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J. D. Edelstein and M. L. Trobo
Departamento de Bica, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina

F. A. Brito and D. Bazeia
Departamento de Bica, Universidade Federal da Patz, Caixa Postal 5008, 58051-970 in®essoa, Parda, Brazil

(Received 27 June 1997; published 11 May 1998

We study a variety of supersymmetric systems describing sixth-order interactions between two coupled real
superfields in 2-1 dimensions. We search for BPS domain ribbon solutions describing minimum energy static
field configurations that break one half of the supersymmetries. We then use the supersymmetric system to
investigate the behavior of mesons and fermions in the background of the defects. In particular, we show that
certain BPS domain ribbons admit internal structure in the form of bosonic kinks and fermionic condensate, for
a given range of the two parameters that completely identify the class of sy$®&08&6-282(198)01912-3

PACS numbds): 11.27+d, 12.60.Jv

I. INTRODUCTION gation to(2+1)-dimensional spacetime, and so we are going
to search for kinks inside supersymmetric domain ribbons.
The idea of topological defects that present internal strucThere are many reasons to consider such systems; among
ture was first introduced ifiL], within the context of model- them we would like to single out the following: Potentials
ing superconducting strings. It was also explored by othewith sixth-order interactions define systems that admit the
authors[2,3] in different contexts, and more recently the existence of solitons of a different nature, at least in the sense
works of Refs[4,5] also investigated systems that admit thethat they may connect adjacent vacua in a richer set of
existence of defects inside topological defects. The generalacuum states. As we are going to show below, there are at
features of the works just mentioned are that they considdeast three systems that seem to be worth investigating; one
systems in 31 dimensions, and that the potential describ-of them was already considered (6], in the (1+1)-
ing the scalar fields depends on several parameters. In thiimensional case, and the others will be defined below.
case, solutions representing topological defects with internal The investigations are organized as follows. In the next
structure only appear after adjusting some of the several paection we perform the construction of the class of systems
rameters that define the model under consideration. of our interest in the framework of supersymmetric field
In some recent workgs—8], solitons that emerge in cer- theory. In Sec. Ill, we show that these systems present a
tain bidimensional systems of coupled real scalar fields wer8ogomol’'nyi bound for the energy whose saturation is
studied. The class of systems considered in those works hashieved provided the fields solve a set of first-order equa-
been showr9,10] to admit a natural embedding into the tions, simpler than the usual equations of motion. The solu-
bosonic sector of a supersymmetric theory, in such a wations of these Bogomol'nyi equations break one-half of the
that the set of free parameters is quite restricted. Within thisupersymmetries and then belong to a short supermultiplet.
context, the existence of topological defects inside domairin Sec. IV we illustrate the procedure by investigating some
walls in a model of two real scalar fields belonging to thespecific systems. Section IV A is devoted to the study of a
above-mentioned class of systems was first considergd].in  model already introduced ir6], and there we show that this
There, the system is defined by a potential that contains up teystem does not allow the formation of kinks or the trapping
the quartic power in the scalar fields, and the set of paramef mesons inside the domain ribbon. This result can be traced
eters is reduced to just two parameters. The system hastaan asymmetry produced by the fact that the domain ribbon
domain wall solution that traps in its interior a topological found for the sixth-order system connects the symmetric
defect produced by the remaining scalar field, provided the&sacuum state with nonsymmetric ground states. Neverthe-
parameter ratio is positive definite. It also has solutiondess, the effective potential owing to this configuration favors
known as domain ribbons inside a domain wall, and theythe entrapping of Majorana fermions inside the domain rib-
resemble a stringlike configuration that can be either infi-bon. In Sec. IV B we present a simple extension of the pre-
nitely long or in the form of a closed loop. vious model that circumvents the above-mentioned asymme-
As pointed out in 9], the reduction in the number of free try, allowing the existence of a kink inside the
parameters may perhaps lead to a clearer understanding sdfipersymmetric domain ribbon. We briefly discuss the for-
the physical properties these kinds of systems can compriseation of these kinks and their stability. The third model is
This is one of the main motivations of the present paper, irpresented in Sec. IV C, and its main feature is that both
which we shall further explore the possible existence of desuperfields are on an equal footing from the beginning. Then,
fects inside topological defects in systems belonging to theve show that the system admits domain ribbons with an
class of systems already introduced &8]. Here, however, internal kink of the same sixth-order nature, for a given
we shall investigate systems containing up to the sixth powerange of parameters, and we briefly discuss its classical sta-
in the scalar fields. In this case we shall restrict our investibility. Also, we investigate the behavior of fermions in the
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background of these solutions in Sec. IV D. We end this _
paper in Sec. V, where we introduce some comments, further o=\ —i Mﬁﬁ s 8
remarks, and conclusions.
) 4%
Il. SUPERSYMMETRIC SYSTEMS OF COUPLED 5,7p= _I&X—'—E 7, (9

REAL SCALARS

A general system of two real scalar fields ir-2 space- Where the infinitesimal parametey is a real spinor. Let us
time is described by the Lagrangian density now focus upon the classical configurations of this system.
We will then set the fermion fields to zero and look for
1 1 purely bosonic field configurations which, from the point of
L=50,$pd"P+5d,x"x—U(d.X), (1) view of the supersymmetric theory, can be understood as
background solutions. Responses of the fermion fields to
whereU(#, ) is the potential, in general a nonlinear func- these backgrounds can then be investigated. We then intro-
tion of the two fields¢ and y involving several coupling duce the following useful notation: Given a functional
constants for the different terms. As explained above, an indépending both on bosonic and fermionic fields, we will use
teresting framework that highly restricts the dimensionality] to refer to that functional evaluated in the purely bosonic
of the parameter space is provided by supersymmetry. In th&ackground,
respect, let us start by considering a supersymmetric field
theory in 2+1 spacetime dimensions, entirely constructed ﬂE]:]p,dFO- (10

from two real superfieldpl1] ¢ and=, Under condition(10), the only nonvanishing supersymmetric

_ =_ transformations that leave invariant the Lagrangi&hare
q) - ’ 1D == ’ 1D ’ 2 . . . .
(¢.4.Dy) (x:p.Dy) @ those corresponding to fermionic fields.

wherey andp are Majorana two-spinors, while , andD
are bosonic auxiliary fields. The Lagrangian density can be . BPS DOMAIN RIBBONS

written in terms of the superfields as Let us now show that the supersymmetric nature of the

1 o o system imposes lower bounds for the mass per unit length of

LN:1=§f d?[DODP+DEDE+W(P,5)]. (3)  a generic bosonic static configuration that is homogenous in
one of the spatial coordinates. Indeed, one can compute the

conserved supercharge that generates the transformations (8)

Here we are following the conventions introduced[ir?] and (9) to be

and, as usualp is the supercovariant derivative,

D=gg+i0y"d (4) —lfdz v | —ioyr Y
=dgt10vy"d,, Qu=75| dX I¢%lr/,a l)(apay
with the y matrices being represented b= 73, y*=irt, (11
and y?=—i72. In terms of component fields, after replacing

and use it to construct the supercharge algebra over the static

the auxiliary fieldsD , and D, by their algebraic equations bosonic background resulting in

of motion, the Lagrangian density can be written as

_.0
L—la ¢aﬂ¢+la Iy + i—,g + i_¢9 1((9W)2 S .
2Tk 2 WX PXH YT 503 g whereM is the mass of the purely bosonic configuration,
1(aw)2 1PW—  1PW—  PW— 1 1 aW\2 1/ a2
o) L -2 . (5 — 2 a2 (5124 (24 o 2 o2
2\ x| "2 a¢>2W 5 axzpp awx“"’ (5 fd X (V§)2+(Vx)*+ 5 P +2( &x) }

where it is explicit that the Yukawa couplings as well as the

scalar potential of the theory entirely depend on the supemhereas the “central extension” of the algel#as given by
potentialW. In fact, we stress the scalar potential results toa line integral over a curvE that encloses the region where
be the fields carry a finite energy density:

1/ oW\? 1/ ow\? . .
, ®) z- § Twax 14
r

2
o9.0-3l ) +2l 3

in direct correspondence with a general class of systems th#tis clear from its expression that the “central extensich”
comprises quite interesting properties as was already dés in general forced to vanish as a consequence of the scalar
scribed in Refs[6—-9]. The set of transformations that leave nature of the real superpotential. Indeed, the supersymmetry
invariant the system described by E§) is algebra of any three-dimensional system withNu 1 in-
variance does not have room for the introduction of a central

S,b=nb,  S,x=np, (7)  charge.
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There is a breakthrough which consists in studying conbroken supersymmetries, as expected, give zero energy
figurations that are independent of one of the spatial coordiGrassmann variations of the domain ribbon solution; that is,
nates, sayx,. Then, in order to deal with finite quantities they are zero modes of the Dirac equation in the background
that make sense, one must reintergetis the supercharge of the defect as can be easily verified. Quantization of these
per unit length and alst as a uniform longitudinal mass fermionic Nambu-Goldstone zero modes leads to the con-
density. In this case, the closed cuilveshould be identified struction of a BPS supermultiplet of degenerate bosonic and
with a discrete set of two points asymptotically located atfermionic soliton states which transform according to a short
both infinities in thex; axis. Then, Eq(14) must be rewrit- representation of the supersymmetry algebra.
ten as We have so far given a supersymmetry-derived proof of

the existence of a Bogomol'nyi bound and self-duality equa-
Z=W(X3— %) = WX — —®) =AW, (15  tions in the family of relativistic systems of coupled real
scalar fields first introduced in Rdf6]. In the next section
and the supercharge algelti) should be understood as the we will introduce specific systems, which comprise very in-

N=2, d=2 supersymmetry alge_bra which, in faCt’_e_ldmitSteresting topological defects that may or may not present
the appearance of central extensmns.. NOW’ the positive deffﬁternal structure provided the superpotenti&l is conve-
niteness of the supercharge algetitd) implies niently chosen

M=[AWM. (16
IV. SOME SPECIFIC SYSTEMS
This is nothing but the Bogomol'nyi bound of the coupled ) .
real scalar system introduced above. Indeed, althaughis Let us now consider explicit examples of systems of two
apparently different from the usual definition of the topologi- "€ scalar fields containing up to the sixth power in the
cal chargeT, it actually coincides with it since both depend scalar fields. To illustrate the procedure, in the following we

only on the topology13]. It can be seen that)V vanishes will consider three different systems, the first two containing
in a topologically trivial state and has a positive value in ad|fferent POWETS In each one of th? fields. This Is interesting
domain ribbon state. The appearance of the topologicaﬁ’ecause we will find defects of a different nature correspond-
charge as a central extension of the supercharge algeb: to each one of the two f|eI<_js. In the th'r.d Sijte”_" both
seems to contradict previous results obtained in Rafl for  1€lds ¢ andx enter the game with equal footing; that is, the

kink states ind=2 systems. However, we must point out potential in this case contains sixth-order powers in both
that the configurations we are considering fit into a dimen-f'elds'

sional reduction scheme, and so the re€Ll can be seen as
an expected resuft.5,16. A. BPS ¢° ribbons without internal kinks

It is Stl’aightforward to see that the Configurations that As a first System to study in order to obtain a deeper

saturate the bountlL6) are those preserving one-half of the jnsight into the topological defects that result from the satu-
supersymmetries. The explicit result appears after choosingtion of the Bogomol'nyi bound, we will consider a super-

¥°n.=* 7., which allows writing potential of the form
{Qln.1.907 ]}|=3fd2x[<5 (8, 0) S S I R
=L &L= li1=5 7. 7. Wi(d.x)= 57| 5d"—a% |+ sud™x". (20
;
+(8,,0)(8,.p)], A7 The potential that results from it can be obtained after(BQ.
to be

and therefore the bound is saturated provided(y,p)=0

or 8, (#,p)=0, thus preserving the purely bosonic nature 1, 5 5 a5 o 2 o o
of the background configuration. Here we recall that the only Ui(dx)= 3N (¢"—a") "+ hug(4"—a)x

configuration that preserves all the supersymmetries is the
trivial vacuum configuration. Furthermore, the equations that
saturate the lower bound are nothing but the Bogomol'nyi

equations of the system:

1 1
o 12X S PN (21)

This potential has an explicit discrete symmefyx Z, and

dé W _ degenerate vacuum stateg’=a?, y=0) that break the
H—ﬁ_o’ (18) symmetryZ, corresponding to the field. It also has a flat
direction for the vacuum expectation value pfwhen the
dy oW scalar fieldg sits at the symmetric vacuugh=0. In particu-
ax oy (19 Jar, the minimum =0, y=0) preserves the whole

Z,XZ, symmetry.
Let us consider the case when the supersymmetry corre- The set of first-order differentidBogomol'nyi) equations
sponding to the parametey, is unbroken[thus, Egs.(18)  corresponding to bosonic configurations of this system is
and(19) are valid with the upper signThe supersymmetry given by
generated byz_ is broken in the Bogomol'nyi-Prasad- dg
Sommerfield BPS domain ribbon background given by the b 2 .2 2
solution of these equations. The variatigBsand(9) for the dx =ho(¢Tma) tudx 22)
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and tial can present up to the sixth power in the fields. To see
how this comes out, let us introduce masses for ¢ghme-
dx_ (23 sons_residing outside the kinkm?(0,0)=\2%a* and
d =upodx. 2002 AV A\ 224 ; i
X my(a“,0)=4\“a”, depending upon the side. Furthermore,

: . . . for =0 the y mesons appear to be massless, andgfor
The bosonic sector of this system was already investigated in ¢ X PP ffo

J /
[6]. There was found the following set of solutions: The first —a“ we obtain
pair of solutions isy=0, and 1 1
L Ui(*a,x)= 5 puPa’x’+ 5 pPax’, (28)
d*(X)= Eaz[l—tanl"(xazx)]. (24)
and they mesons are such that’(a?,0)= u2a®. As a con-
It is easy to see that E(R4) is a solution just by noting that, Sequence, this system presents the interesting feature of con-
if one setsy— 0 in the potential, one gets taining a topological defect separating the outside regions
into two distinct regions, one contgirling masslgssiesons
1 and massivep mesons, with mass<a®, and the other with
Ul(qb’o):i)‘z‘/’z(‘f’z_az)z' (25 massivey and ¢ mesons, with masseg?a* and 4\ 2a*,
respectively. Because of this asymmetry, which makese-
a sixth-order potential which is known to admit solutions of sons to be massless at the symmetric vacyu#s0, there is
the form(24). The BPS domain ribbon is locatedxat 0 and  no way of making thep field trap they field in its interior,
its thickness is given bys~(\a?)~!. It is convenient to to give rise to a topological defect inside a topological defect
regard the domain ribbon as a slab of false vacuum of widthin two space dimensions. Since thefield is massless for
8 with ¢?=a?/2 in the interior andp?=0, ?=a’ at both =0, there is no other energetic argument left to favorthe
sides of it. field to be inside the ribbon. For instance, the region inside
A second pair of BPS solutions for the system above is the ribbon is defined witbk=0 and here we gep?=a?/2,
which changes the above potential to the form

1 1n 1) )?
)\ Ul(ia/\/i,x)=z,u232 X= 5(;—5)32}
and Xz(x)=<;—l)¢2(x), (26) 1 A1

+1—6,LL2&6(;— Z) , (29)

H*(X)= %az[l—tanrwazx)]

and in this last case one must require thag.>1. Both

SQ|uti0nS haVe the same energy pel’ Unit Iength, Wh|Ch |$Vh|ch presents Spontaneous Symmetry breaking )\fm
given by >1/2. However, spontaneous symmetry breaking requires
1 the presence of massive mesons inside the ribbon, and
E,=>|A|a%, (27)  these massive mesons would instead decay into the massless
4 mesons that reside outside the ribbon. We remark that the
. . caseN/u=1/2 seems to be interesting since this would also
and this follows from the fact that both pairs belong to themake they mesons to be massless inside the domain ribbon,

same topplogical sector. Furthermore, bc_Jth pairs of solutionBut here spontaneous symmetry breaking would unfortu-
are classically or linearly stable, and this follows from thenately not be present anymore

general resulf7] that ensures stability of solutions that solve Before ending this subsection, let us comment a little on
the pair of first-order differential equations, that is, of BPSstabiIity by following the standard way. From the above po-

solutions. ; ) : :
: . ' . tential U;(*=a/+2,x) we can write the corresponding kink
For the kink described by Edq24), let us first point out tc,olutions, forn/ u>1/2,

that this defect connects two regions which are very differen

from the beginning: a symmetric region with a vanishing N 1 1 N 1
value of ¢ is connected to an asymptotic region where the x=* _(__ “la tanr{—;m /___aZy . (30
discrete symmetry, related to the transformatio#h— — ¢ 2\p 2 2 mo 2

is broken. In this sense, this kind of soliton is asymmetric, in ) ] ] ]
contrast to the ¢* system, where the kink connects Tf;ese2 solutions, or better the pairs of sol_unons given by
asymptotic regions, both having asymmetric vaf@l The ¢°=a°/2 andy as above, do not solve the first-order equa-
issue here is that thé* model is usually considered to simu- ions and so do not give any BPS solution. For this reason
late second-order phase transitions, where the kink defecti® Proof of classical stability already introduced [ng]
describe order-order interfaces that appear in this case. Hofl0€S not work for them. To investigate stability we should
ever, the$® system is related to first-order transitions in COnsider

which the two phases, symmetric and asymmetric or disor-

dered and ordered, may appear simultaneously. Evidently, in Y

this last case the kink defects describe order-disorder inter- Pyt ¢+; 7n(Y) COSWyt) S
faces. As we are going to show, interesting physical conse-

guences may appear in this richer situation where the poterand
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— 1
X(y,t)=x+§ {n(y) cogwyt), (32 Ua(.x) = 5N2¢%(¢7—a%) 2+ hud?(p?—a%) x?
- = . . . . 1 1 1.\
where ¢ and y constitute the pair of classical solutions and +§M2¢2X4+ E’“Z P>— Ea2 X2, (3D
n(y) and{(y) are small fluctuations. In this case we substi-

tute the above configurations into the equations of motion t

get the equation Qhich presents a quite different vacuum structure without

flat directions. The degenerate vacua are given by the fully

symmetric state ¢>=0, y?>=0), a couple ofZ, invariant
S 77“) =w§( ””)y (33  states p?=a? x*=0), and a set of stategp®=a?/2, x°
¢n ¢n =(N\/2i)a?) that break the whol@,x Z, symmetry.

For minimum energy, static field configurations obey the

valid for small fluctuations and for static classical field con-¢qt ot first-order equations

figurations. HereS is the Schrdinger-like operator,

d¢
& Ix - N7 —a) ey’ (38)
y and
where V(y) is a 2x2 matrix with elements V; dy 1
=3?VIatiot;, wheref;=¢ andf,=y. Evidently,V(y) is &=M(¢2— zaz X (39)

to be calculated at the static classical configuratiqbnmd;
where the small fluctuations are being considered. which present soliton solutions. Indeed, if we getO0, it is

For the BPS pair of solutions we havwe=0; this de- immediate that this system admits the BB% solution that
couples the fluctuations and allows introducing an explicitwe found earlier, Eq(24), that is,
analytical investigation, as already dond @j. For the above

non-BPS pair of solutions, however, neithérnor y van-
ishes, and s&/(y) does not become diagonal anymore. To

get an idea here let us just write the nondiagonal elements of _ _ ) ) )
V(y) in this case: Another pair of solutions can be found using the trial orbit

method[19] to be

P2(X)= %az[l— tanh(Aa?x)]. (40)

Vip=Vy=p?a*f (M p)tanfg(y)] 1 1
X {1+ 20\ wtanRlg(y) T}, @y  F=zll-tana)] and x*(x)=3 (),
(41

with f(M )= u—1/2 and g(y)=(1/2)uf(N w)a?y. ) ] )
Experience from former investigatiofi$7] says that the re- Provided the coupling constants obey the relatjor 2x.
sulting Schidinger equation does not even map the exactlylhe above two pairs of solutions are BPS solutions and, thus,
solvable modified Posch-Teller problgi8], and so a stan- are stable[7]. As in the former asymmetric case, tif®
dard investigation concerning classical stability can only bedomain ribbon connects regions with different transforma-
implemented numerically, but this is beyond the scope of thdion properties under the symmetry subgralp However, if
present work. Such an investigation should confirm the inonhe computes the mass of temesons at both sides of the
stability of that pair of non-BPS solutions, as suggested bylomain ribbon(40), it is interesting to see that
the energy considerations presented above. 1
m(0.x) =mi(a’ x)= 7 u*a’; (42)
B. x* kinks inside a BPS ¢° ribbon

Let us now consider anothef® system. We will show in i.e., they field does not distinguish between the two outside
this subsection that it is possible to circumvent the asymmeregions of the BPS$® ribbon. This new scenario allows
try outside the domain ribbon of thg field that we have just building topological defects inside a topological defect. In-
found in the above system, in spite of the fact that the soludeed, it can be seen that inside the domain ribbon we have
tion itself is asymmetric. Moreover, we will find that the x=0 and this makeg?=a?/2. Consequently, thg mesons
resulting domain ribbon admits a nontrivial internal structurefeel an effective potential given by

that can be shown to be a kink. In order to see this, we 5

consider a system described by a modified superpoténtial 2 _ E 5 Z_L )
given by Uy(a®/2,x)= 2+ x 2Ma (43
1 1 1 For A/ u>0 there is a spontaneous symmetry-breaking po-
I 20— 42 72 _ 2_ /2 2
Waldx)= 2)\(;S (Zd) a +2’“ ¢ 2a X tential for the y field with vacua states located at?

(36)  =\a’2u. Moreover, the mass of the excitations is

This superpotential gives the scalar potential m’(a%2,x) =\ pua*, (44)
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and one sees tha’li(out)> m)z((in) for N/u<1/4, as follows  coherence lengtlf. To determine the explicit form of this
from the above results. This restriction on the parametersoherence length we see that the width of the above kink
ensures that theb® ribbon traps they kink in 2+1 dimen-  solution is given by 1\ na?, which essentially measures
sions. Indeed, it is energetically favorable for n@osons to  the distance between consecutive domaing?# x§, and so
remain inside the ribbon: the mass of the boson fia(x) should be identified with the coherence length in the present
increases away from the center of the ribbon, resulting in &ase, that is¢~1/\A ua2.

force F~ — dm(x)/dx that attractsy bosons toward the rib-

bon, entrapping them. Here we remark that ¢hdefect is of C. x° kinks inside a BPS ¢° ribbon
the ¢° type, while they defect is of thex” type, and so they Let us now consider a third system of coupled real scalar
are of a different nature. fields that, in spite of displaying an asymmetry of the effec-

In the present case there exists a parameter ramge tive potential outside the domain ribbon, allows the forma-
€(0,1/4), in which it becomes energetically favorable for ation of a nontrivial internal structure inside the defect. As we
x condensate to form within the core of the domain ribbon.shall see, this system presents a structure that gives a kink of
Indeed, the potentigi3) is minimized by a field configura- the x° type, that is, of the same nature of the host domain

tion for which y= = xy, where ribbon. To see how this works explicitly, let us consider the
N |12 superpotential
Xo~ (_ & (45) 1 1 1 1
- W3(¢1X):§A¢2(§¢2—a2 _EIU“XZ(gXZ _ a2

We take for simplicitya real and positive. It is straightfor-
ward to see that) ,(a%/2,x) <U,(a%/2,0), and this shows 1 5, 4
that inside the domain ribbon associated with ghéeld it is ML (47)
possible that domains wheje= * x, appear. It is clear that ) o

domains withy, and — y, should necessarily be connected Here we see t_hat both fields are very S|m|lar, although the
by topological defects. The interior of the BPS domain rib-Symmetry is stillZ,XZ,. The scalar potential generated by
bon is then a region where the discrete symménassoci-  this superpotential is given by

ated with they field is broken. Thus, inside the domain 1 1 Y2
ribbon scalar condensates will eventually form, but they will — Ug(¢,x) = E)\2¢>2(¢2—az)2+§#2x2(z —-a®
be uncorrelated beyond some coherence lergfh]. We

2

therefore expect domains gt + xo a_nd).(= ~Xoto form at 1, ,, 1, 22 L,
different positions along the domain ribbon, with each do- +Z,u 2% +§,u, 1+ —|¢"x
main extending an average length given§{yDifferent do- B
mains must be separated by a region whered that should Y
. . .. 2 242 .2
be understood as the location of the resultingink. This is +ul1- “ a“¢px”. (48

an example of a topological kink inside the topological do-
main ribbon. The explicit form of the solution is given by It is clear from the above expression that this system displays
Eqg. (40) for the host domain ribbon, whereas for the kink we spontaneous symmetry breaking for each one of the two
just have fields, separately. To see this explicitly, we note that

N 1
— _ 2
x(y)= ZMatanl‘(Z\/x,Ma y

Evidently, the domain ribbon appears from the pair of Bps”
solutions given byy=0 and ¢ as in Eq. (40), and is a
ribbon, a defect of dimension one in the planar system that U3s(0x)= EMZXZ
we are considering. For the kink, however, we see that it
appearsnside the domain ribbon, which is located =0  Thus, a domain ribbon solution of the type previously stud-
and extends along the direction described/lig the present ied exists for each one of the nonvanishing fields. In order to
case. The kink is a topological defect of dimension zero andee which field the system chooses to host the kink, we have
appears after settingg®=a?/2 and removing th& degree of to investigate the energy of kinks generated by the corre-
freedom in the above system. sponding(1+1)-dimensional systems described by the above
Investigations concerning classical stability may be intro-potentials. For a more complete investigation concerning this
duced by just following the steps already presented in thg@oint see Refl20], where the high temperature effects on the
former subsection. Like there, no analytical result can belass of systems of interest are presert&ar the system
obtained in the present case too. Here, however, the modifdefined byU;(¢,0) the energy of the correspondigd kink
cation introduced in the potential allows the appearance of &
region in parameter space obeying<R/u<<1/4, in which
the above pair of solutions might be classically or linearly
stable. In this region, as one knows, two consecutive kinks These thermal effects are relevant to the standard cosmological
must be separated by an antikink, so that the initial kink-scenario for the formation of the host domain ribbons, since one
antikink separation distance should be of the order of thé&nows that the cosmic evolution occurs via expansion and cooling.

1
| (46) Us($.0)= 5)\2¢%($?—a2)? (49

d

2
(50)

1
)
X 2
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1 . considerations favor the presence of kinks that connect
Es kink:Z|)\|a : (5)  asymmetric vacua to the symmetric vacuum. To write the
explicit solutions we see frord ;(¢,0) that the host domain
For the system defined Hy4(0,y) we get ribbon appears frony=0 and
E, wink=|u|a*, 52 1
k= |ula 2 HAX) = Eaz[l—tanh()\azx)], (58)

and so we can write the result
and here we should sat—4u, to get to the case we are

E, kinkz%EX ink - (53)  considering above. For the kink,_we consiqeg(azlz,x)
and work on the transverse direction to obtain
Thus, if we choose to work with\|=4|u|, we can consider 1
the ¢ field as the field to generate the host domain ribbon. x2(y)=a? 1—tanr‘(§,ua2y . (59)
In general, for static solutions the first-order equations are
given by These are the configurations for the host domain ribbon and
do the internal kink in the present case, respectively. The initial
——=\p(Pp*—a%)+udx? (54)  separation distance between defects should be of the order of
dx &, the coherence length that is now given by 1/ u|a2.
and Like in the former case, here we can also have a region in
parameter space where stable kinks appear inside domain
dy xX° ) X ribbons, and this is another example where a BPS domain
ax_ _M)((Z_a +updx, (55  ribbon hosts topological kinks.
and the domain ribbon appears after settypg-0. Let us D. Fermionic behavior

examine the behavior of thefield in the background of this
defect. We take the parametersand i to be real and posi-
tive with A=4u, for simplicity. In this case, thg field can
generate a kink inside the BPS domain ribbon. In fat,
=a?/2 in the core of the domain ribbon, and the correspond
ing effective potential results to be

Let us investigate the presence of fermions in the back-
ground of the BPS domain ribbon built from tlefield in
the systems introduced in the former subsections. To this
end, we have to read the effective mass of the fermions in the
‘domain ribbon background from the Yukawa couplings.
For the model of Sec. IV A, the effective mass of the
1 fermions in the BPS domain ribbon backgrou@d) can be
Uz(a2/2,x) = p2ab+ —= u?x?(x?—2a%)2. (56)  read off from the Yukawa couplings

32
. . L ., 3 ) a?\— 1
Here a mass for thg field can be introduced; it is given by Ly=-— 5)\ o) (X)_§ v— E,ugb (X)pp. (60
M2a4
m2(a2/2,x)= 7 (57 From this expression we see that it is energetically favorable

for the fermions# to reside inside the domain ribbon,
whereas this is not the case for the other Majorana field. This
result may perhaps lead to a mechanism for finding charged
' domain ribbons, provided it resists the complexification of
the spinori.
For the model of Sec. IV B, the corresponding Yukawa
couplings in the Lagrangian give

Outside the domain wall, fos)—0 the y boson mass is
given by m)z((out)z,uza“, and in the other outside region
where ¢?=a? the x boson acquires a massi;(out)

=4u2a*. Then, forh=4u we see that the® ribbon traps
the x field and topological defects associated with the fjeld
will form inside this domain ribbon. The situation here is

different from the two former cases, but the fact that ) 3 a?\_ 1 a2\ _
m’(out)>mZ(in) ensures the presence of theparticles in- Ly=— 5?\( d’z(X)—g =5 u ¢2(X)—7> pp-
side the BPS ribbon. (62)

The effective potentia(56) is minimized by a field con-

figuration for whichy=0 or = * \/2a, and now inside the Thus, both fermions are trapped inside the BPS domain rib-
domain ribbon generated by tigefield it is possible that the bon solution corresponding to this system. Moreover, we
x field presents domains with=0 andx?=2a?. We recall  would like to point out that one of the Majorana fermigns
that this case is different from the former case, where thgs massless in the core of the defect and sees an isotropic
nested field was governed by songé potential. Here they  exterior region. The possibility of trapping massless fermi-
field may present symmetric and asymmetric domains, whiclons inside the domain ribbon may open an interesting sce-
should be connected by topological defects. We expect daaario: to find stable domain rings, tH&+ 1)-dimensional
mains withy= y2a, y=0, andy= — y2a to form at differ-  analogue of domain bubbles in+3L dimensions, with the

ent positions, uncorrelated beyond a given coherence lengtiension of the domain defect being equilibrated by the quan-
. Correlated domains should form, however, in conformitytum mechanical degeneracy pressure exerted by the fermions
with the kink structure of the® system, in which energy that inhabit the ribbon.
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The same analysis can be carried out in the system pretested by symmetry considerations of the effective potential
sented in Sec. IV C. In that case, the Yukawa couplings ar@roduced by the background BPS ribbon. We have shown
given by that the modified superpotential allows the entrapment of

bosons as well as the formation pfkinks within the core of
3 a2\ 1 . the domain ribbon. Here, however, the defects are of a dif-
L3=— E)\(gbz(x)—g) Yip— E,LL((Z)Z(X)-FaZ)pp. ferent nature: The domain ribbon comes from tpefield
62) (with a sixth-order potenti@land connects the symmetric
minimum (¢=0) to an asymmetric onef?=a?), while the
. . L . kink is generated by thg field (with a fourth-order effective
From this expression we see th_at !t is energetlcajly f‘?‘VOVab"ﬁotentia} and connects the two asymmetric minimg
for the fermionsy to reside inside the domain ribbon, _()\/2,)a2 It is interesting to recall that despite the asym-
whereas this is not the case for the other Majorana fieldmetric behavior of the fields of the ribbon at both outside
Indeed, the fermiomp feels an effective potential that favors regions, this asymmetry is not seen by thefield in this

one of the exterior regions of the domain r.ibk.)on. This res“"system. This new scenario allows building topological de-
may perhaps lead to the formation of Fermi disks,(@®€1)-  focts inside a topological defect. For a certain parameter

dimensional analogue of Fermi balls it dimensions, 5046 it becomes energetically favorable focondensates
which represent a bag of false vacuum populated by a Fermj, torm within the core of the domain ribbon. Different do-
gas that stabilizes thg soll_ton against collaps_e. mains must be separated by a region where0, which is
The above reasoning is mostly speculative and a MOrgarrally understood as the location of the resulting internal
careful investigation should be carried out, but this is out Ofé( Kink.

the scope of the present work. However, we recall that Wé g yhirq system is defined by another potential, in which
have just §tuphed the Yukawa f:o_upl|ng§ |n.thel background of, the¢ and y fields present quite a similar behavior. In
the domaln r_|bb(_)n, foxy=0. This investigation is almost the this case we have shown that the system admits defects of
same investigation one has to deal with in systems with §,o same nature since now we can fifkinks inside a BPS
single field—see, for instance, R¢21]—for explicit calcu- 46 4omain ribbon, in spite of the explicit asymmetry of the
lations concerning Fermi balls in431 dimensions. effective potential outside the domain ribbon.
The host domain ribbon solutions preserve one-half of the
V. COMMENTS AND CONCLUSIONS supersymmetries, thus being BPS states. They are known to

In this work we have considered the existence of Bp<€ classically stablg7,8]. When we consider the inclusion of

topological defects with internal structure in planar system&inKS inside these supersymmetric domain ribbons, unfortu-
of two coupled real scalar superfields. To this end, we hav fa.tely, we cannot perform a completg analysis of t_helr sta-
endowed the kind of systems of our interest with an extendegility: Nevertheless, by means of simple energetic argu-
supersymmetry and looked into the sector of extended solleNtS; we are able to show that there is a parameter (émge
tions belonging to BPS representations. These configuratiorfa® Second and third modgls which these solutions might
are nothing but supersymmetric domain ribbons that solv@€ classically or linearly stable.

the set of Bogomol'nyi equations of the model. The system W€ have shown that the domain ribbon solution of the
is entirely defined in terms of just one function of the fields, S€cONd system traps both fermions and one of them becomes

the superpotentialy. We have studied three different massless in the core of the defect and sees an isotropic exte-

choices for)V, some of them leading to the appearance offior region. This feature could lead to the formation of stable

several seemingly interesting kinds of topological defectsd0mMain rings of finite radius. On the other hand, the third

BPS domain ribbons endowed with an internal structureYSt€m has an effective potentiall for one of the Majorar)a
given by a kink fields that favors one of the exterior regions of the domain

The first system is presented to illustrate the simplest casrébbon' This result may perhaps lead to the formation of

where excitations of the bosonic field in the background of d €™M disks in 2-1 dimensions. These possibilities, as well
4° ribbon do not favor the formation of internal structure, as the finite temperature effects on the class of systems of

although it is favorable for the fermian to reside inside this U interest, deserve further investigations. We hope to re-

domain ribbon. This result may perhaps lead to a mechanism°"t N these issues elsewhere.
for finding charged domain ribbons, provided it resists the
complexification of the spinay. The presence of the domain
ribbon is shown to break one-half of the supersymmetries; The work of J.D.E. and M.L.T. was partially supported by
that is, it is a BPS state. The superpartners of this configuconsejo Nacional de Investigaciones Ciéoéis y Tenicas,
ration can be built just by acting on it with the broken super-CONICET. D.B. and F.A.B. would like to thank Conselho
charges to obtain the fermionic zero modes that shall be suiNacional de Desenvolvimento Ciéiito e Tecnolgico,
sequently quantized. CNPq, and Coordenae de Apoio ao Pessoal do Ensino Su-
The superpotential that leads to the second system is sugerior, CAPES, for partial support.
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