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Center vortices and confinement versus screening
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~Received 6 January 1998; published 5 May 1998!

Confinement in QCD is due to a condensate of thick vortices with fluxes in the center of the gauge group
~center vortices!, as proposed long ago by the author and others. It is well-known that such vortices lead to an
area law for fundamental-representation Wilson loops, but what happens for screened~e.g., adjoint! Wilson
loops has been less clear, and problems have arisen over the large-N limit. We study the adjoint and funda-
mental Wilson loops for gauge groupSU(N) with generalN, where there areN21 distinct vortices, whose
properties~including collective coordinates and actions! we discuss. Ind52 we construct a center-vortex
model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as
expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential
in a related model for allN, as an expansion in powers ofr/M2, wherer is the vortex density per unit area and
M is the gauge-boson mass~inverse vortex size! and find, as expected, screening.~This is, in fact, unexpected
in d52 QCD.! The leading term of the adjoint potential shows a roughly linear regime followed by string
breaking when the potential energy is about 2M . This leading potential is a universal (N-independent at fixed
KF) function of the type (KF /M )U(MR), whereR is the spacelike dimension of a rectangular adjoint Wilson
loop andKF is the fundamental string tension. The linear-regime slope is not necessarily related toKF by
Casimir eigenvalue ratios. We show that ind52 the dilute vortex model is essentially equivalent to trued
52 QCD in the fundamental representation, but that this is not so for the adjoint representations; arguments to
the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the
Wilson loop in the vortex flux. Most or all of these arguments are expected to hold ford53,4 as well, but we
cannot calculate explicitly in these dimensions~a proposal is made for another sort of approximation ind
53, using earlier work whered53 vortices are mapped onto a scalar field theory!. @S0556-2821~98!03012-4#

PACS number~s!: 12.38.Aw, 11.15.Pq
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I. INTRODUCTION

There are many viewpoints concerning the mechanism
confinement in QCD. The problem here is to make a c
finement proposal which is sufficiently specific~e.g., not de-
pendent on the choice of gauge! to allow for good tests of its
correctness. Recently there has been very consider
progress, both in lattice gauge theory@1,2# and lattice gauge
simulations@2,3#, in verifying the center-vortex picture o
confinement@4–8#, at least for the groupSU(2) in the fun-
damental representation. The essence of the center-vo
picture is the existence of a condensate of closed magn
sheets~in d54) or closed magnetic strings~in d53) which
have a finite1 thickness;M 21, whereM is the gauge-boson
induced mass@9#. These vortices carry~color! magnetic
fields and have magnetic fluxes which lie in the center of
gauge group. They form a condensate because their ent
~per unit size! is larger than their action. Their continuum
description is essentially that of the Abelian Nielsen-Oles
vortex, with some modifications to account for the differen
in mass generation mechanisms between QCD~no gauge

*Email address: cornwall@physics.ucla.edu
1Therefore on the lattice these vortices are infinitely spread ou

the limit of zero lattice spacing. There are also vortices of a sin
lattice spacing in thickness, which have infinite action in the c
tinuum limit and are completely suppressed. The lattice problem
to characterize these spread-out vortices. We will only consider
continuum picture of vortices@4#.
570556-2821/98/57~12!/7589~12!/$15.00
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symmetry breaking! and the Abelian Higgs model.2 The
gauge potential has both a short-range part and a long-ra
pure-gauge part corresponding to a gauge transforma
which is singular along the center of the vortex; the fie
strength is non-singular and purely short-range. An area
for a large ~compared toM 21) fundamental Wilson loop
arises because the long-range pure-gauge part of the vor
with non-zero Gaussian linking number contributes a fac
like exp(2piK/N) to the Wilson loop, for gauge group
SU(N). Here K is an integer which is the product of th
linking number and the magnetic flux of the vortex. Th
vortices are linked randomly, and an average over all vor
linking numbers yields an area law@4#.

Striking confirmation for this picture of confinement ha
been found in recent lattice studies of the fundamental r
resentation ofSU(2). Thesimple procedure is to replace, fo
a given configuration of lattice gauge potentials, the tr
Wilson loop by its sign@corresponding to the vortex facto
exp(ipJ) for link number J in SU(2)#. To the numerical
accuracy of the lattice computations, the string tension
found is precisely the same as for the full theory@2,3#. The
only difference is found at distances comparable to
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e
-
is
e

2Callan, Dashen, and Gross@10# studied confinement in thed
52 Abelian Higgs model for matter fields with fractional charg
except for details of group structure, this model captures the
sence of the center-vortex picture of confinement. However, it w
only later that the precise connection of thick vortices and confi
ment was made in non-Abelian gauge theories.
7589 © 1998 The American Physical Society
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7590 57JOHN M. CORNWALL
physical scale of the theory~that is,M 21), where the finite
thickness of the vortices and other perimeter-law effects
gin to show up.

However, present-day theory and numerics of the cen
vortex mechanism leave a number of questions unanswe
and we will address them in this paper. In the first place,
work is known to the author which studies, either theore
cally or computationally, the nature of the vortex condens
and the behavior of the fundamental Wilson loop for gene
N with gauge groupSU(N). †The case ofSU(3) was stud-
ied in Ref. @4#.‡ Nor has there been much work on the pa
ticularly important problem of the behavior of other repr
sentations of the Wilson loop, in particular the adjo
Wilson loop. There is an old work of the author@11#, obscure
and little-known, which discusses this question; we refi
and extend that work here. In addition there is some rec
speculation by Faberet al. on the adjoint potential@12# and
the possibility of so-called Casimir scaling, which holds th
the ratio of string tensions in the fundamental and adjo
representations is simply the ratio of quadratic Casimir
genvalues for these two representations. Here one mus
derstand, of course, that the adjoint string tension can
persist to indefinitely large distances, since it can always
screened by gluon-pair formation. Ultimately the string m
break~see, e.g., Ref.@13# for an early lattice calculation o
this effect; references to other lattice calculations of a sim
type can be found in Ref.@12#!.

Casimir scaling is certainly true ford52 QCD, but this
theory is in some respects a misleading model, for it sho
an area law to all distances in the adjoint representation~sim-
ply because there are no gluonic degrees of freedom
screen the Wilson loop!. Greensite and Halpern@14# have
given a large-N argument to the effect that the usual largeN
factorization property~from which follows Casimir scaling!
requires an adjoint area law ind53,4 as well. This is fatal to
the center-vortex picture, where in these dimensions the
joint representation is certainly screened and not confin
At large N, Casimir scaling simply says that the adjoi
string tension is twice the fundamental string tension, wh
can be interpreted as the presence of two fundamental st
between an adjoint ‘‘quark’’ and its antiparticle.

An essential part of the present work is to show that th
is no large-N contradiction in the center-vortex model b
tween fundamental-representation area laws and adjoint
rimeter laws~although this is superficially in contradiction t
conventional large-N factorization; the resolution of the con
tradiction is discussed in Sec. V!. The fundamental and ad
joint representations must be treated differently, unlike
case ofd52 QCD, and only the fundamental representat
shows an area law. We do not find Casimir scaling for
adjoint ~breakable! string tension, nor do we find conven
tional large-N factorization properties. This agrees wi
Greensite and Halpern’s argument that the center-vo
model is inconsistent with such factorization. Although w
will spend considerable time on ad52 vortex model,3 it
must be understood that this model is by no means the s

3See also the work of Smilga@15#, which invokes vortices ind
52 gauge theories with fermions.
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as d52 QCD, which does have confinement and Casim
scaling in all representations. It is indeed true, as we w
show, that thed52 vortex model and QCD can be made
look the same in the fundamental representation, but no
the adjoint, for which we will calculate the first term in
density expansion of the adjoint potential and find@11# a
potential which is approximately linear for intermediate d
tances, but breaks when enough energy is stored in the
tential. We emphasize thed52 vortex picture not becaus
we believe that 2 is the relevant dimension for the model
fact it is not. The relevant dimensions are 3,4, but it is mo
difficult to make explicit calculations with the vortex pictur
in these dimensions.4

It is instructive to revisit some simple but flawed arg
ments~see, e.g.,@17,9#; these authors explicitly point out th
flaw! showing that confinement comes essentially from
gluonic mass gap. These arguments also lead~incorrectly,
since they do not apply atd52) to Casimir scaling and an
area law for the adjoint representation. The flaw is analog
to a truncated expansion of a periodic function like cos(f) in
f, saving only second-order terms. But with such a trun
tion periodicity is lost, and all sorts of bizarre effects c
arise from the non-periodicity off itself. Precisely this sort
of thing comes up in the QCD arguments, as we will discu
later on. The point is that the potential coming from t
Wilson loop is periodic in the long-range pure-gauge vor
flux, with period 2p for the fundamental representation an
period 2p/N for the adjoint. In the first case the potenti
depends on the fluxF as something like cos(F)21, and in
the second case it is like cos(NF)21. Since the flux is an
integral multiple of 2p/N the long-range pure-gauge part
the vortex contributes nothing to the adjoint potential as
pected. But various simple approximations, like expanding
second order in the flux, completely obscure this fact.

II. THE CENTER VORTEX PICTURE

First we review the general center-vortex picture, then
give some details of the flux matrices describingSU(N) vor-
tices.

A. Center vortices and the gluon mass

Because of infrared instability ind53,4, QCD in these
dimensions generates a dynamical mass for the gluon,
portional to the invariant mass scale of the theory@9,18,19#.
The existence of this mass is discovered by studying
Schwinger-Dyson equations of QCD, in a framework@9,18#
which insures gauge invariance, and noting that ‘‘wron
sign’’ effects associated with infrared instability lead only
solutions with a massive gluon. It is necessary to inclu
longitudinally-coupled massless scalars in the Green’s fu
tions, which play a role rather like Goldstone excitation
Like Goldstone particles, these massless scalars do no
pear explicitly in the S-matrix. However, they play a cruc
role in confinement. Unlike Goldstone particles, they do n

4In another publication we will estimate thed53 adjoint potential
from vortices, using@16# a description of the vortex condensate
terms of a scalar field, which is appropriate for this dimension.
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57 7591CENTER VORTICES AND CONFINEMENT VERSUS SCREENING
signal any sort of breakdown of local gauge symmet
which is completely preserved.

An effective theory, accurate in the infrared, for descr
ing the gluon mass is@9# the gauged non-linear sigma mode
This theory is useful in any dimensiond; the corresponding
~Euclidean! action I is

I 5E ddxH 21

2
Tr@Gi j

a ~x!#22M2Tr@DiU#2J . ~1!

The gauge potentials are described by the usual a
Hermitean matrices (la/2i )Ai(x), and Di is the covariant
derivative. TheN3N unitary matrix U describes the non
linear sigma model fields. Note that the gauged non-lin
sigma model is locally gauge-invariant. To use the effect
action~1!, one solves the equations of motion forU in terms
of the gauge potentials and substitutes the result in the e
tions for the gauge potential. One then finds the abo
mentioned massless scalar modes. There also may be
tions for U containing terms not dependent on the gau
potentials; this possibility is important for vortices. The e
fective action~1! is not renormalizable, and breaks down
the ultraviolet. This breakdown simply reflects the fact th
the gluon massM is taken to be constant in Eq.~1!, while the
solutions of the Schwinger-Dyson equations insist that
mass be a function of momentump, vanishing at largep2

@9#. In fact, Lavelle@20# has shown that ind53,4 the mass
vanishes~modulo logarithms! like 1/p2 times the condensat
expectation valuêG2&.

For constantM the effective action~1! has numerous soli
tonic solutions. Vortex solutions exist in all dimensions, w
the vortex co-dimension fixed at 2. This means that the v
tex is describable in terms of an arbitrary clos
(d22)-dimensional surface, which reduces to a point ind
52. Most of what we can explicitly do with the cente
vortex model will be ind52, so we write the solution in tha
dimension, for a vortex centered at the origin:

Aj~x;J!5~2pQJ / ig !e jk]k$DM~x!2D0~x!%. ~2!

Here DM ,0 are free propagators for massM ,0, andQJ is a
generator ofSU(N) such that exp(2piQJ) is in the center
ZN . We choose the integerJ such that the correspondin
element of the center is exp(2piJ/N). The reason@4# for this
requirement is that if a gluon is transported around a la
circle containing the vortex at the origin, it suffers a gau
transformation exp(2piQJ), which must leave the gluon field
unchanged. This and other long-range effects come from
massless term in Eq.~2!, which is a pure singular gaug
term, expressible as the gradient of the polar angle. Its
gularity at the origin is exactly cancelled by theDM term,
and the field strength is short-ranged. The solution~2! is
immediately generalized by applying space-time translati
and global group rotations, yielding the vortex as describ
in terms of its zero-mode collective coordinates:

Aj~x;a,u;J!5V†~u!Aj~x2a;J!V~u!. ~3!

HereV(u) is the ~fundamental! representative of group ele
mentu. Of course, only a coset of the full group correspon
,
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to true zero modes. We will describe this coset in connect
with a description of the flux matricesQJ , and in the Ap-
pendix.

One readily calculates the contribution of the long-ran
pure-gauge part of a single vortex of fluxJ to a simple~non-
self-intersecting! Wilson loop W in the fundamentalrepre-
sentation. Let the vortex be centered at positiona @see Eq.
~3!#; then

Tr PexpS g R dxiAi~x! D5Tr exp~2p iQJ!QW~a!

1Tr @12QW~a!#. ~4!

Here QW(a) is the characteristic function of the Wilso
loop, that is, it is unity if the vortex lies inside the Wilso
loop and zero if it lies outside. If the loop is not simple, a
wrapsK times arounda, then QJ is replaced byKQJ . In
view of exp(2piQJ)5exp(2piJ/N), the Wilson loop for a
single long-range vortex is just the exponential of 2p iJ/N
times the Gauss linking number of the loop and the cente
the vortex, a situation which is true in any number of dime
sions@4#. An area law for the fundamental Wilson loop fo
lows immediately, as discussed in many places~see
@10,4,1,2#!.In theadjoint representation,J/N in the above is
replaced byJ, so the long-range pure-gauge part of the v
tices is invisible to the adjoint Wilson loop, as is wel
known.

At this point it is not clear how to proceed to the large-N
limit. The reason is~see Sec. II B immediately below and th
Appendix! the actionI (N,J) of a vortex of fluxJ depends on
J,N in such a way that whenJ;N the action is very large
compared to the action for fixedJ as N→`. However, in
computing the statistical weights for vortices it is not ju
exp(2I) which is important; one must also calculate the fa
tors coming from group collective coordinates and other
tropic effects. In the Appendix we show that in ad52
center-vortex model, which is constructed by hand, it is
deed possible to find a smooth large-N limit when group
collective coordinates are accounted for. These tend
counter the exponential of the action. To simplify furth
explanation of the large-N center-vortex picture, we will
simply assume that all vortices of whatever flux have
same free energy. This may or may not be literally true,
there is no qualitative difference in the discussion of largeN
whether it is or not. We will find confinement for the funda
mental representation and screening for the adjoint.

B. Vortex flux matrices

For future use we need some properties of the vortex
matricesQJ . First introduce the traceless matricesQi , i
51, . . . ,N:

Qi5diag~1/N, . . . ,1/N,2111/N,1/N, . . . ,1/N! ~5!

where2111/N is in the i th position. Of course, these ar
not independent; the sum over alli is zero, and anyi can be
reached from any other by a group rotation. Any of the
matrices is associated with a flux of 1/N, in the sense

exp~2p iQ j !5exp~2p i /N!. ~6!
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7592 57JOHN M. CORNWALL
One easily checks that the matricesQi1Qj1Qk1 . . . , with
iÞ j ÞkÞ . . . , has fluxJ/N if there areJ terms in the sum;
that is,

exp@2p i ~Qi1Qj1Qk1 . . . !#5exp~2p iJ/N!. ~7!

For 1<J<@N/2#, where@•# indicates the integral part, w
can choose in any convenient way one representative o
above matrices asQJ , the representative of fluxJ in the
sense of Eq.~7!. For larger values ofJ one uses instead th
matricesQN2J[Q2J , which are anti-vortices with charge
2J.

The addition of severalQi to get a vortex of different
charge~including the vanishing of the addition ofN of them!
has a physical interpretation@4,21#. In d53, vortex strings
~surfaces ind54) can merge or split at a point~line! with
conservation of the vortex charge. In this way a string~sur-
face! network is formed. IfN unit vortices meet, they can
annihilate. Every intersection point~line! is associated with a
QCD sphaleron~sphaleronic world line!, carrying a change
of topological charges which is quantized in units of 1/N,
like the flux itself. This has been explicitly illustrated i
SU(2) @22#.

We can now see the structure of the coset needed to
scribe the group zero modes. AnyQJ has J diagonal ele-
ments which are all equal, andN2J diagonal elements als
all equal to each other, but not equal to the first gro
Therefore it is invariant underSU(N2J) ^ SU(J) ^ U(1),
and the collective-coordinate coset isSU(N) divided by the
above. More details are given in the Appendix.

It is clear from Sec. II A that the vortex action depends
TrQJ

2 , so we record it:

Tr QJ
25

J~N2J!

N
. ~8!

Then every vortex has a different action,5 which at first
glance makes it difficult to see how the various elements
the center group are treated equally. A related problem
treated in the Appendix, where it is shown how thed52
vortex model can be tuned to have an approximate equ
of free energies for vortices withJ;N; it is hoped that this
equality of free energies emerges dynamically ind53,4.

Finally, we note that in the adjoint representation eve
QJ is a diagonal matrix, with (N21)2 eigenvalues of 0,N
21 eigenvalues of11, andN21 eigenvalues of21.

We are now ready to calculate Wilson loops, both fund
mental and adjoint, with the usual machinery of dilute-vort
expansions. However, before carrying this out it is perh
instructive to discuss some flawed arguments which seem
contradict what we have said about center vortices and t
role in confinement.

5If one tries to calculate the action from Eqs.~1! and~2!, one finds
a short-distance logarithmic divergence associated with the con
mass. This is cured if one recognizes that the mass actually van
at short distances, as discussed above.
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III. GOOD AND BAD CUMULANT EXPANSIONS

We exhume some old and rather rough arguments c
cerning the mechanism of confinement@17,9# in d53,4. In
any representationR of SU(N), we make two approxima-
tions to the Wilson-loop expectation value. First, we conv
the line integral to a surface integral, but we use the us
Abelian form of Stokes’ theorem rather than the correct n
Abelian form; second, we make a cumulant expansion, s
ing only the first non-vanishing term, which is equivalent
assuming a Gaussian distribution of gauge potentials.
result is

^WR&[ K Tr P expF ig R dxiTaAi
aG L

.DRexpF2
g2CR

2~N221!
E E ds i j dskl8

3^G~x! i j
a G~x8!kl

a &G . ~9!

HereDR is the dimension of representationR, andCR is the
quadratic Casimir eigenvalue for this representation, giv
by

CRdab5
Tr ~TaTb!~N221!

DR
. ~10!

If the field strengths are short-ranged, so that^G(x)G(x8)&
;exp(2Mux2x8u) at large distances, one easily sees t
there is an area law for Wilson loops large compared
M 21. Evidently this area law shows Casimir scaling, and
also scales correctly at largeN, since^(Ga)2&;N221 and
CR;N, g2;1/N. In fact, Eq.~9! is quite correct ford52
QCD, where Wilson loops of any representation are cal
lated using free gluon propagators and there are no glu
self-interactions. But it certainly cannot be correct ind
53,4 because it gives an area law for the adjoint~and other
N-ality 0! representations. The argument given here co
pletely ignores the vital role of long-range pure-gauge pa
of the potential, which is in fact the secret of confinement,
discussed above. If one did not know about these long-ra
parts, one could not understand confinement, since the o
nal ~line-integral! form of the Wilson loop would surely give
only a perimeter law, if all the gauge potentials were sho
ranged. About the only thing that the above argument re
shows is that long-ranged gauge field strengths~as in QED in
d54) cannot confine.

From the point of view of understanding the adjoint p
tential coming from center vortices, this argument is an
ample of a bad cumulant expansion, which ignores a fun
mental requirement of periodicity in the vortex flux. Lat
we will see how this bad cumulant expansion can be fou
from an illegal truncation of the dilute center-vortex calcu
tions.

There is a closely-related illegal argument which reco
nizes the existence of vortices with quantized flux. Consi
the expectation value of a large fundamental Wilson loop
SU(2); according to the above we have

nt
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^W&5^eipJ&. ~11!

Here J5(Ji is the sum of the linking numbers of all th
vortices which link with the Wilson loop. SinceJ is the sum
of a large number of independent random numbers,
might be tempted to use the central-limit theorem and w

^W&5exp~2 1
2 p2^J2&! ~12!

and then argue that^J2& is proportional to the numberN of
vortices linked to the loop. Given an areal densityr of vor-
tices, we haveN5rA, whereA is the area of the loop, an
an area law follows. But consider the same argument for
adjoint Wilson loop; it surely is wrong to say that

^e2p iJ&5exp„2 1
2 ~2p!2^J2&…. ~13!

since exp(2piJ)51 always.
We are now ready to use the center-vortex picture c

rectly.

IV. DILUTE-VORTEX EXPANSION OF THE ADJOINT
VORTEX POTENTIAL

The dilute-vortex expansion is of conventional typ
Given a set of solitonic fields$fJ% and their collective coor-
dinates$cJ%, the expectation value of any operatorO$f(x)%
is approximated by the leading semi-classical term:

^O$f~x!%&5Z21F(
K

1

K!(1
. . .(

K
OH (

J51

K

f~x;cJ!J G .

~14!

The partition functionZ is the same sum withO[1. The
sum overK is a sum over sectors withK solitons each. The
sums(1 . . . (K are each a sum over all the collective coo
dinatescJ , which include translations and group coordina
in d52; in d53,4 ~and this is what makes the calculatio
there hard! there are sums over internal degrees of freed
of the strings or surfaces. Implicit in the sum over multip
vortices are combinatoric factors appropriate to the differ
vortex charges.

In any number of dimensions, the collective-coordina
normalization factors lead to a specific dimensionful numb
the density of vortices per unit area. We call this densityr; it
has dimensions of mass squared. This is evidently trued
52. In d53, this density is simply the number of vorte
string crossings~each crossing with unit weight! of any large
rectangular area divided by the area, with an analogous d
nition in d54. Ultimately this density is converted to a d
mensionless form by dividing by the only available scale6 M,
so theK-vortex sector is associated with a factorr/M2[e.
This is essentially the vortex density multiplied by the vort
cross-sectional area. We expecte to be fairly small, since if
vortices get too close together there is both an action pen
and an entropy penalty, but we do not know what the va
of e is. Right now, it is just a hope that it is small enough

6In the dilute-vortex approximation, the coupling constantg does
not appear.
e
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be a decent expansion parameter. When we come to the
joint potential we will calculate a part of the first-order ter
in e.

Everything we can do explicitly will be in two dimen
sions, where we can write the collective-coordinate integ
for a single vortex of chargeJ as

(
1

5
r

N21E d2aE d~u! ~15!

where the group integral is normalized to unity~so that it
does not matter whether we integrate over the whole gr
or only over the coset appropriate to a given vortex!. Note
that we assume no dependence in the collective-coordi
integral on the indexJ, as discussed in Sec. II. The depe
dence 1/(N21) in Eq.~15! merely reflects the fact that ther
is a total ofN21 different vortex types.

As we have discussed earlier, it is essential to respect
periodicity of Wilson loop expectation values in the vorte
flux. This we can do straightforwardly for thee0 term of the
cluster expansion, but it seems to be much harder to do
higher-order terms, which we can discuss only qualitative
If the e0 term itself is expanded in powers of the vorte
gauge potential, with only the leading terms saved, one
tains results equivalent to confinement for the adjoint rep
sentation.

A. Fundamental representation

We will only consider the case of large Wilson loop
where to find the area law one need keep only the long-ra
pure-gauge part of the vortex@Eq. ~2!#. In this case the cal-
culation differs only in group-theoretic details from the Ab
lian Higgs model version@10#. It is evident that

Z5exp~rV! ~16!

whereV is the volume of the two-dimensional space. Co
sider firstSU(2), where there is only one type of vortex. Th
Wilson loop factors into products of the type in Eq.~4!, with
expip if the collective coordinate of the vortex is inside th
Wilson loop, and unity otherwise. An elementary exercise
dividing by Z yields just the Callan-Dashen-Gross result f
the fundamental string tensionKF :

^W&5e22rA; KF52r. ~17!

HereA is the area of the Wilson loop.
One might note here, by the way, that this result impl

that the vortices obey Poisson, not Gaussian, statistics,
is, ^W& can be written as

^W&5^exp~ ipL !& ~18!

where on the right-hand side the expectation value is defi
in terms of the Poisson probability

P~L !5
L̄Le2L̄

L!
; L̄5rA. ~19!

Evidently this gives no area law for the adjoint represen
tion.



e

d

of

-

r

a
e

e
s

nt

z-

n
or
tie

l
g
e
ta

-
re
ge

ge
n-

s to

n
h-
ex-

nd
di-

nd

ng-

ter

is,
ne-
oup

,
t 1.

7594 57JOHN M. CORNWALL
For SU(3), which has a vortex and an antivortex, th
answer@4# is

^W&5exp@2rA„12cos~2p/3!…#5exp~23rA/2!.
~20!

Since this gives the correctN52 result if we replace 3 by
2 in the cosine in the first exponent, one might be tempte
generalize to allN by using cos(2p/N) in the exponent. This
would be correct in principle if there were only one kind
vortex, namely the one withJ51. But this is likely to be
wrong; for one thing, it gives no area law in the largeN
limit. We have assumed for simplicity~see the Appendix for
a more accurate discussion! that all vortices of whateve
charge contribute equally. If so, and ifN is odd, an elemen-
tary calculation yields

^W&5exp2H 2rA

N21F12cosS 2p

N D112cosS 4p

N D
1 • • • 112cosS 2p

N S N21

2 D D G J . ~21!

Each term 12cos(2pJ/N) represents the contribution of
vortex and antivortex. The sum over these terms is elem
tary, and yields

^W&5exp2H rAN

N21J ; KF~N!5
rN

N21
. ~22!

A similar calculation forN even, left to the reader, gives th
same result. Of course, Eq.~22! agrees with the previou
answer forN52,3.

Now we go on to the more difficult case of the adjoi
potential.

B. Adjoint Wilson loop

We begin with a theorem which follows from generali
ing the explicitSU(2) calculation given below toSU(N),
using some simple properties of the adjoint representatio
the vortex fluxesQJ and techniques similar to those used f
the fundamental representation above. These proper
given in Sec. II B, are thatQJ has (N21)2 eigenvalues of 0,
N21 eigenvalues of11, andN21 eigenvalues of -1. It then
turns out~we leave details to the reader! that for anyN the
leading term in thee expansion of the adjoint potentia
VA(R;N), whereR is the separation between the two lon
sides of an adjoint Wilson loop, is a universal function ind
pendent ofN, when expressed in terms of the fundamen
string tension and the mass:

VA~R;N!5VA~R;2!5
KF

M
U~MR!@11O~e!#. ~23!

So we need only calculate the universal functionU(R) for
SU(2).

Because all the eigenvalues ofQJ are integral, and be
cause we explicitly show periodicity in the vortex flux, the
is no contribution to the adjoint potential from the long-ran
pure-gauge part of the vortex potential as given in Eq.~2!. It
to

n-

of

s,

-
l

is useful, in fact, to define a short-ranged Abelian gau
potential, which is all that will appear in the adjoint pote
tial:

Ai~x!52pe i j ] jDM~x!. ~24!

Its flux tends to zero as the surface defining the flux tend
infinity.

Write the adjoint Wilson-loop potential inSU(2) for the
dilute-vortex model as

^WA~R!&5exp„2TVA~R!…

5
1

ZH( 1

K!(1
•••(

K
Tr P

3expS i E dtJaẋ~t!•Aa@x~t!# D J ~25!

with the trace and group generatorsJa in the adjoint repre-
sentation. HereT is the length of the long sides of a Wilso
rectangle, andR the length of the short sides. The pat
ordering prescription affects only the generators, as
pressed in the formula

P~JaJb . . . !5 (
perm

JaJb . . . Q~ta>tb> . . . ! ~26!

whereQ is one if thet-variables are ordered as shown, a
zero otherwise; the sum is over all permutations of the in
ces.

We first show that in the leading cumulant term, fou
from the K50,1 terms of Eq.~25!, the path-ordering pre-
scription can be ignored. We then show that this leadi
order term exponentiates when higher values ofK are con-
sidered, leaving a residual term ofO(e) and higher. Path
ordering is important in this residual term. A proper clus
expansion emerges, in which all terms of log^W& are linear in
T asT approaches infinity. If for the moment we accept th
then we can summarize our results for the leading, or o
vortex, term by saying that one can replace the actual gr
integral, in any representationR of anySU(N), by a discrete
average. In theK51 sector there is only a single vortex
whose collective coordinates we indicate by the subscrip
Then we claim

(
1

Tr P expS i E dtJaẋ~t!•Aa@x~t!;a1 ,u1# D
5rE d2a1

1

DR

3 H( expS iQ̂J,RE dt ẋ~t!•A@x~t!2a1# D J .

~27!
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FIG. 1. Plot of the adjoint po-
tential U vs MR.
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Here theSU(2) gauge potential is related to the Abelia
gauge potential by

Ai
a~x2a;u!5êa~u!Ai~x2a! ~28!

where on the right is the Abelian potential of Eq.~24!, and
êa(u) is a unit vector. Actually, this vector depends not
the full group variables, but only on the coset variables d
cussed in the Appendix. For the groupSU(2) this coset is
SU(2)/U(1) and the unit vector just depends on the us
polar angles. TheQ̂J,R are the eigenvalues of the vortex flu
matrix QJ in the representationR, andDR is the dimension
of this representation. Note, by the way, that replacing
group integral by the above discrete average also yields
results of Sec. IV A for the fundamental Wilson loop.

The proof of this formula is simple. One sees from t
above that the group-generator term reduces to Tr„(ê•J)N

… in
the Nth order term of the expansion of the single-vort
path-ordered product. Only evenN contributes, and for the
adjoint of SU(2) this reduces to Tr„(ê•J)2

…, because
(ê•J)35ê•J. This trace is just 2, independent of the orde
ing of the generators in the original expression.

Using Eq.~27! in Eq. ~25!, one easily finds theK50,1
contribution to the adjoint Wilson loop:

^W&0,153expH 2
2

3
rE d2aF12cosR dx•A~x!G J .

~29!

As claimed, it is periodic in the~Abelian! flux. It would be a
serious mistake to expand the cosine, saving only quad
terms, as one would do for a Gaussian distribution.

It only remains to calculate the translational collectiv
coordinate integral. This has three terms: One from the v
tices outside the Wilson loop to the left; an equal term
vortices outside to the right; and one for those inside.
inside and outside we refer to the collective coordinat
since the vortices themselves are fat, they overlap the Wi
loop if they are within a distance 1/M . In fact, these are the
-

l

e
he

-

tic

-
r-
r
y
;
n

only vortices which can affect the adjoint potential, which
really like a perimeter term in that only vortices near t
perimeter can contribute. This collective-coordinate integ
was done some time ago@11#, and the result for the adjoin
potential@using Eq.~22! to expressr in terms ofKF#:

VA~R!5
KF

3M H 2E
0

`

dy@12cos~pe2y2pe2~y1MR!!#

1E
0

MR

dy@12cos~pe2y1pey2MR!#J
[

KF

M
U~MR!. ~30!

The calculation previously cited@11# of this integral was
done forSU(3), and it hasexactly the same form, in accor
dance with our previously-stated theorem.

In Fig. 1 we show a plot of the potentialU(MR). It has a
more-or-less linearly-rising term for a distance of order 1/M ,
and then it settles down to a constant. The asymptotic va
VA(`)is about 2.2KF /M , which should be comparable t
2M , yieldingM.1.1KF

1/2, or about 460 MeV using the usua
value for theSU(3) string tension. The slope of the linearly
rising term is about 1.5KF , not as big as Casimir scalin
would suggest, but we see that there is nothing in the un
lying physics to suggest that Casimir scaling should h
anyway. These numbers are in any case not very accu
first because the asymptotic value is only roughly 2M , and
second because there are other contributions from, e.g.
stantons.

C. Finite-density corrections to the adjoint potential

One must first show that in the two-vortex sector, whi
has terms ofO(T2) as well asO(T), these quadratic term
cancel when loĝW& is formed. We form in the usual way th
cumulant through two-vortex terms, arriving at
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2 log^W&5
2

3(1
~12cosc1!2

1

332!

3(
1

(
2

FTr P expS i R dxiJ
aAa~x;c1 ,c2! D

2
1

3
@112 cosc112 cosc2

14 cosc1 cosc2#G . ~31!

Here the subscripts 1,2 refer to the collective coordina
@see Eq.~15!#, and

c15 R dxiAi~x2a1 ;u1!;

Ai
a~x;c1 ,c2!5êa~u1!Ai~x2a1!1~1↔2!. ~32!

There are now two group integrations and two unit vecto
so the trace of a product of generators times these unit
tors is not so simple, and path-ordering is important, at le
at higher than quadratic order@in Aa of Eq. ~32!#.

Construct the usual series expansion of the path-ord
product, in which only even-order terms need be kept.
2Nth order one encounters terms such as

Tr P„êa~u1!Jaêb~u2!Jbêc~u1!Jc . . . … ~33!

in which there areR terms in êa(u1)Ja and N2R terms in
êb(u2)Jb. These come in all permutations, so it is not po
sible to gather terms in vortex 1 separately from those re
g
e
n
lt
e

he

x
fu
-

s

,
c-
st

ed
t

-
r-

ring to vortex 2 without paying attention to the fact that t
generators do not commute. However, let us proceed by
placing Eq.~33! by

Tr@„êa~u1!Ja
…

R
„êb~u2!Jb

…

2N2R# ~34!

plus a remainder which reinstates the correct expression.
trace in Eq.~34! is now elementary; ifRÞ0,2N one reduces
it, as before, to

Tr@„êa~u1!Ja
…

2
„êb~u2!Jb

…

2#. ~35!

One can now integrate over the group coset, replac
êi(u1)êj (u1) by (1/3)d i j . Then Eq. ~34! reduces to
(1/9)Tr(J2)254/3. But if R50,2N the trace becomes 2/3. I
is clear that the terms in which Eq.~33! has been used re
duces to the sum

31 (
N51

~2 !N

~2N!! (
R50,even

c1
Rc2

2N2R ~2N!!

R! ~2N2R!!

3@ 4
3 ~12dR,02dR,2N!1 2

3 ~dR,01dR,2N!#. ~36!

This sum is easily done, and it completely cancels the th
term in brackets on the right-hand side of Eq.~31!. This
cancellation, of course, is necessary for proper clustering
which loĝ W& must be linear inT.

This leaves only the remainder term, which we will di
cuss explicitly only in the lowest order, namely,O(A1

2A2
2).

At this order one encounters only two separate values for
trace, which is a trace of four group generators. In sixteen
the twenty-four terms in the path-ordered product we find
value given in Eq.~35!, while the remaining eight traces ar
only half as big. The result is that the true two-vortex term
the cumulant expansion is
1

334!32!
~218!~ 2

9 !E dt1 . . . dt4F~t12t2!F~t32t4!@Q~t1>t3>t2>t4!1 . . . #. ~37!

Here

F~t12t2!5rE d2aẋ~t1!•A@x~t1!2a# ẋ~t2!•A@x~t2!2a# ~38!
-
ne

y to
tex
is

n-
is constructed from the lowest-order semi-classical propa
tor of the vortices, and in Eq.~37! the ellipses in the squar
brackets indicate seven other permutations. We need
write these explicitly, since they all give the same resu
these other permutations are those generated by all
changes of thets under whichF(t12t2)F(t32t4) is in-
variant. One can readily verify that because of t
Q-function in Eq.~37! this term isO(T), and notO(T2) as
it would be without thet-ordering.

Because this term is only the first term of an infinite e
pansion, it makes no particular sense to evaluate it any
ther. It is, as advertised, ofO(r/M2) compared to the lead
ing term as given in Eq.~29!.
a-

ot
;
x-

-
r-

V. THE CENTER-VORTEX MODEL, d52 QCD,
AND LARGE- N FACTORIZATION

In two dimensions, QCD without fermions7 is an exactly-
soluble theory~see, e.g.,@24#!. All representations are con
fined, and there is Casimir scaling. The theory is simply o
of free massless propagators coupled in the usual wa
Wilson loops. Here we discuss how the dilute center-vor
picture in d52 resembles, and differs from, QCD in th
dimension.

7With fermions,d52 QCD can show screening in any represe
tation if the fermions are massless; see Ref.@23#.
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Let us construct the gauge propagator from the collec
fields of the vortex condensate in the usual way. This pro
gator is

^Ai
a~x!Aj

b~y!&5
dab

N221
(
a,u

(
J51

[N/2]

~22!Tr~QJ
2!Ai~x;a,u;J!

3Aj~y;a,u;J!. ~39!

Here the gauge potentials are the vortex potentials, as f
tions of their collective coordinates, as given in Eqs.~2! and
~3!, and(a,u is the integral over these collective coordinate
To mimic d52 QCD in thefundamentalrepresentation it is
enough, as we have already done above, to save only
pure-gauge long-range part of the vortex, that is, theD0
piece in Eq.~2!. ~Saving the massive part would give rise
perimeter-law corrections not found ind52 QCD.! The sum
over collective coordinates has the form already used:

(
a,u

5
r

N21E d2aE d~u! ~40!

~recall that the group integration is normalized to unity!. A
quick calculation shows that the collective propagator co
ing from the long-range pure-gauge part is

^Ai
a~x!Aj

b~y!&5
dab~2p!2r

3~N21!g2
D i j ~x2y! ~41!

where

D i j ~x2y!5
1

~2p!2E d2k~d i j 2kikj /k2!
eik•x

k2
~42!

is the gauge propagator ofd52 QCD. We then need only
require that

r5
3~N21!g2

4p2
~43!

to recoverd52 QCD exactly.~Note that this requiremen
survives the large-N limit.!

However, wecannotdo the same for the adjoint represe
tation which, as we have shown, is not sensitive to the lo
range pure-gauge part of the vortices. The adjoint poten
in the center-vortex model is very different from itsd52
counterpart.

It is difficult to reconcile this view of the center-vorte
picture with the large-N factorization property~see, e.g., Ref.
@14#! which leads to Casimir scaling and an adjoint area la
Factorization begins with the identity

TrAU5TrFUTrFU†21; U5expS g R dxiAi~x! D
~44!

~where the superscriptA refers to the adjoint representatio
and F refers to the fundamental! followed by the large-N
prescription ^Tr UTr U†&→^Tr U&^Tr U†&1O(1/N2).
This second step is certainly true in both true large-N QCD
and in the truncated version of the center-vortex model
cussed immediately above. However, when the full cen
e
a-

c-

.

he

-

-
al

.

-
r-

vortex model is used onecannotsimply apply the perturba-
tive rules of factorization at largeN. Instead, one sees that,
any finiteN, a vortex linked~unlinked! to the~large! Wilson
loop U is also linked~unlinked! to the loopU†. The long-
range pure-gauge part of the vortex supplies equal and
posite phase factors from the center of the group toU and
U†. These phase factors are multiples of the identity, and
be pulled outside the traces; they cancel in the product in
~44!, and cannot lead to an area law after averaging over
vortices. However, the short-range vortex contributions c
tribute factors which are not multiples of the identity. Afte
averaging, these give the perimeter law we have calculate
earlier sections. In the full center-vortex model, there is
justification for using large-N factorization, which asserts in
dependence of the phase factors inU and inU†, in the spe-
cific context of Eq.~44!, relating adjoint and fundamenta
representations. There is, however, no problem in us
large-N factorization in other circumstances.. For examp
the expectation value of a product ofdistinctWilson loops is
a product of expectation values of the individual loops
leading order inN.

The above view, presenting a conflict between factori
tion and the behavior of the adjoint Wilson loop at largeN, is
by no means the only one possible. For example, the aut
of Ref. @12# argue that the vortex thickness grows at largeN,
perhaps like lnN, so that a hypothesized Casimir-scalin
regime in the center of the vortex grows to fill any Wilso
loop of fixed size, however large. In this case confinemen
large N would be completely different from the averagin
over group-center phases which the vortex model show
finite N.

VI. SUMMARY AND CONCLUSIONS

We have shown how to calculate the adjoint potential
the center-vortex picture; all the explicit work was done
d52. The result was that the adjoint potential is a univer
~for all N) function of the form (KF /M )U(MR), whereU
shows a roughly-linear regime but then asymptotes to a c
stant value, representing string breaking when about 2M of
energy is stored in the adjoint string. There is no particu
relation between the slope of the linear adjoint potential a
the fundamental string tension. To the extent that our ca
lations apply at least qualitatively ind53,4 there are other
contributions showing the same general structure wh
should be evaluated, e.g., the instanton contribution~instan-
tons are short-ranged@4# like the adjoint vortices!, which
further obscure any relation like Casimir scaling betwe
fundamental and adjoint Wilson loops.

Even though we worked mostly ind52 we emphasized
that the center-vortex picture in this dimension is not t
same asd52 QCD, although it can be made to look th
same for the fundamental representation. In particular,
were interested in the large-N limit, and had to show that
vortices of large (J;N) flux, corresponding to elements o
the center group far fromJ51, could have free energie
which scaled appropriately so as to contribute to the fun
mental string tension. Correct large-N scaling occurs also if
all vortices have the same free energy, which we have
hope is a dynamical requirement of QCD ind53,4. In any
event, we assumed this equality of free energies when
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cussing general properties of the center-vortex picture.
Another distinction between the large-N center-vortex

picture and trued52 QCD is that conventional factorizatio
of matrix elements does not occur in the center-vortex p
ture. This is because overall phase factors associated wit
center of the group, and which give fundament
representation area laws, cancel in the formula~44! to which
factorization is applied.

What of this survives in the physically-interesting dime
sions for the center-vortex model,d53,4? We believe tha
the qualitative features survive: There is a smooth largeN
limit for the string tension in the fundamental representati
and a universalN-independent form for the adjoint potenti
at low densities, when expressed in terms of the string
sion and the vortex size~or gluon mass!. This potential rises
more or less linearly, but its slope is not necessarily rela
by Casimir scaling to the fundamental string tension.
course, one should expect that thetotal adjoint potential will
depend on the dimensionality, because the various other
tributions to this potential certainly depend on it, and t
center-vortex contribution by itself should depend on dim
sion. It would be interesting to make lattice simulations w
a lattice action that suppressed all but the center vortices,
to see how close these come to yielding the adjoint poten
~apart from perturbative one-gluon exchanges, etc.!.

There should be numerous other tests of the center-vo
picture, going well beyond the present test via the fundam
tal string tension. For example, it has been shown@25# that
the center-vortex picture prescribes a triangle law for
forces between quarks in anSU(3) baryon, rather than the
so-called Y-law. One should also attempt to calculate effe
coming from the merging and splitting of vortices of diffe
ent charges, as described in Sec. II B@4,21#, with fractional
Chern-Simons numbers associated with these vortex v
ces; an example would be the estimation of the topolog
susceptibility, or the response to au-term in the Lagrangian
Of considerable interest for future work is understanding
effects of vortices’ merging at a point (d53) or line (d
54), which in three dimensions is associated with gene
tion of fractional Chern-Simons number and in four dime
sions with the response to au-term in the Lagrangian.
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APPENDIX

As discussed in the text, vortices of chargeJ (J
51, . . . ,@N/2#) have different actionsI (N,J), so it is not
clear that all elements of the center group are treated equ
especially at largeN. ~There is no problem atN52, 3, where
there is only one value of the vortex action.! Considered
naively, this poses severe problems for the existence
large-N limit; for example, we have already pointed out
connection with Eq.~21! that if only the vortex with lowest
action—theJ51 vortex—is saved, the fundamental strin
tension vanishes at largeN. The action of the vortex of flux
-
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a

J is proportional toJ(N2J)/Ng2 which behaves likeN2

whenJ;N, so the exponential of the action would seem
vanish very rapidly, and in general the string tension wo
indeed vanish in largeN. Here we show that ind52 one can
produce a viable large-N limit by ~1! imposing a single con-
dition on some parameters of thed52 center-vortex model;
~2! choosing correctly some non-leading terms in the dep
dence of the coupling constantg2 on N ~these are not the
same non-leading terms that are found in any particu
theory, such asd52 QCD!. In the dimensions where there
supposed to be a center-vortex dynamics produced by
underlying QCD theory, that is,d53,4, such conditions can
not be imposed by hand, as we do ind52, but must follow
from the underlying theory. This is a very difficult problem
and we do not address it here. Our only concern is wheth
d52 center-vortex model can be tuned~not fine-tuned; no
large or small numbers appear! to have a sensible large-N
limit.

Consider first the partition function, which can be writte
@expanding somewhat the condensed notation of Eq.~14!#

Z1/25(
1

1

K1!
••• (

[N/2]

1

K [N/2]!
5expH(

1
1••• (

[N/2]
J .

~A1!

Here the sum labeled 1 goes over the collective coordin
of vortices with chargeJ51, etc. By terminating the sum a
J5N/2 ~at largeN we need not distinguish even and oddN,
so the brackets indicating integer part can be dropped!, we
include only the vortices with positive charge; squaring t
expression takes into account the equal contribution of
antivortices.

The specific meaning of the collective-coordinate sum
vortex J is

( 5
const3J~N2J!

Ng2

3E d2aE
C~J,N!

d~u!~b/g!n~N,J!e2I ~N,J! ~A2!

where the translation coordinates area, the group coordi-
nates areu @the group integration is over a cosetC(J,N)
defined below, and is not normalized to unity, as in the m
text#, n(N,J) is the number of group zero modes, andI (N,J)
is the action of the vortex of chargeJ. The constantb, com-
ing from the group zero-mode normalization, is not a fun
tion of N,J, as one easily checks. We have explicitly d
played the factors associated with the translational z
modes; presumably there is no conformal mode, becaus
the presence of a mass in the vortex solution. Note tha
d53,4 there would also be integrals over configurational
grees of freedom of the string or closed surface. We cho
the scale of mass so that the gluon mass, or vortex inv
size, is unity.

There will be a smooth large-N limit if, with

Ng25c21O~1/N! ~A3!
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wherec is a constant independent ofN,J, the partition func-
tion and various expectation values exist atN5`. In particu-
lar, the sum overJ in the second equation of Eq.~A1! must
have a smooth limit.

The group integration runs over the parameters of a c
which is SU(N) divided by the invariance subgroup of th
vortex. From the explicit representation of the vortex fl
matrix QJ of Sec. II, we know that this coset is

SU~N!

SU~N2J! ^ SU~J! ^ U~1!
. ~A4!

The U(1) here is essentially generated byQJ itself, except
that the range of the angular parameter multiplying the g
erator is not 2p, but 2p„2N(N2J)/J…1/2 ~see Bernard@26#!.
This number is the volumeVJ,N(1) of the U(1) subgroup.
Note that the number of group zero modes is just

n~N,J!5N2212@~N2J!221#2@J221#2152J~N2J!.
~A5!

With the usual normalization of group generato
„Tr@(la/2)(lb/2)#5(1/2)dab… the coset volume can be ca
culated from the well-known~see, e.g.,@26#! volume V(N)
of the groupSU(N):

V~N!5N1/222~N21!/2~4p!~N21!~N12!/2)
r 51

N21
1

r !
. ~A6!

The needed coset volume is

V~J,N!5
V~N!

V~N2J!V~J!VN,J~1!
. ~A7!

Next, turn to the action factor exp„2I (N,J)…, which we
write in terms of a positive constanta, independent ofJ,N:

exp„2I ~N,J!…5expF2aJ~N2J!

Ng2 G5expF2aJ~N2J!

c2 G .

~A8!

The last factor we need comes from the zero-mode norm
izations:

S b

g D 2J~N2J!

5S b2

c2
ND J~N2J!

. ~A9!

We have explicitly written only the leading-order depe
dence ofg2 on N.

Write the collective-coordinate integral~A2! as

( 5E d2aR~J,N!;

R~J,N!5
J~N2J!

Ng2
V~J,N!Fb2N

c2
e2a/c2G J~N2J!

.

~A10!
et

-

l-

The partition function~or expectation values! depends on the
~weighted, if an expectation value! sum overJ of R(N,J), as
in the second equation in Eq.~A1! expressing the partition
function. BecauseN is large, we can write such sums a
integrals over a variablex[J/N. For example, the funda
mental Wilson loop expectation value can be written@cf. Eq.
~21!#

2 log^W&5
2N2A

g2 E
0

1/2

dxx~12x!@12cos~2px!#R~Nx,N!.

~A11!

HereA5*d2aQW(a) is the area of the loop@cf. Eq. ~4!#.
By examining various terms inR, one finds the generic

behavior:

R5exp@h~x!N2logN1 i ~x!N21 j ~x!N logN1k~x!N

1 l ~x!logN•••#. ~A12!

The functionsh,i , j ,k, . . . can be found with the aid o
Stirling’s formula and the Euler-Maclaurin sum formula, an
one discovers thath vanishes identically. This is essential;
it did not vanish identically, it could not be tuned awa
because none of the terms inR(J,N) that depend on the
various parameters we have introduced appear in the fu
tion h. They only appear in less-singular terms.

The next-leading term isi (x):

i ~x!5x~12x!F logS 4pb2

c2 D 1
3

2
2

a

c2G
1

1

2
@x2logx1~12x!2log~12x!#. ~A13!

We now find that we can makei (x) vanish at its upper
limit of 1/2 provided that we choose

2pb2

c2
expF3

2
2

a

c2G51. ~A14!

The significance of this is that if we ignore for the mome
all the terms sub-leading toi (x) the integral in the Wilson-
loop formula~A11! is O(1/N), and notO„exp(2N2)….

It remains to deal with the next-leading terms. It turns o
that j (x) in Eq. ~A12! also vanishes identically. The nex
leading, orO(N) term, can be rendered harmless by cho
ing the correct coefficient for 1/N corrections to the large-N
scaling of the coupling constant, as in Eq.~A3!. Ultimately
further corrections to the coupling constant can be tuned
give a non-vanishing fundamental string tension. But for
adjoint representation one may not approximate the sum o
vortices by an integral, since the factor 12cos(2px) in Eq.
~A11! is replaced by 12cos(2pJ)[0, plus, of course, the
perimeter terms we dealt with in the main text.

This is, of course, all done by hand in thed52 center-
vortex model, and it is a hope that gluon dynamics in high
dimensions achieves the same result. It is worth emphasi
that achieving correct large-N behavior of the fundamenta
string tension requires going beyond leading order inN.
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