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Effective field theory and matching in nonrelativistic gauge theories
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The effective Lagrangian and power counting rules for nonrelativistic gauge theories are derived via a
systematic expansion in the largdimit. It is shown that the X expansion leads to an effective field theory
which incorporates a multipole expansion. Within this theory there is no need for heuristic arguments to
determine the scalings of operators. After eliminatmrom the lowest order Lagrangian the states of the
theory become independent ofand the scaling of an operator is given simply by its overall coefficient. We
show how this power counting works in the calculation of the Lamb shift within the effective field theory
formalism.[S0556-282(198)00501-3

PACS numbgs): 11.10.Ef, 12.20.Ds, 36.10.Dr

Effective field theories are indispensable tools for study-dimension may be of different orders in their respective ex-
ing systems with disparate scales. The idea dates back to tipansionmost notablyy'(D%/2m) ], it has not been pointed
Euler-Heisenberg Lagrangian for QED] and has been uti- out that even for fixed dimensions the operators of the two
lized in the context of calculating strong interaction correc-theories will in general be different. For instance, if one uses
tions to various processes. Recently, the application of effecdimensionally regulated HQET mixing can only occur be-
tive field theories in heavy quark systems has led to gredween operators with the same scalings il Lthis will not
progress in our understanding of weak decays. In particulale true in nonrelativistic field theories unless one modifies
heavy quark effective field theo§HQET) has been utilized the Lagrangian, as will be shown in this paper.
to study hadrons composed of one heavy quark. The use of In the effective field theory formalism we write down a
HQET allows us to separate the physics stemming from théow energy Lagrangian which reproduces the S matrix ele-
two scales which are relevant to heavy-light bound stategnents (in some cases the Green’s functiprsf the full
namely the heavy mas®s and the strong interaction scale theory up to some chosen order in a double expansion in the
Agcp- In a seminal papef3] Caswell and Lepage intro- couplinga and some other parameter which dictates the size
duced a similar effective field theory to study nonrelativisticof the matrix elements in the low energy theory, the heavy
bound states. However, this theory differs from HQET inquark mass in the case of HQET. The difference between the
several very important ways. The description of nonrelativ-full theory and the effective theory lies in the ultraviolet
istic bound states is complicated by existence of the smalnodes. This difference is accounted for in the low energy
parameter ~ a(mv) in the effective theory,wherev is the  effective theory by the proper choice of coefficients in the
relative velocity of the particles of mass which compose Lagrangian(the “matching” procedurg The utility of the
the bound state. Furthermore, in HQET the heavy quarks areffective theory lies in the fact that calculations in the effec-
labeled by velocities which are unchanged by bound statéve theory are much simpler now that all the short distance
effects at leading order. Velocity changing weak transitiongphysics has been trivialized.
are accounted for by “integrating in” quarks of varying ve- A crucial part of the matching procedure is the bookkeep-
locities [4]. In heavy-heavy systems it is no longer true thating of the expansion parameters. For instance, in HQET
the quark velocity is fixed. Indeed Coulombic, velocity al- Where the expansion parameters ateand 1, it is pos-
tering exchanges are what builds up the Sdiwger kernel.  sible to place all the dependence on the expansion param-
Thus, it is clear that the effective Lagrangian for the twoeters into overall coefficients of operators in the Lagrangian.
systems should be dissimilar. Indeed, in HQET an operatofhis is helpful for two reasons: In performing the matching,
scales in I according to its dimension, whereas in nonrel-operators which are formally of higher order do not contrib-
ativistic gauge theories this is not so unless one modifies thete to the coefficients of lower order operators. Second, the
Lagrangian, as will be shown below. order at which matrix elements of operators enter should be

HQET relies upon an expansion in the heavy quark masgletermined by the coefficients of the operators. That is, the
whereas nonrelativistic gauge effective field theoriesstates should not depend on the expansion parameters in such
(NRGT) are expansions in the relative velocity, or equiva-a way that the power counting is jeopardized. For example,
lently, as we shall call it, the speed of light. Though it is in HQET the states are independentrofsince the lowest
well known that certain identical operators of the same maserder Lagrangian is independentmfand the normalization

of the states is chosen to be

This complication is often said to lead to the problem of having (v'|v)=2v°27)%8%v' —v). (1)
many scales in the theorp, mv, mv?, ... .

2We will refer to the bound state constituents as quarks thougtFor the case of NRGT's the expansion parametersragad
they may be electrons as well. Furthermore, we call the gauge par+, the relative quark velocity. One immediately sees that
ticles gluons to generalize to the non-Abelian case. things will be more difficult in this case since the expansion
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parametew is dimensionless. This complication led to ve- 1/c. To the extent that the physical system is truly nonrela-
locity scaling rules, derived via heuristic arguments, whichtivistic, operators with velocity dimension are of magni-
assigned powers af to fields, operators and derivatives].  tude~ (v/c)", with v a dynamicallygenerated scale. This is
A simpler bookkeeping method was presented@hwhere  analogous to HQET where operators of mass dimension
the authors rescale fields and coordinates liy such a way  are of magnitude £ ocp/m)". Moreover the Id expansion

as to make explicit the powers ofin the Lagrangian. Here forces one to modify the Lagrangian.

we introduce a slightly different approach which follows Let us consider the large limit of a non-Abelian gauge
simply via an expansion in the now dimensionful parametettheory. In this limit the Lagrangian density is given [&],

1 a1 a_9 bc21 a a9 bc2 o D? Ce t
L=5| diRg= AT~ TancAiAs | = 7| GA = GAT— CTanATA] | T4 IDot 5|yt o ilo- By
+ D4yt —2_ H(D-E—E- D)yt —— g (DX E— EX D)yt O(1/c3 2
8m3c21’// W mlﬁ( : D)y 8m2c2¢ o ( )¢p+0(1/c”), )
|
where 1 _ B &
Lo:f dsyi[(ﬁoA?)z—(ﬁiA?)z]ﬂLJ d3| ¢} iDo+ ﬁ)'ﬁ
d g
Do=2:—9A); D=V-_A, 3 1
+§(5iA3)2}- (6)

and ¢ is a nonrelativistic 2-spinor describing the heavy

quark. In addition we have rescaled the fermion field by aye choose to work in the Coulomb gauge for the rest of the
factor of yc. For simplicity we have omitted a 2-spinor de- paper since it is the most natural choice in a nonrelativistic
scribing the heavy antiquark. The constaois cp andcs  theory. Moreover, it allows for the clean separation of pow-
are determined by matching onto the full theory. ers of 1¢ as is clear from Eq(6). Note that the states of the
The explicit powers of the dimensionful parameter B effective theory are the eigenstates of the lowest order
Eq. (2) now makes the power counting simple. The lowestyamiltonian derived from this Lagrangian and, as such, are

order Lagrangian is unconfined Coulombic bound states. While these states are
1 2 4 independent ot they are not independent of The Cou-
Lo=={ 3;A3— —¢9oAia) — —(&iA?—ajA?)z lomb gluons are leading order and are not treated perturba-
2 c 4 tively. We will return to the issue of confining effects at the
V2 end of the paper.
+ l/,T iDo+ %) W (4) Now if we follow through with the consequences of the

1/c expansion we will be forced to incorporate the multipole
expansion. To see this, let us now consider the cbrrec-
r{ions in Eq.(2), concentrating for the moment on the Abelian
gieces(the extension to the non-Abelian case follows trivi-
ally). The leading Id corrected fermionic bilinear Lagrang-
ian is given by

Notice that we have retained theclterm in the kinetic en-
ergy of the transverse gluons in the lowest order Lagrangia
That this is necessary is easily seen by considering th
Hamiltonian, in which the coefficient of the kinetic energy is
c?. The eigenstates of this lowest order Hamiltonian consti
tute the states of the effective theory.

At this point we still have not accomplished what we set LC*l:f d3xyt(t,%)
out to do, namely, trivialize the dependence of the La-
grangian. Equatiord), as it stands, will lead to a transverse
gluon propagator with nontriviat dependence which can, Cr ~ - -
and as we shall see below does, jeopardize the power count- +2mc5’20'. B(t'X/C)l (1. x). @)
ing in 1/c. To fix this problem we have a choice to either
rescale the time or spatial coordinates of the gauge field by Expanding in 1¢ leads to the multipole expansion
However, rescaling the time coordinate of the gauge field is
unacceptable as it will destroy the initial value problem be- e R
cause, the Hamiltonian for the gauge field and fermion field§mp=—c3,2¢T(t,X)
would then depend on different time coordinates. Thus, we m
make the rescaling

© Rty A
mc3’2Ai( x/e) ox!

~ > Xj ~ . 0
A(t,0)+ =V-A(t,0)0—+---
c ox'

X h(t,X) + Ce T (t,x) o B(t,0)y(t,x)+ -+, (8)

Ai(y=xlc,t)=cA(x,1), (5) 2mc>?

leaving the Coulomb gauge Lagrangian where
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2 2 n
B=€iji L»Kk(t,)-;)- 9 iI‘(2>=CFC(R)e f 'k

ay') 4am?c? J (2m)"

(kX a)- (kX o)

The expansion breaks translational as well as gauge invari- ><(|<(2)/(;2—|22+i.5)(E+ ko— (p+K)22m+ie)
ance which are symmetries that are restored at each order in
1/c, and the coefficients in front of each operator are there-
fore fixed.

Now let us consider the matching procedure for this
theory. This will elucidate the power counting scheme a
well as the problems one runs into if the multipole expansio
is not performed. Using standard diagrammatic techniques it

(11)

We integrate ovek, and choose to close the contour in the
upper half plane, picking up only the negative energy pole.

3ntegrating over the magnitude &fleaves

is easy to show that in the full theory the one particle irre- @ C,Z:C(R)a N2 4 52
ducible amputatedN point functions withL loops has an Io=—"I(2¢)| 2| E—5 +4m02+§ﬁ
overall factor of
+finite, (12
[Noc (@)L= 1+N2g=N12, (10) whereC(R) is 1 and 4/3 in QED and QCD, respectively. We

see that using Eq2) leads to the mixing of operators of
different orders in 1. This can be avoided by expanding Eq.

Use of dimensional regularization leads to the functional de{11) in powers ofk. In previous matching calculations
pendencd“”(qi~qj 1(m@)2, u2/(mc)?,e). On shell these cor- [8,9,7] this is in fact what has been done, and it is ]UﬁStIerd as
rections will be both IR as well as UV divergent. The UV a bona-fide approximation, as an expansion in sidB].
divergences are taken care of by renormalizing the fullThis amounts to dropping thie dependent terms in the de-
theory, while the IR divergences will cancel with those in thenominators. Such an expansion makes working with dimen-
effective theory, since both theories behave the same in thgional regularization particularly simple, since we now have
infrared. To match onto the effective theory we then expand scaleless integral which vanishes in this scheme.
this full theory result in a power series incl/The coeffi- However, we emphasize that, once we choose to amend
cientsc; are then chosen so that the above expansion is rdhe Feynman rules we must also amend the low energy
produced by the effective theory, which we now discuss. theory. Not to do so would destroy the power counting
At tree level the matching is trivial. Beyond the terms in Scheme. In Refl6], the authors point out that the transverse
Eq. (7) the effective theory Hamiltonian will also contain 9uons can lead to enhancementsiftheir 1b) in the low

spatially nonlocal, instantaneous four quark operators whicf"er9y theory. This is only true if one insists upon calculat-

scale as T2. These operators arise as a consequence of tak-9 the low energy matrix elements using H@). Instead

ing the leading term in the expansion of full theory dia- one must calculate using an amended Lagranggmhich

rams with transverse aluon exchanae between quarks reproduces the Feynman rules utilized in the matching cal-
9 9 ge between q " culations. Indeed it is simple to show that Feynman rules in
Let us now study the one loop correction in the effective

S . . Eq. (8) leads to the necessary expansion.
theory. We will first perform the calculation using E®) Using Eq.(8) we may now calculate anew the contribu-

and show that operators which are supposedly of higher kg, ¢ the two point function from two insertions of- B,
der in 1£ will generate lower order operators, even within

dimensional regularization. We will then show that using Eq.

. L . . 2
(7) no such mixing occurs, even within dimensional regular- . (Z)ZCFC(R)eZ d"k
ization. Let us consider the calculation of the correction to 2m2c5 J (2m)n
the two point function coming from two insertions of the )
magnetic moment operataos;- B. If one wishes to keep the k? 13
. . X = — .
power counting such that a given operator should scale as a (kS— K2+i€)(E—p22m+ko+ie)

fixed power in 1¢ (as dictated by its overall coefficienthe

higher order operators will not contribute to the renormaliza-\gtice that all thec dependence is now explicit, and the

tion of the lowest order Lagrangian. That this is so in heavy ariablek has units of energy. A simple calculation leads to
quark effective theory is easy to see simply on dimension he result

grounds.
Using the Feynman rules derived from Eg) we have R
_céC(R)aF(2 (E—p?/2m)3

re o G)T—H‘inite. (19

3Since a=e?/c we could equally write the expansion purely in This correction renormalizes some higher order operator
terms of 1¢ takinge~1. We have chosen to write the expansion in which vanishes by the equations of motion. It is clear that
terms of« in analogy with the expansion in HQET. once we use the correct effective, theory the corrections re-
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sulting from the insertion of higher order operators will givesuv/c~ag(mv), which leads to the conclusion that, at
never feed down into the matching for lower order operatorssmall v, Agcp/m scales liké v/c. The question then be-
Just as the &/ expansion dictates the proper matchingcomes how do we properly take into account the effects of
procedure, it also greatly simplifies the power counting rulesonfinement in this effective field theory? Since confinement
in the low energy theory. In HQET the magnitude of a ma-will not arise in perturbation theory we must insist that the
trix element is dictated by the explicit power ofni/in its  zeroth order states contain the confining potential. The omis-
coefficient. Thus, an operator of mass dimensibwith a  sion of the nonperturbative effects will lead to the break-
factor of m™" in its coefficient is of orde\ et /m". In - down of the 1¢ expansion as we will now show.
NRGT'’s, as formulated here, the power counting is just as If we include the full non-Abelian gluondynamics in the
simple. All the powers of 1/ have been made explicit, and zeroth order effective theory, then the Coulombic potential
we can read off the size of a matrix element simply by countWwill now be modified by the linear rise due to confinement.
ing powers ofc and doing dimensional analysis. At first this may seem a bit worrisome since the non-Abelian
As an example of the power counting procedure let ugiece has explicit factors of din front of them and thus the
consider the pedagogical example of the relativistic correcstates of the theory will depend upan which is exactly
tions to the bound state energy of hydrogéf]. Given that  what we were trying to avoid. However, this dependence on
a and v/c are of the same order, we must calculate thec will not destroy the systematics. The analytic dependence
matching corrections to the appropriate orderdirfor the now implicit in the matrix elements will clearly not upset the
accuracy we wish to attain. The leading corrections comeéystematics of the &/expansion. The nonanalytic depen-
from pure @/c)? corrections stemming from the effective dence orc will be introduced through factors such as
Lagrangian. The first such term is the correction to the ki-
netic energyy’@/(8m3c?)y. By dimensional analysis, its
matrix element isnv2(v/c)?, which yields a relative contri- excle’=
bution of order ¢/c)?. There are nox corrections in the
matching to this operator. Next there awg/¢)? corrections
coming from the Darwin term and the spin orbit coupling
which are again of relative ordep/{c)?, since we may pick
out the Coulombic piece of the electric field. Both the Dar-
win term and the spin orbit term will get matching correc-
tions at ordera and will thus give a contribution to the
energy shift at relative order(c)® as well. There are no
further corrections at ordep(c)?, assuming the proton to be

infinitely heavy so that the magnetic interactions become Irdimensionful parameter &/ Furthermore, if dimensional

relevant. There IS a correction of relative ord_efc()s com- regularization is used, the organization of the expansion is
ing from corrections to the Coulomb potential due to palrvery simple, there is no operator mixing across different or-
Bers in the expansion and the order of the operators in the
expansion can be read off directly from their dimensions
without resort to heuristic arguments. We emphasize, how-
ever, that dimensional regularization is not mandatory. In-

(17

Agcp P
m t

whereP is some positive power. Thus, tltedependence of
the matrix elements due to nonperturbative effects can only
introduce higher order corrections. If we chose to use the
Coulombic states, we would never see these higher order
effects, and since\ gcp/m~v/c, we would possibly miss
effects of the same order we wish to keep.
We have shown that nonrelativistic gauge the@RGT)
is conveniently organized in temrs of an expansion in the

a term in the effective Lagrangian given by

0-Ao&-2<9'Ao deed one may formulate NRGT’s with, for example, a mo-
Oy=cya— 21 2' , (150  mentum cut-offA. If A<m, with m the quark mass, then the
m-c multipole expansion is automatic. However, one then has a

triple expansion, ine, 1/c and A/m. It is not necesary to

chooseA <m; with A>m one can work with a double ex-
Finally, we come to the energy shift due to transverse photoRansion, ina and 1£ only> In either case operators of dif-
propagation in the bound state. This is a self-energy corréGerent orders in the &/expansion mix. The organization by
tion of the electron propagating in the Coulomb backgroundc s still useful because once the matching procedure has
and is of relative sizey(/c)* due to a factor ot~*?coming  peen completed the order at which an operator enters can still
from each transverse photon vertex. This agrees with thge trivially obtained from its velocity dimension.
well known result for the Lamb shift. ] ) )

Let us now return to the issue of confinement in the non- ~ We thank Mark Wise for many discussions and for em-
Abelian theory. While it may be surprising that the non- phasizing that we should explore the full consequences of the
Abelian couplings are subleading, it is clear that the nonl/c expansion. We also thank M. Luke, A. Falk and S.
Abelian nature of the theory should be irrelevant to theSharpe for helpful comments. This work was supported in
details of the bound state as its size is reduced. The confining@lt by the Department of Energy under Grant No. DOE-
effects in a Coulombic bound state should be suppressed ByG03-90ER40546.
powers ofAgcp/m. Settingr~1/mv in the virial theorem

“We will take Agcp to have the units of mass.

%In fact, it is unnecessary to perform a multipole expansion, if one
-~ (16) is willing to fine tune the coefficients in the expansion order by
r c order in perturbation theory.

ag(1lr)  mo?
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