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Explicit solution of Riemann-Hilbert problems for the Ernst equation
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~Received 2 September 1997; published 18 December 1997!

Riemann–Hilbert problems are an important solution technique for completely integrable differential equa-
tions. They are used to introduce a free function in the solutions which can be used at least in principle to solve
initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann–
Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation,
however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to
a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example
we discuss the rigidly rotating dust disk.@S0556-2821~98!01904-3#

PACS number~s!: 04.20.Jb, 02.10.Rn, 02.30.Jr
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The stationary axisymmetric Einstein equations
vacuum are of great physical importance since the exterio
stars and galaxies in thermodynamical equilibrium is
scribed by solutions to these equations. The matter sou
lead to boundary value problems for the vacuum equati
which are equivalent to an integrable equation for a comp
potential, the Ernst equation. The standard approach to s
initial or boundary value problems to integrable equatio
consists of two steps: translate the problem into a Riema
Hilbert problem in the space of the so called spectral par
eter, and then solve it explicitly in order to get the want
solution to the original problem. This is however very i
volved in practice since there is no direct way to relate
boundary data to the ‘‘jump data’’ of the Riemann–Hilbe
problem. But even if this can be done as in the case of
rigidly rotating dust disk@1#, the solution to the Riemann–
Hilbert problem is equivalent to the solution of a linear int
gral equation that cannot be given explicitly in general.

In the case of the Ernst equation, it is however possible
perform this second step in the solution process for bound
value problems in closed form for a large class of functio
as will be shown in the present paper. In standard man
we treat the Ernst equation as the integrability condition
an overdetermined linear differential system for
232 –matrix F. We formulate the Riemann–Hilbert prob
lem for this matrix in a way that one of the components ofF
gives a solution to the Ernst equation containing a free fu
tion. Exploiting the gauge freedom of the linear system,
show that the matrix Riemann–Hilbert problem is gau
equivalent to a scalar problem on a hyperelliptic Riema
surface if the jump data entering the Riemann–Hilbert pr
lem are polynomials. The latter can always be solved
closed form~see @2,3#! in terms of theta functions which
leads to a class of solutions discussed in@4#. We demonstrate
how the rigidly rotating dust disk@1# fits within this scheme.

THE RIEMANN –HILBERT PROBLEM FOR THE ERNST
EQUATION

The vacuum metric in the stationary and axisymme
case can be written in the Weyl–Lewis–Papapetrou fo
~see@5#!
570556-2821/97/57~2!/857~6!/$15.00
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ds252e2U~dt1adf!21e22U~e2k~dr21dz2!1r2df2!,
~1!

wherer andz are Weyl’s canonical coordinates and] t and
]f are the two commuting~asymptotically! timelike and
spacelike Killing vectors, respectively. In this case, the fie
equations are equivalent to the Ernst equation for the po
tial f wheref 5e2U1 ib, and the real functionb is related to
the metric functions viabz52(i/r)e4Ua,z . Here the com-
plex variablez stands forz5r1 iz. With these settings, the
Ernst equation reads

f z z̄1
1

2~z1 z̄ !
~ f z̄1 f z!5

2

f 1 f̄
f zf z̄ , ~2!

where a bar denotes complex conjugation in C.̄ With a solu-
tion of the Ernst equation, the metric functionU follows
directly from the definition of the Ernst potential whereasa
andk can be obtained fromf via quadratures.

Complete integrability of an equation means that it can
treated as the integrability condition of an overdetermin
linear differential system that contains an additional comp
parameter, the so called spectral parameter, that reflect
underlying symmetry of the Ernst equation. In the case of
Ernst equation, we use the linear system for the 232 –matrix
F of @6#:

F~K,m0 ;z, z̄ ! ,z5H S N 0

0 M D
1

K2 i z̄

m0
S 0 N

M 0 D J F~K,m0 ;z, z̄ !,

~3!
857 © 1997 The American Physical Society
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858 57C. KLEIN AND O. RICHTER
F~K,m0 ;z, z̄ ! , z̄5H S M̄ 0

0 N̄
D

1
K1 iz

m0
S 0 M̄

N̄ 0
D J F~K,m0 ;z, z̄ !.

~4!

Here the spectral parameterK lives on a family of Riemann
surfacesL(z, z̄ ) of genus zero parametrized byz and z̄ , and
given by m0

2(K)5(K2 i z̄ )(K1 iz). A point onL[L(z, z̄ )

is denoted byP5„K,m0(K)… with KPC̄. The functionsM
andN depend only onz and z̄ but not onK, and have the
form

M5
f z

f 1 f̄
, N5

f̄ z

f 1 f̄
~5!

where f is again the Ernst potential.
It is possible to use the existence of the above linear s

tem for the construction of solutions to the Ernst equati
To this end one investigates the singularity structure of
matricesFzF

21 andF z̄F21 @F[F(K,m0 ;z, z̄ )# with re-
spect to the spectral parameter and infers a set of condit
for the matrixF that satisfies the linear system~3! and ~4!.
This is done~see e.g.@7#! below.

Theorem 1.Let F be subject to the following conditions
I. F(P) is holomorphic and invertible in a neigbourhoo

of the branch pointsP052 iz and P̄0 such that the logarith-
mic derivativeFzF

21 diverges as (K1 iz)21/2 at P0 and
F z̄F21 as (K2 i z̄ )21/2 at P̄0 .

II. All singularities of F on L ~poles, essential singulari
ties, zeros of the determinant ofF, branch cuts and branc
points! are regular which means that the logarithmic deriv
tives FzF

21 andF z̄F21 are holomorphic there.
III. F is subject to the reduction condition

F~Ps!5s3F~P!g ~6!

wheres is the involution onL that interchanges the sheet
s3 is the third Pauli matrix, andg is an invertible matrix
independent ofz and z̄ .

IV. The normalization and reality condition

F~P5`1!5S f̄ 1

f 21
D . ~7!

Then the functionf in ~7! is a solution to the Ernst equation
A proof can be found for instance in@7#. Without loss of

generality, we can choose the matrixg to be the Pauli matrix
s1 . This implies the following.

Corollary 1. Let F(P) be a matrix subject to the cond
tions of Theorem 1 andC(K) be a 232 matrix that only
depends onKPC̄ with the properties

C~K !5a1~K !1̂1a2~K !s1 ,

a1~`!51, a2~`!50. ~8!
s-
.
e

ns

-

Then the matrixF8(P)5F(P)C(K) also satisfies the con
ditions of Theorem 1 andF8(`1)5F(`1).

In other words: matricesF which are related through th
multiplication from the right by a matrixC of the above form
lead to the same Ernst potential though their singula
structure may be vastly different~the functionsa i need not
be holomorphic!. Therefore this multiplication is called a
gauge transformation.1

Theorem 1 can be used to construct solutions to the E
equation by determining the structure and the singularitie
F in accordance with the conditions I to IV. In the prese
paper, we will only consider cuts as singularities ofF, i.e.
we concentrate on a matrix Riemann–Hilbert problem onL
which can be formulated as follows~for different formula-
tions of Riemann–Hilbert problems for the Ernst equati
see @8,9# and references given therein!: Let G be a set of
~orientable piecewise smooth! contours Gk,L (k
51, . . . ,l ) such that withPPG also P̄PG andPsPG. Let
Gk(P) be matrices onGk with Hölder-continuous compo-
nents and nonvanishing determinant subject to the rea
condition Gi i ( P̄)5 Ḡi i (P) for the diagonal elements, an
Gi j ( P̄)52 Ḡi j (P) for the offdiagonal elements, andG(Ps)
5s1G(P)s1 . Both G andG have to be independent ofz, z̄ .
The matrix F has to be everywhere regular except at t
contourG where the boundary values on both sides of
contours~denoted byF6! are related via

F2~P!5F1~P!Gi~P!uPPG i
. ~9!

It may be easily checked that a matrixF constructed in
this way satisfies the conditions of Theorem 1. Furtherm
it can be seen from the Theorem that the only possible
gularities of the Ernst potential can occur where the con
tions are not satisfied, i.e. whereF cannot be normalized o
whereP0 coincides with one of the singularities ofF, in our
case the contourG. The latter makes the Riemann–Hilbe
problem very useful if one wants to solve boundary va
problems for the Ernst equation: choose the contourG in a
way that P0PG just corresponds to the contourGz in the
meridian (z, z̄ ) plane where the boundary values are p
scribed. The Ernst potential will not be continuous at th
contour, but its boundary values will be bounded. Not
however that the Ernst potential will not necesssarily be s
gular if P0 coincides with a singularity ofF ~it may be e.g.
pure gauge!. Theorem 1 merely ensures that the solution w
be regular at all other points.

GAUGE TRANSFORMATION OF THE
RIEMANN –HILBERT PROBLEM

The Riemann–Hilbert problem can be used to gene
solutions to the Ernst equation that apparently contain f
real valued free functions, the components of the matrixG.

1Notice that different forms of the linear system~3!, ~4! ~see e.g.
@8#! are known which are related through gauge transformatio
The choice of the linear system here, which implies the conditi
of Theorem 1, does not fix the gauge uniquely. It is this remain
gauge freedom to which we refer here and in the following.
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57 859EXPLICIT SOLUTION OF RIEMANN-HILBERT . . .
The remarks on the gauge freedom of the matrixF indicate
however that two of them are related to gauge transfor
tions. It seems plausible that one can choose a gaug
whichG has only two independent components. For insta
one can show thatG is gauge equivalent toG8 which has the
form

G85S a 0

b 1D ~10!

for the jump matrices on the contours in the upper sh
which is the form used by Neugebauer and Meinel~see@10#!.
The fact thatG can—for any solvable Riemann–Hilbe
problem—be brought into the form~10! follows directly
from the properties of the gauge transformation~8!. We have
to show that the Riemann–Hilbert problem at the contourG,

GC25C1G8, ~11!

with G8 of the form ~10! is solvable which is however th
case~not necessarily uniquely!. Thus it is possible to reduc
the freedom in the Riemann–Hilbert problem to two re
valued functions without changing the singularity structu
of F which is everywhere regular except at the contourG.
The obvious disadvantage of this formulation of the mat
Riemann–Hilbert problem is however that such proble
cannot be solved explicitly in general. ForbÞ0, this prob-
lem is equivalent to a linear integral equation~see e.g.@3#!.
Only for b50, an explicit solution can be given. In this ca
one is led to the static solutions of the Weyl class.

However, for the purposes of the Ernst equation, one m
go one step further for a large class of Riemann–Hilb
problems if one drops the condition that the gauge tra
formed matrixF8 has the same singularity structure as t
original matrix in ~9!. We will prove this next.

Theorem 2.Let the conditions for~9! hold and let the
projection of the contourG into the complex plane consist o
one simple smooth arc. The components of the matrixG shall
be quotients of holomorphic functions. Then the mat
Riemann–Hilbert problem~9! on L is gauge equivalent to a
problem with the diagonal matrixG85diag(G,1) ~on the con-
tours in the copies of the upper sheet! on a two sheeted
coveringL̂ of L, whereG is a Hölder-continuous function
on G.

Proof. The proof uses again the explicit construction
the gauge transformation which takes the form

~G111G121G211G22!~a11a2!25~G11!~a11a2!1,
~12!

~G112G122G211G22!~a12a2!25~G11!~a12a2!1,
~13!

~G112G121G212G22!~a12a2!25~G21!~a11a2!1,
~14!

~G111G122G212G22!~a11a2!25~G21!~a12a2!1.
~15!

As already mentioned, this system will in general not hav
solution if thea i are holomorphic except atG. We therefore
make the ansatz
a-
in
e

et

l

s

y
rt
s-

f

a

a11a2

a12a2
5l expS 1

2p i EG

dK8

K2K8
ln
G111G121G211G22

G112G122G211G22
D

~16!

wherel is a possibly multivalued function ofKPC̄ alone.
With this ansatz, we can solve the above system and de
mine G andl:

l5A~G112G121G212G22!~G112G122G211G22!

~G111G122G212G22!~G111G121G211G22!
,

~17!

G11

G21
5A~G112G122G211G22!~G111G121G211G22!

~G112G121G212G22!~G111G122G212G22!
.

~18!

In an abuse of notation, we have denoted here the ana
continuation of theGi j ~which is obvious since the function
are assumed to be quotients of holomorphic functions! with
the same symbol as the functions that were originally o
defined onG ~this is still the case for the functionG!. Writ-
ing l in the forml25F/H whereF andH are holomorphic
functions~which is possible by assumption!, one can recog-
nize that the whole system has to be considered on the
mann surfaceL̂ given by

m̂2~K !5F~K !H~K !. ~19!

This is a two–sheeted covering of the two–sheeted surfacL
on which the spectral parameter varies, and thus a fo
sheeted covering of the complex plane. It is on this surf
that the gauge transformed matrixF8 and the functionl are
single valued.

In other words, it is always possible to transform t
Riemann–Hilbert problem with ‘‘holomorphic’’ jump data
to diagonal form. The price one has to pay for this is t
introduction of a four-sheeted Riemann surfaceL̂ since oth-
erwise the gauge transformation would be multivalued. T
condition that the projection ofG into the complex plane
consists of only one arc can be replaced by the condition
the analytic continuations of theGi j coincide on all contours
Gk .

EXPLICIT SOLUTION OF THE RIEMANN –HILBERT
PROBLEM IN TERMS OF HYPERELLIPTIC

THETA FUNCTIONS

In the following, we will restrict ourselves to the case
which the Riemann surfaceL̂ given by~19! has a finite num-
ber 2g of branch points~which implies that it is compact!,
the defining equation for the surfaceL̂ being

m̂25)
i 51

g

~K2Ei !~K2Fi !. ~20!

As can be seen from~17!, this will be the case if the com
ponents ofG are quotients of polynomials. Since any hol
morphic function can be approximated by polynomials, t
resulting solutions will lie dense in the topological space
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860 57C. KLEIN AND O. RICHTER
solutions to the Ernst equation with holomorphic bound
data atGz . We will show below that the class of solution
one may construct using this additional assumption is v
rich and contains e.g. the recently obtained solution for
rigidly rotating disk of dust.

The reality condition on theGi j implies Ei5 F̄ i . We will
concentrate on regular Riemann surfaces which means
all branch points have multiplicity 1 since coinciding bran
points can be treated as a limiting case. This is the w
known soliton limit that can also be obtained with the help
Bäcklund transformations~see e.g.@11#!, and leads to the so
called multi-black-hole solutions which contain the Kerr s
lution.

With these assumptions, the above results can be use
the construction of explicit solutions to the Ernst equatio
The procedure for solving the Riemann–Hilbert problem
L̂ follows basically the construction of finite gap solutio
for the sine–Gordon equation~see e.g.@12#! that was used in
@7# to get the corresponding solutions to the Ernst equat
To construct a single-valued solution to the Rieman
Hilbert problem on the surfaceL̂, we introduce an auxiliary
~hyperelliptic! Riemann surfaceLH5L̂/s obtained by fac-
torizing L̂ with respect to the involutions on L that has a
natural lift to L̂. This hyperelliptic surface of genusg is
given by

mH
2 5~K2 i z̄ !~K1 iz!)

i 51

g

~K2Ei !~K2Fi ! ~21!

since the fixed points of the involution become branch po
on the factorized surface. To work with the surfaceLH has
the advantage that all quantities can be expressed the
terms of explicit integrals since one can use the powe
calculus of hyperelliptic Riemann surfaces, see@2,13#. This
means that we are working with the three surfacesL, L̂ and
LH and denote the points on the surfaces byP
5„K,m0(K)…, P̂5„K,m0(K),m̂(K)… and PH5„K,mH(K)…
respectively.

On LH , we introduce the standard quantities associa
with a Riemann surface, namely with a canonical cut sys
~see@13#! theg normalized differentials of the first kind dv i
defined by rai

dv j52p id i j , and the Abel mapv i(P)

5*P0

P dv i . Furthermore, we define the Riemann matrixP

with the elementsp i j 5rbi
dv j , and the theta function

Q@b
a#(z)5(NPZgexp$1

2^P(N1a/2),(N1 a/2)&1^(z1p ib),
(N1 a/2)&% with half integer characteristic@b

a# and a i ,b i

50,1 (̂ N,z&5( i 51
g Nizi). The normalized~all a-periods

zero! Cauchy analogue with poles inP and P0 will be de-
noted by dvPP0

. Let D be the divisor of zeros of the functio

H in ~19!, u be the vector with the componentsui
51/(2p i) *G ln Gdvi andK be the Riemann vector. Then th
function c given by

c~PH!5c0

Q„v~PH!1u2v~D !2K…

Q„v~PH!2v~D !2K…

3expS 1

2p i EG
ln GdvPHP0D ~22!
y

y
e

at

ll
f

-

for
.
n

n.
–

s

in
l

d
m

is single-valued onLH , has g poles at the points of the
divisor D and a discontinuity at the contourG of the form
~see@2#!

c25c1GuG . ~23!

Here the path of integration betweenP0 andP has to be the
same for all integrals, andc0 is a normalization constant.

It can be easily seen thatc(PH) is a single-valued func-
tion on LH : the difference of two paths of integration be
tweenP0 and P can be represented as a linear combinat
of the a- andb-cuts since they are a basis of the homolog
Therefore, by a change of the integration path, the theta q
tient will be multiplied by exp(2^N,u&), but this term is just
compensated by the integral in the exponent. The anal
properties ofc follow from the definition of the Abelian
differentials and the properties of the theta function. By de
nition, the divisor D is non-special which means tha
Q„v(PH)2v(D)2K… does not vanish identically. The lat
ter cannot be said in the general case ofQ„v(PH)1u
2v(D)2K…. If this function is identically zero for givenz,
z̄ , the theta function has to be replaced by its first no
vanishing partial derivative~see@2#!.

However, the functionm0(PH)8m0pr1(PH)5m0(K) is
not single-valued onLH since it changes the sign at eve
a-cut there. The same holds for the function

x~PH!5x0

Q„v~PH!1u2v~ P̄0!2v~D !2K…

Q„v~PH!2v~D !2K…

3expS 1

2p i EG
ln GdvPHP0D , ~24!

wherex0 is again a normalization constant. This can be se
in the proof of the single-valuedness ofc. Except for the
behavior at thea-cuts, the analytic properties ofx are iden-
tical to those ofc. Both functionsm0 and x are however
single-valued onL̂ which can be viewed as two copies ofLH

cut along @P0 ,P̄0# and glued together along this cut. W
define a vectorX on L̂ by fixing the sign in front ofx in the
vicinity of the pointsP0

6PL̂,

X~ P̂!5S c~ P̂!

6x~ P̂!
D , P̂→P0

6 . ~25!

With the help of this vector, we can construct a matrixF on
L via

F~P!5~X„K,m0~K !,1m̂~K !…,X„K,m0~K !,2m̂~K !…!,
~26!

where the signs are again fixed in the vicinity ofP0
6 . Let us

show thatF(P) satisfies the conditions of Theorem 1. Firs
this ansatz is in accordance with the reduction condition~6!
@this is in fact the reason why one has to define the funct
x in the way ~24!#. The behavior at the singularities is a
required in condition II. For the contourG, this is obvious.
At the branch pointsEi andFi , one gets the following be-
havior: at pointsPi of the divisorD, the components ofF
have a simple pole, and the determinant diverges asK
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57 861EXPLICIT SOLUTION OF RIEMANN-HILBERT . . .
2Pi)
21/2. At the remaining branch points, the compone

are regular but the determinant vanishes as (K2Pi)
1/2. Since

F in ~26! is only a function ofP, it will not be regular at the
cuts @Ei ,Fi #. At the a–cuts, we getF25F1s1uai

. The

logarithmic derivatives with respect toz and z̄ are however
holomorphic at all these points. Normalizingc and x ~if
possible! in a way thatc(`H

2)51 andx(`H
2)521 and ob-

serving that the reality condition is satisfied due to the rea
properties ofL̂ and the Riemann–Hilbert problem, we fin
that F is indeed in accordance with all conditions of The
rem 1. We may summarize these results.

Theorem 3. Let @e8
e

#5v( P̄0)1v(D)1K and
Q@e8

e
#(v(`2)1u)Þ0. Then the Riemann–Hilbert problem

as formulated in~9! where the components of the jump m
trix G are quotients of polynomials, and where the ze
respectively poles of the linear combinations of these co
ponents are of first order, leads to the solution of the Er
equation

f ~z, z̄ !5

QF e
e8G„v~`1!1u…

QF e
e8G„v~`2!1u…

expS 1

2p i EG
ln Gdv`1`2D ;

~27!

here the paths between@P0 ,`2# and@P0 ,`1# are the same
in all integrals and have the same projection into the co
plex plane~i.e. one is the involuted of the other!.

The above forms a subclass of solutions of the class
cussed in@4#. It is suggested by the construction that t
Ernst potential is regular at the branch points if they do
lie on the contourG which was proven in@4# by an analysis
of the theta functions at these points. Moreover, it w
shown that the only possible singularities of the Ernst pot
tials ~27! except forGz can occur whereQ@e8

e
#„v(`2)1u…

50. At the contourGz , the limiting values of the Ernst po
tential and its derivatives are analytic ifEi¹G. In caseEi
PG, the limiting value of the Ernst potential at the conto
Gz will only be Hölder–continuous. In@4#, equatorially sym-
metric solutions were identified within~27!. From the rela-
tions given there, one can recover the respective condit
for the jump dataa and b of the matrix Riemann–Hilber
problem:a(2K)5a(K), b(2K)52b(K).

As an example, we want to consider the rigidly rotati
dust disk of radiusr0 and dust parametern, which is a com-
bination of the angular velocity, the radiusr0 and the central
redshift of the disk. Neugebauer and Meinel showed that
corresponding solution to the Ernst equation can be obta
on a hyperelliptic Riemann surface of genus 2 with bran
points E152A(i2n)/n, E252F1 and Fi5 Ēi . The char-
acteristic has the form@1

0
1
0#, G is the covering of the imagi-

nary axis between2 ir0 ,ir0 in the 1-sheet, andG is given
ur
s

y

s
-

st

-

s-

t

s
-

ns

e
ed
h

by G5@A11n2(11X2)21n(11X2)#2 in dimensionless co-
ordinatesr/r0 and z/z0 . Inverting the relations~17! and
~18!, we get the coefficientsa and b of the original matrix
Riemann–Hilbert problem Neugebauer and Meinel w
able to obtain from the boundary value problem for the r
idly rotating dust disk,

a5
1

112n2SA11
1

n2
11D ~K211!

,

b52& in2K~K211!aAA11
1

n2
11. ~28!

OUTLOOK

In this paper, we were able to show that a large class
Riemann–Hilbert problems for the Ernst equation can
solved in closed form in terms of hyperelliptic theta fun
tions. Thus the task of solving a boundary value probl
with analytic boundary data for the Ernst equation is ess
tially reduced to the identification of the jump dataG in ~9!.
The explicit form of the obtained solutions offers moreov
the possibility for a new approach to the solution of boun
ary value problems: one can enter the boundary conditi
directly with solutions of the form~27!, and has to identify
the functionG and the branch pointsEi from the resulting
transcendental equation. Whether this is actually possibl
however an open question.

In the limit g→` ~i.e. if the components ofG are quo-
tients of non-polynomial holomorphic function!, the result-
ing surfaceL̂ will no longer be compact. A generalization t
this case is not straightforward. It can be seen, however,
the hyperelliptic solutions are dense in the topological sp
of solutions that are generated via Riemann–Hilbert pr
lems with ‘‘holomorphic’’ jump data. The most interestin
question will be of course to identify the boundary val
problems that have a solution in terms of hyperelliptic fun
tions of finite genus. It seems plausible that the limitg→`
corresponds to the solutions constructed by Woodhouse
Mason@9# in non–Hausdorffian Twistor spaces~the relation
to these will have to be investigated in the future!. The ad-
vantage of the theta functions for finite genus is, howev
that the expression for the Ernst potential can be evalua
numerically without problems. Moreover it is possible for
given solution~as was shown in@4#! to identify physically
interesting regions in a spacetime like ergospheres.
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