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Kinks inside supersymmetric domain ribbons
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We study a variety of supersymmetric systems describing sixth-order interactions between two coupled real
superfields in 211 dimensions. We search for BPS domain ribbon solutions describing minimum energy static
field configurations that break one half of the supersymmetries. We then use the supersymmetric system to
investigate the behavior of mesons and fermions in the background of the defects. In particular, we show that
certain BPS domain ribbons admit internal structure in the form of bosonic kinks and fermionic condensate, for
a given range of the two parameters that completely identify the class of systems.@S0556-2821~98!01912-2#

PACS number~s!: 11.27.1d, 12.60.Jv
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I. INTRODUCTION

The idea of topological defects that present internal str
ture was first introduced in@1#, within the context of model-
ing superconducting strings. It was also explored by ot
authors @2,3# in different contexts, and more recently th
works of Refs.@4,5# also investigated systems that admit t
existence of defects inside topological defects. The gen
features of the works just mentioned are that they cons
systems in 311 dimensions, and that the potential descr
ing the scalar fields depends on several parameters. In
case, solutions representing topological defects with inte
structure only appear after adjusting some of the several
rameters that define the model under consideration.

In some recent works@6–8#, solitons that emerge in cer
tain bidimensional systems of coupled real scalar fields w
studied. The class of systems considered in those works
been shown@9,10# to admit a natural embedding into th
bosonic sector of a supersymmetric theory, in such a w
that the set of free parameters is quite restricted. Within
context, the existence of topological defects inside dom
walls in a model of two real scalar fields belonging to t
above-mentioned class of systems was first considered in@9#.
There, the system is defined by a potential that contains u
the quartic power in the scalar fields, and the set of par
eters is reduced to just two parameters. The system h
domain wall solution that traps in its interior a topologic
defect produced by the remaining scalar field, provided
parameter ratio is positive definite. It also has solutio
known as domain ribbons inside a domain wall, and th
resemble a stringlike configuration that can be either i
nitely long or in the form of a closed loop.

As pointed out in@9#, the reduction in the number of fre
parameters may perhaps lead to a clearer understandin
the physical properties these kinds of systems can comp
This is one of the main motivations of the present paper
which we shall further explore the possible existence of
fects inside topological defects in systems belonging to
class of systems already introduced in@6,8#. Here, however,
we shall investigate systems containing up to the sixth po
in the scalar fields. In this case we shall restrict our inve
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gation to~211!-dimensional spacetime, and so we are go
to search for kinks inside supersymmetric domain ribbo
There are many reasons to consider such systems; am
them we would like to single out the following: Potentia
with sixth-order interactions define systems that admit
existence of solitons of a different nature, at least in the se
that they may connect adjacent vacua in a richer set
vacuum states. As we are going to show below, there ar
least three systems that seem to be worth investigating;
of them was already considered in@6#, in the ~111!-
dimensional case, and the others will be defined below.

The investigations are organized as follows. In the n
section we perform the construction of the class of syste
of our interest in the framework of supersymmetric fie
theory. In Sec. III, we show that these systems presen
Bogomol’nyi bound for the energy whose saturation
achieved provided the fields solve a set of first-order eq
tions, simpler than the usual equations of motion. The so
tions of these Bogomol’nyi equations break one-half of t
supersymmetries and then belong to a short supermultip
In Sec. IV we illustrate the procedure by investigating so
specific systems. Section IV A is devoted to the study o
model already introduced in@6#, and there we show that thi
system does not allow the formation of kinks or the trapp
of mesons inside the domain ribbon. This result can be tra
to an asymmetry produced by the fact that the domain rib
found for the sixth-order system connects the symme
vacuum state with nonsymmetric ground states. Never
less, the effective potential owing to this configuration favo
the entrapping of Majorana fermions inside the domain r
bon. In Sec. IV B we present a simple extension of the p
vious model that circumvents the above-mentioned asym
try, allowing the existence of a kink inside th
supersymmetric domain ribbon. We briefly discuss the f
mation of these kinks and their stability. The third model
presented in Sec. IV C, and its main feature is that b
superfields are on an equal footing from the beginning. Th
we show that the system admits domain ribbons with
internal kink of the same sixth-order nature, for a giv
range of parameters, and we briefly discuss its classical
bility. Also, we investigate the behavior of fermions in th
7561 © 1998 The American Physical Society



hi
th

c-

in
lity
th
e
e

b

g
s

he
e
t

th
d
e

m.
or
of
as
to

tro-

se
nic

ic

the
h of
s in
the

s (8)

tatic

e

alar
etry

tral

7562 57EDELSTEIN, TROBO, BRITO, AND BAZEIA
background of these solutions in Sec. IV D. We end t
paper in Sec. V, where we introduce some comments, fur
remarks, and conclusions.

II. SUPERSYMMETRIC SYSTEMS OF COUPLED
REAL SCALARS

A general system of two real scalar fields in 211 space-
time is described by the Lagrangian density

L5
1

2
]mf]mf1

1

2
]mx]mx2U~f,x!, ~1!

whereU(f,x) is the potential, in general a nonlinear fun
tion of the two fieldsf and x involving several coupling
constants for the different terms. As explained above, an
teresting framework that highly restricts the dimensiona
of the parameter space is provided by supersymmetry. In
respect, let us start by considering a supersymmetric fi
theory in 211 spacetime dimensions, entirely construct
from two real superfields@11# F andJ,

F5~f,c,Df! J5~x,r,Dx!, ~2!

wherec andr are Majorana two-spinors, whileDf andDx

are bosonic auxiliary fields. The Lagrangian density can
written in terms of the superfields as

LN515
1

2E d2u@D̄FDF1D̄JDJ1W~F,J!#. ~3!

Here we are following the conventions introduced in@12#
and, as usual,D is the supercovariant derivative,

D5]ū1 i ūgm]m , ~4!

with the g matrices being represented byg05t3, g15 i t1,
andg252 i t2. In terms of component fields, after replacin
the auxiliary fieldsDf and Dx by their algebraic equation
of motion, the Lagrangian density can be written as

L5
1

2
]mf]mf1

1

2
]mx]mx1

i

2
c̄]”c1

i

2
r̄]”r2

1

2S ]W
]f D 2

2
1

2S ]W
]x D 2

2
1

2

]2W
]f2

c̄c2
1

2

]2W
]x2

r̄r2
]2W
]f]x

c̄r, ~5!

where it is explicit that the Yukawa couplings as well as t
scalar potential of the theory entirely depend on the sup
potentialW. In fact, we stress the scalar potential results
be

U~f,x!5
1

2S ]W
]f D 2

1
1

2S ]W
]x D 2

, ~6!

in direct correspondence with a general class of systems
comprises quite interesting properties as was already
scribed in Refs.@6–9#. The set of transformations that leav
invariant the system described by Eq.~5! is

dhf5h̄c, dhx5h̄r, ~7!
s
er
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dhc5S 2 i ]”f1
]W
]f Dh, ~8!

dhr5S 2 i ]”x1
]W
]x Dh, ~9!

where the infinitesimal parameterh is a real spinor. Let us
now focus upon the classical configurations of this syste
We will then set the fermion fields to zero and look f
purely bosonic field configurations which, from the point
view of the supersymmetric theory, can be understood
background solutions. Responses of the fermion fields
these backgrounds can then be investigated. We then in
duce the following useful notation: Given a functionalF
depending both on bosonic and fermionic fields, we will u
Fu to refer to that functional evaluated in the purely boso
background,

Fu[Fur,c50 . ~10!

Under condition~10!, the only nonvanishing supersymmetr
transformations that leave invariant the Lagrangian~5! are
those corresponding to fermionic fields.

III. BPS DOMAIN RIBBONS

Let us now show that the supersymmetric nature of
system imposes lower bounds for the mass per unit lengt
a generic bosonic static configuration that is homogenou
one of the spatial coordinates. Indeed, one can compute
conserved supercharge that generates the transformation
and (9) to be

Qa5
1

2E d2xH F2 i ]”f1
]W
]f Gca1F2 i ]”x1

]W
]x GraJ ,

~11!

and use it to construct the supercharge algebra over the s
bosonic background resulting in

$Qa ,Qb%u5gab
0 M1eabZ, ~12!

whereM is the mass of the purely bosonic configuration,

M5
1

2E d2xF ~¹W f!21~¹W x!21
1

2S ]W
]f D 2

1
1

2S ]W
]x D 2G ,

~13!

whereas the ‘‘central extension’’ of the algebraZ is given by
a line integral over a curveG that encloses the region wher
the fields carry a finite energy density:

Z5 R
G
¹WW•dxW . ~14!

It is clear from its expression that the ‘‘central extension’’Z
is in general forced to vanish as a consequence of the sc
nature of the real superpotential. Indeed, the supersymm
algebra of any three-dimensional system with anN51 in-
variance does not have room for the introduction of a cen
charge.
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There is a breakthrough which consists in studying c
figurations that are independent of one of the spatial coo
nates, say,x2. Then, in order to deal with finite quantitie
that make sense, one must reinterpretQ as the supercharg
per unit length and alsoM as a uniform longitudinal mas
density. In this case, the closed curveG should be identified
with a discrete set of two points asymptotically located
both infinities in thex1 axis. Then, Eq.~14! must be rewrit-
ten as

Z5W~x1→`!2W~x1→2`![DW, ~15!

and the supercharge algebra~12! should be understood as th
N52, d52 supersymmetry algebra which, in fact, adm
the appearance of central extensions. Now, the positive d
niteness of the supercharge algebra~12! implies

M>uDWu. ~16!

This is nothing but the Bogomol’nyi bound of the couple
real scalar system introduced above. Indeed, althoughDW is
apparently different from the usual definition of the topolo
cal chargeT, it actually coincides with it since both depen
only on the topology@13#. It can be seen thatDW vanishes
in a topologically trivial state and has a positive value in
domain ribbon state. The appearance of the topolog
charge as a central extension of the supercharge alg
seems to contradict previous results obtained in Ref.@14# for
kink states ind52 systems. However, we must point o
that the configurations we are considering fit into a dim
sional reduction scheme, and so the result~15! can be seen a
an expected result@15,16#.

It is straightforward to see that the configurations th
saturate the bound~16! are those preserving one-half of th
supersymmetries. The explicit result appears after choo
g0h656h6 , which allows writing

$Q@h6#,Q@h6#%u5
1

2E d2x@~dh6
c!†~dh6

c!

1~dh6
r!†~dh6

r!#, ~17!

and therefore the bound is saturated provideddh1
(c,r)50

or dh2
(c,r)50, thus preserving the purely bosonic natu

of the background configuration. Here we recall that the o
configuration that preserves all the supersymmetries is
trivial vacuum configuration. Furthermore, the equations t
saturate the lower bound are nothing but the Bogomol’
equations of the system:

df

dx
6

]W
]f

50, ~18!

dx

dx
6

]W
]x

50. ~19!

Let us consider the case when the supersymmetry co
sponding to the parameterh1 is unbroken@thus, Eqs.~18!
and ~19! are valid with the upper sign#. The supersymmetry
generated byh2 is broken in the Bogomol’nyi-Prasad
Sommerfield~BPS! domain ribbon background given by th
solution of these equations. The variations~8! and~9! for the
-
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broken supersymmetries, as expected, give zero en
Grassmann variations of the domain ribbon solution; that
they are zero modes of the Dirac equation in the backgro
of the defect as can be easily verified. Quantization of th
fermionic Nambu-Goldstone zero modes leads to the c
struction of a BPS supermultiplet of degenerate bosonic
fermionic soliton states which transform according to a sh
representation of the supersymmetry algebra.

We have so far given a supersymmetry-derived proof
the existence of a Bogomol’nyi bound and self-duality equ
tions in the family of relativistic systems of coupled re
scalar fields first introduced in Ref.@6#. In the next section
we will introduce specific systems, which comprise very
teresting topological defects that may or may not pres
internal structure provided the superpotentialW is conve-
niently chosen.

IV. SOME SPECIFIC SYSTEMS

Let us now consider explicit examples of systems of t
real scalar fields containing up to the sixth power in t
scalar fields. To illustrate the procedure, in the following w
will consider three different systems, the first two containi
different powers in each one of the fields. This is interest
because we will find defects of a different nature correspo
ing to each one of the two fields. In the third system, bo
fieldsf andx enter the game with equal footing; that is, th
potential in this case contains sixth-order powers in b
fields.

A. BPS f6 ribbons without internal kinks

As a first system to study in order to obtain a deep
insight into the topological defects that result from the sa
ration of the Bogomol’nyi bound, we will consider a supe
potential of the form

W1~f,x!5
1

2
lf2S 1

2
f22a2D1

1

2
mf2x2. ~20!

The potential that results from it can be obtained after Eq.~6!
to be

U1~f,x!5
1

2
l2f2~f22a2!21lmf2~f22a2!x2

1
1

2
m2f2x41

1

2
m2f4x2. ~21!

This potential has an explicit discrete symmetryZ23Z2 and
degenerate vacuum states (f25a2, x50) that break the
symmetryZ2 corresponding to thef field. It also has a flat
direction for the vacuum expectation value ofx when the
scalar fieldf sits at the symmetric vacuumf50. In particu-
lar, the minimum (f50, x50) preserves the whole
Z23Z2 symmetry.

The set of first-order differential~Bogomol’nyi! equations
corresponding to bosonic configurations of this system
given by

df

dx
5lf~f22a2!1mfx2 ~22!
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and

dx

dx
5mf2x. ~23!

The bosonic sector of this system was already investigate
@6#. There was found the following set of solutions: The fi
pair of solutions isx50, and

f2~x!5
1

2
a2@12tanh~la2x!#. ~24!

It is easy to see that Eq.~24! is a solution just by noting that
if one setsx→0 in the potential, one gets

U1~f,0!5
1

2
l2f2~f22a2!2, ~25!

a sixth-order potential which is known to admit solutions
the form~24!. The BPS domain ribbon is located atx50 and
its thickness is given byd'(la2)21. It is convenient to
regard the domain ribbon as a slab of false vacuum of w
d with f25a2/2 in the interior andf250, f25a2 at both
sides of it.

A second pair of BPS solutions for the system above

f2~x!5
1

2
a2@12tanh~ma2x!#

and x2~x!5S l

m
21Df2~x!, ~26!

and in this last case one must require thatl/m.1. Both
solutions have the same energy per unit length, which
given by

E15
1

4
ulua4, ~27!

and this follows from the fact that both pairs belong to t
same topological sector. Furthermore, both pairs of soluti
are classically or linearly stable, and this follows from t
general result@7# that ensures stability of solutions that sol
the pair of first-order differential equations, that is, of BP
solutions.

For the kink described by Eq.~24!, let us first point out
that this defect connects two regions which are very differ
from the beginning: a symmetric region with a vanishi
value of f is connected to an asymptotic region where
discrete symmetryZ2 related to the transformationf→2f
is broken. In this sense, this kind of soliton is asymmetric
contrast to the f4 system, where the kink connec
asymptotic regions, both having asymmetric vacua@9#. The
issue here is that thef4 model is usually considered to simu
late second-order phase transitions, where the kink def
describe order-order interfaces that appear in this case. H
ever, thef6 system is related to first-order transitions
which the two phases, symmetric and asymmetric or dis
dered and ordered, may appear simultaneously. Evidentl
this last case the kink defects describe order-disorder in
faces. As we are going to show, interesting physical con
quences may appear in this richer situation where the po
in
t
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tial can present up to the sixth power in the fields. To s
how this comes out, let us introduce masses for thef me-
sons residing outside the kink:mf

2 (0,0)5l2a4 and
mf

2 (a2,0)54l2a4, depending upon the side. Furthermor
for f50 the x mesons appear to be massless, and forf2

5a2 we obtain

U1~6a,x!5
1

2
m2a4x21

1

2
m2a2x4, ~28!

and thex mesons are such thatmx
2(a2,0)5m2a4. As a con-

sequence, this system presents the interesting feature of
taining a topological defect separating the outside regi
into two distinct regions, one containing masslessx mesons
and massivef mesons, with massl2a4, and the other with
massivex and f mesons, with massesm2a4 and 4l2a4,
respectively. Because of this asymmetry, which makesx me-
sons to be massless at the symmetric vacuumf50, there is
no way of making thef field trap thex field in its interior,
to give rise to a topological defect inside a topological def
in two space dimensions. Since thex field is massless for
f50, there is no other energetic argument left to favor thex
field to be inside the ribbon. For instance, the region ins
the ribbon is defined withx50 and here we getf25a2/2,
which changes the above potential to the form

U1~6a/A2,x!5
1

4
m2a2Fx22

1

2S l

m
2

1

2Da2G2

1
1

16
m2a6S l

m
2

1

4D , ~29!

which presents spontaneous symmetry breaking forl/m
.1/2. However, spontaneous symmetry breaking requ
the presence of massivex mesons inside the ribbon, an
these massive mesons would instead decay into the mas
mesons that reside outside the ribbon. We remark that
casel/m51/2 seems to be interesting since this would a
make thex mesons to be massless inside the domain ribb
but here spontaneous symmetry breaking would unfo
nately not be present anymore.

Before ending this subsection, let us comment a little
stability by following the standard way. From the above p
tential U1(6a/A2,x) we can write the corresponding kin
solutions, forl/m.1/2,

x56A1

2S l

m
2

1

2Da tanhF1

2
mAl

m
2

1

2
a2yG . ~30!

These solutions, or better the pairs of solutions given
f25a2/2 andx as above, do not solve the first-order equ
tions and so do not give any BPS solution. For this rea
the proof of classical stability already introduced in@7,8#
does not work for them. To investigate stability we shou
consider

f~y,t !5f̄1(
n

hn~y! cos~wnt ! ~31!

and
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x~y,t !5x̄1(
n

zn~y! cos~wnt !, ~32!

wheref̄ and x̄ constitute the pair of classical solutions a
h(y) andz(y) are small fluctuations. In this case we subs
tute the above configurations into the equations of motion
get the equation

SS hn

zn
D5wn

2S hn

zn
D , ~33!

valid for small fluctuations and for static classical field co
figurations. HereS is the Schro¨dinger-like operator,

S52
d2

dy2
1V~y!, ~34!

where V(y) is a 232 matrix with elements Vi j
5]2V/] f i] f j , where f 15f and f 25x. Evidently, V(y) is
to be calculated at the static classical configurationsf̄ andx̄
where the small fluctuations are being considered.

For the BPS pair of solutions we havex50; this de-
couples the fluctuations and allows introducing an expl
analytical investigation, as already done in@6#. For the above
non-BPS pair of solutions, however, neitherf̄ nor x̄ van-
ishes, and soV(y) does not become diagonal anymore.
get an idea here let us just write the nondiagonal elemen
V(y) in this case:

V125V215m2a4f ~l/m!tanh@g~y!#

3$11 f 2~l/m!tanh2@g~y!#%, ~35!

with f (l/m)5Al/m21/2 and g(y)5(1/2)m f (l/m)a2y.
Experience from former investigations@17# says that the re-
sulting Schro¨dinger equation does not even map the exac
solvable modified Posch-Teller problem@18#, and so a stan-
dard investigation concerning classical stability can only
implemented numerically, but this is beyond the scope of
present work. Such an investigation should confirm the
stability of that pair of non-BPS solutions, as suggested
the energy considerations presented above.

B. x4 kinks inside a BPSf6 ribbon

Let us now consider anotherf6 system. We will show in
this subsection that it is possible to circumvent the asym
try outside the domain ribbon of thef field that we have just
found in the above system, in spite of the fact that the so
tion itself is asymmetric. Moreover, we will find that th
resulting domain ribbon admits a nontrivial internal structu
that can be shown to be a kink. In order to see this,
consider a system described by a modified superpotentiaW2
given by

W2~f,x!5
1

2
lf2S 1

2
f22a2D1

1

2
mS f22

1

2
a2Dx2.

~36!

This superpotential gives the scalar potential
-
o

-

it

of

y

e
e
-
y

e-

-

e

U2~f,x!5
1

2
l2f2~f22a2!21lmf2~f22a2!x2

1
1

2
m2f2x41

1

2
m2S f22

1

2
a2D 2

x2, ~37!

which presents a quite different vacuum structure with
flat directions. The degenerate vacua are given by the f
symmetric state (f250, x250), a couple ofZ2 invariant
states (f25a2, x250), and a set of states„f25a2/2, x2

5(l/2m)a2
… that break the wholeZ23Z2 symmetry.

For minimum energy, static field configurations obey t
set of first-order equations

df

dx
5lf~f22a2!1mfx2 ~38!

and

dx

dx
5mS f22

1

2
a2Dx, ~39!

which present soliton solutions. Indeed, if we setx50, it is
immediate that this system admits the BPSf6 solution that
we found earlier, Eq.~24!, that is,

f2~x!5
1

2
a2@12tanh~la2x!#. ~40!

Another pair of solutions can be found using the trial or
method@19# to be

f2~x!5
1

4
a2@12tanh~la2x!# and x2~x!5

1

2
f2~x!,

~41!

provided the coupling constants obey the relationm52l.
The above two pairs of solutions are BPS solutions and, th
are stable@7#. As in the former asymmetric case, thef6

domain ribbon connects regions with different transform
tion properties under the symmetry subgroupZ2. However, if
one computes the mass of thex mesons at both sides of th
domain ribbon~40!, it is interesting to see that

mx
2~0,x!5mx

2~a2,x!5
1

4
m2a4; ~42!

i.e., thex field does not distinguish between the two outsi
regions of the BPSf6 ribbon. This new scenario allow
building topological defects inside a topological defect. I
deed, it can be seen that inside the domain ribbon we h
x50 and this makesf25a2/2. Consequently, thex mesons
feel an effective potential given by

U2~a2/2,x!5
1

4
m2a2S x22

l

2m
a2D 2

. ~43!

For l/m.0 there is a spontaneous symmetry-breaking
tential for the x field with vacua states located atx2

5la2/2m. Moreover, the mass of the excitations is

mx
2~a2/2,x!5lma4, ~44!
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and one sees thatmx
2(out).mx

2(in) for l/m,1/4, as follows
from the above results. This restriction on the parame
ensures that thef6 ribbon traps thex kink in 211 dimen-
sions. Indeed, it is energetically favorable for thex bosons to
remain inside the ribbon: the mass of the boson fieldm(x)
increases away from the center of the ribbon, resulting i
force F'2]m(x)/]x that attractsx bosons toward the rib
bon, entrapping them. Here we remark that thef defect is of
thef6 type, while thex defect is of thex4 type, and so they
are of a different nature.

In the present case there exists a parameter rangel/m
P(0,1/4), in which it becomes energetically favorable fo
x condensate to form within the core of the domain ribbo
Indeed, the potential~43! is minimized by a field configura
tion for which x56x0 where

x05S l

2m D 1/2

a. ~45!

We take for simplicitya real and positive. It is straightfor
ward to see thatU2(a2/2,x0),U2(a2/2,0), and this shows
that inside the domain ribbon associated with thef field it is
possible that domains wherex56x0 appear. It is clear tha
domains withx0 and 2x0 should necessarily be connecte
by topological defects. The interior of the BPS domain r
bon is then a region where the discrete symmetryZ2 associ-
ated with thex field is broken. Thus, inside the doma
ribbon scalar condensates will eventually form, but they w
be uncorrelated beyond some coherence lengthj @5#. We
therefore expect domains ofx51x0 andx52x0 to form at
different positions along the domain ribbon, with each d
main extending an average length given byj. Different do-
mains must be separated by a region wherex50 that should
be understood as the location of the resultingx kink. This is
an example of a topological kink inside the topological d
main ribbon. The explicit form of the solution is given b
Eq. ~40! for the host domain ribbon, whereas for the kink w
just have

x~y!5A l

2m
atanhS 1

2
Alma2yD . ~46!

Evidently, the domain ribbon appears from the pair of B
solutions given byx50 and f as in Eq. (40), and is a
ribbon, a defect of dimension one in the planar system
we are considering. For the kink, however, we see tha
appearsinside the domain ribbon, which is located atx50
and extends along the direction described byy in the present
case. The kink is a topological defect of dimension zero a
appears after settingf25a2/2 and removing thex degree of
freedom in the above system.

Investigations concerning classical stability may be int
duced by just following the steps already presented in
former subsection. Like there, no analytical result can
obtained in the present case too. Here, however, the mo
cation introduced in the potential allows the appearance
region in parameter space obeying 0,l/m,1/4, in which
the above pair of solutions might be classically or linea
stable. In this region, as one knows, two consecutive ki
must be separated by an antikink, so that the initial kin
antikink separation distance should be of the order of
rs

a

.

-

l

-

-

at
it

d

-
e
e
ifi-
a

s
-
e

coherence lengthj. To determine the explicit form of this
coherence length we see that the width of the above k
solution is given by 1/Alma2, which essentially measure
the distance between consecutive domains ofx25x0

2, and so
should be identified with the coherence length in the pres
case, that is,j'1/Alma2.

C. x6 kinks inside a BPSf6 ribbon

Let us now consider a third system of coupled real sca
fields that, in spite of displaying an asymmetry of the effe
tive potential outside the domain ribbon, allows the form
tion of a nontrivial internal structure inside the defect. As w
shall see, this system presents a structure that gives a kin
the x6 type, that is, of the same nature of the host dom
ribbon. To see how this works explicitly, let us consider t
superpotential

W3~f,x!5
1

2
lf2S 1

2
f22a2D2

1

2
mx2S 1

8
x2 2a2D

1
1

2
mf2x2. ~47!

Here we see that both fields are very similar, although
symmetry is stillZ23Z2. The scalar potential generated b
this superpotential is given by

U3~f,x!5
1

2
l2f2~f22a2!21

1

2
m2x2S x2

4
2a2D 2

1
1

4
m2f2x41

1

2
m2S 11

2l

m Df4x2

1m2S 12
l

m Da2f2x2. ~48!

It is clear from the above expression that this system disp
spontaneous symmetry breaking for each one of the
fields, separately. To see this explicitly, we note that

U3~f,0!5
1

2
l2f2~f22a2!2 ~49!

and

U3~0,x!5
1

2
m2x2S 1

4
x22a2D 2

. ~50!

Thus, a domain ribbon solution of the type previously stu
ied exists for each one of the nonvanishing fields. In orde
see which field the system chooses to host the kink, we h
to investigate the energy of kinks generated by the co
sponding~111!-dimensional systems described by the abo
potentials. For a more complete investigation concerning
point see Ref.@20#, where the high temperature effects on t
class of systems of interest are presented.1 For the system
defined byU3(f,0) the energy of the correspondingf6 kink
is

1These thermal effects are relevant to the standard cosmolo
scenario for the formation of the host domain ribbons, since
knows that the cosmic evolution occurs via expansion and cool
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Ef kink5
1

4
ulua4. ~51!

For the system defined byU3(0,x) we get

Ex kink5umua4, ~52!

and so we can write the result

Ef kink5
ulu

4umu
Ex kink . ~53!

Thus, if we choose to work withulu>4umu, we can consider
the f field as the field to generate the host domain ribbo

In general, for static solutions the first-order equations
given by

df

dx
5lf~f22a2!1mfx2 ~54!

and

dx

dx
52mxS x2

4
2a2D1mf2x, ~55!

and the domain ribbon appears after settingx→0. Let us
examine the behavior of thex field in the background of this
defect. We take the parametersl andm to be real and posi-
tive with l54m, for simplicity. In this case, thex field can
generate a kink inside the BPS domain ribbon. In fact,f2

5a2/2 in the core of the domain ribbon, and the correspo
ing effective potential results to be

U3~a2/2,x!5m2a61
1

32
m2x2~x222a2!2. ~56!

Here a mass for thex field can be introduced; it is given b

m2~a2/2,x!5
m2a4

4
. ~57!

Outside the domain wall, forf→0 the x boson mass is
given by mx

2(out)5m2a4, and in the other outside region
where f25a2, the x boson acquires a massmx

2(out)
54m2a4. Then, forl54m we see that thef6 ribbon traps
thex field and topological defects associated with the fieldx
will form inside this domain ribbon. The situation here
different from the two former cases, but the fact th
mx

2(out).mx
2(in) ensures the presence of thex particles in-

side the BPS ribbon.
The effective potential~56! is minimized by a field con-

figuration for whichx50 or x56A2a, and now inside the
domain ribbon generated by thef field it is possible that the
x field presents domains withx50 andx252a2. We recall
that this case is different from the former case, where
nested field was governed by somex4 potential. Here thex
field may present symmetric and asymmetric domains, wh
should be connected by topological defects. We expect
mains withx5A2a, x50, andx52A2a to form at differ-
ent positions, uncorrelated beyond a given coherence le
j. Correlated domains should form, however, in conform
with the kink structure of thex6 system, in which energy
e

-

t

e

h
o-

th

considerations favor the presence of kinks that conn
asymmetric vacua to the symmetric vacuum. To write
explicit solutions we see fromU3(f,0) that the host domain
ribbon appears fromx50 and

f2~x!5
1

2
a2@12tanh~la2x!#, ~58!

and here we should setl→4m, to get to the case we ar
considering above. For the kink, we considerU3(a2/2,x)
and work on the transverse direction to obtain

x2~y!5a2F12tanhS 1

2
ma2yD G . ~59!

These are the configurations for the host domain ribbon
the internal kink in the present case, respectively. The ini
separation distance between defects should be of the ord
j, the coherence length that is now given byj'1/umua2.
Like in the former case, here we can also have a region
parameter space where stable kinks appear inside dom
ribbons, and this is another example where a BPS dom
ribbon hosts topological kinks.

D. Fermionic behavior

Let us investigate the presence of fermions in the ba
ground of the BPS domain ribbon built from thef field in
the systems introduced in the former subsections. To
end, we have to read the effective mass of the fermions in
domain ribbon background from the Yukawa couplings.

For the model of Sec. IV A, the effective mass of th
fermions in the BPS domain ribbon background~24! can be
read off from the Yukawa couplings

LY
152

3

2
lS f2~x!2

a2

3 D c̄c2
1

2
mf2~x!r̄r. ~60!

From this expression we see that it is energetically favora
for the fermions c to reside inside the domain ribbon
whereas this is not the case for the other Majorana field. T
result may perhaps lead to a mechanism for finding char
domain ribbons, provided it resists the complexification
the spinorc.

For the model of Sec. IV B, the corresponding Yukaw
couplings in the Lagrangian give

LY
252

3

2
lS f2~x!2

a2

3 D c̄c2
1

2
mS f2~x!2

a2

2 D r̄r.

~61!

Thus, both fermions are trapped inside the BPS domain
bon solution corresponding to this system. Moreover,
would like to point out that one of the Majorana fermionsr
is massless in the core of the defect and sees an isotr
exterior region. The possibility of trapping massless ferm
ons inside the domain ribbon may open an interesting s
nario: to find stable domain rings, the~211!-dimensional
analogue of domain bubbles in 311 dimensions, with the
tension of the domain defect being equilibrated by the qu
tum mechanical degeneracy pressure exerted by the ferm
that inhabit the ribbon.
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The same analysis can be carried out in the system
sented in Sec. IV C. In that case, the Yukawa couplings
given by

LY
352

3

2
lS f2~x!2

a2

3 D c̄c2
1

2
m„f2~x!1a2

…r̄r.

~62!

From this expression we see that it is energetically favora
for the fermions c to reside inside the domain ribbon
whereas this is not the case for the other Majorana fi
Indeed, the fermionr feels an effective potential that favor
one of the exterior regions of the domain ribbon. This res
may perhaps lead to the formation of Fermi disks, the~211!-
dimensional analogue of Fermi balls in 311 dimensions,
which represent a bag of false vacuum populated by a Fe
gas that stabilizes the soliton against collapse.

The above reasoning is mostly speculative and a m
careful investigation should be carried out, but this is out
the scope of the present work. However, we recall that
have just studied the Yukawa couplings in the background
the domain ribbon, forx50. This investigation is almost th
same investigation one has to deal with in systems wit
single field—see, for instance, Ref.@21#—for explicit calcu-
lations concerning Fermi balls in 311 dimensions.

V. COMMENTS AND CONCLUSIONS

In this work we have considered the existence of B
topological defects with internal structure in planar syste
of two coupled real scalar superfields. To this end, we h
endowed the kind of systems of our interest with an exten
supersymmetry and looked into the sector of extended s
tions belonging to BPS representations. These configurat
are nothing but supersymmetric domain ribbons that so
the set of Bogomol’nyi equations of the model. The syst
is entirely defined in terms of just one function of the field
the superpotentialW. We have studied three differen
choices forW, some of them leading to the appearance
several seemingly interesting kinds of topological defec
BPS domain ribbons endowed with an internal struct
given by a kink.

The first system is presented to illustrate the simplest c
where excitations of the bosonic field in the background o
f6 ribbon do not favor the formation of internal structur
although it is favorable for the fermionc to reside inside this
domain ribbon. This result may perhaps lead to a mechan
for finding charged domain ribbons, provided it resists
complexification of the spinorc. The presence of the domai
ribbon is shown to break one-half of the supersymmetr
that is, it is a BPS state. The superpartners of this confi
ration can be built just by acting on it with the broken sup
charges to obtain the fermionic zero modes that shall be
sequently quantized.

The superpotential that leads to the second system is
e-
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gested by symmetry considerations of the effective poten
produced by the background BPS ribbon. We have sho
that the modified superpotential allows the entrapment
bosons as well as the formation ofx kinks within the core of
the domain ribbon. Here, however, the defects are of a
ferent nature: The domain ribbon comes from thef field
~with a sixth-order potential! and connects the symmetri
minimum (f50) to an asymmetric one (f25a2), while the
kink is generated by thex field ~with a fourth-order effective
potential! and connects the two asymmetric minimax2

5(l/2m)a2. It is interesting to recall that despite the asym
metric behavior of the fieldf of the ribbon at both outside
regions, this asymmetry is not seen by thex field in this
system. This new scenario allows building topological d
fects inside a topological defect. For a certain parame
range it becomes energetically favorable forx condensates
to form within the core of the domain ribbon. Different do
mains must be separated by a region wherex50, which is
naturally understood as the location of the resulting inter
x kink.

The third system is defined by another potential, in wh
both thef andx fields present quite a similar behavior. I
this case we have shown that the system admits defec
the same nature since now we can findx6 kinks inside a BPS
f6 domain ribbon, in spite of the explicit asymmetry of th
effective potential outside the domain ribbon.

The host domain ribbon solutions preserve one-half of
supersymmetries, thus being BPS states. They are know
be classically stable@7,8#. When we consider the inclusion o
kinks inside these supersymmetric domain ribbons, unfo
nately, we cannot perform a complete analysis of their s
bility. Nevertheless, by means of simple energetic ar
ments, we are able to show that there is a parameter rang~in
the second and third models! in which these solutions migh
be classically or linearly stable.

We have shown that the domain ribbon solution of t
second system traps both fermions and one of them beco
massless in the core of the defect and sees an isotropic
rior region. This feature could lead to the formation of stab
domain rings of finite radius. On the other hand, the th
system has an effective potential for one of the Majora
fields that favors one of the exterior regions of the dom
ribbon. This result may perhaps lead to the formation
Fermi disks in 211 dimensions. These possibilities, as w
as the finite temperature effects on the class of system
our interest, deserve further investigations. We hope to
port on these issues elsewhere.
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