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Hamiltonian reduction of SU„2… Dirac-Yang-Mills mechanics
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The SU(2) gauge invariant Dirac-Yang-Mills mechanics of a spatially homogeneous isospinor and gauge
fields is considered in the framework of the generalized Hamiltonian approach. The unconstrained Hamiltonian
system equivalent to the model is obtained using the gaugeless method of Hamiltonian reduction. The latter
includes the Abelianization of the first class constraints, putting the second class constraints into the canonical
form and performing a canonical transformation to a set of adapted coordinates such that a subset of the new
canonical pairs coincides with the second class constraints and part of the new momenta is equal to the Abelian
constraints. In the adapted basis the pure gauge degrees of freedom automatically drop out from the consid-
eration after projection of the model onto the constraint shell. Apart from the elimination of these ignorable
degrees of freedom a further Hamiltonian reduction is achieved due to the three dimensional group of rigid
symmetry possessed by the system.@S0556-2821~98!00810-8#

PACS number~s!: 11.15.Tk, 11.10.Ef
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I. INTRODUCTION

The correct canonical formulation of the quantum theo
of non-Abelian fields assumes a detailed knowledge of
corresponding classical generalized Hamiltonian dynam
@1–5#. Since the introduction of non-Abelian gauge fields
Yang and Mills@6# over forty years ago essential progress
this direction has been made. Rigorous statements abou
geometrical structure of the configuration and the ph
space have been established. It turned out that due to
underlying non-Abelian gauge symmetry the ‘‘true pha
space’’ of Yang-Mills theory, namely the quotient space
phase space by the action of gauge transformations,
sesses a rich topological structure@7#. In the framework of
traditional perturbation theory these geometrical peculiari
are not taken into account and as a result the descriptio
large scale effects, including confinement, is beyond
scope. The most important lesson one has learned is tha
order to reach a complete description, it is necessary to
reformulate Yang-Mills theory in terms of gauge-invaria
variables and only after this step apply any approximat
method. With this aim several different representations
the physical degrees of freedom of non-Abelian theories@8–
19# have been proposed. All these approaches lead to
unconstrained Hamiltonian system, which exhibits no
perturbative features and are in some sense alternatives t
conventional perturbative approach. Whereas perturba
theory is appropriate for the computation of short distan
effects, the unconstrained formulation is adapted to the st
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of large scale phenomena if the gauge invariant express
are evaluated in a derivative expansion. Since the work
Matinyanet al. @20#, the corresponding zeroth order or lon
wavelength approximation, the Yang-Mills mechanics
spatially homogeneous gauge fields, has been studied e
sively from different points of view~see e.g.@21–24# and
references therein!. In the present note we shall continue th
study of the model arising in this approximation, pursui
the aim to prepare the necessary background for studying
problem of construction of the reduced phase space of Q
Because of the spatial homogeneity condition conventio
Dirac-Yang-Mills theory reduces to a theory describing
finite dimensional system which is incomparably simp
than the exact field system. At the same time, howeve
possesses all the main peculiarities of the full theory and
be used as a laboratory for testing the viability of ideas a
techniques that could be applied in the general case.

Below we shall isolate the true dynamical degrees of fr
dom of SU(2) Dirac-Yang-Mills theory in the long-
wavelength approximation using the gaugeless approach1 to
the reduction in the number of degrees of freedom instea
the conventional gauge fixing method.2 The cornerstones fo
this method applied to a system with first class constra
are the procedure of Abelianization of constraints~replace-

,

1Presumably, Shanmugadhasan@25# was the first to employ the
classical Lee-Cartan method of reduction~see e.g.@26–30#! in the
framework of generalized Hamiltonian dynamics.

2We point out here that the idea of constructing the physical v
ables entirely in internal terms without using any additional gau
conditions is connected with the desire not to distort the glo
properties of the theory and to have all dynamical degrees of f
dom under control.
7488 © 1998 The American Physical Society
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57 7489HAMILTONIAN REDUCTION OF SU(2) DIRAC-YANG- . . .
ment of the original non-Abelian constraints by an equiv
lent set of Abelian ones! and the canonical transformation
new variables where a subset of the new momenta is equ
the new Abelian constraints. The system of interacting ga
and spinor fields considered in this article represent a Ha
tonian system with mixed first and second class constra
In this case the reduction procedure additionally includes
separation of first and second class constraints and pu
them into the canonical form.

The paper is organized as follows. In Sec. II we brie
recall how to obtain the unconstrained Hamiltonian syst
from the initially gauge symmetric one in the framework
Dirac constraint theory in order to set the formalism. T
Dirac and the Faddeev gauge fixing methods as well as
gaugeless method are described. In Sec. III the gauge
method is exemplified by considering the Yang-Mills syste
in 011 dimensions. In Sec. IV we perform the reduction
the Dirac-Yang-Mills system by explicitly separating the fir
and second class constraints, putting the second class
straints into the canonical form and Abelianizing the fi
class constraints. We construct the corresponding redu
Hamiltonian system by first eliminating the unphysical gau
degrees of freedom and then using the classical schem
Hamiltonian reduction due to the existence of three first
tegrals of motion. Section V finally gives our conclusio
and remarks.

II. REDUCTION OF CONSTRAINED SYSTEMS

The procedure of reduction of phase space of a sing
system is a generalization of the method of reduction o
system of differential equations possessing a Lie group s
metry. The well-known results for this type of reduction
the number of the degrees of freedom are embodied in
famous Liouville theorem on first integrals in involution. In
terest in these has revived in connection with the study
Hamiltonian systems with a local~gauge! symmetry. Since
the works of Bergmann and Dirac at the beginning of
fifties it has become clear that the role of integrals of mot
in a Hamiltonian system with gauge symmetry is played
the first class constraints. Although the reduction in the nu
ber of degrees of freedom due to first class constraints
many features in common with the classical case, there
very important differences. In order to explain these pe
liarities of the reduction procedure and to make the pa
self-contained we first have to summarize some definiti
and to put facts from the Dirac theory of generalized Ham
tonian dynamics into the appropriate context. In view of t
main purpose of our paper, namely to study the finite dim
sional system of homogenous Yang-Mills fields, we sh
discuss the above ideas for a mechanical system, i.e. a
tem with a finite number of degrees of freedom.

A. The definition of reduced phase space

Let us consider a system with the 2n-dimensional Euclid-
ean phase spaceG spanned by the canonical coordinatesqi
and their conjugate momentapi and endowed with the ca
nonical simplectic structure$qi ,pj%5d i j . Suppose that the
dynamics is constrained to a certain (2n2m)-dimensional
submanifoldGc determined bym functionally independen
constraints
-
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wa~p,q!50, ~2.1!

which we assume to be first class,

$wa~p,q!,wb~p,q!%5 f abg~p,q!wg~p,q!, ~2.2!

and complete in the sense that

$wa~p,q!,HC~p,q!%5gagwg~p,q!, ~2.3!

whereHC(p,q) is the canonical Hamiltonian. Because of th
presence of these constraints the Hamiltonian system ad
generalized dynamics described by the extended Poinc´-
Cartan form

Q5(
i 51

n

pidqi2HE~p,q!dt ~2.4!

with the extended HamiltonianHE(p,q) that differs from the
canonicalHC(p,q) by a linear combination of constraint
with arbitrary multipliersua(t):

HE~p,q!5HC~p,q!1ua~ t !wa~p,q!. ~2.5!

From the condition of completeness~2.3! with HC replaced
by HE it follows that for first class constraints the function
ua(t) cannot be fixed in internal terms of the theory. Th
implies that the system possesses a local symmetry and
the coordinates split up into two sets, one set whose dyn
ics is governed in an arbitrary way and another set with
uniquely determined behavior. Recalling the Dirac definiti
@31# of a physical variableas a dynamical variableF with
the property

$F~p,q!,wa~p,q!%5dag~p,q!wg~p,q!, ~2.6!

one can conclude that the first set of coordinates does
affect the physical quantities which are defined on some s
space of the constraint surfaceGc . Indeed, if one considers
~2.6! as a set ofm first order linear differential equations fo
F, then due to the integrability condition~2.2! this function
can be completely determined by its values in the 2(n2m)
submanifold of its initial conditions@32,2#. This subspace of
constraint shell represents thereduced phase spaceG* . This
definition of reduced phase space is implicit. The main pr
lem is to find the set of 2(n2m) ‘‘physical coordinates’’
Qi* ,Pi* that span this reduced phase space and pick out
other additionalm pairs which have no physical significanc
and represent the pure gauge degrees of freedom. Se
approaches to its solution are known. Below we shall brie
discuss the corresponding methods of practical construc
of the physical and the gauge degrees of freedom with
without gauge fixing.

B. Reduced phase space with the Dirac gauge fixing method

General principles for imposing gauge fixing constrain
onto the canonical variables in the Hamiltonian approa
were proposed by Dirac in connection with the canoni
formulation of gravity@33#. According to the Dirac gauge
fixing prescription, one starts with the introduction of
many new ‘‘gauge’’ constraints
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xa~p,q!50 ~2.7!

as there are first class constraints~2.1!, with the requirement

deti$xa~p,q!,wb~p,q!%iÞ0. ~2.8!

This allows one to find the unknown Lagrange multiplie
ua(t) from the requirement of conservation of the gau
conditions~2.7! in time,3

ẋa5$xa ,HC%1(
b

$xa ,wb%ub50, ~2.9!

and thus to determine the dynamics of system in a uni
manner. A striking result of Dirac consists in the observat
that such kind of fixation of Lagrange multipliersu(t) is
equivalent to the following way of proceeding. One can dr
both the constraints~2.1! and the gauge fixing condition
~2.7! and at the same time achieve the reduction to the
constrained theory by using the Dirac brackets

$F,G%D5$F,G%2$F,js%Css8
21$js8 ,G%, ~2.10!

instead of the Poisson brackets. Herej denotes the set of al
constraints~2.1! and ~2.7! and C21 is the inverse of the
Poisson matrixCab5$ja ,jb%. In this method all coordi-
nates of the phase space are treated on an equal footing
all information on both initial and gauge constraints is a
sorbed into the Dirac brackets, which describe an effec
reduction in the number of degrees of freedom fromn to n
2m:

(
i 51

n

$qi ,pi ,%P.B.5n, (
i 51

n

$qi ,pi ,%D.B.5n2m.

The inclusion of gauge constraints in addition to the init
constraints allows one to take the constraint nature of
canonical variables into account by changing the initial
nonical symplectic structure to a new one defined by
Dirac brackets. The new canonical structure, being dep
dent on the choice of gauge fixing-conditions, is very co
plicated in general and it is not clear how to deal with it,
particular, when we are quantizing the theory. Howev
there is a special case when the Dirac bracket coincides
the canonical one and looks like the Poisson bracket for
unconstrained system defined onG* :

$F,G%Duw50, x505 (
i 51

n2m H ]F̄

]Qi*
]Ḡ

]Pi*
2

]F̄

]Pi*
]Ḡ

]Qi*
J .

~2.11!

This representation of the Dirac brackets means that in te
of the conjugate coordinatesQi* ,Pi* ( i 51, . . . ,n2m) the
reduced phase space is parametrized so that constraints
ish identically and any functionF(p,q) given on the reduced
phase space becomes@3#

3Everywhere in the article the dot over the letter denotes the
rivative with respect to the time variable.
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F~p,q!uw50, x505F̄~P* ,Q* !.

Thus in the Dirac gauge-fixing method the problem of de
nition of the ‘‘true dynamical degrees’’ of freedom reduc
to the problem of a ‘‘lucky’’ choice of the gauge condition

C. Reduced phase space with the Faddeev gauge fixing
method

An alternative to the Dirac gauge-fixing procedure h
been proposed in the well-known paper by Faddeev@32#,
devoted to the method of path integral quantization of a c
strained system. In contrast to the Dirac method, the m
idea of the Faddeev method is to introduce an explicit
rametrization of the reduced phase space. As in the D
method, one introduces gauge fixing constraintsxa(p,q)
50, but now with the additional ‘‘Abelian’’ property

$xa~p,q!,xb~p,q!%50, ~2.12!

and the requirement~2.8! is fulfilled. Now, in accordance
with the Abelian character of gauge conditions~2.12!, there
exists a canonical transformation to new coordinates

qi°Qi5Qi~q,p!

pi°Pi5Pi~q,p! ~2.13!

such thatm of the newP’s coincide with the constraintsxa :

Pa5xa~q,p!. ~2.14!

The condition ~2.8! allows one to resolve the constrain
~2.1! for the coordinatesQa in terms of the (n2m) canoni-
cal pairs (Qi* ,Pi* ), which span the 2(n2m)-dimensional
surfaceS determined by the equations

Pa50,

Qa5Qa~Q* ,P* !. ~2.15!

After this construction has been carried out, the problem i
prove that the surfaceS coincides with the true reduce
phase spaceG* , independent of the choice of the gauge fi
ing conditions. In other words, it is necessary to find a cri
rion for gauge conditions to be admissible. A radical meth
to solve this problem is not to use any gauge conditions
all. The following subsection will give a brief description o
such an alternative gaugeless scheme to construct the
duced phase space without using gauge fixing functions.

D. The gaugeless method

If the theory contains only Abelian constraints one c
find a parametrization of reduced phase space as follo
According to a well-known theorem~see e.g.@34#!, it is al-
ways possible to find a canonical transformation to a new
of canonical coordinates

qi°Qi5Qi~q,p!,

pi°Pi5Pi~q,p!, ~2.16!

such thatm of the new momenta, (P̄1 , . . . ,P̄m), become
equal to the Abelian constraintswa :

e-
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P̄a5wa~q,p!. ~2.17!

In terms of the new coordinates (Q̄,P̄), and (Q* ,P* ) the
canonical equations read

Q̇* 5$Q* ,Hphys%, Q̇̄5u~ t !,

Ṗ* 5$P* ,Hphys%, Ṗ̄50, ~2.18!

with the physical Hamiltonian

Hphys~P* ,Q* ! :5HC~P,Q!u P̄a50 . ~2.19!

Hphys depends only on the (n2m) pairs of new gauge in-
variant canonical coordinates (Q* ,P* ) and the form of the
canonical system~2.18! expresses the explicit separation
the phase space into physical and unphysical sectors

2n5 S q1

p1

A
qn

pn

D °

2~n2m!H S Q*
P* D physical

variables,

2mH S Q̄

P̄
D unphysical

variables.

~2.20!

The arbitrary functionsu(t) enter into that part of the system
of equations, which contains only the ignorable coordina
Q̄a and momentaP̄a . A straightforward generalization o
this method to the non-Abelian case is not possible, since
identification of momenta with constraints is forbidden d
to the non-Abelian character of the constraints. Howev
there exists the possibility of a replacement of the constra
wa by an equivalent set of new constraintsFa ,

Fa5Dabwb , detiDi uw50Þ0, ~2.21!

describing the same surfaceGc but forming an Abelian alge-
bra. There are different proofs of this statement, based on
resolution of constraints@3–5#, exploiting gauge-fixing con-
ditions @35#, or using the direct method of constructing th
Abelianization matrix as the solution of a certain system
linear first order differential equations@36#.4 For non-
Abelian systems therefore, the construction of the Abeli
ization matrix and the implementation of the above me
tioned transformation~2.16! to the new set of Abelian
constraint functionsFa completes the reduction of the pha
space without using gauge fixing functions, solely in inter
terms of the theory.

Before applying the gaugeless method to the construc
of the reduced phase space of homogeneous Yang-M

4In all cases, the proofs use the large freedom in the canon
description of the constrained systems. Apart from the ordin
canonical transformations there exist generalized canonical tr
formations@38# i.e., those which preserve the form of all constrain
of the theory as well as the canonical form of the equations
motion. The Abelianization transformation~2.21! is of course non-
canonical, but belongs to this class of generalized canonical tr
formations.
s
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fields in (311)-dimensional space it seems worth setti
forth our approach to the same problem in (011)-
dimensional space.

III. SU„2… YANG-MILLS FIELDS IN 0 11 DIMENSIONS

In order to explain our main idea how to construct t
physical variables we shall start with the non-Abelian Chr
and Lee model@12,39#. The Lagrangian of this model is

L5
1

2
~Dtx! i~Dtx! i2

1

2
V~x2!, ~3.1!

where xi and yi are the components of three-dimension
vectors and the covariant derivativeDt is defined as

~Dtx! i5 ẋi1ge i jky jxk . ~3.2!

One can see that this model is nothing else than Yang-M
theory in 011 dimensional space-time and that is invaria
underSO(3) gauge transformations.

Performing the Legendre transformations

pi
y5

]L

] ẏi

, ~3.3!

pi5
]L

] ẋi

5 ẋi1ge i jky jxk ,

~3.4!

one obtains the canonical Hamiltonian

HC5
1

2
pipi2e i jkxj pkyi1V~x2!, ~3.5!

and identifies the three primary constraintspy
i 50 as well as

the three secondary ones

F i5e i jkxj pk50, ~3.6!

obeying theSO(3) algebra

$F i ,F j%5e i jkFk . ~3.7!

One easily verifies that the secondary constraints are fu
tionally dependent,xiF i50. We shall now carry out the
Abelianization procedure and choose

F1
~0!

ªx2p32x3p2 , F2
~0! : 5x3p12x1p3 , ~3.8!

as the two independent constraints with the algebra

$F1
~0! ,F2

~0!%52
x1

x3
F1

~0!2
x2

x3
F2

~0! . ~3.9!

The general iterative scheme of the construction of Abeli
ization matrix@37# consists of two steps for this simple cas
Let us at first excludeF1

(0) from the right hand side of Eq
~3.9!. This can be achieved by performing the transformat

F1
~1! : 5F1

~0! ,

F2
~1! : 5F2

~0!1CF1
~0! , ~3.10!

al
y
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with the functionC obeying the partial differential equatio

$F1
~0! ,C%52

x2

x3
C1

x1

x3
. ~3.11!

Writing down a particular solution of this equation

C~x!5
x1x2

x2
21x3

2 , ~3.12!

we get the algebra for new constraints

$F1
~1! ,F2

~1!%52
x2

x3
F2

~1! . ~3.13!

Now let us perform the second transformation

F1
~2! : 5F1

~1! ,

F2
~2! : 5BF2

~1! , ~3.14!

with the functionB satisfying the equation

$F1
~2! ,B%5

x2

x3
B. ~3.15!

A particular solution of this equation isB(x)5x3
21 . As re-

sult of the two above transformations, the Abelian co
straints equivalent to the initial non-Abelian ones have
form

F1
~2!5x2p32x3p2 ,

F2
~2!5

1

x3
F ~x3p12x1p3!

1
x1x2

x2
21x3

2 ~x2p32x3p2!G . ~3.16!

A. Canonical transformation and reduced Hamiltonian

We are now ready to perform a canonical transformat
to new variables so that two new momenta will coincide w
the Abelian constraints~3.16!,5

pu5
~xW•pW !x12xW2p1

Ax2
21x3

2
, pf5x2p32x3p2 . ~3.17!

5Here we introduce the compact notations for three-dimensio

vectors xW , pW and multiply the constraintF2
(2) by the factor

Ax2
21x3

2 to deal with constraints of one and the same dimens
This multiplication conserves the Abelian character of the c
straints, since$F1

(2) ,Ax2
21x3

2%50.
-
e

n

It is easy to verify that the contact transformation from t
Cartesian coordinates to the spherical ones

x15r cosu, r 5Ax1
21x2

21x3
2,

x25r sin f sin u, u5arccos
x1

Ax1
21x2

21x3
2

,

x35r cosf sin u, f5arctanS x2

x3
D ~3.18!

is just the required transformation. Indeed, using the co
sponding generating function

F@xW ; pr ,pu ,pf#5prAx1
21x2

21x3
2

1pu arccos
x1

Ax1
21x2

21x3
2

1pf arctanS x2

x3
D ~3.19!

we get

p15
]F

]x1
5pr cosu2pu

sin u

r
, ~3.20!

p25
]F

]x2
5pr sin u sin f1pu

sin f cosu

r
1pf

cosf

r sin u
,

~3.21!

p35
]F

]x3
5pr sin u cosf1pu

cosf cosu

r
2pf

sin f

r sin u
,

~3.22!

and convince ourselves that in terms of these new varia
the two independent constraints are indeedpu50 andpf50
in accordance with~3.17!. It is worth noting here that start
ing with the set of reducible constraints~3.6! and performing
the above transformation~3.19! one obtains the representa
tion

F152pf , F252pu cosf1pf sin f cot u,

F35pu sin f1pf cosf cot u ~3.23!

adapted to the Abelianization. The corresponding Abeli
ization matrix for the reducible set of constraints is

al

.
-



1
2d2 sin f2d3 cosf, d1 sin f, d1 cosf
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D5
d S ~d2 cosf2d3 sin f!cot u, 2d32d1 cosf cot u, d21d1 sin f cot u

cot u, sin f, cosf
D ,
ia
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with arbitrary dW and d5d1 cotu1d2 sinf1d3 cosf. This
example demonstrates two important features of the Abel
ization procedure:~i! it is not necessary to work with a
irreducible set of constraints, because the Abelianization p
cedure leads automatically to an irreducible set of c
straints,~ii ! in certain special coordinates the problem of t
solution of differential equations reduces to the solution o
simple algebraic problem. In terms of the new canoni
variables the canonical Hamiltonian~3.5! reads

HC5
1

2
pr

21
1

2r 2 S pu
21

pf
2

sin2 u D 2pfyf2puyu1V~r !

~3.24!

with the physical momentumpr5(xW•pW )/Ax1
21x2

21x3
2,

and

yf5y11y2 sin f1y3 cosf cot u,

yu5y2 cosf2y3 sin f.

As a result, all the unphysical variables are separated f
the physicalr andpr and their dynamics is governed by th
physical Hamiltonian obtained from the canonical one
putting pf andpu in ~3.24! equal to zero

Hphys5
1

2
pr

21V~r !. ~3.25!

IV. SPATIALLY HOMOGENEOUS SU„2…
DIRAC-YANG-MILLS FIELDS IN 3 11 DIMENSIONS

A. Canonical formulation of the model

The dynamics ofSU(2) Yang-Mills gauge fieldsAm
a (x)

minimally coupled to the isospinor fields6 Ca(x) in four-
dimensional Minkowski space-time is defined by t
Lagrange density

L5LY.2M .1Lmatter1LI . ~4.1!

The first term is the kinetic term of the non-Abelian fields

LY.2M .5
1

2
tr~FmnFmn!, ~4.2!

the second term corresponds to the matter part

6The matter isospinor variablesCa are treated classically as
collection of four Grassmann quantities. Detailed notations are
lected in the Appendix.
n-

o-
-

a
l

m

y

Lmatter5
i

2
@C̄agm]mCa2]mC̄agmCa#2mC̄aCa ,

~4.3!

and the last term describes the interaction between the g
and the matter fields

LI5g
1

2
C̄agm~ta!abCbAm

a , ~4.4!

with the Pauli matricesta , a51,2,3.
After the supposition of the spatial homogeneity of t

fields, ~4.1! reduces to a finite dimensional model describ
by the Lagrangian

L5
1

2
~DtA!ai~DtA!ai1

i

2
~C̄ag0Ċa2Ċ̄ag0Ca!2mC̄aCa

2graYa1g j iaAai2V~A!,

where the nine spatial componentsAi
a are written in the form

of a 333 matrix Aai , the time component of the gaug
potential is identified withYa : 5A0

a andDt denotes the co-
variant derivative

~DtA!ai5Ȧai2geabcYbAci .

The part of the Lagrangian density corresponding to the s
interaction of the gauge fields is gathered in the ‘‘potentia
V(A)

V~A!5
g2

4
@ tr2~AAT!2tr~AAT!2#, ~4.5!

while their interactions with the matter fields are via t
isospinor currents

ra@C#5
1

2
C̄ag0~ta!abCb ,

j ia@C#5
1

2
C̄ag i~ta!abCb . ~4.6!

After Legendre transformation one obtains the canon
Hamiltonian

HC5
1

2
EaiEai1mC̄aCa2g~eabcAciEbi2ra!Ya2g j iaAai

1V~A!, ~4.7!

defined on the phase space endowed with the canonical s
plectic structure~see Appendix! and spanned by the boson
and fermionic canonical variables (Ya ,PYa

), (Aai ,Eai) and

(Ca ,PCa
), (C̄a ,PC̄a

), where
l-
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PYa
5

]L

]Ẏa

50, ~4.8!

Eai5
]L

]Ȧai

5Ȧai2geabcYbAci ,

~4.9!

PCa
5L

]Q

]Ċa

52
i

2
C̄ag0 ,

~4.10!

PC̄a
5 ]W]Ċ̄a L52

i

2
g0Ca .

~4.11!

According to the definition of the canonical momenta~4.8!,
~4.10! and ~4.11! the phase space is restricted by the th
primary bosonic constraints

PY
a50, ~4.12!

and the sixteen Grassmann constraints

Ya
15PCa

1
i

2
C̄ag0 , Ya

25PC̄a
1

i

2
g0Ca . ~4.13!

Thus the evolution of the system is governed by the to
Hamiltonian

HT5HC1uY
a~ t !PY

a1Ya
1ua

1~ t !1ua
2~ t !Ya

2 . ~4.14!

The conservation of bosonic constraints~4.12! in time entails
the following further condition on canonical variables

ṖYa
50→Fa5eabcAciEbi2ra@C#50, ~4.15!

which is the non-Abelian Gauss law. In contrast, the ma
tenance of Grassmann constraintsYa

1 andYa
2 in time allows

to determine the Lagrange multipliersua
1(t) andua

2(t) in the
expression~4.14! for the total Hamiltonian. Taking into ac
count the Poisson brackets of constraints

$F i ,F j%5e i jkFk1e i jkrk@C#, ~4.16!

$Fa ,Ya
1%52C̄bg0~ta!ba , ~4.17!

$Fa ,Ya
2%5g0~ta!abCb , ~4.18!

$Ya
1 ,Yb

2%52 idabg0 ~4.19!

one can convince oneself that no new constraints emerge
hence that ternary constraints are absent in the the
Ḟuconstraint shell50.

To implement the reduction procedure without usi
gauge fixing conditions we have to put the constraints i
the canonical form discussed in the next paragraph.
e

l

-

nd
ry,

o

B. Putting the constraints into the canonical form

1. Separation of first and second class constraints

The set of the 22 constraintsCA : 5(PY ,F,Y) represent
a mixed system of first and second class constraints.
Poisson matrixMAB : 5$CA ,CB% is degenerate on constrain
shell, rank iMi u CA50516. Hence among the constrain
there are six first class ones.

In order to perform the reduction procedure let us st
with the separation of the first and second class constra
The primary constraintsPY ‘‘commute’’ with all the other
constraints and thus we should deal only with constra
CA8 : 5(F,Y). The separation of constraints is achieved

a transformation to an equivalent set of constraintsC̃A8 :

5(F̃,Ỹ),

C̃A8 5DAB8 CB8 , ~4.20!

so that the first class constraintsF̃ form the ideal of the
algebra

$F̃,Ỹ%50, $F̃,F̃%uF5050, ~4.21!

and the pairs of second class constraint satisfy the canon
algebra

$Ỹa
1 ,Ỹb

2%52dab . ~4.22!

In order to transform the algebra of constraints to the cano
cal form let us at first perform the equivalence transform
tion

Fa85Fa1Ya
1 i

2
~ta!abCb1

i

2
C̄b~ta!baYa

2 , ~4.23!

on the bosonic constraintsFa and the equivalence transfo
mation

Ỹa
1 : 52 iYa

1g0 , Ỹa
2 : 5Ya

2 , ~4.24!

on the Grassmann constraints. The Poisson brackets o
new constraints

$Fa8 ,Fb8%5eabcFc8 , ~4.25!

$Ỹa
1 ,Fa8%5

i

2
Ỹb

1~ta!ba , ~4.26!

$Ỹa
2 ,Fa8%52

i

2
~ta!abỸb

2 ,

~4.27!

$Ỹa
1 ,Ỹb

2%52 idab ~4.28!

show the separation of the first class constraints on the
face Y50 defined by the second class constraints.
achieve this separation on the whole phase space it is ne
sary to apply the additional transformation

F̃a : 5Fa82Ỹa
1~ta!abỸb

2 . ~4.29!
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One can verify that the first class constraints form the id
of the total set of constraints

$F̃a ,F̃b%5eabcF̃c , $Ỹ,F̃%50, ~4.30!

and the second class constraints obey the canonical alg
~4.28!. The explicit form of the resulting set of constraints

Ỹa
152 iPCa

g01
1

2
C50, Ỹa

25PC̄a
1

1

2
g0C50,

~4.31!

F̃a5eabcAbiEci1
1

8
C̄tag0C2

1

2
PCtag0PC̄

1
i

4
~PCtaC1C̄taPC̄!50. ~4.32!

In order to implement the reduction due to the second c
constraints~4.32! let us introduce the new canonical var
ables (QCa

* ,Q̄Ca
) and (PCa

* ,P̄Ca
) via

Ca5 ig0~QCa
* 2Q̄Ca

!, C̄a5PCa
* 2P̄Ca

, ~4.33!

PCa
5

i

2
~P̄Ca

2PCa
* !g0 , PC̄a

5
1

2
~Q̄Ca

1QCa
* !. ~4.34!

In terms of the new variables the constraints read

Ỹa
15P̄Ca

50, Ỹa
25Q̄Ca

50, ~4.35!

F̃a5eabcAbiEci2
i

2
PCa

* taQCa
* 50. ~4.36!

2. Canonical transformation to adapted coordinates

The example of the Christ and Lee model in Sec.
shows that the realization of constraints by Abelianization
immediate if one performs a canonical transformation to
new set of variables containing the gauge invariant ones
subset. Hence in order to simplify the Abelianization of co
straints let us single out the part of the gauge potentialsAai ,
which is invariant under gauge transformations. Because
der a homogeneous gauge transformation the gauge p
tials transforms homogeneously one can achieve the sep
tion of gauge degrees of freedom by the following simp
transformation

Aai~Q̄,Q* !5Oak~Q̄!Q* ki , ~4.37!

whereO is an orthogonal matrix,OPSO(3), andQ* is a
positive definite symmetric matrix. This transformation i
duces a point canonical transformation linear in the new
nonical momenta. The new canonical momenta (Pik* ,P̄i) can
be obtained using the generating function

F4~E;Q̄,Q* !5(
a,i

3

EaiAai~Q̄,Q* !5tr„O~Q̄!Q* ET
…

~4.38!

as
l

bra

ss

I
s
a

a
-

n-
en-
ra-

a-

P̄j5
]F4

]Q̄j

5 (
a,s,i

3

Eai

]Oas

]Q̄j

Q* si5trFET
]O

]Q̄j

Q* G ,

~4.39!

P* ik5
]F4

]Q* ik
5

1

2
~OTE1ETO! ik . ~4.40!

In order to express the Hamiltonian and the Gauss
constraints in terms of these new canonical pairs let us w
the field strengthEai in the form

Eai5Oak~Q̄!Lki~ P̄,P* ;Q̄,Q* ! ~4.41!

with a 333 matrix Lki to be determined. One can immed
ately see that the symmetric part of the matrixL is equal to
the new momentaP*

P* ik5
1

2
~Lik1Lki! ~4.42!

and a straightforward calculation shows that its antisymm
ric part is

1

2
~Lik2Lki!5e i lk~g21! ls@~V21!s jP̄j2emsn~P* Q* !mn#

~4.43!

with

V i j 5
1

2
e jmnF ]OT~Q̄!

]Q̄i

O~Q̄!G
mn

, ~4.44!

and

g ik : 5Q* ik2d ik tr~Q* !. ~4.45!

Thus the final expression for field strengthEai in terms of the
new canonical variables is

Eai5Oak~Q̄!†P* ki1ekil~g21! ls@~V21P̄!s

2esmn~P* Q* !mn#‡. ~4.46!

3. Abelianization of first class constraints

The formulation of the theory in terms of the new va
ables is adapted to the procedure of Abelianization. Us
the representations~4.37! and~4.46! one can easily convince
oneself that the variablesQ* and P* make no contribution
to the secondary constraints~4.36! and Q̄,P̄ enter well-
separated from the physical matter variables

F̃a : 5Oas~Q̄!Vs j
21P̄j2

i

2
PCa

* ~ta!abQCb
* 50.

~4.47!

In order to deal with the Abelianization it is useful to pe
form the following canonical transformation on the Gras
mann variables

PCa
* 5PCb

* Uba~Q̄!, QCa
* 5Uab

21~Q̄!QCb
* , ~4.48!
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with the unitary matrixU in the two dimensional represen
tation of SO(3) chosen such that

Oab5
1

2
tr~U1taUtb!. ~4.49!

As a result, the Gauss law constraints~4.47! take the form

F̃a85Vs j
21P̄j2

i

2
PCa

* ~ta!abQCb
* 50. ~4.50!

Hence it is clear that the matrixV21 is just the matrix of
Abelianization D in ~2.21!. Hence, after performing the
Dirac transformation with the matrixD5V(Q̄) on the con-
straintsF̃a8 the equivalent set of Abelian constraints is

P̄a2VasQs50, ~4.51!

with

Qa5
i

2
PCa

* ~ta!abQCb
* . ~4.52!

C. Reduction due to the Gauss law
and the second class constraints

In the previous section, in accordance with the gene
scheme of reduction formulated in Sec. II D, the new se
constraints in canonical form have been obtained and
adapted canonical pairs been chosen for the explicit im
mentation of the Gauss laws~4.15! and the second clas
constraints~4.28!. After having rewritten the model in this
form, the construction of the unconstrained Hamiltonian s
tem is straightforward. In all expressions we can simply
P̄5VQ and P̄Ca

5Q̄Ca
50. In particular, in terms of the

‘‘physical’’ electric field strengthEai

Eaiu P̄5VQ5:Oak~Q̄!Eki~Q* ,P* !, ~4.53!

the physical unconstrained Hamiltonian Hphys:
5HC(P,Q)uconstraint shellmay be written as

Hphys
D.2Y.2M .5

1

2
tr~EET!1

g2

4
@ tr2~Q* !22tr~Q* !4#

2g tr~ j * Q* !1 im~PCa
* g0QCa

* !.

where j * is the isospin current in terms of the new Gras
mann variables

j ia* 5
i

2
PCa

* g ig0~ta!abQCb
* . ~4.54!

With the aid of the identity detg eisk(g
21)sl5ealbgiagkb and

representation~4.46! for the field strengths, we find the ex
plicit form for the ‘‘physical’’ electric field strength in terms
of P* andQ*

Eki~Q* ,P* !5Pki* 1
1

det g
e i lk tr~gMgJl !, ~4.55!
al
f
e

e-

-
t

-

whereM denotes the spin angular momentum tensorMmn
5emsnJs , and total spin vectorJs5Qs1Ts is the sum of
the gauge field spin vectorTs5

1
2 emsn(Q* P* )mn and the

matter field Qs defined in ~4.52!. With ~4.55! the uncon-
strained Dirac-Yang-Mills Hamiltonian reads

Hphys
D.2Y.2M .5

1

2
tr~P* !22

1

det2 g
tr~gMg!21

g2

4
@ tr2~Q* !2

2tr~Q* !4#2g tr~ j * Q* !1 im~PCa
* g0QCa

* !.

~4.56!

In order to achieve a more transparent form for the
duced Dirac-Yang-Mills system~4.56! one can perform a
canonical transformation expressing the physical coordin
Q* andP* in terms of new variables adapted for the ana
sis of the rigid symmetry possessed by the reduced Ha
tonian system~4.56!. It is convenient to decompose the no
degenerate symmetric matrixQ* in the following way:

Q* 5RT~c,u,f!DR~c,u,f! ~4.57!

with the SO(3) matrixR parametrized by the three Eule
anglesx i : 5(c,u,f), ~see Appendix! and with the diagonal
matrixD5diag(x1,x2,x3). The corresponding canonical con
jugate coordinates (pc ,pu ,pf ,pi) can be found by using the
generating function

F@xi ,c,u,f;P* #5tr~Q* P* !5tr„RT~x!D~§!R~x!P* …
~4.58!

as

pi5
]F

]xi
5tr~P*RTā iR!,

px i
5

]F

]x i
52 trS ]RT

]x i
R@P* Q* 2Q* P* # D , ~4.59!

whereā i are the diagonal members of the orthogonal ba
for symmetric matricesaA5(ā i ,a i) i 51,2,3 given explic-
itly in the Appendix. The original physical momentaPik* can
then be expressed in terms of the new canonical variable

P* 5RTS (
s51

3

P̄sās1(
s51

3

PsasDR ~4.60!

with P̄s5ps and

Pi5
j i

xj2xk
~cyclic permutation iÞ j Þk! ~4.61!

and theSO(3) left-invariant Killing vectors

j15
sin c

sin u
pf1coscpu2sin c cot upc , ~4.62!

j252
cosc

sin u
pf1sin cpu1cosc cot upc ,

~4.63!
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j35pc . ~4.64!

Representing the physical electric field strengthEai in the
alternative form

Eik5P* ik1
1

det g
~gJsg! ik Js ~4.65!

with the SO(3) generatorsJs given in explicit form in the
Appendix, we finally get the following physical Hamiltonia
defined on the unconstrained phase space

Hphys
D.2Y.2M .5

1

2 (
s51

3

ps
21

1

4 (
s51

3

Ps
21

1

4 (
cyclic

S j i1Q i

xj1xk
D 2

1
g2

2 (
i , j

xi
2xj

22g(
s51

3

j ss* xs1 im~PCa
* g0QCa

* !.

~4.66!

Note that for the pure Yang-Mills system~4.66! reduces to

Hphys
Y.2M .5

1

2 (
s51

3

ps
21

1

2 (
cyclic

j i
2

xj
21xk

2

~xj
22xk

2!2 1
g2

2 (
i , j

xi
2xj

2 .

~4.67!

This completes our reduction of the spatially homogene
constraint Dirac-Yang-Mills system to the equivalent unco
strained system describing the dynamics of the physical
namical degrees of freedom. However, apart from this red
tion due to the underlying gauge symmetry, there is
possibility to realize another type of reduction connec
with the rigid symmetry admitted by the unconstrained s
tem ~4.56!. For simplicity, the discussion in the next sectio
will be restricted to the pure Yang-Mills system and we sh
show how to further reduce the obtained 12-dimensional s
tem ~4.67! to an 8-dimensional one in general and, for
special case to a 6-dimensional one using the correspon
first integrals.

D. Further reduction using first integrals

The reduced Yang-Mills theory~4.67! has a rigid symme-
try connected with the existence of the first integrals

I i5e i jkEa jAak . ~4.68!

For the subsequent reduction in the number of degree
freedom we shall use the integrals of motion~4.68!. One can
verify that in terms of the new variables they readI i5
2Rik

21jk . In contrast to the reduction due to first class co
straints the values of first integrals are arbitrary and dep
on the initial conditions. In this case reduction means to c
sider the subspaces of phase space which are the leve
fixed values for these first integrals

I i5ci , ~4.69!

and the subsequent construction of the quotient space
respect to the rigid symmetry group. Therefore, in contras
the reduction that we have done before, the first integral
general are a mixed system of first and second class
straints. By ‘‘in general’’ we mean that not all constants
s
-
y-
c-
e
d
-

ll
s-

ng

of

-
d
-
of

ith
o
in
n-

f

motionci are zero. In this case the rank of the Poisson ma
is rank i$I i ,I k%iu I i5ci

52, which means that there is one fir
class constraint and one pair of second class constrai7

The problem is now to separate the algebra of constra
and to find the equivalent set of constraintsC i50, so that
the first class constraintC1 forms the center of the algebr
$C1 ,C i%50, and the pair of second class constraints ob
the canonical algebra$C2 ,C3%51. After having passed to
new variables in the last section in order to isolate the ga
degrees of freedom from the physical ones, we shall n
perform another canonical transformation from the physi
variables to new physical variables so that one of the n
momenta coincides with the first class constraintC1 and
another pair of new canonical variables coincides with
pair of second class constraintsC2 and C3 . In terms of
these new canonical variables the reduced system is obta
by reducing the Hamiltonian~4.56! to the integral surface
~4.69!. As a result the new Hamiltonian will depend on
canonical pairs and one parameter which reflects the e
tence of the integrals of motion. To demonstrate this let
choose the integral constants asci5(0,0,c) without loss of
generality. One can then write down the needed new se
constraints, describing the surface~4.69!, in the form

C15I 1
21I 2

21I 3
22c250,

C25arctanS I 2

I 3
D50, ~4.70!

C35I 150.

We are now ready to perform the transformation to spe
canonical variables so that the pair of second class c
straints is equal to the one pair of the canonical variables
one equal to the new momentum8

P05C1 , P1 : 5C3 , X15C2 . ~4.71!

and complete the set of canonical coordinates by the follo
ing pair

X252arctanS j1

j2
D , P25pc . ~4.72!

The canonical conjugate coordinateX0 can be determined
with the help of the generating function

F@c,u,f,P i #5P1f1P2c1Eu da

sin a

3AP0
2 sin2 a2P1

22P2
212P1P2 cosa.

~4.73!

7In the exceptional case whenci50 we can consider the thre
integrals as first class constraints, and this circumstance leads
further reduction of our system.

8These types of variables are well-known from rigid body theo
as Depri@41# or Andoyer @42,29# variables used in celestial me
chanics.
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Due to the symmetry theX0 is a cyclic coordinate and th
reduced Hamiltonian depends only on the canonical pair

X252arctanS j2

j1
D U

I i5ci

5c, P25pc.

Hence, using the first integrals~4.68!, the pure Yang-Mills
Hamiltonian~4.67! can be further reduced to

Hphys
Y.2M . * 5

1

2 (
s51

3

ps
21

1

2
pc

2F x1
21x2

2

~x1
22x2

2!2 2sin2 c
x2

21x3
2

~x2
22x3

2!2

2cos2 c
x3

21x1
2

~x3
22x1

2!2G1
g2

2 (
i , j

xi
2xj

21VC ,

~4.74!

where in accordance with the general scheme of reduc
there arises the additional so-called reduced potential te

VC5
c2

2 Fsin2 c
x2

21x3
2

~x2
22x3

2!2 1cos2 c
x3

21x1
2

~x3
22x1

2!2G .
~4.75!

It is interesting to point out the difference between the
duced Yang-Mills Hamiltonian~4.67! and the corresponding
one in the recent work by Dahmen and Raabe. In cont
with their representation for the gauge potentials, in wh
the gauge degrees of freedom are mixed with the rigid ro
tional cyclic coordinates, we have started with the expl
separation of all physical degrees, including the rotatio
ones. And only after the reduction in the number of degr
of freedom due to the rigid symmetry the obtained Ham
tonian~4.74! coincides with the one obtained in the work b
Dahmen and Raabe@24# for pure Yang-Mills mechanics.

V. CONCLUDING REMARKS

As mentioned in the introduction our investigation h
pursued two goals. One is of pure theoretical interest.
cause of the homogeneity conditionSU(2) Dirac-Yang-
Mills field theory has greatly simplified to a finite dimen
sional mechanical system, for which one can describe
equivalent unconstrained system in an explicit way. Ho
ever, apart from this reason, there is also an interesting
plication of this model. It has been known for a long tim
that, if one considers the Euclidean QCD effective action
a function of the non-Abelian electric and magnetic fieldsE
and B, one finds that there are field configurations, cor
sponding to nonvanishingE andB fields, for which the value
of the effective action is lower than that forE50 andB50
@40#. This observation indicates a drastic difference betw
the true ground state of QCD and the corresponding per
bative vacuum and constitutes the basis of all models
condensates. One of the main reasons to study the dyna
of spatially constant Yang-Mills fields, is the faith that th
corresponding zero momentum quantum operators are
important for the description of the QCD ground state due
the presence of the IR singularity. There are many attem
to exploit the homogeneity approximation for gluon fiel
with the aim to shed light on the vacuum structure of QC
n

-

st
h
-

t
l
s

-

-

e
-
p-

s

-

n
r-
f
ics

ry
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ts

.

We also adhere to this position and our task in this note w
to prepare the classical description of Yang-Mills mechan
in a form that we are going to exploit for the description
squeezed vacuum@43#.
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APPENDIX A: NOTATIONS AND SOME FORMULAS

1. Configuration variables and Hamiltonian structures

SU(2) Dirac-Yang-Mills theory considered in this pap
includes as dynamical variables the set of spin-1 gauge fi
Am5Am

a ta/2, a51,2,3 in the adjoint representation o
SU(2), with the corresponding field strengthFmn

5Fmn
a ta/2,

Fmn
a 5]mAn

a2]nAm
a 1geabcAm

b An
c , ~A1!

and the matter spinor~Dirac conjugate spinor! field variables
C(C̄) in the fundamental representation ofSU(2) with val-
uesCa5(Ca

1 , . . . ,Ca
4) obeying the Grassmann algebra

Ca
i Cb

j 1Cb
j Ca

i 50. ~A2!

Generalized Poisson brackets for functions on a ph
space spanned by both even and odd coordinatesZA :
5@(Y,PY),(Ai ,Ei);(Ca ,Pca

)# are defined as

$F~Z!,G~Z!% : 5(
A,B

F
]Q

]ZA
vAB

]W

]ZB
G. ~A3!

The nonvanishing components of the canonical symple
form vAB5$ZA ,ZB% read explicitly

$Ya ,PY
b%5da

b , $Aai ,E
b j%5d i

jda
b ~A4!

for bosonic degrees of freedom and

$Ca ,PCb
%5$PCb

,Ca%52dab ,

$C̄a ,PC̄b
%5$PC̄b

,C̄a%52dab ~A5!

for fermionic degrees of freedom.

2. The Euler parametrization for SO„3… group

The conventional representation ofSO(3) group elements
in terms of Euler angles,

R~c,u,f!5ecJ3euJ1efJ3, ~A6!
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has been used in main text with the following matrix realiz
tion for the generatorsJi obeying the SO(3) algebra
@Ji ,Jj #5e i jkJk :

J15S 0 0 0

0 0 21

0 1 0
D , J25S 0 0 21

0 0 0

1 0 0
D ,

J35S 0 21 0

1 0 0

0 0 0
D .

3. Basis for symmetric matrices

We use the orthogonal basisaA5(ā i ,a i) for symmetric
matrices. They read explicitly

ā15S 1 0 0

0 0 0

0 0 0
D , ā25S 0 0 0

0 1 0

0 0 0
D ,
s

o

-

ii,

.

-

ā35S 0 0 0

0 0 0

0 0 1
D ,

a15S 0 0 0

0 0 1

0 1 0
D , a25S 0 0 1

0 0 0

1 0 0
D ,

a35S 0 1 0

1 0 0

0 0 0
D .

They obey the following orthonormality relations:

tr~ ā i ā j !5d i j , tr~a ia j !52d i j , tr~ ā ia j !50. ~A7!
cl.
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