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Entropy of the quantized spin-1
2 field in the Schwarzschild spacetime

Jerzy Matyjasek*
Institute of Physics, Maria Curie Skłodowska University, pl. Marii Curie Skłodowskiej 1, 20-031 Lublin, Poland

~Received 12 December 1997; published 15 May 1998!

The entropy of the quantized massless and conformally invariant two component spinor field in Schwarzs-
child spacetime is constructed. It is achieved through the construction of the one parameter family of the
stress-energy tensor in the Hartle-Hawking state. The relation of the present approach to the approximations of
Brown and Ottewill and Frolov and Zel’nikov is briefly discussed.@S0556-2821~98!04112-5#

PACS number~s!: 04.62.1v, 04.70.Dy
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The objective of this Brief Report is to construct the e
tropy DS of the quantized conformally invariant massle
spinor field in Schwarzschild spacetime. We show that,
suming that the tangential component of the stress-en
tensor in the ultrastatic companion of the Schwarzschild m
ric may be approximated by a polynomial inx52M /r trun-
cated atN56, and utilizing the regularity conditions whic
the mean value of̂Tn

m& in the Hartle-Hawking state shoul
satisfy, and finally, accepting the weak thermal bath hypo
esis,DS may be easily constructed. This could be done
spite of the fact that since there are no numerical res
concerning the horizon value of the^Tn

m& the resulting ap-
proximation of the stress tensor could not be construc
completely. The obtainedDS coincides with the expressio
derived earlier by Hochberg, Kephart, and York@1# within
the framework of the Brown-Ottewill-Page approximatio
@2#.

Similar method may be exploited also in the case of
conformal scalar and vector field leading to the knownDS;
however, in this case we have at our disposal not only
excellent approximations of the stress tensor in vari
states, but also detailed numerical calculations regarding
exact^Tn

m& @2–24#. It is a well known fact that the accurac
of existing approximations of the stress tensor of the qu
tized spinor field has not yet been tested against exact
merical calculations.

The idea is to construct the approximate^Tn
m& in the op-

tical metric, and subsequently to transform it back to
physical, i.e., Schwarzschild, spacetime with the aid o
general formula derived originally by Brown and Ottew
@5# and generalized by Brown, Ottewill, and Page@2#.
Equally well one may use the transformation constructed
Page@3#. It should be noted that although our constructio
heavily rely on the consequences of the transformatio
properties of the conformally related renormalized stress
sors, our approximation is neither the Page approxima
nor the one proposed by Brown, Ottewill, and Page, ho
ever, the results of the latter may be considered as a sp
case of our approximation.
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Under the conformal transformation the renormaliz
one-loop effective action of the spinor field transforms
follows @2,5#:

WR@gmn#5WR@e22vgmn#1aA@v;g#1bB@v,g#, ~1!

where

A@v,g#5E d4x~2g!1/2H S Riem222Ricc21
1

3
R2Dv

1
2

3
@R13~hv2k!#~hv2k!J , ~2!

B@v,g#5E d4x~2g!1/2@~Riem224Ricc21R2!v

14Rmnv ;mv ;n22Rk12k224khv#, ~3!

andk5v ;av ;a. The coefficientsa,b for the two component
spinor fields are given by 18/(11520p2) and
211/(11520p2), respectively.

Functionally differentiating Eq.~4!, when restricting to
the Ricci flat spaces, one obtains

^Tn
m&5exp~24v!T̃n

m1a~s!An
m1b~s!Bn

m , ~4!

where

Amn58Ramnbv ;ab2
4

3
k ;mn12gmnS 2v ;ak ;a1k21

2

3
hk D

28k ;(mv ;n28v ;mv ;nk ~5!

and

Bmn58Ramnbv ;ab18Ramnbv ;av ;b28v ;mav ;a
;n

28k ;(mv ;n28kv ;mv ;n14gmn

3S v ;abv ;ab1k ;av ;a1
1

2
k2D . ~6!

We distinguished the traceless stress tensor in the confo
space with a tilde.
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Taking the conformal factor in the formv51/2 lnug00u,
the sum of the last two terms on the right-hand side~RHS! of
Eq. ~4!, which we denote bySn

m , for a spinor field in the
Schwarzschild spacetime is

St
t53T

x6~2402384x1161x2!

8~12x!2
, ~7!

Sr
r5T

x6~16248x115x2!

8~12x!2
, ~8!

and

Su
u5T

x6~232272x187x2!

8~12x!2
, ~9!

whereT51/(4584M4p2).
The conservation equations in conformal space give@13#

]

]x
T̃r

r2
223x

x~12x!
T̃r

r1
223x

x~12x!
T̃u

u50 ~10!

and

T̃t
r52x2~12x!2

k

4M4
, ~11!

wherek is the integration constant connected to the lumin
ity. Since in the Hartle-Hawking state the net fluxes are
sent we putk50.

We assume that the tangential component of the st
tensor may be approximated by the following polynomial

T̃u
u5T8S 11(

i 51

N

aix
i D . ~12!

Studying the asymptotic behavior of^Tn
m& as x→0 gives

T85 7
8 T.

Now, counting the number of available informations o
concludes that the simplest choice isN56. Transforming
back the tangential component to the physical space,
finds that the regularity conditions@25# are satisfied provided

a35
1

14
~50228a1221a227a417a6! ~13!

and

a55a11
1

14
~23017a227a4221a6!. ~14!

Substituting Eqs.~13! and ~14! into ^Tu
u& and subsequently

solving the conservation equation one obtains the ra
component
-
-

ss

ne

al

T̃r
r5

7

8
TF112a1x2

2

7
~4c2517a1!x21

1

7
~8c260128a1

114a217a427a6!x31
1

28
~150270a1235a2249a4

121a6!x41
1

28
~90242a1221a2121a4135a6!x5

2x6a62~12x!x2~a112a2! ln ~x!G , ~15!

wherec is an integration constant. Note that the logarithm
term survives even if the regularity conditions of the tange
tial component are satisfied. Now, transforming the str
tensorT̃n

m back to the physical spacetime and imposing
regularity conditions@25# one obtains

a252
a1

2
~16!

and

a65102
32

7
c1

49

2
a11a4 . ~17!

Further, making use of the weak thermal bath hypothe
@24#, that in our context states that the stress-energy ten
should be of the form

^Tn
m&5

7

8
T~112x13x2!diag@23,1,1,1#n

m1O~x3!

~18!

yields

a150 ~19!

and

c5
5

4
. ~20!

This hypothesis is usually motivated by the observation t
since the curvature is proportional toM /r 3, the curvature
corrections are expected to be of orderx3.

Substitution of the thus obtained parameters into Eq.~4!
results in the one-parameter family of the stress-energy
sor

^Tt
t&52

7

8
TF316x19x2112x31

1

14
~330114a4!x4

1
186

7
x5269x6G , ~21!

^Tr
r&5

7

8
TF112x13x22

52

7
x32

1

14
~130114a4!x42

18

7
x5

1
15

7
x6G , ~22!
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and

^Tu
u&5

7

8
TF112x13x21

68

7
x31

1

14
~230114a4!x4

1
102

7
x51

87

7
x6G . ~23!

Note that the obtained̂Tn
m& does not satisfy the strong the

mal bath hypothesis, in which one assumes that the curva
corrections should be of orderx6 @24#. An equivalent method
of obtaining Eqs.~21!–~23! is to assume that bothT̃u

u andT̃r
r

may be expressed as the polynomials truncated atN56.
Then, making use of the conservation equation in the ul
static metric, solving resulting equations for unknown p
rameters to reduce their number, and finally making use
the regularity conditions, one arrives at Eqs.~21!–~23!.

The unknown parametera4 is to be determined assumin
that on the event horizon

^Tn
m&5Tn

m , ~24!

whereTn
m is ~unknown as yet! the exact value of the stres

tensor on the event horizon.
Although we are left with the one unspecified consta

the differencê Tt
t&2^Tr

r& is, by construction, independent o
a4 and the entropy of the quantized spinor field may be e
ily constructed. Indeed, following the steps of Ref.@25# or
making use of the elegant formula derived by Zaslavs
@26#,

DS532p2ME
2M

r

dr8r 82F ^Tr
r&2^Tt

t&2^Tm
m& ln S r

r 8
D G ,

~25!
s

s

re

-
-
of

t,

s-

ii

one obtains

DS5
7

8

8p

K F8

9
x231

8

3
x2218x212

16

9
2

200

21
x28x2

1
488

63
x31

128

7
ln ~x!G , ~26!

where the numerical factorK53840p has been singled ou
for convenience. As seen in Eq.~22! the arbitrary integration
constant has been fixed by demand thatDS vanishes on the
event horizon. It is interesting to note that one obtains
sameDS regardless of the value of the stress tensor on
event horizon, i.e., for anya4 . The entropy given by Eq.~26!
coincides withDS constructed earlier by Hochberg, Kepha
and York @1#, within the framework of the Brown-Ottewill-
Page approximation, and has all the properties that the
tropy of the quantized, massless, and conformally invari
field in the Schwarzschild spacetime is expected to poss

The freedom of choosing the temperature of the therm
state in the Brown and Ottewill approach must not be c
fused with the freedom in choosing the parametera4 . We
remark here that in order to recover the stress tensor c
structed within the framework of the Page-Brown-Ottew
approximation it suffices to takea45230/7. On the other
hand, the Frolov-Zel’nikov approximation@8# depends on
one free parameter, say,d. It should be noted that since th
difference^Tt

t&2^Tm
m& depends ond, so does the entropy

however, withd55/(2880p2) one obtains Eq.~26! @27#. Fi-
nally, we note here that a similar method, with different a
ymptotics and the Christensen-Fulling conditions yields
approximate one-parameter^Tn

m& in the Unruh state.
ev.
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