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Positivity constraints on anomalies in supersymmetric gauge theories
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The relation between the trace amicurrent anomalies in supersymmetric theories implies that the
U(1)gF?, U(1)g, and U(1)§ anomalies which are matched in studiesNof 1 Seiberg duality satisfy posi-
tivity constraints. Some constraints are rigorous and others conjectured as four-dimensional generalizations of
the Zamolodchikow theorem. These constraints are tested in a large numbér=df supersymmetric gauge
theories in the non-Abelian Coulomb phase, and they are satisfied in all renormalizable models with unique
anomaly-freeR current, including those with accidental symmetry. Most striking is the fact that the flow of the
Euler anomaly coefficiers,, —ag is always positive, as conjectured by Cardy.
[S0556-282(98)01112-9

PACS numbg(s): 11.30.Pb, 11.15.Tk

[. INTRODUCTION The purpose of this paper is to present an extensive explora-
tion of the rigorous positivity constraints and those associ-
The computation of chiral anomalies of tRecurrent and  ated with thea theorem in many supersymmetric gauge theo-
conserved flavor currents is one of the important tools usedies Wwith interacting IR fixed point¢and some IR free
to determine the nonperturbative infrared behavior of thenodels. We find that thea theorem and other constraints are
many supersymmetric gauge theories analyzed during theatisfied in all renormalizable theories we have examined,
last few years. The anomaly coefficients are subject to rigorand there are other results of interest.
ous positivity constraints by virtue of their relation to two-  In Sec. Il, which is largely a review of Reff3], the vari-
point functions of currents and stress tensors, and to othgus anomalies, the theoretical basis of the positivity con-
constraints conjectured in connection with possible four-straints, and the computation of central charge flows are dis-
dimensional analogues of the Zamolodchikotheorem[1]. ~ cussed. In Sec. Ill we discuss some general aspects of
The two-point functions have been considefgflas central ~ positivity constraints and tha theorem in models witiR
functions whose ultraviolet and infrared limits define centralcharges uniquely fixed by classical conservation and cancel-
charges of superconformal theories at the endpoints of thkation of internal anomalies. In some models an accidental
renormalization group flow. The positivity conditions are Symmetry has been postulated to preserve unitarity, and the
reasonably well known from studies of the trace anomaly forcentral charges must be corrected accordingly. This is dis-
field theories in external backgrounds. In supersymmetricussed in Sec. IV. In Sec. V, the positivity constraints are
theories the trace anomaly of the stress tensor and conservgsted in many examples of renormalizable SUSY gauge
tion anomaly of theR current are closely related, which leads models with uniquely determine® charges. We also check
[3] to positivity constraints on chiral anomalies. the a theorem for various types of flows between conformal
Two studies of positivity constraints in the SN)) series  fixed points. The situation of some nonrenormalizable mod-
of supersymmetriqSUSY) gauge theories wittN; funda-  els is discussed in Sec. VI. There are other models in which
mental quark flavors have previously appeared. The first othe conserved, anomaly freR current is not unique. Our
these[4] analyzed the confined and free magnetic phases fomethods are less precise in this case, but we discuss an ex-
N.<N;<3N./2, while the basic techniques for computing ample in Sec. VII. Section VIII contains a discussion of re-
the flow of central charges when there is an interacting IRsults and conclusions.
fixed point were developed in Ref3] and applied to the
conformal phase for 9./2<N;<3N.. The most striking
result of Refs[3,4] was the positive floway,—ar>0 of
the coefficienta[g(u)] of the Euler term in the trace The theoretical basis for the analysis of anomalies in su-
anomaly in an external gravitational background, wheregpersymmetric theories comes from a combination of three
g(u) is the gauge coupling at renormalization gro@gG)  fairly conventional ideas: namelyA) the close relation be-
scaleu. This result agrees with the conjecture of Caf@y tween the trace anomaly of a four-dimensional field theory
that the Euler anomaly obeyscatheorem. Positivity is also with external sources for flavor currents and stress tensor and
satisfied in all non-supersymmetric theories te$tg@]. We  the two point correlator¢J ,(x)J,(y)) and(T,,(X)T,,(y))
shall refer to the inequalita,,—a,r>0 as thea theorem. and their central charge$B) the close relation in a super-

II. ANOMALIES AND POSITIVITY CONSTRAINTS
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symmetric theory between the trace anonfaly T/, and the 1
anomalous divergence of ttR currentd,R*; (C) the fact a= 755 (124N + 1INy 5+ 2No). 2.3
that anomalies of thR current can be calculated at an infra-
red superconformal fixed point using 't Hooft anomaly In a supersymmetric gauge theory WiN], dim G gauge
matching. This is the standard procedure, and one way tmultiplets andN, chiral multiplets these values regroup as
explain it is to use the all orders anomaly fréecurrent of
Kogan, Shifman, and Vainshte|i]. 1 1
We now review these ideas briefly. More details are con- Cuv= 24 (3Nv+N,), aUV=4_8 (ONy+N,). (2.4
tained in Refs[2,3]. _
If T! is the flavor matrix for the current, (x) which is the
A. Trace anomaly and central charges 66 component of the superfielt, T/®{*, and dimR; is the

We consider a supersymmetric gauge theory containin&ime”SiO” of the representati®ty, the free-field value ob
chiral superfieldsb;" in irreducible representatiori® of the 1S
gauge groups. To simplify the discussion we assume that
the superpotentia=0, but the treatment can be general- buv=2 (dim Ri)TfT}. (2.5
ized to include nonvanishing superpotential, and this will be Ll
done in Sec. Il C below.

We consider a conserved currehf(x) for a nonanoma-
lous flavor symmetnyF of the theory, and we add a source
B, (x) for the current, effectively considering a new theory
W|th an additional gauged @) symmetry but without kinetic
terms forB,, . The source can be introduced as an externa?
gauge superﬁeIdB(x 0,0) so supersymmetry is preserved.

The subscript UV indicates that the free-field values are
reached in the ultraviolet limit of an asymptotically free
theory. Clearlyc and a count degrees of freedom of the
microscopic theory with different weights for the various
pin fields.

The current correlation function is

We also couple the theory to an external supergravity back- 1 b(g(1/x))
ground, contained in a superfighf(x, 6, 6), but we discuss (3u(¥)3,(0)) = 767 (0= d,,9,)
only the vierbeinef(x) and the component ,(x) which is (2.6)

the source for th&k* current of the gauge theory.

The trace anomaly of the theory then contains several follows from reflection positivity or the Lehmann repre-
terms sentation as used in R¢fL0] that the renormalization group
invariant central functiol3] b(g(1/x)) is strictly positive.

1 -~ 1 - c(g) W . . .
a2 2 2 e assume that the theory in question has UV and IR fixed
2g° BOI(FL)™F 3272 b(9)BL,+ 1672 (Wiavpo) points so that the following limits exist:
a C = =i
1éi)2 (RWW)z (g) ;w’ (2.2) buv=b(guv) =lim,_. b(g(1X)),

whereW,,,,, is the Weyl tensorﬁww is the dual of the _ )
curvature, an®,,, andV,,,, are the field strengths &, and These endpoint value_s appear as cgntral charges in the op-
V,, respectively. All anomaly coefficients depend on the€rator product expansion of currents in the UV and IR super-

couplingg(s) at renormalization scalg. The first term of conformal theories at the endpoints of the RG flow.
Eqg. (2.1 is the internal trace anomaly, wheg{g) is the The correlatorT,,,(x)T,,(0)) has the tensor decompo-

numerator of the Novikov-Shifman-Vainshtein-ZakharovSition [2]
(NSVZ) beta function 8] c(g(1/ix))

1
<T/.LV(X)Tp(T(O)>= W Hp,vpo' 4

3 X

Bk~ 102 |3T(G) 3 T(R)[1- yi(gw))]}. i XA g(150)
(22) +HMVHPUT' (28)
HereT(G) andT(R;) are the Dynkin indices of the adjoint \yhere n,,=(3,0,—-6,0) and I,,,,=2,1I,
representation o5 and the representatioR; of the chiral -3(11, er+ 11,,I1,,) is the transverse traceless prOJector
superfieldd*, andy;/2 is the anomalous dimension ®'.  andA is the dynamical scale of the theory. The central func-
The various egternal trace anomalies are contained in thgon c(g(1/x)) is a positive RG invariant function. Its end-
three coefficientd(g), ©(g), anda(g). The free field(i.e.,  point valuesc,, andc are also central charges. The second

one-loop values ofc anda have been known for many years tensor structure in Eq2.8) arises because of the internal
[9]. In a free theory ofN, real scalars,Ny, Majorana trace anomaly. It is proportional t8(g(1/x)) and thus van-
spinors, andN; gauge vectors, the results are ishes at critical points.

The important point is that there is a close relation be-
tween the anomaly coefficients(g(«)) andc(g(u)) and

1
C= 150 (1N1H+3N12FNo), the central functionsb(g(x)) and c(g(u)). Namely,

120
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b(g(w)) and b(g(x)) differ by terms proportional to fixed point valuesayy, byy, cyv andar, br, cr are
B(g(w)), so they coincide at RG fixed points. The Sameimpor.tant quant?ties wh_ich characterize the superconformal
holds for&(g(x)) and c(g(w)). This means that the end- theories at the fixed pomts of t_he RG flow. _
point values of the anomaly coefficients are rigorously posi- ¢ theorems.In two dimensions Zamolodchikov estab-
tive. This is evident for the free field ultraviolet values in lished thec theorem by constructing a functi@(g(x)) as a
Egs.(2.3—(2.5. The infrared value®r andcr must also  linear combination of(suitably scalefl (T,,T,,), (T,0),
be positive, and this is an important check on the hypothesidnd(®®) correlators which satisfies
that the long distance dynamics of a theory is governed by an J
mtera_ctlr_]g fixed point. . _ w — C(g(u))=0,

This important relation between trace anomaly coeffi- I
cients and current correlators was derived in REZS3] by
an argument with the following ingredients. i C(w))| -0

(i) Since the explicit scale derivative of a renormalized Jag K))lg=g* =%
correlator corresponds to the insertion of the integrated trace
anomaly, the(J,,(x)J,(0)) correlator satisfies C(g*)=c~, (2.12

J wherec* is the Virasoro central charge of the critical theory
m (J.(x)3,(0)) at the fixed pointg=g* or, equivalently, the fixed point
K value of the external trace anomaly coefficient

1 -
= — b(u)(06,,—3d,d,) 5 1
871_2 (M)( wv w 1/) (X) 0= C*R, (213
~ 2417
BE(w)) 4 a2 . . .
T J,.(X)3,(0) | d¥z(F,,)°). whereR is the scalar curvature. The properti@s12 imply

Cuv—Cir>0 which is the form in which the theorem is
(2.9  usually tested[13]. The ingredients of Zamolodchikov's
proof of these properties are conservation Ward identities,
(i) The central functiorb(g(1/x)) satisfies a standard ho- rotational symmetry, reflection positivity, and Wilsonian
mogeneous  renormalization  group  equation,  butenormalizability. There is a similar pro§10] of a k theo-
b(g(1/x))/x* requires additional regularization because it isrem for the central charges of conserved currents, which
singular at the origin. The regulated amplitude satisfies  |eads tob,,—bg=0 in our notation. There are alternative
proofs [6,10] of the ¢ and k theorems in two dimensions

9 b1kl 1 b(g( )5 (x) based on the Lehmann representation for the invariant am-
R g2 DK plitudes in the decomposition ofT,,(p)T,.(—p)) and

reg
(Ju(P)I(=P))-
+/3(9(,U«)) b(g(1/x))| The techniques used in the two-dimensional case cannot
g° x4 ' be extended to four dimensiofs,6], and it has not so far
been possible to construct an¢ function for four-
(2.10 dimensional theories which satisfies E@.11). The best
-~ . ] ] . thing one now has is Cardy’'s conjectUrg| that there is a
whereb(g(u)) is associated with the overall divergence atnjversalc theorem based on the Euler anomaly, so that
XZQ; ) ] ] o ayy—a,r>0 in all theories. There is theoretical support for
(iii ) Using the method of differential renormalizatifitl]  this conjecturg12], and empirical support by direct test in
and thke RG equatlon, one can resum a series in powers fodels where the infrared dynamics is understood. @he
(Inxw)® to derive a nonperturbative differential equation, thegrem is true in all models so far tested which include the

| reg

namely, following.
. (i) SU(N,) QCD withN2—1 gluons and\¢N, quarks[5].
B(9) Jb(g) +26(g)=2b(g). (2.11) An infrared realization as a confined theory with chiral sym-
) metry breaking ancN?—l decoupled Goldstone bosons is
assumed.

This shows thatb(g(w)) and the central function itself, (i) QCD at largeN, with Ny=1IN./2—k near the
b(g(x)), coincide at fixed points. Comparing Eq2.9) and  asymptotic freedom limit. The infrared limit is computable in
(2.10 it is tempting to identifyb(g(x))=b(g(w)), but this  perturbation theory because of the well known close two-
also holds only at fixed points since we cannot exclude postoop fixed point[14]. Actually a,,—ar=0 to order 1|N§
sible local 5%(x) terms in the(JJfF?2) correlator. It is easy for reasons we discuss below.

to see that contributions @ JfF?) begin at ordeg(u)*. It (i) SUN.) N=1 SUSY QCD in the confined and free

is assumed that the local terms have no singularities whickhagnetic phase foX.<N;<3N./2 [4].

could cancel the zero g8(g). (iv) SU(N.) N=1 SUSY QCD in the non-Abelian Cou-
The anomaly coefficierdi(g(w)) is related to three-point lomb phase for BI./2<<N;<<3N; [3].

correlators of the stress tenddr2] rather than tqT,,,T,,). One may take a more general empirical approach and test

However, it is clear thaa(g(u)) is significant, and that the whether otherc-theorem candidates such as the total flow
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buy—bjr andcyy — cr (or possible linear combinations with that all g~ravitational anomalies are described by the two
ayy—ag) are positive in the models above. It is known thatfunctionsc(g) anda(g), and this is also the reason why the
cuv—Cir IS positive in the situationgi) [6] and (iii) [4]  coefficients of the third and fifth terms of E(.1) are re-
above, but negative in situatiofii) [6] and changes sign lated. An alternate derivation of E¢.14 which does not
from positive to negative all; increases in the theories of require superspace technology was also given in [3f.

(iv). Thus a universal & theorem” is ruled out. In the Ap- The last three terms of E(2.14) are essentially the same
pendix below we present brief calculations to show that a @s the anomalies usually computed in studiesNof 1
theorem cannot hold in Situatior(j;)_(iii) above, and it is Seiberg duality. It is this fact that leads to immediate pOSi-
known [3] not to hold in situatior(iv). tivity constraints on supersymmetry anomalies which we can

Thus thea theoremayy—ar>0 emerges as the only test easily in the various models in the literature which flow
surviving candidate for a universal theorem in four dimen-to infrared fixed points.
sions. The desired physical interpretation requires the exis-
tence of anA function A(g(u)) which decreases monotoni- C. Computing infrared anomaly coefficients
cally from ay, to ar and counts effective degrees of
freedom at a given scale. Thus the relatiap,—ag>0
would make little physical sense unleag is positive. In-
deed it has been argugts| thata(g(w)) is positive at criti-
cal points if a conjectured quantum extension of the wea
energy condition of general relativity is valid.

Let us now summarize this discussion of the positivity
properties of trace anomaly coefficients. The free-field value
ayv, byy, cyy are automatically positive. Positivity is rig-
orously required fob,g andc g, and it is a useful test of our
understanding of the infrared dynamics to check this prop
erty in models. We will also explore the conjectured
a-theorem and the related conditiaiz>0. We will also

show that the “data” forN=1 SUSY gauge theories in the bi W W . d
non-Abelian Coulomb phase imply that there is no linear2roitrary superpotentia (¢). We summarize and exem-

combinationu(ayy — ayg) + v (Cuy — Cig) Which is positive in plify the argument for the slightly simpler case of cubic

z W().
=0, u>0).
all models(except forv =0, u>0) Gaugino fields are denoted W(x), a=1,...,dimG,

and scalar and fermionic components ®f(x) by &{*(x)
and {*(x), respectively. The canonic®* current(which is

In a supersymmetric theory in the externafliygauge the partner of the stress tenscand the matter Konishi cur-
and supergravity backgrounds discussed above, the divefentsk# for each representation are

gence of theR* current and the trace of the stress tensor are

In this section we discuss how the infrared central charges
br, Cr, andag are related to the conventional UgH?,
U(1)g, and U(l)z anomalies. This is already quite clear,
lgmd some readers may wish to jump ahead to the final for-
mulas at the end. However, we do think that it is useful to
derive this relation using the formalism of the all-orders
é\nomaly—fre@‘ current introduced in Ref7]. The external
anomalies of this current can be clearly seen to agree in the
infrared limit with those of theR* current which is in the
same multiplet as the stress tensor, and thus part oNthe
=1 superconformal algebra of the infrared fixed point
theory. A very clear explanation of tf& current is given in
Sec. lll of [7] for the case of general gauge groGand

B. Relation between® and z?uR“ anomalies in SUSY/SG

components of a single superfield. Therefore the supersym- — 1 — w2 — = .
metry partner of the trace anoma®y of Eq. (2.1) is Rf=3 Nyl yohE— 5 EI Yoy YU+ 3 Z baD P,
1 -~ bl -
17 RY)=— == FF)——-— (BB 1 — — o
W(VOR) == 355 BO)(FF) ~ 5.2 (BB) K=y 3 Uy vu+ S 65,4 216
| I
c(g)—a(g)

* 2472 RR Conservation of the Konishi current is spoiled by a classical
violation for any nonvanishingV and a one-loop exact chiral
anomaly. The internal anomaly &* in Eq. (2.14 can also

be generalized to includé/. The divergences of these cur-
_ rents are theirfexternal sources are dropped

whereR andR on the right hand side are the curvature tensor

5a(g)— 3¢ -
+ %@ (VV), (2.14

and its dual. The ratie- § between the first two terms of Egs. W| T(R) ~

(2.1) and(2.14 is well known in global supersymmetry, but 9, Kf'=f e T 162 T (217

the detailed relation of the anomaly coefficients of the gravi- :

tational section was first derived in R¢8] by evaluating the

appropriate components of the curved superspace anomaly P RM:E 2 P ﬂ n L

equation w34 T G500 T a2
= 1 - - —> T(R)(1-y,) |FF 2.1
DJee=5,—2 (CW2—ag), (2.15 X|8T(G) =2 T(R)(1=v) FF, (218

whered,,;,, W?, andZE are the supercurrent, super-Weyl, andwhere the vertical bar indicates th# component of the
super-Euler superfields, respectively. This equation showsuperfield minus its adjoint. The anomaly-fieeurrent usu-
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ally stated in the literature for any given model is a specific 3T(G)
linear combinationassumed unigue here St=RH*+ 3 (1 NT(R) —y(g(u)) )2. K#,
SRS S K (2.19 1 3T(G)
34 W ' S'=RiF 2| 1= o5 NT(R) y(g(m))E (KE+KE)

. : (2.23

which is conserved classically and nonanomalous to one-
loop order. This means that all terms in its divergence [whereK# andK# are the Konishi currents of fields in tie
andR representations, respectively, and we Ti§R) =T(R)

2 1 and y="]. Comparing with Eg(2.2), one can see that the
(7| +7I)CD| Tma 2 .. . - . . ~
oD; 4877 coefficient of the Konishi terms is proportional g(g(u))
and thus vanishes in the infrared limit if there is a fixed

Fa Frva point.

mo The second class of models are those of Kutd&@yand
generalization§18,19 in which we add a superfield in the
adjoint representation to the previous matter content and take
W=fTr X3. We letK4 and yx denote the Konishi current
and anomalous dimension for the adjoint fields. The proce-
dure outlined above leads to the unique currents

% 3T<G>—Z T(R)[1— (¥} + )]
(2.20

cancel except those with coefficients. There is then a
unique(flavor singlej all-order conserved current

1 2T(G) 1
R'“—i- E (¥F = vi)KE. (2.21 R4 1= > Kk— = u
i DK S$*=R +3 1 N, T(R) ¥(9,f) i K! 37xKx’
Its divergence vanishes, 1 T(G)
— RM —
S*=Ri+ 3|1~ NTR) —¥(9.f ))
9,8"= E * Pl !
Yi 2 1
i i 0‘;¢| 480T X E (KM+ KM)_ 7XKX’ (2.249

x|3T(G)— >, T(Ri)(l—yf)}Flz:O,

for the cases of representatioR® adj andR® R@ adj, re-
spectively. If there is an IR fixed point, then boiby
=3fyx/2 andB(g) given in EQ.(2.2) must vanish, and it is
easy to see that all coefficients of the Konishi terms in Eq.
(2.24) vanish if this occurs. The procedure may be extended

(2.22

and the vanishing of the coefficients BF and the indepen-

dent cubic terms means that thé¢ are the unique set of to more general models witW=fTr X<*1, k>2. using the
numbers which make the gauge and various Yuk@fanc- Jqisication of Eq.(2.20 (see Sec. Il off7]) for general
tions vanish. They then have the physical interpretation as superpotentials.

IR anomalous dimensions of the superfieldls, assuming Another common class of models resembles the “mag-
that there is an IR fixed point. In the infrared limit— "  netic” version of SUN,;) SUSY QCD. There ardl; flavors

in Eq. (2.21), andS*—R*. It is worth noting that the coef- of quark and antiquark fieldg andq in conjugate represen-
ficient in front of the Konishi current in Eq2.21) is a mani-  tationsR’ andR’ of a dual gauge grous’ plus a gauge
festation of positive anomalous dimension of the anomalougingletM in the (N;,N _f) representation of the flavor group

Konishi current[16]. In physical correlators the infrared The models have a cubic superpotentiéfgMgq. In this
limit can be associated with large distance behavior. Therex case the uniqus* current is

fore in the infrared(large distancelimit of correlators with
aninsertion oR,=S,— 33;(¥{ — ¥)K/ the contribution of 1 3T(G')

the Konishi current decreases faster than the contribution of S/‘=R”+§ 1- 2NT(R) (
the S, current which has no anomalous dimension. Thus the f

S* and R* operators and their correlators agree in the long 1

distance limit, as is required at the superconformal IR fixed —3 2ygtymKn, (2.29
point. In the free UV limity;—0, andS*— S . As we will

see shortly this means that external anomalieS“ofoincide  and one can check again that the coefficients of independent
with those computed in the literature. Konishi currents vanish exactly whegy=8¢=0.

We dlStlngUlSh three classes of models in which one ob- Because the Opera‘[@ﬁ‘ is exacﬂy conserved without in-
tains uniqueSy andS* currents. The first is the set of models ternal anomalies, 't Hooft anomaly matchifig0] can be
with chiral fields inN; copies of a singldrea) irreducible  applied to calculate the anomalies of its matrix elements with
representatiorR (or N; fields inR®R) and no superpoten- other exactly conserved currents, such @&S“TP"T“).
tial. It is easy to see that the uniq® current in these two One argument for thiSec. 11l of Ref.[3]) is the following.
cases is The operator equatio@,S“=0 holds in the absence of

KE+KE—2KE)
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sources, and it must remain local when sources are intro-
duced. For an external metric source dimensional and sym- =32 2dimG

metry considerations restrict the possible form of the matrix

element to

_ +> (dimR)(1-r)[1-3(1-r)?]|. (2.28
(3,5"(X))=soRR(x), (2.26 :

where the right hand side is loca priori so(g(x)) could ~ Note that theR charge of the fermionic component &f"
depend on the RG scale. However,S* in this case is an 'S ri—1 and appears in these formulas, which are valid for

RG invariant operator, so matrix elements cannot depend of#€0ri€s in an interacting conformal phase with unique
g(w). Therefores, must be a constant, hence one-loop ex-anomaly fr.eeR charges and no acmdgntal symmetry. The
act. If we now use the fact th& and R coincide at long treatment is extended to include accidental symmetry and

distances we have the chain of equalities theories with nonuniqu® charge in later sections.
The hypothesis that there is a nontrivial infrared fixed
HRTNr=HSTNrR=HSTHyy=KSTT), point in any given model is established by several consis-
(2.270  tency tests which in the past did not include the positivity
conditions we have discussed. The set of infraRecharges
where the last term simply includes the one loop graphs ofssigned in the literature is not guaranteed to produce posi-
the currentS, and gives the U(1g anomaly coefficient tive bz, cr, ar S0 the positivity constraints provide an
quoted in the literature. Similar arguments justify the con-additional check that the hypothesis of an interacting fixed
ventional calculation of U(1gFF and U(l)z anomalies. point is correct.

Formulas for anomaly coefficient$he previous discus- The corresponding UV quantities are obtained from Eq.
sion enables us to write simple formulas for the infrared(2.28 by replacingr;— %, and one can check that E48.4)
values of the anomaly coefficients in terms of the anomalyand (2.5 are reproduced when this is done. Thus for flows
freeR charges quoted in the literature. For a chiral superfieldvithout gauge symmetry breaking the total flow of the cen-
®;* in the representatioR;, of dimension dimR; the R  tral charges from the UV to the IR is due to the difference
charger; is related toy} in the S§ current(2.19 by r; between the canonical and nonanomalBusharges, and are

=(2+y")/3. given by the following formulas:

The quantitiedr, ¢ g, anday are the infrared values of 2
the trace anomaly coefficienks c, anda in Eq. (2.1. They byy—br=3>, (dim Ri)[(ri_ _) TfTJ (2.29
are normalized by the free field values in E(&4) and(2.5 i] 3

and are related t&-current anomalies by Eq2.14). One

then obtains 1 . 5
CUV_C|R23_842i (dim Rj)(2—3rj)[(7—6r)

bir=—3U(1)gF?=3>, (dim R)(1-r)TIT!,
i

—-17], (2.30
1 1 ) )
C|R_a|R:_1_6U(1)R aUV_aIR:9_6Z (dim R;)(3r;—2)%(5—3ry).
(2.3)

Higgs flows with spontaneous symmetry breaking of gauge
symmetry are studied in Sec. Ill.

9 There is a rather interesting aspect of the form(@a89—
S8R~ 3CR= 75 U(1)3 (2.31) for central charge flows. In perturbation theory about a
UV free fixed point the quantity (23r,;) is of orderg?.

1/ :
=—l—6(d|m G~l—2i (dim Ri)(ri—1)>,

9/ . 5 Thus our formulas are consistent with the two-loop calcula-
Il—6(dlm G+Ei (dim Rj)(r;—1) ) tions of Ref.[21] where it was found that radiative correc-
tions to c(g) begin at two-loop ordefand quantitatively
agree[3] with the perturbative limit of Eq(2.30], while

CIR:i [9U(1)3—5U(1)R] corrections ta(g) vanish at two-loop order. The “input” to
32 Eqg. (2.31) comes from one-loop chiral anomalies, so it is
1 curious that the formula foa,,—ar “knows” about two-
-3 (4 dim G loop curved space computations.
The perturbative structure becomes more significant when

we consider the physical requirement that function must
+> (dimR)(1—r)[5-9(1-r)?]]|, be stationary at a fixed point, and that Zamolodchikaw's
! function actually satisfies){9g)C(g)=0 at a fixed point. A
monotonic interpolatingh function is not known in four di-

3 mensions but one can consider a candidat&unction ob-

— 3_
ar=35 [3U(L)r=U(1)r] tained fromayg in Eq. (2.28 by replacing the infrared values
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of r; by their values calculated along the flow, i.e.~[2 The simplest way in which the positivity conditions can
+9,(g(w))]/3. This candidate\ function naturally satisfies be satisfied is if the contributions g, cir, andayg in Eqg.
Zamolodchikov's stationarity condition at weak coupling. (2.28, and toayy —ayr in Eq.(2.31), are separately positive
The analogous candida@function obtained front,; of Eq.  for each contributing representatid® . This leads to the
(2.28 does not. following sufficient conditions:(i) b;g>0 if r;<1 for all
chiral superfieldsb'; (i) c;g>0 if 1—/5/3=0.254<r;<1
or r;=1+/5/3=1.745 for all ®’; (iii) ajr>0 if 1—1A3

lll. MODELS WITH UNIQUE R CHARGE =0.423<r;<1 orr;=1+1V3=1.577 for all®'; (iv) ayy
In this section we discuss the positivity conditiobg, ~ —ar=0 if r;=<3 for all ®'. . . _
>O’ C|R>01 a|R> O, andauv_alR>0 ina |arge set of mod- In all of the models examined we f|nd, that in the pal’t of

e|s in the |iterature Where the anoma|y_fr& Charge is the Conformal WindOW Where no aCCidental Symmetry iS re-
unique. While some of these models will be considered irfuired, (@) remarkably,r;<3 for all renormalizable models,
more detail in the next two sections, here we are going tso thea theorem is always satisfieh) 1—5/3<r;<1 in
analyze some general aspects. It is worth emphasizing thaltl electric models without accidental symmetsince elec-
even though the positivity o g and cg follows generally  tric and magnetic anomalies match in all models, we have
from unitarity constraints, the fact that they turn out to beb ;>0 andc,g>0 on both sides of the dualityand, (c) 1
positive in our approach is additional evidence that our un-—143<r;<1 is satisfied in part of the conformal window
derstanding of the infrared dynamics is correct. of all theories, but not always. But the sufficient condition is

The positivity constraintayy—ar>0 deserves some rather weak, and the positive contribution of the gauge mul-
comments. As explained above, the gravitational effectivaiplet az always ensurea;g>0 in the nonaccidental region.
action depends on the functiomsand c. It is natural to Thus, most of the positivity conditions, especially the
assume that a candida function measuring the irrevers- theorem, can be verified essentially by inspection of the
ibility of the RG flow may be a universal model independenttables ofR charges presented in the literature on the various
linear combinatiorC=ua+uvc. We are going to show that models. Actually, in many cases one can prove that: as
the only combinationC=ua+vc which satisfiesAC  a consequence of asymptotic freedom in absence of acciden-
=u(ayy—aRr) tv(cyy—Ccr)=0 for all models is justC  tal symmetry(i.e., when allr,=3). Explicit check is then
=a. First note that since there are theor[esg., SUN;)  unnecessary. We illustrate this in three simple situations.
SUSY QCD withN{<3N,] with cyy—cr of either sign(3] (i) For models withN; copies of a single irreducible real
andayy—ayr positive, one must taka>0. It is then suffi-  representatiorR (or N; copies ofR&R), one can see from
cient to assumeu=1. Consider the electric version of the S, current in Eq(2.24) thaty* = 1—3T(G)/N{T(R) [or
Seiberg’s SUN,) QCD with N; fundamental flavors in the y*=1-3T(G)/2N,;T(R)] and asymptotic freedom gives
conformal window 3N/2<N¢<3N.. In the weak coupling ,* <0 in both cases. Thus=(2+ y*)/3<2.
limit No, N¢—c, and No/N¢—3, the work of Ref.[3] (i) For renormalizable Kutasov-Schwimmer type models
shows thatAc<0 and O<Aa<|Ac|. So we have<0.On  the current(2.25 immediately gives the same information,
the other hand, in the We_ak coupling limNM;—o and r<2 for the fields inR andR andry=2.
Nc/N¢—3/2 of the magnetic theory one can see that 0 i) we also consider models which have the same struc-
<Aa<Ac sowe have=0. Thenv =0, andayy—ar>01iS e as magnetic SB{,) SUSY QCD, namelyN; fieldsq in
the only universah-theorem candidate. _a real representatioR’ of a dual gauge grou’ (or N;
tivigelc?xsvgr;itgtbe s;n(w)plg s;fgcgan;cct))ng::jcmr;slsg)rfg: pOSI'fieldsq, gin R"@R’) plus a gauge singlet meson field in the

. IRT % MR = IR s W Ng@N; [or (1,Ny)®(N;,1)] representation of the flavor

—a;r>0 in the case of RG flows from a free ultraviolet to an roup SUQN;) [or SU(N;) X SU(N;)]. There is a superpoten-

infrared fixed point. Remarkably enough, these suﬁicienﬁal W=qMq (or W=qM3d). Here again one can inspect the

conditions can be quickly seen to be satisfied in most of th . i
conformal window of all renormalizable theories that We%auge,B function [or the appropriates,, current(2.25] and

i * 1 2 .
have analyzed. Closer examination is required for cases wit'd Ya =0 andz=<rq=g3. The superpotential then tells us
accidental symmetry. There are also many examples of flowiat 'm=2—2rq safisfiess<ry <3 with the upper limit
between interacting fixed points which are generated by varit O Unitarity without accidental symmetry. Thus again
ous deformations. These situations are discussed in later sec-s 1" all fields.

tions.
B. Flows between superconformal fixed points

A conformal fixed point is characterized by the values of
b, ¢, anda. These values do not depend on the particular

We first note that in part of the conformal window of flow which leads to or from this conformal theory. Therefore
some models, the unitarity boume= 2 fails for one or more one may be interested in a computation of the flay,
composite operators of the chiral ring. Then the formulas—ag for a theory which interpolates between two interacting
(2.28 for infrared anomalies require correction for the ensu-conformal fixed points. Such an interpolation may be ob-
ing accidental symmetry. Such cases are discussed separatidjned by deforming a superconformal theory with a relevant
in Sec. IV, and we consider here models without accidentabperator which generates an RG flow driving the theory to
symmetry, which necessarily have= 3 for all fields of the  another superconformal fixed point. Since we know the con-
microscopic theory. formal theories at both ultraviolet and infrared limits of this

A. Sufficient conditions
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interpolating theory, the computation simply requires sub-
traction of the end-point central charges. In this case we do
not need to construct ar§+current interpolating between the
ultraviolet and infrared conformal fixed points. However, it
is interesting that in some cases one can construct suéh an

TL(,Z‘)/@(n free chiral superfields)

(1) ()

current and check directly the value of the flayy—a. Ty CFT)p
We discuss below aspects of various types of deformations. _ _ )
Mass deformationsThe simplest case is a mass deforma- FIG. 1. The diagram of flows under Higgs deformations.

tion. Consider a conformal theoryi characterized ba",  fiat directions of the potential for the scalar fields. Under
b", andc” which contains a chiral superfield in a real  g,ch a deformation one generically breaks both the gauge
representation of the gauge grolgr a pair of chiral super-  5nq flayor symmetries. While the Goldstone bosons corre-
fields ® and ® in conjugate representationsSuch a theory  sponding to the gauge symmetry breaking are absorbed by
may be deformed by adding a gauge invariant mass terffhe Higgs mechanism, the Goldstone bosons of the flavor
W,,,=(m/2)d? (or Wy,=md®P). We assume that the heavy symmetry breaking remain in the massless spectrum of the
superfield® (or ® and ®) decouples from the low-energy theory. Therefore these Goldstone bos¢asd their super-
spectrum, and that the resulting theory flows to a new conpartner$ have to be taken into account in the computation of
formal fixed point with a smaller global symmetry group, the infrared values o, b, andc of the resulting theory. Itis
and characterized by the valuas, b-, andc‘. Since the implicitly assumed in the literature that these Goldstone su-
heavy fields of the original theory do not contribute to infra- perfields decouple from other light fields of the low-energy
red anomalies, we hav@g=a", br=b", cr=c'. On the theory and are free in the infrared. We thus assigrg to
other hand, the heavy fields contribute to ultraviolet anomathese fields.

lies so that,=a", byy=b", andcy,=c". Thus we have In general the positivity of the flova,,—a under the
agy—ag=a—al. As a result we expect that,,>ap. Higgs deformations is nontrivial evidence for theheorem.
This is indeed the case for all the models that we have andn a simple situation of flow from the ultraviolet free theory
lyzed. deformed by the Higgs mechanism to an infrared conformal

One can obtain a simple analytic formula in the case of arfixed point the positivity ofay, —ayg follows from the fol-
electric type theory withN; copies ofR@&R representation 0wing argument. Let us consider an asymptotically free
and no superpotential. In this theory=1—T(G)/2NT(R) theoryT. Let us also consider an asymptotically free theory
for the N; quarks of the theorH. We consider a mass de- T which is a Higgs deformed version df along a flat
formation of H which leavesN;—n massless quarks in the direction and flows to a nontrivial conformal theory in the
theory L. These quarks have=1-T(G)/2(N;—n)T(R).  infrared CFIZ. We are going to argue that the flow
Substituting these charges in the form{@a31) we subtract aUV(T(l))—af,%)> 0. We assume that there ameGoldstone

with the result chiral superfields that decouple from the rest of the theory. It
) 3 is convenient to define another asymptotically free theory

au—a _9dimRT(G) _i+ 1 -0 T®) which is just the theoryT® with all massive fields
HO9L™ 128T(R)? NZ  (N;—n)? ' dropped out plus free chiral superfields. Let us assume that

the interacting part of the theof}? is also in its conformal

In the special case of interpolation between an ultravioletvindow and flows to a nontrivial conformal theory CET
free theory and an infrared nontrivial conformal fixed pointand the a theorem is satisfied for this flow. We have
one can apply a more formal argument. In this case we CoreFTY=CFT 2@ (n free chiral superfields). Therefore in-
sider the electric theory above with added mass term for thetead of the flowl ) CFT(Y one can consider the two step

n massive quarks. The uniq, current of this new theory o\ T( _,-|—( o (n free chiral superflelds)»CF'I“) (see

is Fig. 1).
Since thea theorem is trivially satisfied for the flow
SM:RMJFE 1— 3T(G) - TH-T® e (n free chiral superfields) we arrive at the

3 2(Ne=nm)T(R) conclusion thag,,(T) —ay)>0.
1 The second type of Higgs deformation is the magnetic
X K;+ 3 (1-ypKH, counterpart of a mass term in the electric theory. To be con-
crete we consider SW;) SUSY QCD with electric quarks

: - _ Q and antiquarkQ;*, wherea=1,..N., andi=1,..N¢
where the superscriptsandH indicate Konishi currents for are color and flower |nd|ces respectively. The magnetic

the light and heavy quarks, respectively. Thifs=1 and theory hasG=SU(Nf N) with quarks, antiquarks, and
ry=1 so that the heavy quarks do not contributeje=a, meson q G, and M' The mass perturbatiorW
[ a?

in Eq. (2.3). For the light quarks y{=1-3T(G)/

2(N;—M)T(R) and r,_=1—T(G)/2(N;— n)'II:(R) which is —mQ fQN in the electrlc theory is mapped W, mM

exactly the correct value in the low-energy theoryNgf—n  0n the magnetic sidg23] so that flavor symmetry is broken

flavors. Thus théS, current analysis leads to the same valueexplicitly to SUN;—1). Analysis [23] of the magnetic

of ajg=a, used above equatlons of motion shows that there is a Higgs effect with
Higgs deformationsThere are two qualitatively different (dn,a")#0, so the gauge group is broken to SY¢ N,

types of Higgs deformations. The first is a deformation along— 1) The spectrum contains massive fields plus the light
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fields of the magnetic effective low-energy theory with  In the notation of Sec. Il, one has to compute the three point
=SU(N;—N.— 1) andN;—1 flavors. If this theory is still in ~ correlators(tRRR g and(RTT)r. Substituting the expres-
its conformal window, i.e.N;—1>32N,, thenag can be sion(4.1) for R, into these correlators one h@hke subscript
computed from Eq(2.28 with the matter content and the IR is omitted herg
gauge group of the low-energy theory. _

As an example one may consider a special case of the (RRR=(SS3+3(SSA+3(SAA+(AAA),
flow from the Higgs deformed ultraviolet free theory to an B
infrared conformal fixed point. It should be no surprise that (RTD=(STD+(ATT). (4.2)
there is also a formal argumefitased on a consideration of At this point we note that the correlatotSSA, (SAA),

e Lo e AR STATT) are saturted by the fee chil
P nd hence they can be easily computed, i.e., we have

netic. One can verify that the magnetic theory, with,,
N .
= mMNI, has a unique set of anomaly frRecharges. There (SSA=(SSAfee, (SAA=(SAAeces

is an elaborate cancellation of the contributions of heavy
fields to the U(1) and U(1} anomalies, and only the ex-
pected contributions from fields of the low-energy effective
theory remain.

<AAA> = <AAA>freea <ATT> = <ATT>free-

Thus the correlatorSRRR g and(RTT) g can be rewritten

. . . as follows:
Deformations of superpotentiaDne can also consider
more general deformations of the superconformal theories by (RRRR=(SSS+(RRRpree— (SSSpree,
relevant operators. A particular type of deformation is ob-
tained by adding a relevant chiral gauge invariant operator to (RTDR=(STH+(RTDee— (ST Diree- (4.3

the superpotential of a superconformal theory. As a result the

deformed theory may flow to another fixed point along theAs we explained in Sec. Il the central charggsandc are

RG flow generated by the deformation. In all renormalizablejust given by linear combinations of the correlat¢RRR g

models that we studied the induced floweofs positive but  and(RTT)z. We consider the case where there is one acci-

this is not true in nonrenormalizable modétee Sec. I dental U1) symmetry for the gauge invariant composite su-

Examples of interpolating flows are those betweenkilaad  perfield M in an irreducible representation of the flavor

k—1 Kutasov-Schwimmer models which are discussed irngroup of dimension dinM (more general cases can easily be

Sec. V. handled. The corrected infrared values of the central charges
are

IV. ACCIDENTAL SYMMETRIES .
dim M

In this section we explain the computation of the infrared ar=ajg + 96
values ofa, b, andc in the presence of accidental symmetry.
The appearance of accidental symmetry is associated with an imM
apparent violation of the unitarity bound=2 for a primary CR=CIR + 384 (2=3ry)[(7-6ry)*=17]. (4.9
gauge invariant chiral composite fieM. The simplest hy-
pothesis explored in the literatutéor a review and discus- Here we denoted b&fS) andc,(g) the expressions fa andc
sion see Ref[22]) is that this signals that the fiell is given by Eqs(2.28, andr,, stands for theS charge of the
actually decoupled from the interacting part of the theory,chirg field M, specifically the sum of th& charges of its
and becomes a free chiral superfield in the infrelr22]. elementary constituents. Since by assumptietg it is easy
On the other hand th& charge is equal @ for a free 1, soe that the correction tis always positive. The correc-
chiral superfield, which contradicts the result of computation; 4o s positive at < (7 — 17)/6~0.479 and negative at

with the S, current. A plausible explanation is that there is 2 ;
K 0.479~(7—+/17)/6<r<3. In some models the accidental
an additional anomaly free global(l) generated by the correction is required to makar and c,g positive, so the

spin-1 component]ﬂv') of the composite superfiel1M. sign is important.

The fieldM is charged with respect to the currelf}" but In general the formulas for the infrared values of flavor
the other fields are not. In this case the perturbative anomalyentral functions should also be corrected due to the presence
free S, current can mix with thedM") current under the RG  of accidental symmetries. The general formula for the cor-
flow because the scaling dimension of the latter tends to thgectedb can be easily obtained along the above lines and
canonical dimension 3 of a conserved current. Thus the inreads
fraredR current can be determined as an infrared limit of a
linear combination

(2=3ry)%(5—3ry),

. 2
RR=S,+A,, 4.2
Here we denoted b the expression fobg given in Eq.
whereAuszLM). The coefficientx is fixed by the condi- (2.28), T} stands for the flavor generator associated \iith
tion thatR= 2 for the fieldM. The correction dinM(ry,— %) is always negative.
Assuming that this picture is correct one can easily com- Deformations of conformal fixed points with accidental
pute the infrared values of the central functieysh, andc. symmetryln the following we test various examples of su-
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TABLE I. Flows from UV free theories to Seiberg’s conformal QCD.

Gauge group ayy—ag in electric theory ayy— a,g in magnetic theory
NN, 3N.\? 3N, 1 3N\ ?
SU(N — — 1= 2 2
(No) 25 |1 N, 2+ N, AL 2N, (3NZ+ 4N N;+ 3N?)

SOM,) Ng(—6+2N;+3N)(6+Ng—3N,)? Ne(—6—2N;+3N.)%(3NZ— 6N+ 4N N+ 3N?)
96N7 96N

Sp(N,) (—3+N;—3Ng)2Ng(3+2N; +3N,) (3— 2N+ 3N¢)?(3N?+ 3N+ 4N N; + 3N?)
24N? 24N?

perconformal models and flows between them. In particulathe correction ta,; turns out to be negative.

we will consider flows from superconformal models with G, with N; 7. Conformal window: 6sN;<11. We have
accidental symmetries taken as an ultraviolet fixed point tqq;R:1_4/N ¢. The accidental symmetry point appears at
different infrared fixed points. Such a flow may be generatecNf:6 whereQQ hasr=2 and hence it is free. Therefore
by appropriate deformation of the ultraviolet theory with athere are no accidental corrections to the central charges.

relevant operator. It is important that the ultraviolet theory  g_ pistier-Karch model: four fundamentai, Q;; ro
has to be taken together with the free chiral fields generating. 1

the accidental symmetry. In fact the deformation of the ul- 4E6 Distler-Karch model(l): six fundamental27, Q, :
traviolet theory by a relevant operator generates a nontrivinQ: 1 R
coupling of the interacting part of the UV theory to the ac- E, Distler-Karch model(ll): 3><(27+2_7) fundamentals

cidental chiral superfields. This turns out to be important for~ . Fo=1
i» 1Q™ 3

positivity of ayy ~ag - F, Distler-Karch model: five fundamental6, Q;; rq
—2
=2
V. EXAMPLES OF MODELS WITH UNIQUELY DEFINED F, Distler-Karch model: four fundamenta®s, Q;; ro
S CURRENT AND THE FLOWS =1, There is an accidental symmetry associated with decou-

ling of meson fieldV;; =Q;Q;. In Table Il we separated
he accidental corrections tagz and cjg from the regular
ones. Again the correction g turns out to be negative.
Spin (8) Distler-Karch model: & (8,+8.+8;) funda-
mentalsQ; ro=73.

In this section we give detailed results for the models tha
we have analyzed. We mainly focus on subtleties met in th
computations of the infrared values afandc.

A. Models with one type of irreducible representation

This class of models includes the SW) series, SO{,) B. Deformations
se_ries[23], SP(N,) serie_s[24], POL_‘"Ot Spin(7) model[25], Deformations oSU(N.), SO(N.), and Sp(2N.) Seiberg
D|stle.r—Kar,ch model; with exceptional grouEf_SG]. QCD models Higgs deformation of the Seiberg superconfor-
Selberg_s QCD withG=SU(N;), SON.) W'th.Nf’ and mal models corresponds ., Ny—N.=N.—1, Nf=N;
SP(N;) with 2Ny tundamentals. Conformal windows are —1. The infrared theory has Ri¢—1) decoupled Goldstone
3No/2<N;(SU)<3Nc, 3(Nc—2)/2<N(SO)<3(N:.—2), gauge singlets for SU.) and Sp(N.) models andN;— 1
3(N¢+1)/2<N¢(Sp)<3(N.+1). There are no accidental for SON,)
symmetries. Since aR charges obey< 3 we always have (1) C(gn.sider first the SWN,) theory. In the region

Aa=ayy—aR>0 for the flows from the free ultraviolet to 3N /2<N;<3N.—3 both the ultraviolet and infrared theo-
conformal fixed points. The results of our computations areriesc are in theircconformal windows and we have

given Table I. It should be noted that all flows vanish qua-
dratically in the respective weakly coupled limits of electric 1-N; 3(2N.—1) 9N‘c‘ 9(N.—1)*
and magnetic theories. This agrees with the discussion of the Aa= o + 8 BT + 6N _1)2>O
perturbative limit at the end of Sec. Il. f f

The models considered below have nonrenormalizable
magnetic versions. Therefore we discuss only the electri . . .
versions that are renormalizable. The results of our compufr.] the cased;=3N,—1, 3N —2 the infrared theory is free

tations are given in Table Il. Aspects of the RG flows of sinceN;=3Nc+1 andN; =3N,, respectively. The infrared

. : = . )
nonrenormalizable theories are considered in the next se¢@lu€anr is then computed using= 3 for all chiral super

tion. fields of the low-energyN;, N theory and the Goldstone

Spin (7) Pouliot model withN; spinors8, Q;. Conformal ~ fields. The results are
window: 7<N;<14. We have in the infrared =1
—5/N¢. There is an accidental symmetry [dt=7 due to _ _ 2 3
decoupledQQ singlet. In Table Il we separated the acciden- Aa= 9+ 76N, 210\"32180\%
tal corrections t@,r andc g from the regular ones. Note that 48(—1+3N)
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TABLE Il. The infrareda andc charges, and flows from the ultraviolet free theory to conformal fixed

points.

Model

Electric theory,
free,

aRr Cir yv —aRr
Spin (7) with Ny<7 spinors8 123 1125> 71 1125> N¢ (1 15)2 - 15)
no accidental symmetry E TNfZ § TNfZ 1_2 N_f N_f
Spin (7) with Ny=7 spinors8 1527 23 4903 1229 13 3505 3551
accidental symmetry 784 168 2352 392 84 1176 1176
G, with 7<N;=<11in7 21 126>0 49 126> 7N; (1 12\2 L 6
no accidental symmetry 4 N? 8 N? 48 N Ny
E-, with 4 fundamental$6 %ﬂ % &75
64 64 192
Eg with 6 fundamentals 27 4_5 115 2_7
4 8 4
Eq with matter in 3x (27+27) 45 105 27
4 8 4
F, with N;=5 in 26 1833 1079 247
200 100 75
F4 with Ny=4 in 26 1209 7 3739 1625 1 4859 5413
accidental symmetry ﬁ+ 28~ 768 256 48 768 768
Spin (8) with matter in 51 61 7
4% (8,+8,+8) ) ) )
and 1- Ny
Aa=— =+ 25| 6(3—4N)+ 96(N;—N.—1)
(—2+5N,)(6— 19N+ 12N2?) o
= >0.
16(—2+3N,)? Ne+1 N )
—108 ——— —1| (Nr—Ne—1)
(2) Consider the SQ{.) theory. In the region 3{, f f
—2)/2<N;=<3N;— 8 both the ultraviolet and infrared theo- N.+1 N,
ries are at their conformal fixed points and we have +36 2 (N~ 1)2) (N¢=Ng—1)%|>0.
f
pae 2N 3 N+ 8NN+ 2) 9(N° Nc_l)
a= 25 f £ NN . .
48 32 ¢ Ni N¢—1 In the cases oN;=3N.+1, 3N.+2 the infrared theory is
NNt 2)743 Ne N1 ) free so that, respectively,
ro N?  (N—1)?
A —3— 16N+ 4INZ+ 138N3 0
a= >
X (Ny—Ng+2)3|>0 16(1+3N,)?
In the cases oN;=3N;—7, 3N.—8 (in the latter case we gpq
limit ourselves ta\.=4 for the ultraviolet theory to be in the
conformal window the infrared theory is free so that, respec-
tively, A — 28+ 86N+ 47INZ+ 414N3
a= 2
o, ~882F 1758V~ 101NZ 180N 482+ 3Nc)
= >
a 96(— 7+ 3N)? !
The mass deformations obviously respect ahgheorem be-
A —192+ 372|\|C—193N§+ 30N§‘>0 causedal/dN;>0 in all cases(see explicit computation in
a= .

Sec. llI).
Deformations of spit7) Pouliot model First consider the
(3) Consider the Sp(.) theory. In the region 3. Higgs deformation of the spiri7) Pouliot model with 7
+1)/2<N;=<3N.+1 both the ultraviolet and infrared theo- <N;=<14 fundamentals to th&, model withN;—1 funda-
ries are at their conformal fixed points and we have mentals and\N;—1 Goldstone superfields.

16(—8+3N,)?
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TABLE Ill. Higgs deformations of Distler-Karch models. TABLE IV. Matter content of Kutasov-Schwimmer models.
Higgs deformation F,—Spin(8) Ec—Fa E;—Eg SU(NN,.) SU(Nf)q SUNf)g U(1)r
auv—aR &23 &77 EE' Q (] O 1— ﬂ

300 1200 64 (k+1)N¢
6 d (] 1— i
In the region 8<N;=<14 there are no accidental symme- (k+1)N;
tries either in the ultraviolet or in the infrared. Thus we have x adj 2
rg'=1-5N¢, r7=1-4/(N;—1), andri=3. The flow is kit 1
Aa= 5 5 (13500~ 27OOCNf+7523\lf2— 141N§ N:,N. where both the electric and magnetic theories are as-
144NF(N;—1) ymptotically free,
+69NF+N?)>0.

2N
k—°< N¢<2N,.
Note that forN;= 13,14 the infrareds, theory is free. In 2k—1

this case we have
There is an accidental symmetry in the range

Aa(N¢=13)= 3781 Aa(N¢=14 _ 89
a(N¢= )—m, a(N¢= )—@-
2N, 3N,
=
For Ns=7 the UV theory has an accidental symmetry. One 2k—1 Np< k+1’
has
1945 where it corresponds tQX@ out of the unitary region for
Aa= 2352 one or more values gf. This accidental symmetry may ap-

pear in the conformal window for ark=2 (and sufficiently
Mass deformationsy giving a mass to one of the flavors largeN,). In particular, fork=2 it appears foN;<N, and
one can generate the floM;—N;—1. Obviously, a,,  for k=3 it appears foiN;<3N/4.
—ar=a(N;)—a(N;—1)>0. The only explicitly renormalizable Kutasov-Schwimmer
The results of computations for the flows induced bymodel corresponds tk=2, and it is studied below. Thie
Higgs deformation of Distler-Karch superconformal models=3 theory can be made renormalizable in part of its confor-
are given in Table Ill. mal window, and this is discussed in Sec. VI.
Mass deformation of Fmodel[26]. By giving a mass to In the case of absence of the accidental symmetry we may
one of flavors the theory wittN¢=5 is driven to a new use Egs(2.28. We have
conformal fixed point witiN;=4 flavorsQ; aner=%. The
theory has an accidental symmetry associated with decou- 9 { 3

pling of the 16 mesond/;;=Q;Q;, rm=5. For the flow +1

from N;=5 to N;=4 we have

2
— - 2_
ArRT 33 (k+1 1 (Ne—1)

85603 16 No 2N+l
Aa= o550 (k+1)3N? " 3 k+1 ]’
C. Models with two types of irreducible representations 9 2 3 )
with uniquely determined S current CrR=35 [ (m— 1] +1|(Ng—1)

This set of models includes those given in Réis/] for 4 )
SU[18,19, SO, and Sp gauge groups. We discuss in detail 16 &jL 10Nc+1
only the SU Kutasov-Schwimmer models and the Pouliot (k+1)° N7 9 k+1 |’
spin(7) model withN_+ 4 flavors in8 and singlet$25]. For (5.9
these models we discuss also various flows between confor-
mal fixed points. 9 2 7],

Consider the Kutasov-Schwimmer moddl7] with the Aa=- (m—l +57/(Ne—1)
SU(N.) gauge groupN; flavors of quarksQ andQ in the
fundamental, and a chiral superfieidin the adjoint repre- 16 NI 2 N2+1 4NgN,
sentation. The superpotentiaMg= X“*1. TheR charges are ~(k+1)3 sz + 3 k+1 27 |-

given in Table IV.

The theory has a dual with gauge group 8N{—N,),
with N; flavors of @ +0), an adjoint and gauge singlets. It is obvious thatAa>0 in the conformal window since for
The conformal window is presumed to be the region inall chiral fieldsr g<3.
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At k=2 we have particular atN.= N;=3 (the only point in the renormalizable
conformal window with no accidental symmetignd for the

N 2N\ 2 - -
Ag= ¢ c (Ng+Ng)=0. flow k=3—k=2 we have
24 Nf 2
7 43Ng
' . . : Aa=—+ >0.
Note also that the first two equations in Ef.1) agree with 768 768

the results for Seiberg’s QCD &t=1.

We now consider the contribution of the accidental sym-At N.=2 the k=2 Kutasov-Schwimmer model is not de-
metry. We concentrate on the renormalizable dase. In flned since TrX®=0. Instead one can consider the flow from
the region N /3<N;< Nc, the meson operatd = QQ has thek=3 N;=2 fixed point in the ultraviolet t&k=1, i.e., to
ru=2(1—2N/3N;)< 2, so there is an accidental correction Seiberg’s SW2) SUSY QCD withN¢=2 flavors. This infra-
to cir andag (5.1). First we note that for largél, andN;  red theory is confining and the flat directions are lifted due to
~2N./3, the previous formulags.1) for the k=2 central ~Nonperturbative quantum correctiofi7]. As a result the

charges without accidental contributions give SU(4) global symmetry is broken to ). The infrared low-
energy theory is described by five free chiral superfields with
2
C<0>:_£ a(o):—iNz r=%. Thus we have
IR 6’ IR 24
451
: o o . Aa= -~
and are negative. This is not surprising since the theory is 768

effectively nonunitary if the decoupling of the meson field is . . i
not taken into account. Positivity is restored by the acciden- Accidental symmetryConsider first thé&=3—k=2 flow
tal contribution, and this is an interesting check on the entiréVith an accidental symmetryQQ) in the IR and none in the
hypothesis of accidental symmetry. The sum of &ql) and ~ UV. This corresponds to8./4<N¢<N.. We have

the accidental correctio®.4) are

A NZ N 112IN2 2N3 37N
- < —cy
N2 7N2 2NE NG 8= 7256 6 T 7768 3N, 384N
=166 NN 5 TaN, eng O
f f In the region N /3<N;<3N./4 there is an accidental sym-
N2 oN2 2N3 N4 metry (QQ) in both the IR and. uv, and th(—? above expres-
ClR=— 1 Ny 1IN ¢ ) sion has to be corrected. Obviouslya>0 since the acci-
8 12 12 8 3N;  6Nj dental contribution to the UV theory is positive.

(5.2 For N;<2N./3 the infrared theory is the free magnetic
k=2 theory[l?] (again we must consid&.=3). The value

of ajg can be computed by assigning 2 to all chiral super-
fields of the magnetic theory. In the regioNg11<N;
<2N/3 the ultraviolet theory has only one accidental sym-

We note that intrinsically positive accidental corrections to
ar decreasa,—ag and thus tend to threaten thetheo-
rem. Nevertheless we find that with the accidental contribu-

tion included
on inciu metry (QQ) and we have
2 4 3 2
Aa= 11:° + 6'\’:"2_ z‘:lc_ 23I;I:1N° %;o, (5.3 __ 5. 21INF N 5N7 3NiNg  N7Ng N 291N
f f 256 1152 288 4 64 256
The contribution of the accidental symmetrylias always 5N?N2 9ON2  oN?
negative. However, we find that all positivity conditions, in- + 1152 3N, 128N2>0.
f f

cluding b>0, are satisfied foN;,N. in the accidental win-
dow. For example, for the central charge of the Bi)q

- . " .
current we find fork= 2 For Nt<6N/11 there is an additional accidental symmetry

(QXQ) so thatayy increases and agaika>0.

Consider th&k=2—k=1 flow. The infrared theory is just
br= (2NZ—2N¢N.+N2?)>0. (5.4  Seiberg’s QCD in the conformal phase. There is no acciden-
3N tal symmetry in the physical window in the IR, fd¥;

In the regionN;=3N_./2 the IR theory is at the con-

Deformations of Kutasov-Schwimmer superconforma%rmal fixed point we have

models.
(i) Consider now the k-k—1 interpolation.The simplest 1 N2 19N?
case is to considew=Tr X¥"*+Tr X with (X)=0 and Aa=-— - 2—2 + 4TN;>

unbroken gauge groufd.7].

As mentioned above our approach is not expected to wor
for k>3 where there is no renormalizable description of the
theory. Fork=3 andN.=N; there is a renormalizable de-
scription that will be discussed in the next section. Here we 2 2
. S A . 7 1 N 5Ny N
just note that in this region in the absence of accidental sym- Aa= —— _2 - >
metries the central charges are given by Efs) atk=3. In 48 48NZ 6N7 12N, 4N?

lk—or N;<3N./2 the IR theory is free. By using the magnetic
descrlpnon of Seiberg’'s QCD to compudg; we get
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(i) Higgs deformation byX)#0. We now consider the
nontrivial stationary point of the deformed superpotential
[17] that corresponds to the breaking SUYj— SU(N.—1)
XU(1). ConsiderN.—N.—1 and k—k—1, k—2 andk
=2.3.

The flow k=2—k=1, N.—N.—1(N.=3). The infrared
theory is Seiberg’s QCplus 2\; free chiral superfieldsso
that we have to consider onldM.<N;<2N.. At N.=<N;
<3N./2 the infrared theory is confining and can be de-
scribed by the free magnetic theory witk- 3 for all chiral
superfields. In this case we have

Aae 19 1INy N? 3N, 5NN, 7N2 N§>
8748 24 48 12 48 BN

At 3N J/2<N;<2N. the infrared theory is in the non-
Abelian Coulomb phaséplus 2N; free chiral superfields
and we have

Aae 7+ 9 Nf+3NC ON, N2
8T 121N 247 4 aN? 24
27NZ  9N?  19N?

+ == ——+ ——=>0.
8N?7  4N?  48N7?

The flow k=3—k=2, N.—N.—1(N.=4). The infrared
theory is in its non-Abelian Coulomb phaseNf=N; then
there are no accidental symmetries either in the UV or IR
Thus we have

43N?
768

125 1 2

N¢
256 6NZ 3N,

>4 >0.

Aa

In the region N /4<N;<N, there is an accidental symme-
try in the IR and none in the UV. We have

A _253+ 1 . 2 +23Nf N7 7N. 2N,
87256  6NZ 3N, 24 ' 6 3 3N
2N, 112IN2 N2 2N2 2N3
— - +—4 =+ —-
N NiNe* —76g NZ? ~ N; 3N?
2N3  37N?

S >0.
3N; ' 384N?

In the region A /5<N;<3N./4 both the UV and IR theo-
ries have accidental symmetries so that baffy and ag
increase. This accidental contribution in the UV is crucial for
Aa>0 in this region.

The flow k=3—k=1, N;,=3. We have to consideN;
=2,3. In both cases the infrared theory is Seiberg'y2U
QCD with N; flavors in the confining phase. M;=2 the
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605

Aa= @

The flow k=3—k=1, N.=2. We have to consideN;
=2. The infrared theory is a @) gauge theory with two
flavors, which is infrared free. We have

ra 323
a= 7_68

(i) Higgs deformation along flat direction®ne can
changeN.—N;—1 and N—N;—1 by turning on<QNf)

=<(~3Nf>¢0. One can show for sufficiently large which

correspond to nonrenormalizable models theheorem is
violated due to the negative contribution of Goldstone super-
fields. However,Aa>0 in the renormalizable casés<3.
This is the first observed problem with tagheorem and we
discuss it in Sec. VI after further study of nonrenormalizable
cases.

(iv) Massive deformation®By adding a mass term to one
of the flavors one can redudd;— N;— 1. This obviously
givesAa>0 sincedal/dN;<0.

Spin (7) Pouliot model withN.+4 spinors8, q;, with
rq=1-5/(N.+4), singlets My; j with ry=10/(N.+4).
There is a superpotentid qg. We have

— 398+ 87N+ 74NZ+ 38N3— N2
16(4+N,)?

c=

3(—308+ 42N+ 44N2+23N3— N
32(4+N,)? '

a:

For the flow from the ultraviolet free theory to the con-
formal fixed point we have

(— 11+ N¢)?(42+ 23N+ 5N?)
- 48(4+N,)?

Higgs deformation of the modeine can check thata
>0 under the flowN.—N.—1 in the conformal window
(N.<10).

VI. NONRENORMALIZABLE KUTASOV-SCHWIMMER
MODELS

In this section we shall study flows of central charges in
models which are nonrenormalizable as fundamental theories
with Kutasov-Schwimmer models fée=3 as examples. It is
open to question whether our method is correct for nonrenor-

infrared theory contains just five free chiral superfields withmalizable theories, but we analyze the data first and then

r=3%. The UV theory has an accidental symmetQQ).
Thus we have

1453

Aa= 1536

At N;=3 the infrared theory is described by nine free me-

sons and two baryons € 2/3), and

discuss the situation. To simplify the presentation we shall
restrict to largeN. and setN;=xN., and we shall take
<5 and N./(k+1)<N;<2N, to avoid complications of
accidental symmetry. The upper limit is the naive asymptotic
freedom condition. Many more cases were actually studied
with results in the same pattern we report here.

In the largeN,, N; region the value o in Eq. (5.1 for
the casew=Tr X! is
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2

9 7  N{N. 49N? 9N?
a(k+1)= 7 .

768 24 768 1287

1 Aa= 0.

2 L2
TR T

3 16
(k+1)3x?|"
(6.
The computation above fax(4)—a(3) was valid only for
which is positive in the region indicated above. Theyx>1 because we did not include accidental contributions.
S-current method by which this value is Computed |mp|IC|t|y However, we can now add the previous|y Computed contri-
assumes that there is a free ultraviolet fixed point and that thgytion to a(3), namely, Aa(3)=N§(1—x)2(4—x)/6x
S, current is well defined along the RG flow. If we make this [which should be multiplied by a step functiof{(1—x)].
assumption then tha theorem is satisfied for the flow from The new result for the flow ofa, namely, a(4)—a(3)
this fixed point since < 3 for both adjoint and fundamentals. —Aa(3) is now valid for 0.75l.<N;<N, and is positive in
We can also test tha theorem for flows which interpo-  this range. So the observed violation above occurs only in
late between nontrivial fixed points in the Kutasov- the nonrenormalizable region.
Schwimmer series. Indeed, evidence was given n 1R9f5- We must consider the question whether one can expect
[17v23k that in the perturbed theory withW=Tr X*"* b3 theorem to hold for nonrenormalizable theories. In two
+Tr X%, there are flows from thek(+ 1)-fixed point theory  dimensions, Zamolodchikov assumed Wilsonian renormaliz-
in the UV (where TrX“ is an irrelevant operatprto the  apility in his proof of the two-dimensional theorem. The
k-fixed point theory in the IRwhere TrX*** is irrelevant.  structure of the theory above some large cutbfivas not
Therefore the differencesi(k+1)—a(k) provide further yelevant to his demonstration that thdunction C(g(w)) is
tests of the theorem in the new situation of interacting criti-monotonically decreasing toward the infrared below this
cal theories aboth ends of the flow. The differences and scale. In the approach of Cappelli, Friedan, and Latfie
their signs are as follows: the ultraviolet central charge,y, is expressed as an integral
over a Lehmann weight function, and the integral diverges in
a (power counting nonrenormalizable two-dimensional
theory. The well known Cardy sum rulegyy——cCcRr
~ [d%xx¥(®(x)©®(0)) also diverges. It is entirely possible
2 that in future work arA function can be identified and mono-
a(4)—a(3)= 3—2° [ —0.143+ —2—1 <0, tonicity proven without assumptions concerning the ultravio-
X let behavior. However, at present we have theoretical control
of the Euler anomaly coefficient only at fixed points, and one

2

ONg
a(3)—a(2)= 37

1.40 3
—0.148+ 71 >0, §<X<2,

1.546<x<2>0, 1<x<1.546; must expect that this control is lost in the ultraviolet limit of
a nonrenormalizable theory. One possible technical reason is
ON?Z 0.12 a problem with theS-current method we have used. TBe
a(5)-a(4)= 5 [_0-125+ 2 1<0’ current can be viewed as the solution of the operator mixing

problem for the curren®“. In a renormalizable theory it can
0.988<x<2>0, 0.75<x<0.988: mix only Wlth a flavor smgl_et combination of Konishi cur-

rents, but in a nonrenormalizable theory there are an infinite
number of possibilities.

2 0.05
a(6)—a(5)= ~0.102+ —5—| <0,
32 X VII. THEORIES WITH ADDITIONAL GLOBAL U (1)
SYMMETRIES
0.728<x<2>0, 0.6<x<0.728. (6.2

In theories with anomaly-free global U(d)symmetries
the R symmetry is not unique and wee priori do not know
which R-symmetry participates in the superconformal alge-
in the upper part of its allowed range. We will discuss thisbra of the infrared theory. As a result we cannot determine

below, but let us digress briefly to discuss a special propert§iR: Pir. and ¢r by the procedure described above. For
of the W= Tr X* theory, which will strengthen our inference Simplicity we assume that there is a single U{symmetry.

that failure of thea theorem is due to nonrenormalizability. N this situation the anomaly fre current is not unique, and

We consider a theory whose field content is that of theth*ere is a one parameter ambiguity in the choice of constants

Kutasov-Schwimmer model with an extra chiral superfield?i N the anomaly-freeSg and S* currents of Eqs(2.19

Y§ in the reducible adj 1 representation of the gauge group. and (2.21). We choose any member of this one-parameter
The superpotential i8V= —Tr Y2+ 2 Tr(Y X2). The fieldy ~ family as a particulalR symmetry with currentS”. This

is massive and may be integrated out to givg=Tr X*. corresponds to_ a partlculgr aSS|gnmenththarg§3i=(2
Thus the new theory is equivalent to thé=Tr X4 Kutasov-  + % )/3 for chiral superfieldsd, each of which has a
Schwimmer theory in the infrared, and is renormalizable unique flavor charge; . The most generdR current is then
asymptotically free, and without accidental symmetry in theS*=S*—vJ*, wherev is a real parameter andt* is the
reduced range I8./4<N;<N;. In the presence of the new flavor current, and th&® charges for this current amg(v)
chiral superfieldy the value ofa,,, changes so that for the =r;—uvq;. For one particular value af this S current is in
flow from the ultraviolet free fixed point to the infrared we the same multiplet as the stress tensor at the IR fixed point,
have but it is usually possible to determimeonly near the weakly

We thus observe additional violations of tlee theorem,
which occur in the three nonrenormalizable cases above for
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coupled end of the conformal window, where the RG flow is a, )

perturbative. ve2=— (Ne+1)+0(ay),
We can compute the anomaly coefficieats(v), bir(v),

cir(v) as functions ob from Eq.(2.28 and use the various o 1

positivity conditions to constrain the value of A weak YQ2=— 2—* (NC+ >

check of thea theorem and conformality is then provided by m

the constraint that there exist a regionuirfor which all of Defining s =2— N, /(N+1), vanishing of the beta function

the positivity conditions are satisfied. Conversely, these posi; A(N+1)—2Ns+2(N+1 +2N to ordere de-
tivity conditions constrain the scaling dimensions of opera—Bo{ (Ne+1) i+2(Net1)ys Yoz ©

tors at the fixed point. Furthermore, the physically aIIowedtermlnes the gauge coupling and anomalous dimensions,
value ofv is restricted by the assumption that all chiral com- a, e
posite fields have (v)>2 so that unitarity is satisfied with- —ye=— (Ne+1)= §+0(82)- (7.4
out accidental symmetry.

We now illustrate this procedure for the SfN gauge  since the scaling dimensions are proportional to e
theories with N fundamentals and one two-index symmet- charges;, this fixes to be
ric tensor, previously studied in Rdf29], where evidence

+0(a?). (7.3

for a non-Abelian Coulomb phase was given in the confor- 2 Ys2\ 2 &

mal window 0<N;<<2N.+ 2. The charges of the fields un- V=3 ( + 2737 & (7.9

der the global symmetries are given below, with a simple

choice for the anomaly-fre8 symmetry At the pointN¢{=2(N.+1), ayy—a,;r=0. This point is a
local minimum as a function oN; and v, so the flow is

Sp(2N,) Su(2Ny) U(1)e U(1l)s necessarily positive as moves away from the free field

value. In fact, the perturbative analysis is certain to preserve

S N 1 -1 0 positivity sincebg, ¢, anda,g are large and positive near

Ng+1 the free point.
Q ] ] N; 1

VIIl. REVIEW OF RESULTS
As discussed above the valuewofs constrained by unitarity. ) i i
For this modelQ? and S? must have scaling dimension  Letus summarize the conclusions of this paper. There are

greater than one, & charge greater thah. This requires rigorous positivity constraints on the flavor current and

to lie in the range V\_/eyI2 trace anomaly cqefﬁcients in any renormalizable fogr-
dimensional theory which flows from a conformal theory in
1 2N, the UV to another in the IR. These constraints arise because
§<u<m, (7.1))  the fixed-point values of the anomaly coefficients coincide
Cc

with central charges of the conformal algebra at the fixed
point, and the central charges must be positive by unitarity.
This part of the argument was first presented in R2f.
There are additional conjectured positivity conditiphs] on
<N;<2(Ng+1), (7.2 the Euler anomaly coefficier_&(g(,u)) and on its row[SJ
from the UV to the IR. In particular the only viable candidate
for a universak theorem in four dimensions seems to be the
where the upper bound is from asymptotic freedom. Equainequalityay,—a,g>0. There is no proof of this result, so it
tions (7.1) and (7.2 determine the triangular “physical re- is important to test it in models where both the UV and IR
gion” of the two parameterBl; andv. It is actually expected behavior are known. It is fortunate that many such models
[29] thatv exits from the triangular physical region below are now known from the study dii=1 Seiberg duality.
some value ofN;. In this case an accidental symmetry is Because of asymptotic freedom the UV values of the
required, and our analysis is valid only above this value ofanomaly coefficients can be simply obtained from lowest
N; . In thev — N; plane we plot the curvesg(v,Nf)=0 and  order one-loop graphs, but the IR values are more difficult
ar(v,N¢)=0 for various values oN.. The results, shown because the coupling is strong at long distance. It was first
in Fig. 2, indicate that positivitg,s>0 andag>0 holds in  shown in Ref[3] that the IR values can be easily computed
the entire physical region. Further, the flay, —agr and the  from the U(1kFF, U(1)g, and U(l)z anomalies which are
value ofb,z for both SUN;) and U(1} central charges is usually calculated to establish the IR equivalence of the elec-
positive in the entire region shown. Thus there is no coniric and magnetic duals. This is possible because of the close
straint on the parameter from any of the positivity condi- relation between the trace anomaly and the anomalous diver-
tions studied. gence of the U(1y current in global and local supersymme-
Near the edge of the conformal window, i.e., near thetry. Results[3] of tests of the positivity conditions in the
upper bound folN;, we can determine the scaling dimen- SU(N,) series of SUSY gauge theories showed that all con-
sions of operators perturbatively, hence determining the corditions were satisfied throughout the conformal window, and
rect R current order by order in the gauge coupling at thethat other possible-theorem candidates could be ruled out.
fixed pointa, . The anomalous dimensions for the operators The major purpose of the present paper was to test the
Q? and$? are, near the poimtl;/(N.+1)~2 [14,29, positivity constraints in many more models. For this purpose

and also determines the lower limit & in

N+1

2
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FIG. 2. Positivity conditions are satisfied below e 0 anda=0 curves, which includes the entire physical region. The short dashed
line is the weak coupling limit of from Eq.(7.5). Results are shown for variol, . The floway,, —ar andb,g are positive everywhere
in the graphs.

we developed general formula€.28 for the infrared (1) transformations. This assignment is not guaranteed to
anomaly coefficients in terms of the anomaly freeharges.  satisfy the rigorous positivity conditions, and the fact that
In models where the nonanomaloBscharges are unique, a these are satisfied is a broad consistency ched-of. du-
precise test of the positivity conditions can be carried ouljity. The fact thataz>0 andayy—a,r>0 in all renormal-
with little difficulty, and this has been done for the rigorous jzable models is very strong evidence that there is a universal
conditionsbiz™>0 andc,z>0 for flavor and Weyl anoma- 5 theorem, and that the RG flow is irreversible in four-
||eS, as well as tha theorem itself and the associated Con'dimensional Supersymmetric theorieS, and perhaps more. We
dition az>0. In many cases positivity can be establishedhope that this empirical result might stimulate a successful
from rather weak sufficient conditions, but a closer analysigheoretical proof.
is required for models with accidental symmetry and for |t js worth noting that the present approach is not imme-
flows between interacting fixed points generated by a relgjately applicable to some superconformal models With2
evant perturbation or Higgs deformations of the UV fixed[30-33 andN=1 [34]. It would be interesting to extend the
point theory. All conditions are satisfied in the large numberpresent method to these cases. Note that an approach to the
of renormalizable theories we have studied, but there argomputation of the flavob,g in the N=2 theories has been
counterexamples for interpolating flows in nonrenormaliz-recently suggested in REB5].
able theories whera,—ag can have either sign. There is
considerably less theoretical control in nonrenormalizable
cases and, even in two dimensions, tests ofah@eorem
which involve the ultraviolet limit of a power-counting non-
renormalizable theory seem to be problematic. Provisionally, We are grateful to Michael Bershadsky, Asad Nagvi,
then, we believe that the cases of negative flows in nonrenoCsaba Csaki, Witold Skiba, Matthew Strassler, Cumrun
malizable should not be viewed as ruling out a univeesal Vafa, and Fabian Waleffe for useful discussions. The re-
theorem. search of D.A. was partially supported by EEC Grant Nos.
The assignment dR charges in theories conjectured to be CHRX-CT93-0340 and TMR-516055. The research of J.E.
in the non-Abelian Coulomb phase is important for the un-was supported by U.S. DOE cooperative research agreement
derstanding of infrared dynamics because Mwel super- No. DE-FC02-94ER40818. The research of D.Z.F. was sup-
conformal algebra necessarily includes the generator gborted by NSF Grant No. PHY-97-22072. The research of
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APPENDIX: TESTS OF A POSSIBLE b THEOREM FIG. 3. The graphs for the flavor current correlator.
We present here tests of the inequality, —b,g>0 for 1 2N2N N.N
the flow of flavor current central charges in the situations p,,—bg=— = [_Cf ‘ c} e [N;—2N,],
(i)=(iv) for which previous tests of tha theorem were dis- 3 [Ne—N, N¢—N¢
cussed in Sec. Il. (A2)

(i) Let us assuméas was done ifi5]) that SUN;) QCD  which is negative in the entire free magnetic region. Hence
is realized in a confined phase with chiral symmetry breakihe b theorem fails again.

ing, so the massless spectrum consistsN?r‘rl Goldstone (iv) In the entire conformal window I8./2<<N; <3N, of
bosons which decouple in the long distance limit. For theSU(N.) supersymmetric QCD, it is knowf3] that by,
baryon number current one clearly hag,—bg>0 since —br<<0 in both electric and magnetic theories for the

there are no massless baryons. For a current of the vectorigfryon number central charge. We present here a more gen-
SU(N;) flavor group, on the other hand, we filgy 4N,  €ral computation for an electric type theory whh copies of

and brxN; with a common constant of proportionality. (R®R), and we include a mass deformation, makinfa-
Thusb,— bk changes sign within the region of asymptotic Vors massive. For a current of the low-energy S n)
freedom. Of course this could just mean that the conjectureflavor group, we have, using TF¢)?= 3, the central charges

Goldstone realization fails forM,<N;<11N./2. byy=dim R at the free UV point, and

(ii) To investigate théo theorem for largeN.,N; we can T(G)
make use of the well known QEIB function. Up to two- b,=3diMR =—————
loop order it is given byBoen(@) =2a?/3m+ /27, The 2(Ny=n)T(R)

graphs for the flavor current correlator in QCD are obtaine
from the identical QED graphsee Fig. 3 by replacing the
U(1) coupling by the SUY;) flavor matrix TA/2 at each

or the interacting fixed point theory withl;—n massless
flavors. One can then see that asymptotic freedom implies
) ) byy—b,<0 so theb theorem fails for a flow from the free
external vertex and by the gauge coupling mawit/2, yy fixeq point to any of the IR fixed point theories. Further-

aQ: ; )
wheret® is an SUN,) color matrix at each internal vertex. more,bnl—bn2<0 if n,<n,, so the flow between any pair

Th int is that these replacements preserve the relative, . .
€ point s that these replacements preserve the relat c?f fixed point theories in which the number of massless

positive sign between the one and two-loop contributions. . ) ;
The current correlator then takes the form qqarks o!ecreases also violatels theorem: At this point one
might think that an antb theorem holds in supersymmetric
TA)2 theories. However, this is not the case for Higgs deforma-
(L0 I(x)~(08,,~3,9,) —@ [Nt pg*?], tions. To see this we consider the basic Higgs deformation of
(A1) the SUN.), SU(N;) theory, leading to the SW_.—1),
SU(N¢—1) IR theory plus 2;—1) decoupled Goldstone
wherep is a positive constant and the fixed point value of thefields. For an SU{;— 1) flavor current we havb,= N, at
coupling isg* 2/4m=(22N.—4N;)/75N2. The same is true the free UV point, whilebjz=3(N.—1)%/(N;—1)+1 in the
for the correlator of baryon number currents. Thiog, Higgs deformed low-energy theory. The contributienl
—bigr~[N¢— (N.+ pg*?)]<0. comes from Goldstone fields. One sees quite easily that
(iii) One may also test a possibtetheorem in the free by, —bj; can have either sign in the conformal window, and
magnetic phase of SB;) SUSY QCD as follows. In the the same is true for the flow from the SN)), SU(N;) fixed
ultraviolet we computeb,, from the free field(R*J"J) point to that of the Higgs deformed theory.

correlator in the electric theory. The infrared valbg is The conclusion of this analysis is that the flow of flavor
obtained from a similar free field computation in the mag-central charges does not have a recognizable universal prop-
netic theory. The difference is erty.
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