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Singularities in scalar-tensor cosmologies
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In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with
completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such
a universe never see the singularity, gravity waves always do. This is because they couple to both the metric
and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein
conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where
matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein
frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singu-
larity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.
[S0556-282197)01724-4

PACS numbefs): 04.20.Dw, 04.50+h, 98.80.Bp

[. INTRODUCTION hence, seems to be to bring into accord the facts and the
fiction by constructing a theory which could encompass all
One of the longest-standing challenges to our understandhe features of the big bang while hopefully not incorporat-
ing of gravity has been the singu|arity prob|em‘ In any ge_ing its own demise, in the form of an uncontested Singularity.
neric theory of gravity and matter, under reasonable assump- While it is not known how, and even if, all singularities
tions about the interactions between particles and fields angl@y be regulated in a theory of gravity, we may be able to
about the ways of communicating these interactiomsich gather interesting information by studying the difficulties
translate into, at least classically, fairly loose energy condiVhich emerge in the attempt to smooth the edges of the

tions), produces solutions which contain maelstormian re_?nl\{[grse |rf1 the eX|st|r;]g T(;)dbeISEA s{ta}rt, fotrhany S”fCh mves-l
gions of unbounded curvatufd]. In this sense, such solu- Igation, of course, shou € Einstein's theory ot genera

tions seem to point to an intrinsic deficiency of the theoryrelat'V'ty’ since it is in an amazingly good agreement with

. . erimental observations. In this theory, however, the gen-
that gave them birth, because the very theory_ th_at pfe"'c‘eﬁfg theorems due to Hawking and Pe)ll"nrose show tha%J the
such maelstorms looses meaning in these limits. Yet, w

AT Ronfigurations which are determined by the coupled
must note that not all is ill with the fact that such strongly ginstein-matter equations of motion, under the assumption

coupled regimes are generic in classical gravitational theoga; the above-mentioned energy conditions are valid, always
ries. Because singular regions generally involve very strongontain singular regionil]. The singularities in this context
forces between particles and very high energies, close 10 ge signaled by geodesic incompleteness. This means that
singularity much of the observed matter structure in the Uniparticle trajectories in such geometries cannot be continued
verse can be created starting from arbitrary initial COﬂditiOI’]Spast some hypersurface, because they get so strongly focused
Further, this mechanism is built naturally into the theory,by gravity’s pull that they begin to intersect and hence are
such that extrapolating present conditions backwards inevinot smooth any more. This phenomenon does not always
tably results in circumstances under which the present coulinply that the curvature of the metric grows beyond bound
be shaped in a generic way. Indeed, the vast body of astrér such limits. However, the geodesic curvatures do, since
physical observation does indicate that such a dramatithe geodesic bundles get squeezed very tightly. Hence an
event, the big bang, did take place in the past. The cosmabserver seeing such geodesic curvatures would indeed see a
logical singularities in the past, then, seem perfectly suited t&/ery strong force. With this in mind, the notion of geodesic

encode such cosmogonic furnaces into the thé@uyr task, ~iNcompleteness is indeed a good indicator of the singularity
in the space-time.
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‘Aside from the cosmological arguments favoring the presence of singularities in any theory of gravity, which we describe in the text, there
also exist more theoretically-minded arguments, which suggest that singularities may be needed in any theory of gravity for consistency
reasons. Specifically, Horowitz and Myd&]| have recently proposed that naked singularities in a theory of gravity are needed to separate
positive mass black hole solutions from the negative mass ones. If the negative mass solutions were not singular, they would be more
energetically favorable than the empty space, thus yielding vacuum instability in any quantum theory one might attempt to build on the
original classical theory.
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The presence of singularities in general relativity can bdield, and this coupling is adjusted precisely to even out any
taken as a sign that at very high energies, or equivalently dtumps in the metric. If there were any type of probe which
very short distances, the theory fails to be a completely concouples both to the JBD scalar and the JBD metric, it would
sistent description of nature. Because at such high energigigtect the original singularity. The probe would reach the
quantum effects become significant, this suggests that ge,singularity in a finite extent of its world line, after which it
eral relativity should be superseded by the quantum theory gould not be extended any further. This would signal that the
gravity, within which we should seek the answer to the co-9eometry is still incomplete, at least from the point of view
nundrum of singularities. Whereas we are still lacking aof certain observers. Once the subleading interactions are

complete formulation of the quantum theory of gravity, therePTOPerly taken into account, these observers can communi-

at present is at least one very strong contender, string theor ate the presence of the §|ngular|ty to the re_mamder. Hence,
check whether a solution of some nonminimal theory of

Although the recent developments in string theory, assiste Lo . .
by the discovery of the power of dualifi@], have greatly gravity is §|ngu_lar or not, _|t.|s not sufficient to show that
' curvature invariants are finite in some chosen conformal

improved our understanding of it, the theory is still not ) , o
known in a way that would enable us to ask the question rame and that thg spage-Ume geor_netry is complete n it
stead, we must investigate world lines of all the physical

about space-time in a general manner. Instead, we have 8 bes in the th onlv if all th d i :
either resort to the effective action approach which takes int@'oPes I he heory. Dnly 1 all these world linés are no
account stringy phenomena in perturbation thedry or we Inextendable can the space-time be complete and hence non
could study some special classes of string solutions Whicﬁ'n.gmar' As Iong_ as thgre IS even a single type of excitation
can be formulated in the nonperturbative regifd¢ The Which sees the sm_gulanty In any fram(.e,. the smgular_|ty IS not
latter approach is clearly more powerful in that it allows usabsent, but lurks in the geometry waiting to exert its influ-

to investigate more thoroughly the quantum dynamics of th(?n((:)e on the theﬁry. is to show that there is at least h
system under scrutiny. But this is available only for some ur purpose here Is to show that there IS at least one suc

special solutions, most notably the BPS states in the strin egree of freedom in all the scalar-tensor models studied in
spectrum, and not for any solution we might be interested in: g,lfﬂ- (Ijt 'St thedgra\{tltpn |tself.tB::‘r|]ng gentalrlqtang model_

In particular, there still does not exist a nonperturbative for-![ntepfr:] ent, aln 'tnob '”Lm“t”e 0 ¢ € smgfu artty, 1 l'ret.suscl:)l—
mulation of generic cosmological solutions in string theory. ates the singularity back Into existence ot any realstic oo-
Hence all the investigations of “realistic” string cosmolo- S€'Ver I such theories. To demonstrate this, we only need to

gies have been carried out essentially in the effective actio’?c’k at the classical theory. We will present the equations of

approach, which is valid for the weak to medium range Ofbmc;?onn offme ?nerll:ilne rg]](rjat\n:(y vtvhaves, |r.§.,trtihelten§or I?ri::lir
couplings and curvaturdsee, for exampld 6—13)). We will ations ot the metric, and take the geometrical optics 0

not dwell on the details of these investigations here, othe how that the wave packets of gravity waves move along the

than to mention that the departure of string-theoretic solu- bflrart?e null ge?f[jhesm_s. Trlweste trajzc:r(])rles ar_? past mextenlzj-
tions away from general relativity is induced by the presenc € because of the singularity, and the graviton wave pack-

of additional degrees of freedom which arise in the masslesie reach the singular hypersurface after a finite extent of the

string spectrum. These fields, the scalar dilaton field, the tor"f‘ff'ne. parameter along their world lines. Given this, the sm—'
sion tensor(or Kalb-Ramond field, and others, couple to gularity cannot be completely removed from the geometry:

each other and to gravity nonminimally, and can influencethe gravity waves can communicate its presence to all other

the dynamics significantly. Thus it makes sense to ask if thg_egrees_ of freedom in a finite tim_e, ultim_ately making the
spectrum of the theory may be tailored in such a way as t ingularity observable. The paper is organized as follows. In

roduce solutions which do not feature any singular behavio} ' next section, we will revieyv the_JBD models studied in
F14—1@- even if that means abandoningystrin% theory an 17,18, and establish the relationship between the JBD and

just constructing certain toy models for the purpose of study- frames. Sect_lon i is de_voted to t_he derivation of the grav-

ing the strong coupling limit. ity wave equgtlo_ns of motion, both in the JBD and E frames.
This approach has been taken recentl{/lii,1§. There a The singularity is the central notion of Sec. IV. There we

special class of scalar-tensor theories of gravity was consid’-f”” carry out the geometncgl optics approximation and d.e-

ered, where the matter does not couple to the scalar field iHve the gravity wave world lines. In the last section, we wil

some generalized Jordan-Brans-Dick@BD) conformal give our conclusions.

frame, but the JBD coupling of the scalar to the metric de-

pends on the value of the scalar field. It turns out that by Il. HIDING THE SINGULARITY

choosing the JBD coupling function one could construct the

metric in the JBD frame which is smooth over an infinite

interval of the JBD comoving time. Since the matter fields

couple only to the JBD frame metric, they do not feel any

singularity at all. However, in the EinsteifE) conformal

frame, where the metric degrees of freedom have a canonical )

kinetic term, if the matter sources satisfy the energy condi- «_ [ 44 _ W) 2_

tions and consequently the dynamics are still subject to 5= d X\/E(XR (VX" LV VY G |

Hawking-Penrose theorems, the curvature singularities still 21

plague all the solutions. The E frame singularities are invis-

ible to matter probes which do not move along E framewherey is the scalar JBD fieldR is the scalar curvature of

geodesics. Rather, in the E frame matter couples to the scaltire JBD frame metrig,,, and) and V) are any other

Here we will review the models and solutions studied in
[17,18 in order to set the stage for out investigation. The
theories investigated in these articles were defined by the
JBD actions with a variable paramete( ), given as
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matter degrees of freedom and their derivativé®ld classical nonsingular universe solution, this is a sufficiently

strengths Our signature conventions agg,,=(—,+,+, good approximation to start with. We will determine the lim-
+) andR*,,,=d,I'% —--- . Note that in order to ensure its on vy later.

that the gravitational degrees of freedom are not ghostlike Instead of deriving the equations of moti¢®.2) in the
(i.e., that the graviton propagator never has negative resdBD frame, we could have equally well used the E conformal
due), we must requirg;=0. For simplicity, we choose units frame. Conformal transformations of the degrees of freedom
such that in the E frame we have46,=1. The approach in a specified theory are merely field redefinitions, and so
taken in[17,18 was to specify the functiom(y) in attempt-  they cannot change physif20]. In this sense, they are to be
ing to remove curvature singularities in spatially flat FRW regarded as changes of reference frames, which leave physi-
solutions. Note that in the JBD frame, the matter fields docal observables invariant. The important issue here then is
not couple to the scalay at the tree level. To get the equa- clearly to identify the observables correctly. To do that, we
tions of motion, we can simply vary the action with respectmust specify an observer, building it out of the physical
to the independent degrees of freedgy , x, and). After fields in the theory. Once given, this observer does not care
a bit of straightforward algebra, we fifd9] which reference frame we use to compute observables with.
So, if we define the E frame metric and scalar field by

1 1 , O 1 2
Cur =3 V¥ X =5 8Vt 3| VXV ox = 500V X)

_ V2w+3
1 9ur=Xpuv ¢=J dx (2.9
+ T V2x
2x 7
w d/e (using the overbar to distinguish between the two conformal
2VM<—V“X +R-— d—( —)(VX)ZZO, (2.2  frames and, following[18], assume that the functioa(x)
X X\ X is monotonié such that the functional relationshig
sC =¢(x) is everywhere invertible, we find that in the E frame
v_ _ m the effective action is
vV, T#=0, T,=-2—-0,,Lm, v ion i
og-
whereG,,= RM—%gwR is the Einstein tensor, anb,, is 4 —
the stress-energy tensor of the matter fieJdsThe conser- S= | d xVg{ R-(Vg)2- 5 ¢) MNARY x(qﬁ)g’” :
vation of the stress energy , T#"=0 is equivalent to the 2.6

matter equations of motioW ,(6L,/6V ,)) = 6L, 16). Let
us now write the explicit form of Eq(2.2) for the spatially
flat Friedmann-Robertson-WalkéFRW) cosmologies, as-  in this conformal frame, the metric kinetic term is canonical,
suming that the matter stress-energy tensor can be put in th% ]ustR while now the matter fieldy’ couplebothto g ,,

perfect f"%'d formT,,= ng_V+(p+p)uMuV, whereu” is and ¢. Note that in order for Eg2.5) to be well defined, we
the VeIOC'W .Of the comoving observen,u=—1. The must require »+3>0. This is because when«i2-3=0,
FRW metric is the scalar field is not dynamical, since a conformal transfor-
mation to the E frame removes its kinetic term. Further, for
2w+3<0, the scalar would be ghostlike, since its kinetic
term would be negative. Now, to find the equations of mo-
tion in this frame, we can either take E¢8.2) and transform
them to the E frame using Ed2.5), or we can vary the
)2 , action (2.6). Since in the E frame the matter fields couple
3H2=— X__3H_+ iy p'+3H(p+p)=0, both to the metric and the scald, the matter equations of
2 2 X 2x motion are a little bit more complicated than in BG.2).
Varying Eq. (2.6) with respect to ), we obtain
. b% wx'? p V [(Lx?) 8Ll 8V V1= (LIx?) 8L,/ 8. Furthermore, re-
ZH'+3H%+ " +2H—+§7 2, "0 @4 caﬁnng that " 8[(1x?) Lol 86 = — {(dx/dB)[ 2L
+gw(5/: 189 ,,)1} x3=(dx/d¢) T/2x, where T is the

o , dlo| , , ) trace of T,,, the resulting equations of motion in the E
2;()( +3Hy )+a ; x'“=6H"+12H°. frame ard19,9]

ds?=—d7r2+a%(r)dx? (2.3

and the comoving velocity is*=diag(1,0. The equations
of motion (2.2) become[19]

The primes denote derivatives with respect to the JBD frame

comoving timer, and the JBD frame Hubble parameter is 2We require that o is monotonic. But since d¢/dy
H=a’/a. For simplicity’s sake, we will assume that the =.2w+3/2y, and we wish that all curvature invariants, not only
equation of state ip=yp, with y a constant. This is not true R andR*'R,,, are smooth, we should also require thats ana-

in the real world, since we know thatmust be a function of Iytic [18], because higher derivative invariants depend on the de-
the temperature of the universe, and hence of time. Howeverivatives of w. We will discuss this in more detail following the Eq.
since we want to investigate the possibility of constructing a2.11).
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1_ — 1 dX— general relativity. Consider any timelike geodesic with a unit
_V#¢VV¢ 29W(V¢) T Vo= 4y d¢ tangent vector field” (g,,£“¢"=—1) in a globally hyper-
bolic space-time(i.e., space-time without any acausal pa-

(2.7 thologies such as closed timelike curves, which we will as-
sume herg The singularity theorems then posit that these

v, THr= —Z Z—;() Wd), geodes_ics are past ine_xte_zndab'le., incompletg as long as
the projection of the Ricci tensor on the tangent vector field
is positive semidefiniteR LE#EY=0. By the equations of

T2 0%m 1 motion, this condition can be recast @,,é#¢"+©=0,

B R sgrr 2 where the tensor®,, is the total stress energy,,

=V,¢V,6—(1/2)g,,(V$)?+T,,. This requirement is
called the strong energy conditigBEQ), and is thought to
FRW geometries with perfect fluid source$,,,=pg., pe satisfied by most reasonable classical matter sources. In
+(p+p)u,u,, whereu” is now the velocity of the E terms of the principal values of the stress-energy tensor
frame comoving observer. The E frame metric is @‘Fdiag(ﬁ,ﬁl,ﬁz,ﬁs), SEC translates intq5+2i3=1f3i

d's?= —dt?+ aZ(1)dx? 28 =0 p+pi=0, i=1,2,3.(Here we use the hat to distin-
guish the principal values cﬁ)w from those ofT ,,, which
and soﬁu_#: —1, u#=diag(1,0. We will show that this are both defined in the E framéhe only feature of the JBD
is consistent with the JBD frame comoving velocity shortly, system we will be investigating here is the effect of the
by establishing the transformation properties relating thevariation of w with y on the singularities, which still needs
JBD and E quantities. The equations of motigh?7) then to be specified. Therefore, we can assume that the matter

Again, we will need Eq(2.7) restricted on the spatially flat

becomef19,9] fields Y obey SEC, meaning thal ,,&“&+T=0 for all
timelike geodesicst. For the homogeneous and isotropic

. ¢? p_ - ¢ dy — — cases which we are interested in, this tells us that-3
3H2=7+ 5. pT3H(p+ p)=§ @( pP—p), =0, or y=— 1/3. When¢ is included, its stress energy trivi-

ally satisfies SEC in the E frame. Hen&,also does, being
— a linear combination of these two contributions. We see that
— ¢ ptp in the E frame all timelike geodesics must be past inextend-

H+ 7+ 4 =0, (2.9 able, and thus all cosmological solutions are singular.
Unfortunately, this does not specify the character of the
singularity. Generically, geodesic incompleteness as an indi-
¢+3H b+ — 1 dx (3p p) 0. cator of the presence of a singularity signals that the metric
4x d¢ becomes degenerate as some region of space-time is ap-

proached. To learn more about the actual properties of the
Here the dot denotes derivatives with respect to the E framg,ngmamy we must look at concrete solutions. If we limit
timet, and the E frame Hubble parameteHs- ala. Using  our attention to spatially flat FRW cosmologies, which have
the variational definition of the matter stress-energy tensormnatter sources that satisfy SEC, we will typically find that
we can immediately see that the conformal transformatiothe singularity arises because at some time, tsa@, the
(2.5 induces the change of the stress-energy tensor accorgcale factor of the universe vanish@s diverges, such as in
ing to [19] T#,=T#,/x% With this and Eq.(2.5), we can  pole-law inflationary solutionsas some power of, a(t)
also easily show that the JBD frame equations of motiort®, a+0.% Since the curvature scalar can be expressed as
(2.2) and the E frame equatior{2.7) map into each other.
For the variables describing the FRW univerg@s3) and
(2.9, the transformatlons ardr=dt/\y, a(r)= a(t)/\/_ 3t is clear that hypersurfaces=const, wherea(t) is smooth and
p=x2p andp=x%p. To find out how the comoving veloc- nonvanishing cannot be singular, since the metric there is nonde-
ity transforms, we should look at the comoving velocity vec-9enerate. We are assuming that singularities can arise only as zeros
tor fields in each frame. In the JBD frame, we have g, or isolated singularities o in the functional sense, and further that

and in the E framdJ = dy, soU= \/—U But this means that f a is unbounded for some values bfthat such singularities are
the components of the ComOVIng velocities in the two framedot essential singularities, i.e., thatis analytic everywhere near
are identical, u*= = diag(1, Q as has been claimed the singularities, and that if it diverges there it admits a Laurent
above. This completes our survey of the conformal transforse”es expansion with a finite number of dlvergent terms. This is
mation rules for the quantities of interest here. consistent, because essential smgularltlea adre never a part of
Now we can investigate the properties of the theory, usméhe manifold in the sense discussed in the text. For assunie
either of the sets of field equatiori8.2—(2.7). We should were an essential singularity. Then the geodesic distance from the
first recall the Hawking-Penrose singularity theorditls To  Singularity to anywhere else in the manifold satisfies, ligh A -
do this, we will use the E frame equations of moti@y?),  =lim._ota(t). But since t=0 is an essential singularity,
since the gravitational equations of motion are the same as iim,_,,ta—«. Hence, A\ always diverges.
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R=6H-+12H?, we find that in the limitt—0, R=6a(2a a? PP
—1)/t>+ subleading term$.So for a#1/2, the scalar cur- 2 2
vature diverges at=0. If a=1/2, then near the singularity

the universe is radiation dominated. The scalar curvature A
vanishes because the radiation sources are conformally in- = a— y a. —
variant and hence have vanishing trace of the stress—enyergy p+3(lty) P Adp=0, ¢+3t ¢t 2p_0’
tensor. However, the square of the Ricci tensor then di- (212

verges, aRR,,, R*"x 1/t*. Moreover, if we look at causal geo- ) )
desics, we can see that in order to move between ttragsl ~ WhereA=(3y—1)/V4w(xo) +6=0 wheny=—1/3 is a fi-
t=0, they require a |apse of the affine parameter equa| to nite constant since@+ 3>0. On the other hand, we can see
from Eg. (2.2 that we can always write down the exact
ot __ solution for the fluid, since in the JBD frame the fluid
AN= Odt a/\v?+m?a? (2.10  couples only to the metric. The solution js=py/a3 7,

Now, sincep = p/x?, we can transform the energy density to

which can be obtained by solving the causal geodesic equibe E frame:p=pox®7~ V%237 In the limitt—0, as
tions for the metric(2.8), and wherev? and m? arise as a~xt® and yx=t?, we find p«t(37~DA2=32(1+ Hence in
constants of integratiory? is a non-negative constant, and order for thep pole contribution to the JBD curvature to be
m2=0,1. In the limit of smallt, when axt®, we can ap- Smoothed, we must requirg+(3y—1)B/2—3a(1+7y)

proximate this expression Witmﬁt““l\/gzﬂt_mzfm, =0. From_the equations of motion near the smgularlty, we
hence noting that we can always choo2eandm? such that ~ S€€ thatp<6a?/t* for all t. Therefore, for all solutions,

AN is finite® This means that there always exist causal geog?’ty_f.l)lglz_.:;“(lJr )= t_hz, Wh';:] means that the rLegtu-
desics which reach out of the singularity to anywhere in thda or Tield x 1S o worse than in the previous case. Let us

Universe in a finite proper time, i.e., they are past inextengNOW compare this to the scalar field contributions. Assuming

able and so incomplete. As a result, all the FRW solutiond Strictly greater than order relation in the previous inequal-

with this type of behavior are indeed singular. ity, so thatp falls off slower than 1, we see from the
To see how the mechanism of conformal transformationsonstraint equation solved fap, ¢%/2=3H?— p, that near

could regulate the singularities, recall that since all FRWihe singularity the dominant contribution comes frdm

solutions that is, k==1,0) are conformal to static geom- ;s neans that the scalar field ds< 6/t But then, suf-
etries with maximally symmetric spatial slices, the Weyl ten- . . — oo -
sor of these solutions is a constant and hence does not eﬂc_:lent_ly cI_ose tat=0, _th_ep-dependent co_ntrlputl_on_ to the
code any information about the big bang singularity. Thegauation is also negligible. As a result, in this limit-1/3,
information about the singularity is completely encoded inand hence the solution approaches—t"%, ¢— ¢
the Ricci sector of the curvature, which changes under con# V2/3In(t) with negligible matter field contributions, i.e., we
formal transformations. Indeed, we can look at the leadinglet the scalar field-dominated cosmold@y10]. Inspecting
form of the curvature in the vicinity of the singularity of EQ. (2.12 near the singularity we can see that the matter
every solution we have discussed above. Applying the fielgources can never dominate over the scalar fieldnce near
redefinitions(2.5) to the solutions, and using the equations ofthe singularity, thep-dependent contributions can never be
motion in the E framé2.7), we can show that the JBD and E subleading to the matter stress-energy contribution, regard-
frame curvatures are related by less of the kind of matter field.

The only remaining possibility is that the two sources

(-1)2 1+y—

+p_ S
2 g 2t a”

_ 3T 3(V_¢)2 / de remain of equal importance near the singularity. Indeed, a
R=yx{ R+ 1076 2\2Xd_+2w+3 . glance at EQ.(2.12 suggests that a solution of the
@ (20+3) X asymptotic formeoc1t, p1/? near the singularity is ad-

(2.19 missible. Yet, a closer look reveals that, unless—1, the

We have seen above that as the singularity is approached, tf €quations in Eq(2.12) are consistent only ifp=0 -
E frame Ricci scalar diverges R 2. Hence if in this hence again leading to the scalar field-dominated solution. If

- _ i ST — v=—1 [which corresponds to the JBD frame cosmological
limit x—t# with =2, the divergent contribution 0R in  constant, since = const from the equations of motid@.4)],
Eq. (2.11) can be tamed. What about the other two terms? Ithe sojution which treats the sources in an egalitarian way is
is straightforward to see that in the limit(t) —t¢, the equa- admissible. However, in this case the paramgteannot be
tions of motion(2.9) are approximated by adjusted to be=2. It is fixed by y=—1 and 3x(1+y)
—B(3y—1)/2=2 to beB=1. So the JBD frame solution is
still singular. For this case, it is impossible to remove the E
“Note that this is valid even for the cases when the scale factor
vanishes faster than the power law, suchaast?3 In(t)]¥2 which
is known to be the limiting form of the solution dominated by 8Suppose they did; then, near the singularity the scale factor
composite hadrong21]. o would behave as«t?¥1*? and hencep = 1/t2. But this then pro-
°E.g., fora>—1, takem?=0 andv®=1; then,AN=t'" % if @  duces the response in the scalar field accordingstoP/t21*”
<-1, choosey?=0, m?®=1 (static observers! so thatA \ «t. +Q/t, whereP andQ#0 are integration constants.
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frame singularity by going to the JBD frame via the confor- guarantee that the JBD solutions are nonsingular can be sum-
mal transformatior(2.5), regardless of the form of the cou- marized in terms ofQQ=2w+3, following [18], as (1)
pling function w(x).” From this discussion, we can see thatd"(/dy" are smooth everywhere except in the lingit>1
all the JBD frame solutions without a singularity must have aor all neZ,, (2) as x—1, bothQ and its derivatives di-
unique behavior near the singularity in the E frame — that ofverge as some inverse power of{})), and(3) finally and
the scalar field-dominated cosmology. In fact, this is the reamost importantly, that near the singularity the solutions are
son why a conformal transformation can be used to smootbominated by the JBD scalar fieldd (or equivalently,y),
the solution. Once the solution is dominated by the scalawhich implies lim,_,oQ=1/3.
field near the singularity, we can choose an almost arbitrary We emphasize here that whereas this condition is vacuous
function of the scalar field to conformally transform the so-for a range of admissible types of matter, it is not automati-
lution with — as long as the conformal factor vanishes in thecally true for all solutions. In particular, we have given two
limit t—0 at least as fast a$. simple example$with the JBD frame matter being either the
To complete the smoothing of the singularity within the cosmological constant or a radiation fluidhere the scalar
context of the JBD theory, we must require that the hyper{ield in the E frame is not dominant near the singularity and
surfacet=0 can never be reached by any particle in the JBDhence the JBD frame solutions remain singular.
world. If we look at the matter sector of the theory, in which  However, as we have indicated earlier in the discussion
fields move along the JBD frame geodesics, we should repreceding the investigation of the conformal pictures of the
quire that no such geodesic ever reachestth® hypersur-  physics given by Eqg2.1)—(2.6), even if the conformal res-
face. When we solve the geodesic equations of the JBD metaling did produce a smooth metric in the JBD frame, it may
ric (2.3), and express them in terms of the E frame time fornot have really removed the singularity if there still remained
convenience, we find that the JBD frame geodesic lapse beven a single degree of freedom which coupled to the E
tween hypersurfaces andtg is frame geometry. In what follows we are going to show that
gravitational waves move along world lines in the JBD frame

t — which are not geodesics. Rather, they are deformed by the
N\:f adt/Vo®x*+m’ay, (2.13  dilaton force such that they are identical to the E frame geo-
o desics. This should not be a complete surprise since it is the

5 5 _ _ E frame where the graviton kinetic term takes the canonical
where as befor&#“=0 and m°=0,1 are integration con- form, being just the Ricci scalar. It has been argued by Sha-

stants. To make sure that all the geodesics are complete, Wre, Trivedi, and Wilczek22] that in theories of antisym-
must require thaf A diverges as either of the limits of inte- metric p forms coupled to scalars viﬁ(¢>)Fi the
1

. . . . S Mptl
gration goes to zero. Substituting the asymptotic form of th(?ensor field quanta move along geodesics of the metric where

functionsa and y which we have deduced above, we find the termf(¢) is absorbed away by a conformal transforma-
that as long ag=max(2a+1), the geodesic distand®\  tjon, This was later proved if23] by the present authors and
between the=0 hypersurface and any othier const hyper-  cojlaborators to hold as the geometrical optics limit of the
surface diverges. Further, if we sef=0, m’=1, we re- p_form field equations. Since gravity is a gauge theory simi-
cover the integrated coordinate transformation between thgy tg the p-form field theories, when we apply the same
JBD comoving timer and the E comoving time, 7  technique to the equations of motion of gravitational pertur-
=J'dt/x, as we should. So we see that the hypersurtace pations in the FRW background, we find that the gravity
=0 as seen from the JBD frame corresponds to the infinitgyaves in general see a scalar force. Therefore since the E
past (or future of the solution, as long asf=2:  frame metric is singular, the gravity wave world lines are
lim;_o7— 0. Therefore, the conformal transformation to past inextendable, and hence the full physical arena of the
the JBD frame does push away the singularity to an infiniteheory given in either frame is still incomplete. This must be
distance, while making the JBD curvature finite. taken as a signature of a latent singularity, which simply did
At this point, we must remember that while we are USingnot go away by a conformal transformation, but 0n|y ap-
the conformal transformatiof2.5) to regulate the solution at peared invisible to the matter sector probes.
t=0, we must make sure that it does not behave badly else-
where. The conditions whiclk(¢) must satisfy in order to ll. GRAVITY'S REDOUBT

Below we will consider small perturbations away from a

For completeness, we should also mention another special eixed curved background, and look at their dynamics to the
ample where frame switching fails, although this case does nolowest order in the fluctuation. Since we want to study only
violate the results 0{17,18], since the scalar field is constant. the pure gravitational excitations, we will assume that the
Namely, if the matter is in the form of pure radiation, there existmatter and the JBD scalar are unperturbed, and impose the
solutions with¢=const, as can be seen from either EGs2) or  transverse traceless gauge on the metric fluctuation. Further,
(2.7). Hence the JBD and the E frame are identical, and so th&ince we will look for the perturbations around the FRW
singularity is not removed. Nevertheless, these solutions are nafolutions, we will impose the stationary gauge on the back-
past attractors for all late-time radiation-filled universes, since aground metric, which will therefore leave the background
long as¢# 0, early enough it will dominate over radiation. So these solutions identical to the ones studied in Sec. Il. The result-
solutions are not generic, but they illustrate that scalar field musing equations of motion give the correct dynamics of the two
dominate near the singularity in order for the frame switching to beindependent graviton polarizations, theand thexX modes,
successful in smoothing the solution. in exactly the same way as discussed previo(ia#;25. In
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the E frame, these equations will be the same as in the ordNext, since we are working in the synchronous gauge, the
nary general relativity, because of the gauge conditions. "Eomoving velocity is unchanged?‘=m‘=diag(lf) and

the JBD frame, they will contain an additional coupling 10 g4 is the trace of the stress energy tensor. The perturbation of
the scalary, which arises from the noncanonical form of the the stress-energy tensor for fluid sources is

graviton propagator.

In the E frame, therefore, we will use the following ansatz S [N 1
for the metric and matter fields: 07,,=T,,— EgWT— Tt ngT= p huv_EthT
0=t Ny, S¢=5Y=0. (3. P
SR =hwpz—p. 3.4

The genuine gravitational degrees of freedom correspond to

two graviton polarizations defined by imposing the trans-aisq, the stress-energy conservation equation is identical to

verse traceless conditions on the metric perturbation. In thg,o ~ase without the perturbation because of the gauge con-
momentum space, this means that we require the polarization -

L — ditions; specifically, V, T#*=V , T4, Substituting these
tensor of the gravitore ,,,, tob_e traceless and orthogonal to conditions and the Eq3.2) in Eq. (2.7), we obtain the co-

the direction of motion, i.e.e*,=k"e,,=0. In terms of  yarjant form of the equations of motion for tensor perturba-

the perturbatiorh ,,,, these conditions can be written down tions:

ash*,=V ,h#,=0. Here the covariant derivatives and rais-
ing and lowering of indices are taken with respect to the

background metricg_,w. The inverse metric, to linear order

ViV, Y, 4V, V0, =V2h 4 p;—ph_,”. 3.5

in perturbationh is g#”=g#”"— h*”. Notice here that the . . L .
P 9 g We now want to rewrite this equation in terms of the mixed

determinant of the metric is not perturbed:=det(,.,)  perurbation tensoh”,, which is the natural variable to use
=9g+h*,=g. A straightforward calculation shows that the pecause of the gauge conditions. Using the explicit form of
Christoffel symbols in the perturbed background &t~ the background metri€2.8), we can verify that in the syn-

—TE 4 4~ where A= (12)a " (V.h. +V h. chronous gauge the following conditions hold identically
TV o i =(1/2)g"(V VP TrR L (see, e.0.[24,25):
—V,h,\). The Ricci tensor, expanded to linear order in
h,., is, in the transverse traceless gauge, V,hoo=V0h0,=0, V;h,=—Hhy,
— — 1 — 1 < 1 > - . - _
RILV:RMV+§V)\VMh V+§V)\Vyh N_EV h,uv' VOhjk:hjk_Zthkr Vihjk:ﬁihjk' (36)

(32 Since these equations are covariant with respect to the as-

Note that the perturbation iR, is traceless because of the S“me% backgrouncé, V\;e can raise tth_e |hr;$|ces lésmlg tge back-
radiation gauge conditions, as expected. Tracing out thg'ound metric, and after some straightforward algebra, we

ravitational equations of motion in E€.7) and subtracting c&" also verify the following conditions on the second cova-
gravi .I ) quat lon in E.7) ubtracting riant derivatives of the perturbatid@24,25:
the Ricci scalar-dependent term, we see tha,

=V, ¢V, 0+T,,—(1/2)g,,T. The perturbed equations of WWOZWW_:V_WWO:V_WW:V_V{WLO:O'
motion are identical to these. In order to find the equations of oo K oo
motion of the perturbations, then, we have to expand the —

— Th# = I
equations to linear order ih ,, and cancel the lowest order VuVINfe= (H+4HD R 3.7
terms since the background is a solution to E2}7). We
also need to demonstrate that the perturbation is consistent V2hl, =;V*z—j —hl.—3HhT. + 2H2n],
with the matter sector of the theory, in that it is not exciting SPTARRL K k:

any perturbations there. At this time, it is convenient to refer

to the explicit form of the background solution, and intro- | these equations;? is just the three-dimensional flat space

duce the gauge conditions for it. V_\/e_ will work with the Laplacian52=23=1&2. Upon substituting these expressions
synchronous gauge, where the metric is exactly the same as 1=

i = N in Eq. (3.5, we find
in (2.8, ds*>=—dt’+a’(t)dx?, and the perturbation satis- a.(39

fies hoo= ho=0. Then, on all cosmological backgrounds of . . 10— PP |—
the previous sectionh#'V,¢=$h#°=0, and so, the per- Nkt 3HN i~ ?V hli+| 2H+6H"+ ——|h/,=0.
turbed d’Alembertian is identical to the unperturbed one: 3.9

= 1 \fu_y = 1 \/—_V The last term looks similar to the environment-induced mass;
Vip=—=0,(N99""0,¢)=V°¢p——=0,(Ngh*"d,¢)  however, by the E frame FRW equations of moti¢h9),
? \/g this term is identically zero. Hence, finally, the equations of
L motion for the transverse traceless perturbations of the metric
2 (3.3 are

s
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- 1 the transversality condition is also the sanie,h*,=0.
h!,+3Hh! — :2V2 1.=0, (3.9 Hence the perturbation of the Ricci tensor in the JBD frame
a is of the same form as E€B.2), except that the quantities are

all unbarred. There however are additional source terms,
i.e., the propagation equations for a set of minimally coupledincé now we have to take into account the contributions of
scalars. The index structure of the perturbationg can be  the second derivatives of the figidas presented in E2.2).

i d for b . h d 33 These terms will be important for showing that the geometri-
easlly accounted for by going to the mode expansioR optics limit of the wave dynamics picks the E frame

= €!\(t,p)exp(p-x). The gauge conditions’;=p;e/,=0  evolution. Using the conformal correspondence we have es-

can be easily solved as follows. We orient the spatial refertaplished so far, we can write down the equations of motion
ence frame s.t. the axis is along the direction of propaga- for the perturbations in the JBD frame:

tion of the wave, and then we find that two linearly indepen-
dent polarization tensors are given by two Pauli matrices p—p V2y
€. =03 and ex = o;. Any other perturbation is their linear V,V,h*,+V,V,h* =V?h, + Thw+ huy
combination: e/, =f, e, +f. e, wheref,, k=(+,%) are
the mode functions. Since we will see later that the mixed
index perturbation§#, are conformally invariant, antj, are

modes of these degrees of freeddin=f, and from now on (3.12
we will omit the bars fromf,’s. In a different coordinate

system, the basis polarizations are given b  |nthe FRW background, after some straightforward algebra,
=R (p)oR(p), whereR(p) is the rotation matrix which we can rewrite these as

orientsp along thez axis. Then, as we mentioned above, the

equations of motion(3.9) can be rewritten in terms of the . ol X

mode functionsf , ,f as the Klein-Gordon equations for a h"+3Hh") — —2V hjk+Yh"k

set of minimally coupled massless scalar fields, exactly as in a

general relativity: "L 5Hy —
[ 2Hr 4 eHze X T20X PP
X 2x

X

V,x
+ T(V”hw—Vﬂh”V—V,,h"M).

hi,=0. (3.13

V2f,=0. (3.10
Again, the environment-induced mass term vanishes, now by

. . . way of the JBD frame FRW equations of moti¢h4). The
This equation suggests very strongly that the metric perturfinal set of the equations of motion for the transverse trace-

bations choose to propagate along geodesics in the Einste| ; .
conformal frame. We will demonstrate that this is indeedlgSS perturbations of the metric are
true in the next section. 1 ,
Now we turn our attention to the description of the wave nj ’j sopi X L
: . . h"l+3Hh" — —=V*h!, +—h'}, =0. 3.1
propagation from the point of view of the JBD frame. We k kg2 Ky kK (3.19
could proceed in precisely the same way as in the derivation

of the wave equation in the E frame. Starting with a fixedTnese equations contain the term proportionay tby, since
JBD background, we add a perturbation to the metric ag the JBD frame the tensor perturbations also couple to the
9.»=9,,1h,,, and expand the equations of moti@2) to  scalary. To see how this term arises in the form above,
first order in the fluctuation. Here, however, we do not haverecall that because Eg&8.9) and(3.14 map into each other

to repeat all the steps of the derivation in the E frame, beunder conformal transformation€.5), the x'-dependent
cause most of the details are the same, with barred quantitiesrm must arise from the effect of the conformal map on the
(E frame replaced with the unbarred ones. We will thereforecomoving time. Now, it is evident that the same polarization
outline only the main points and establish a correspondendeasis as that used in the E frame analysis above can be em-
between the two pictures. First, note that since the field reployed to represent an arbitrary perturbation. In fact, we
definitions (2.5) imply that h,,=h,,/x, the mixed index could just take any solution of Ed3.9), and conformally
perturbations are conformally invariart*,=h#,. Next, transform it to the JBD frame according to Hg-5), and it

the transverse traceless conditions in the JBD synchronol¥élll D& guaranteed to solve E(B.14) as well. In terms of the
gauge are also conformally invariant: clearly, the equality of"0de functions, then, the JBD frame equation of motion for
the mixed index tensors implies that if one is traceless, so igravity waves(3.14 can be written as

the other. Further, the constraints of the JBD synchronous

gauge orh*, are also identicalh®=h=0. Finally, since V.(xV#f)=0, (3.15

where f,, are the mode functions, witke {+,X}. In this

case, the modes propagate under the influence of an addi-

tional conformal coupling tey. This equation is conformal to

Eqg. (3.10 under Eq.(2.5. These two equation$3.10 and

i %_X:V—W (3.19) (3.15), will pe our star_ting.poi'nt of derivation. of the geo-
metrical optics approximation in the next section.

V,h#, =V, he, +y% hP,—yb hE =V h#,—2h°,

ONPeR
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IV. SINGULARITY REVEALED appropriate normalizationsf= — 1/4) we would have found

We are finally ready to show that smoothing the JBDS=JdAx*x, with x*x,=0, i.e., just the standard action of
frame is not sufficient to remove the singularity from FRW a relativistic massless particle. In the curved space, the tan-
cosmological solutions we have discussed in Sec. Il. As wgent vector field of a congruence of geodesics need not be
have indicated in the introduction, this is because the gravidivergenceless in general, i.e. it need notv_gp'(l‘zo. How-
tons, when considered as probes of the geometry in the clagver, since this quantity is the second constraint in(Ed),
sical limit, move along null geodesics of the E frame, and nobecause of destructive interference, its contribution to wave
JBD. Since the E frame is manifestly singular, the gravitonpropagation is negligible in the geometrical optics approxi-
world lines are incomplete and so they reintroduce the sinmation. Moreover, if we go to the Riemann normal coordi-

gularity's effects even in the JBD frame. nates, defined at a poirg by the conditionl' %, (x) =0, we

Let us first derive the geodesic equations and then con- . . , ~ .
sider their implications. As a warm up, we will first find the will indeed find that to the lowest orddr, x* vanishes. So,

geodesics in the E frame, since there the mode equation W€ Will setV x#=0, as a part of the geometrical optics
very simple — it is just the Klein-Gordon equation for a approximation. This then tells us thak“V ,(1/7)
minimally coupled massless scalar field for each polarization= d(1/5)/dAx=0 — just as in the flat space limity is a
mode of the graviton sectdr?f,=0. Now, the geometrical constant along geodesics. Therefore, the particle action in the
optics limit corresponds to settinfg=exp(S), and identify-  E frame becomes, after again choosing — 1/4 [23]

ing the phases as the action of the pointlike probe which

replaces the wave pacKe3]. The field equation in terms of . _

S becomesV?S—(VS)?=0, and so, assuming thatis real S:f dhg,,XX",  g,,X“X"=0, (4.3

and separating the real and imaginary parts of the equation

we find which defines dynamics of the E frame massless minimally

coupled particles, i.e., the null geodesics. The geodesic equa-

vo2_ TZa_
(V5)"=0, V=s=0. 4. tions can be derived straightforwardly by varying this action

Now, after S is integrated, it must be a function of the space@nd imposingg ,,x*x"=0. The result is

time coordinates only, since it is the phasefpf Hence, if o o

we useS=S(x*), the action must be representable as a path XM+ rgxﬁ(vx%:o, gwﬁ(ﬂkvzo_ (4.4
integral along a geodesic which the wave packet is follow-

ing: S=[dx*V ,S. Let us now introduce/,=V,S and re-  Hence as claimed, in the geometrical optics limit the quanta
call thatdx*=x*d\ along a geodesic, whete is the affine  of gravitational perturbations move along the E frame null
parameter. Hencg23], geodesics, and not along trajectories in the JBD frame.

We can now derive the same result using the JBD form of
the equation of motion, in order to check how the dilaton
force deforms the JBD graviton trajectories into the E frame
null geodesics. To show that the result is a conformal trans-
The equations of motion foB (4.1) become, in terms of the form of Eq. (4.4), we will derive it from first principles,

field V,, the following two constraints:a’”vﬂvfo, ra.ther than just apply thg field redefi_nitiaﬁE.S). Bearing in
V9"V, =0. The first constraint is local and hence can pemind that we are following the motion of the same mode

easily enforced at the level of the particle action with the(h*,=h*,), but in a different reference frame, we again use
help of a Lagrange multiplier. It just tells us thd, is a null  fk=exp(S), but now we substitute it in the JBD frame equa-
vector. The second constraint is not local, and in fact in thdion V ,(xV#f,)=0 from Eq. (3.195. When S is real, we
geometrical optics limit is always a very small quantity com-again get two equations

pared to the first one, and is usually ignored. Here we will

retain it, and use it to determine the Lagrange multiplier. The (VS)?=0, V,.(xV#S)=0. (4.5)
constrained particle action is thenSzfd)\(V,,)'(“

+W”VMVV). In the geometrical optics approximation, be- The first of these two equations is identical, up to an overall
cause of destructive interference of waves, only those trajedactor of x, to the first equation in Eq4.1). Thus it also
tories for whichS is extremized survive. Treating,, as an  must correspond to the null conditiog!*V,V,=0 where
independent variable, and varyirfgwith respect to it, we we still haveV,=V S, albeit in the JBD frame. The second
find g#*V,= —x*/25. This simply means that , is tangent equation is a little bit more complicated than in E4.1). To

to the wave packets world lines, which fy**V,V,=0 see the effect of the coupling, let us rederive the equations

must be null. The differentialsecond constraint translates of mot|_on for graviton probes_ along the same lines we fol-
. tionY (x“/ ) =0. N lowed in the E frame calculation above. As we have shown,
into the conditionV ,(x*/7)=0. Now,

imit th ot it b in E)he flat spaced_ S is a function of the space-time coordinates only, and when
imit, the covariant derivative would have become an ordi~e” s S—S(x#), S again is just the(samé integral S

nary derivative, and we would have been able to @s¢* = [dxV S. This of course must be identical, sin&e,S
=d(d,x*)/dA=0 to assert thak*d ,(1/7)=d(1/7)/d\ =4 ,S=V S With V,=V,S anddx*=x*d\ along a tra-
=0, i.e., thaty is a constant along trajectories. Then, with anjectory,

S= f V x#dN . 4.2
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. couple to both the metric and the scalar field in the JBD
S=j V, x*d\. (4.6 frame, and the net effect of these couplings is to deform the
graviton trajectories back to the E frame null geodesics.
The JBD frame equations of motion fos then are These world lines are incomplete, because the E frame met-
9“"V,V,=0, V,(xg*"V,)=0. Enforcing the first con- ric has a singularity a finite affine distance from any other
straint at the level of the action with the help of a LagrangePlace in the manifold. As a result, we cannot arbitrarily ex-
multiplier, we find S= fdX (V,,x*+ »g**V,V,). Note that tend the history of one such universe. Sooner or later, we

here we are contracting the indices with the JBD frame metWill reach the E frame singularity, where we will have to

. d 4 Varving thi i ith i1 deal with the problem of defining the proper initial condi-
('/C 9y, @NA SOn7 7. Varying this action with reSpect 10, ng for gravity waves. Because the graviton sector there is

w» We find g#"V,=—x*/25, and so againy, is a null  jjl-defined, we simply would not be able to unambiguously
vector tangent to the graviton trajectories in the JBD frameget the initial conditions. Gravity waves could then commu-
However, the differential constraint is thénh,(xx*/7)=0.  nicate the presence of the singularity to the other degrees of
We still implementVMkf‘:O as a part of the geometrical freedom in the theory_, at higher order. To see'this, note that
optics approximation, and ﬁnd("V_,L(X/n):d(X/n)/dh_ because the matter fields couple to the metric, they wo_uld
—0, implying that y/»=c is constant along each particle also couple to the tensor perturbations at higher order. Since

path. Choosing= — 4, we can write the JBD frame particle to linear order the tensor perturbations were the only degrees
actio'n as ' of freedom which detected the singularity, none of the other

modes could be adjusted to completely cancel the influence

1 o of the singularity on the gravitons. Therefore the gravitons

S=f dA—g,,X*X",  g,,x*x"=0. (4.7  would render the hidden singularity again visible to all the

X fields in the theory. In particular, the relic gravitons from a

yery early era of the universe that survived recombination
and that comprise the present graviton background would
still encode information about the maelstorm they came

from.

The particle trajectories are those paths which extremize thi
action. By varying this action, and taking the null constraint
into account, we find23]

) L Vox. . .

XK+ TH x”x”——Xx”xf‘:O, g,.X*x"=0. (4.9
28 Mmv

X V. CONCLUSION

Hence in the JBD frame gravitons do not move along geo- In this article, we have shown that conformal transforma-
desics, but rather along null trajectories determined by th&ions alone cannot completely remove the initial singularity
additional force proportional to the four gradient of the scalafrom a cosmological solution in the scalar-tensor models,
field y. Of course, this is what we have expected all alongeven if we allow the scalar-gravity coupling strength to de-
since we can see that in the JBD frame acii@rl) the yR  pend on the scalar field. The matter sector in the models we
coupling implies that the JBD “gravitons” havg field  have considered consists only of modes whose stress-energy
charge, and hence must couple & field strength. Yet, tensor satisfies the strong energy condition. Clearly, if the
when we use the conformal transformati@s) which trans- ~ matter sources violate the SEC, then evading singularity may
forms the JBD actiori2.1) to the E frame actioii2.6), ren- ~ yet be possible — but this cannot be accomplished by a
dering the graviton kinetic term canonical, i.e., j@twe see simple conformal transformation involving the JBD scalar.
that this same redefiniton removes completely theSUch conformal transformations merely hide the singularity
y-dependent force from the E¢.8). Under the conformal from obseryers which propagate along geodesics of th_e JBD
transformation(2.5), the connexion changes according to frame metric, that can be arranged to be smooth by adjusting

-2 — the couplingw(¢). However, once different observers are
M~ T M o V2 _
A=t (120 (8,Vax +84V.x= 979V ,x) and allowed, which couple to both the JBD frame metric and

when contracted witix"x", the difference precisely cancels scalar, because of the additional scalar force they do not
the y-dependent force in Eq4.8). Hence, the Eqg4.4) and  move along the JBD frame geodesics, but along those of a
(4.8) are conformal images of each other, and they imply thajifferent conformal frame. In particular, gravitons move
the gravity wave packets, to the lowest order, move alongjong the Einstein frame null geodesics, which are always
null geodesics of the Einstein frame metgg,, . incomplete, because the E frame solutions are all singular.
Having proven this, we conclude that the conformal re-Hence gravity waves see the singularity in all scalar-tensor
moval of the singularity was only partially successful. By themodels, regardless of the specifics of the model in question.
construction of the theory as given in the acti¢ghl), the = We can in fact see that a similar property should hold in any
matter fields)’ coupled only to the JBD frame metrg,, . nonminimal effective theory of gravity. The plain vanilla
This metric was made smooth by the choice of the couplindield redefinitions cannot remove singularities because they
function w(x), whose role was to push the E frame singu-do not couple universally to all the fields in the theory, and
larity to the asymptotic timelike infinity of the geometry. so there will always be a mode which will discern the pres-
Due to this effect, the pointlike matter probes were unable t@nce of the singularity in the manifold.
ever reach the singular region. Since they follow the JBD In string theory, however, this may merely mean that the
frame geodesics, these geodesics are all complete. Howeveffective action approach must break down close to the sin-
in this case, geodesic completeness is insufficient to corgularity. Since all the states in string theory are comprised of
clude that the solution is nonsingular. The gravity wavesstrings(and D-branes, as we have seen recently in some of
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the model§ close to the singularity, gravity’s pull on low tion, in the effective potential approximatidne., the effec-
energy pointlike degrees of freedom is so strong that theyive action truncated to second order in derivatjvemkes
effectively decompactify. Thus near the singularity insteadthe smooth matching of the two branches with the proper
of a gas of interacting highly energetic particles we find a gassymptotic behavior impossible unless very exotic condi-
of interacting highly energetic strings. But strings coupletions develop at very high energi¢$6]. The matching is
naturally to the string frame metric, which therefore seems tsupposed to take place very near the singularity — but in the
be the frame we must choose to study the effects of finitessemiclassical approximation, the singularity does all the
size of probegor higher ordera’ terms in the derivative steering of the dynamics near it, and hence the solutions
expansioh However, strings also couple to the dilaton, andcannot evade it. The branch changing thus is not possible in
we must consider its effect on dynamics too, since it reprethe semiclassical limit, with the matter sources satisfying an
sents the string coupling constant and so controls the validitgven weaker version of the energy conditions than in general
of the semiclassical approximation. Therefore in stringrelativity. A necessary conditiorfbut not sufficient for
theory, if we are to remove the singularity, we must regulatédbranch changing has been derived recently by Brustein and
both the metric and the dilaton, which is reminiscent of theMadden(in the last of Ref[16]), who showed that unless the
situation in the scalar-tensor models we have consideredull energy conditionii.e., the requiremeni+ p=0 for fluid
here. This also implies that if we manage to cure the solutiorsource$ is violated, the branch change cannot occur. This
in one frame, as long as we take only reasonable field redefstill does not guarantee the evasion of the singularity via
nitions (i.e., those which do not alter the global properties ofbranch changing, but it does tell us that unless we violate the
the space-timewe find that the solution is free of singulari- null energy condition in some way, in a region of high cur-
ties in any frame. This, of course, is consistent with the factvature, we cannot even hope to avoid the singularity. Since
that field redefinitions do not change physics, but just altethe conventional mattefpointlike or stringlike degrees of
the language we describe physics with. freedom generally do not violate the null energy condition,
Finding whether the singularities could be removed fromthis requires the presence of exotic matter souftssing
the effective theory still awaits. What we have learned tophase” [26]) or nonperturbative phenomeriauch as dis-
date seems to indicate that to regulate the singularities weussed by12,15,5) to account for singularity smoothing. At
must impose severe alterations on the theory. Simple tweakhis moment, we know very little about this type of matter.
of the classical(or semiclassical effective action do not The recent rapid development of string theory, however,
seem to work. To illustrate this point, we may recall thegives hope that we may learn more in foreseeable future.
graceful exit problem in the pre-big-bang scenadid]. The
idea, briefly, was to use the multiplicity of solutions which
arise because of duality, and paste them together in such a
way that the result is a smooth Universe of an infinite life  We would like to thank R. Brustein, H.S. Burton, R. Mad-
span and with a region of very large coupliagd curvature, den, and R.C. Myers for useful conversations. N.K. was sup-
mimicking the Big Bang. The difficulty with this proposal is ported in part by NSERC of Canada, and K.A.O. was sup-
that the continuity of the solutions and the equations of moported in part by DOE Grant No. DE-FG02—-94ER-40823.
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