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Explicit solution of Riemann-Hilbert problems for the Ernst equation

C. Klein
Institut fir Theoretische Physik, Universttaubingen, Auf der Morgenstelle 14, 72076bligen, Germany

O. Richter
Sektion Physik der Universitdinchen, TheresienstralRe 37, 80333rden, Germany
(Received 2 September 1997; published 18 December)1997

Riemann—Hilbert problems are an important solution technique for completely integrable differential equa-
tions. They are used to introduce a free function in the solutions which can be used at least in principle to solve
initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann—
Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation,
however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to
a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example
we discuss the rigidly rotating dust digk50556-282198)01904-3

PACS numbd(s): 04.20.Jb, 02.10.Rn, 02.30.Jr

The stationary axisymmetric Einstein equations in ds?=—e?V(dt+ade)?+e 2Y(e?X(dp?+d?) + p2de?),
vacuum are of great physical importance since the exterior of )
stars and galaxies in thermodynamical equilibrium is de-
scribed by solutions to these equations. The matter sources

lead to boundary value problems for the vacuum equationﬁ,herep and ¢ are Weyl's canonical coordinates asdand

which are equivalent to an integrable equation for a comple . : -
potential, the Ernst equation. The standard approach to sol\)/&é/’ are the two commutingasymptotically timelike and

initial or boundary value problems to integrable equationsSpace"ke Killing vectors, respectively. In this case, the field

consists of two steps: translate the problem into a Riemann&auations are equJ'V?“e”t to the Ernst equation for the poten-
Hilbert problem in the space of the so called spectral paramii@! f wheref=e?"+ib, and the real functiob is related to
eter, and then solve it explicitly in order to get the wantedthe metric functions via,= —(i/p)e*“a ,. Here the com-
solution to the original problem. This is however very in- plex variablez stands forz=p+i{. With these settings, the
volved in practice since there is no direct way to relate theErnst equation reads
boundary data to the “jump data” of the Riemann—Hilbert
problem. But even if this can be done as in the case of the
rigidly rotating dust dis 1], the solution to the Riemann— 1 >
Hilbert problem is equivalent to the solution of a linear inte- f ———(f+f,)=——f,f5, 2
gral equation that cannot be given explicitly in general. 2(z+z) f+f

In the case of the Ernst equation, it is however possible to
perform this second step in the solution process for boundary
value problems in closed form for a large class of functions , L —
as will be shown in the present paper. In standard mannelVhere a bar denotes complex conjugation inVith a solu-
we treat the Ernst equation as the integrability condition ofion of the Ernst equation, the metric functidh follows
an overdetermined linear differential system for adirectly from the definition of the Ernst potential whereas
2Xx2-matrix . We formulate the Riemann—Hilbert prob- andk can be obtained frori via quadratures.
lem for this matrix in a way that one of the componentsbof Complete integrability of an equation means that it can be
gives a solution to the Ernst equation containing a free functreated as the integrability condition of an overdetermined
tion. Exploiting the gauge freedom of the linear system, weinear differential system that contains an additional complex
show that the matrix Riemann—Hilbert problem is gaugeparameter, the so called spectral parameter, that reflects an
equivalent to a scalar problem on a hyperelliptic Riemann,nqerlying symmetry of the Ernst equation. In the case of the

surface if the jump data entering the Riemann—Hilbert probg g equation, we Use the linear system for the22-matrix
lem are polynomials. The latter can always be solved Np of [6]:

closed form(see[2,3]) in terms of theta functions which
leads to a class of solutions discussefdih We demonstrate
how the rigidly rotating dust diskl] fits within this scheme.

_ N O
THE RIEMANN —HILBERT PROBLEM FOR THE ERNST (K, uo:2, Z),z:| ( 0 M)
EQUATION
K—iz{0 N _
The vacuum metric in the stationary and axisymmetric +—(M 0)]‘D(K,Mo;2, ),
case can be written in the Weyl-Lewis—Papapetrou form Ko
(see[5)) 3
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o M 0 Then the matrixd’(P)=®(P)C(K) also satisfies the con-
DK, 0.2, 2) Z:l ( 4 ditions of Theorem 1 and’ (") =d ().
' N In other words: matrice which are related through the
multiplication from the right by a matriC of the above form
0 M lead to the same Ernst potential though their singularity
N O
Here the spectral parametérlives on a family of Riemann Tht_aorem 1 can be_ used to construct solution_s to th_e_Ernst
il ) = equation by determining the structure and the singularities of
surfacesC(z, z) of genus zero parametrized byand z, and ¢ in accordance with the conditions | to IV. In the present
given by,uS(K)z(K—iz)(KJriz). A point on £L=£(z,2) paper, we will only consider cuts as singularitiesdfi.e.

structure may be vastly differefithe functionsa; need not

be holomorphit. Therefore this multiplication is called a
is denoted byP= (K, uo(K)) with K e C. The functionsM we concentrate on a matrix Riemann—Hilbert problemZon
andN depend only ore and z but not onK. and have the which can be formulated as follow$or different formula-

K+iz
Mo

D(K,p0:2,2).

(4 gauge transformatioh.
tions of Riemann—Hilbert problems for the Ernst equation

form see[8,9] and references given thergirLet I' be a set of
; 1 (orientable piecewise smogth contours I''CL (k
M=—"—, N=—— (55 =1,...J]) suchthat withPeI" alsoPeI andP?eT. Let
f+ f f+ f G(P) be matrices orl", with Holder-continuous compo-
nents and nonvanishing determinant subject to the reality
wheref is again the Ernst potential. condition G,;(P)=G;;(P) for the diagonal elements, and

It is possible to use the existence of the above linear sys- &y_ =~ : o
tem for the construction of solutions to the Ernst equation.g”(P) Gij(P) for the offdiagonal e!ements, arg(P”)
To this end one investigates the singularity structure of the_lfh‘flg(Pt)le(i) E;]Othl; atr;dg have tr? be mde?endent fz.t "

: 1 1 R . e matrix as to be everywhere regular except at the
g)aet(rzltcfosaze@speitnrgI(Dp;a?ame[ti)r;fé Tﬁ]fé?ézézs)e]tV(\)I;tzorre,ditioncsontOUfF where the boundary values on both sides of the
for the matrix® that satisfies the linear syste(®) and (4). contours(denoted byd..) are related via
This is done(see e.g[7]) below. ® (P)=d . (P\C(P

Theorem 1Let ® be subject to the following conditions: -(P) +(P)Gi( )|P€Fi' ©
I. ®(P) is holomorphic and invertible in a neigbourhood

of the branch point®,= —iz and P, such that the logarith-
mic derivative ®,® ! diverges as K+iz) "2 at P, and

It may be easily checked that a matdx constructed in
this way satisfies the conditions of Theorem 1. Furthermore
z =3 it can be seen from the Theorem that the only possible sin-
O, tas K—iz) Y2atP,. gularities of the Ernst potential can occur where the condi-

Il. All singularities of ® on L (poles, essential singulari- tions are not satisfied, i.e. whede cannot be normalized or
ties, zeros of the determinant df, branch cuts and branch whereP, coincides with one of the singularities &, in our
pointg are regular which means that the logarithmic deriva-case the contouf. The latter makes the Riemann—Hilbert
tives ®,d~* andd,P ' are holomorphic there. problem very useful if one wants to solve boundary value

1. @ is subject to the reduction condition problems for the Ernst equation: choose the conidim a
way thatPye I just corresponds to the contolly, in the

meridian @, z) plane where the boundary values are pre-
scribed. The Ernst potential will not be continuous at this
contour, but its boundary values will be bounded. Notice
however that the Ernst potential will not necesssarily be sin-
gular if Py coincides with a singularity of (it may be e.g.
pure gauge Theorem 1 merely ensures that the solution will
) be regular at all other points.

O(P7)=03P(P)y (6)

whereo is the involution onZ that interchanges the sheets,
o3 is the third Pauli matrix, andy is an invertible matrix

independent of and z.
IV. The normalization and reality condition

f o1

— (@)

P(P=o* )=(
GAUGE TRANSFORMATION OF THE

. . . . . RIEMANN —HILBERT PROBLEM
Then the functiorf in (7) is a solution to the Ernst equation.

A proof can be found for instance [7]. Without loss of The Riemann—Hilbert problem can be used to generate
generality, we can choose the matgixo be the Pauli matrix solutions to the Ernst equation that apparently contain four
o,. This implies the following. real valued free functions, the components of the madrix

Corollary 1. Let ®(P) be a matrix subject to the condi-
tions of Theorem 1 an€(K) be a 2x2 matrix that only

depends orK e C with the properties INotice that different forms of the linear syste@), (4) (see e.g.
- [8]) are known which are related through gauge transformations.
C(K)=a1(K)1+ay(K)oy, The choice of the linear system here, which implies the conditions

of Theorem 1, does not fix the gauge uniquely. It is this remaining
a(°)=1, ay(»)=0. (8) gauge freedom to which we refer here and in the following.
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The remarks on the gauge freedom of the madriindicate a1+ a, 1 dK’ Gi1t Giot Gort Goo
however that two of them are related to gauge transforma- . ‘{Z_m f K—K’ n Gi1—GCi—GCoi1 G
tions. It seems plausible that one can choose a gauge in + 2 r il Sz et =ad
which G has only two independent components. For instance (16)
one can show thai is gauge equivalent t§’ which has the
form where\ is a possibly multivalued function df e C alone.
o 0 With this ansatz, we can solve the above system and deter-
g’=( ) (10) mine G and\:
B 1
for the jump matrices on the contours in the upper sheet A= (611~ Grat 1~ G22) (G~ b1z~ G+ G2
which is the form used by Neugebauer and Meiisek[10]). (G11+G12™ G217~ 922 (G121 Gr Gort G22) an

The fact thatG can—for any solvable Riemann—Hilbert

problem—be brought into the fornil0) follows directly G+1 (Gii— 1o Gont Goo) (Gt Gigt Gort Go)
from the properties of the gauge transformati8n We have = \/ 11 P12 Y2 YerllYAlT 12 Y21 Yo
G-1 (G117 G120t G21= G22) (G111 G12— Go1— g22)(18)

to show that the Riemann—Hilbert problem at the coniour

gC-=C.d", (1D In an abuse of notation, we have denoted here the analytic

with G' of the form (10) is solvable which is however the continuation of they;; (which is obvious sinc_e the func_tions
case(not necessarily uniquelyThus it is possible to reduce 2r€ @ssumed to be quotients of holomorphic funcliavith

the freedom in the Riemann—Hilbert problem to two rea|the_same syml:_)ol_ as _the functions that were_ongmall_y only
valued functions without changing the singularity structured€fined onl’ (this 1S still the case for the functioB). Writ-

of @ which is everywhere regular except at the contbur "9 A in the formA“=F/H whereF andH are holomorphic
The obvious disadvantage of this formulation of the matrixfunctions(which is possible by assumptiprone can recog-
Riemann—Hilbert problem is however that such problemd!Z€ that the Yvhole system has to be considered on the Rie-
cannot be solved explicitly in general. FBr#0, this prob- mann surfaceC given by

lem is equivalent to a linear integral equati@ee e.g[3]). R

Only for =0, an explicit solution can be given. In this case rA(K)=F(K)H(K). (19

one is led to the static solutions of the Weyl class. o _

However, for the purposes of the Ernst equation, one mayms is a two—sheeted covering of the two—sheeted surface
go one step further for a large class of Riemann—Hilber@n Which the spectral parameter varies, and thus a four—
prob'ems if one drops the condition that the gauge transsheeted COVe”ng Of the CompleX plane. It is on _thIS Surface
formed matrix®’ has the same singularity structure as thethat the gauge transformed matrdx and the functior\ are
original matrix in(9). We will prove this next. single valued.

Theorem 2.Let the conditions for(9) hold and let the [N other words, it is always possible to transform the
projection of the contouF into the complex plane consist of Riemann—Hilbert problem with “holomorphic” jump data
one simple smooth arc. The components of the mgtskall  t0 diagonal form. The price one has to pay for this is the
be quotients of holomorphic functions. Then the matrixintroduction of a four-sheeted Riemann surfatesince oth-
Riemann—Hilbert probleni) on £ is gauge equivalent to a erwise the gauge transformation would be multivalued. The
problem with the diagonal matri¢’ =diag(G,1) (on the con-  condition that the projection of into the complex plane
tours in the copies of the upper sheen a two sheeted consists of only one arc can be replaced by the condition that

coveringZ of £, whereG is a Hdder-continuous function the analytic continuations of th&; coincide on all contours

onT. Iy.
Proof. The proof uses again the explicit construction of
the gauge transformation which takes the form EXPLICIT SOLUTION OF THE RIEMANN —HILBERT
PROBLEM IN TERMS OF HYPERELLIPTIC
(G111 Gt Gt Gop)(art az) " =(G+1)(artay) +(,12) THETA FUNCTIONS

In the following, we will restrict ourselves to the case in
(G11— G12= Gt G2 (a1 —ap) " =(G+1)(a;—ay) ", which the Riemann surfacg given by(19) has a finite num-
(13 ber 29 of branch pointswhich implies that it is compayt
_ the defining equation for the surfagebein
(G11—Grz+ Gor— Go) (a1~ @) =(G—1)(as+ ), 9 J
(14 g
~2
) w?=1] (K=E)(K-F). (20
(G11+ G1o= Go1— G (a1 + @) :(G_l)(al_a2)+(- ) =1
15
As can be seen frorfil7), this will be the case if the com-
As already mentioned, this system will in general not have gonents ofG are quotients of polynomials. Since any holo-
solution if thea; are holomorphic except &t We therefore  morphic function can be approximated by polynomials, the
make the ansatz resulting solutions will lie dense in the topological space of
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solutions to the Ernst equation with holomorphic boundaryis single-valued onl,, hasg poles at the points of the
data atl',. We will show below that the class of solutions divisor D and a discontinuity at the contodir of the form
one may construct using this additional assumption is verysee[2])
rich and contains e.g. the recently obtained solution for the
rigidly rotating disk of dust. g =¢,Glr. (23
The reality condition on th¢j; implies Ej=F;. We will
concentrate on regular Riemann surfaces which means th
all branch points have multiplicity 1 since coinciding branch
points can be treated as a limiting case. This is the wel
known soliton limit that can also be obtained with the help of
Backlund transformationésee e.g[11]), and leads to the so
called multi-black-hole solutions which contain the Kerr so-

S&ere the path of integration betwe®g andP has to be the
same for all integrals, and, is a normalization constant.

It can be easily seen that(Py) is a single-valued func-
{ion on Ly : the difference of two paths of integration be-
tweenP, and P can be represented as a linear combination
of the a- andb-cuts since they are a basis of the homology.
lution Therefore, by a change of the integration path, the theta quo-

With these assumptions, the above results can be used fBFnt will be rc?ubltlpl;]ed .by eXplﬂN'lF?)' but this ter_rrnhls JUStl .
the construction of explicit solutions to the Ernst equation.cOMPensated by the integral in the exponent. The analytic
The procedure for solving the Riemann—Hilbert problem onProperties ofy follow from the definition of the Abelian
- . . - . differentials and the properties of the theta function. By defi-
L follows basically the construction of finite gap solutions nition, the divisor D is non-special which means that
for the sine—Gordon equatideee e.g[12]) that was used in ooy _ . : )
[7] to get the corresponding solutions to the Ernst equatio O (@(Py) ~ (D)~ k) does not vanish identically. The lat

. ; . Yer cannot be said in the general case @fw(Py)+u
To construct a single-valued solution to the Rlemann—_w(D)_K)_ If this function is identically zero for givea,

Hilbert problem on the surfacg, we introduce an auxiliary 7. the theta function has to be replaced by its first non—
(hyperelliptig Riemann surface,;=L/o obtained by fac-  yanishing partial derivativésee[2]).

torizing £ with respect to the involutiow on £ that has a However, the functionug(Py) = uopri(Pr) = uo(K) is
natural lift to £. This hyperelliptic surface of genug is  not single-valued orCy since it changes the sign at every
given by a-cut there. The same holds for the function
g _
— 0 (0(Py)+Uu—w(Py)—w(D)—K)
2 _(K— —E —E. =
wh=(K=iz)(K+in[] (K-Ep(K-F) (D X(PH)=Xo 5 (P~ (D))

since the fixed points of the involution become branch points X ex 1 f In Gdo

on the factorized surface. To work with the surfagg has 2mi Jr PrPo
the advantage that all quantities can be expressed there in

terms of explicit integrals since one can use the powerfulvherey is again a normalization constant. This can be seen
calculus of hyperelliptic Riemann surfaces, $8¢13]. This  in the proof of the single-valuedness ¢f Except for the
means that we are working with the three surface< and  behavior at thea-cuts, the analytic properties gfare iden-

L, and denote the points on the surfaces I  tical to those ofy. Both functionsu, and y are however
=(K, 1o(K)), P=(K,uo(K),n(K)) and Py=(K,un(K)) single-valued orC which can be viewed as two copies £
respectively. cut along[Py,Pg] and glued together along this cut. We

- On Ly, we introduce the standard quantities associategjefine a vectoX on Z by fixing the sign in front ofy in the
with a Riemann surface, namely with a canonical cut systerr\}icinity of the pointsP: e 2
0 1

(se€[13]) the g normalized differentials of the first kindeg
defined by 9Saidwj=27-ri5ij, and the Abel mapw;(P)

=f§0dwi. Furthermore, we define the Riemann matfix X(P)=
with the elementsmj=56bidwj, and the theta function

O[41(2) =Sy 28PN+ @/2),(N+ @/2))+((z+ i B), With the help of this vector, we can construct a mathon
(N+ a/2))} with half integer characteristifs] and a; , 3 £ via

=0,1 (N,2)==%_;N;z). The normalized(all a-periods
zerg Cauchy analogue with poles 2 and P, will be de-
noted by duppo. LetD be the divisor of zeros of the function
H in (19, u be the vector with the components; where the signs are again fixed in the vicinityRy{ . Let us
=1/(2mi) [ In Gdw; andK be the Riemann vector. Then the show that®(P) satisfies the conditions of Theorem 1. First,

: (24)

W(P)

P P—Pg. (25)

(I)(P):(X(K:MO(K)y+,Z’«(K))1X(K1,U«0(K)y_,ZL(K)))(-Ze)

function ¢ given by this ansatz is in accordance with the reduction condi(@n
[this is in fact the reason why one has to define the function
WP = i 0 (0(Py)+u—w(D)—K) x in the way (24)]. The behavior at the singularities is as
H " O(w(Py)—w(D)—K) required in condition Il. For the contodt, this is obvious.

At the branch pointE&; andF;, one gets the following be-
X ex i f In Gdwp._p (22) havior: at.pointsPi of the divisorD, the. compo_nents ob
2mi Jr HoO have a simple pole, and the determinant diverges kas (
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—P;)"Y2 At the remaining branch points, the componentsby G=[ 1+ %(1+ X?)2+ v(1+X?)]? in dimensionless co-
are regular but the determinant vanisheskas P;)Y/2 Since  ordinatesp/p, and {/{,. Inverting the relationg17) and

® in (26) is only a function ofP, it will not be regular at the (18), we get the coefficienta and 8 of the original matrix
cuts [E;,F;]. At the a—cuts, we getd),=<b+ol|ai. The Riemann—Hilbert problem Neugebauer and Meinel were
able to obtain from the boundary value problem for the rig-

logarithmic derivatives with respect toand z are however : .
idly rotating dust disk,

holomorphic at all these points. Normalizing and y (if
possiblé in a way thaty(e,)=1 andy(~;)=—1 and ob-
serving that the reality condition is satisfied due to the reality 1

properties ofZ and the Riemann—Hilbert problem, we find * 1
that ® is indeed in accordance with all conditions of Theo- Vi1t 7+ 1
rem 1. We may summarize these results.

Theorem 3. Let [5]=w(Pg)+w(D)+K and T
O[5 1(w(*7)+u)#0. Then the Riemann—Hilbert problem B=2V2ir*K(K?+1)a\/ \/1+ 7+ 1. (28)
as formulated in(9) where the components of the jump ma-
trix G are quotients of polynomials, and where the zeros

1+27 (K?2+1)

respectively poles of the linear combinations of these com- OUTLOOK
ponents are of first order, leads to the solution of the Ernst In this paper, we were able to show that a large class of
equation Riemann—Hilbert problems for the Ernst equation can be
€ solved in closed form in terms of hyperelliptic theta func-
(C] ¢ (w(t)+u) tions. Thus the task of solving a boundary value problem
f(Z,EZ exp(—. f In dew@_); with analytic boundary data for the Ernst equation is essen-
) € (0(™)+U) 2mi Jr tially reduced to the identification of the jump dakan (9).
€' The explicit form of the obtained solutions offers moreover

(27)  the possibility for a new approach to the solution of bound-
_ + ary value problems: one can enter the boundary conditions
here the paths betwe¢Ry,> '] and[Po, "] are the same directly with solutions of the form{27), and has to identify

in all integrals and have the same projection into the COMie functionG and the branch pOiNtE; from the resulting
plex plane(i.e. one is the involuted of the other '

The above forms a subclass of solutions of the class di transcendental equation. Whether this is actually possible is

) ) ; Showever an open question.
cussed in[4]. It is suggested by the construction that the In the limit g—e° (i.e. if the components of are quo-

I_Ernst potential is regullar at the branch points if they do_ noEients of non-polynomial holomorphic functipnthe result-
lie on the contoul” which was proven if4] by an analysis L o
of the theta functions at these points. Moreover, it wadnd SurfaceC will no longer be compact. A generalization to

shown that the only possible singularities of the Ernst potenthis case is not straightforward. It can be seen, however, that

tials (27) except forT, can occur wher®[,](w(% ) +u) the hyperelliptic solutions are dense in the topological space

—0. At the contour” z the limiting valueséc/)f the Ernst po of solutions that are generated via Riemann—Hilbert prob-

s ) 2 . T ith “hol hic” j . Th i i

il an i ervcies aro anayic . n caset, s oih helomarie’ mp dae, The most neresing

lfFv;/iItlhgnll;nl;ttlenlg'(;Ilggﬁccgr:t?r?uaj?tlrE)z(l)]tegc:IL?ellt%trig}E/(;?/rr]r:(-)ur problems that have a solution in terms of hyperelliptic func-
z : )

) ) ) o L tions of finite genus. It seems plausible that the lighit o
metric ;olutmns were identified withi@?). From_ the rela.-. corresponds to the solutions constructed by Woodhouse and
tions given there, one can recover the respective conditio

X AR X nI§Iason[9] in non—Hausdorffian Twistor spacébe relation
for gl]e JymEdKatfa an'B of_t;e_m_atniRlemann—H|Ibert to these will have to be investigated in the futur€he ad-
proA em:a( )I_“( ). B(=K)= Bd( ).h il . vantage of the theta functions for finite genus is, however,
S an example, we want to consider t € rgidly rotating o the expression for the Ernst potential can be evaluated
dust disk of radiupy and dust parameter, which is a com-

S i . numerically without problems. Moreover it is possible for a
bination of the angular velocity, the radipg and the central iven solution(as was shown ifi4]) to identify physically
redshift of the disk. Neugebauer and Meinel showed that th teresting regions in a spacetime like ergospheres
corresponding solution to the Ernst equation can be obtained '
on a hyperelliptic Riemann surface of genus 2 with branch
pointsE;=—+(i—»)/v, E;=—F; andF,=E;. The char-
acteristic has the forrﬁi’ (1’], I' is the covering of the imagi- We thank J. Frauendiener and H. Pfister for carefully
nary axis between-ipg,ipg in the +-sheet, ands is given  reading the manuscript.
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