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Singularities in scalar-tensor cosmologies
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In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with
completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such
a universe never see the singularity, gravity waves always do. This is because they couple to both the metric
and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein
conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where
matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein
frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singu-
larity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.
@S0556-2821~97!01724-4#
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I. INTRODUCTION

One of the longest-standing challenges to our understa
ing of gravity has been the singularity problem. In any g
neric theory of gravity and matter, under reasonable assu
tions about the interactions between particles and fields
about the ways of communicating these interactions~which
translate into, at least classically, fairly loose energy con
tions!, produces solutions which contain maelstormian
gions of unbounded curvature@1#. In this sense, such solu
tions seem to point to an intrinsic deficiency of the theo
that gave them birth, because the very theory that predi
such maelstorms looses meaning in these limits. Yet,
must note that not all is ill with the fact that such strong
coupled regimes are generic in classical gravitational th
ries. Because singular regions generally involve very str
forces between particles and very high energies, close
singularity much of the observed matter structure in the U
verse can be created starting from arbitrary initial conditio
Further, this mechanism is built naturally into the theo
such that extrapolating present conditions backwards in
tably results in circumstances under which the present co
be shaped in a generic way. Indeed, the vast body of as
physical observation does indicate that such a dram
event, the big bang, did take place in the past. The cos
logical singularities in the past, then, seem perfectly suite
encode such cosmogonic furnaces into the theory.1 Our task,
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hence, seems to be to bring into accord the facts and
fiction by constructing a theory which could encompass
the features of the big bang while hopefully not incorpor
ing its own demise, in the form of an uncontested singular

While it is not known how, and even if, all singularitie
may be regulated in a theory of gravity, we may be able
gather interesting information by studying the difficultie
which emerge in the attempt to smooth the edges of
universe in the existing models. A start for any such inv
tigation, of course, should be Einstein’s theory of gene
relativity, since it is in an amazingly good agreement w
experimental observations. In this theory, however, the g
eral theorems due to Hawking and Penrose show that
configurations which are determined by the coup
Einstein-matter equations of motion, under the assump
that the above-mentioned energy conditions are valid, alw
contain singular regions@1#. The singularities in this contex
are signaled by geodesic incompleteness. This means
particle trajectories in such geometries cannot be contin
past some hypersurface, because they get so strongly foc
by gravity’s pull that they begin to intersect and hence
not smooth any more. This phenomenon does not alw
imply that the curvature of the metric grows beyond bou
in such limits. However, the geodesic curvatures do, si
the geodesic bundles get squeezed very tightly. Hence
observer seeing such geodesic curvatures would indeed
very strong force. With this in mind, the notion of geodes
incompleteness is indeed a good indicator of the singula
in the space-time.
xt, there
nsistency
parate
be more

d on the
*Electronic address: kaloper@hepvs6.physics.mcgill.ca
†Electronic address: olive@mnhep.hep.umn.edu
1Aside from the cosmological arguments favoring the presence of singularities in any theory of gravity, which we describe in the te

also exist more theoretically-minded arguments, which suggest that singularities may be needed in any theory of gravity for co
reasons. Specifically, Horowitz and Myers@2# have recently proposed that naked singularities in a theory of gravity are needed to se
positive mass black hole solutions from the negative mass ones. If the negative mass solutions were not singular, they would
energetically favorable than the empty space, thus yielding vacuum instability in any quantum theory one might attempt to buil
original classical theory.
811 © 1997 The American Physical Society
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The presence of singularities in general relativity can
taken as a sign that at very high energies, or equivalentl
very short distances, the theory fails to be a completely c
sistent description of nature. Because at such high ener
quantum effects become significant, this suggests that
eral relativity should be superseded by the quantum theor
gravity, within which we should seek the answer to the c
nundrum of singularities. Whereas we are still lacking
complete formulation of the quantum theory of gravity, the
at present is at least one very strong contender, string the
Although the recent developments in string theory, assis
by the discovery of the power of duality@3#, have greatly
improved our understanding of it, the theory is still n
known in a way that would enable us to ask the questi
about space-time in a general manner. Instead, we hav
either resort to the effective action approach which takes
account stringy phenomena in perturbation theory@4#, or we
could study some special classes of string solutions wh
can be formulated in the nonperturbative regime@5#. The
latter approach is clearly more powerful in that it allows
to investigate more thoroughly the quantum dynamics of
system under scrutiny. But this is available only for som
special solutions, most notably the BPS states in the st
spectrum, and not for any solution we might be interested
In particular, there still does not exist a nonperturbative f
mulation of generic cosmological solutions in string theo
Hence all the investigations of ‘‘realistic’’ string cosmolo
gies have been carried out essentially in the effective ac
approach, which is valid for the weak to medium range
couplings and curvatures~see, for example,@6–13#!. We will
not dwell on the details of these investigations here, ot
than to mention that the departure of string-theoretic so
tions away from general relativity is induced by the prese
of additional degrees of freedom which arise in the mass
string spectrum. These fields, the scalar dilaton field, the
sion tensor~or Kalb-Ramond! field, and others, couple to
each other and to gravity nonminimally, and can influen
the dynamics significantly. Thus it makes sense to ask if
spectrum of the theory may be tailored in such a way as
produce solutions which do not feature any singular beha
@14–16#, even if that means abandoning string theory a
just constructing certain toy models for the purpose of stu
ing the strong coupling limit.

This approach has been taken recently in@17,18#. There a
special class of scalar-tensor theories of gravity was con
ered, where the matter does not couple to the scalar fiel
some generalized Jordan-Brans-Dicke~JBD! conformal
frame, but the JBD coupling of the scalar to the metric d
pends on the value of the scalar field. It turns out that
choosing the JBD coupling function one could construct
metric in the JBD frame which is smooth over an infin
interval of the JBD comoving time. Since the matter fiel
couple only to the JBD frame metric, they do not feel a
singularity at all. However, in the Einstein~E! conformal
frame, where the metric degrees of freedom have a canon
kinetic term, if the matter sources satisfy the energy con
tions and consequently the dynamics are still subject
Hawking-Penrose theorems, the curvature singularities
plague all the solutions. The E frame singularities are inv
ible to matter probes which do not move along E fram
geodesics. Rather, in the E frame matter couples to the s
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field, and this coupling is adjusted precisely to even out a
bumps in the metric. If there were any type of probe whi
couples both to the JBD scalar and the JBD metric, it wo
detect the original singularity. The probe would reach t
singularity in a finite extent of its world line, after which
could not be extended any further. This would signal that
geometry is still incomplete, at least from the point of vie
of certain observers. Once the subleading interactions
properly taken into account, these observers can comm
cate the presence of the singularity to the remainder. He
to check whether a solution of some nonminimal theory
gravity is singular or not, it is not sufficient to show th
curvature invariants are finite in some chosen conform
frame and that the space-time geometry is complete in
Instead, we must investigate world lines of all the physi
probes in the theory. Only if all these world lines are n
inextendable can the space-time be complete and hence
singular. As long as there is even a single type of excitat
which sees the singularity in any frame, the singularity is n
absent, but lurks in the geometry waiting to exert its infl
ence on the theory.

Our purpose here is to show that there is at least one s
degree of freedom in all the scalar-tensor models studie
@17,18#. It is the graviton itself. Being generic and mod
independent, and not immune to the singularity, it resus
tates the singularity back into existence of any realistic
server in such theories. To demonstrate this, we only nee
look at the classical theory. We will present the equations
motion of the genuine gravity waves, i.e., the tensor per
bations of the metric, and take the geometrical optics limit
show that the wave packets of gravity waves move along
E frame null geodesics. These trajectories are past inext
able because of the singularity, and the graviton wave pa
ets reach the singular hypersurface after a finite extent of
affine parameter along their world lines. Given this, the s
gularity cannot be completely removed from the geome
the gravity waves can communicate its presence to all o
degrees of freedom in a finite time, ultimately making t
singularity observable. The paper is organized as follows
the next section, we will review the JBD models studied
@17,18#, and establish the relationship between the JBD a
E frames. Section III is devoted to the derivation of the gra
ity wave equations of motion, both in the JBD and E fram
The singularity is the central notion of Sec. IV. There w
will carry out the geometrical optics approximation and d
rive the gravity wave world lines. In the last section, we w
give our conclusions.

II. HIDING THE SINGULARITY

Here we will review the models and solutions studied
@17,18# in order to set the stage for out investigation. T
theories investigated in these articles were defined by
JBD actions with a variable parameterv(x), given as

S5E d4xAgH xR2
v~x!

x
~¹x!22Lm~Y,¹Y,gmn!J ,

~2.1!

wherex is the scalar JBD field,R is the scalar curvature o
the JBD frame metricgmn , and Y and ¹Y are any other
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57 813SINGULARITIES IN SCALAR-TENSOR COSMOLOGIES
matter degrees of freedom and their derivatives~field
strengths!. Our signature conventions aregmn5(2,1,1,
1) and Rm

nls5]lGns
m 2••• . Note that in order to ensur

that the gravitational degrees of freedom are not ghost
~i.e., that the graviton propagator never has negative r
due!, we must requirex>0. For simplicity, we choose unit
such that in the E frame we have 16pGN51. The approach
taken in@17,18# was to specify the functionv(x) in attempt-
ing to remove curvature singularities in spatially flat FR
solutions. Note that in the JBD frame, the matter fields
not couple to the scalarx at the tree level. To get the equa
tions of motion, we can simply vary the action with respe
to the independent degrees of freedomgmn , x, andY. After
a bit of straightforward algebra, we find@19#

Gmn5
1

x
¹m¹nx2

1

x
gmn¹2x1

v

x2S ¹mx¹nx2
1

2
gmn~¹x!2D

1
1

2x
Tmn ,

2¹mS v

x
¹mx D1R2

d

dxS v

x D ~¹x!250, ~2.2!

¹mTmn50, Tmn522
dLm

dgmn
2gmnLm ,

whereGmn5Rmn2 1
2 gmnR is the Einstein tensor, andTmn is

the stress-energy tensor of the matter fieldsY. The conser-
vation of the stress energy¹mTmn50 is equivalent to the
matter equations of motion¹m(dLm /d¹mY)5dLm /dY. Let
us now write the explicit form of Eq.~2.2! for the spatially
flat Friedmann-Robertson-Walker~FRW! cosmologies, as-
suming that the matter stress-energy tensor can be put in
perfect fluid formTmn5pgmn1(p1r)umun , where um is
the velocity of the comoving observer,umum521. The
FRW metric is

ds252dt21a2~t!dxW2 ~2.3!

and the comoving velocity isum5diag(1,0W ). The equations
of motion ~2.2! become@19#

3H25
v

2

x82

x2
23H

x8

x
1

r

2x
, r813H~r1p!50,

2H813H21
x9

x
12H

x8

x
1

v

2

x82

x2
1

p

2x
50, ~2.4!

2
v

x
~x913Hx8!1

d

dxS v

x Dx8256H8112H2.

The primes denote derivatives with respect to the JBD fra
comoving timet, and the JBD frame Hubble parameter
H5a8/a. For simplicity’s sake, we will assume that th
equation of state isp5gr, with g a constant. This is not true
in the real world, since we know thatg must be a function of
the temperature of the universe, and hence of time. Howe
since we want to investigate the possibility of constructin
e
i-

o

t

he

e

r,
a

classical nonsingular universe solution, this is a sufficien
good approximation to start with. We will determine the lim
its on g later.

Instead of deriving the equations of motion~2.2! in the
JBD frame, we could have equally well used the E conform
frame. Conformal transformations of the degrees of freed
in a specified theory are merely field redefinitions, and
they cannot change physics@20#. In this sense, they are to b
regarded as changes of reference frames, which leave p
cal observables invariant. The important issue here the
clearly to identify the observables correctly. To do that,
must specify an observer, building it out of the physic
fields in the theory. Once given, this observer does not c
which reference frame we use to compute observables w
So, if we define the E frame metric and scalar field by

ḡmn5xgmn , f5E dx
A2v13

A2x
~2.5!

~using the overbar to distinguish between the two conform
frames! and, following @18#, assume that the functionv(x)
is monotonic2 such that the functional relationshipf
5f(x) is everywhere invertible, we find that in the E fram
the effective action is

S5E d4xAḡ H R̄2~¹̄f!22
1

x2~f!
LmSY,¹̄Y,

1

x~f!
ḡmnD J .

~2.6!

In this conformal frame, the metric kinetic term is canonic
i.e., justR̄, while now the matter fieldsY coupleboth to ḡmn

andf. Note that in order for Eq.~2.5! to be well defined, we
must require 2v13.0. This is because when 2v1350,
the scalar field is not dynamical, since a conformal transf
mation to the E frame removes its kinetic term. Further,
2v13,0, the scalar would be ghostlike, since its kine
term would be negative. Now, to find the equations of m
tion in this frame, we can either take Eqs.~2.2! and transform
them to the E frame using Eq.~2.5!, or we can vary the
action ~2.6!. Since in the E frame the matter fields coup
both to the metric and the scalarf, the matter equations o
motion are a little bit more complicated than in Eq.~2.2!.
Varying Eq. ~2.6! with respect to Y, we obtain
¹̄m@(1/x2)dLm /d¹̄mY#5(1/x2)dLm /dY. Furthermore, re-
calling that d@(1/x2)Lm#/df52$(dx/df)@2Lm

1 ḡmn(dLm /d ḡmn)] %/x35(dx/df) T̄/2x, where T̄ is the
trace of T̄mn , the resulting equations of motion in the
frame are@19,9#

2We require that v is monotonic. But since df/dx
5A2v13/A2x, and we wish that all curvature invariants, not on
R andRmnRmn , are smooth, we should also require thatv is ana-
lytic @18#, because higher derivative invariants depend on the
rivatives ofv. We will discuss this in more detail following the Eq
~2.11!.



t

ly
th

m

so
tio
o

io
.

-
c

t
e

d
fo

in

s

nit

a-
s-

se

eld

s. In
sor

-

he
s
atter

ic

-

hat
nd-

the
ndi-
tric
ap-

the
it
ve
at

as

de-
zeros

at

r
ent

is

the

,

814 57NEMANJA KALOPER AND KEITH A. OLIVE
Ḡmn5¹̄mf¹̄nf2
1

2
ḡmn~¹̄f!21

1

2
T̄mn , ¹̄2f5

1

4x

dx

df
T̄,

~2.7!

¹mTmn52
1

2x

dx

df
T̄¹̄nf,

T̄mn52
2

x2

dLm

d ḡmn
2

1

x2
ḡmnLm .

Again, we will need Eq.~2.7! restricted on the spatially fla
FRW geometries with perfect fluid sources,T̄mn5 p̄ ḡmn

1( r̄ 1 p̄) ūm ū n , where ūm is now the velocity of the E
frame comoving observer. The E frame metric is

d s̄252dt21 ā2~ t !dxW2 ~2.8!

and soūm ūm521, ūm5diag(1,0W ). We will show that this
is consistent with the JBD frame comoving velocity short
by establishing the transformation properties relating
JBD and E quantities. The equations of motion~2.7! then
become@19,9#

3H̄25
ḟ2

2
1

r̄

2
, ṙ̄ 13H̄~ r̄ 1 p̄ !5

ḟ

2x

dx

df
~3 p̄2 r̄ !,

Ḣ̄1
ḟ2

2
1

r̄ 1 p̄

4
50, ~2.9!

f̈13H̄ḟ1
1

4x

dx

df
~3 p̄2 r̄ !50.

Here the dot denotes derivatives with respect to the E fra

time t, and the E frame Hubble parameter isH̄5 ǡ / ā . Using
the variational definition of the matter stress-energy ten
we can immediately see that the conformal transforma
~2.5! induces the change of the stress-energy tensor acc
ing to @19# T̄m

n5Tm
n /x2. With this and Eq.~2.5!, we can

also easily show that the JBD frame equations of mot
~2.2! and the E frame equations~2.7! map into each other
For the variables describing the FRW universes~2.3! and
~2.8!, the transformations aredt5dt/Ax, a(t)5 ā (t)/Ax,
p5x2 p̄ andr5x2 r̄ . To find out how the comoving veloc
ity transforms, we should look at the comoving velocity ve
tor fields in each frame. In the JBD frame, we haveU5]t

and in the E frameŪ5] t , soU5AxŪ. But this means tha
the components of the comoving velocities in the two fram
are identical, um5 ūm5diag(1,0W ), as has been claime
above. This completes our survey of the conformal trans
mation rules for the quantities of interest here.

Now we can investigate the properties of the theory, us
either of the sets of field equations~2.2!–~2.7!. We should
first recall the Hawking-Penrose singularity theorems@1#. To
do this, we will use the E frame equations of motion~2.7!,
since the gravitational equations of motion are the same a
,
e

e

r,
n
rd-

n

-

s

r-

g

in

general relativity. Consider any timelike geodesic with a u

tangent vector fieldjm ( ḡmnjmjn521) in a globally hyper-
bolic space-time~i.e., space-time without any acausal p
thologies such as closed timelike curves, which we will a
sume here!. The singularity theorems then posit that the
geodesics are past inextendable~i.e., incomplete! as long as
the projection of the Ricci tensor on the tangent vector fi

is positive semidefinite,R̄mnjmjn>0. By the equations of

motion, this condition can be recast asQ̄mnjmjn1Q̄>0,

where the tensorQ̄mn is the total stress energyQ̄mn

5¹̄mf¹̄nf2(1/2)ḡmn(¹̄f)21 T̄mn . This requirement is
called the strong energy condition~SEC!, and is thought to
be satisfied by most reasonable classical matter source
terms of the principal values of the stress-energy ten

Q̄m
n5diag(r̂,p̂1 ,p̂2 ,p̂3), SEC translates intor̂1S i 51

3 p̂i

>0, r̂1 p̂i>0, i 51,2,3. ~Here we use the hat to distin

guish the principal values ofQ̄mn from those ofT̄mn , which
are both defined in the E frame.! The only feature of the JBD
system we will be investigating here is the effect of t
variation ofv with x on the singularities, which still need
to be specified. Therefore, we can assume that the m

fields Y obey SEC, meaning thatT̄mnjmjn1 T̄>0 for all
timelike geodesicsj. For the homogeneous and isotrop
cases which we are interested in, this tells us that 3g11
>0, org>21/3. Whenf is included, its stress energy trivi

ally satisfies SEC in the E frame. Hence,Q̄ also does, being
a linear combination of these two contributions. We see t
in the E frame all timelike geodesics must be past inexte
able, and thus all cosmological solutions are singular.

Unfortunately, this does not specify the character of
singularity. Generically, geodesic incompleteness as an i
cator of the presence of a singularity signals that the me
becomes degenerate as some region of space-time is
proached. To learn more about the actual properties of
singularity, we must look at concrete solutions. If we lim
our attention to spatially flat FRW cosmologies, which ha
matter sources that satisfy SEC, we will typically find th
the singularity arises because at some time, sayt50, the
scale factor of the universe vanishes~or diverges, such as in
pole-law inflationary solutions! as some power oft, ā (t)
}ta, aÞ0.3 Since the curvature scalar can be expressed

3It is clear that hypersurfacest5const, whereā (t) is smooth and
nonvanishing cannot be singular, since the metric there is non
generate. We are assuming that singularities can arise only as

or isolated singularities ofā in the functional sense, and further th

if ā is unbounded for some values oft, that such singularities are

not essential singularities, i.e., thatā is analytic everywhere nea
the singularities, and that if it diverges there it admits a Laur
series expansion with a finite number of divergent terms. This

consistent, because essential singularities ofā are never a part of
the manifold in the sense discussed in the text. For assumet50
were an essential singularity. Then the geodesic distance from

singularity to anywhere else in the manifold satisfies limt→0Dl̄

} limt→0t ā (t). But since t50 is an essential singularity

limt→0t ā→`. Hence,Dl̄ always diverges.
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57 815SINGULARITIES IN SCALAR-TENSOR COSMOLOGIES
R̄56Ḣ̄112H̄2, we find that in the limitt→0, R̄56a(2a
21)/t21 subleading terms.4 So for aÞ1/2, the scalar cur-
vature diverges att50. If a51/2, then near the singularit
the universe is radiation dominated. The scalar curva
vanishes because the radiation sources are conformally
variant and hence have vanishing trace of the stress-en
tensor. However, the square of the Ricci tensor then
verges, asR̄mnR̄mn}1/t4. Moreover, if we look at causal geo
desics, we can see that in order to move between timest and
t50, they require a lapse of the affine parameter equal

Dl̄ 5E
0

t

dt ā/Av21m2 ā2 ~2.10!

which can be obtained by solving the causal geodesic e
tions for the metric~2.8!, and wherev2 and m2 arise as
constants of integration;v2 is a non-negative constant, an
m250,1. In the limit of smallt, when ā}ta, we can ap-
proximate this expression withDl̄}t11a/Av21m2t2a,
hence noting that we can always choosev2 andm2 such that
Dl̄ is finite.5 This means that there always exist causal g
desics which reach out of the singularity to anywhere in
Universe in a finite proper time, i.e., they are past inexte
able and so incomplete. As a result, all the FRW solutio
with this type of behavior are indeed singular.

To see how the mechanism of conformal transformati
could regulate the singularities, recall that since all FR
solutions~that is, k561,0) are conformal to static geom
etries with maximally symmetric spatial slices, the Weyl te
sor of these solutions is a constant and hence does no
code any information about the big bang singularity. T
information about the singularity is completely encoded
the Ricci sector of the curvature, which changes under c
formal transformations. Indeed, we can look at the lead
form of the curvature in the vicinity of the singularity o
every solution we have discussed above. Applying the fi
redefinitions~2.5! to the solutions, and using the equations
motion in the E frame~2.7!, we can show that the JBD and
frame curvatures are related by

R5xH R̄1
3T̄

4v16
2

3~¹̄f!2

~2v13!2S 2x
dv

dx
12v13D J .

~2.11!

We have seen above that as the singularity is approached
E frame Ricci scalar diverges asR̄}1/t2. Hence if in this
limit x→tb with b>2, the divergent contribution ofR̄ in
Eq. ~2.11! can be tamed. What about the other two terms
is straightforward to see that in the limitā (t)→ta, the equa-
tions of motion~2.9! are approximated by

4Note that this is valid even for the cases when the scale fa

vanishes faster than the power law, such asā}t2/3@ ln(t)#1/2, which
is known to be the limiting form of the solution dominated b
composite hadrons@21#.

5E.g., for a.21, takem250 andv251; then,Dl̄}t11a; if a

<21, choosev250, m251 ~static observers!!, so thatDl̄}t.
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It

3
a2

t2
5

ḟ2

2
1

r̄

2
,

a

t2
5

ḟ2

2
1

11g

4
r̄ ,

ṙ̄ 13~11g!
a

t
r̄ 2Aḟ r̄ 50, f̈13

a

t
ḟ1

A

2
r̄ 50,

~2.12!

whereA5(3g21)/A4v(x0)16>0 wheng>21/3 is a fi-
nite constant since 2v13.0. On the other hand, we can se
from Eq. ~2.2! that we can always write down the exa
solution for the fluid, since in the JBD frame the flu
couples only to the metric. The solution isr5r0 /a3(11g).
Now, sincer̄ 5r/x2, we can transform the energy density
the E frame:r̄ 5r0x (3g21)/2/ ā3(11g). In the limit t→0, as
ā}ta and x}tb, we find r̄ }t (3g21)b/223a(11g). Hence in
order for ther pole contribution to the JBD curvature to b
smoothed, we must requireb1(3g21)b/223a(11g)
>0. From the equations of motion near the singularity,
see thatr̄ <6a2/t2 for all t. Therefore, for all solutions,
(3g21)b/223a(11g)>22, which means that the regu
lator field x is no worse than in the previous case. Let
now compare this to the scalar field contributions. Assum
a strictly greater than order relation in the previous inequ
ity, so that r̄ falls off slower than 1/t2, we see from the
constraint equation solved forḟ, ḟ2/253H̄22 r̄ , that near
the singularity the dominant contribution comes fromH̄.
This means that the scalar field isḟ}A6a/t. But then, suf-
ficiently close tot50, the r̄ -dependent contribution to thef̈
equation is also negligible. As a result, in this limita→1/3,
and hence the solution approachesā→t1/3, f→f0

1A2/3ln(t) with negligible matter field contributions, i.e., w
get the scalar field-dominated cosmology@9,10#. Inspecting
Eq. ~2.12! near the singularity we can see that the mat
sources can never dominate over the scalar field.6 Hence near
the singularity, thef-dependent contributions can never
subleading to the matter stress-energy contribution, reg
less of the kind of matter field.

The only remaining possibility is that the two sourc
remain of equal importance near the singularity. Indeed
glance at Eq. ~2.12! suggests that a solution of th
asymptotic formḟ}1/t, r̄ }1/t2 near the singularity is ad
missible. Yet, a closer look reveals that, unlessg521, the
four equations in Eq.~2.12! are consistent only ifr̄ 50 -
hence again leading to the scalar field-dominated solution
g521 @which corresponds to the JBD frame cosmologic
constant, sincer5const from the equations of motion~2.4!#,
the solution which treats the sources in an egalitarian wa
admissible. However, in this case the parameterb cannot be
adjusted to be>2. It is fixed by g521 and 3a(11g)
2b(3g21)/252 to beb51. So the JBD frame solution is
still singular. For this case, it is impossible to remove the

or

6Suppose they did; then, near the singularity the scale fa

would behave asā}t2/3(11g) and hencer̄ }1/t2. But this then pro-

duces the response in the scalar field according toḟ5P/t2/11g

1Q/t, whereP andQÞ0 are integration constants.
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816 57NEMANJA KALOPER AND KEITH A. OLIVE
frame singularity by going to the JBD frame via the confo
mal transformation~2.5!, regardless of the form of the cou
pling functionv(x).7 From this discussion, we can see th
all the JBD frame solutions without a singularity must hav
unique behavior near the singularity in the E frame — tha
the scalar field-dominated cosmology. In fact, this is the r
son why a conformal transformation can be used to smo
the solution. Once the solution is dominated by the sca
field near the singularity, we can choose an almost arbitr
function of the scalar field to conformally transform the s
lution with — as long as the conformal factor vanishes in
limit t→0 at least as fast ast2.

To complete the smoothing of the singularity within th
context of the JBD theory, we must require that the hyp
surfacet50 can never be reached by any particle in the J
world. If we look at the matter sector of the theory, in whi
fields move along the JBD frame geodesics, we should
quire that no such geodesic ever reaches thet50 hypersur-
face. When we solve the geodesic equations of the JBD m
ric ~2.3!, and express them in terms of the E frame time
convenience, we find that the JBD frame geodesic lapse
tween hypersurfacest1 and t0 is

Dl5E
t0

t1
ādt/Av2x21m2 ā2x, ~2.13!

where as beforev2>0 and m250,1 are integration con
stants. To make sure that all the geodesics are complete
must require thatDl diverges as either of the limits of inte
gration goes to zero. Substituting the asymptotic form of
functions ā and x which we have deduced above, we fin
that as long asb>max(2,a11), the geodesic distanceDl
between thet50 hypersurface and any othert5const hyper-
surface diverges. Further, if we setv250, m251, we re-
cover the integrated coordinate transformation between
JBD comoving timet and the E comoving timet, t
5* tdt/x, as we should. So we see that the hypersurfact
50 as seen from the JBD frame corresponds to the infi
past ~or future! of the solution, as long asb>2:
limt→0t→6`. Therefore, the conformal transformation
the JBD frame does push away the singularity to an infin
distance, while making the JBD curvature finite.

At this point, we must remember that while we are usi
the conformal transformation~2.5! to regulate the solution a
t50, we must make sure that it does not behave badly e
where. The conditions whichv(f) must satisfy in order to

7For completeness, we should also mention another specia
ample where frame switching fails, although this case does
violate the results of@17,18#, since the scalar field is constan
Namely, if the matter is in the form of pure radiation, there ex
solutions withf5const, as can be seen from either Eqs.~2.2! or
~2.7!. Hence the JBD and the E frame are identical, and so
singularity is not removed. Nevertheless, these solutions are
past attractors for all late-time radiation-filled universes, since

long asḟÞ0, early enough it will dominate over radiation. So the
solutions are not generic, but they illustrate that scalar field m
dominate near the singularity in order for the frame switching to
successful in smoothing the solution.
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guarantee that the JBD solutions are nonsingular can be s
marized in terms ofV52v13, following @18#, as ~1!
dnV/dxn are smooth everywhere except in the limitx→1
for all nPZ1, ~2! as x→1, both V and its derivatives di-
verge as some inverse power of (12x), and~3! finally and
most importantly, that near the singularity the solutions
dominated by the JBD scalar fieldf ~or equivalently,x),
which implies limx→0V>1/3.

We emphasize here that whereas this condition is vacu
for a range of admissible types of matter, it is not automa
cally true for all solutions. In particular, we have given tw
simple examples~with the JBD frame matter being either th
cosmological constant or a radiation fluid! where the scalar
field in the E frame is not dominant near the singularity a
hence the JBD frame solutions remain singular.

However, as we have indicated earlier in the discuss
preceding the investigation of the conformal pictures of
physics given by Eqs.~2.1!–~2.6!, even if the conformal res-
caling did produce a smooth metric in the JBD frame, it m
not have really removed the singularity if there still remain
even a single degree of freedom which coupled to the
frame geometry. In what follows we are going to show th
gravitational waves move along world lines in the JBD fram
which are not geodesics. Rather, they are deformed by
dilaton force such that they are identical to the E frame g
desics. This should not be a complete surprise since it is
E frame where the graviton kinetic term takes the canon
form, being just the Ricci scalar. It has been argued by S
pere, Trivedi, and Wilczek@22# that in theories of antisym-
metric p forms coupled to scalars viaf (f)Fm1 . . . mp11

2 the

tensor field quanta move along geodesics of the metric wh
the termf (f) is absorbed away by a conformal transform
tion. This was later proved in@23# by the present authors an
collaborators to hold as the geometrical optics limit of t
p-form field equations. Since gravity is a gauge theory sim
lar to the p-form field theories, when we apply the sam
technique to the equations of motion of gravitational pert
bations in the FRW background, we find that the grav
waves in general see a scalar force. Therefore since th
frame metric is singular, the gravity wave world lines a
past inextendable, and hence the full physical arena of
theory given in either frame is still incomplete. This must
taken as a signature of a latent singularity, which simply
not go away by a conformal transformation, but only a
peared invisible to the matter sector probes.

III. GRAVITY’S REDOUBT

Below we will consider small perturbations away from
fixed curved background, and look at their dynamics to
lowest order in the fluctuation. Since we want to study on
the pure gravitational excitations, we will assume that
matter and the JBD scalar are unperturbed, and impose
transverse traceless gauge on the metric fluctuation. Fur
since we will look for the perturbations around the FR
solutions, we will impose the stationary gauge on the ba
ground metric, which will therefore leave the backgrou
solutions identical to the ones studied in Sec. II. The res
ing equations of motion give the correct dynamics of the t
independent graviton polarizations, the1 and the3 modes,
in exactly the same way as discussed previously@24,25#. In
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57 817SINGULARITIES IN SCALAR-TENSOR COSMOLOGIES
the E frame, these equations will be the same as in the o
nary general relativity, because of the gauge conditions
the JBD frame, they will contain an additional coupling
the scalarx, which arises from the noncanonical form of th
graviton propagator.

In the E frame, therefore, we will use the following ansa
for the metric and matter fields:

ĝ̄mn5 ḡmn1 h̄mn , df5dY50. ~3.1!

The genuine gravitational degrees of freedom correspon
two graviton polarizations defined by imposing the tran
verse traceless conditions on the metric perturbation. In
momentum space, this means that we require the polariza
tensor of the gravitonē mn to be traceless and orthogonal
the direction of motion, i.e.,ē m

m5km ē mn50. In terms of
the perturbationh̄mn , these conditions can be written dow
as h̄m

m5¹̄m h̄m
n50. Here the covariant derivatives and ra

ing and lowering of indices are taken with respect to
background metricsḡmn . The inverse metric, to linear orde

in perturbationh̄ is ĝ̄mn5 ḡmn2 h̄mn. Notice here that the

determinant of the metric is not perturbed:ĝ̄5det(ĝ̄mn)
5 ḡ1 h̄m

m5 ḡ . A straightforward calculation shows that th

Christoffel symbols in the perturbed background areĜ̄ nl
m

5 Ḡ nl
m 1 ḡ nl

m , where ḡ nl
m 5(1/2)ḡmr(¹̄l h̄ nr1¹̄n h̄ rl

2¹̄r h̄ nl). The Ricci tensor, expanded to linear order
h̄mn , is, in the transverse traceless gauge,

R̄mn5R̄mn1
1

2
¹̄l¹̄m h̄l

n1
1

2
¹̄l¹̄n h̄l

m2
1

2
¹̄2 h̄mn .

~3.2!

Note that the perturbation inRmn is traceless because of th
radiation gauge conditions, as expected. Tracing out
gravitational equations of motion in Eq.~2.7! and subtracting
the Ricci scalar-dependent term, we see thatR̄mn

5¹̄mf¹̄nf1 T̄mn2(1/2)ḡmn T̄. The perturbed equations o
motion are identical to these. In order to find the equation
motion of the perturbations, then, we have to expand
equations to linear order inh̄mn and cancel the lowest orde
terms since the background is a solution to Eq.~2.7!. We
also need to demonstrate that the perturbation is consis
with the matter sector of the theory, in that it is not exciti
any perturbations there. At this time, it is convenient to re
to the explicit form of the background solution, and intr
duce the gauge conditions for it. We will work with th
synchronous gauge, where the metric is exactly the sam
in ~2.8!, d s̄252dt21 ā2(t)dxW2, and the perturbation satis
fies h̄005 h̄0k50. Then, on all cosmological backgrounds
the previous section,h̄mn¹̄nf5ḟ h̄m050, and so, the per
turbed d’Alembertian is identical to the unperturbed one:

¹̂̄2f5
1

A ĝ̄

]m~A ĝ̄ ĝ̄mn]nf!5¹̄2f2
1

A ḡ
]m~Aḡ h̄mn]nf!

5¹̄2f. ~3.3!
i-
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to
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e
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e

e
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Next, since we are working in the synchronous gauge,

comoving velocity is unchanged:û̄m5 ūm5diag(1,0W ), and
so is the trace of the stress energy tensor. The perturbatio
the stress-energy tensor for fluid sources is

dTmn5 T̄mn2
1

2
ĝ̄mn T̄2 T̄mn1

1

2
ḡmn T̄5 p̄ h̄mn2

1

2
h̄mn T̄

5 h̄mn

r̄ 2 p̄

2
. ~3.4!

Also, the stress-energy conservation equation is identica
the case without the perturbation because of the gauge

ditions; specifically, ¹̂̄m T̄mn5¹̄m T̄mn. Substituting these
conditions and the Eq.~3.2! in Eq. ~2.7!, we obtain the co-
variant form of the equations of motion for tensor perturb
tions:

¹̄l¹̄m h̄l
n1¹̄l¹̄n h̄l

m5¹̄2 h̄mn1
r̄ 2 p̄

2
h̄mn . ~3.5!

We now want to rewrite this equation in terms of the mix
perturbation tensorh̄m

n , which is the natural variable to us
because of the gauge conditions. Using the explicit form
the background metric~2.8!, we can verify that in the syn-
chronous gauge the following conditions hold identica
~see, e.g.,@24,25#!:

¹̄n h̄005¹̄0 h̄0n50, ¹̄ j h̄ k052H̄ h̄ jk ,

¹̄0 h̄ jk5 ḣ̄ jk22H̄ h̄ jk , ¹̄ i h̄ jk5] i h̄ jk . ~3.6!

Since these equations are covariant with respect to the
sumed background, we can raise the indices using the b
ground metric, and after some straightforward algebra,
can also verify the following conditions on the second cov
riant derivatives of the perturbation@24,25#:

¹̄2 h̄0
05¹̄2 h̄0

j5¹̄m¹̄0 h̄m
05¹̄m¹̄0 h̄m

j5¹̄m¹̄ j h̄m
050,

¹̄m¹̄ j h̄m
k5~ Ḣ̄14H̄2! h̄ j

k , ~3.7!

¹̄2 h̄ j
k5

1

ā2
¹W 2 h̄ j

k2 ḧ̄ j
k23H̄ ḣ̄ j

k12H̄2 h̄ j
k .

In these equations,¹W 2 is just the three-dimensional flat spac
Laplacian¹W 25S j 51

3 ] j
2 . Upon substituting these expressio

in Eq. ~3.5!, we find

ḧ̄ j
k13H̄ ḣ̄ j

k2
1

ā2
¹W 2 h̄ j

k1S 2Ḣ̄16H̄21
p̄2 r̄

2
D h̄ j

k50.

~3.8!

The last term looks similar to the environment-induced ma
however, by the E frame FRW equations of motion~2.9!,
this term is identically zero. Hence, finally, the equations
motion for the transverse traceless perturbations of the me
are
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818 57NEMANJA KALOPER AND KEITH A. OLIVE
ḧ̄ j
k13H̄ ḣ̄ j

k2
1

ā2
¹W 2 h̄ j

k50, ~3.9!

i.e., the propagation equations for a set of minimally coup
scalars. The index structure of the perturbationsh̄ j

k can be
easily accounted for by going to the mode expansionh̄ j

k

5 ē j
k(t,pW )exp(ipW•xW). The gauge conditionsē j

j5pj ē
j
k50

can be easily solved as follows. We orient the spatial re
ence frame s.t. thez axis is along the direction of propaga
tion of the wave, and then we find that two linearly indepe
dent polarization tensors are given by two Pauli matri
e15s3 and e35s1. Any other perturbation is their linea
combination:ē j

k5 f 1e11 f 3e3 , wheref k , k5(1,3) are
the mode functions. Since we will see later that the mix
index perturbationsh̄m

n are conformally invariant, andf k are
modes of these degrees of freedom,f̄ k5 f k and from now on
we will omit the bars fromf k’s. In a different coordinate
system, the basis polarizations are given byek

5R21(pW )skR(pW ), whereR(pW ) is the rotation matrix which
orientspW along thez axis. Then, as we mentioned above, t
equations of motion~3.9! can be rewritten in terms of th
mode functionsf 1 , f 3 as the Klein-Gordon equations for
set of minimally coupled massless scalar fields, exactly a
general relativity:

¹̄2f k50. ~3.10!

This equation suggests very strongly that the metric per
bations choose to propagate along geodesics in the Ein
conformal frame. We will demonstrate that this is inde
true in the next section.

Now we turn our attention to the description of the wa
propagation from the point of view of the JBD frame. W
could proceed in precisely the same way as in the deriva
of the wave equation in the E frame. Starting with a fix
JBD background, we add a perturbation to the metric
ĝmn5gmn1hmn , and expand the equations of motion~2.2! to
first order in the fluctuation. Here, however, we do not ha
to repeat all the steps of the derivation in the E frame,
cause most of the details are the same, with barred quan
~E frame! replaced with the unbarred ones. We will therefo
outline only the main points and establish a corresponde
between the two pictures. First, note that since the field
definitions ~2.5! imply that hmn5 h̄mn /x, the mixed index
perturbations are conformally invariant:hm

n5 h̄m
n . Next,

the transverse traceless conditions in the JBD synchron
gauge are also conformally invariant: clearly, the equality
the mixed index tensors implies that if one is traceless, s
the other. Further, the constraints of the JBD synchron
gauge onhm

n are also identical:h0
05h0

j50. Finally, since

¹mhm
n5¹̄m h̄m

n1gmr
m h̄ r

n2gmn
r h̄m

r5¹̄m h̄m
n22 h̄0

n

ẋ

x

1 h̄m
m

]nx

2x
5¹̄m h̄m

n ~3.11!
d
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the transversality condition is also the same:¹mhm
n50.

Hence the perturbation of the Ricci tensor in the JBD fra
is of the same form as Eq.~3.2!, except that the quantities ar
all unbarred. There however are additional source ter
since now we have to take into account the contributions
the second derivatives of the fieldx as presented in Eq.~2.2!.
These terms will be important for showing that the geome
cal optics limit of the wave dynamics picks the E fram
evolution. Using the conformal correspondence we have
tablished so far, we can write down the equations of mot
for the perturbations in the JBD frame:

¹l¹mhl
n1¹l¹nhl

m5¹2hmn1
r2p

2
hmn1hmn

¹2x

x

1
¹rx

x
~¹rhmn2¹mhr

n2¹nhr
m!.

~3.12!

In the FRW background, after some straightforward algeb
we can rewrite these as

h9 j
k13Hh8 j

k2
1

a2
¹W 2hj

k1
x8

x
h8 j

k

1S 2H816H21
x915Hx8

x
1

p2r

2x Dhj
k50. ~3.13!

Again, the environment-induced mass term vanishes, now
way of the JBD frame FRW equations of motion~2.4!. The
final set of the equations of motion for the transverse tra
less perturbations of the metric are

h9 j
k13Hh8 j

k2
1

a2
¹W 2hj

k1
x8

x
h8 j

k50. ~3.14!

These equations contain the term proportional tox8/x, since
in the JBD frame the tensor perturbations also couple to
scalarx. To see how this term arises in the form abov
recall that because Eqs.~3.9! and~3.14! map into each other
under conformal transformations~2.5!, the x8-dependent
term must arise from the effect of the conformal map on
comoving time. Now, it is evident that the same polarizati
basis as that used in the E frame analysis above can be
ployed to represent an arbitrary perturbation. In fact,
could just take any solution of Eq.~3.9!, and conformally
transform it to the JBD frame according to Eq.~2.5!, and it
will be guaranteed to solve Eq.~3.14! as well. In terms of the
mode functions, then, the JBD frame equation of motion
gravity waves~3.14! can be written as

¹m~x¹m f k!50, ~3.15!

where f k are the mode functions, withkP$1,3%. In this
case, the modes propagate under the influence of an a
tional conformal coupling tox. This equation is conformal to
Eq. ~3.10! under Eq.~2.5!. These two equations,~3.10! and
~3.15!, will be our starting point of derivation of the geo
metrical optics approximation in the next section.
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57 819SINGULARITIES IN SCALAR-TENSOR COSMOLOGIES
IV. SINGULARITY REVEALED

We are finally ready to show that smoothing the JB
frame is not sufficient to remove the singularity from FR
cosmological solutions we have discussed in Sec. II. As
have indicated in the introduction, this is because the gr
tons, when considered as probes of the geometry in the c
sical limit, move along null geodesics of the E frame, and
JBD. Since the E frame is manifestly singular, the gravi
world lines are incomplete and so they reintroduce the
gularity’s effects even in the JBD frame.

Let us first derive the geodesic equations and then c
sider their implications. As a warm up, we will first find th
geodesics in the E frame, since there the mode equatio
very simple — it is just the Klein-Gordon equation for
minimally coupled massless scalar field for each polariza
mode of the graviton sector¹̄2f k50. Now, the geometrica
optics limit corresponds to settingf k5exp(iS), and identify-
ing the phaseS as the action of the pointlike probe whic
replaces the wave packet@23#. The field equation in terms o
S becomesi ¹̄2S2(¹̄S)250, and so, assuming thatS is real
and separating the real and imaginary parts of the equa
we find

~¹̄S!250, ¹̄2S50. ~4.1!

Now, after S is integrated, it must be a function of the spa
time coordinates only, since it is the phase off k . Hence, if
we useS5S(xm), the action must be representable as a p
integral along a geodesic which the wave packet is follo
ing: S5*dxm¹̄mS. Let us now introduceVm5¹̄mS and re-
call thatdxm5 ẋmdl̄ along a geodesic, wherel̄ is the affine
parameter. Hence@23#,

S5E Vmẋmdl̄ . ~4.2!

The equations of motion forS ~4.1! become, in terms of the
field Vm , the following two constraints:ḡmnVmVn50,
¹̄m ḡmnVn50. The first constraint is local and hence can
easily enforced at the level of the particle action with t
help of a Lagrange multiplier. It just tells us thatVm is a null
vector. The second constraint is not local, and in fact in
geometrical optics limit is always a very small quantity co
pared to the first one, and is usually ignored. Here we w
retain it, and use it to determine the Lagrange multiplier. T
constrained particle action is thenS5*dl̄ (Vmẋm

1 h̄ ḡmnVmVn). In the geometrical optics approximation, b
cause of destructive interference of waves, only those tra
tories for whichS is extremized survive. TreatingVm as an
independent variable, and varyingS with respect to it, we
find ḡmnVn52 ẋm/2h̄ . This simply means thatVm is tangent
to the wave packets world lines, which byḡmnVmVn50
must be null. The differential~second! constraint translates
into the condition¹̄m( ẋm/ h̄ )50. Now, in the flat space
limit, the covariant derivative would have become an or
nary derivative, and we would have been able to use]mẋm

5d(]mxm)/dl̄ 50 to assert thatẋm ]̄ m(1/h̄ )5d(1/h̄ )/dl̄

50, i.e., thath̄ is a constant along trajectories. Then, with
e
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appropriate normalization (h̄521/4) we would have found
S5*dl̄ ẋmẋm with ẋmẋm50, i.e., just the standard action o
a relativistic massless particle. In the curved space, the
gent vector field of a congruence of geodesics need no
divergenceless in general, i.e. it need not be¹̄mẋm50. How-
ever, since this quantity is the second constraint in Eq.~4.1!,
because of destructive interference, its contribution to w
propagation is negligible in the geometrical optics appro
mation. Moreover, if we go to the Riemann normal coor
nates, defined at a pointx0 by the conditionḠ nl

m (x0)50, we

will indeed find that to the lowest order¹̄mẋm vanishes. So,
we will set ¹̄mẋm50, as a part of the geometrical optic
approximation. This then tells us thatẋm¹̄m(1/h̄ )
5d(1/h̄ )/dl̄ 50 — just as in the flat space limit,h̄ is a
constant along geodesics. Therefore, the particle action in
E frame becomes, after again choosingh̄521/4 @23#

S5E dl̄ ḡmnẋmẋn, ḡmnẋmẋn50, ~4.3!

which defines dynamics of the E frame massless minim
coupled particles, i.e., the null geodesics. The geodesic e
tions can be derived straightforwardly by varying this acti
and imposingḡmnẋmẋn50. The result is

ẍm1 Ḡ nl
m ẋnẋl50, ḡmnẋmẋn50. ~4.4!

Hence as claimed, in the geometrical optics limit the qua
of gravitational perturbations move along the E frame n
geodesics, and not along trajectories in the JBD frame.

We can now derive the same result using the JBD form
the equation of motion, in order to check how the dilat
force deforms the JBD graviton trajectories into the E fra
null geodesics. To show that the result is a conformal tra
form of Eq. ~4.4!, we will derive it from first principles,
rather than just apply the field redefinition~2.5!. Bearing in
mind that we are following the motion of the same mo
(hm

n5 h̄m
n), but in a different reference frame, we again u

f k5exp(iS), but now we substitute it in the JBD frame equ
tion ¹m(x¹m f k)50 from Eq. ~3.15!. When S is real, we
again get two equations

~¹S!250, ¹m~x¹mS!50. ~4.5!

The first of these two equations is identical, up to an ove
factor of x, to the first equation in Eq.~4.1!. Thus it also
must correspond to the null condition,gmnVmVn50 where
we still haveVm5¹mS, albeit in the JBD frame. The secon
equation is a little bit more complicated than in Eq.~4.1!. To
see the effect of the couplingx, let us rederive the equation
of motion for graviton probes along the same lines we f
lowed in the E frame calculation above. As we have show
S is a function of the space-time coordinates only, and w
we use S5S(xm), S again is just the~same! integral S
5*dxm¹mS. This of course must be identical, since¹mS

5]mS5¹̄mS. With Vm5¹mS and dxm5 ẋmdl̄ along a tra-
jectory,
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S5E Vmẋmdl̄ . ~4.6!

The JBD frame equations of motion forS then are
gmnVmVn50, ¹m(xgmnVn)50. Enforcing the first con-
straint at the level of the action with the help of a Lagran
multiplier, we find S5*dl̄ (Vmẋm1hgmnVmVn). Note that
here we are contracting the indices with the JBD frame m
ric gmn , and sohÞh̄ . Varying this action with respect to
Vm , we find gmnVn52 ẋm/2h, and so again,Vm is a null
vector tangent to the graviton trajectories in the JBD fram
However, the differential constraint is then¹m(x ẋm/h)50.
We still implement¹mẋm50 as a part of the geometrica
optics approximation, and findẋm¹̄m(x/h)5d(x/h)/dl̄
50, implying thatx/h5c is constant along each partic
path. Choosingc524, we can write the JBD frame particl
action as

S5E dl̄
1

x
gmnẋmẋn, gmnẋmẋn50. ~4.7!

The particle trajectories are those paths which extremize
action. By varying this action, and taking the null constra
into account, we find@23#

ẍm1Gnl
m ẋnẋl2

¹nx

x
ẋnẋm50, gmnẋmẋn50. ~4.8!

Hence in the JBD frame gravitons do not move along g
desics, but rather along null trajectories determined by
additional force proportional to the four gradient of the sca
field x. Of course, this is what we have expected all alo
since we can see that in the JBD frame action~2.1! the xR
coupling implies that the JBD ‘‘gravitons’’ havex field
charge, and hence must couple tox ’s field strength. Yet,
when we use the conformal transformation~2.5! which trans-
forms the JBD action~2.1! to the E frame action~2.6!, ren-
dering the graviton kinetic term canonical, i.e., justR̄, we see
that this same redefinition removes completely
x-dependent force from the Eq.~4.8!. Under the conformal
transformation~2.5!, the connexion changes according
Gnl

m 5 Ḡ nl
m 1(1/2x)(dn

m¹lx1dl
m¹nx2 ḡmr ḡ nl¹rx) and

when contracted withẋnẋl, the difference precisely cance
thex-dependent force in Eq.~4.8!. Hence, the Eqs.~4.4! and
~4.8! are conformal images of each other, and they imply t
the gravity wave packets, to the lowest order, move alo
null geodesics of the Einstein frame metricḡmn .

Having proven this, we conclude that the conformal
moval of the singularity was only partially successful. By t
construction of the theory as given in the action~2.1!, the
matter fieldsY coupled only to the JBD frame metricgmn .
This metric was made smooth by the choice of the coup
function v(x), whose role was to push the E frame sing
larity to the asymptotic timelike infinity of the geometry
Due to this effect, the pointlike matter probes were unable
ever reach the singular region. Since they follow the J
frame geodesics, these geodesics are all complete. How
in this case, geodesic completeness is insufficient to c
clude that the solution is nonsingular. The gravity wav
e
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couple to both the metric and the scalar field in the JB
frame, and the net effect of these couplings is to deform
graviton trajectories back to the E frame null geodesi
These world lines are incomplete, because the E frame m
ric has a singularity a finite affine distance from any oth
place in the manifold. As a result, we cannot arbitrarily e
tend the history of one such universe. Sooner or later,
will reach the E frame singularity, where we will have
deal with the problem of defining the proper initial cond
tions for gravity waves. Because the graviton sector ther
ill-defined, we simply would not be able to unambiguous
set the initial conditions. Gravity waves could then comm
nicate the presence of the singularity to the other degree
freedom in the theory, at higher order. To see this, note
because the matter fields couple to the metric, they wo
also couple to the tensor perturbations at higher order. S
to linear order the tensor perturbations were the only deg
of freedom which detected the singularity, none of the ot
modes could be adjusted to completely cancel the influe
of the singularity on the gravitons. Therefore the gravito
would render the hidden singularity again visible to all t
fields in the theory. In particular, the relic gravitons from
very early era of the universe that survived recombinat
and that comprise the present graviton background wo
still encode information about the maelstorm they ca
from.

V. CONCLUSION

In this article, we have shown that conformal transform
tions alone cannot completely remove the initial singular
from a cosmological solution in the scalar-tensor mode
even if we allow the scalar-gravity coupling strength to d
pend on the scalar field. The matter sector in the models
have considered consists only of modes whose stress-en
tensor satisfies the strong energy condition. Clearly, if
matter sources violate the SEC, then evading singularity m
yet be possible — but this cannot be accomplished b
simple conformal transformation involving the JBD scala
Such conformal transformations merely hide the singula
from observers which propagate along geodesics of the J
frame metric, that can be arranged to be smooth by adjus
the couplingv(f). However, once different observers a
allowed, which couple to both the JBD frame metric a
scalar, because of the additional scalar force they do
move along the JBD frame geodesics, but along those
different conformal frame. In particular, gravitons mov
along the Einstein frame null geodesics, which are alw
incomplete, because the E frame solutions are all singu
Hence gravity waves see the singularity in all scalar-ten
models, regardless of the specifics of the model in quest
We can in fact see that a similar property should hold in a
nonminimal effective theory of gravity. The plain vanill
field redefinitions cannot remove singularities because t
do not couple universally to all the fields in the theory, a
so there will always be a mode which will discern the pre
ence of the singularity in the manifold.

In string theory, however, this may merely mean that
effective action approach must break down close to the
gularity. Since all the states in string theory are comprised
strings~andD-branes, as we have seen recently in some
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the models!, close to the singularity, gravity’s pull on low
energy pointlike degrees of freedom is so strong that t
effectively decompactify. Thus near the singularity inste
of a gas of interacting highly energetic particles we find a
of interacting highly energetic strings. But strings coup
naturally to the string frame metric, which therefore seem
be the frame we must choose to study the effects of fi
size of probes~or higher ordera8 terms in the derivative
expansion!. However, strings also couple to the dilaton, a
we must consider its effect on dynamics too, since it rep
sents the string coupling constant and so controls the vali
of the semiclassical approximation. Therefore in stri
theory, if we are to remove the singularity, we must regul
both the metric and the dilaton, which is reminiscent of t
situation in the scalar-tensor models we have conside
here. This also implies that if we manage to cure the solu
in one frame, as long as we take only reasonable field red
nitions ~i.e., those which do not alter the global properties
the space-time! we find that the solution is free of singular
ties in any frame. This, of course, is consistent with the f
that field redefinitions do not change physics, but just a
the language we describe physics with.

Finding whether the singularities could be removed fro
the effective theory still awaits. What we have learned
date seems to indicate that to regulate the singularities
must impose severe alterations on the theory. Simple twe
of the classical~or semiclassical! effective action do not
seem to work. To illustrate this point, we may recall t
graceful exit problem in the pre-big-bang scenario@14#. The
idea, briefly, was to use the multiplicity of solutions whic
arise because of duality, and paste them together in su
way that the result is a smooth Universe of an infinite l
span and with a region of very large couplingandcurvature,
mimicking the Big Bang. The difficulty with this proposal i
that the continuity of the solutions and the equations of m
-
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tion, in the effective potential approximation~i.e., the effec-
tive action truncated to second order in derivatives! makes
the smooth matching of the two branches with the pro
asymptotic behavior impossible unless very exotic con
tions develop at very high energies@16#. The matching is
supposed to take place very near the singularity — but in
semiclassical approximation, the singularity does all
steering of the dynamics near it, and hence the soluti
cannot evade it. The branch changing thus is not possibl
the semiclassical limit, with the matter sources satisfying
even weaker version of the energy conditions than in gen
relativity. A necessary condition~but not sufficient! for
branch changing has been derived recently by Brustein
Madden~in the last of Ref.@16#!, who showed that unless th
null energy condition~i.e., the requirementr1p>0 for fluid
sources! is violated, the branch change cannot occur. T
still does not guarantee the evasion of the singularity
branch changing, but it does tell us that unless we violate
null energy condition in some way, in a region of high cu
vature, we cannot even hope to avoid the singularity. Si
the conventional matter~pointlike or stringlike! degrees of
freedom generally do not violate the null energy conditio
this requires the presence of exotic matter sources~‘‘string
phase’’ @26#! or nonperturbative phenomena~such as dis-
cussed by@12,15,5#! to account for singularity smoothing. A
this moment, we know very little about this type of matte
The recent rapid development of string theory, howev
gives hope that we may learn more in foreseeable future
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