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Entropy of the quantized spin-; field in the Schwarzschild spacetime
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The entropy of the quantized massless and conformally invariant two component spinor field in Schwarzs-
child spacetime is constructed. It is achieved through the construction of the one parameter family of the
stress-energy tensor in the Hartle-Hawking state. The relation of the present approach to the approximations of
Brown and Ottewill and Frolov and Zel'nikov is briefly discussg80556-282(98)04112-5

PACS numbds): 04.62:+v, 04.70.Dy

The objective of this Brief Report is to construct the en- Under the conformal transformation the renormalized
tropy AS of the quantized conformally invariant masslessone-loop effective action of the spinor field transforms as
spinor field in Schwarzschild spacetime. We show that, asfollows [2,5]:
suming that the tangential component of the stress-energy
tensor in the ultrastatic companion of the Schwarzschild met- ~ Wrl9,.,]=Wele ?°g,,,]+aA[w;g]+bBlw.g], (1)
ric may be approximated by a polynomialxs=2M/r trun-
cated atN=6, and utilizing the regularity conditions which
the mean value ofT%) in the Hartle-Hawking state should 1
satisfy, and finally, accepting the weak thermal bath hypoth- A[w’g]:J d“x(—g)l’z[ ( Rienf— 2Ricc+ §R2) w
esis,AS may be easily constructed. This could be done in
spite of the fact that since there are no numerical results 2
concerning the horizon value of tH@*) the resulting ap- +3[R+ 3(Dw—K)](Dw—K)]. 2
proximation of the stress tensor could not be constructed
completely. The obtained S coincides with the expression

where

derived earlier by Hochberg, Kephart, and Y@t within B[w,g]zf d*x(—g)Y] (Rienf—4RicE+R?) w
the framework of the Brown-Ottewill-Page approximation
[2]. +4R,, 0 0" = 2Rk +2Kk*~4x0w], (3

Similar method may be exploited also in the case of the
conformal scalar and vector field leading to the knai®; andk=w.,0'“. The coefficients,b for the two component
however, in this case we have at our disposal not only thepinor  fields are given by 18/(11528) and
excellent approximations of the stress tensor in various- 11/(11_52072), respectively. o
states, but also detailed numerical calculations regarding the Functionally differentiating Eq(4), when restricting to
exact(T*) [2—24]. It is a well known fact that the accuracy the Ricci flat spaces, one obtains
of existing approximations of the stress tensor of the quan- -
tized spinor field has not yet been tested against exact nu- (Ty)=exp(—4w) Ty +a(s)Ay+b(s)B), (4)
merical calculations.
The idea is to construct the approxim&f,) in the op-
tical metric, and subsequently to transform it back to the
hysical, i.e., Schwarzschild, s time with the aid of 4. ; 2, 2
physical, 1.e., ; d, spacetme € aid Of apwr=8R "By, p— =Kk +20*"| 20 %K. o+ k*+ 50k
general formula derived originally by Brown and Ottewill ’ 3 ’ 3
[5] and generalized by Brown, Ottewill, and Paga2].
Equally well one may use the transformation constructed by
Page[3]. It should be noted that although our constructions
! . nd
heavily rely on the consequences of the transformational
properties of the (_:onf(_)rmz_;llly related renormalized stress ten- B’“’z8R“’”Bw.aﬁ+8R“’”Bw.aw.ﬁ—8w?““w.a”
sors, our approximation is neither the Page approximation : T *
nor the one proposed by Brown, Ottewill, and Page, how- -8kt —8kw*w”+4gH”
ever, the results of the latter may be considered as a special

where

— 8kt " —8wtw Kk (5

case of our approximation. 2 w;aﬁw’aﬁ-‘r PRpRL EKZ _ ©®)
*Email address: We distinguished the traceless stress tensor in the conformal
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Taking the conformal factor in the forre=1/2 Ingyq|,

the sum of the last two terms on the right-hand REIS) of
Eg. (4), which we denote by, for a spinor field in the

Schwarzschild spacetime is

. x8(240—384x + 161x?)
$=3T (7
8(1—x)?
. _x%(16—48x+15x%)
S=T : 8
8(1—x)?
and
s - X8(—32-72x+87x%)
S)=T : C)

8(1—x)?
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- 7 2 1
T§:§T 1+ 2a,x— 7(4c—5+7a1)x2+ = (8c—60+28a;

1
+ Ldag+7a,— 7a6) x>+ 55 (150~ 708, — 353, ~ 4%,

1
+21ag)x*+ %(90— 42a,—21a,+ 21a,+ 3535)x°

—x%ag—(1—x)x%(a;+2a,) In (x)|, (15)

wherec is an integration constant. Note that the logarithmic

term survives even if the regularity conditions of the tangen-
tial component are satisfied. Now, transforming the stress
tensoﬁ"j back to the physical spacetime and imposing the
regularity condition§25] one obtains

ay

whereT=1/(458'M*72). Q=-5 (16)
The conservation equations in conformal space i}
and
e 27 g0, 2750 (10 2 49
ax " ox(1-x) " x(1-x) "’ 25=10- —c+ —-a+a,. 17)
and Further, making use of the weak thermal bath hypothesis
[24], that in our context states that the stress-energy tensor
= o , K should be of the form
Ti=—x*(1-%%—, 11
4M 7
(THy= g T(1+2x+ 3x?)diad —3,1,1,14+ O(x3)
wherek is the integration constant connected to the luminos- (19)
ity. Since in the Hartle-Hawking state the net fluxes are ab-
sent we puk=0. yields
We assume that the tangential component of the stress
tensor may be approximated by the following polynomial: a,;=0 (19
N and
Ti=T'| 1+ 21 aixi) . (12 :
=
c= Z (20)

Studying the asymptotic behavior ¢f%) as x—0 gives

T =%4T.

This hypothesis is usually motivated by the observation that

Now, counting the number of available informations onesince the curvature is proportional ¥/r3, the curvature

concludes that the simplest choice Ns=6. Transforming

corrections are expected to be of oraér

back the tangential component to the physical space, one Substitution of the thus obtained parameters into @j.

finds that the regularity conditiof@5] are satisfied provided

results in the one-parameter family of the stress-energy ten-
sor

1
a;=—(50—-28a;—21a,—7a,+7ag) (13 7 1
14 S (Th=— 5 T|3+6x+9x7+12C+ = (330+ L4a)x*
and 186
o+ 7x5— GQXG}, (22)
1
=a;+ —(—30+7a,—7a,—2lag). 14
D . ’ - TH=5T|1+2 32523 1130+14a B
( r>_§ +2x+ x—7x—ﬂ( 4)x—7x
Substituting Eqs(13) and (14) into (T4) and subsequently
solving the conservation equation one obtains the radial +Ex6 (22)
component 770




57
and
T? —7T 14 2x+3x%+ 08 3+ ! 230+ 14a,)x*
( 9)—5 X+ 3%+ =X ﬂ( 2)X
+102 5+87 . 03
7 X 7x . (23

Note that the obtainedT*) does not satisfy the strong ther-

BRIEF REPORTS

7617

one obtains
A8_787r 8 _3+8 2, gyl 16 200 8x?
g K9t X T T g T XX
488 3y 128I o8
53X )|, (26)

mal bath hypothesis, in which one assumes that the curvature

corrections should be of ordef [24]. An equivalent method
of obtaining Eqs(21)—(23) is to assume that boffi] andT'
may be expressed as the polynomials truncated\at6.

where the numerical factdf = 38407 has been singled out
for convenience. As seen in E@2) the arbitrary integration
constant has been fixed by demand th& vanishes on the

Then, making use of the conservation equation in the ultraevent horizon. It is interesting to note that one obtains the

static metric, solving resulting equations for unknown pa-

sameAS regardless of the value of the stress tensor on the

rameters to reduce their number, and finally making use oévent horizon, i.e., for ang,. The entropy given by Eq26)

the regularity conditions, one arrives at E(&1)—(23).
The unknown parametex, is to be determined assuming

that on the event horizon
(TH=T4, (24)

whereT# is (unknown as ygtthe exact value of the stress
tensor on the event horizon.

coincides withA S constructed earlier by Hochberg, Kephart,
and York[1], within the framework of the Brown-Ottewill-
Page approximation, and has all the properties that the en-
tropy of the quantized, massless, and conformally invariant
field in the Schwarzschild spacetime is expected to possess.
The freedom of choosing the temperature of the thermal
state in the Brown and Ottewill approach must not be con-
fused with the freedom in choosing the parametgr We

Although we are left with the one unspecified constant,emark here that in order to recover the stress tensor con-

the difference(T})—(T7) is, by construction, independent of

structed within the framework of the Page-Brown-Ottewill

a, and the entropy of the quantized spinor field may be easapproximation it suffices to take,= —30/7. On the other

ily constructed. Indeed, following the steps of REZ5] or

hand, the Frolov-Zel'nikov approximatiof8] depends on

making use of the elegant formula derived by Zaslavskiipne free parameter, sag, It should be noted that since the

[26],

(THY (T~ (T4)ln (}H
(25

)
AS=32772MJ dr'r’?
2M

difference(T{)—(Tﬁ) depends ord, so does the entropy,
however, withd=5/(2880r?) one obtains Eq(26) [27]. Fi-
nally, we note here that a similar method, with different as-
ymptotics and the Christensen-Fulling conditions yields the
approximate one-paramet€f%) in the Unruh state.
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