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Brans-Dicke wormholes in the Jordan and Einstein frames
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We examine the possibility of static wormhole solutions in the vacuum Brans-Dicke theory both in the
original ~Jordan! frame and in the conformally rescaled~Einstein! frame. It turns out that, in the former frame,
wormholes exist only in a very narrow interval of the coupling parameter, viz.,23/2,v,24/3. It is shown
that these wormholes are not traversable in practice. In the latter frame, wormhole solutions do not exist at all
unless energy conditions are violated by hand.
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I. INTRODUCTION

Over the last few years, considerable interest has grow
the field of wormhole physics, following especially the sem
nal works of Morris, Thorne, and Yurtsever@1,2#. Worm-
holes are topology changes that connect two asymptotic
flat regions. Potential applications of wormhole phys
range from the interpretation of gravitational lensing effe
to the resolution of several outstanding problems in cosm
ogy @3–5#.

In the context of traversable wormholes, a crucial issu
the constraint upon the violation of energy conditions by
stress tensor of quantum or classical fields. There exist
eral pointwise and average energy conditions@6#. Specifi-
cally, for quantum fields, Ford and Roman@7# have pro-
posed, on the basis of certain assumptions, an inequality
constrains the magnitude of the negative energy densit
the throat of a traversable wormhole. A fundamental assu
tion for quantum wormholes is that the stress energy of
spacetime is a renormalized expectation value of the ene
momentum operator in some quantum state, say,uc&. In the
literature@8#, one actually considers field equations of sem
classical gravity in the formGmn58p^cuTmnuc&. However,
some doubts have been raised, notably by Unruh@9#, as to
whether field equations in this form could be an exact
scription of gravity@10#. On the other hand, quantized sour
fields obey well-defined uncertainty relations and it is e
pected that uncertainty in the source would induce unc
tainty in the gravidynamic variables and in the light co
structure of spacetime@11,12#. If the source is taken a
^Tmn&, such fluctuations would not occur. Despite the
questions, it must be emphasized that field equations in
above form provide a very good approximation in ma
physical situations, especially in the description of the ea
universe@13#.

There also exist classical fields playing the role of ‘‘exo
matter’’ that violates the weak energy condition~WEC!, at
least at the throat of the wormhole. Examples are provi
by the stress-energy tensors occurring in theories where
action containsR1R2 terms@14#, an antisymmetric 3-form
axion field coupled to scalar fields@15#, and minimally
570556-2821/97/57~2!/823~6!/$15.00
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coupled fields with a self-interacting potential@16#. Other
theories include string-inspired four-dimensional grav
coupled nonminimally to a scalar field@17#, Zee’s induced
gravity @18#, and the Brans-Dicke scalar-tensor theory@19#.
Most of the works concentrate on dynamic wormholes, wh
work on static wormholes is relatively scarce. In particul
in the Brans-Dicke theory, a search for static wormholes
been initiated only recently@20,21#, followed by Anchor-
doqui, Bergliaffa, and Torres@22#. Considering the impor-
tance of Brans-Dicke theory in the interpretation of vario
physical phenomena@23–25# and owing to the fact that, in
the limit v→`, one recovers general relativity, it is onl
desirable that a thorough study of classical wormhole so
tions be undertaken in this theory.

In this paper, we intend to examine wormhole solutions
the Jordan and Einstein frames which are defined as foll
@26#: The pair of variables~metric gmn , scalarw! defined
originally in the Brans-Dicke theory constitute what is call
a Jordan frame. Consider now a conformal rescaling

g̃mn5 f ~w!gmn , f5g~w!, ~1!

such that, in the redefined action,f becomes minimally
coupled tog̃mn for some functionsf (w) andg(w). Then the
new pair (g̃mn ,f) is said to constitute an Einstein fram
There exist different viewpoints as to the question of wh
of these two frames is physical, but the arguments of M
nano and Sokol”owski @26# seem convincing enough in favo
of the physicality of the Einstein frame.

In what follows, we shall be concerned only with stat
spherically symmetric solutions of the Brans-Dicke theo
For this purpose, only a class I type of solution is consider
other classes~II–IV ! of solutions can be dealt with in a sim
lar way. Our results are stated as follows. In Sec. II,
consider the Jordan frame and derive the general cond
for the existence of wormholes. This condition is then us
to find wormhole ranges ofv in specific cases. Section II
shows that these wormholes are not traversable due to
occurrence of a naked singularity. The Einstein frame is c
823 © 1997 The American Physical Society



n
is

he
o
ica

e-
o
a
ic
-
ou
g
e

o
te

-
te

as

m

by

he

824 57NANDI, BHATTACHARJEE, ALAM, AND EVANS
sidered in Sec. IV, and it is shown that wormhole solutio
do not exist at all in that frame. The last section, Sec. V,
summary.

II. JORDAN FRAME

In order to investigate the possibility of wormholes in t
vacuum~matter-free! Brans-Dicke theory, it is convenient t
cast the spacetime metric in the Morris-Thorne canon
form

dt252e2F~R!dt21F12
b~R!

R G21

dR21R2dV2
2,

dV2
25du21sin2udw2, ~2!

whereF(R) andb(R) are redshift and shape functions, r
spectively. These functions are required to satisfy some c
straints, enumerated in@1#, in order that they represent
wormhole. It is, however, important to stress that the cho
of coordinates~Morris-Thorne! is purely a matter of conve
nience and not a physical necessity. For instance, one c
equally well work directly with isotropic coordinates usin
the analyses of Visser@6#, but the final conclusions would b
the same. Nonetheless, it must be understood that a m
appropriate procedure should involve coordina
independent proper quantities.

The matter-free action in the Jordan variables is (G5c
51)

S5
1

16p E d4x~2g!1/2@wR2w21v~w!gmnw ,mw ,n#.

~3!

The field equations are

h2w50,

Rmn2
1

2
gmnR52

v

w2 Fw ,mw ,n2
1

2
gmnw ,rw ,rG

2
1

w
@w ;m;n2gmnh2w#, ~4!

where h2[(w ;r) ;r and v is a dimensionless coupling pa
rameter. The general solution, in isotropic coordina
(r ,u,w,t), is given by

dt252e2a~r !dt21e2b~r !dr21e2n~r !r 2dV2
2. ~5!

Brans class I solutions@27# correspond to the gaugeb2n
50 and are given by

ea~r !5ea0F12B/r

11B/r G
1/l

, ~6!

eb~r !5eb0F11
B

r G2F12B/r

11B/r G ~l2C21!/l

, ~7!

w~r !5w0F12B/r

11B/r G
C/l

, ~8!
s
a

l

n-

e

ld

re
-

s

l2[~C11!22CS 12
vC

2 D.0, ~9!

wherea0 , b0 , B, C, andw0 are constants. The constantsa0
and b0 are determined by asymptotic flatness condition
a05b050.

Redefining the radial coordinater→R in the metric~5! as

R5reb0F11
B

r G2F12B/r

11B/r G
V

, V512
C11

l
, ~10!

we obtain the following functions forF(R) andb(R):

F~R!5a01
1

l F lnH 12
B

r ~R!J 2 lnH 11
B

r ~R!J G , ~11!

b~R!5RF12H l$r 2~R!1B2%22r ~R!B~C11!

l$r 2~R!2B2% J 2G .
~12!

The throat of the wormhole occurs atR5R0 such that
b(R0)5R0 . This gives minimum allowedr -coordinate radii
r 0

6 as

r 0
65a6B, ~13!

a65~12V!6AV~V22!. ~14!

The valuesR0
6 can be obtained from Eq.~10! using thisr 0

6 .
Noting that R→` as r→`, we find thatb(R)/R→0 as
R→`. Also, b(R)/R<1 for all R>R0

6 . The redshift func-
tion F(R) has a singularity atr 5r S5B. In order that a
wormhole be just geometrically traversable, the minimu
allowed valuesr 0

6 must exceedr S5B. It can be immediately
verified from Eq.~10! that r 0

6>B⇒R0
6>0. This is possible

only if the range ofV is chosen either as2`,V<0 or as
2,V,`. We shall not consider the latter range here.

The energy density of the wormhole material is given
@1#

r~R!5~8pR22!~db/dR!, ~15!

and a straightforward calculation gives

db/dR54r 2~R!B2@r 2~R!2B2#22V~22V!

54r 2~R!B2@r 2~R!2B2#22F12S C11

l D 2G .
~16!

Therefore, the most general condition for the violation of t
WEC is that

C~v!11.l~v!, ~17!

where the real functionC(v) is as yet unspecified. As long
as the general condition~17!, which ensuresR0

6.0, is satis-
fied, it follows that

b085
db

dRU
R5R

0
6

521, ~18!
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57 825BRANS-DICKE WORMHOLES IN THE JORDAN AND . . .
so thatr05ruR5R
0
6,0, and a violation of the WEC at th

throat is achieved thereby. In the limitr 0
6→B1, or, equiva-

lently, R0
6→01, one obtainsr0→2`. This means that

there occurs an infinitely large concentration of exotic ma
at the throat when itsr radius is in the vicinity of the
Schwarzschild radiusr s5B. No upper limit to this classica
negative energy density is known to us. The general pro
for r(R) for a given wormhole configuration is thatr(R)
attains its maximum at the throat and falls off in an inve
square law as one moves away from the throat to
asymptotic region.

The constraint~17! can be rephrased, using Eq.~9!, as

C~v!F12
vC~v!

2 G.0, ~19!

and depending on the form ofC(v), this inequality fixes the
range of wormhole values ofv, provided one excludes th
forbidden range coming from the requirement thatl2.0. A
further exclusion of the rangev<23/2 comes from a
‘‘physical’’ requirement that the theory be transferrable
Einstein frame @26#. In the limiting case, C(v)→0,
l(v)→1 asv→`, one simply recovers the Schwarzsch
exterior metric in standard coordinates from Eqs.~11! and
~12!, so thatb(R)52M and b0850. The inequality~19! is
violated, and there occurs no traversable wormhole, a
well known @1#.

The analysis of Agnese and La Camera@20# corresponds,
as pointed out earlier@21#, to the choice

C~v!52
1

v12
, ~20!

which suggests, via Eq.~19!, a wormhole rangev,24/3.
The forbidden range turns out to be22,v,23/2, which is
already a part of the unphysical rangev<23/2. Therefore,
one is left with a very narrow actual interval for wormho
solutions, viz.,23/2,v,24/3. It appears that the autho
just missed this interval.

We should recall here that Eq.~20! is derived on the basis
of a weak field~post Newtonian! approximation and there i
no reason for Eq.~20! to hold for stars with a strong field
such as neutron stars. In reality, if we assume such a res
tion as Eq.~20!, the junction conditions for the metric an
scalar field are not satisfied at the boundary of the stars@28#.
Evidently, any form forC(v) different from Eq.~20! would
lead to a different wormhole interval forv. For example, in
the context of gravitational collapse in the Brans-Dic
theory, Matsuda@28# chose C(v)}2v21/2. Let us take
C(v)52qv21/2 and chooseq,0 such thatC(v).0. Then
the constraint~19! will be satisfied only if v.4/q2. The
exact form ofC(v) should be known aa priori from other
physical considerations. However, this is just a tentative
ample and is meant to highlight how crucially the wormho
range forv depends on the form ofC(v).

The constraint~17! is based only on the requirement
geometric traversability, i.e., on the requirement that
throat radii be larger than the event horizon radiusr 5B.
Therefore, an immediate inquiry is whether such wormho
are traversable in practice. We discuss this issue in the
lowing section.
r
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III. TRAVERSABILITY

In order to get a firsthand idea about traversability in t
Jordan frame, a convenient procedure is to calculate
scales over which wormhole functions change. Ford and
man @7# defined the following quantities at the throatR
5R0 of a traversable wormhole:

r̄ 05R0 , r 15
R0

ub08u
, R25

1

uF08u
, r 35UF08

F09
U. ~21!

These quantities are a measure of coordinate length scal
the throat over which the functionsb(R), F(R), andF8(R)
change, respectively. For the class I solutions, they beco

r̄ 05R0
6 , r 15R0

6 , R250, r 350. ~22!

The vanishing ofR2 and r 3 implies that bothF(R) and
F8(R) exhibit an abrupt jump at the throat. It is therefo
expected that the tidal forces at the throat would be lar
That this is indeed so can be verified by calculating,
example, the differential of the radial tidal acceleration@1#
given in an orthonormal frame (êt ,êR ,êu ,êw) by

DaR52RR̂t̂ R̂t̂j
R, ~23!

where jR is the radial component of the separation vec
and

uRR̂t̂ R̂t̂u5U~12b/R!F2F91
b8R2b

2R~R2b!
F82~F8!2GU.

~24!

For the metric given by Eqs.~11! and ~12!, we find

uRR̂t̂ R̂t̂u5U Br

lR2~r 22B2! F2~12b/R!1/21~12b/R!21/2b8

1
2l~r 21B2!24Br

l~r 22B2! GU. ~25!

At the throat whereb(R0
6)5R0

6 , we haveuRR̂t̂ R̂t̂u→`, and
this impliesDaR→`. As we march away from the throat t
the asymptotic limitr→` or, R→`, we find uRR̂t̂ R̂t̂u→0, as
is to be expected.

Such an infinitely large tidal force at the throat is presu
ably related to the presence of singular null surface or na
singularity in the wormhole spacetime. These wormholes
use a phrase by Visser@6#, are ‘‘badly diseased.’’

The occurrence of singular null surface in the scal
tensor theories is directly related to the ‘‘no-hair theorem
which commonly means that ‘‘black holes have no sca
hair’’ @29#. Early investigations into the no-hair theorem
the Brans-Dicke theory are due to Hawking@30#, Chase@31#,
Teitelboim@32#, and Bekenstein@33#. Recently, Saa@34# has
formulated a new no-hair theorem which basically relies
the assessment of the behavior of scalar curvatureR, which,
for the metric~6! and ~7!, turns out to be

R~r !5
4vC2B2r 4~r 1B!2V26

l2~r 2B!2V12 . ~26!
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826 57NANDI, BHATTACHARJEE, ALAM, AND EVANS
Then it follows thatR→` as r→B1 for CÞ0. In other
words, the scalar curvature diverges asR→01, implying
that this shrunk surface does not represent a black hole
wÞ const. It is instead a naked singularity@34#. On the other
hand, if C→0 and l→1, we have a finite value ofR as
r→B. This means that we have a black hole solution forw
5const, in total accordance with the no-hair theorem.

Generally speaking, wormhole solutions obtain in the J
dan frame because the sign of the energy density is indefi
in that frame. The sign is positive or negative according
C(v)11,l or C(v)11.l. Let us examine the situatio
in the Einstein frame, defined earlier.

IV. EINSTEIN FRAME

Under the conformal transformation

g̃mn5pgmn , p5
1

16p
w, ~27!

and a redefinition of the Brans-Dicke scalar

df5S v1 3
2

a
D 1/2

dw

w
, ~28!

in which we have intentionally introduced an arbitrary p
rametera, the action~3! in the Einstein variables (g̃mn ,f)
becomes

S5E d4x~2g̃!1/2@R̃2ag̃mnf ,mf ,n#. ~29!

The field equations are

R̃mn5af ,mf ,n , ~30!

h2f50. ~31!

The solutions of Eqs.~30! and ~31! can be obtained, using
the transformations~27! and ~28!, as

dt252S 11
B

r D 2bS 12
B

r D 22b

dt21S 12
B

r D 2~12b!

3S 11
B

r D 2~11b!

@dr21r 2dV2
2#, ~32!

f5F S v1 3
2

a
D S C2

l2 D G1/2

lnF12B/r

11B/r G , ~33!

b5
1

l S 11
C

2 D . ~34!

The expression forl2, of course, continues to be the same
Eq. ~9!, and using this, we can rewrite Eq.~33! as

f5F2~12b2!

a G1/2

lnF12B/r

11B/r G . ~35!

Casting the metric~32! into the Morris-Thorne form, we can
find the wormhole throatr radii to be
or

r-
ite
s

-

s

r 0
65B@b6~b221!1/2#. ~36!

For realr 0
6 , we must haveb2>1. Butb251 corresponds to

a nontraversable wormhole sincer 0
6 coincides with the sin-

gular radiusr S5B. From Eq.~35!, it follows that, if a.0
and b2.1, then no wormhole is possible asf becomes
imaginary. This result is quite consistent with the fact th
the stress-energy tensor for massless minimally coupled
lar field f: viz.,

Tmn5a~f ,mf ,n2 1
2 g̃mnf ,sf ,s! ~37!

satisfies all energy conditions@6#. The Einstein frame is thus
called ‘‘physical’’ for which the restrictionv.23/2 follows
from Eq. ~33!.

On the other hand, if we choosea,0, which amounts to
violating all energy conditions by brute force, one may fi
wormholes forb2.1 in Eq. ~35! or, equivalently, forv,
23/2.

We wish to point out a few more relevant points.
~i! Just as in the Jordan frame, the ‘‘no-hair theorem

holds also in the Einstein frame. This can be seen from
expression for scalar curvatureR̃ computed from the metric
~32!:

R̃5
8B2r 4~12b2!

~r 2B!2~22b!~r 1B!2~21b! . ~38!

One can see thatR̃ is negative for wormhole solutions. In th
Schwarzschild limitb→1, R̃ is finite for r→B, and a black
hole solution results, in complete accordance with the
hair theorem@34#. The divergence off at r 5B has been
shown to be physically innocuous@35,36#. Generally, forb
Þ1, R̃→` asr→B. This implies that the surfacer 5B ~or,
R50! is not a black hole surface for nonconstantf. This
conclusion is in agreement with that reached by Agnese
La Camera@37# in a different way.

~ii ! The Arnowitt-Deser-Misner~ADM ! mass of the con-
figuration is defined by

M5
1

16p
lim
S→`

E
S
(

i , j 51

3

~] jgi j 2] igj j !n
idS, ~39!

where S is a 2-surface enclosing the active region andni

denotes the unit outward normal. For the metric~32!, we get

M52Bb, ~40!

and using this value, the metric can be expanded in the w
field as

dt252~112Mr 211••• !dt21~122Mr 2112Mr 22

1••• !@dr21r 2dV2
2#; ~41!

that is, it predicts exactly the same results for a neutral
particle as does Einstein’s general relativity. The factora
does not appear in the metric, although it does appear in
scalar fieldf. Hence,a cannot be determined by any metr
test of gravity.

~iii ! It should be remarked that if we replaceB by another
integration constantm/2, the solutions~32! and~35! become
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57 827BRANS-DICKE WORMHOLES IN THE JORDAN AND . . .
those proposed by Buchdahl@38# long ago. Defining the field
strengths for the scalar fieldf in analogy with an ‘‘electro-
static field,’’ one obtains

s522dm, d5@~12b2!/2a#1/2. ~42!

Then, from Eqs.~40! and~42!, it follows that the gravitation
producing massM is given by

M25m22 1
2 as2, ~43!

wherem can be regarded as the strength of the source
cluding the scalar field. Forb→0, we haveM→0. The situ-
ation in this case is that, fora.0, we can have bothm and
s nonzero, but with their effects mutually anulled. In oth
words, we obtain a configuration which is indifferent to
gravitational interaction with distant bodies. The reason
that the stresses of thef field contribute an amount of nega
tive gravitational potential energy~attractive! just sufficient
to make the total energy zero@38#. On the other hand, ifa
,0, thef field has a positive gravitational potential ener
~repulsive!. We cannot takeb→0 owing to Eq.~42!, but it is
possible to makem→0 so thatM→0. In this case, we have
s50. That is, the vanishing of total energy implies a va
ishing of individual source contributions.

V. SUMMARY

The foregoing analysis reveals that spherically symme
static vacuum Brans-Dicke wormholes exist in the Jord
frame only in a very narrow interval23/2,v,24/3, cor-
responding to a physical situation where the post-Newton
approximation is valid. In general, the wormhole range fov
depends entirely on the form ofC(v) supposed to be dic
tated by physical conditions. Wormhole solutions do not
ist at all in the conformally rescaled~Einstein! frame unless
one is willing to violate the energy conditions by choice (a
,0). However, such a manipulation is not always necess
tt

k-

et
x-

s

-

ic
n

n

-

y.

For example, there exist theories where one adds to the
stein frame vacuum action other fields~such as the axion
field @15#! or potentials@39# and obtains dynamic wormhol
solutions in a natural way.

It is evident that the factora does not appear in the metri
~32!, although it does appear in the expression for the sc
field f. In particular, for local tests of gravity, the prediction
are exactly the same as those of Einstein’s general relat
where the Robertson parameters take on valuesa5b5g
51. In contrast, in the Jordan frame, one hasa5b51, g
5(v11)/(v12). For finitev, it is evident that the predic-
tions deviate somewhat from the actually observed value

The Arnowitt-Deser-Misner~ADM ! mass of the configu-
ration is positive in both the frames. In the Jordan frame, i
M5(2B/l)(C11), while in the Einstein frame it isM
52Bb. It is also shown that a gravitationally indifferent re
configuration with zero total energy (M50) does or does
not exist in the Einstein frame according asa.0 or a,0.

An interesting feature of Brans-Dicke wormholes is th
infinitely large radial tidal accelerations occur at the throat
that these wormholes are not traversable in practice. T
feature is reflected in the absence of a black hole surfac
r 5B or, in the Morris-Thorne coordinates, atR50.

We have not addressed the question of stability of Bra
Dicke wormholes in this paper. With regard to classical p
turbations, it should be pointed out that the results of A
chordoqui, Bergliaffa, and Torres@22# indicate that addition
of extra ordinary matter does not destroy the wormhole. T
effect of the quantum back reaction of the scalar field
stability will be considered elsewhere.
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