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Mathematical structure of quantum superspace as a consequence of time asymmetry

Mario Castagnind
Instituto de Astrononaiy Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires, Argentina
(Received 17 April 1996; revised manuscript received 16 September 1997; published 30 Decemper 1997

It is demonstrated how a convenient choice of the mathematical structure of the quantum cosmology
superspace of the wave functions of the universe, precisely the definition of a convenient regular state super-
space and the restriction of the dynamics to this space, yields directly an irreversible evolution, in the classical
(and semiclassicaphase of the universe, where decoherence and correlations take place and therefore give
origin to a classical universe, the second law of thermodynamics is demonstrated, connection with the Re-
ichenbach branch system idea can be implemented, some rough coincidences with observational data are
obtained, the arrows of time can be correlated, and time asymmetry can be explained as a state space asym-
metry (e.g., like a spontaneous symmetry breakigl these facts solve the problem of time asymmetry and
show that it is time asymmetry itself that defines the most important features of the mathematical structure of
superspacd.S0556-282(197)03624-2

PACS numbsg(s): 98.80.Hw, 03.65.Bz, 05.28y, 05.30—d

I. INTRODUCTION It also happens that, when a new or unfamiliar mathemati-
cal structure is introduced, some physicists think that the
The role of physics is to explain nature in thest pos- new structure is introducetly hand because they do not
sible way. Therefore physicists consider a set of physicalrealize thateverymathematical structure was introduced by
phenomena and choose the best axiomatic structure to impand, in order to explain nature in the best possible way. In
tate these phenomena. This axiomatic structure contains the present case it turns out that the time asymmetry of na-
mathematical structure and a set of axiofspostulates, or ture is explained in the simplest way if we choose a time-
principles, or hypothesgstated using the language of the asymmetric mathematical structufthe spaces_ of Sec.
chosen mathematical structure. If the mathematical structureB) than a time-symmetric onéhe space}{ of the same
is the most naturally related to the set of phenomena and $ection. This is the essential argument of the paper.
minimal number of axioms is used, physicists say that they In the perspective of this pedagogidgerhaps pedantic
have explained nature in thieest possible wayBut fre-  but necessajyintroduction we will choose the following:
qguently a better mathematical structure and a smaller set of
axioms are found to explain a larger set of physical phenom- A. Set of phenomena
ena; then physicists say that they understand the problem
even better because, in fact, they have found a better expl

nation, i.e., amore economical oneBut the chosen math- - . )
ematical structure and the chosen axioms cannot be e>yy he_eler-De_V\/_ltt(WDW) equatlon_[2,3], plus those of Irre-
versible statistical quantum physics, such as the definitions

plained by themselves, since the only motivation of the . . , L
choice is to imitate nature in the best possible way. of the various arrows of time, the final equilibrium state,

Thus, physical phenomena are not a consequence of tIajeecoherence, correlations, etsee[4] where almost all sub-
chosen mathematical structure; quite the contrary, the choidSCtS’ results, and problems can be found
of the mathematical structure is a consequence of the physi-
cal phenomena that we are trying to explain.
Gravitation was explained by Einstein choosing a Rie- QC is based in the WDW equation
mannian manifold as the mathematical structure and postu-
lating that particle space-time paths were the geodesic of HW¥ =0, (1)
such a manifold, etc. The only explanation of this choice is
that the theoretical motions, so described, mimic real mowhereH is the Hamiltonian operator of the considered model
tions better than the motions described using other curves der the universe andl the wave function of the universe
other kinds of manifoldgflat space-time, projective mani- (which will also be called¥)) [3,5]. Usually H is well
folds, etc). But the Riemannian manifold and the geodesicsdefined by the model we are studying, but the real math-
cannot be explained by themselves. In fact, the choice of thematical nature o¥’ is not so well defined. In fact, let us call
Riemannian manifold, as the mathematical structure to exg the configuration variables ar@ the configuration super-
plain gravity, is really inspired by the experimental physicsspace; then? =¥ (q) is a function of the configuration vari-
of the phenomenofprecisely the method we use to measureables. We must define the space of wave functiénd et us
time and distancél]). suppose that this space has a discrete asiscertain func-
tions of theq (let us say polynomials of theg or polynomials
multiplied by convenient dumping factors for thoges that
*Email: Castagni@iafe.uba.ar go to infinity). This P is a very good model of the real

_ The set of phenomena considered in this paper will be
?hose of the usual quantum cosmolo@C) based on the

B. Mathematical structure
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physical space since, the number of measurement being aelved and therefore QC is a timeless thef8y9]. As a
ways finite, we can only determine a finite number of poly-consequence it is very difficult to define a satisfactory norm.
nomial coefficients. But this set is not enough because, in (ii) But even if a norm would be chosen, say, E2), we
order to perform the mathematical operations we need thave another problem. If we complete the space expanded by
develop the theory, usually wave functions must belong to & with Eq. (2), we will find H=L?(Q), the Hilbert space of
complete space. Then we must complete the space expandsquare integrable functions ov€). But H is an operator
by P with some topology. The usual idea is to make thiswith derivatives and the functions @i are, in general, not
completion with the topology of the norm. Even if the choice derivable; they are just square integrable, and so for an arbi-
of a norm contains a very important physical element—therary function¥ of H, H¥ has no meaningand we would
definition of probability—we are now exclusively interested have the same problem with the other noyn®o we must
in the mathematical problem of how to complé®awith an  choose another topology to complete the space expanded by
adequate topology. Then we have really two problems.  P. Let us consider the Schwarz class functions, namely,
(i) We must define a norm in the space expandedPby functions that can be derived an infinite number of times and
something like[6] that are well behaved in the eventual infinite of coordinates
(precisely they vanish faster than any polynomi#@he set of
Schwarz functions is a nuclear space. Then if we complete
1w ll= JQ\P*(q)\If(q)dq. (2 the space expanded 159 with the corresponding topology,
which is not a norm topology but a nuclear offe2], we
obtain a spac& where we can derive any number of times.
2] If S* is the space of aantjlinear functional oversS, our
mathematical structure is really the Gel'fand triplédr
rigged Hilbert space

But we can also foliat€ with hypersurface& and define

wi= [ @w(adon, @ SCHCS”, @

wheren is the normal taX anddo, is the hypervolume of Then we can say tha is the quantum superspacerefjular
the hypersurfacg differential elementthis quantity will be  state$ where we can do all our computations afi is the
positive definite in a convenient subspace of supergp@re quantum superspace @feneralized statgswhere we will
we can consider that really is an operator and then we can find the usual distributions such as DiragSsor plane (or
go to a third quantizatiofi7], etc. So we have many possi- curved waves, which can be used to expand regular states.
bilities to define the norm. Actually we are trying to copy the In ordinary quantum mechanic® would be the quantum
usual guantum mechanics and the essential property to defiisg@ace ofstates,but in QC this space loses almost all its
an adequate norm is thdtwould be a constant under time importance because we do not know what norm we have to
evolution.But in QC there is no tim¢8,9].1 In fact, Eq.(1) use for surgeven if in this paper, to compute probabilities,
is not a Schrdinger equation but an eigenequation that de-we will use norm(2) in spite of the fact that we have other
fines a “stationary” eigenfunction, with no time variable in possible choicé$, while S and S* are well defined, since
it. Therefore, as the definition of norm is intimately inter- their definitions are norm independent. In fact, the “inner
twined with the problem of the definition of time in QC, and product” (F|W¥) of an element ofS*, written as a “bra,”
as this problem is not solvé@8,11], it is not possible to give
a definitive definition of norm. Really in this paper we will
adopt the conservative attitude that this problem cannot be3As this space is defined over the superspaaee will call it also
a quantum superspace.
4If only spaces®_ and ®* were defined, for every statg

Yn fact, the state of the universe, in this period, is described by a= ®_ and every observablee &> [cf. Eq.(18)] we can compute
density matrixp(q,q’) whereq,q’ € Q. Among all the configura-  the “mean value”(A),=A[p]. This number is well defined by the
tion variablesg we may choose a particular one as the hand of oudinear operatoA acting on the statp. Really this is the maximal
clock, let us say the radius of the universe, Then p(q,q’) answer QC can give: a typical “mean value” for every observable
=p(a,x,a’,x"), wherex symbolizes the rest of the variables. But and for every quantum state of the universe, since the ensemble of
to usea as the hand of our clock, it is necessary to have decoherQC has just one system, the universe. Therefore the “mean value”
ence fora#a’, e.g., p(a,x,a’,x’)=0 if a#a’ or p(a,x,a’,x") is not a proper mean value but just a “typical” one. On the other
~d(a—a')p(a,x,x"). Namely, at least one variable, e.g,, must  hand, if we want to know the probability(q) to find the universe
have classical properties; if not, we will be forced to make a theoryat a certairg and if Q is the position operatoQ= [ q|q){(qg|dqg, and
with two “times” a anda’. But if we have just one, we are not  p is a pure statey=|¢){¢|, we need to define a norm and the inner
more in full QC, but in a semiclassical regime, as those of Sec. IVproduct of H to computep(q)=|{¢|q)|?. But we know that the
where, in fact, we will find decoherence of the radaugsee Sec. notion of probability in an ensemble of just one element in not a
IV A or Ref. [19]). We conclude that, even if some generalization reasonable one. So really it is more logical to work just with the
of time may be defined in the full quantum gravity period, the usualcouple® _ ,®* and with the typical mean values lik§ p] than to
time, with its known properties, cannot exist in such a regime.  use the notion of probability. Nevertheless, in this paper we will use

2We have defined the time, for the semiclassical phase of théhe more familiar “probabilistic approach” of QC, where we need
universe(even with a back reactionin [10]. But it was impossible  a norm like Eq.(2). We will study the “typical approach” of QC,
for us to extend this definition to the quantum period. where the norm is superfluous, in a forthcoming paper.
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(F|, with an element of , written like a “ket,” |¥), is also wherei symbolizegin a shorthand notatigrihe set of quan-
well defined, since it is just the antilinear functional actingtum numbers of the discrete spectrumy, their energy,o
over a regular statéalso the product in the inverted order is those of the continuous spectrum and also their energy, and
well defined if we se{W|F)=(F|¥)*). SoS is the arena i IS a shorthr_:md notation for a sumiimnd an mtegra! in
where timeless QC works: where time and norm have disap®- Some negative eigenvaluesmust appear because is
peared from the mathematical structure and are substituté®t bounded from below. Any staf#) € S can be expanded
by the nuclear topology of. as

But if we useS as a regular space, we cannot encompass
(in the most economical wayrreversible statistical quantum _ ; ; .
mechanics, which has an asymmetry that it is not contained ) % [, 0)i0¥); 0
in S. There are only two causes for asymmetry in nature:
Either the laws of nature are asymmetric or the solutions ofinalogouslyh; can be expanded as
the equation of the theory are asymmetric. E.g., the laws of
nature are asymmetric in the case of the weak interaction. h= S h , o,
The solutions of the theory are asymmetric in the case of it &~ i,w;j,wr|l,w><1,w | 8
spontaneous symmetry breaking. e

Time asymmetry is not an exception. Thus, if we want ©0These are the decomposition p¥) and h; in the basis

retain the time-symmetric laws of natumeamely, the sym-  1; ,\1 |n order tha{W) would satisfy the WDW equation
metry of Eq.(1)], the only way we have to explain the time (1) it must be

asymmetry of the universe or its subsystems is to postulate

that the space of solutions is not time symmetric; namely, we

use the second cause of asymmetry. So the proper way to H|\If>=2 (wi+ o)|i,0)i,o|¥)

solve the problem is simply to define a realistic time- he

asymmetric space of physical admissible solutigns, i.e., _

an adequate mathematical structure for superspacewill + > hi(",)u;j,w,li,w><j,w’|\lf)=0. 9)
contain the states that evolve in an admissible Way., fwij,of

Gibbs ink drop spreading in a glass of water, a sugar lum
solving in a cup of coffee, etc.and will not contain the
nonadmissible evolutionghe ink or the sugar concentrating
spontaneously and creating the drop or the lurfipne prob-
lem is to chooseb_ in the best possible wayAs we will see
we will choose one with the required asymmetry.

F?\/Iost likely this equation can be solved.

But we shall work in the semiclassical case only. In fact,
in every reasonable model, the universe geometry will end in
a classical phase; some part of the matter and some fields
will become also classical, while others will remain in the

Let us first follow a heuristic approach: We will suppose quantum regime, yielding a semlclassmal. model. Then, a
é/arlablea will exist (one of theg; or a function of theg;)

thatH is endowed with all the properties necessary to defin h that a ti be defined functi £ \Wh
a reasonable universe. Obviously these “realistic HamiltoS4¢" that & ime can be detined as a uncmlon a en
nians” are the onlyH that we must consider. Therefore, 77— We Will obtain a classical geometwy;;, for the uni-

practically, inH there must be always some fields, such as/€rse- It will be the most probable geometry of the universe,

the matter field, the electromagnetical field, and also thd-€-» the geometry that appears most frequehtlising time
gravitational field(precisely only the graviton fieJdSo we 7 We can transform Ed1) in a fchr«ﬂmger equation, with
would write this Hamiltonian in the usual midisuperspacetn€ corresponding Hamlltoanitm—h(out).[S]. Then usingh
way as and the classical geometg/,; we can find a semiclassical
vacuum statg0,oub for the fields and the interactiotthe
H=hy(g;,7j)+hi(¢,p,) +hi(g; ¢), (5)  so-called adiabatic vacuygrwhich diagonalizes the Hamil-

. o o tonianh=h;+ hi:h(gZ‘§)=h(out) (computed in the geom-
wherehy(g;,m;) is the gravitational Hamiltoniatusually @ etry g%%), the creation and annihilation operators related to
function of a discrete set of modes of the gravitational fieldhis vacuum, and the corresponding Fock space. The only
g; and the corresponding momentg), hy is the “field”  essential ingredient we need to implement the theory is the
Ha.m”tor“an(let us say the continuous set of all the modes th(out). Then, using these Objectsy we can find a set of eigen_
just one scalar fieldp, which represents all the physical yectors|w,out),® such that

fields in our model, and the corresponding momenfa and

h; is the interaction Hamiltonian among fields and no fields h|w,out = w|w,oub, (10
(usually an interaction among the configuration variables

only).

Let us sketch the panorama in the complete quantumsi eyery reasonable model of the universe a final equilibrium
gravity case(which we shall not study in this papeiFrom  giate seems to exist that acts like an attractor for every initial state
the Gel'fand-Maurin theorerfiL3] we know that, for the par- ¢ the theory. See, e.g.15].
tial Hamiltonian hg+h¢, a spectral decomposition exists 6as e will see in the model of Sec. I, we must restore variable
[14]: a in |w,oud, which is really a function ofyp=n(a), and then

multiply it by an adequate prefactor, to get a solution of WDW
hg+ hf=2 (0i+w)|i,0)i,ol, (6) equation. With these modificatiorj®,outy becomes a vector of
o superspace.
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where is a continuous eigenvalue bf (say, O<sw<=)." (4, oulW)eH2 , H2 being the Hardy functions class from

So above, we also have another spage such that
o cS 15
hzf o|o,out(w,oufdw, 11 P+ 3
0 and another Gel'fand triplet
where|w,out> € S*; thus, if | ¥) € S,(w,ouf V) is well de- b CHC P . (16)

fined and soh|V¥) (and the quantum numberdisappears

since now the| ggometry is a classic on€he existence of We also know thaf12]

this kind of expansion can be also considered a consequence S<C . (17)

of Gel'fand-Maurin theoren{13]. But all these manipula-

tions are just formal, and so we will be sure that what we ardNow we can also say that we have obtained the space

doing is correct only in concrete examples, as the one in theompleting the space expanded Bywith the nuclear topol-

next section. In fact, we will find all these mathematical el-0gy of ¢_, namely, theS topology restricted t@_ (and the

ements in the model presented there. Surely we will also fingame thing can be said abogit.). Clearly this topology is

these elements in more Comp'ex moc%'s_ endqWed W|th a new asymmetry Wh|G$] does not have.
Now, let us define our new regular state spate. Pre- Precisely, this asymmetry allows us to choose betwgen

. . . . 10
cisely, we can promote [or some linearly related variable OF ¢+ even if we maintain all the symmetries Bf.™ Thus
like w, Eq. (36)] to a complex variable and ask not only W€ ¢an break one of these symmetries, restricting the dynam-

that |'W) e S, but also that(z,ouf¥) would be ananalytic ~ 'CS 'O the superspacé_, which then would be considered

function in the lower complex half plan@recisely that as_the superspace of regullar states. As we will see this re-
(w,0ufW> c H2, H2 being the Hardy functions class from striction produces the deslred time asymmetry. Frequently
below®). If these functiond) bel Is0 165, thev bel physicists make an analytic continuation in the complex en-
elow). If these function$¥) belong also ta5, they belong  grqy plane supposing that some functions are analytic in one
to a spacap_ such that half plane only. In these cases they are implicitly using the

kind of mathematical structure we have explicitly introduced

$-CS, (12) here, and so the idea is, by no means, new.
Thus our mathematical structure will essentially be Eq.

and we have a new Gel'fand triplet (13), ¢_ will be our superspace of regular states, where we

b CH_Co*: (13) must find the states that satisfy the WDW equatiby and
_CH_C¢Z; < ;
¢~ will be our generalized state superspace. From (EB).

then, we know thaf12] we see that we have restricted our regular state superspace,

and so nothing unphysical can happen. We are just adding a
S*Cc¢”. (14  new requirement to regular states, in order to assure their

asymmetry.

So we have restricted the regular state superspace and simul-

taneously we have enlarged the generalized state superspace C. Axiomatic structure

so that we will have more general spectral expansitins We do not pretend to give a completely rigorous axiom-

fact will be of utmost practical importangeBut as we canas atic structure in this papdbut just an approximation of)it
well choose the upper complex half plan@recisely  Fyrthermore, we do not know if the proposed axiomatic
structure is unique. We are just proposing a first draft of a
complete axiomatic structure, and so we will call our axioms
Of course, we will have such kind of continuous spectrum only ifjust hypotheses.
the spatial geometry of the universe is open. In closed models we As we would like the equilibrium state to be contained in

can only suppose that the discrete eigenvalues are so closed th@ir theory we must also consider mixed stagiesnd, there-
they can be considered as a continuous spectrum in some approxpre, the spacées$

mation. This fact and the problems that we will face with an

expanding-contracting universe show that our formalism is much ®_=¢_®¢_,..., L. =H_@H_,..., ® =¢*
better adapted to open geometries. %
8We do not know which are the necessary and sufficient condi- ®¢Z, (18

tions in order to be sure that this structure would exist. Anyhow
there is an obvious necessary condition: The superspace must be

time oriented; namely, two subsuperspades and &, must be As (H2)*=H2, then, if ¥(w)=(w,0uf¥)ecH?, we have
found such thaK:®_—®,#® _, K being the Wigner operator ¥*(w)=(w,ouf¥)* e Hi . Then we can foresee that the substi-
(namely, the complex conjugatipbn tution of ® _ by &, will become the time inversion when time will

A complex functionG(E) is a Hardy class function from above be defined. NamelyK, the Wigner operator, will become this in-
(below) if (1) G(E) is the boundary of a functioG(z) of the version.
complex plane where=E+i #, which is analytic in the half plane it is also interesting to study other definitions of these product
7>0 (<0), and(2) [*,.|G(E+in)|2dE<k< for all » with spaces, as those that can be obtained using the quantum numbers
0<y<o (—o<5<0). Usually thew of Eg. (10) is ©>0, so  andv. Seg[16]. Also, if we would like to explicate the singular part
really the functions of ¢_ satisfy the condition of the continuous spectrum, we must chodse=S®(¢_Q¢_).
(w,oufpy e O(H, NS). See[17].
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and work in the Liouville triplet
: (23

1.
Sy= MZJ dn[— EaZ—V(a)
d_CL . CD”, (19
whereM is Planck’s massy is the conformal timea is the

whereL_C L and . is the usual Liouville space of ordinary Robertson-Walker scale,=da/d#, andV(a) is a potential
mixed states, which actually we will never use, since ourthat arises from the spatial curvature, a possible cosmologi-
regular state superspaceds_ So letp be a self-adjoint cal constant, and, eventually, a classical matter fié(@) is
density matrix. Then our main hypotheses are the followinga potential with a bounded support contained isd<a;,

Hl' The Stat@ of the universe satisfies the equatigns with al>0 [|n many examp|ey(a) is a function Ofa2 and
V(a) strongly vanishes, foa?— o [19], and so our potential

Hp=0. (200 can be considered as a good approximation of these ex-
H,. The statep of the universe belongs to the super- ampleg. This case is the simplest of all, but we believe that
spaced _, i.e., the main features, which we will find, will also be present in
more general cases.
ped_. (21 The WDW equatior(1) for our model is

Hs. p(9.q') is proportional to the correlation between HY(a,¢)=(hgt+hi+h)¥(a,¢)=0, (24)

the configurations gand g and p(q,q) is proportional to

the probability of finding the configuration g in the universe.
These three axioms correspond to the three elements nec- 1

essary to go into QC mentioned in the Introduction[8F hy=——:2+M?V(a), (25)

dynamics, “initial condition” (precisely the definition of the ’ 2

physically admissible states of the universe in a timeless for-

where(in our the flat space geometry case

malism), and interpretatiorOf course H, alone does not fix 1 ) ) 2

the actual state of the universe, but, if we want that time hy=— §Jk(f9wk_k ei)dk, (26)

asymmetry would appear natural, any state of the universe

we choose to build our theory must be containedin. In m2a?

this paper we do not address the problem of finding the real hi= f goﬁdk, (27)

and unique state of the universe, but only to define a super- 2 Jk

space of admissible states such that the universe would turn _ )

out to be time asymmetric. wherem is the mass of the scalar field, aké=|k|?, where
We will see how far we can go with this axiomatic struc- k/a is the linear momentum of the field, in the flat case we

ture. are working in. In the two other cases, namely, open and

The paper is organized as follows. In Sec. Il we introduceclosed space geometry, the integrals of E26) and(27) are
our model and its semiclassical approximation, and we ob- (i) integrations on adapted coordinates, in the open case,
tain a new spectral decomposition, using the regular supe@nd (i) sums, in the closed case, whérés substituted by a
space of hypothesis H In Sec. Ill we obtain the evolution discrete variable. _ _
equation of the states. In Sec. IV up to Sec. IX we find the See the corresponding equationg 18].

physical characteristics of the model. In Sec. X we draw our  Now. let us go to the semiclassical case using the WKB
main conclusions. method[3,5]. So let

W(a,¢)=exdiM?S(a)]x(a,¢) (28)

. .. and let us expan® and y as
Let us see how we can implement all we have said in a P X

1. MODEL

simple model. =S 4+M-IS, + ...
Let us consider the model of Sec. 3, of Rdf8], or better STStM TS ’
the one of Ref[19], where a Robertson-Walker metric X=Xo+M Iy + (29)
= Xo A
ds’=a’(y)(dn’—dx’—dy*~d7) (220 Then to satisfy the WDW equatio(l), at orderM?, the

principal Jacobi functiorS(a) must satisfy the Hamilton-
is studied(we will mostly consider the flat space geometry Jacobi equation
casg. The total action isS=Sy+ S+ S;, Sy being the gravi-
tational actionS; the usual action of a spinless massive field
@, conformally ¢=%) coupled, and5; the interaction given  3Following D. Bohm we can also say that WDW equation is
by a mass term in Robertson-Walker geometry. The gravitaexactly equivalent to the system [S'(a)]?=2V(a)
tional action is given by +(i/2M?)S"(a), iS'(a)(d/9a) x=hx— (L/2M?) (5% 9a?) x, where
the M 2 order term can be considered as a gravitational correction
to the Hamilton-Jacobi equation and as a quantum potential that
2f p= | )| is a pure state, these equations coincide with themust be added to the classical potential of Hamiltoriamheoreti-
WDW equation(1). cally this system can be solved exactly. $26].
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2 fact, the out geometry is almost constant during the final time
(ﬁ) =2V(a). (30 evolution (which goes up top— ) and therefore they cor-
respond to the geometry with the maximum probability.

Now we can define the time, in our up to now, timelessh(aou reads
theory. It is the(semijclassical time parameten= n(a)

given by h(aout): fkﬂm(aout)agut,kaout,kdkr (37)

d dsd
ﬁ: dada = VZV(a)ﬁ- (31 wherea;utﬁk anda,, are the creation and annihilation op-
erators corresponding to the out vacuum. With these objects
From Egs.(30) and (31) we can find the set of classical we can construct the Fock space with a basis

solutions,
|k1-k2, Ce akn,out>=|{k}'OUt>

T T T
-~ aout,klaout,kz‘ e a-out,kn| O!OUI>1

(38

a==f(7,C), (32

whereC is an arbitrary integration constant. Using different
values for this constant and different choices of thesign
we obtain different classical geometri¢id more general
cases many constants would be necegs&yr a>a, it is
v2V(a)=0 [sinceV(a) has a bounded support, contained in
[0,a,]], and we cannot define the timeg using Eq.(31); h(aou [{k},ou = Q(ay)|{k},out (39
thus we must choose another hand for our clock to define the

time there. To avoid this problem let us consider that wherof course, this equation corresponds to Ef)], where
a>a, it is y2V(a)=e=conse0. We can always make

=0 to reobtain the primitive case. Thanwill be Q(agy = z Q_(out)= 2 (m2a?+w)Y2 (40
ke{k} ke{k}
a=*gn+C. (33

where we have calledk} the setk,,k,, ... k,. These
states are eigenvectors lofa,,), precisely

We can use this energy to label the eigenvectors as

So we can see that the potential can also be considered as a
function with bounded support in the variable We will [{k}, oup =|w,[k],oub, (41)
always consider that>0. The role ofC is just to fix the
origin of time, and so we can take a@/ we want. As the
coupling is conformal we will have well-defined vacua
[21,22. In particular we can consider two scakes anda,,,;
such that G<aj,<a;<a,, and define the|0,in),|0,ou e _ o TR
vacua there(We can as well transform all the e>quatior23 to (@ [k],oufw[k'],0up = o(w —w") ([ k] ~ [k ])’(42)
the nonrescaled case, consider the proper timgad», and
the physical momenturk/a, and define thd0,oub in the o
n—oo limit, as in Appendix A of[19], but here we will use 1:f dwf |w,[k],oub(w,[k],oufd[Kk], (43
the first simpler formalism. 0 [k

For our model we obtain

where[ k] is the remaining set of labels necessary to define
the vector unambiguously|w,[k],oud} is an orthonormal
basis: namely,

where the meaning of the symbols related kg is evident.

_ In the closed space geometry case the indices would be dis-
= +h. >
h(@)=hi(e +hi(@,e0), B34 rete and the integral a sum.
where we have omitted the, in h(a). Then The same can also be doneagt. We can now define the
S matrix between the in and out states:
1 2 e
h(a)= Ef - F-ﬁ-ﬂﬁ(a)goﬁ dk, (35) S (ke (k1= {(®,[K],in|w",[k],out
k ¢
K ZSE’[k]Y[k,]B(w—w’). (44)

where[cf. EQs.(26) and (2
[ as.(26) (27] According to[23,24], this matrix has an infinite set of com-

02 (a)=m?a’+k’=m?a’+w, (36)  plex poles as we will demonstrate in Sec. (#lso an ex-
ample is given if19] and using this paper an@2] and[25]

wherew=k? k=|k|. Soh(a) is a time-dependent Hamil- other examples can be obtained
tonian, where all its time dependence comes from a scale If we forget the indice$k], as we will always do below,
variable massn?a?. It is well known[21,27 that we can and consider again E¢10), we see thatw,[k],ou is the
diagonalize this time-dependent Hamiltonianagt and at  |w,out) of this equation. In the Introduction we have defined
aou: and define the corresponding vacua, the correspondintiie triplets (13) and (16) only using the Hamiltonian
creation and annihilation operators, and the corresponding(out)=h(a,,). These triplets correspond to a Fock space
Fock spaces. For the out geometry the vacuum will be thelefined fora,,. But there will also be two similar triplets
adiabatic vacuum, since,,a,; therefore all the out ele- defined in the Fock space at,. We make the following
ments will coincide with those defined in the Introduction. In choice (motivated by reasons that will be evident in a mo-
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mend: For the in Fock space we will use functiomg)  Now let|e)e ¢_ oyand|y)e ¢, i, and let us promotes to

e ¢in, Namely, such that{w,in¢)eS and (w,in|y)  a complex variable. Then(z,oufe)eH?, (z,in[y) e H?

e Hi , and for the out Fock space we will use functions suchand thereford ¢|z,in) e H2 . So in the integrand of the last
that (w,oufe)e ¢_ o, Namely, such thaje)eS and equation all the factors are analytic in the lower half plane,
(w,oufp)eH%. So the ¢_ of the Introduction is now Wwith the exception o8, . which has an infinite number of
¢_ orand our regular states belong to this spHcEhe role  polesz, as we have already said. Then we can choose any
of ¢, iy is to allow us to define the corresponding functionalcurve I', beginning at the origin, and going below all the
spaceg’s ,, SO we can use the functionals of this space inPoles of tlge lower half plane up to the infinity of the positive
some spectral decompositiotisAs both vacua, ag;,, and '€al axis.:> We can now change the integration contour of
aoy, are well defined and the particle production betweerEd- (48) from [0,2) to the curvel'. If we add the pole
these vacua is finite the theory is implementafte]. we  contribution, as ir{14,27,28, we obtain

can then multiply the state of both Fock spaces.

So let us again wgte Eq43) with no [K]: (Yle)=2, <¢|n_><ﬁ|@>+f dz(y|z,inyS,z,out ¢)
1=f0 dw|w,out(w,out. (45 " '

=3 (il [ axulEle). @9

Of course there is an analogous equation for the “in” case.

Now using this equation and E(4) we have )
where the sum comes from the residues of the p@esh

|m,out>=f dw'|w’,in){w’,in|w,out pole z, is labeled by a discrete index, and of cours¥
0 Imz,=<0). Then, in a weak sense, we have found a new
spectral decomposition of 1:

=f dw'|w’,iN)Sy o - (46)
0 —_— —_— ~
1=, |n>(n|+j dzz)(z|. (50)
Then n r
1=focdmfmdw’|m’,in)8m/'m<m,ouﬂ (47)  Following the same procedure withy|h(out)|¢) we can
0 0 obtain the spectral decomposition bfout) (always in a
weak sense
or
wle)= | do | "'yl S, o 0ute) o= om0 20z 6
n r

:f dmf dw’(Y|w’,inS, 8(w—w')(w,oul¢) We have three possibilities to choose the cuiive
0 0 (i) to use all possible curvds as in[28], (ii) to take the
" curve (—«,0], in the second sheet, as in REZ7], provided
:f dw{|w,in)S,(w,oufe). (48) we have a good behavior at infinity in the lower half plane,
0 or (iii ) to use the Nakanishi trick29], as in[31], namely, to
define tilded functionals such that

Yprecisely and repeating what we have anticipated in footnote 10, — ~ ° o
|x) € ¢ will be a function of 7 and a functional of fieldp. But J;('M z)(z|p)ydz= fo (Yo)(w|e)dw (52
a=a(7n), and soxy=x(a,¢) is the function of Eq.(28), which
multiplied by the_ prefact_or_ expMS(a)] is \If(a,_go), a solution of 5, g W)E b in1|‘P>€ b_ our. We will use this last nota-
the WDW equation. So it isV(a,¢), the function that really be-  tion Then we have ’
longs to¢_ . This fact proves that the asymmetry we use exists
either in the spaces of or ¥ functions and therefore in the full . ®
guantum superspace. 1= |n)(n|+f do|w)(w |, (53
5The main difference of this curved space-time formalism, with n 0
the flat space usual one, is that in the former case we have two .
nonequivalent vacup,in) and|0,oub, while in the second one we h(out= >, Qn|n_><ﬁ| +j Qo) w|/dw (54
have just one|0), such thatk|0)=|0), whereK is the Wigner n 0
time-reversal operator. In the curved space time ck$®,in)
#|0,0ud and therefore we have two equatioms ¢*"'— "
#¢™" and K:d)iﬂﬁd;ifaﬁ ¢iﬂ . In the usual case the “in” and 18Eventually the location of the poles can be such that it turns out
“out” superscripts would be absent and, therefore, there wouldto be impossible to find the curvB. Then we can use a set of
only be one equation. These differences, with the usual case, mustirves{I" .}, such thaf",, goes below the polex,,z,, ... z,, and
be taken into account but they are not very important. Taken intdaken—oo at the end of calculations.
account thaiw>0 the functions of¢p_ must satisfy the condition The first term of the right-hand sidens) of Eq. (49) can be also
(@,in|) e O(SNH2) and those of$, the condition(w,out ) obtained if we eliminate the short time effd@eno effect and the
€ H(SNH2). long time effect(Khalfin effec). This will also originate Eq(100).
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(see also[30] and [14], where the Nakanishi trick is ex- a(7)a(z)>a,, expansion(55) will always have the same
plained. From its own definition it is evident that gyycture. Thus the time evolution gfwill be

In),|z),|w) e 7 o, Since these vectors are functionals over

|4) € ¢y owand thafn),|z),|@) e ¢ ;, since these vectors

are functionals ovef¢) e ¢_ ;,. Restoring thgk] the last x( 7;)=ex;{ —j fﬂh(ﬂ')dﬂ’}x(o)- (61)
equation reads 0

h(out)= >, Qn|n_)<ﬁ|+f dmf Qk|m,[k]><%,\[k/]|d[k], From this equation we can obtain some conclusions:
" 0 k (55) (i) In particular the time evolution of the right eigenvector
|n) reads
but we will continue with the previous shorthand notation
and we will not write thg k] anymore. It can be proved that L ”
the baseq|n),|w)},{|n),|w)} are a biorthonormal system |n(77)>=exp{—iJ’ Qn(n")dy'
[27,28,31: namely, 0

In(0)), (62

(nfn")=6ny, (nlw)=0, because even if the pole structure remains fixed, the poles
~ move as can be seen in the example of RE8), Eq. (3.3.
(w[n)=0, (wlw’)=dw-w). (56) S0, from Eq.(58), we can see that, if there are sompg

>0, the corresponding eigenvectors have a dumped evolu-
tion. Therefore, these eigenvectors correspond to decaying
states. Thus our formalism naturally yields decaying states
that vanish towards the direction of time that we can call the
future.

(nlh(out)=Q,(n], (57) (i) Using Eq. (53 we can expand any functiohy)

e¢_as

From all these equations we have that

h(out|n)=Q,/n),

where(}, is a complex eigenvalue, adld_> are right eigen-

vectors ana{ﬁ| left eigenvectors ofi(out). Even ifh(out) is .

Hermitian, it has complex ej_genvalu_es l:_)ecause we are using lo)=">, |n_><"n‘|¢,>+f o) (w|¢)dw; (63)
a new spectral decomposition, which is only possible be- n 0

cause we are working in a convenient Gel'fand triplet. This

fact will be the main tool that we will use below. The eigen- o ) .

values and their squared will be written as then its time evolution will be

i
Qn=0p= 5%, 7>0, 3 Jem=3 exp[—ifoﬂﬂn(wdn'

since, from Eq(36),

In)(n|e)

+ fowex;{ —i f:ﬂm(n’)dn’}lgﬂawdw,

(64)

Q2=m?a(out)’+z,, z,eC (59

and, by its own construction, the poles are in the fourth
guadrant of their complex plane, and therefore alsoﬂlﬁe
and thus the),, are in the lower half plane of the corre- where all the terms in the sum, such thg{+#0, have a

sponding unphysical sheet and gg=0. decaying evolution, while the rest of the terms and the inte-
gral have an oscillatory behavior. So in the time evolution of
. TIME EVOLUTION (almos) any state we have a decaying term that vanishes

towards the future.

Coming back to the WKB expansiof28), if we now (iii ) In this way the asymmetry introduced in hypothesis
consider the next order and the time defined in B4), the  H, produces an effectivéme asymmetrybecause it allows
function x(a, ) must satisfy the Schdinger equation, us to define a future time direction, the one pointed by the

dumping process. Moreover, it can be proved that, if in Eq.
id—X —h(n) (60) (61) the evolution operator is considered as an operator from
dn@ X space¢_ to spaceg_, namely, if we restrict the dynamics

to space¢_, Eqg. (61) is only defined forp=0. Therefore
where h(#) is Hamiltonianh written as a function ofy. the evolution operator cannot be inverted and so it is really
Even if this Hamiltonian is time dependent we can consideanirreversible operaton(see[32,27,14).
that for scalesaa>a,,; there is no particle creation and there-  (iv) Let us consider the case of mixed states. For a mixed
fore we have an invariant adiabatic vacul@oud and a statepe ® _ we can generalize the spectral decomposition
definitive pole structure for theS matrix [19]; so for  (63) to obtain
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IV. DECOHERENCE AND CORRELATIONS

p=S ol M1+ | el

In Ref.[19], using our formalism, it is proved that, if the
. S matrix has an infinite humber of complex poles, we have
+f > ponl@)(n]dw decoherence and that, in unstable states, configuration and
0n momentum are correlated, in such a way that the universe
e ends in a classical phase. In this demonstration hypothesis
+f f Poe | TN @[dwde . (65) H; plays an essential role. [19] it was not proved that,.in.
oJo general, theS matrix, relevant for our problem, has an infi-
nite set of complex poles, but that set was computed in one
, . example, while other examples were proposed.
Repeating the computation of the pure state case, we €an pyere we will review the demonstration of RELI], in a
compute the time evolution of staje(7). Since eithery,  ongensed but more general way, and we will complete this
=0 or y,>0, there will be oscillating terms and dumped paner observing that using a potential, with a bounded sup-
ones. Then we obtain port, as in the present paper, the existence of an infinite set of
poles is a consequence of Rdfa3] and[24].
In fact, a massive scalar field, conformally coupled, in
p1(7m), (66)  metric (22) satisfies Klein-Gordon equation

1(»
P(ﬂ):P*(W)"’eXF{_EL y(n')dn’'

2

u ) 1 B _ 73aa
VMV +m +6R =0, R=6a F (68)

where the first term of the rhs is an oscillatory term and the 7

second a decaying term, where we have written a first factor ) o )

the smallest of the nonzerg,. When »—x we have by variable separation, to

1 :
p(17)—pe (7). (67) lﬂk=mfk(ﬂ)exp(ilk-x). (69)

P4 (7n) is a thermodynamical equilibrium state. In fact since"’.lnd fi(n) satisfies a generalized oscillator equation with
* ’ time-dependent frequency:

in its evolution there are no dumping factors, it behaves like
an ordinary stable quantum state and its entropy is time con- 7+ 02(Fo=0 w=[a2 2y 1,271/2

! =0, =[a m-+k . 70
stant(as we will se¢ namely, the one that corresponds to K ()T [a() ] (79
thermodynamical equilibriun(lbelow we will normalize this On the other hand, in Ordinary quantum mechanics, the

constant to zerp It is logically a nonstationary oscillatory Hamiltonian of a massive particle in a potenti&l(r) is
equilibrium state, because, even if it is in thermic equilib-

rium, the field cannot go to dynamical equilibrium since, in
our simple model, there are no interaction terms among the
field components. If these terms were present, new dumping
factors would also be present and the final equilibrium wouldand a stationary solution
be a stationary staté.

This is the essence of our formalism. Below we will see _MYm 0 79
the results that we can obtain if we follow this road. Yum=—"—Y1(6,¢) (72

1
H=— 5 Ay W(r)y (72)

satisfies the equation

18n a practical complete case microscopic motions would always
remain. These microscopic motions are, in our model, those of the
field, namely, those that correspond to the integral in the spectral 12
decomposition. In practice they have a maximuwery smal) _lp2 I(1+1)

. . : . o(r)=|k— —2mW(x)| . (73

length, since the integral in the spectral decomposition really does r2
not begin with zero, but with a finite value. If we were to introduce
a coarse graining, these microscopic motions would be hidden an80 both phenomena can be mathematically related according
the equilibrium would be the usual stationary equilibrium sjgte  to the analogy
=const. But in our formalism there is no need of a coarse graining
to hide the microscopic motions. Really we have onlpahemati-
cal graining (the choice of the right mathematical structute pro- ner,
duce time asymmetry. The macroscopic energy we had at the be-
ginning goes into microscopic oscillations in order to fulfill the law k2 2mE. (74
of energy conservation. Also if we multiply E¢66) by a smooth
distribution o, the microscopic oscillation would be smeared, More details about this analogy can be obtained ff@sj.
[p« ()| o] becomes a constant, and we have a typical equilibrium Now from Ref.[24], p. 218, we know that th8 matrix of
weak limit[34]: lim,_..[p(7)|o]=[p. (n)|o]. a cutoff potentiaW(r), namely, a potential with a bounded

Ug(r)+ o?(ru(r)=0,

[(1+1)
> —2mW(X);
r

k<—>k,|,m; a2( n)mszz—
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support, has an infinite number of complex poles. Our poten¢75), after the integration of the modes of the scalar field
tial is ~a?(#) which is practically a constant foa>a,, (considered as the environmgmte obtain the following re-
sincee=0, and exactly a constant if we consider the valueduced density matrix:

£=0, and so, subtracting this constant final value, we can

say that it is a cutoff potential, with a8 matrix endowed  pr(a,a')=exd —iM?S,(a)+iM?S,(a")]p**(a,a’)

with an infinite set of poles. 2 N2 N1 af /
Almost all potentials used in the literature of quantum +ex —iIM7S,(a) +IM"Sg(a’) ]p™(a,a")

field theory in curved space-tinj@2] are very well behaved +exd —iM 2SB(a) +iM2s,(a’)]pP%a,a’)

in the infinities and can be approximated by this, bounded

support, kind of potentialthis is not the case for some QC +exf —iM?Sy(a) +iM2Sg(a’) ]pPP(a,a’),
potentials, which we will discuss in the ConclusianSo the (79

existence of an infinite set of poles seems quite a general
feature of the theory. Thus, using the equatiof1], it can ~ wherea and 8 symbolize two classical solutions and
be proved that our formalism leads to decoherence, to corre-
lations, as will be reviewed below, and to the outcome of a B , B ,
classical universe. p*t(aa ):1;[ PN (B,a7)
Finally, in particular subsystems of the universe the
matrix has poles if unstable quantum states exist in the sub- _ o 8,
system[27]. Of course, these poles will also appear in any _1;[ f donxn”™ (7. en)xn(n" en). (80)
completeS matrix of the universe.
On the other hand, from Refg18,19, it is
A. Decoherence

Decoherence naturally appears in systems whereSthe Bu= — ' On (81)
matrix has complex polell4], and therefore in the system N 209y
we are studying. The classical geometries are defined by a
choice of the signt and the constar in Eq. (32); we will ~ wheregy is a solution of
call these labels, B, . ... Wewill call ¢y the fielde of Eq. )
(28), whereN will label the possible modes; precisely, we On+Q{ON=0, (82

will use n for the discrete unstable states coming from the )
poles, anck for the continuous stable states coming from thewhereQy can be complex, as in E¢58), where we know
continuous spectrum. When we will be referring to boththat there are an infinite number of modes

kinds of modes we will use the indé& Then Eq.(28) reads Let us now consider the asymptofier adiabati¢ expan-
sion of the functiorgy, when#n—, in the basis of the out
W (a,[on])=exdiM?S(a)]x(a,[en]), (75  modes. As thigyy corresponds to an arbitrary initial state its

) expansion reads
wherey(a,[ ¢n]) can be written as

Qn 7
+mex;<|fo QNdn>,

(83

P F{ .f”Q q
exp —i
V2Qy o N 7

x(a,[soN]):l;[ XN(7,0n)- (76)  9NT

We can obtainy(7,¢n) via a Gaussian ansatz: wherePy andQy, are arbitrary coefficients. It is obvious that

77 if all the Q are real, as in the case of th&,, the last
equation will have an oscillatory nature, as well as its deriva-

The functionsAy(7) and ay(n) are real whileBy(,)  tives. This will also be the behavior & in Eq.(81). There-
=Byr(7)+iBy(7) is complex. They can be obtained by fore the limit 7— +o will be not well defined, even iB,

xn(7,0n) =An(m)exi an(7) — Bu(7) ¢]]-

solving the system could be bounded. But {2 is complex, the first term of Eq.
(83) will have a dumping factor and the second one a grow-
An(m) =1 Y[ 2Byr(7)]Y2 ing one. In this cas&l=n and wheny— + we have
()=~ Byl 7). il 1
| B, Zan 29”' (84)
. i
— _oip2 2
Bn=—2iBy(n)+ EQN(”)’ (78 " Then we have two cases.

(i) Qy=Q,eR" for the real factor corresponding to the
where the overdot denotes derivatives with respectyto stable states. Then we see that when +« the RHS of Eq.
From these equations, just working with the real continuoug80) is an oscillatory function with no limit in general. We
spectrum, decoherence can be proved under some restrictetll only have good limits for some particular cases listed in
conditions[18,19. But we will show that if we use both the Refs.[18] and[19].
complex discrete and the real continuous spectra, decoher- (i) Qy=Q,=w,—(i/2)y,eC for the complex factor
ence can be proved for almost all initial conditions. From Eqg.corresponding to decaying states. Then #ef +~ we will
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have a definite limit of Eq(84). Therefore, in this case we , 1
can calculate th@fnﬁ corresponding to the complex factors, 0" =5
and we obtain
m*a?
>< 1
4Bor(7.0)B(7'.B) | V(m2aZ+x,) 2+ y2 m?a?-+ x,+ (m2aZ+x,) 2+ y2]
[B} (7,a)+By(7,B)]? (90)

Xexd —ian(n,a)+ian(n',8)]. (85  wherez,=x,+iy, is the corresponding complex pole. Thus,
if ao,>1, we have thatr~1/a and we have correlation in
the solutions corresponding to unstable states.

For more details about these two subsections[%$8p

Pranﬁ(a7a,):

Now when InB,~3ImQ,#0 andB} (7,a)#B,(7',B) it
can be proved that

V. ENTROPY
pii(a,a’)]<1, (86) : : :
Let p(#n) be the density matrix, of the universe or one of

its subsystems, for a physical admissible state ¢ ) and
and as there is an _infinite number of these complex factorgt p.(7) be the corresponding thermodynamical equilib-
the product(80) vanishes whem— +c. Then we have de- rjym matrix. In the universe these matrices are related by Eq.
coherence  when Bp(7,a)#Bn(7',8), namely, if (66). The Hamiltonian of the subsystem is necessarily a term

QF (7,@)#Qu(7n',B) or of the general Hamiltonian of Eq24) and itsS matrix must
have poles if the subsystem is not triviaee[14] and[27]).
a(7,.Co (X)) #a(n',Ch.(=)p). (87) So we can repeat all that we have said for the universe for

the case of the subsystem and we can also choose a
t-asymmetric regular space state for the subsystem. We must
So we have decoherengeg for different classical solutions, take care that the dumping or future direction of the sub-
i.e.,C,#Cgor (£),#(*)g, even if the time is the same system coincides with the dumping or future direction of the
n=m7', or (i) for the same classical solution, i.&€,=C;  universe for consistency. l.e., the local and global arrows of
and (+),=(=*)g, if the times are differenty# »’. time must coincide. Then we will also find E6) for the
subsystem. The only difference would be that, if the sub-
system Hamiltoniarh is not time depender(with respect,
e.g., to the proper timé), the integral of Eq(66) must be
From Ref.[18] we know that the existence of correlations subtituted by the usual produbt.
can be proved using only the real continuous spectrum, and Then we can define the conditional entropy=
nothing new can be added in this case. We must only studg[ p(#)|p, (7)] of statep(#) with respect to state, (7)
the correlation for the unstable states of the discrete spe¢34] both for the universe or the subsystem,
trum. Correlations take place inside each classical solution
and, therefore, they can be computed using the Wigner func-  S=p(7)|p, (7)]=—1tr{p( n)ln[p;l( mpe(n)1},
tion associated witp*(a,a’) [18,19, namely, (9D

B. Correlations

+o . A such thatg p, (7)|p«(%)]=0; namely, the entropy van-

_dAexp(—2iPaA)pry’| a= .2 ishes at equilibriuntin this definition we consider that the
vanishing trace ghosts have been eliminated by that proce-
dure explained in[35], and also other technicalities, ex-

' (88) plained in this paper, are taken into accuiwe can, as
well, use the corresponding classical definition, since we are
really interested in the classical phase of the universe, but in

wherea,a’=a*=A/M, andP, is the canonical momentum order to use one notation only, we will use the quantum

conjugated tam. Then we can repeat the reasoning$xf],  formulas®®

Fim(@Py- |

A

+ —
M

from Eqgs.(2.29 to (2.28), and we will arrive at From Eg.(66) we see that
trp(n) =trp, (n7)=1=trpy(7)=0; (92
aa ~ 2 ™ ’ ’
Fw'(n)(a,Pa)~C*(a) \/;exp{ _( Pa=MS'+a i.e., if the stateg(#) andp, () are normalized as it should

be, p1(7n) has a vanishing trace, and thag ») is not a state

: (89

’ 2
I
4BnR 1 . . .
®There is a close relation between the quantum and classical

' _ o _ cases, and so E¢66) can also be obtained in the second o).
where the prime symbolizes derivatives with respe@ &md  This relation can be obtained usifig3], as is shown in Ref50].
02=|Br’1|2/4BﬁR. When 57— +% we know thatB,~3Q,, The Wigner function is not positive definite, and this problem is
and so studied in Ref[35].
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but the coefficient of a correction to the equilibrium state towherel is the Liouville operator corresponding to the Hamil-
obtain statep( 7). The vanishing of the trace @f, is directly  tonianh andt is the proper time. In this case the equilibrium
proved in[14,32,36, using our formalism. Now if we ex- matrix p,(t) also evolves in the same way as the matrix
pand the logarithm in Eq91), and use Eq(92) we obtain  p(t). Now, from what we have said in Sec. lll, poifiti),
Eq. (95) is only valid if »>%'. Analogously, if the sub-

S=p(n)p. (m)]=—exd - EJ At pZ (7 p2(m)] systemS matrix has poles and, for the subsystem, we have

PATDIP+ AT 2) YRR NPT also chosen an admissible function space with the same cri-
teria as those used to choose spdee, Eq. (96) is only
valid if t—t’=0 ort=t’. Therefore the last two evolutions
are irreversible. Now, from Ref.34] (using the classical-
guantum analog}33,35, since we are in the classical phase,
the “exp” operator of the last two equations will be a

+., (93)

where the ellipsis symbolizes higher order teffhs.
This entropy has the property:

lim S p(7)|p, (17)]=0; (94)  Frobenius-Perron operator, and we can use the classical defi-
P nition of conditional entropywe know that
namely, the entropy evolves towards its null equilibrium Sp(7)lpx(mM]1=Sp(n')|pe (7)1,
value. This is so because the prefactor in £) dominates
any other time variation, since, (#) is usually oscillatory Sp(t)|p. (D I=Sp(t)]p, ()], (97)
[namely, it will be oscillatory in casé), but not in caséb);
see beloy and p,(7) has oscillatory terms and dumping respectively. It would be =" if the evolution operator

factors that vanish faster than the dominant decaying factog,quid be reversibleput it is not[consider also Eq(93)].

In Eq. (91) we have two matricep(7) andp,(7); then  Then these entropies are really monotonically growing.
we also have two possibilities. Either both matrixes have therherefore we have proved the second law of thermodynam-
same kind of evolution or they have different ones. The firsics for the whole universe or for any nontrivial closed sub-
is the case of a closed system, e.g., the universe, but thg,stem. So our formalism yields this fundamental law natu-
second case appears whey() follows a different evolu-  (jly (compare with the much more complicated coarse-
tion due to, e.g., an external agency; this would be the Casgraining method of37]).
two cases. _ p is an admissible statdike the ink drop spreading in the

(a) The closed case. Both matrices follow the same eVOylass of water, and sop e ®_ andy,>0. If we would have
lution law. Namely, if we have a time variable Hamiltonian takenpe ® ., , it would be y,<0 and the entropy would
h(#), as in the case of the universe, the evolution will be §ecrease showing the following:

” (i) In the case of the closed subsystem within the universe
P(ﬂ)zeXF{ _if |(77)d77}9(77'), @, is a space of a clearly nonadmissible _solut(dne ink
7' drop contracting spontaneouslyn fact, in this case the ar-
row of time is the one of the universe and not the one of the
subsystem, and in the subsystem we will see a decay of the

- 7] 12
p*(”):ex% ~ L,l(”)d” P« ('), (95 entropy, showing that these states are not physically admis-
sible.
where |(7) is the corresponding Liouville operator, i.e., (i) In the case of the univers&oing from® _ to ® . we
l[(m)p=h(7n)p—ph(7). have simply changed our conventi¢since all possible ar-

In the case of a closed subsystem of the universe, wher@ws of time are embodied in the universe evolu}jaron-
the Hamiltonianh is not a proper-time variablée.g., in a  ventionally calling the “future” the direction of decreasing
subsystem which does not expand or contract due to an egntropy.

ternal agency we would have (b) The open case. Let us now consider the important case
of an open subsystem of the universe, e.g., the matter and
p(t)y=exg —il(t—t")]p(t"), radiation within an expanding univerggince in this case we
do not take into account the entropy of the gravitational field,
pe (D) =exgd —il (t—t")]p, (1), (96)  and we will consider that this field as an external agency that

expands the space, where the matter and the radiation are
located. Then the conditional entropy is not necessarily
207s in this equation distributions are multiplied, some care mustmonotonically increasing, at least for short times. In fact, we
be taken in order to convince ourselves that what we are doing isannot use Eq97) sincep, (%) does not satisfy an equation
mathematically correct. E.g., the distributions can be transformed isuch as the second equation of Eg5), because its evolu-
ordinary density matrices by A transformation[14]. This trans-  tion could be fixed by an agency external to the system, e.g.,
formation maintains the dumping factors, and so the results oba thermostat or the universe expansion as we will see. In this
tained remain valid, but the distributions become ordinary matriceslast case this fact is completely logical siffen(7)|p. (7)]
which can be multiplied. In this way the rhs of E@3) becomes is just the matter-radiation entropivith no gravitational
well defined. The multiplication can be also done using maitief  field entropy contributionin an expandingor contracting
Ref.[51]. There are also more refined mathematical ways to reacluniverse with an equilibrium state, (#), which varies in-
to the desired result, as the one of R¢82,35|. dependently. Therefore it is not the total entropy. It is well
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known that matter(let us say a gascan have decreasing wherep; is a certain phenomenological coefficient, which is
entropy into a variable geometfiet us say a box with mov- constant in time since all the time variation of nuclear reac-
ing walls). A phenomenological study of the problem can betions is embodied in the exponential lav . Also, on phe-
found in Refs[38,39. In this case what we have called, up nomenological grounds, we can foresee thatmust peak
to now, S is just the entropy gap S with respect to a vari- strongly aroundw;, the characteristic energy of the nuclear
able maximal possible entrop$,.x. The actual entropy, process. All these reasonable phenomenological facts can
which grows monotonically, i$=S,.= SnaxtAS. But AS  also be theoretically explained in different ways; e.g., Eq.
does not have this property. Furthermore, the diminishing o100 can be computed with the theory (8] or [35]. In
A S for short times is welcome, as we will see in the next twoRef.[32] it is explicitly proved thatp; peaks strongly at the
sections. energyw,. So using Eq(91) we can compute the entropy
gap

VI. ENTROPY GAP _
AS=—trpIn(p, *p)]. (100

In this section we study the universe entropy gep= . o _
Saci— Smax: following a qualitative idea of Davief38]. Ac-  Now using Eq.(100 and considering only time$>tyg
tually we will complete this idea computing the entropy gap¥  We can expand the logarithm, as in E§3), to obtain
after decoupling time. Therefore we will change our model; 12
it still will be homogeneous and isotropic, with meti22), AS~—e 3"y 1), (102

but obviously the particle production will be finished, and so ) )
we will consider that we are simply in a flat geometry, Where we have used E¢92). We now introduce the equi-
matter-dominated, universe. librium state(98) for w>T. Then

It is well known that the isotropic and homogeneous ex-
pansion of the universe is a reversible process with constant
entropy[40]. In this case the matter and the radiation of thewheree is a diagonal matrix with this function as the
universe are in a thermic equilibrium statg(t) at any time diagonal. But a isg eaked aroune. we arrive to a final
t. As the radiation is the only important component, from theforrglula for the 2rl1trogy gap: 1
thermodynamical point of view, we can choosg(t) as a '
blackbody radiation statgt1]; i.e., p, (t) will be a diagonal
matrix with a main diagonal:

AS~—Z"'T3e $"tr(e”'Tp?), (103

olT

AS~—CT3e /T (104

whereC is a positive constant.

po(0)=2T3 , (98) Let us now compute the time evolution of the entropy

e®T_1 gap. We have computedslS for times larger than decoupling
time and therefore, aa~t?3andT~a !, we have
whereT is the temperaturey the energy, an&@ a normal- o3
ization constan{[42], Egs. (60.4 and (60.10]. The total (o
. T=To| —| , (105
entropy is t
16 3 wheret, is the age of the universe afg the present tem-
S= gUVT (99 perature. Then
hereo is the Stefan-Bol w1/ to|
[[42], Eqg. (60.13], whereo is the Stefan-Boltzmann con- AS~—C,e 1"t 2exp —| — , (106)
stant andv a comoving volume. Tol t

Let us consider our isotropic and homogeneous model of , . i )
universe with scal@. Any comoving volume evolves a¢ whereC; is a positive constant. Drawing the corresponding
~a3 and, since from the conservation of the energy-CUrve[39] it can be seen thalS has a maximum at=t,
momentum tensor and radiation state equation, we know th&nd a minimum att=t.,. Let us compute these critical
T~a !, we can verify thatS=const. Thus the irreversible times. The time derivative of the entropy reads
nature of the universe evolution is not produced by the uni-
verse expansion, even gf, (t) has a slow time variation. 1 . 2 w1t s

Therefore, after decoupling time, the main process that TpyTet o 3toTol t
has an irreversible nature is the burning of unstablim the
stars(which produces He and, after a chain of nuclear reacThis equation shows two antagonistic effects. The universe
tions, Fg. This unstable state produces poles in the correexpansion effect is embodied in the second and third terms in
spondingS matrix and a nuclear reaction process, with mearthe square brackets, being an external agency to the matter-
lifetime tyg=27y ! . Therefore, using Eq66), and consid- radiation system such that, if we neglect the second term, it
ering thaty is constantunder proper-time variationsince it~ tries to increase the entropy gap and, therefore, to take the
corresponds to a local process considered in ¢asef the  system away from equilibriuntas we will see the second
last section(or simply on phenomenological groungdsve term is practically negligible On the other hand, the nuclear
can then say that the state of the universe, at tinie reactions embodied in the term try to convey the matter-

radiation system towards equilibrium. These effects become
p(t)=p, (1) +pe "+o[e "], (100  equal at the critical timeg, such that

AS~ AS. (107
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13 10%ty~1.5x 10" yr after the big bang all the stars will ex-
(108 haust their fuel[45], and so the border between the two
periods should have this order of magnitude. Furthermore, it

For almost any reasonable numerical values this equation hggiould also be smaller than this number. This is precisely the
two positive rootst,, <to<t,.. result of our calculations contained in Ed.14) (see also
1 2

1 to 2 wq to
— +2—==— —
2ot =3 To(tcr

; ; . 39)).
Precisely (i) for the first root we can neglect the, term [ : -
and we obtain So we are at the edge of a correct physical prediction,

even if our model is extremely naive and simplified, a ho-
0¥ mogeneous universe, and besides we have neglected the
tcrﬁt0<3w_l) (109 higher order terms in Eq:100) which perhaps may be im-
portant for finite times. Besides in the real universe nuclear
(this quantity, with a minus sign, gives the third nonphysicalreactions take place within the stars, which can only be prop-
root) and(ii) for the second root we can neglect thé2(.)  erly considered in an inhomogeneous geometry. Neverthe-

term, and we find less, this rough numerical estimate shows that the theory can
2 wn tuo) 3 be used for practical purposes. Furthermore the decreasing of
tcrﬁto(g T—l g) (110  the entropy gap, in the peridqu<t<tcr2, will be crucial in
o lo

the next section.
Let us make now some numerical estimates. We must

choose numerical values for four parametess;=Tyg,

tNR: ’}/—1, to, andTo.
Tnr andtyg can be chosen between the following values  The set ofirreversibleprocesses within the universe, each

VII. BRANCH SYSTEM

[43]: one beginning in an unstable nonequilibrium state, can be
Tyr=100-1C° K, (111) considered aranch s_yste_nﬁ38,4q. Namely, every one of
these processes begins in a nonequilibrium state, such that
tyg=10°-10 yr, this state was produced by a previous process of the set. E.g.,
a Gibbs ink drop(initial unstable statespreading in a glass
while for ty and T, we can take of water (irreversible procegsis only probable(since the
0 probability to create an ink drop by fluctuations is extremely
tp=1.5% 100 yr, (112 smal) if there was first an ink factory, which extracted the
necessary energy from an oven, where dgatial unstable
To=3 K. statg was burnt(branched irreversible procgsi turn coal

was created with energy coming from the Sun, whergni4

&lal unstable stabeis burnt into He(branched irreversible
procesy, finally H was created using energy obtained from
the unstable initial state of the univer@be absolute initial
state of the branch systenTherefore, using this hierarchical
chain, all the irreversible processes are related to the cosmo-

SO, is smaller than the decoupling time and it should noty, i initial condition, the only one that must be explained.
be considered since the physical processes before this timet us observe the following:

are different than those we have used in our model. Also, we (i) The branch system defines its own arrow of time, the
must only consider times>tyz=" ", in order to use EQ. branch arrow of time (BAT)as the direction that goes from

bounds forTyg andtyg and fortCrl we obtain

ter,~1.5% 10° yr. (113

(102. _ the unstable initial state of every member of the system to-
For te,, we obtain wards equilibrium. Probably the BAT is the most useful of
all arrows of time, since it is present in any irreversible local
ter,=10%o. (1149 process.

(i) Once we have the branch system the irreversible evo-

From Egs.(113 and (114 we can see that reallycrl<to lution of each system is easy to explain, since once we have

<te,. _understpod the origin_ o_f the init.ial unstable state of each
Thus (i) from tyg o t.. the expansion of the universe |rrev§r5|ble process \'Nllthln the gn]\./er@/en if we have not .

2 yet discussed the origin of the initial state of the whole uni-
verse it is not difficult to obtain Lyapunov variablegr
irreversible evolution equationsf we consider, e.g., that the
. E'SUbsystems where these processes take place are not isolated.
clus:cers, galaxies, and stged]. . . If it is so, forces of a stochastic nature penetrate from the

(i) After t.,, we have a growing of entropy, a decreasing e, erior of each subsystem and, it is well known, that if we
order, and a spreading of the structures: Star energy is spregdd stochastic terms to the time-symmetric evolution equa-
in the universe, which ends in a thermic equllbrllﬁdS] In tion, we obtain time_asymmetric ones, y|e|d|ng Lyapunov
fact, whent—c the entropy gap vanishdsee Eq.(106]  variables, e.g., a nondecreasing entr¢pg]. We can also
and the universe reaches a thermic equilibrium final state. consider that each Subsystem has an enormous amount of

te;,=10%, is the frontier between the two periods. Is the information and we are able to measure, compute, and con-
order of magnitude of,,, a realistic one? In fact it is, since trol a part of this information, which we will calielevant.|f

produces a decreasing of the entropy gap, according to
prediction of Davies[38] . Also, it probably produces a
growing order, and therefore the creation of structures lik
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we neglect the rest of the information, tineelevantone, we  space. This part of FHseems quite natural, certainly much
can obtain also irreversible evolution equations andmore natural than the two other alternative possibilities,
Lyapunov variable§34,47. These two procedures can be namely, (a) p e £, in which casep can be, e.g., a square
considered within the coarse-graining usual formalism. integrable function ofH®™H, where in a set of points, the
(iii) But of course, if we follow the ideas of this paper, we function can have noncontinuous and arbitrary values. What
will use more refined mathematical tools and, in each of thés the physical meaning of this discontinuity®) p
subsystems, we will introduce a model similar to the one wee S*®S*, namely, a distribution, e.g., @ function, cer-
have used for the whole universe, as we have done in Sec. Yainly a quite unnatural state.
introducing the hypothesis Hin each subsystem(t has So the first part of H is natural. The second part is to ask
already been done ifil4,27,33, and the same results are why p would be endowed with a natural asymmetry, the one
obtained, i.e., irreversible evolution equation, Lyapunovof ®_. Is it too much to ask? Let us study this question
variables, et¢.Then we see that entropy grows in each sub-according to the branch system idea and our formalism.
system provided the state of the subsystem would be choséFhere will be no branch system only if the univetaed now
among the physically admissible states of spdce. Then  we are referring to the whole universe with the gravitational
each subsystem of the branch system begins in an unstabfield included would begin in an equilibrium staie, , since
low entropy state and evolves towards thermal equilibriumin this case it will always remain in equilibrium. Now, from
The physical nonadmissible growing statéisose of space Eqgs. (65), (66), and (67) we see that, in this case,
® ) correspond to theoretical evolutions that would only e ®* | and sop, would be a distributiors? something like a
exist before the instant of creation of the subsystéhe s function, and we have just considered this choice as un-
instant when we put the ink in the glass of wat@volving  natural. On the contranye ®_ is a much more naturdi.e.,
with decreasing entropy, towards that instanamely, the regulaj state. Any state ob _ will produce a branch system,
ink drop contracting spontaneousiyThese evolutions sim-  gjpce any state ofb_ yields Eq.(66). So we can, at least,
ply do not exist in nature because, before the instant of itgonclude that H is the requirement that the state of the
creation, the Subsystem really does not exist as such. In faqgniverse would be a natural and an asymmetric 0n£_id—|
before that instant a different Subsystem existed with differ'also |nt|mate|y related to the branch System idea and in con-
ent evolution lawge.g., the ink factory that creates the ink sequence it is also related to the fact that really our universe

drop). Therefore all the scenarios we are using turn out to bgs 5 pranch system. His just the transcription of these
realistic and satisfactory. physical facts.

(iv) So only one problem is left: Why did the universe
begin in an unstable, out of equilibrium, low entropy state?
Let us first observe that really we are referring not to the
“whole” universe (with its gravitational fieldl but only to In this section we will only consider the coordination of
the matter-radiation subsystem of the univetse. the arrows of time related to our model, namely,

Then, in the no-time version of the introduction we have (i) The branch arrow of time (BAT}he arrow that goes
postulated H and H,. Using these hypotheses we have re-from the unstable initial state of every process of the uni-
constructed time and demonstrated, in the sections aboveerse branch system to its equilibrium final state. As we have
that the universe expansion creates, in its matter-radiatiogeen in the last section this arrow is a direct consequence of
subsystem, an entropy gayS that takes it out of equilib- the asymmetry introduced by H(ii) The thermodynamic
rium, not only att=0, but in a long period of its history, arrow of time (TAT),which points to the direction of the
since the actual entropy 8,,< Syax- We have also demon- growing of the universe entrop$. (iii) The cosmological
strated that the matter-radiation subsystem of the universarrow of time (CAT),which points to the direction of the
evolves to a final state of thermic equilibrium sik&—0,  growing of the universe scak.
whent— [cf. Eq.(94)]. So the answer to the only problem  Of course, all these arrows are related to time and there-
left is hypothesis H since all the facts above are based onfore they must only be considered in the classicalsemi-
this hypothesis. Certainly, someone will think that we haveclassical period where the timey, given by Eq.(31), is well
solved a problem by postulating an axiom, and this is not alefined. As shown in Sec. Vi has the BAT direction, since
very exciting result. But if the axiom yields the solutions of it points away from the initial unstable state. In the timeless
many problems, and this is the case of Hhe axiom must quantum period we only have the asymmetry defined by H
be welcome. After all, this is the role of axioms. Then Eq. (97), for nonexpanding or contracting sub-

(v) Finally we can ask ourselves if, in the perspective ofsystems within the universe, which is a consequence of H
the branch system idea,Hs a natural hypothesis. Hsays
that pe & _CS®S. So first it is postulated thgte S® S,
and thereforep is a smooth function, with infinite deriva-  2?This fact is evident if we consider a Baker's transformafia4:
tives, and well behaved in the infinities of the configurationLet us consider a distribution function with compact support, and

such that it belongs t&€=L?%([0,1]X[0,1]). In the far future this
support becomes a set of horizontal strips, and in the limit a set of
2} et us also observe that for our purposes we can put the “beinfinite horizontal straight lines, such that it is dense[1]
ginning of the universe”(precisely the unstable beginning of our X[0,1]. No function of £ has such a support and therefore the
branch system ar=0) after decoupling time. With this change we equilibrium state(considered as a “strong” limjtdoes not belong
avoid the problem we could have if we put 0 in the quantum to £. Of course, a weak limit exists and therefore equilibrium is
gravity period and still demonstrate our thesis. reached in a weak sense, e.g., as a coarse-grained ayaddge

VIIl. COORDINATION OF THE ARROWS OF TIME
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shows that BAETAT, and thatt, or more generallyp,  all the velocities of the universe. This is, of course, a practi-
grows in the same direction th&h cally impossible task. Is it also theoretically impossible? In

The relation between BAT=TAT) and CAT is given by fact it is, even if the Maxwell demon were to change all these
the = sign in Egs.(32) or (33). Then these two arrows of directions (while we are sleeping we will not notice the
time, a priori, are not coordinated in our model. But in the change(when we wake up sinceall arrows of time would
classical period we have jusine classical universe and be changednd we would not have any extra arrow to verify
therefore the- sign and the constai@ are fixed; so in the  the change. Thus this global demon task is also conceptually
classical period we have just one sign: eitheor — . There- impossible.
fore, once the sign is fixed, a clear relation appears between (jj) what we have presented is not a mathematical theo-
BAT and CAT. _ rem, but a model that can be generalized in many ways.

_ (i) If the model is an expanding orfand we choose the These more general models will have a behavior similar to

sign +), we will have BAT=CAT, at least in the final evo- the present one if two essential features are present: the ex-
lution where Eq(33) is valid (if we make the unusual choice jstence, at the quantum gravity level, of a geometry of maxi-
of the — sign, we are just changing the conventional direc-mg| relative probability which allows us to construct “out”
tion of time », with no physical consequenges states for the fields, and & matrix with infinite complex

(ii) If the model is an expanding-contracting of@d we  poles. The first requirement seems natural for any realistic
choose the sigrt), we will have BAT=CAT in the expand-  model of the universe. On the other hand, we have restricted
ing period and BAT CAT in the contracting period. BAT  the class of possible potentials in order to be able to prove
=CAT s, in fact, the definition of the expanding period andthat the corresponding matrix has infinite complex poles.
BAT # CAT is the definition of the Contracting one. But BAT But several QcC potentia|s do not be|ong to this class, be-
=TAT does not change when we go from the expanding tq:ause they have a bad behavior at infinity. Nevertheless, they
the contracting period or vice versa, since the choic®of  ysually also have an infinite set of poles, as can be proved
(or @) is made once and for all. case by cas¢50]. So the two basic features seem usual

So the study of the correlation of the arrows of time isenough to consider that our model is a good sample of the
completed, and almost trivial, because we havg which  general behavior of the universe. Then we can say the fol-

defines BAT® lowing.
(i) If we introduce an adequate regular state space, it
IX. OTHER RESULTS seems that all the known results of statistical irreversible

physics can be reobtained. It must be emphasized that we are
The main results related to quantum cosmology are statefot adding a new object to the theory, since a regular state

in the above sections. But we must comment that using thgpace (or the corresponding topology) must be defined any-
present formalism all the relevant results of irreversible stahow. We are just choosing the most convenient one. Let us
tistical mechanics can also be obtained, e.g., all the results @épeat the general relativity example: The space-time has a
Ref. [49], as is proved in Ref[14], because the maill  metric, and we can choose a flat space-time metric or a
projector of the quoted book can be defined using Gel'fandurved one. In the second case we explain gravity in the best
triplets. Also, in some simple cases, we can go from thepossible way. We add nothing; we just choose the best math-
quantum models to the classical 0fiB6], where we find the  ematical structure. The same thing happens in the present
same philosophy, in classical cases. Chaotic models such gase. If we choose the usual regular state sggose are
Baker’s transformation and Renyi’'s maps are also treategbrced to make a coarse grainittgnd there is nothing ex-
with the same method, with good resultsl]. Other inter-  perimentally wrong with coarse graining, as there is nothing
esting results are contained[in3,27,28,31, and 48So what  experimentally wrong with post-Newtonian theories, but
we have explained is just the quantum cosmological chapteoth are “noneconomical” formalisms If we choose the
of a general method to deal with irreversible processes. new regular state spaek_, we make two steps in one, and

so we have a conceptual advantage.

X. CONCLUSIONS (iv) Precisely, because the new formalism is conceptually
clearer, we can see that time asymmetry is just a kind of
Let us summarize our main conclusions. spontaneous symmetry breaking.

(i) Our entire scheme is based in the existence of a physi- (v) Most probably the old and new formalisms will al-
cally admissible state quantum superspaze and of a ways yield the same physical results, because they are both
physically forbidden state quantum superspdee. Thus, based in the same physical base: The limited amount of in-
the time inversion that goes frodh_ to @, is also forbid- formation, contained irP (see Sec. | Bmust be somehow
den. Namely, no Maxwell demon can change the direction ofvorked out to obtain a complete theditp completeP using

S and then make a coarse graining or to compietasing
¢_; see[32]). Therefore, most likely, they are as experi-
23Thequantum arrow of time (QATyyhich goes from preparation mentally equivalent, as general relativity and post-
to measurement, and coincides with the collapse arrow of timeNewtonian gravity with an infinite number of terms are.
can also be considered, as[#8]. It is not difficult to see that this So, even if we have not found any new or spectacular
arrow also coincides with BAFTAT, since the measurement pro- result, we think that the introduced formalism presents a
cess is an irreversible decoherence process which is also containgtlite coherent picture of the real time-asymmetric universe
in (Reichenbachbranch system and, therefore, the measuremenand shows us how time asymmetry forces us to choose a
arrow (QAT) must coincide with BAT. Gel'fand triplet as the mathematical structure of the theory.
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