameter family of ‘‘exact’’ vectors can be written a
hX(lX)5l1

X h1
X1l2

X h2
X with the same definitions as abov

with the labelA being changed intoX. Optimizing over the
phases means finding the maximum over thelA andlX of

cosuAX5^ĥA,ĥX&[
^l1

Ah1
A1l2

Ah2
A ,l1

Xh1
X1l2

Xh2
X&

il1
Ah1

A1l2
Ah2

Ai il1
Xh1

X1l2
Xh2

Xi
,

~B3!

whereĥA denotes the unit vectorhA(l)/ihA(l)i .
Directly attempting to maximize cosuAX(l

A,lX) is very
cumbersome. The problem is, however, reduced to an e
one if one introduces orthonormalized bases in both
planes: say (e1

A ,e2
A) in the A-~2-plane! and (e1

X ,e2
X) in the

X-one, with ^ea
A ,eb

A&5dab5^ea
X ,eb

X&; a,b51,2. For in-
stance, these orthonormalized bases can be defined as

e1
A[ih1

Ai21h1
A ,

e2
A[ih1

Ai21@ ih1
Ai2ih2

Ai22^h1
A ,h2

A&2#2 1/2

3$ih1
Ai2h2

A2^h1
A ,h2

A&h1
A%, ~B4!

for the A-plane and similarly for theX-plane.
The overlap~B3! is then the scalar product between tw

unit vectors~one in each plane! which can be parametrize
as cosuab5^ea

A ,eb
X& where ea

A5cosae1
A1sinae2

A ,
eb

X5cosbe1
X1sinbe2

X . Let PX denote theorthogonal projec-
tor onto theX-plane, andpa denote the orthogonal projec
tion of ea

A , i.e. explicitly

pa5PX~ea
A!5^ea

A ,e1
X&e1

X1^ea
A ,e2

X&e2
X . ~B5!

The scalar product̂ea
A ,eb

X& is equal to^pa ,eb
X&. It is maxi-

mized overb when eb
X is parallel topa , in which case its
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value is the norm ofpa . This shows that the maximum o
cosuAX is equal to the maximum overa of the norm ofpa :

~cosuAX!max5max
a

ipai . ~B6!

On the other hand,

pa5cosa p11sin a p2 , ~B7!

where

p1[PX~e1
A!5^e1

A ,e1
X&e1

X1^e1
A ,e2

X&e2
X ,

p2[PX~e2
A!5^e2

A ,e1
X&e1

X1^e2
A ,e2

X&e2
X . ~B8!

In geometrical terms,pa describes, asa varies, andel-
lipse in the X-plane ~the projection of the circleea
5cosa e11sina e2) and the maximum projection onto th
X-plane corresponds to the semi-major axis. The squ
ipai25^pa ,pa& reads

ipai25A cos2a1B sin2a12C cosa sin a, ~B9!

where

A[ip1i25^e1
A ,e1

X&21^e1
A,e2

X&2,

B[ip2i25^e2
A ,e1

X&21^e2
A,e2

X&2,

C[^p1 ,p2&5^e1
A ,e1

X&^e2
A ,e1

X&1^e1
A ,e2

X&^e2
A ,e2

X&. ~B10!

Maximizing over a is now easy @using cos2a5(1
1cos2a)/2, sin2a5(12cos2a)/2, 2sina cosa5sin2a and
maximizing over 2a# and yields finally

~cosuAX!max5H A1B

2
1F S A2B

2 D 2

1C2G1/2J 1/2

. ~B11!
hy

.

s.

itte
re

Inserting the definitions of the orthonormalized vectors, E
~B4!, into the definitions, Eq.~B10!, of A, B andC can allow
one to express (cosuAX)max only in terms of various scala
products of the initial vectorsh1

A , h2
A , h1

X , h2
X . It is easily

checked that the final answer does not depend on the ch
of basis in theA- andX-planes, and can~if wished! be ex-
pressed only in terms of the ‘‘2-forms’’vA[h1

A`h2
A and

vX[h1
X`h2

X ~and of the Euclidean structure ofW).
The result, Eq.~B11!, gives the best possible overla

when optimizing separately over the phases of the exact
approximate signals. This gives the mathematical measur
the closeness of the two wave forms. However, in prac
we do not have access to the phase of the exact signa
might happen that the latter phase, i.e. equivalently the an
b, is not optimum. Therefore, a physically more releva
measure of the closeness of the two wave forms~especially
for the purpose of detection! is obtained by first optimizing
overa ~the parameter we can dial! and then considering tha
b has the worst possible value. In terms of the geome
reasoning given above one finds that the worst possible
corresponds to the semi-minor axis of the ellipse given
Eq. ~B9!, i.e.

min
b

max
a

~cosuAX!5H A1B

2
2F S A2B

2 D 2

1C2G1/2J 1/2

.

~B12!

In our simulations we considered both measures of the clo
ness of the two signals. We use Eq.~B11! when we study the
mathematical convergence and we use Eq.~B12! when we
are interested in the detection. We shall refer to Eq.~B11! as
the bestoverlap and Eq.~B12! as theminimaxoverlap.
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