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Mathematical structure of quantum superspace as a consequence of time asymmetry
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It is demonstrated how a convenient choice of the mathematical structure of the quantum cosmology
superspace of the wave functions of the universe, precisely the definition of a convenient regular state super-
space and the restriction of the dynamics to this space, yields directly an irreversible evolution, in the classical
~and semiclassical! phase of the universe, where decoherence and correlations take place and therefore give
origin to a classical universe, the second law of thermodynamics is demonstrated, connection with the Re-
ichenbach branch system idea can be implemented, some rough coincidences with observational data are
obtained, the arrows of time can be correlated, and time asymmetry can be explained as a state space asym-
metry ~e.g., like a spontaneous symmetry breaking!. All these facts solve the problem of time asymmetry and
show that it is time asymmetry itself that defines the most important features of the mathematical structure of
superspace.@S0556-2821~97!03624-2#

PACS number~s!: 98.80.Hw, 03.65.Bz, 05.20.2y, 05.30.2d
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I. INTRODUCTION

The role of physics is to explain nature in thebest pos-
sible way.Therefore physicists consider a set of physi
phenomena and choose the best axiomatic structure to
tate these phenomena. This axiomatic structure contai
mathematical structure and a set of axioms~or postulates, or
principles, or hypotheses! stated using the language of th
chosen mathematical structure. If the mathematical struc
is the most naturally related to the set of phenomena an
minimal number of axioms is used, physicists say that th
have explained nature in thebest possible way.But fre-
quently a better mathematical structure and a smaller se
axioms are found to explain a larger set of physical pheno
ena; then physicists say that they understand the prob
even better because, in fact, they have found a better ex
nation, i.e., amore economical one. But the chosen math
ematical structure and the chosen axioms cannot be
plained by themselves, since the only motivation of t
choice is to imitate nature in the best possible way.

Thus, physical phenomena are not a consequence o
chosen mathematical structure; quite the contrary, the ch
of the mathematical structure is a consequence of the ph
cal phenomena that we are trying to explain.

Gravitation was explained by Einstein choosing a R
mannian manifold as the mathematical structure and po
lating that particle space-time paths were the geodesic
such a manifold, etc. The only explanation of this choice
that the theoretical motions, so described, mimic real m
tions better than the motions described using other curve
other kinds of manifolds~flat space-time, projective man
folds, etc.!. But the Riemannian manifold and the geodes
cannot be explained by themselves. In fact, the choice of
Riemannian manifold, as the mathematical structure to
plain gravity, is really inspired by the experimental phys
of the phenomenon~precisely the method we use to measu
time and distance@1#!.
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It also happens that, when a new or unfamiliar mathem
cal structure is introduced, some physicists think that
new structure is introducedby hand, because they do no
realize thateverymathematical structure was introduced
hand, in order to explain nature in the best possible way
the present case it turns out that the time asymmetry of
ture is explained in the simplest way if we choose a tim
asymmetric mathematical structure~the spacef2 of Sec.
I B! than a time-symmetric one~the spaceH of the same
section!. This is the essential argument of the paper.

In the perspective of this pedagogical~perhaps pedantic
but necessary! introduction we will choose the following:

A. Set of phenomena

The set of phenomena considered in this paper will
those of the usual quantum cosmology~QC! based on the
Wheeler-De Witt~WDW! equation@2,3#, plus those of irre-
versible statistical quantum physics, such as the definiti
of the various arrows of time, the final equilibrium stat
decoherence, correlations, etc.~see@4# where almost all sub-
jects, results, and problems can be found!.

B. Mathematical structure

QC is based in the WDW equation

HC50, ~1!

whereH is the Hamiltonian operator of the considered mod
for the universe andC the wave function of the univers
~which will also be calleduC&) @3,5#. Usually H is well
defined by the model we are studying, but the real ma
ematical nature ofC is not so well defined. In fact, let us ca
q the configuration variables andQ the configuration super
space; thenC5C(q) is a function of the configuration vari
ables. We must define the space of wave functionsC. Let us
suppose that this space has a discrete basisP of certain func-
tions of theq ~let us say polynomials of theq or polynomials
multiplied by convenient dumping factors for thoseq’s that
go to infinity!. This P is a very good model of the rea
750 © 1997 The American Physical Society



g
ly
,

o
n
is

ce
th
d

y

n
i-
e

efi
e

e
n
r-
d

ill
t b

m.

d by

rbi-

d by
ely,
nd

s

lete
,

s.

tes.

ts
e to
s,
r

er

y

ou

ut
he

or

IV

on
ua

th

ble
le of
lue’’
er

er

t a
he

se
d

57 751MATHEMATICAL STRUCTURE OF QUANTUM . . .
physical space since, the number of measurement bein
ways finite, we can only determine a finite number of po
nomial coefficients. But this set is not enough because
order to perform the mathematical operations we need
develop the theory, usually wave functions must belong t
complete space. Then we must complete the space expa
by P with some topology. The usual idea is to make th
completion with the topology of the norm. Even if the choi
of a norm contains a very important physical element—
definition of probability—we are now exclusively intereste
in the mathematical problem of how to completeP with an
adequate topology. Then we have really two problems.

~i! We must define a norm in the space expanded bP
something like@6#

iCi5E
Q

C* ~q!C~q!dq. ~2!

But we can also foliateQ with hypersurfacesS and define
@2#

iCi5E
S
C* ~q!C~q!dsn , ~3!

wheren is the normal toS anddsn is the hypervolume of
the hypersurfaceS differential element~this quantity will be
positive definite in a convenient subspace of superspace!. Or
we can consider that reallyC is an operator and then we ca
go to a third quantization@7#, etc. So we have many poss
bilities to define the norm. Actually we are trying to copy th
usual quantum mechanics and the essential property to d
an adequate norm is thatit would be a constant under tim
evolution.But in QC there is no time@8,9#.1 In fact, Eq.~1!
is not a Schro¨dinger equation but an eigenequation that d
fines a ‘‘stationary’’ eigenfunction, with no time variable i
it. Therefore, as the definition of norm is intimately inte
twined with the problem of the definition of time in QC, an
as this problem is not solved2 @8,11#, it is not possible to give
a definitive definition of norm. Really in this paper we w
adopt the conservative attitude that this problem canno

1In fact, the state of the universe, in this period, is described b
density matrixr(q,q8) whereq,q8PQ. Among all the configura-
tion variablesq we may choose a particular one as the hand of
clock, let us say the radius of the universe,a. Then r(q,q8)
5r(a,x,a8,x8), wherex symbolizes the rest of the variables. B
to usea as the hand of our clock, it is necessary to have deco
ence foraÞa8, e.g., r(a,x,a8,x8)50 if aÞa8 or r(a,x,a8,x8)
;d(a2a8)r(a,x,x8). Namely, at least one variable, e.g.,a, must
have classical properties; if not, we will be forced to make a the
with two ‘‘times’’ a anda8. But if we have just onea, we are not
more in full QC, but in a semiclassical regime, as those of Sec.
where, in fact, we will find decoherence of the radiusa ~see Sec.
IV A or Ref. @19#!. We conclude that, even if some generalizati
of time may be defined in the full quantum gravity period, the us
time, with its known properties, cannot exist in such a regime.

2We have defined the time, for the semiclassical phase of
universe~even with a back reaction!, in @10#. But it was impossible
for us to extend this definition to the quantum period.
al-
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solved and therefore QC is a timeless theory@8,9#. As a
consequence it is very difficult to define a satisfactory nor

~ii ! But even if a norm would be chosen, say, Eq.~2!, we
have another problem. If we complete the space expande
P with Eq. ~2!, we will find H4L2(Q), the Hilbert space of
square integrable functions overQ. But H is an operator
with derivatives and the functions ofH are, in general, not
derivable; they are just square integrable, and so for an a
trary functionC of H, HC has no meaning~and we would
have the same problem with the other norms!. So we must
choose another topology to complete the space expande
P. Let us consider the Schwarz class functions, nam
functions that can be derived an infinite number of times a
that are well behaved in the eventual infinite of coordinateq
~precisely they vanish faster than any polynomial!. The set of
Schwarz functions is a nuclear space. Then if we comp
the space expanded byP with the corresponding topology
which is not a norm topology but a nuclear one@12#, we
obtain a spaceS where we can derive any number of time
If S3 is the space of an~anti!linear functional overS, our
mathematical structure is really the Gel’fand triplet~or
rigged Hilbert space!:

S,H,S3. ~4!

Then we can say thatS is the quantum superspace ofregular
states3 where we can do all our computations andS3 is the
quantum superspace ofgeneralized states, where we will
find the usual distributions such as Dirac’sd or plane~or
curved! waves, which can be used to expand regular sta
In ordinary quantum mechanicsH would be the quantum
space ofstates,but in QC this space loses almost all i
importance because we do not know what norm we hav
use for sure~even if in this paper, to compute probabilitie
we will use norm~2! in spite of the fact that we have othe
possible choices4!, while S and S3 are well defined, since
their definitions are norm independent. In fact, the ‘‘inn
product’’ ^FuC& of an element ofS3, written as a ‘‘bra,’’

a

r

r-

y

,

l

e

3As this space is defined over the superspaceQ we will call it also
a quantum superspace.

4If only spacesF2 and F2
3 were defined, for every stater

PF2 and every observableAPF2
3 @cf. Eq. ~18!# we can compute

the ‘‘mean value’’^A&r5A@r#. This number is well defined by the
linear operatorA acting on the stater. Really this is the maximal
answer QC can give: a typical ‘‘mean value’’ for every observa
and for every quantum state of the universe, since the ensemb
QC has just one system, the universe. Therefore the ‘‘mean va
is not a proper mean value but just a ‘‘typical’’ one. On the oth
hand, if we want to know the probabilityp(q) to find the universe
at a certainq and ifQ is the position operator,Q5*quq&^qudq, and
r is a pure state,r5uw&^wu, we need to define a norm and the inn
product ofH to computep(q)5u^wuq&u2. But we know that the
notion of probability in an ensemble of just one element in no
reasonable one. So really it is more logical to work just with t
coupleF2 ,F2

3 and with the typical mean values likeA@r# than to
use the notion of probability. Nevertheless, in this paper we will u
the more familiar ‘‘probabilistic approach’’ of QC, where we nee
a norm like Eq.~2!. We will study the ‘‘typical approach’’ of QC,
where the norm is superfluous, in a forthcoming paper.
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752 57MARIO CASTAGNINO
^Fu, with an element ofS , written like a ‘‘ket,’’ uC&, is also
well defined, since it is just the antilinear functional acti
over a regular state~also the product in the inverted order
well defined if we set̂ CuF&5^FuC&* ). SoS is the arena
where timeless QC works: where time and norm have dis
peared from the mathematical structure and are substit
by the nuclear topology ofS.

But if we useS as a regular space, we cannot encomp
~in the most economical way! irreversible statistical quantum
mechanics, which has an asymmetry that it is not contai
in S. There are only two causes for asymmetry in natu
Either the laws of nature are asymmetric or the solutions
the equation of the theory are asymmetric. E.g., the law
nature are asymmetric in the case of the weak interact
The solutions of the theory are asymmetric in the case
spontaneous symmetry breaking.

Time asymmetry is not an exception. Thus, if we want
retain the time-symmetric laws of nature@namely, the sym-
metry of Eq.~1!#, the only way we have to explain the tim
asymmetry of the universe or its subsystems is to postu
that the space of solutions is not time symmetric; namely,
use the second cause of asymmetry. So the proper wa
solve the problem is simply to define a realistic tim
asymmetric space of physical admissible solutionsf2 , i.e.,
an adequate mathematical structure for superspace.f2 will
contain the states that evolve in an admissible way~e.g.,
Gibbs ink drop spreading in a glass of water, a sugar lu
solving in a cup of coffee, etc.! and will not contain the
nonadmissible evolutions~the ink or the sugar concentratin
spontaneously and creating the drop or the lump!. The prob-
lem is to choosef2 in thebest possible way.As we will see
we will choose one with the required asymmetry.

Let us first follow a heuristic approach: We will suppo
thatH is endowed with all the properties necessary to de
a reasonable universe. Obviously these ‘‘realistic Hami
nians’’ are the onlyH that we must consider. Therefor
practically, inH there must be always some fields, such
the matter field, the electromagnetical field, and also
gravitational field~precisely only the graviton field!. So we
would write this Hamiltonian in the usual midisuperspa
way as

H5hg~gj ,p j !1hf~w,pw!1hi~gj ,w!, ~5!

wherehg(gj ,p j ) is the gravitational Hamiltonian~usually a
function of a discrete set of modes of the gravitational fi
gj and the corresponding momentap j ), hf is the ‘‘field’’
Hamiltonian~let us say the continuous set of all the modes
just one scalar fieldw, which represents all the physica
fields in our model, and the corresponding momentapw), and
hi is the interaction Hamiltonian among fields and no fie
~usually an interaction among the configuration variab
only!.

Let us sketch the panorama in the complete quan
gravity case~which we shall not study in this paper!. From
the Gel’fand-Maurin theorem@13# we know that, for the par-
tial Hamiltonian hg1hf , a spectral decomposition exis
@14#:

hg1hf5(
i ,v

~v i1v!u i ,v&^ i ,vu, ~6!
p-
ed
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wherei symbolizes~in a shorthand notation! the set of quan-
tum numbers of the discrete spectrum,v i their energy,v
those of the continuous spectrum and also their energy,
( i ,v is a shorthand notation for a sum ini and an integral in
v. Some negative eigenvaluesv must appear becauseH is
not bounded from below. Any stateuC&PS can be expanded
as

uC&5(
i ,v

u i ,v&^ i ,vuC&; ~7!

analogously,hi can be expanded as

hi5 (
i ,v; j ,v8

hi ,v; j ,v8
~ i ! u i ,v&^ j ,v8u. ~8!

These are the decomposition ofuC& and hi in the basis
$u i ,v&% . In order thatuC& would satisfy the WDW equation
~1! it must be

HuC&5(
i ,v

~v i1v!u i ,v&^ i ,vuC&

1 (
i ,v; j ,v8

hi ,v; j ,v8
~ i ! u i ,v&^ j ,v8uC&50. ~9!

Most likely this equation can be solved.
But we shall work in the semiclassical case only. In fa

in every reasonable model, the universe geometry will end
a classical phase; some part of the matter and some fi
will become also classical, while others will remain in th
quantum regime, yielding a semiclassical model. Then
variablea will exist ~one of thegj or a function of thegj )
such that a timeh can be defined as a function ofa. When
h→` we will obtain a classical geometrygmn

out for the uni-
verse. It will be the most probable geometry of the univer
i.e., the geometry that appears most frequently.5 Using time
h we can transform Eq.~1! in a Schro¨dinger equation, with
the corresponding Hamiltonianh5h(out) @5#. Then usingh
and the classical geometrygmn

out we can find a semiclassica
vacuum stateu0,out& for the fields and the interaction~the
so-called adiabatic vacuum!, which diagonalizes the Hamil
tonianh5hf1hi5h(gmn

out)5h(out) ~computed in the geom
etry gmy

out), the creation and annihilation operators related
this vacuum, and the corresponding Fock space. The o
essential ingredient we need to implement the theory is
h(out). Then, using these objects, we can find a set of eig
vectorsuv,out&,6 such that

huv,out&5vuv,out&, ~10!

5In every reasonable model of the universe a final equilibri
state seems to exist that acts like an attractor for every initial s
of the theory. See, e.g.,@15#.

6As we will see in the model of Sec. II, we must restore varia
a in uv,out&, which is really a function ofh5h(a), and then
multiply it by an adequate prefactor, to get a solution of WD
equation. With these modificationsuv,out& becomes a vector o
superspace.
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57 753MATHEMATICAL STRUCTURE OF QUANTUM . . .
wherev is a continuous eigenvalue ofh ~say, 0<v,`).7

So

h5E
0

`

vuv,out&^v,outudv, ~11!

whereuv,out.PS3; thus, if uC&PS,^v,outuC& is well de-
fined and sohuC& ~and the quantum numberi disappears
since now the geometry is a classic one!. The existence of
this kind of expansion can be also considered a consequ
of Gel’fand-Maurin theorem@13#. But all these manipula-
tions are just formal, and so we will be sure that what we
doing is correct only in concrete examples, as the one in
next section. In fact, we will find all these mathematical
ements in the model presented there. Surely we will also
these elements in more complex models.8

Now, let us define our new regular state spaceH2. Pre-
cisely, we can promotev @or some linearly related variabl
like Ã, Eq. ~36!# to a complex variablez and ask not only
that uC&PS, but also that̂ z,outuC& would be ananalytic
function in the lower complex half plane~precisely that
^v,outuC.PH2

2 , H2
2 being the Hardy functions class from

below9!. If these functionsuC& belong also toS, they belong
to a spacef2 such that

f2,S, ~12!

and we have a new Gel’fand triplet

f2,H2,f2
3 ; ~13!

then, we know that@12#

S3,f2
3 . ~14!

So we have restricted the regular state superspace and s
taneously we have enlarged the generalized state supers
so that we will have more general spectral expansions~this
fact will be of utmost practical importance!. But as we can as
well choose the upper complex half plane~precisely

7Of course, we will have such kind of continuous spectrum onl
the spatial geometry of the universe is open. In closed models
can only suppose that the discrete eigenvalues are so closed
they can be considered as a continuous spectrum in some app
mation. This fact and the problems that we will face with
expanding-contracting universe show that our formalism is m
better adapted to open geometries.

8We do not know which are the necessary and sufficient co
tions in order to be sure that this structure would exist. Anyh
there is an obvious necessary condition: The superspace mu
time oriented; namely, two subsuperspacesF2 and F1 must be
found such thatK:F2→F1ÞF2 , K being the Wigner operato
~namely, the complex conjugation!.

9A complex functionG(E) is a Hardy class function from abov
~below! if ~1! G(E) is the boundary of a functionG(z) of the
complex plane wherez5E1 ih, which is analytic in the half plane
h.0 (h,0), and~2! *2`

` uG(E1 ih)u2dE,k,` for all h with
0,h,` (2`,h,0). Usually thev of Eq. ~10! is v.0, so
really the functions of f2 satisfy the condition
^v,outuc&Pu(H2

2ùS).
ce

e
e

-
d

ul-
ace

^v,outuC&PH1
2 , H1

2 being the Hardy functions class from
above!, we also have another spacef1 such that

f1,S ~15!

and another Gel’fand triplet

f1,H,f1
3 . ~16!

We also know that@12#

S3,f1
3 . ~17!

Now we can also say that we have obtained the spacef2

completing the space expanded byP with the nuclear topol-
ogy of f2 , namely, theS topology restricted tof2 ~and the
same thing can be said aboutf1). Clearly this topology is
endowed with a new asymmetry whichS does not have.
Precisely, this asymmetry allows us to choose betweenf2

or f1 even if we maintain all the symmetries ofH.10 Thus
we can break one of these symmetries, restricting the dyn
ics to the superspacef2 , which then would be considere
as the superspace of regular states. As we will see this
striction produces the desired time asymmetry. Freque
physicists make an analytic continuation in the complex
ergy plane supposing that some functions are analytic in
half plane only. In these cases they are implicitly using
kind of mathematical structure we have explicitly introduc
here, and so the idea is, by no means, new.

Thus our mathematical structure will essentially be E
~13!, f2 will be our superspace of regular states, where
must find the states that satisfy the WDW equation~1!, and
f2

3 will be our generalized state superspace. From Eq.~12!
we see that we have restricted our regular state supersp
and so nothing unphysical can happen. We are just addi
new requirement to regular states, in order to assure t
asymmetry.

C. Axiomatic structure

We do not pretend to give a completely rigorous axio
atic structure in this paper~but just an approximation of it!.
Furthermore, we do not know if the proposed axioma
structure is unique. We are just proposing a first draft o
complete axiomatic structure, and so we will call our axiom
just hypotheses.

As we would like the equilibrium state to be contained
our theory we must also consider mixed statesr and, there-
fore, the spaces11

F25f2 ^ f2 , . . . , L25H2 ^H2, . . . , F2
35f2

3

^ f2
3 , ~18!

f
e

hat
xi-

h

i-

be
10As (H2

2 )* 5H1
2 , then, if C(v)5^v,outuC&PH2

2 , we have
C* (v)5^v,outuC&* PH1

2 . Then we can foresee that the subs
tution of F2 by F1 will become the time inversion when time wil
be defined. Namely,K, the Wigner operator, will become this in
version.

11It is also interesting to study other definitions of these prod
spaces, as those that can be obtained using the quantum numbl
andn. See@16#. Also, if we would like to explicate the singular pa
of the continuous spectrum, we must chooseF25S% (f2 ^ f2).
See@17#.
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754 57MARIO CASTAGNINO
and work in the Liouville triplet

F2,L2,F2
3 , ~19!

whereL2,L andL is the usual Liouville space of ordinar
mixed states, which actually we will never use, since o
regular state superspace isF2. So let r be a self-adjoint
density matrix. Then our main hypotheses are the followi

H 1. The stater of the universe satisfies the equations12

Hr50. ~20!

H 2. The stater of the universe belongs to the supe
spaceF2, i.e.,

rPF2 . ~21!

H 3 . r(q,q8) is proportional to the correlation betwee
the configurations q, and q8 and r(q,q) is proportional to
the probability of finding the configuration q in the univers

These three axioms correspond to the three elements
essary to go into QC mentioned in the Introduction of@3#:
dynamics, ‘‘initial condition’’ (precisely the definition of th
physically admissible states of the universe in a timeless
malism), and interpretation.Of course H2 alone does not fix
the actual state of the universe, but, if we want that ti
asymmetry would appear natural, any state of the unive
we choose to build our theory must be contained inF2 . In
this paper we do not address the problem of finding the
and unique state of the universe, but only to define a su
space of admissible states such that the universe would
out to be time asymmetric.

We will see how far we can go with this axiomatic stru
ture.

The paper is organized as follows. In Sec. II we introdu
our model and its semiclassical approximation, and we
tain a new spectral decomposition, using the regular su
space of hypothesis H2 . In Sec. III we obtain the evolution
equation of the states. In Sec. IV up to Sec. IX we find
physical characteristics of the model. In Sec. X we draw
main conclusions.

II. MODEL

Let us see how we can implement all we have said i
simple model.

Let us consider the model of Sec. 3, of Ref.@18#, or better
the one of Ref.@19#, where a Robertson-Walker metric

ds25a2~h!~dh22dx22dy22dz2! ~22!

is studied~we will mostly consider the flat space geomet
case!. The total action isS5Sg1Sf1Si , Sg being the gravi-
tational action,Sf the usual action of a spinless massive fie
w, conformally (j5 1

6 ) coupled, andSi the interaction given
by a mass term in Robertson-Walker geometry. The grav
tional action is given by

12If r5uC&^Cu is a pure state, these equations coincide with
WDW equation~1!.
r

.

.
ec-

r-

e
se

al
r-
rn

e
-
r-

e
r

a

a-

Sg5M2E dhF2
1

2
ȧ22V~a!G , ~23!

whereM is Planck’s mass,h is the conformal time,a is the
Robertson-Walker scale,ȧ5da/dh, andV(a) is a potential
that arises from the spatial curvature, a possible cosmol
cal constant, and, eventually, a classical matter field.V(a) is
a potential with a bounded support contained in 0<a<a1,
with a1@0 @in many examplesV(a) is a function ofa2 and
V(a) strongly vanishes, fora2→` @19#, and so our potentia
can be considered as a good approximation of these
amples#. This case is the simplest of all, but we believe th
the main features, which we will find, will also be present
more general cases.

The WDW equation~1! for our model is

HC~a,w!5~hg1hf1hi !C~a,w!50, ~24!

where~in our the flat space geometry case!

hg5
1

2M2
]a

21M2V~a!, ~25!

hf52
1

2Ek
~]wk

2 2k2wk
2!dk, ~26!

hi5
m2a2

2 E
k
wk

2dk, ~27!

wherem is the mass of the scalar field, andk25uku2, where
k/a is the linear momentum of the field, in the flat case w
are working in. In the two other cases, namely, open a
closed space geometry, the integrals of Eqs.~26! and~27! are

~i! integrations on adapted coordinates, in the open c
and~ii ! sums, in the closed case, wherek is substituted by a
discrete variable.

See the corresponding equations in@18#.
Now, let us go to the semiclassical case using the W

method@3,5#.13 So let

C~a,w!5exp@ iM 2S~a!#x~a,w! ~28!

and let us expandS andx as

S5S01M 21S11•••,

x5x01M 21x11•••. ~29!

Then to satisfy the WDW equation~1!, at orderM2, the
principal Jacobi functionS(a) must satisfy the Hamilton-
Jacobi equation

e

13Following D. Bohm we can also say that WDW equation
exactly equivalent to the system @S8(a)#252V(a)
1( i /2M2)S9(a), iS8(a)(]/]a)x5hx2(1/2M2)(]2/]a2)x, where
the M 22 order term can be considered as a gravitational correc
to the Hamilton-Jacobi equation and as a quantum potential
must be added to the classical potential of Hamiltonianh. Theoreti-
cally this system can be solved exactly. See@20#.
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S dS

daD 2

52V~a!. ~30!

Now we can define the time, in our up to now, timele
theory. It is the ~semi!classical time parameterh5h(a)
given by

d

dh
5

dS

da

d

da
56A2V~a!

d

da
. ~31!

From Eqs.~30! and ~31! we can find the set of classica
solutions,

a56 f ~h,C!, ~32!

whereC is an arbitrary integration constant. Using differe
values for this constant and different choices of the6 sign
we obtain different classical geometries~in more general
cases many constants would be necessary!. For a.a1, it is
A2V(a)50 @sinceV(a) has a bounded support, contained
@0,a1#], and we cannot define the timeh using Eq.~31!;
thus we must choose another hand for our clock to define
time there. To avoid this problem let us consider that wh
a.a1 it is A2V(a)5«5const>0. We can always make«
50 to reobtain the primitive case. Thena will be

a56«h1C. ~33!

So we can see that the potential can also be considered
function with bounded support in the variableh. We will
always consider that«.0. The role ofC is just to fix the
origin of time, and so we can take anyC we want. As the
coupling is conformal we will have well-defined vacu
@21,22#. In particular we can consider two scalesain andaout
such that 0,ain!a1!aout and define theu0,in&,u0,out&
vacua there.~We can as well transform all the equations
the nonrescaled case, consider the proper timet5*adh, and
the physical momentumk/a, and define theu0,out& in the
h→` limit, as in Appendix A of@19#, but here we will use
the first simpler formalism.!

For our model we obtain

h~a!5hf~wk!1hi~a,wk!, ~34!

where we have omitted thewk in h(a). Then

h~a!5
1

2Ek
F2

]2

]wk
2

1Vk
2~a!wk

2Gdk, ~35!

where@cf. Eqs.~26! and ~27!#

VÃ
2 ~a!5m2a21k25m2a21Ã, ~36!

whereÃ5k2,k5uku. So h(a) is a time-dependent Hamil
tonian, where all its time dependence comes from a s
variable massm2a2. It is well known @21,22# that we can
diagonalize this time-dependent Hamiltonian atain and at
aout and define the corresponding vacua, the correspon
creation and annihilation operators, and the correspond
Fock spaces. For the out geometry the vacuum will be
adiabatic vacuum, sinceaout@a1; therefore all the out ele
ments will coincide with those defined in the Introduction.
t

e
n

s a

le

ng
g
e

fact, the out geometry is almost constant during the final ti
evolution ~which goes up toh→`) and therefore they cor
respond to the geometry with the maximum probabili
h(aout) reads

h~aout!5E
k
VÃ~aout!aout,k

† aout,kdk, ~37!

whereaout,k
† and aout,k are the creation and annihilation op

erators corresponding to the out vacuum. With these obj
we can construct the Fock space with a basis

uk1•k2 , . . . ,kn,out&5u$k%,out&

;aout,k1

† aout,k2

†
•••aout,kn

† u0,out&,

~38!

where we have called$k% the set k1 ,k2, . . . ,kn . These
states are eigenvectors ofh(aout), precisely

h~aout!u$k%,out&5V~aout!u$k%,out& ~39!

@of course, this equation corresponds to Eq.~10!#, where

V~aout!5 (
kP$k%

VÃ~out!5 (
kP$k%

~m2a21Ã!1/2. ~40!

We can use this energy to label the eigenvectors as

u$k%,out&5uÃ,@k#,out&, ~41!

where@k# is the remaining set of labels necessary to defi
the vector unambiguously.$uÃ,@k#,out&% is an orthonormal
basis: namely,

^Ã,@k#,outuÃ8@k8#,out&5d~Ã2Ã8!d~@k#2@k8# !,
~42!

15E
0

`

dÃE
@k#

uÃ,@k#,out&^Ã,@k#,outud@k#, ~43!

where the meaning of the symbols related to@k# is evident.
In the closed space geometry case the indices would be
crete and the integral a sum.

The same can also be done atain . We can now define the
S matrix between the in and out states:

SÃ,@k#;Ã8,@k8#5^Ã,@k#, inuÃ8,@k8#,out&

5SÃ,@k#,@k8#d~Ã2Ã8!. ~44!

According to@23,24#, this matrix has an infinite set of com
plex poles as we will demonstrate in Sec. IV~also an ex-
ample is given in@19# and using this paper and@22# and@25#
other examples can be obtained!.

If we forget the indices@k#, as we will always do below,
and consider again Eq.~10!, we see thatuÃ,@k#,out& is the
uv,out& of this equation. In the Introduction we have defin
the triplets ~13! and ~16! only using the Hamiltonian
h(out)5h(aout). These triplets correspond to a Fock spa
defined foraout. But there will also be two similar triplets
defined in the Fock space atain . We make the following
choice ~motivated by reasons that will be evident in a m
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ment!: For the in Fock space we will use functionsuc&
Pf1 in, namely, such that^Ã, inuc&PS and ^Ã, inuc&
PH1

2 , and for the out Fock space we will use functions su
that ^Ã,outuw&Pf2,out, namely, such thatuw&PS and
^Ã,outuw&PH2

2 . So the f2 of the Introduction is now
f2,out and our regular states belong to this space.14 The role
of f1, in is to allow us to define the corresponding function
spacef1, in

3 so we can use the functionals of this space
some spectral decompositions.15 As both vacua, atain , and
aout, are well defined and the particle production betwe
these vacua is finite the theory is implementable@26#. We
can then multiply the state of both Fock spaces.

So let us again write Eq.~43! with no @k#:

15E
0

`

dÃuÃ,out&^Ã,outu. ~45!

Of course there is an analogous equation for the ‘‘in’’ ca
Now using this equation and Eq.~44! we have

uÃ,out&5E
0

`

dÃ8uÃ8, in&^Ã8, inuÃ,out&

5E
0

`

dÃ8uÃ8, in&SÃ8,Ã . ~46!

Then

15E
0

`

dÃE
0

`

dÃ8uÃ8, in&SÃ8,Ã^Ã,outu ~47!

or

^cuw&5E
0

`

dÃE
0

`

dÃ8^cuÃ8, in&SÃ8,Ã^Ã,outuw&

5E
0

`

dÃE
0

`

dÃ8^cuÃ8, in&SÃd~Ã2Ã8!^Ã,outuw&

5E
0

`

dÃ^cuÃ, in&SÃ^Ã,outuw&. ~48!

14Precisely and repeating what we have anticipated in footnote
ux&Pf2

out will be a function ofh and a functional of fieldw. But
a5a(h), and sox5x(a,w) is the function of Eq.~28!, which
multiplied by the prefactor exp@iMS(a)# is C(a,w), a solution of
the WDW equation. So it isC(a,w), the function that really be-
longs to f2 . This fact proves that the asymmetry we use exi
either in the spaces ofx or C functions and therefore in the ful
quantum superspace.

15The main difference of this curved space-time formalism, w
the flat space usual one, is that in the former case we have
nonequivalent vacuau0,in& andu0,out&, while in the second one we
have just one,u0&, such thatKu0&5u0&, whereK is the Wigner
time-reversal operator. In the curved space time caseKu0,in&
Þu0,out& and therefore we have two equationsK:f2

out→f1
out

Þf2
out and K:f1

in→f2
inÞf1

in . In the usual case the ‘‘in’’ and
‘‘out’’ superscripts would be absent and, therefore, there wo
only be one equation. These differences, with the usual case,
be taken into account but they are not very important. Taken
account thatv̄.0 the functions off2 must satisfy the condition
^v̄, inuc&Pu(SùH1

2 ) and those off1 the condition ^v̄,outuc&
Pu(SùH2

2 ).
h

l

n

.

Now let uw&Pf2,out anduc&Pf1, in and let us promoteÃ to
a complex variablez. Then ^z,outuw&PH2

2 , ^z, inuc&PH1
2

and thereforêcuz, in&PH2
2 . So in the integrand of the las

equation all the factors are analytic in the lower half plan
with the exception ofSv,v8, which has an infinite number o
poleszn as we have already said. Then we can choose
curve G, beginning at the origin, and going below all th
poles of the lower half plane up to the infinity of the positiv
real axis.16 We can now change the integration contour
Eq. ~48! from @0,̀ ) to the curveG. If we add the pole
contribution, as in@14,27,28#, we obtain

^cuw&5(
n

^cu n̄ &^ ñ uw&1E
G
dẑ cuz, in&Sz^z,outuw&

5(
n

^cu n̄ &^ ñ uw&1E
G
dẑ cu z̄ &^ z̃ uw&, ~49!

where the sum comes from the residues of the poles~each
pole zn is labeled by a discrete indexn, and of course17

Imzn<0). Then, in a weak sense, we have found a n
spectral decomposition of 1:

15(
n

u n̄ &^ ñ u1E
G
dzu z̄ &^ z̃ u. ~50!

Following the same procedure witĥcuh(out)uw& we can
obtain the spectral decomposition ofh(out) ~always in a
weak sense!:

h~out!5(
n

Vnu n̄ &^ ñ u1E
G
Vzu z̄ &^ z̃ udz. ~51!

We have three possibilities to choose the curveG:
~i! to use all possible curvesG as in @28#, ~ii ! to take the

curve (2`,0#, in the second sheet, as in Ref.@27#, provided
we have a good behavior at infinity in the lower half plan
or ~iii ! to use the Nakanishi trick@29#, as in@31#, namely, to
define tilded functionals such that

E
G
^cu z̄ &^ z̃ uw&dz5E

0

`

^cuÃ̄&^Ã̃uw&dÃ ~52!

for all uc&Pf1, in ,uw&Pf2,out. We will use this last nota-
tion. Then we have

15(
n

u n̄ &^ ñ u1E
0

`

dÃuÃ̄&^Ã̃ u, ~53!

h~out!5(
n

Vnu n̄ &^ ñ u1E
0

`

VÃuÃ̄&^Ã̃udÃ ~54!

0,

s

o

d
ust
o

16Eventually the location of the poles can be such that it turns
to be impossible to find the curveG. Then we can use a set o
curves$Gn%, such thatGn goes below the polesz1 ,z2 , . . . ,zn , and
taken→` at the end of calculations.

17The first term of the right-hand side~rhs! of Eq. ~49! can be also
obtained if we eliminate the short time effect~Zeno effect! and the
long time effect~Khalfin effect!. This will also originate Eq.~100!.
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~see also@30# and @14#, where the Nakanishi trick is ex
plained!. From its own definition it is evident tha
u n̄ &,u z̄ &,uÃ̄&Pf1,out

3 since these vectors are functionals ov

uc&Pf1,out and thatu ñ&,u z̃&,uÃ̃&Pf1, in
3 since these vector

are functionals overuf&Pf2, in . Restoring the@k# the last
equation reads

h~out!5(
n

Vnu n̄ &^ ñ u1E
0

`

dÃE
k
VkuÃ,@k#&^Ã,@k#̃ud@k#,

~55!

but we will continue with the previous shorthand notati
and we will not write the@k# anymore. It can be proved tha
the bases$u n̄ &,uÃ̄&%,$u ñ&,uÃ̃&% are a biorthonormal system
@27,28,31#: namely,

^ n̄ uñ 8&5dnn8, ^ n̄ uÃ̃&50,

^Ã̄u ñ&50, ^Ã̄uÃ8̃&5d~Ã2Ã8!. ~56!

From all these equations we have that

h~out!u n̄ &5Vnu n̄ &,

^ ñ uh~out!5Vn^ ñ u, ~57!

whereVn is a complex eigenvalue, andu n̄ & are right eigen-
vectors and̂ ñ u left eigenvectors ofh(out). Even ifh(out) is
Hermitian, it has complex eigenvalues because we are u
a new spectral decomposition, which is only possible
cause we are working in a convenient Gel’fand triplet. T
fact will be the main tool that we will use below. The eige
values and their squared will be written as

Vn5vn2
i

2
gn , gn>0, ~58!

since, from Eq.~36!,

Vn
25m2a~out!21zn , znPC ~59!

and, by its own construction, the poleszn are in the fourth
quadrant of their complex plane, and therefore also theVn

2

and thus theVn are in the lower half plane of the corre
sponding unphysical sheet and sogn>0.

III. TIME EVOLUTION

Coming back to the WKB expansion~28!, if we now
consider the next order and the time defined in Eq.~31!, the
function x(a,w) must satisfy the Schro¨dinger equation,

i
dx

dh
5h~h!x, ~60!

where h(h) is Hamiltonianh written as a function ofh.
Even if this Hamiltonian is time dependent we can consi
that for scalesa.aout there is no particle creation and ther
fore we have an invariant adiabatic vacuumu0,out& and a
definitive pole structure for theS matrix @19#; so for
r

ng
-

s

r

a(h)a~h!.aout expansion~55! will always have the same
structure. Thus the time evolution ofx will be

x~h!5expF2 i E
0

h
h~h8!dh8Gx~0!. ~61!

From this equation we can obtain some conclusions:
~i! In particular the time evolution of the right eigenvect

u n̄ & reads

un~h!&5expF2 i E
0

h
Vn~h8!dh8G un~0!&, ~62!

because even if the pole structure remains fixed, the p
move as can be seen in the example of Ref.@19#, Eq. ~3.3!.
So, from Eq.~58!, we can see that, if there are somegn
.0, the corresponding eigenvectors have a dumped ev
tion. Therefore, these eigenvectors correspond to deca
states. Thus our formalism naturally yields decaying sta
that vanish towards the direction of time that we can call
future.

~ii ! Using Eq. ~53! we can expand any functionuw&
Pf2as

uw&5(
n

u n̄ &^ ñ uw&1E
0

`

uÃ̄&^Ã̃uw&dv; ~63!

then its time evolution will be

uw~h!&5(
n

expF2 i E
0

h
Vn~h8!dh8G u n̄ &^ ñ uw&

1E
0

`

expF2 i E
0

h
VÃ~h8!dh8G uÃ&^Ã̃uw&dÃ,

~64!

where all the terms in the sum, such thatgnÞ0, have a
decaying evolution, while the rest of the terms and the in
gral have an oscillatory behavior. So in the time evolution
~almost! any state we have a decaying term that vanis
towards the future.

~iii ! In this way the asymmetry introduced in hypothes
H 2 produces an effectivetime asymmetry, because it allows
us to define a future time direction, the one pointed by
dumping process. Moreover, it can be proved that, if in E
~61! the evolution operator is considered as an operator fr
spacef2 to spacef2 , namely, if we restrict the dynamic
to spacef2 , Eq. ~61! is only defined forh>0. Therefore
the evolution operator cannot be inverted and so it is re
an irreversible operator~see@32,27,14#!.

~iv! Let us consider the case of mixed states. For a mi
staterPF2 we can generalize the spectral decomposit
~63! to obtain
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r5(
n,m

rnmu n̄ &^ n̄ u1(
n
E

0

`

rnÃu n̄ &^Ã̄udÃ

1E
0

`

(
n

rÃnuÃ̄&^ n̄ udÃ

1E
0

`E
0

`

rÃÃ8uÃ̄&^Ã̄udÃdÃ8. ~65!

Repeating the computation of the pure state case, we
compute the time evolution of stater(h). Since eithergn
50 or gn.0, there will be oscillating terms and dumpe
ones. Then we obtain

r~h!5r* ~h!1expF2
1

2E0

h
g~h8!dh8Gr1~h!, ~66!

where the first term of the rhs is an oscillatory term and
second a decaying term, where we have written a first fa
corresponding to the slowest dumping factor; namely,g is
the smallest of the nonzerogn . Whenh→` we have

r~h!→r* ~h!. ~67!

r* (h) is a thermodynamical equilibrium state. In fact, sin
in its evolution there are no dumping factors, it behaves l
an ordinary stable quantum state and its entropy is time c
stant ~as we will see!, namely, the one that corresponds
thermodynamical equilibrium~below we will normalize this
constant to zero!. It is logically a nonstationary oscillatory
equilibrium state, because, even if it is in thermic equil
rium, the field cannot go to dynamical equilibrium since,
our simple model, there are no interaction terms among
field components. If these terms were present, new dum
factors would also be present and the final equilibrium wo
be a stationary state.18

This is the essence of our formalism. Below we will s
the results that we can obtain if we follow this road.

18In a practical complete case microscopic motions would alw
remain. These microscopic motions are, in our model, those of
field, namely, those that correspond to the integral in the spe
decomposition. In practice they have a maximum~very small!
length, since the integral in the spectral decomposition really d
not begin with zero, but with a finite value. If we were to introdu
a coarse graining, these microscopic motions would be hidden
the equilibrium would be the usual stationary equilibrium stater*
5const. But in our formalism there is no need of a coarse grain
to hide the microscopic motions. Really we have only amathemati-
cal graining ~the choice of the right mathematical structure! to pro-
duce time asymmetry. The macroscopic energy we had at the
ginning goes into microscopic oscillations in order to fulfill the la
of energy conservation. Also if we multiply Eq.~66! by a smooth
distribution s, the microscopic oscillation would be smeare
@r* (h)us# becomes a constant, and we have a typical equilibr
weak limit @34#: limh→`@r(h)us#5@r* (h)us#.
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IV. DECOHERENCE AND CORRELATIONS

In Ref. @19#, using our formalism, it is proved that, if th
S matrix has an infinite number of complex poles, we ha
decoherence and that, in unstable states, configuration
momentum are correlated, in such a way that the unive
ends in a classical phase. In this demonstration hypoth
H3 plays an essential role. In@19# it was not proved that, in
general, theS matrix, relevant for our problem, has an infi
nite set of complex poles, but that set was computed in
example, while other examples were proposed.

Here we will review the demonstration of Ref.@19#, in a
condensed but more general way, and we will complete
paper observing that using a potential, with a bounded s
port, as in the present paper, the existence of an infinite se
poles is a consequence of Refs.@23# and @24#.

In fact, a massive scalar field, conformally coupled,
metric ~22! satisfies Klein-Gordon equation

S ¹m¹m1m21
1

6
RDc50, R56a23

]2a

]h2
. ~68!

This equation corresponds to Hamiltonian~35! and it leads,
by variable separation, to

ck5
1

~2p!3/2a~h!
f k~h!exp~6 ik–x!, ~69!

and f k(h) satisfies a generalized oscillator equation w
time-dependent frequency:

f k91v2~h! f k50, v5@a2~h!m21k2#1/2. ~70!

On the other hand, in ordinary quantum mechanics,
Hamiltonian of a massive particle in a potentialW(r ) is

H52
1

2m
Dc1W~r !c ~71!

and a stationary solution

cklm5
uk~r !

r
Yl

m~u,w! ~72!

satisfies the equation

uk9~r !1v2~r !uk~r !50,

v~r !5Fk22
l ~ l 11!

r 2
22mW~x!G 1/2

. ~73!

So both phenomena can be mathematically related accor
to the analogy

h↔r ; k↔k,l ,m; a2~h!m2↔k22
l ~ l 11!

r 2
22mW~x!;

k2↔2mE. ~74!

More details about this analogy can be obtained from@23#.
Now from Ref.@24#, p. 218, we know that theS matrix of

a cutoff potentialW(r ), namely, a potential with a bounde
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support, has an infinite number of complex poles. Our pot
tial is ;a2(h) which is practically a constant fora@a1 ,
since«>0, and exactly a constant if we consider the va
«50, and so, subtracting this constant final value, we
say that it is a cutoff potential, with anS matrix endowed
with an infinite set of poles.

Almost all potentials used in the literature of quantu
field theory in curved space-time@22# are very well behaved
in the infinities and can be approximated by this, bound
support, kind of potential~this is not the case for some Q
potentials, which we will discuss in the Conclusions!. So the
existence of an infinite set of poles seems quite a gen
feature of the theory. Thus, using the equation of@19#, it can
be proved that our formalism leads to decoherence, to co
lations, as will be reviewed below, and to the outcome o
classical universe.

Finally, in particular subsystems of the universe theS
matrix has poles if unstable quantum states exist in the s
system@27#. Of course, these poles will also appear in a
completeS matrix of the universe.

A. Decoherence

Decoherence naturally appears in systems where thS
matrix has complex poles@14#, and therefore in the system
we are studying. The classical geometries are defined b
choice of the sign6 and the constantC in Eq. ~32!; we will
call these labelsa,b, . . . . Wewill call wN the fieldw of Eq.
~28!, whereN will label the possible modes; precisely, w
will use n for the discrete unstable states coming from
poles, andk for the continuous stable states coming from t
continuous spectrum. When we will be referring to bo
kinds of modes we will use the indexN. Then Eq.~28! reads

C~a,@wN# !5exp@ iM 2S~a!#x~a,@wN# !, ~75!

wherex(a,@wN#) can be written as

x~a,@wN# !5)
N

xN~h,wN!. ~76!

We can obtainxN(h,wN) via a Gaussian ansatz:

xN~h,wN!5AN~h!exp@ iaN~h!2BN~h!wN
2 #. ~77!

The functions AN(h) and aN(h) are real while BN(h)
5BNR(h)1 iBNI(h) is complex. They can be obtained b
solving the system

AN~h!5p21/4@2BNR~h!#1/2,

ȧN~h!52BNR~h!,

ḂN522iBN
2 ~h!1

i

2
VN

2 ~h!, ~78!

where the overdot denotes derivatives with respect toh.
From these equations, just working with the real continuo
spectrum, decoherence can be proved under some restr
conditions@18,19#. But we will show that if we use both the
complex discrete and the real continuous spectra, deco
ence can be proved for almost all initial conditions. From E
-
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~75!, after the integration of the modes of the scalar fie
~considered as the environment! we obtain the following re-
duced density matrix:

r r~a,a8!5exp@2 iM 2Sa~a!1 iM 2Sa~a8!#raa~a,a8!

1exp@2 iM 2Sa~a!1 iM 2Sb~a8!#rab~a,a8!

1exp@2 iM 2Sb~a!1 iM 2Sa~a8!#rba~a,a8!

1exp@2 iM 2Sb~a!1 iM 2Sb~a8!#rbb~a,a8!,

~79!

wherea andb symbolize two classical solutions and

rab~a,a8!5)
N

rN
ab~a,a8!

5)
N

E dwNxN
a* ~h,wN!xN

b~h8,wN!. ~80!

On the other hand, from Refs.@18,19#, it is

BN52
i

2

ġN

gN
, ~81!

wheregN is a solution of

g̈N1VN
2 gN50, ~82!

whereVN can be complex, as in Eq.~58!, where we know
that there are an infinite number of modesn.

Let us now consider the asymptotic~or adiabatic! expan-
sion of the functiongN , whenh→`, in the basis of the out
modes. As thisgN corresponds to an arbitrary initial state i
expansion reads

gN5
PN

A2VN

expS 2 i E
0

h
VNdh D 1

QN

A2VN

expS i E
0

h
VNdh D ,

~83!

wherePN andQN are arbitrary coefficients. It is obvious tha
if all the VN are real, as in the case of theVk , the last
equation will have an oscillatory nature, as well as its deri
tives. This will also be the behavior ofBk in Eq. ~81!. There-
fore the limit h→1` will be not well defined, even ifBk
could be bounded. But ifVN is complex, the first term of Eq
~83! will have a dumping factor and the second one a gro
ing one. In this caseN5n and whenh→1` we have

Bn'2
i

2

ġn

gn
5

1

2
Vn . ~84!

Then we have two cases.
~i! VN5VkPR1 for the real factor corresponding to th

stable states. Then we see that whenh→1` the RHS of Eq.
~80! is an oscillatory function with no limit in general. W
will only have good limits for some particular cases listed
Refs.@18# and @19#.

~ii ! VN5Vn5vn2( i /2)gnPC for the complex factor
corresponding to decaying states. Then forh→1` we will
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have a definite limit of Eq.~84!. Therefore, in this case w
can calculate ther rn

ab corresponding to the complex factor
and we obtain

r rn
ab~a,a8!5F 4BnR~h,a!BnR~h8,b!

@Bn* ~h,a!1Bn~h8,b!#2G 1/4

3exp@2 ian~h,a!1 ian~h8,b!#. ~85!

Now when ImBn' 1
2ImVnÞ0 and Bn* (h,a)ÞBn(h8,b) it

can be proved that

ur rn
ab~a,a8!u,1, ~86!

and as there is an infinite number of these complex fac
the product~80! vanishes whenh→1`. Then we have de-
coherence when Bn* (h,a)ÞBn(h8,b), namely, if
Vn* (h,a)ÞVn(h8,b) or

a„h,Ca ,~6 !a…Þa„h8,Cb ,~6 !b…. ~87!

So we have decoherence~i! for different classical solutions
i.e., CaÞCb or (6)aÞ(6)b , even if the time is the sam
h5h8, or ~ii ! for the same classical solution, i.e.,Ca5Cb
and (6)a5(6)b , if the times are different,hÞh8.

B. Correlations

From Ref.@18# we know that the existence of correlation
can be proved using only the real continuous spectrum,
nothing new can be added in this case. We must only st
the correlation for the unstable states of the discrete s
trum. Correlations take place inside each classical solu
and, therefore, they can be computed using the Wigner fu
tion associated withr rn

aa(a,a8) @18,19#, namely,

FW
aa~n!~a,Pa!5E

2`

1`

dDexp~22iPaD!r rn
aaS a2

D

M
,a

1
D

M D , ~88!

wherea,a85a6D/M , and Pa is the canonical momentum
conjugated toa. Then we can repeat the reasonings of@18#,
from Eqs.~2.24! to ~2.28!, and we will arrive at

FW
aa~n!~a,Pa!'C2~a!Ap

s2
expF2S Pa2MS81a8

2
BnI8

4BnR
D 2Y s2G , ~89!

where the prime symbolizes derivatives with respect toa and
s25uBn8u

2/4BnR
2 . When h→1` we know thatBn' 1

2 Vn ,
and so
rs

nd
y
c-
n
c-

s25
1

2

3
m4a2

A~m2a21xn!21yn
2@m2a21xn1A~m2a21xn!21yn

2#
,

~90!

wherezn5xn1 iyn is the corresponding complex pole. Thu
if aout@1, we have thats'1/a and we have correlation in
the solutions corresponding to unstable states.

For more details about these two subsections, see@19#.

V. ENTROPY

Let r(h) be the density matrix, of the universe or one
its subsystems, for a physical admissible state (rPF2) and
let r* (h) be the corresponding thermodynamical equil
rium matrix. In the universe these matrices are related by
~66!. The Hamiltonian of the subsystem is necessarily a te
of the general Hamiltonian of Eq.~24! and itsS matrix must
have poles if the subsystem is not trivial~see@14# and@27#!.
So we can repeat all that we have said for the universe
the case of the subsystem and we can also choos
t-asymmetric regular space state for the subsystem. We m
take care that the dumping or future direction of the su
system coincides with the dumping or future direction of t
universe for consistency. I.e., the local and global arrows
time must coincide. Then we will also find Eq.~66! for the
subsystem. The only difference would be that, if the su
system Hamiltonianh is not time dependent~with respect,
e.g., to the proper timet), the integral of Eq.~66! must be
subtituted by the usual productht.

Then we can define the conditional entropyS5
S@r(h)ur* (h)# of stater(h) with respect to stater* (h)
@34# both for the universe or the subsystem,

S5S@r~h!ur* ~h!#52tr$r~h!ln@r
*
21~h!r~h!#%,

~91!

such thatS@r* (h)ur* (h)#50; namely, the entropy van
ishes at equilibrium~in this definition we consider that th
vanishing trace ghosts have been eliminated by that pro
dure explained in@35#, and also other technicalities, ex
plained in this paper, are taken into account!. We can, as
well, use the corresponding classical definition, since we
really interested in the classical phase of the universe, bu
order to use one notation only, we will use the quantu
formulas.19

From Eq.~66! we see that

trr~h!5trr* ~h!51⇒trr1~h!50; ~92!

i.e., if the statesr(h) andr* (h) are normalized as it should
be,r1(h) has a vanishing trace, and thusr1(h) is not a state

19There is a close relation between the quantum and class
cases, and so Eq.~66! can also be obtained in the second one@14#.
This relation can be obtained using@33#, as is shown in Ref.@50#.
The Wigner function is not positive definite, and this problem
studied in Ref.@35#.
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but the coefficient of a correction to the equilibrium state
obtain stater(h). The vanishing of the trace ofr1 is directly
proved in @14,32,36#, using our formalism. Now if we ex-
pand the logarithm in Eq.~91!, and use Eq.~92! we obtain

S5S@r~h!ur* ~h!#52expF2
1

2E gdh G tr@r
*
21~h!r1

2~h!#

1•••, ~93!

where the ellipsis symbolizes higher order terms.20

This entropy has the property:

lim
h→`

S@r~h!ur* ~h!#50; ~94!

namely, the entropy evolves towards its null equilibriu
value. This is so because the prefactor in Eq.~93! dominates
any other time variation, sincer* (h) is usually oscillatory
@namely, it will be oscillatory in case~a!, but not in case~b!;
see below# and r1(h) has oscillatory terms and dumpin
factors that vanish faster than the dominant decaying fac

In Eq. ~91! we have two matricesr(h) andr* (h); then
we also have two possibilities. Either both matrixes have
same kind of evolution or they have different ones. The fi
is the case of a closed system, e.g., the universe, but
second case appears whenr* (h) follows a different evolu-
tion due to, e.g., an external agency; this would be the c
of an open system within the universe. Let us consider
two cases.

~a! The closed case. Both matrices follow the same e
lution law. Namely, if we have a time variable Hamiltonia
h(h), as in the case of the universe, the evolution will be

r~h!5expF2 i E
h8

h
l ~h!dhGr~h8!,

r* ~h!5expF2 i E
h8

h
l ~h!dhGr* ~h8!, ~95!

where l (h) is the corresponding Liouville operator, i.e
l (h)r5h(h)r2rh(h).

In the case of a closed subsystem of the universe, wh
the Hamiltonianh is not a proper-time variable~e.g., in a
subsystem which does not expand or contract due to an
ternal agency!, we would have

r~ t !5exp@2 i l ~ t2t8!#r~ t8!,

r* ~ t !5exp@2 i l ~ t2t8!#r* ~ t8!, ~96!

20As in this equation distributions are multiplied, some care m
be taken in order to convince ourselves that what we are doin
mathematically correct. E.g., the distributions can be transforme
ordinary density matrices by aL transformation@14#. This trans-
formation maintains the dumping factors, and so the results
tained remain valid, but the distributions become ordinary matric
which can be multiplied. In this way the rhs of Eq.~93! becomes
well defined. The multiplication can be also done using matrixM of
Ref. @51#. There are also more refined mathematical ways to re
to the desired result, as the one of Refs.@32,35#.
r.
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wherel is the Liouville operator corresponding to the Ham
tonianh andt is the proper time. In this case the equilibriu
matrix r* (t) also evolves in the same way as the mat
r(t). Now, from what we have said in Sec. III, point~iii !,
Eq. ~95! is only valid if h.h8. Analogously, if the sub-
systemS matrix has poles and, for the subsystem, we ha
also chosen an admissible function space with the same
teria as those used to choose spaceF2 , Eq. ~96! is only
valid if t2t8>0 or t>t8. Therefore the last two evolution
are irreversible. Now, from Ref.@34# ~using the classical-
quantum analogy@33,35#, since we are in the classical phas
the ‘‘exp’’ operator of the last two equations will be
Frobenius-Perron operator, and we can use the classical
nition of conditional entropy! we know that

S@r~h!ur* ~h!#>S@r~h8!ur* ~h8!#,

S@r~ t !ur* ~ t !#>S@r~ t8!ur* ~ t8!#, ~97!

respectively. It would be ‘‘5’’ if the evolution operator
would be reversible,but it is not @consider also Eq.~93!#.
Then these entropies are really monotonically growin
Therefore we have proved the second law of thermodyn
ics for the whole universe or for any nontrivial closed su
system. So our formalism yields this fundamental law na
rally ~compare with the much more complicated coar
graining method of@37#!.

The demonstration is based on the fact that~in both cases!
r is an admissible state~like the ink drop spreading in the
glass of water!, and sorPF2 andgn.0. If we would have
taken rPF1 , it would be gn,0 and the entropy would
decrease showing the following:

~i! In the case of the closed subsystem within the unive:
F1 is a space of a clearly nonadmissible solution~the ink
drop contracting spontaneously!. In fact, in this case the ar
row of time is the one of the universe and not the one of
subsystem, and in the subsystem we will see a decay of
entropy, showing that these states are not physically adm
sible.

~ii ! In the case of the universe: Going fromF2 to F1 we
have simply changed our convention~since all possible ar-
rows of time are embodied in the universe evolution!, con-
ventionally calling the ‘‘future’’ the direction of decreasin
entropy.

~b! The open case. Let us now consider the important c
of an open subsystem of the universe, e.g., the matter
radiation within an expanding universe~since in this case we
do not take into account the entropy of the gravitational fie
and we will consider that this field as an external agency t
expands the space, where the matter and the radiation
located!. Then the conditional entropy is not necessar
monotonically increasing, at least for short times. In fact,
cannot use Eq.~97! sincer* (h) does not satisfy an equatio
such as the second equation of Eq.~95!, because its evolu-
tion could be fixed by an agency external to the system, e
a thermostat or the universe expansion as we will see. In
last case this fact is completely logical sinceS@r(h)ur* (h)#
is just the matter-radiation entropy~with no gravitational
field entropy contribution! in an expanding~or contracting!
universe with an equilibrium stater* (h), which varies in-
dependently. Therefore it is not the total entropy. It is w
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known that matter~let us say a gas! can have decreasin
entropy into a variable geometry~let us say a box with mov-
ing walls!. A phenomenological study of the problem can
found in Refs.@38,39#. In this case what we have called, u
to now, S is just the entropy gapDS with respect to a vari-
able maximal possible entropySmax. The actual entropy
which grows monotonically, isS5Sact5Smax1DS . But DS
does not have this property. Furthermore, the diminishing
DS for short times is welcome, as we will see in the next tw
sections.

VI. ENTROPY GAP

In this section we study the universe entropy gapDS5
Sact2Smax, following a qualitative idea of Davies@38#. Ac-
tually we will complete this idea computing the entropy g
after decoupling time. Therefore we will change our mod
it still will be homogeneous and isotropic, with metric~22!,
but obviously the particle production will be finished, and
we will consider that we are simply in a flat geometr
matter-dominated, universe.

It is well known that the isotropic and homogeneous e
pansion of the universe is a reversible process with cons
entropy@40#. In this case the matter and the radiation of t
universe are in a thermic equilibrium stater* (t) at any time
t. As the radiation is the only important component, from t
thermodynamical point of view, we can chooser* (t) as a
blackbody radiation state@41#; i.e., r* (t) will be a diagonal
matrix with a main diagonal:

r* ~v!5ZT23
1

ev/T21
, ~98!

whereT is the temperature,v the energy, andZ a normal-
ization constant@@42#, Eqs. ~60.4! and ~60.10!#. The total
entropy is

S5
16

3
sVT3 ~99!

@@42#, Eq. ~60.13!#, wheres is the Stefan-Boltzmann con
stant andV a comoving volume.

Let us consider our isotropic and homogeneous mode
universe with scalea. Any comoving volume evolves asV
;a3, and, since from the conservation of the energ
momentum tensor and radiation state equation, we know
T;a21, we can verify thatS5const. Thus the irreversible
nature of the universe evolution is not produced by the u
verse expansion, even ifr* (t) has a slow time variation.

Therefore, after decoupling time, the main process t
has an irreversible nature is the burning of unstableH in the
stars~which produces He and, after a chain of nuclear re
tions, Fe!. This unstable state produces poles in the co
spondingS matrix and a nuclear reaction process, with me
lifetime tNR52g21 . Therefore, using Eq.~66!, and consid-
ering thatg is constant~under proper-time variation!, since it
corresponds to a local process considered in case~a! of the
last section~or simply on phenomenological grounds!, we
can then say that the state of the universe, at timet, is

r~ t !5r* ~ t !1r1e2gt1o@e2gt#, ~100!
f

l;
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of
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n

wherer1 is a certain phenomenological coefficient, which
constant in time since all the time variation of nuclear re
tions is embodied in the exponential lawe2gt. Also, on phe-
nomenological grounds, we can foresee thatr1 must peak
strongly aroundv1, the characteristic energy of the nucle
process. All these reasonable phenomenological facts
also be theoretically explained in different ways; e.g., E
~100! can be computed with the theory of@28# or @35#. In
Ref. @32# it is explicitly proved thatr1 peaks strongly at the
energyv1. So using Eq.~91! we can compute the entrop
gap

DS52tr@r ln~r
*
21r!#. ~101!

Now using Eq. ~100! and considering only timest@tNR
g21 we can expand the logarithm, as in Eq.~93!, to obtain

DS'2e2 1
2

gttr~r
*
21r1

2
!, ~102!

where we have used Eq.~92!. We now introduce the equi
librium state~98! for v@T. Then

DS'2Z21T3e2 1
2

gttr~ev/Tr1
2!, ~103!

where ev/T is a diagonal matrix with this function as th
diagonal. But asr1 is peaked aroundv1 we arrive to a final
formula for the entropy gap:

DS'2CT3e2 1
2

gtev1 /T, ~104!

whereC is a positive constant.
Let us now compute the time evolution of the entro

gap. We have computedDS for times larger than decoupling
time and therefore, asa;t2/3 andT;a21, we have

T5T0S t0

t D 2/3

, ~105!

wheret0 is the age of the universe andT0 the present tem-
perature. Then

DS'2C1e2 1
2

gtt22expFv1

T0
S t0

t D 2/3G , ~106!

whereC1 is a positive constant. Drawing the correspondi
curve @39# it can be seen thatDS has a maximum att5tcr1
and a minimum att5tcr2

. Let us compute these critica
times. The time derivative of the entropy reads

DS̈'F2
1

2
g22t211

2

3

v1

t0T0
S t0

t D 1/3GDS. ~107!

This equation shows two antagonistic effects. The unive
expansion effect is embodied in the second and third term
the square brackets, being an external agency to the ma
radiation system such that, if we neglect the second term
tries to increase the entropy gap and, therefore, to take
system away from equilibrium~as we will see the secon
term is practically negligible!. On the other hand, the nuclea
reactions embodied in theg term try to convey the matter
radiation system towards equilibrium. These effects beco
equal at the critical timestcr such that
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1

2
gt012

t0

tcr
5

2

3

v1

T0
S t0

tcr
D 1/3

. ~108!

For almost any reasonable numerical values this equation
two positive roots:tcr1

!t0!tcr2
.

Precisely,~i! for the first root we can neglect thegt0 term
and we obtain

tcr1
't0S 3

T0

v1
D 3/2

~109!

~this quantity, with a minus sign, gives the third nonphysi
root! and~ii ! for the second root we can neglect the 2(t0 /tcr)
term, and we find

tcr2
't0S 2

3

v1

T0

tNR

t0
D 3

. ~110!

Let us make now some numerical estimates. We m
choose numerical values for four parameters:v15TNR,
tNR5g21, t0 , andT0 .

TNR and tNR can be chosen between the following valu
@43#:

TNR5106–108 K, ~111!

tNR5106–109 yr,

while for t0 andT0 we can take

t051.531010 yr, ~112!

T053 K.

In order to obtain a reasonable result we choose the lo
bounds forTNR and tNR and for tcr1

we obtain

tcr1
'1.53103 yr. ~113!

So tcr1
is smaller than the decoupling time and it should n

be considered since the physical processes before this
are different than those we have used in our model. Also,
must only consider timest.tNR5g21, in order to use Eq.
~102!.

For tcr2
we obtain

tcr2
&104t0 . ~114!

From Eqs.~113! and ~114! we can see that reallytcr1
!t0

!tcr2
.

Thus ~i! from tNR to tcr2
the expansion of the univers

produces a decreasing of the entropy gap, according
prediction of Davies@38# . Also, it probably produces a
growing order, and therefore the creation of structures
clusters, galaxies, and stars@44#.

~ii ! After tcr2
we have a growing of entropy, a decreasi

order, and a spreading of the structures: Star energy is sp
in the universe, which ends in a thermic equilibrium@45#. In
fact, whent→` the entropy gap vanishes@see Eq.~106!#
and the universe reaches a thermic equilibrium final stat

tcr2
&104t0 is the frontier between the two periods. Is th

order of magnitude oftcr2
a realistic one? In fact it is, sinc
as

l

st

er

t
e

e

a

e

ad

104t0'1.531014 yr after the big bang all the stars will ex
haust their fuel@45#, and so the border between the tw
periods should have this order of magnitude. Furthermore
should also be smaller than this number. This is precisely
result of our calculations contained in Eq.~114! ~see also
@39#!.

So we are at the edge of a correct physical predicti
even if our model is extremely naive and simplified, a h
mogeneous universe, and besides we have neglected
higher order terms in Eq.~100! which perhaps may be im
portant for finite times. Besides in the real universe nucl
reactions take place within the stars, which can only be pr
erly considered in an inhomogeneous geometry. Never
less, this rough numerical estimate shows that the theory
be used for practical purposes. Furthermore the decreasin
the entropy gap, in the periodtNR,t,tcr2

, will be crucial in
the next section.

VII. BRANCH SYSTEM

The set ofirreversibleprocesses within the universe, ea
one beginning in an unstable nonequilibrium state, can
considered abranch system@38,46#. Namely, every one of
these processes begins in a nonequilibrium state, such
this state was produced by a previous process of the set.
a Gibbs ink drop~initial unstable state! spreading in a glass
of water ~irreversible process! is only probable~since the
probability to create an ink drop by fluctuations is extreme
small! if there was first an ink factory, which extracted th
necessary energy from an oven, where coal~initial unstable
state! was burnt~branched irreversible process!; in turn coal
was created with energy coming from the Sun, where H~ini-
tial unstable state! is burnt into He~branched irreversible
process!; finally H was created using energy obtained fro
the unstable initial state of the universe~the absolute initial
state of the branch system!. Therefore, using this hierarchica
chain, all the irreversible processes are related to the cos
logical initial condition, the only one that must be explaine
Let us observe the following:

~i! The branch system defines its own arrow of time, t
branch arrow of time (BAT),as the direction that goes from
the unstable initial state of every member of the system
wards equilibrium. Probably the BAT is the most useful
all arrows of time, since it is present in any irreversible loc
process.

~ii ! Once we have the branch system the irreversible e
lution of each system is easy to explain, since once we h
understood the origin of the initial unstable state of ea
irreversible process within the universe~even if we have not
yet discussed the origin of the initial state of the whole u
verse! it is not difficult to obtain Lyapunov variables~or
irreversible evolution equations!, if we consider, e.g., that the
subsystems where these processes take place are not iso
If it is so, forces of a stochastic nature penetrate from
exterior of each subsystem and, it is well known, that if w
add stochastic terms to the time-symmetric evolution eq
tion, we obtain time-asymmetric ones, yielding Lyapun
variables, e.g., a nondecreasing entropy@34#. We can also
consider that each subsystem has an enormous amou
information and we are able to measure, compute, and c
trol a part of this information, which we will callrelevant.If
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we neglect the rest of the information, theirrelevantone, we
can obtain also irreversible evolution equations a
Lyapunov variables@34,47#. These two procedures can b
considered within the coarse-graining usual formalism.

~iii ! But of course, if we follow the ideas of this paper, w
will use more refined mathematical tools and, in each of
subsystems, we will introduce a model similar to the one
have used for the whole universe, as we have done in Se
introducing the hypothesis H2 in each subsystem.~It has
already been done in@14,27,32#, and the same results ar
obtained, i.e., irreversible evolution equation, Lyapun
variables, etc.! Then we see that entropy grows in each su
system provided the state of the subsystem would be ch
among the physically admissible states of spaceF2 . Then
each subsystem of the branch system begins in an unst
low entropy state and evolves towards thermal equilibriu
The physical nonadmissible growing states~those of space
F1) correspond to theoretical evolutions that would on
exist before the instant of creation of the subsystem~the
instant when we put the ink in the glass of water!, evolving
with decreasing entropy, towards that instant~namely, the
ink drop contracting spontaneously!. These evolutions sim
ply do not exist in nature because, before the instant of
creation, the subsystem really does not exist as such. In
before that instant a different subsystem existed with diff
ent evolution laws~e.g., the ink factory that creates the in
drop!. Therefore all the scenarios we are using turn out to
realistic and satisfactory.

~iv! So only one problem is left: Why did the univers
begin in an unstable, out of equilibrium, low entropy sta
Let us first observe that really we are referring not to
‘‘whole’’ universe ~with its gravitational field! but only to
the matter-radiation subsystem of the universe.21

Then, in the no-time version of the introduction we ha
postulated H1 and H2. Using these hypotheses we have
constructed time and demonstrated, in the sections ab
that the universe expansion creates, in its matter-radia
subsystem, an entropy gapDS that takes it out of equilib-
rium, not only att50, but in a long period of its history
since the actual entropy isSact,Smax. We have also demon
strated that the matter-radiation subsystem of the univ
evolves to a final state of thermic equilibrium sinceDS→0,
whent→` @cf. Eq. ~94!#. So the answer to the only proble
left is hypothesis H2 since all the facts above are based
this hypothesis. Certainly, someone will think that we ha
solved a problem by postulating an axiom, and this is no
very exciting result. But if the axiom yields the solutions
many problems, and this is the case of H2 , the axiom must
be welcome. After all, this is the role of axioms.

~v! Finally we can ask ourselves if, in the perspective
the branch system idea, H2 is a natural hypothesis. H2 says
that rPF2,S^S. So first it is postulated thatrPS^ S,
and thereforer is a smooth function, with infinite deriva
tives, and well behaved in the infinities of the configurati

21Let us also observe that for our purposes we can put the ‘
ginning of the universe’’~precisely the unstable beginning of ou
branch system ort50) after decoupling time. With this change w
avoid the problem we could have if we putt50 in the quantum
gravity period and still demonstrate our thesis.
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space. This part of H2 seems quite natural, certainly muc
more natural than the two other alternative possibiliti
namely, ~a! rPL, in which caser can be, e.g., a squar
integrable function ofH^H, where in a set of points, the
function can have noncontinuous and arbitrary values. W
is the physical meaning of this discontinuity?~b! r
PS3

^S3, namely, a distribution, e.g., ad function, cer-
tainly a quite unnatural state.

So the first part of H2 is natural. The second part is to as
why r would be endowed with a natural asymmetry, the o
of F2 . Is it too much to ask? Let us study this questi
according to the branch system idea and our formalis
There will be no branch system only if the universe~and now
we are referring to the whole universe with the gravitation
field included! would begin in an equilibrium stater* , since
in this case it will always remain in equilibrium. Now, from
Eqs. ~65!, ~66!, and ~67! we see that, in this case,r*
PF2

3 , and sor* would be a distribution,22 something like a
d function, and we have just considered this choice as
natural. On the contraryrPF2 is a much more natural~i.e.,
regular! state. Any state ofF2 will produce a branch system
since any state ofF2 yields Eq.~66!. So we can, at least
conclude that H2 is the requirement that the state of th
universe would be a natural and an asymmetric one. H2 is
also intimately related to the branch system idea and in c
sequence it is also related to the fact that really our unive
is a branch system. H2 is just the transcription of thes
physical facts.

VIII. COORDINATION OF THE ARROWS OF TIME

In this section we will only consider the coordination
the arrows of time related to our model, namely,

~i! The branch arrow of time (BAT),the arrow that goes
from the unstable initial state of every process of the u
verse branch system to its equilibrium final state. As we h
seen in the last section this arrow is a direct consequenc
the asymmetry introduced by H2. ~ii ! The thermodynamic
arrow of time (TAT),which points to the direction of the
growing of the universe entropyS. ~iii ! The cosmological
arrow of time (CAT),which points to the direction of the
growing of the universe scalea.

Of course, all these arrows are related to time and the
fore they must only be considered in the classical~or semi-
classical! period where the timeh, given by Eq.~31!, is well
defined. As shown in Sec. VI,h has the BAT direction, since
it points away from the initial unstable state. In the timele
quantum period we only have the asymmetry defined by H2.

Then Eq. ~97!, for nonexpanding or contracting sub
systems within the universe, which is a consequence of2,

-

22This fact is evident if we consider a Baker’s transformation@34#:
Let us consider a distribution function with compact support, a
such that it belongs toL5L2(@0,1#3@0,1#). In the far future this
support becomes a set of horizontal strips, and in the limit a se
infinite horizontal straight lines, such that it is dense in@0,1#
3@0,1#. No function ofL has such a support and therefore t
equilibrium state~considered as a ‘‘strong’’ limit! does not belong
to L. Of course, a weak limit exists and therefore equilibrium
reached in a weak sense, e.g., as a coarse-grained average@34#.



f
e

e

e
c

nd
T

t

is

at
th
ta

ts

n
th

h
te

pt

ys

o

cti-
In
se

fy
ally

eo-
ys.
to
ex-

xi-
’’

stic
ted

ove
.
be-
they
ved
al
the
fol-

, it
ble

are
ate
ny-
us
s a
r a
est

ath-
sent

-
ing
ut

d

ally
of

l-
both
in-

ri-
st-

lar
a

rse
e a
ry.

m

-
ain
e

57 765MATHEMATICAL STRUCTURE OF QUANTUM . . .
shows that BAT5TAT, and that t, or more generallyh,
grows in the same direction thanS.

The relation between BAT~5TAT! and CAT is given by
the 6 sign in Eqs.~32! or ~33!. Then these two arrows o
time, a priori, are not coordinated in our model. But in th
classical period we have justone classical universe and
therefore the6 sign and the constantC are fixed; so in the
classical period we have just one sign: either1 or 2 . There-
fore, once the sign is fixed, a clear relation appears betw
BAT and CAT.

~i! If the model is an expanding one~and we choose the
sign 1!, we will have BAT5CAT, at least in the final evo-
lution where Eq.~33! is valid ~if we make the unusual choic
of the 2 sign, we are just changing the conventional dire
tion of time h, with no physical consequences!.

~ii ! If the model is an expanding-contracting one~and we
choose the sign1!, we will have BAT5CAT in the expand-
ing period and BATÞCAT in the contracting period. BAT
5CAT is, in fact, the definition of the expanding period a
BATÞCAT is the definition of the contracting one. But BA
5TAT does not change when we go from the expanding
the contracting period or vice versa, since the choice ofF2

~or F1) is made once and for all.
So the study of the correlation of the arrows of time

completed, and almost trivial, because we have H2, which
defines BAT.23

IX. OTHER RESULTS

The main results related to quantum cosmology are st
in the above sections. But we must comment that using
present formalism all the relevant results of irreversible s
tistical mechanics can also be obtained, e.g., all the resul
Ref. @49#, as is proved in Ref.@14#, because the mainP
projector of the quoted book can be defined using Gel’fa
triplets. Also, in some simple cases, we can go from
quantum models to the classical ones@50#, where we find the
same philosophy, in classical cases. Chaotic models suc
Baker’s transformation and Renyi’s maps are also trea
with the same method, with good results@51#. Other inter-
esting results are contained in@13,27,28,31, and 48#. So what
we have explained is just the quantum cosmological cha
of a general method to deal with irreversible processes.

X. CONCLUSIONS

Let us summarize our main conclusions.
~i! Our entire scheme is based in the existence of a ph

cally admissible state quantum superspaceF2 and of a
physically forbidden state quantum superspaceF1 . Thus,
the time inversion that goes fromF2 to F1 is also forbid-
den. Namely, no Maxwell demon can change the direction

23Thequantum arrow of time (QAT),which goes from preparation
to measurement, and coincides with the collapse arrow of ti
can also be considered, as in@48#. It is not difficult to see that this
arrow also coincides with BAT5TAT, since the measurement pro
cess is an irreversible decoherence process which is also cont
in ~Reichenbach! branch system and, therefore, the measurem
arrow ~QAT! must coincide with BAT.
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all the velocities of the universe. This is, of course, a pra
cally impossible task. Is it also theoretically impossible?
fact it is, even if the Maxwell demon were to change all the
directions ~while we are sleeping!, we will not notice the
change~when we wake up!, sinceall arrows of time would
be changedand we would not have any extra arrow to veri
the change. Thus this global demon task is also conceptu
impossible.

~ii ! What we have presented is not a mathematical th
rem, but a model that can be generalized in many wa
These more general models will have a behavior similar
the present one if two essential features are present: the
istence, at the quantum gravity level, of a geometry of ma
mal relative probability which allows us to construct ‘‘out
states for the fields, and anS matrix with infinite complex
poles. The first requirement seems natural for any reali
model of the universe. On the other hand, we have restric
the class of possible potentials in order to be able to pr
that the correspondingS matrix has infinite complex poles
But several QC potentials do not belong to this class,
cause they have a bad behavior at infinity. Nevertheless,
usually also have an infinite set of poles, as can be pro
case by case@50#. So the two basic features seem usu
enough to consider that our model is a good sample of
general behavior of the universe. Then we can say the
lowing.

~iii ! If we introduce an adequate regular state space
seems that all the known results of statistical irreversi
physics can be reobtained. It must be emphasized that we
not adding a new object to the theory, since a regular st
space (or the corresponding topology) must be defined a
how. We are just choosing the most convenient one. Let
repeat the general relativity example: The space-time ha
metric, and we can choose a flat space-time metric o
curved one. In the second case we explain gravity in the b
possible way. We add nothing; we just choose the best m
ematical structure. The same thing happens in the pre
case. If we choose the usual regular state spaceS, we are
forced to make a coarse graining~and there is nothing ex
perimentally wrong with coarse graining, as there is noth
experimentally wrong with post-Newtonian theories, b
both are ‘‘noneconomical’’ formalisms!. If we choose the
new regular state spacef2 , we make two steps in one, an
so we have a conceptual advantage.

~iv! Precisely, because the new formalism is conceptu
clearer, we can see that time asymmetry is just a kind
spontaneous symmetry breaking.

~v! Most probably the old and new formalisms will a
ways yield the same physical results, because they are
based in the same physical base: The limited amount of
formation, contained inP ~see Sec. I B! must be somehow
worked out to obtain a complete theory~to completeP using
S and then make a coarse graining or to completeP using
f2 ; see@32#!. Therefore, most likely, they are as expe
mentally equivalent, as general relativity and po
Newtonian gravity with an infinite number of terms are.

So, even if we have not found any new or spectacu
result, we think that the introduced formalism presents
quite coherent picture of the real time-asymmetric unive
and shows us how time asymmetry forces us to choos
Gel’fand triplet as the mathematical structure of the theo
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ed
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