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Effective field theory and matching in nonrelativistic gauge theories
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Department of Physics, University of California at San Diego, La Jolla, California 92122
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The effective Lagrangian and power counting rules for nonrelativistic gauge theories are derived via a
systematic expansion in the largec limit. It is shown that the 1/c expansion leads to an effective field theory
which incorporates a multipole expansion. Within this theory there is no need for heuristic arguments to
determine the scalings of operators. After eliminatingc from the lowest order Lagrangian the states of the
theory become independent ofc and the scaling of an operator is given simply by its overall coefficient. We
show how this power counting works in the calculation of the Lamb shift within the effective field theory
formalism.@S0556-2821~98!00501-3#

PACS number~s!: 11.10.Ef, 12.20.Ds, 36.10.Dr
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Effective field theories are indispensable tools for stu
ing systems with disparate scales. The idea dates back t
Euler-Heisenberg Lagrangian for QED@1# and has been uti
lized in the context of calculating strong interaction corre
tions to various processes. Recently, the application of ef
tive field theories in heavy quark systems has led to g
progress in our understanding of weak decays. In particu
heavy quark effective field theory~HQET! has been utilized
to study hadrons composed of one heavy quark. The us
HQET allows us to separate the physics stemming from
two scales which are relevant to heavy-light bound sta
namely the heavy massm and the strong interaction sca
LQCD . In a seminal paper@3# Caswell and Lepage intro
duced a similar effective field theory to study nonrelativis
bound states. However, this theory differs from HQET
several very important ways. The description of nonrela
istic bound states is complicated by existence of the sm
parameterv;a(mv) in the effective theory,1 wherev is the
relative velocity of the particles of massm which compose
the bound state. Furthermore, in HQET the heavy quarks
labeled by velocities which are unchanged by bound s
effects at leading order. Velocity changing weak transitio
are accounted for by ‘‘integrating in’’ quarks of varying ve
locities @4#. In heavy-heavy systems it is no longer true th
the quark2 velocity is fixed. Indeed Coulombic, velocity a
tering exchanges are what builds up the Schro¨dinger kernel.
Thus, it is clear that the effective Lagrangian for the tw
systems should be dissimilar. Indeed, in HQET an oper
scales in 1/M according to its dimension, whereas in nonr
ativistic gauge theories this is not so unless one modifies
Lagrangian, as will be shown below.

HQET relies upon an expansion in the heavy quark ma
whereas nonrelativistic gauge effective field theor
~NRGT! are expansions in the relative velocity, or equiv
lently, as we shall call itc, the speed of light. Though it is
well known that certain identical operators of the same m

1This complication is often said to lead to the problem of hav
many scales in the theorym, mv, mv2, . . . .

2We will refer to the bound state constituents as quarks tho
they may be electrons as well. Furthermore, we call the gauge
ticles gluons to generalize to the non-Abelian case.
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dimension may be of different orders in their respective
pansion@most notablyc†(D2/2m)c], it has not been pointed
out that even for fixed dimensions the operators of the t
theories will in general be different. For instance, if one us
dimensionally regulated HQET mixing can only occur b
tween operators with the same scalings in 1/M , this will not
be true in nonrelativistic field theories unless one modifi
the Lagrangian, as will be shown in this paper.

In the effective field theory formalism we write down
low energy Lagrangian which reproduces the S matrix e
ments ~in some cases the Green’s functions! of the full
theory up to some chosen order in a double expansion in
couplinga and some other parameter which dictates the s
of the matrix elements in the low energy theory, the hea
quark mass in the case of HQET. The difference between
full theory and the effective theory lies in the ultraviol
modes. This difference is accounted for in the low ene
effective theory by the proper choice of coefficients in t
Lagrangian~the ‘‘matching’’ procedure!. The utility of the
effective theory lies in the fact that calculations in the effe
tive theory are much simpler now that all the short distan
physics has been trivialized.

A crucial part of the matching procedure is the bookkee
ing of the expansion parameters. For instance, in HQ
where the expansion parameters areas and 1/m, it is pos-
sible to place all the dependence on the expansion par
eters into overall coefficients of operators in the Lagrangi
This is helpful for two reasons: In performing the matchin
operators which are formally of higher order do not contr
ute to the coefficients of lower order operators. Second,
order at which matrix elements of operators enter should
determined by the coefficients of the operators. That is,
states should not depend on the expansion parameters in
a way that the power counting is jeopardized. For exam
in HQET the states are independent ofm since the lowest
order Lagrangian is independent ofm and the normalization
of the states is chosen to be

^vW 8uvW &52v0~2p!3d3~vW 82vW !. ~1!

For the case of NRGT’s the expansion parameters area and
v, the relative quark velocity. One immediately sees t
things will be more difficult in this case since the expansi
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57 79EFFECTIVE FIELD THEORY AND MATCHING IN . . .
parameterv is dimensionless. This complication led to v
locity scaling rules, derived via heuristic arguments, wh
assigned powers ofv to fields, operators and derivatives@5#.
A simpler bookkeeping method was presented in@6# where
the authors rescale fields and coordinates byv in such a way
as to make explicit the powers ofv in the Lagrangian. Here
we introduce a slightly different approach which follow
simply via an expansion in the now dimensionful parame
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1/c. To the extent that the physical system is truly nonre
tivistic, operators with velocity dimensionn are of magni-
tude;(v/c)n, with v a dynamicallygenerated scale. This i
analogous to HQET where operators of mass dimension
are of magnitude (LQCD/m)n. Moreover the 1/c expansion
forces one to modify the Lagrangian.

Let us consider the largec limit of a non-Abelian gauge
theory. In this limit the Lagrangian density is given by@2#,
L5
1

2S ] iA0
a2

1

c
]0Ai

a2
g

c
f abcAi

bA0
cD 2

2
1

4S ] iAj
a2] jAi

a2
g

c
f abcAi

bAj
cD 2

1c†S iD 01
D2

2mDc1
cF

2mc
c†s•Bc

1
1

8m3c2
c†D4c1

cDg

8m2c2
c†~D•E2E•D!c1

cS

8m2c2
c†s•~D3E2E3D!c1O~1/c3!, ~2!
the
tic
w-
e
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are
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where

D05
]

]t
2gA0 ; D5“2

g

c
A, ~3!

and c is a nonrelativistic 2-spinor describing the hea
quark. In addition we have rescaled the fermion field by
factor of Ac. For simplicity we have omitted a 2-spinor de
scribing the heavy antiquark. The constantscF , cD and cS
are determined by matching onto the full theory.

The explicit powers of the dimensionful parameter 1/c in
Eq. ~2! now makes the power counting simple. The lowe
order Lagrangian is

L05
1

2S ] iA0
a2

1

c
]0Ai

aD 2

2
1

4
~] iAj

a2] jAi
a!2

1c†S iD 01
¹2

2mDc. ~4!

Notice that we have retained the 1/c term in the kinetic en-
ergy of the transverse gluons in the lowest order Lagrang
That this is necessary is easily seen by considering
Hamiltonian, in which the coefficient of the kinetic energy
c2. The eigenstates of this lowest order Hamiltonian con
tute the states of the effective theory.

At this point we still have not accomplished what we s
out to do, namely, trivialize thec dependence of the La
grangian. Equation~4!, as it stands, will lead to a transvers
gluon propagator with nontrivialc dependence which can
and as we shall see below does, jeopardize the power co
ing in 1/c. To fix this problem we have a choice to eith
rescale the time or spatial coordinates of the gauge field bc.
However, rescaling the time coordinate of the gauge field
unacceptable as it will destroy the initial value problem b
cause, the Hamiltonian for the gauge field and fermion fie
would then depend on different time coordinates. Thus,
make the rescaling

Ãi~yW5xW /c,t !5AcAi~xW ,t !, ~5!

leaving the Coulomb gauge Lagrangian
a

t

n.
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L05E d3y
1

2
@~]0Ãi

a!22~] i Ã j
a!2#1E d3xFc†S iD 01

­2

2mDc

1
1

2
~] iA0

a!2G . ~6!

We choose to work in the Coulomb gauge for the rest of
paper since it is the most natural choice in a nonrelativis
theory. Moreover, it allows for the clean separation of po
ers of 1/c as is clear from Eq.~6!. Note that the states of th
effective theory are the eigenstates of the lowest or
Hamiltonian derived from this Lagrangian and, as such,
unconfined Coulombic bound states. While these states
independent ofc they are not independent ofg. The Cou-
lomb gluons are leading order and are not treated pertu
tively. We will return to the issue of confining effects at th
end of the paper.

Now if we follow through with the consequences of th
1/c expansion we will be forced to incorporate the multipo
expansion. To see this, let us now consider the 1/c correc-
tions in Eq.~2!, concentrating for the moment on the Abelia
pieces~the extension to the non-Abelian case follows triv
ally!. The leading 1/c corrected fermionic bilinear Lagrang
ian is given by

Lc215E d3xc†~ t,xW !F e

mc3/2
Ãi~ t,xW /c!

]

]xi

1
cF

2mc5/2
s•B̃~ t,xW /c!Gc~ t,xW !. ~7!

Expanding in 1/c leads to the multipole expansion

Lmp5
e

mc3/2
c†~ t,xW !S Ã~ t,0W !1

xi

c
¹•Ã~ t,0W !

­

]xi
1••• D

3c~ t,xW !1
cF

2mc5/2
c†~ t,xW !s•B̃~ t,0W !c~ t,xW !1•••, ~8!

where
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B̃5e i jk

]

]~yj !
Ãk~ t,yW !. ~9!

The expansion breaks translational as well as gauge inv
ance which are symmetries that are restored at each ord
1/c, and the coefficients in front of each operator are the
fore fixed.

Now let us consider the matching procedure for t
theory. This will elucidate the power counting scheme
well as the problems one runs into if the multipole expans
is not performed. Using standard diagrammatic technique
is easy to show that in the full theory the one particle ir
ducible amputatedN point functions withL loops has an
overall factor of3

GN}~a!L211N/2c2N/2. ~10!

Use of dimensional regularization leads to the functional
pendenceGN

„qi•qj /(mc)2,m2/(mc)2,e…. On shell these cor-
rections will be both IR as well as UV divergent. The U
divergences are taken care of by renormalizing the
theory, while the IR divergences will cancel with those in t
effective theory, since both theories behave the same in
infrared. To match onto the effective theory we then expa
this full theory result in a power series in 1/c. The coeffi-
cientsci are then chosen so that the above expansion is
produced by the effective theory, which we now discuss.

At tree level the matching is trivial. Beyond the terms
Eq. ~7! the effective theory Hamiltonian will also contai
spatially nonlocal, instantaneous four quark operators wh
scale as 1/c2. These operators arise as a consequence of
ing the leading term in thec expansion of full theory dia-
grams with transverse gluon exchange between quarks.

Let us now study the one loop correction in the effect
theory. We will first perform the calculation using Eq.~2!
and show that operators which are supposedly of higher
der in 1/c will generate lower order operators, even with
dimensional regularization. We will then show that using E
~7! no such mixing occurs, even within dimensional regul
ization. Let us consider the calculation of the correction
the two point function coming from two insertions of th
magnetic moment operator,s•B. If one wishes to keep the
power counting such that a given operator should scale
fixed power in 1/c ~as dictated by its overall coefficient!, the
higher order operators will not contribute to the renormali
tion of the lowest order Lagrangian. That this is so in hea
quark effective theory is easy to see simply on dimensio
grounds.

Using the Feynman rules derived from Eq.~2! we have

3Sincea5e2/c we could equally write the expansion purely
terms of 1/c takinge'1. We have chosen to write the expansion
terms ofa in analogy with the expansion in HQET.
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iG~2!5
cF

2C~R!e2

4m2c2 E dnk

~2p!n

3
~kW3sW !•~kW3sW !

~k0
2/c22kW21 i e!~E1k02~pW 1kW !2/2m1 i e!

.

~11!

We integrate overk0 and choose to close the contour in th
upper half plane, picking up only the negative energy po
Integrating over the magnitude ofkW leaves

G~2!5
cF

2C~R!a

p
G~2e!F2S E2

pW 2

2m
D 14mc21

4

3

pW 2

2m
G

1finite, ~12!

whereC(R) is 1 and 4/3 in QED and QCD, respectively. W
see that using Eq.~2! leads to the mixing of operators o
different orders in 1/c. This can be avoided by expanding E
~11! in powers of kW . In previous matching calculation
@8,9,7# this is in fact what has been done, and it is justified
a bona-fide approximation, as an expansion in smallkW @8#.
This amounts to dropping thekW dependent terms in the de
nominators. Such an expansion makes working with dim
sional regularization particularly simple, since we now ha
a scaleless integral which vanishes in this scheme.

However, we emphasize that, once we choose to am
the Feynman rules we must also amend the low ene
theory. Not to do so would destroy the power counti
scheme. In Ref.@6#, the authors point out that the transver
gluons can lead to enhancements inc ~their 1/v) in the low
energy theory. This is only true if one insists upon calcul
ing the low energy matrix elements using Eq.~2!. Instead
one must calculate using an amended Lagrangian~8! which
reproduces the Feynman rules utilized in the matching
culations. Indeed it is simple to show that Feynman rules
Eq. ~8! leads to the necessary expansion.

Using Eq.~8! we may now calculate anew the contrib
tion to the two point function from two insertions ofs•B,

iG~2!5
cF

2C~R!e2

2m2c5 E dnk

~2p!n

3
kW2

~k0
22kW21 i e!~E2pW 2/2m1k01 i e!

. ~13!

Notice that all thec dependence is now explicit, and th
variablekW has units of energy. A simple calculation leads
the result

G~2!5
cF

2C~R!a

2p
G~2e!

~E2pW 2/2m!3

m2c4
1finite. ~14!

This correction renormalizes some higher order opera
which vanishes by the equations of motion. It is clear th
once we use the correct effective, theory the corrections
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sulting from the insertion of higher order operators w
never feed down into the matching for lower order operato

Just as the 1/c expansion dictates the proper matchi
procedure, it also greatly simplifies the power counting ru
in the low energy theory. In HQET the magnitude of a m
trix element is dictated by the explicit power of 1/m in its
coefficient. Thus, an operator of mass dimensiond with a
factor of m2n in its coefficient is of orderLQCD

n142d/mn. In
NRGT’s, as formulated here, the power counting is just
simple. All the powers of 1/c have been made explicit, an
we can read off the size of a matrix element simply by cou
ing powers ofc and doing dimensional analysis.

As an example of the power counting procedure let
consider the pedagogical example of the relativistic corr
tions to the bound state energy of hydrogen@10#. Given that
a and v/c are of the same order, we must calculate
matching corrections to the appropriate order ina for the
accuracy we wish to attain. The leading corrections co
from pure (v/c)2 corrections stemming from the effectiv
Lagrangian. The first such term is the correction to the
netic energyc†­4/(8m3c2)c. By dimensional analysis, its
matrix element ismv2(v/c)2, which yields a relative contri-
bution of order (v/c)2. There are noa corrections in the
matching to this operator. Next there are (v/c)2 corrections
coming from the Darwin term and the spin orbit couplin
which are again of relative order (v/c)2, since we may pick
out the Coulombic piece of the electric field. Both the Da
win term and the spin orbit term will get matching corre
tions at ordera and will thus give a contribution to the
energy shift at relative order (v/c)3 as well. There are no
further corrections at order (v/c)2, assuming the proton to b
infinitely heavy so that the magnetic interactions become
relevant. There is a correction of relative order (v/c)3 com-
ing from corrections to the Coulomb potential due to p
creation which are accounted for in the matching and lea
a term in the effective Lagrangian given by

OU5cUa
] iA0] j

2] iA0

m2c2
. ~15!

Finally, we come to the energy shift due to transverse pho
propagation in the bound state. This is a self-energy cor
tion of the electron propagating in the Coulomb backgrou
and is of relative size (v/c)3 due to a factor ofc23/2 coming
from each transverse photon vertex. This agrees with
well known result for the Lamb shift.

Let us now return to the issue of confinement in the n
Abelian theory. While it may be surprising that the no
Abelian couplings are subleading, it is clear that the n
Abelian nature of the theory should be irrelevant to t
details of the bound state as its size is reduced. The confi
effects in a Coulombic bound state should be suppresse
powers ofLQCD /m. Settingr;1/mv in the virial theorem

as~1/r !

r
;

mv2

c
, ~16!
s.
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gives v/c;as(mv), which leads to the conclusion that,
small v, LQCD /m scales like4 v/c. The question then be
comes how do we properly take into account the effects
confinement in this effective field theory? Since confinem
will not arise in perturbation theory we must insist that t
zeroth order states contain the confining potential. The om
sion of the nonperturbative effects will lead to the brea
down of the 1/c expansion as we will now show.

If we include the full non-Abelian gluondynamics in th
zeroth order effective theory, then the Coulombic poten
will now be modified by the linear rise due to confineme
At first this may seem a bit worrisome since the non-Abel
piece has explicit factors of 1/c in front of them and thus the
states of the theory will depend uponc, which is exactly
what we were trying to avoid. However, this dependence
c will not destroy the systematics. The analytic depende
now implicit in the matrix elements will clearly not upset th
systematics of the 1/c expansion. The nonanalytic depe
dence onc will be introduced through factors such as

ekc/g2
5S LQCD

m D P

, ~17!

whereP is some positive power. Thus, thec dependence of
the matrix elements due to nonperturbative effects can o
introduce higher order corrections. If we chose to use
Coulombic states, we would never see these higher o
effects, and sinceLQCD /m;v/c, we would possibly miss
effects of the same order we wish to keep.

We have shown that nonrelativistic gauge theory~NRGT!
is conveniently organized in temrs of an expansion in
dimensionful parameter 1/c. Furthermore, if dimensiona
regularization is used, the organization of the expansion
very simple, there is no operator mixing across different
ders in the expansion and the order of the operators in
expansion can be read off directly from their dimensio
without resort to heuristic arguments. We emphasize, h
ever, that dimensional regularization is not mandatory.
deed one may formulate NRGT’s with, for example, a m
mentum cut-offL. If L!m, with m the quark mass, then th
multipole expansion is automatic. However, one then ha
triple expansion, ina, 1/c and L/m. It is not necesary to
chooseL,m; with L@m one can work with a double ex
pansion, ina and 1/c only.5 In either case operators of dif
ferent orders in the 1/c expansion mix. The organization b
1/c is still useful because once the matching procedure
been completed the order at which an operator enters can
be trivially obtained from its velocity dimension.

We thank Mark Wise for many discussions and for e
phasizing that we should explore the full consequences of
1/c expansion. We also thank M. Luke, A. Falk and
Sharpe for helpful comments. This work was supported
part by the Department of Energy under Grant No. DO
FG03-90ER40546.

4We will take LQCD to have the units of mass.
5In fact, it is unnecessary to perform a multipole expansion, if o

is willing to fine tune the coefficients in the expansion order
order in perturbation theory.
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