PHYSICAL REVIEW D VOLUME 57, NUMBER 12 15 JUNE 1998

Center vortices and confinement versus screening

John M. Cornwall
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095
(Received 6 January 1998; published 5 May 1998

Confinement in QCD is due to a condensate of thick vortices with fluxes in the center of the gauge group
(center vorticel as proposed long ago by the author and others. It is well-known that such vortices lead to an
area law for fundamental-representation Wilson loops, but what happens for scfeaneddjoint Wilson
loops has been less clear, and problems have arisen over theNldiigit: We study the adjoint and funda-
mental Wilson loops for gauge groU(N) with generalN, where there ar&l—1 distinct vortices, whose
properties(including collective coordinates and actipnge discuss. Ind=2 we construct a center-vortex
model by hand so that it has a smooth laMdimit of fundamental-representation Wilson loops and find, as
expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential
in a related model for alN, as an expansion in powers @fM?, wherep is the vortex density per unit area and
M is the gauge-boson ma&averse vortex sizeand find, as expected, screenifighis is, in fact, unexpected
in d=2 QCD) The leading term of the adjoint potential shows a roughly linear regime followed by string
breaking when the potential energy is aboM 2This leading potential is a universall{independent at fixed
Kg) function of the type K /M)U(MR), whereR is the spacelike dimension of a rectangular adjoint Wilson
loop andKg is the fundamental string tension. The linear-regime slope is not necessarily relatgdhbyp
Casimir eigenvalue ratios. We show thatds-2 the dilute vortex model is essentially equivalent to tcue
=2 QCD in the fundamental representation, but that this is not so for the adjoint representations; arguments to
the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the
Wilson loop in the vortex flux. Most or all of these arguments are expected to hotb=f8r4 as well, but we
cannot calculate explicitly in these dimensiof@sproposal is made for another sort of approximatiordin
=3, using earlier work wherd= 3 vortices are mapped onto a scalar field thedi$0556-282(198)03012-4

PACS numbes): 12.38.Aw, 11.15.Pq

I. INTRODUCTION symmetry breaking and the Abelian Higgs modél.The
gauge potential has both a short-range part and a long-range

There are many viewpoints concerning the mechanism opure-gauge part corresponding to a gauge transformation
confinement in QCD. The problem here is to make a conwhich is singular along the center of the vortex; the field
finement proposal which is sufficiently specif&.g., not de-  strength is non-singular and purely short-range. An area law
pendent on the choice of gayde allow for good tests of its  for @ large (compared toM ") fundamental Wilson loop
correctness. Recently there has been very considerabféises because the long-range pure-gauge part of the vortices
progress, both in lattice gauge thedfy2] and lattice gauge Wlth non-zero Gaussian Imkmg number contributes a factor
simulations[2,3], in verifying the center-vortex picture of like exp(2miK/N) to the Wilson loop, for gauge group
confinemen{4—8], at least for the grougU(2) in the fun- SU(_N). HereK is an integer Wh_lch is the product of the
damental representation. The essence of the center-vortd®King number and the magnetic flux of the vortex. The
picture is the existence of a condensate of closed magnet}ortices are linked randomly, and an average over all vortex
sheetgin d=4) or closed magnetic string& d=3) which  INking numbers yields an area la]. _
have a finité thickness~M ~*, whereM is the gauge-boson Striking confirmation for this picture of confinement has

induced masg9]. These vortices carrycolor) magnetic been found in recent lattice studies of the fundamental rep-
fields and have magnetic fluxes which lie in the center of thd&Sentation o8U(2). Thesimple procedure is to replace, for
gauge group. They form a condensate because their entrogy 9iVen configuration of lattice gauge potentials, the true
(per unit size is larger than their action. Their continuum VVilson loop by its sigricorresponding to the vortex factor
description is essentially that of the Abelian Nielsen-OleserXP(mJ) for link numberJ in SU(2)]. To the numerical

vortex, with some modifications to account for the difference@ccuracy of the lattice computations, the string tension so
in mass generation mechanisms between Q@B gauge found is preusely the same as for the full theg®y3]. The
only difference is found at distances comparable to the

*Email address: cornwall@physics.ucla.edu

Therefore on the lattice these vortices are infinitely spread out, in 2Callan, Dashen, and Gro$40] studied confinement in thd
the limit of zero lattice spacing. There are also vortices of a single=2 Abelian Higgs model for matter fields with fractional charge;
lattice spacing in thickness, which have infinite action in the con-except for details of group structure, this model captures the es-
tinuum limit and are completely suppressed. The lattice problem isence of the center-vortex picture of confinement. However, it was
to characterize these spread-out vortices. We will only consider thenly later that the precise connection of thick vortices and confine-
continuum picture of vorticef4]. ment was made in non-Abelian gauge theories.
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physical scale of the theorfghat is,M ~1), where the finite asd=2 QCD, which does have confinement and Casimir
thickness of the vortices and other perimeter-law effects bescaling in all representations. It is indeed true, as we will
gin to show up. show, that thed=2 vortex model and QCD can be made to
However, present-day theory and numerics of the centedook the same in the fundamental representation, but not in
vortex mechanism leave a number of questions unanswerete adjoint, for which we will calculate the first term in a
and we will address them in this paper. In the first place, nglensity expansion of the adjoint potential and firid] a
work is known to the author which studies, either theoreti-Potential which is approximately linear for intermediate dis-
cally or computationally, the nature of the vortex condensatd@nces, but breaks when enough energy is stored in the po-
and the behavior of the fundamental Wilson loop for generidéntial. We emphasize theé=2 vortex picture not because
N with gauge grougSU(N). [The case oSU(3) was stud- we b_el_leve that 2 is the rele_vant d_|men3|on for the _m_odel; in
ied in Ref.[4].] Nor has there been much work on the par-fa.‘q it is not. The relevant dimensions are 3,4, but it is more
ticularly important problem of the behavior of other repre_qlfﬂcult to make _eﬁgllcn calculations with the vortex picture
sentations of the Wilson loop, in particular the adjointIn these dimensioris.

. . It is instructive to revisit some simple but flawed argu-
Wllso_n loop. There IS an Ol.d work of th_e auﬁd!.i]’ obscure. ments(see, e.g9.[17,9]; these authors explicitly point out the
and little-known, which discusses this question; we refin

- . q‘law) showing that confinement comes essentially from a
and extend that work here. In addition there is some recer&momc mass gap. These arguments also Igacorrectly

speculation by Fabest al. on the adjoint potentidl12] and  gjnce they do not apply at=2) to Casimir scaling and an
the possibility of so-called Casimir scaling, which holds thatg e |aw for the adjoint representation. The flaw is analogous
the ratio of string tensions in the fundamental and adjoing 3 truncated expansion of a periodic function like e)sa
representations is simply the ratio of quadratic Casimir ei-¢,, saving only second-order terms. But with such a trunca-
genvalues for these two representations. Here one must Ufion periodicity is lost, and all sorts of bizarre effects can
derstand, of course, that the adjoint string tension cannairise from the non-periodicity ap itself. Precisely this sort
persist to indefinitely large distances, since it can always bef thing comes up in the QCD arguments, as we will discuss
screened by gluon-pair formation. Ultimately the string mustiater on. The point is that the potential coming from the
break(see, e.g., Ref.13] for an early lattice calculation of wilson loop is periodic in the long-range pure-gauge vortex
this effect; references to other lattice calculations of a similafiux, with period 2r for the fundamental representation and
type can be found in Ref12]). period 2r/N for the adjoint. In the first case the potential
Casimir scaling is certainly true fat=2 QCD, but this  depends on the flus as something like cod)—1, and in
theory is in some respects a misleading model, for it showghe second case it is like cop)—1. Since the flux is an
an area law to all distances in the adjOint represent&ﬁm integra| mu|t|p|e of 27/N the |0ng_range pure-gauge part of
ply because there are no gluonic degrees of freedom tthe vortex contributes nothing to the adjoint potential as ex-
screen the Wilson logp Greensite and Halperfil4] have  pected. But various simple approximations, like expanding to

given a largeN argument to the effect that the usual laflde- second order in the flux, completely obscure this fact.
factorization propertyfrom which follows Casimir scaling

requires an adjoint area law @+ 3,4 as well. This is fatal to
the center-vortex picture, where in these dimensions the ad- IIl. THE CENTER VORTEX PICTURE

joint representation is certainly screened and not confining. First we review the general center-vortex picture, then we

At large N, Casimir scaling simply says that the adjoint 4iye some details of the flux matrices describig(N) vor-
string tension is twice the fundamental string tension, whichjces.

can be interpreted as the presence of two fundamental strings
between an adjoint “quark” and its antiparticle.

An essential part of the present work is to show that there
is no largeN contradiction in the center-vortex model be- Because of infrared instability id=3,4, QCD in these
tween fundamental-representation area laws and adjoint peimensions generates a dynamical mass for the gluon, pro-
rimeter laws(although this is superficially in contradiction to portional to the invariant mass scale of the thej@y18,19.
conventional largeN factorization; the resolution of the con- The existence of this mass is discovered by studying the
tradiction is discussed in Sec.,)VThe fundamental and ad- Schwinger-Dyson equations of QCD, in a framew{@ki§]
joint representations must be treated differently, unlike thavhich insures gauge invariance, and noting that “wrong-
case ofd=2 QCD, and only the fundamental representationsign” effects associated with infrared instability lead only to
shows an area law. We do not find Casimir scaling for thesolutions with a massive gluon. It is necessary to include
adjoint (breakablg string tension, nor do we find conven- |ongitudinally-coupled massless scalars in the Green’s func-
tional largeN factorization properties. This agrees with tions, which play a role rather like Goldstone excitations.
Greensite and Halpern's argument that the center-vortekike Goldstone particles, these massless scalars do not ap-
model is inconsistent with such factorization. Although wepear explicitly in the S-matrix. However, they play a crucial
will spend considerable time on &=2 vortex modef it role in confinement. Unlike Goldstone particles, they do not
must be understood that this model is by no means the same

A. Center vortices and the gluon mass

“In another publication we will estimate tle=3 adjoint potential
3See also the work of Smilggl5], which invokes vortices i from vortices, using16] a description of the vortex condensate in
=2 gauge theories with fermions. terms of a scalar field, which is appropriate for this dimension.
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signal any sort of breakdown of local gauge symmetry
which is completely preserved.

An effective theory, accurate in the infrared, for describ-

ing the gluon mass 9] the gauged non-linear sigma model.
This theory is useful in any dimensiah the corresponding
(Euclidean actionl is

|=f ddx{%lTr[Gf’}(x)]z—M2Tr[DiU]2 . )

The gauge potentials are described by the usual anti-

Hermitean matrices N?/2i)A;(x), and D; is the covariant
derivative. TheNXN unitary matrixU describes the non-

linear sigma model fields. Note that the gauged non-linea

sigma model is locally gauge-invariant. To use the effectiv
action(1), one solves the equations of motion fdrin terms
of the gauge potentials and substitutes the result in the equ

tions for the gauge potential. One then finds the above-
mentioned massless scalar modes. There also may be so

tions for U containing terms not dependent on the gaug
potentials; this possibility is important for vortices. The ef-

fective action(1) is not renormalizable, and breaks down in

the ultraviolet. This breakdown simply reflects the fact that

the gluon masM is taken to be constant in E(L), while the
solutions of the Schwinger-Dyson equations insist that th
mass be a function of momentup vanishing at largep?
[9]. In fact, Lavelle[20] has shown that inl= 3,4 the mass
vanishegmodulo logarithmslike 1/p? times the condensate
expectation valu¢G?2).

For constanM the effective actioril) has numerous soli-
tonic solutions. Vortex solutions exist in all dimensions, with

the vortex co-dimension fixed at 2. This means that the vor

tex is describable in terms of an arbitrary closed
(d—2)-dimensional surface, which reduces to a pointin
=2. Most of what we can explicitly do with the center-
vortex model will be ind=2, so we write the solution in that
dimension, for a vortex centered at the origin:
Aj(x%;9)=(2mQ,;/i9) €k f{Am(X) —Ag(X)}.  (2)
Here A\ o are free propagators for mai4,0, andQ; is a
generator ofSU(N) such that exp(2iQ;) is in the center

Zyn- We choose the integel such that the corresponding
element of the center is expf®/N). The reason4] for this
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o true zero modes. We will describe this coset in connection

with a description of the flux matrice®;, and in the Ap-
pendix.

One readily calculates the contribution of the long-range
pure-gauge part of a single vortex of fldxo a simple(non-
self-intersecting Wilson loop W in the fundamentalrepre-
sentation. Let the vortex be centered at positofsee Eq.
(3)]; then

Tr Pexp{g 3gdxiAi(x) =Trexp27iQ;)Oyw(a)

+Tr[1-0y(a)]. (4)

Here ®w(a) is the characteristic function of the Wilson

qoop, that is, it is unity if the vortex lies inside the Wilson

loop and zero if it lies outside. If the loop is not simple, and
(’/\I'rapsK times arounda, thenQ; is replaced byKQ;. In
view of exp(2riQ;)=exp(2mJ/N), the Wilson loop for a

Is&fngle long-range vortex is just the exponential afi2/N

Simes the Gauss linking number of the loop and the center of

the vortex, a situation which is true in any number of dimen-
sions[4]. An area law for the fundamental Wilson loop fol-
lows immediately, as discussed in many placese

£10,4,1,Z).In the adjoint representation])/N in the above is

feplaced byJ, so the long-range pure-gauge part of the vor-
tices is invisible to the adjoint Wilson loop, as is well-
known.

At this point it is not clear how to proceed to the larfye-
limit. The reason igsee Sec. || B immediately below and the
Appendix the actionl (N,J) of a vortex of fluxJ depends on
J,N in such a way that whed~N the action is very large
compared to the action for fixedl as N—o. However, in
computing the statistical weights for vortices it is not just
exp(=1) which is important; one must also calculate the fac-
tors coming from group collective coordinates and other en-
tropic effects. In the Appendix we show that ind=2
center-vortex model, which is constructed by hand, it is in-
deed possible to find a smooth laryelimit when group
collective coordinates are accounted for. These tend to
counter the exponential of the action. To simplify further
explanation of the larg& center-vortex picture, we will
simply assume that all vortices of whatever flux have the
same free energy. This may or may not be literally true, but
there is no qualitative difference in the discussion of laxge

requirement is that if a gluon is transported around a largavhether it is or not. We will find confinement for the funda-
circle containing the vortex at the origin, it suffers a gaugemental representation and screening for the adjoint.

transformation exp(2iQ;), which must leave the gluon field

unchanged. This and other long-range effects come from the

massless term in Eq2), which is a pure singular gauge

B. Vortex flux matrices

term, expressible as the gradient of the polar angle. Its sin- FOr future use we need some properties of the vortex flux

gularity at the origin is exactly cancelled by tidg, term,
and the field strength is short-ranged. The solut{@n is

immediately generalized by applying space-time translations
and global group rotations, yielding the vortex as described

in terms of its zero-mode collective coordinates:
Aj(x;a,u;)=VT(W)A;(x—a;J)V(u). (3

HereV(u) is the (fundamental representative of group ele-

mentu. Of course, only a coset of the full group corresponds

matricesQ;,. First introduce the traceless matric€s, i
=1,...N:

Qi=diag /N, ..., IN,—1+1/N,IN, ... ,IN) (5
where —1+1/N is in theith position. Of course, these are
not independent; the sum over &lis zero, and any can be
reached from any other by a group rotation. Any of these
matrices is associated with a flux of\L/in the sense

exp2miQ;) =exp(2i/N). (6)
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One easily checks that the matric@s+ Q;+ Q+ . .., with
i#j#k# ..., has fluxJ/N if there areJ terms in the sum;
that is,

exgd 2mi(Qi+Q;+ Qy+ ...)]=exp27iJ/N). (7)

JOHN M. CORNWALL

IlI. GOOD AND BAD CUMULANT EXPANSIONS

We exhume some old and rather rough arguments con-
cerning the mechanism of confinem¢a®,9] in d=3,4. In
any representatioR of SU(N), we make two approxima-
tions to the Wilson-loop expectation value. First, we convert
the line integral to a surface integral, but we use the usual
Abelian form of Stokes’ theorem rather than the correct non-

For 1=J=<[N/2], where[ -] indicates the integral part, we apelian form; second, we make a cumulant expansion, sav-
can choose in any convenient way one representative of thgg only the first non-vanishing term, which is equivalent to

above matrices aQ;, the representative of flud in the

assuming a Gaussian distribution of gauge potentials. The

sense of Eq(7). For larger values of one uses instead the agylt is

matricesQy_;=Q_;, which are anti-vortices with charge
-J.

The addition of severa@); to get a vortex of different
charge(including the vanishing of the addition dF of them)
has a physical interpretatidd,21]. In d=3, vortex strings
(surfaces ind=4) can merge or split at a poirfine) with
conservation of the vortex charge. In this way a strisgr-
face network is formed. IfN unit vortices meet, they can
annihilate. Every intersection poifline) is associated with a
QCD sphaleror(sphaleronic world ling carrying a change
of topological charges which is quantized in units oN1/

<WR>E<TrPexr{ig é dx‘TaAi""D

2c
=Dgrex __9=r dojdoy
2(N2—1) T

X(G)EG(X )R- ©)

like the flux itself. This has been eXpIICItly illustrated in HereDR is the dimension of representatiﬁh andCR is the

SU(2) [22].

guadratic Casimir eigenvalue for this representation, given

We can now see the structure of the coset needed to dgy

scribe the group zero modes. Afy; hasJ diagonal ele-

ments which are all equal, adi—J diagonal elements also
all equal to each other, but not equal to the first group.

Therefore it is invariant undeBU(N—J)® SU(J)®@U (1),
and the collective-coordinate coset3&J(N) divided by the
above. More details are given in the Appendix.

Tr (T2T?)(N*-1)

Dr (10

ROab™

If the field strengths are short-ranged, so #@{x)G(x"))

It is clear from Sec. Il A that the vortex action depends on~€xp(—~M|x—x'|) at large distances, one easily sees that

TrQ3, so we record it:

JIN=J)

Q= ®

Then every vortex has a different actidrwhich at first

there is an area law for Wilson loops large compared to
M 1. Evidently this area law shows Casimir scaling, and it
also scales correctly at larg¢, since((G#?)~N?—1 and
Cgr~N, g?~1/N. In fact, Eq.(9) is quite correct fod=2
QCD, where Wilson loops of any representation are calcu-
lated using free gluon propagators and there are no gluonic
self-interactions. But it certainly cannot be correct dn
=3,4 because it gives an area law for the adj¢amtd other

glance makes it difficult to see how the various elements Of\l—ality 0) representations. The argument given here com-
the center group are treated equally. A related problem i$etely ignores the vital role of long-range pure-gauge parts
treated in the Appendix, where it is shown how &2 of the potential, which is in fact the secret of confinement, as
vortex model can be tuned to have an approximate equalityiscyssed above. If one did not know about these long-range

of free energies for vortices with~N; it is hoped that this
equality of free energies emerges dynamicallydi 3,4.

parts, one could not understand confinement, since the origi-
nal (line-integra) form of the Wilson loop would surely give

Finally, we note that in the adjoint representation everyonjy a perimeter law, if all the gauge potentials were short-

Q, is a diagonal matrix, with|—1)? eigenvalues of ON
—1 eigenvalues of-1, andN—1 eigenvalues of-1.

ranged. About the only thing that the above argument really
shows is that long-ranged gauge field strengéssin QED in

We are now ready to calculate Wilson loops, both funda=4) cannot confine.

mental and adjoint, with the usual machinery of dilute-vortex

From the point of view of understanding the adjoint po-

expansions. However, before carrying this out it is perhapgential coming from center vortices, this argument is an ex-

instructive to discuss some flawed arguments which seem tgmple of a bad cumulant expansion, which ignores a funda-
contradict what we have said about center vortices and thejfental requirement of periodicity in the vortex flux. Later

role in confinement.

5If one tries to calculate the action from Eq$) and(2), one finds

we will see how this bad cumulant expansion can be found
from an illegal truncation of the dilute center-vortex calcula-
tions.

There is a closely-related illegal argument which recog-

a short-distance logarithmic divergence associated with the constafizes the existence of vortices with quantized flux. Consider
mass. This is cured if one recognizes that the mass actually vanish#de expectation value of a large fundamental Wilson loop in

at short distances, as discussed above.

SU(2); according to the above we have
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<W>=<ei WJ>_ (1D be a decent expansion parameter. When we come to the ad-
joint potential we will calculate a part of the first-order term
Here J=2XJ; is the sum of the linking numbers of all the in e.
vortices which link with the Wilson loop. Sinckis the sum Everything we can do explicitly will be in two dimen-
of a large number of independent random numbers, onseions, where we can write the collective-coordinate integral
might be tempted to use the central-limit theorem and writefor a single vortex of chargé as

(W)y=exp(— 3 7%(J%) (12) _p
; -NC1 dzaf d(u) (15)

and then argue thdtl?) is proportional to the numbe¥ of

vortices linked to the loop. Given an areal dengitpf vor-  \here the group integral is normalized to unigo that it
tices, we havéN=pA, whereA is the area of the loop, and does not matter whether we integrate over the whole group
an area law follows. But consider the same argument for agr only over the coset appropriate to a given voytexote

adjoint Wilson loop; it surely is wrong to say that that we assume no dependence in the collective-coordinate
. integral on the indeX, as discussed in Sec. Il. The depen-
2miJ\ — 1 2/12
(e7)=exp(—2(2m)%(J%)). (13 dence 1/—1) in Eq.(15) merely reflects the fact that there

is a total ofN—1 different vortex types.
As we have discussed earlier, it is essential to respect the
periodicity of Wilson loop expectation values in the vortex

since exp(ziJ)=1 always.
We are now ready to use the center-vortex picture cor

rectly. flux. This we can do straightforwardly for thé term of the
cluster expansion, but it seems to be much harder to do for
IV. DILUTE-VORTEX EXPANSION OF THE ADJOINT higher-order terms, which we can discuss only qualitatively.

VORTEX POTENTIAL If the €® term itself is expanded in powers of the vortex
gauge potential, with only the leading terms saved, one ob-
tains results equivalent to confinement for the adjoint repre-
sentation.

The dilute-vortex expansion is of conventional type.
Given a set of solitonic fields;} and their collective coor-
dinates{c;}, the expectation value of any opera®f®(x)}

is approximated by the leading semi-classical term:
A. Fundamental representation

We will only consider the case of large Wilson loops,
' where to find the area law one need keep only the long-range
(14) ~ Pure-gauge part of the vortg¢kq. (2)]. In this case the cal-
culation differs only in group-theoretic details from the Abe-
The partition functionZ is the same sum witlD=1. The lian Higgs model versiof10]. It is evident that
sum overK is a sum over sectors with solitons each. The
sumsX, ...XZg are each a sum over all the collective coor- Z=exp(pV) (16)

dinatesc;, which include translations and group coordinates . . .
in d=2:in d=3,4 (and this is what makes the calculations whereV is the volume of the two-dimensional space. Con-

there hard there are sums over internal degrees of freedo@\'ﬁgroarlsgi Uf‘sgt’ggg?r:?othfcrfjlitos n(l))f/ tohr;ettypeeigflz\(/g)rt%ﬁ;r he
of the strings or surfaces. Implicit in the sum over multiple P P yp !

vortices are combinatoric factors appropriate to the differeng\)/(.pw if the collect|v_e coordmgte of the vortex is |n3|de_ th(_e
ilson loop, and unity otherwise. An elementary exercise in

vortex charges. L i .

In any number of dimensions, the coIIective-coordinatetC::V'c]{mgdbyZ 3{|elldf)usttthe.gglllgn-Dashen-Gross result for
normalization factors lead to a specific dimensionful number, € Tundamental string tensiat -
the density of vortices per unit area. We call this dengitit W) = e~ 20A. _

. : L . . =e 7 Kg=2p. 1
has dimensions of mass squared. This is evidently tru in (W) Fep (7

=2. In d=3, this density is simply the number of vorteX yearea is the area of the Wilson loop.

string crossingg$each crossing with unit weighof any large One might note here, by the way, that this result implies

rectangular area divided by the area, with an analogous defin4t the vortices obey Poisson, not Gaussian, statistics, that
nition in d=4. Ultimately this density is converted to a di- g (W) can be written as

mensionless form by dividing by the only available s€ale

so theK-vortex sector is associated with a facigiM?=e. (W)= (exp(imL)) (18

This is essentially the vortex density multiplied by the vortex

cross-sectional area. We expecto be fairly small, since if where on the right-hand side the expectation value is defined
vortices get too close together there is both an action penaliy terms of the Poisson probability

and an entropy penalty, but we do not know what the value

of € is. Right now, it is just a hope that it is small enough to Le-L  _
P(L)= ;. L=pA. (19

K
> ¢><x;cJ>}
J=1

(Ofeeoh=271 X %; 20

8In the dilute-vortex approximation, the coupling constgrdoes ~ Evidently this gives no area law for the adjoint representa-
not appear. tion.
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For SU(3), which has a vortex and an antivortex, the
answerl4] is

(W)=exfd — pA(1—coq27/3))]=exp —3pAl2).
(20)

Since this gives the correbt=2 result if we replace 3 by
2 in the cosine in the first exponent, one might be tempted t
generalize to alN by using cos(z/N) in the exponent. This
would be correct in principle if there were only one kind of
vortex, namely the one witd=1. But this is likely to be
wrong; for one thing, it gives no area law in the lafge-
limit. We have assumed for simpliciee the Appendix for
a more accurate discussjothat all vortices of whatever
charge contribute equally. If so, andNfis odd, an elemen-

tary calculation yields
2pA
(W)=exp— N1 1-co +1-co

el

Each term 1-cos(27J/N) represents the contribution of a

A

N

2

N

2

N

N—1

5 (21)

+oe +1—cos<
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is useful, in fact, to define a short-ranged Abelian gauge
potential, which is all that will appear in the adjoint poten-
tial:

Ai(X):Z’iTGij(?jAM(X). (24)

%s flux tends to zero as the surface defining the flux tends to

infinity.
Write the adjoint Wilson-loop potential iB8U(2) for the
dilute-vortex model as

(Wa(R))=exp(= TVa(R))
1 1
22[2 m; ; TrP

xexpl(if dTJaX(T)-Aa[x(T)]” (25)

with the trace and group generatarsin the adjoint repre-
sentation. Herd is the length of the long sides of a Wilson

vortex and antivortex. The sum over these terms is elemerd€ctangle, andR the length of the short sides. The path-

tary, and yields

oN

1 (@

pAN
(W}zexp—:m]; Ke(N)=

A similar calculation forN even, left to the reader, gives the
same result. Of course, EQR2) agrees with the previous
answer forN=2,3.

Now we go on to the more difficult case of the adjoint
potential.

B. Adjoint Wilson loop

We begin with a theorem which follows from generaliz-
ing the explicitSU(2) calculation given below t&U(N),
using some simple properties of the adjoint representation
the vortex fluxeQ; and techniques similar to those used for

the fundamental representation above. These propertie

given in Sec. Il B, are thaD; has (N— 1)? eigenvalues of 0,
N—1 eigenvalues of-1, andN— 1 eigenvalues of -1. It then
turns out(we leave details to the readehat for anyN the
leading term in thee expansion of the adjoint potential
VA(R;N), whereR is the separation between the two long
sides of an adjoint Wilson loop, is a universal function inde-

ordering prescription affects only the generators, as ex-
pressed in the formula

P(JA°...)= 2 JA°...0(r=1,> ..

perm

) (26

where® is one if ther-variables are ordered as shown, and
zero otherwise; the sum is over all permutations of the indi-
ces.

We first show that in the leading cumulant term, found
from the K=0,1 terms of Eq.(25), the path-ordering pre-
scription can be ignored. We then show that this leading-
order term exponentiates when higher value«oére con-

idered, leaving a residual term Qf(e) and higher. Path

rdering is important in this residual term. A proper cluster
expansion emerges, in which all terms of(dg are linear in
¥ asT approaches infinity. If for the moment we accept this,
then we can summarize our results for the leading, or one-
vortex, term by saying that one can replace the actual group
integral, in any representatidh of any SU(N), by a discrete
average. In th&K=1 sector there is only a single vortex,
whose collective coordinates we indicate by the subscript 1.
Then we claim

pendent ofN, when expressed in terms of the fundamental

string tension and the mass:
Ke
VA(R;N)=VA(R;2)=VU(MR)[1+O(6)]. (23

So we need only calculate the universal functld(R) for
SU(2).

Because all the eigenvalues @f; are integral, and be-
cause we explicitly show periodicity in the vortex flux, there
is no contribution to the adjoint potential from the long-range
pure-gauge part of the vortex potential as given in @g. It

21‘, TrPexp(if dTJak(r)-Aa[x(r);al,ul]>

:pf dzali
Dr

> exp( iQJ,Rf dmx(7)-A[x(7)—ay]

X

|

(27)
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FIG. 1. Plot of the adjoint po-
tentialU vs MR.

. . . . . MR
2 4 6 8 10

Here theSU(2) gauge potential is related to the Abelian only vortices which can affect the adjoint potential, which is

gauge potential by really like a perimeter term in that only vortices near the
. perimeter can contribute. This collective-coordinate integral
Af(x—a;u)=e*(u)Ai(x—a) (28)  was done some time adal], and the result for the adjoint

potential[using Eq.(22) to expressp in terms ofK¢]:

where on the right is the Abelian potential of EG4), and
e?(u) is a unit vector. Actually, this vector depends not on
the full group variables, but only on the coset variables dis- _ Ke o y _(y+MR)
cussed in the Appendix. For the gro®iJ(2) this coset is Va(R) =341 Zfo dy[1-cogme Y- me )]
SU(2)/U(1) and the unit vector just depends on the usual
polar angles. ThéQJYR are the eigenvalues of the vortex flux MR _ - ~MR
matrix Q; in the representatioR, andDp, is the dimension +f dy[1-cogme Y+ mel"T)]
of this representation. Note, by the way, that replacing the
group integral by the above discrete average also yields the
results of Sec. IV A for the fundamental Wilson loop.

The proof of this formula is simple. One sees from the

above that the group-generator term reduces €6eTd)N) in
the Nth order term of the expansion of the single-vortex
path-ordered product. Only evedh contributes, and for the : .

dance with our previously-stated theorem.

adjoint of SU(2) this reduces to Tte-J)%), because In Fig. 1 we show a plot of the potentitl(MR). It has a
(e-J)3=e-J. This trace is just 2, independent of the order-more-or-less linearly-rising term for a distance of ordevl 1/

_Ke
= U(MR). (30

The calculation previously citefil1] of this integral was
done forSU(3), and it hasexactly the same form, in accor-

ing of the generators in the original expression. and then it settles down to a constant. The asymptotic value
Using Eq.(27) in Eq. (25, one easily finds th&=0,1  v,(x)is about 2.Kr/M, which should be comparable to
contribution to the adjoint Wilson loop: 2M, yieldingM =1.1K¥? or about 460 MeV using the usual
value for theSU(3) string tension. The slope of the linearly-

rising term is about 1.5, not as big as Casimir scaling
]- would suggest, but we see that there is nothing in the under-
(29) lying physics to suggest that Casimir scaling should hold
anyway. These numbers are in any case not very accurate,

As claimed, it is periodic in théAbelian) flux. It would be a ~ first because the asymptotic value is only roughi,2and
serious mistake to expand the cosine, saving only quadratigecond because there are other contributions from, e.g., in-
terms, as one would do for a Gaussian distribution. stantons.

It only remains to calculate the translational collective-
coordinate integral. This has three terms: One from the vor-
tices outside the Wilson loop to the left; an equal term for
vortices outside to the right; and one for those inside. By One must first show that in the two-vortex sector, which
inside and outside we refer to the collective coordinateshas terms of0(T?) as well asO(T), these quadratic terms
since the vortices themselves are fat, they overlap the Wilsonancel when logV) is formed. We form in the usual way the
loop if they are within a distance IW. In fact, these are the cumulant through two-vortex terms, arriving at

<W>0,1=3ex4 - %pJ d’a l—cosé dx- A(X)

C. Finite-density corrections to the adjoint potential
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2 1 ring to vortex 2 without paying attention to the fact that the
—log(W)= §2 (1=cosyn) = 3557 generators do not commute. However, let us proceed by re-
! ' placing Eq.(33) by
x> > [TrPex;{i fﬁ dxJ2A3(x;Cq,Cy) Tr[ (6%(u) IR(E(up) IP)PNR] (34)
1 2

plus a remainder which reinstates the correct expression. The

1 trace in Eq.(34) is now elementary; iR+ 0,2N one reduces
—3ll+2cosy,+2cosy, it, as before, to
Trl(e%(up)I?(€°(ux)3°)?]. (35

+4 cosyy coS ] |. (31

One can now integrate over the group coset, replacing
ei(uy)ej(u;) by (1/3)3ij. Then Eg. (34) reduces to
1/9)Tr(J?)2=4/3. But if R=0,2N the trace becomes 2/3. It

is clear that the terms in which E¢B3) has been used re-
duces to the sum

Here the subscripts 1,2 refer to the collective coordinate
[see Eq(15)], and

1= fﬁdX‘Ai(x_al;ul); S (=N S pann_ (2N
N=1 (2N)!r=G%ven viv2 RI(2N—R)!

AZ(X;Cq1,Co) =€3(Up)Ai(x—ap)+(1+2). (32

4 2

There are now two group integrations and two unit vectors, X[5(17 0ro™ Oran) 3 (Or0T Sran)]- (36

so the trace of a product of generators times these unit veGrhis sum is easily done, and it completely cancels the third

tors is not so simple, and path-ordering is important, at leasierm in brackets on the right-hand side of E§1). This

at higher than quadratic ordin A? of Eq. (32)]. cancellation, of course, is necessary for proper clustering, in
Construct the usual series expansion of the path-ordereghich logW) must be linear inT.

product, in which only even-order terms need be kept. At This leaves only the remainder term, which we will dis-

2Nth order one encounters terms such as cuss explicitly only in the lowest order, namel@(A3A3).
- b brc . At this order one encounters only two separate values for the
TrP(e%(uy)J%e’(uz)Jde%(u)d®. . .) (33 trace, which is a trace of four group generators. In sixteen of

. ) A . the twenty-four terms in the path-ordered product we find the
in which there areR terms ine®(u;)J* andN—R terms in  yajye given in Eq/(35), while the remaining eight traces are
e°(u,)J°. These come in all permutations, so it is not pos-only half as big. The result is that the true two-vortex term in
sible to gather terms in vortex 1 separately from those referthe cumulant expansion is

1
m(_ls)(%)f d’Tl - .dT4F(Tl_7'2)F(T3_T4)[(7'127'327'22T4)+ . ] (37)

Here

F(r— Tz)ZPf d’ax(7;)- A[X(11) —alxX(7p) - A[X(72) —a] (39

is constructed from the lowest-order semi-classical propaga- V. THE CENTER-VORTEX MODEL, d=2 QCD,
tor of the vortices, and in Ed37) the ellipses in the square AND LARGE- N FACTORIZATION
brackets indicate seven other permutations. We need not In two dimensions, QCD without fermiohis an exactly-

write these explicitly, since they all give the same result;gq| pie theory(see, e.g.[24]). All representations are con-
these other permutations are those generated by all efned, and there is Casimir scaling. The theory is simply one
changes of thers under whichF(r,—75)F(73—174) is in-  of free massless propagators coupled in the usual way to
variant. One can readily verify that because of theWilson loops. Here we discuss how the dilute center-vortex
O-function in Eq.(37) this term isO(T), and notO(T?) as  picture ind=2 resembles, and differs from, QCD in this
it would be without ther-ordering. dimension.

Because this term is only the first term of an infinite ex-
pansion, it makes no particular sense to evaluate it any fur-
ther. It is, as advertised, @(p/M?) compared to the lead-  “with fermions,d=2 QCD can show screening in any represen-
ing term as given in Eq29). tation if the fermions are massless; see R28].
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Let us construct the gauge propagator from the collectiverortex model is used oneannotsimply apply the perturba-
fields of the vortex condensate in the usual way. This propative rules of factorization at largd. Instead, one sees that, at
gator is any finiteN, a vortex linked(unlinked to the (largel Wilson
loop U is also linked(unlinked to the loopU™. The long-

ab 2 o range pure-gauge part of the vortex supplies equal and op-
N2—1a2,u ng (=2)Tr(QRYA(x;a,u;J) posite phase factors from the center of the groupJtand

UT. These phase factors are multiples of the identity, and can

XA(y;a,u;J). (39 be pulled outside the traces; they cancel in the product in Eq.

. . (44), and cannot lead to an area law after averaging over the
Here the gauge potentials are the vortex potentials, as fungitices. However, the short-range vortex contributions con-
tions of their collective coordinates, as given in E@5.and  ipte factors which are not multiples of the identity. After
(3), andX, , is the integral over these collective coordinates.,yeraging, these give the perimeter law we have calculated in
To mimicd=2 QCD in thefundamentatepresentation itis earlier sections. In the full center-vortex model, there is no
enough, as we have already done above, to save only thegiification for using largeN factorization, which asserts in-
pure-gauge long-range part of the vortex, that is, ¢ gependence of the phase factorddrand inUT, in the spe-
piece in Eq(2). (Saving the massive part would give rise 10 cjfic context of Eq.(44), relating adjoint and fundamental
perimeter-law corrections not foundéh=2 QCD) The sum  renresentations. There is, however, no problem in using

[N/2]

(AR(X)AD(Y)) =

over collective coordinates has the form already used: largeN factorization in other circumstances.. For example,
o the expectation value of a productdiktinct Wilson loops is
2 = N=1 dzaf d(u) (40) a product of expectation values of the individual loops in
a,u -

leading order inN.

(recall that the group integration is normalized to unit tiorTg(re] datk;::avge\aZ\\l/\:'oF;??ﬁgt;r:jgo?nf\(;\%lslgtn?ggNeaetr;;ragct(smza-
quick calculation shows that the collective propagator COM Y o means the onlv one osjsible For examp le theﬂauthors
ing from the long-range pure-gauge part is y y P ' Pe,

of Ref.[12] argue that the vortex thickness grows at laNye

Sap(27)%p perhaps like InN, so that a hypothesized Casimir-scaling
<A?(x)Alb(y)>= S A (x—y) (41  regime in the center of the vortex grows to fill any Wilson
3(N-1)g loop of fixed size, however large. In this case confinement at
where large N would be completely different from the averaging
over group-center phases which the vortex model shows at
1 ik finite N.
(2m) VI. SUMMARY AND CONCLUSIONS

is the gauge propagator df=2 QCD. We then need only

. We have shown how to calculate the adjoint potential in
require that

the center-vortex picture; all the explicit work was done in

3(N—1)g? d=2. The resulf[ was that the adjoint potential is a universal
= 77 (43) (for all N) function of the form Kg/M)U(MR), whereU
4772 shows a roughly-linear regime but then asymptotes to a con-

. ) stant value, representing string breaking when abddit &

to recoverd=2 QCD exactly.(Note that this requirement gnergy is stored in the adjoint string. There is no particular
survives the largé¥ limit.) . relation between the slope of the linear adjoint potential and

However, wecannotdo the same for the adjoint represen- the fundamental string tension. To the extent that our calcu-
tation which, as we have shown, is not sensitive to the longjations apply at least qualitatively id=3,4 there are other
range pure-gauge part of the vortices. The adjoint potentialonyributions showing the same general structure which
in the center-vortex model is very different from =2 ghouid be evaluated, e.g., the instanton contributiostan-
counterpart. o tons are short-rangef] like the adjoint vortices which

It is difficult to reconcile this view of the center-vorteX f,rther obscure any relation like Casimir scaling between
picture with the largeN factorization propertysee, e.g., Ref.  f,ndamental and adjoint Wilson loops.
[14]) which leads to Casimir scaling and an adjoint area law. gyen though we worked mostly id=2 we emphasized

p

Factorization begins with the identity that the center-vortex picture in this dimension is not the
same asd=2 QCD, although it can be made to look the
TraU=TreUTreUT—1; U=exp(g é dx;A(X) same for the fundamental representation. In particular, we

were interested in the lardé-limit, and had to show that
(44) ) )

vortices of large §~N) flux, corresponding to elements of
(where the superscrigk refers to the adjoint representation, the center group far fronrd=1, could have free energies
and F refers to the fundamendafollowed by the largeN which scaled appropriately so as to contribute to the funda-
prescription (Tr UTr UM —(Tr U)Tr UM +0O(1/N?). mental string tension. Correct largescaling occurs also if
This second step is certainly true in both true laly@CD  all vortices have the same free energy, which we have to
and in the truncated version of the center-vortex model dishope is a dynamical requirement of QCDds 3,4. In any
cussed immediately above. However, when the full centerevent, we assumed this equality of free energies when dis-
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cussing general properties of the center-vortex picture. J is proportional toJ(N—J)/Ng? which behaves likeN?
Another distinction between the large-center-vortex whenJ~N, so the exponential of the action would seem to
picture and truel=2 QCD is that conventional factorization vanish very rapidly, and in general the string tension would
of matrix elements does not occur in the center-vortex picindeed vanish in larghl. Here we show that id=2 one can
ture. This is because overall phase factors associated with tigoduce a viable larght limit by (1) imposing a single con-
center of the group, and which give fundamental-dition on some parameters of tde=2 center-vortex model;
representation area laws, cancel in the forn{did to which  (2) choosing correctly some non-leading terms in the depen-
factorization is applied. dence of the coupling constagt on N (these are not the
What of this survives in the physically-interesting dimen-same non-leading terms that are found in any particular
sions for the center-vortex model=3,4? We believe that theory, such ad=2 QCD). In the dimensions where there is
the qualitative features survive: There is a smooth I&dge- supposed to be a center-vortex dynamics produced by the
limit for the string tension in the fundamental representationunderlying QCD theory, that isl= 3,4, such conditions can-
and a universaN-independent form for the adjoint potential not be imposed by hand, as we dode: 2, but must follow
at low densities, when expressed in terms of the string tenfrom the underlying theory. This is a very difficult problem,
sion and the vortex siz@r gluon masp This potential rises and we do not address it here. Our only concern is whether a
more or less linearly, but its slope is not necessarily relatedi=2 center-vortex model can be tunéabt fine-tuned; no
by Casimir scaling to the fundamental string tension. Oflarge or small numbers appgdao have a sensible large-
course, one should expect that tioéal adjoint potential will  imit.
depend on the dimensionality, because the various other con- Consider first the partition function, which can be written
tributions to this potential certainly depend on it, and the[expanding somewhat the condensed notation of(E4)]
center-vortex contribution by itself should depend on dimen-
sion. It would be interesting to make lattice simulations with

a lattice action that suppressed all but the center vortices, just z1/2— i .. ! =ex 2 +... 2 .
to see how close these come to yielding the adjoint potential T Kot iy Kpni! T (N72)
(apart from perturbative one-gluon exchanges,)etc. (A1)

There should be numerous other tests of the center-vortex

picture, going well beyond the present test via the fundamengjere the sum labeled 1 goes over the collective coordinates
tal string tension. For example, it has been sh¢@&i that  of yortices with chargd=1, etc. By terminating the sum at
the center-vortex picture prescribes a triangle law for thej— /2 (at largeN we need not distinguish even and old
forces between quarks in @U(3) baryon, rather than the g the prackets indicating integer part can be dropped
so-called Y-law. One should also attempt to calculate effectgcude only the vortices with positive charge; squaring this

coming from the merging and splitting of vortices of differ- expression takes into account the equal contribution of the
ent charges, as described in Sec. [[4821], with fractional  gntivortices.

Chern-Simons numbers associated with these vortex verti- The specific meaning of the collective-coordinate sum for
ces; an example would be the estimation of the topologica),ortex J is

susceptibility, or the response todaterm in the Lagrangian.

Of considerable interest for future work is understanding the

effects of vortices’ merging at a poind&3) or line (d S - consx J(N—J)

=4), which in three dimensions is associated with genera- - Ng?

tion of fractional Chern-Simons number and in four dimen-

sions with the response toéterm in the Lagrangian.
i 9rens X f dzaf d(u)(lg/g)v(N,J)efl(N,J) (A2)
C(J,N)
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is the action of the vortex of charge The constans3, com-

ing from the group zero-mode normalization, is not a func-
APPENDIX tion of N,J, as one easily checks. We have explicitly dis-
played the factors associated with the translational zero
modes; presumably there is no conformal mode, because of
the presence of a mass in the vortex solution. Note that in
¥I’= 3,4 there would also be integrals over configurational de-
grees of freedom of the string or closed surface. We choose
%@e scale of mass so that the gluon mass, or vortex inverse
Size, is unity.

There will be a smooth largi-limit if, with

As discussed in the text, vortices of charge (J
=1,...[N/2]) have different action$(N,J), so it is not
clear that all elements of the center group are treated equall
especially at larg®&l. (There is no problem ati=2, 3, where
there is only one value of the vortex actiprConsidered
naively, this poses severe problems for the existence of
largeN limit; for example, we have already pointed out in
connection with Eq(21) that if only the vortex with lowest
action—theJ=1 vortex—is saved, the fundamental string
tension vanishes at lardé. The action of the vortex of flux Ng?=c?+O(1/N) (A3)
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wherec is a constant independent NfJ, the partition func-  The partition functior(or expectation valugslepends on the
tion and various expectation values exisNat . In particu-  (weighted, if an expectation valueum overd of R(N,J), as
lar, the sum oved in the second equation of EGA1) must  in the second equation in E¢AL) expressing the partition
have a smooth limit. function. BecauseN is large, we can write such sums as

The group integration runs over the parameters of a cosattegrals over a variable=J/N. For example, the funda-
which is SU(N) divided by the invariance subgroup of the mental Wilson loop expectation value can be writteh Eq.
vortex. From the explicit representation of the vortex flux (21)]
matrix Q; of Sec. Il, we know that this coset is

2N2A (12

SU(N) —log{W) = a2 Jo dxx(1—x)[1—cog27x)]R(NX,N).

SUN-J)®SUJ)®U(1)" (A4) (Al11)

The U(1) here is essentially generated Qy itself, except Here A= [d?a0,\(a) is the area of the loofxcf. Eq. (4)].
that the range of the angular parameter multiplying the gen- By examining various terms iR, one finds the generic
erator is not 2r, but 27(2N(N—J)/J)*? (see Bernari26]).  behavior:

This number is the volum¥; (1) of theU(1) subgroup.

Note that the number of group zero modes is just R=exg h(x)N2logN+i(x)N2+ j (x)N logN+k(x)N
B(N,J)=N2—1—[(N=J)2—1]—[ = 1]—1=2](N—J). F1(x)logN---]. (A12)
(AS5) The functionsh,i,j,k, ... can be found with the aid of

With the usual normalization of group generatorsStirling’sformulaandthe Euler-Maclaurin sum formula, and

(Tr[(Aa/2) (\p/2)]= (1/2)3.,) the coset volume can be cal- one discovers thdt vanishes identically. This is essential; if

culated from the well-knowrisee, e.g.[26]) volume V(N) it did not vanish identically, it could not be tuned away,
of the groupSU(N): because none of the terms R(J,N) that depend on the

various parameters we have introduced appear in the func-
tion h. They only appear in less-singular terms.
The next-leading term ig(x):

N-1
V(N):Nl/22—(N—l)/2(47T)(N—1)(N+2)/2H ri| (AG)
r=11:
3 «a

4+ —— —
2 2

47732
2

The needed coset volume is i(X)=Xx(1—x)

log

V(J,N)= v(N) (A7)
' VIN=I)V(I)Vy,(1)"

1
+ E[leogx+ (1-x)%log(1—x)].  (A13)

Next, turn to the action factor ekp 1(N,J)), which we
write in terms of a positive constaat, independent of,N:

p[—aJ(N—J)
=eXp —m—mmm@@|.

C2

We now find that we can maki€x) vanish at its upper
limit of 1/2 provided that we choose

exp(—l(N,J))=ex;{L'\'2_J)
Ng

=1. (A14)

(A8)
The significance of this is that if we ignore for the moment
The last factor we need comes from the zero-mode normahll the terms sub-leading tidx) the integral in the Wilson-

izations: loop formula(A11) is O(1/N), and notO(exp(—N?)).
It remains to deal with the next-leading terms. It turns out
52N [ g2 J(N-J) that j(x) in Eg. (A12) also vanishes identically. The next-
(_) z(_N) (A9) leading, orO(N) term, can be rendered harmless by choos-
g c? ing the correct coefficient for W corrections to the larght

scaling of the coupling constant, as in E&3). Ultimately
We have explicitly written only the leading-order depen-further corrections to the coupling constant can be tuned to
dence ofg” on N. give a non-vanishing fundamental string tension. But for the
Write the collective-coordinate integréh2) as adjoint representation one may not approximate the sum over
vortices by an integral, since the factor-tos(27x) in Eq.

(A11) is replaced by * cos(2rJ)=0, plus, of course, the
> =j d?aR(J,N); perimeter terms we dealt with in the main text.
This is, of course, all done by hand in thle=2 center-
I(N=J 2N J(N-J) vortex model, and it is a hope that gluon dynamics in higher
R(J,N)= ( )V(J,N) 'B_G—a/c2 _ dimensions achieves the same result. It is worth emphasizing
Ng? c? that achieving correct largh- behavior of the fundamental

(A10) string tension requires going beyond leading ordeNin
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