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The SU(2) gauge invariant Dirac-Yang-Mills mechanics of a spatially homogeneous isospinor and gauge
fields is considered in the framework of the generalized Hamiltonian approach. The unconstrained Hamiltonian
system equivalent to the model is obtained using the gaugeless method of Hamiltonian reduction. The latter
includes the Abelianization of the first class constraints, putting the second class constraints into the canonical
form and performing a canonical transformation to a set of adapted coordinates such that a subset of the new
canonical pairs coincides with the second class constraints and part of the new momenta is equal to the Abelian
constraints. In the adapted basis the pure gauge degrees of freedom automatically drop out from the consid-
eration after projection of the model onto the constraint shell. Apart from the elimination of these ignorable
degrees of freedom a further Hamiltonian reduction is achieved due to the three dimensional group of rigid
symmetry possessed by the syst¢80556-282198)00810-§

PACS numbeis): 11.15.Tk, 11.10.Ef

[. INTRODUCTION of large scale phenomena if the gauge invariant expressions
are evaluated in a derivative expansion. Since the work by
The correct canonical formulation of the quantum theoryMatinyanet al.[20], the corresponding zeroth order or long-
of non-Abelian fields assumes a detailed knowledge of thevavelength approximation, the Yang-Mills mechanics of
corresponding classical generalized Hamiltonian dynamicspatially homogeneous gauge fields, has been studied exten-
[1-5]. Since the introduction of non-Abelian gauge fields bysively from different points of viewsee e.g[21-24 and
Yang and Mills[6] over forty years ago essential progress inreferences therejnin the present note we shall continue the
this direction has been made. Rigorous statements about tistéudy of the model arising in this approximation, pursuing
geometrical structure of the configuration and the phaséhe aim to prepare the necessary background for studying the
space have been established. It turned out that due to th@oblem of construction of the reduced phase space of QCD.
underlying non-Abelian gauge symmetry the “true phaseBecause of the spatial homogeneity condition conventional
space” of Yang-Mills theory, namely the quotient space ofDirac-Yang-Mills theory reduces to a theory describing a
phase space by the action of gauge transformations, pofinite dimensional system which is incomparably simpler
sesses a rich topological structdid. In the framework of than the exact field system. At the same time, however, it
traditional perturbation theory these geometrical peculiaritiepossesses all the main peculiarities of the full theory and can
are not taken into account and as a result the description dfe used as a laboratory for testing the viability of ideas and
large scale effects, including confinement, is beyond itdechniques that could be applied in the general case.
scope. The most important lesson one has learned is that, in Below we shall isolate the true dynamical degrees of free-
order to reach a complete description, it is necessary to firedlom of SU(2) Dirac-Yang-Mills theory in the long-
reformulate Yang-Mills theory in terms of gauge-invariant wavelength approximation using the gaugeless apptaach
variables and only after this step apply any approximatiorthe reduction in the number of degrees of freedom instead of
method. With this aim several different representations fothe conventional gauge fixing methédhe cornerstones for
the physical degrees of freedom of non-Abelian thedi®es  this method applied to a system with first class constraints
19] have been proposed. All these approaches lead to amre the procedure of Abelianization of constraifresplace-
unconstrained Hamiltonian system, which exhibits non-
perturbative features and are in some sense alternatives to the
convenfuonal pert_urbative approach. Whereas pertL_"batioanresumably, Shanmugadhad@s] was the first to employ the
theory is appropriate _for the computa_tlon of short d'Stanc%lassical Lee-Cartan method of reducti@ee e.g[26—30) in the
effects, the unconstrained formulation is adapted to the study,mework of generalized Hamiltonian dynamics.
2We point out here that the idea of constructing the physical vari-
ables entirely in internal terms without using any additional gauge
*Permanent address: Tbilisi Mathematical Institute, 380093conditions is connected with the desire not to distort the global
Thilisi, Georgia. Electronic address: khved@thsunl.jinr.dubna.su properties of the theory and to have all dynamical degrees of free-
Electronic address: mladim@thsunl.jinr.dubna.su dom under control.
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ment of the original non-Abelian constraints by an equiva- ©.(p,q)=0, (2.1
lent set of Abelian ongsand the canonical transformation to

new variables where a subset of the new momenta is equal tehich we assume to be first class,

the new Abelian constraints. The system of interacting gauge

and spinor fields considered in this article represent a Hamil- {0a(P,A),@p(P. A} =fopy(P. D@, (P.Q), (2.2
tonian system with mixed first and second class constraints. )

In this case the reduction procedure additionally includes th@nd complete in the sense that

separation of first and second class constraints and putting

them into the canonical form. {€a(P,a),Hc(P, @)} = Yaye,(P.0), 23

The paper is organized as follows. In Sec. Il we briefly hereH

recall how to obtain the unconstrained Hamiltonian syste : Lo :
y presence of these constraints the Hamiltonian system admits

from the initially gauge symmetric one in the framework of . . ) .
Dirac constraint theory in order to set the formalism Thegenerahzed dynamics described by the extended Poincare
' gartan form

Dirac and the Faddeev gauge fixing methods as well as th
gaugeless method are described. In Sec. Il the gaugeless n

method ie exemplified by considering the Yang-Mills system 0= 2 pidg —He(p,q)dt (2.4)

in 0+1 dimensions. In Sec. IV we perform the reduction of i=1

the Dirac-Yang-Mills system by explicitly separating the first

and second class constraints, putting the second class cowith the extended Hamiltoniad ¢(p,q) that differs from the
straints into the canonical form and Abelianizing the firstcanonicalHc(p,q) by a linear combination of constraints
class constraints. We construct the corresponding reducetlith arbitrary multipliersu,,(t):

Hamiltonian system by first eliminating the unphysical gauge

degrees of freedom and then using the classical scheme of He(p,d)=Hc(p,d) +Ua(t) 0o(p,q). (2.9
Hamiltonian reduction due to the existence of three first in-

tegrals of motion. Section V finally gives our conclusions From the condition of completene€2.3) with Hc replaced
and remarks. by He it follows that for first class constraints the functions

u,(t) cannot be fixed in internal terms of the theory. This
implies that the system possesses a local symmetry and that
the coordinates split up into two sets, one set whose dynam-
The procedure of reduction of phase space of a singulacs is governed in an arbitrary way and another set with an
system is a generalization of the method of reduction of ainiquely determined behavior. Recalling the Dirac definition
system of differential equations possessing a Lie group syni{-31] of a physical variableas a dynamical variablE with
metry. The well-known results for this type of reduction in the property
the number of the degrees of freedom are embodied in the
famous Liouville theorem on first integrals in involution. In- {F(P,a), ¢a(P, @)} =du, (P, Q) ¢,(P,Q), (2.6
terest in these has revived in connection with the study of
Hamiltonian systems with a locdfjaugé symmetry. Since ©ne can conclude that the first set of coordinates does not
the works of Bergmann and Dirac at the beginning of theaffect the physical quantities which are defined on some sub-
fifties it has become clear that the role of integrals of motionspace of the constraint surfatg. Indeed, if one considers
in a Hamiltonian system with gauge symmetry is played by(2.6) as a set ofn first order linear differential equations for
the first class constraints. Although the reduction in the numF, then due to the integrability conditia2.2) this function
ber of degrees of freedom due to first class constraints hagan be completely determined by its values in tha-2)
many features in common with the classical case, there argubmanifold of its initial condition§32,2]. This subspace of
very important differences. In order to explain these pecuconstraint shell represents theduced phase spad&* . This
liarities of the reduction procedure and to make the papeééfinition of reduced phase space is implicit. The main prob-
self-contained we first have to summarize some definitionéem is to find the set of 2(—m) “physical coordinates”
and to put facts from the Dirac theory of generalized Hamil-Qj ,P;* that span this reduced phase space and pick out the
tonian dynamics into the appropriate context. In view of theother additionam pairs which have no physical significance
main purpose of our paper, namely to study the finite dimenand represent the pure gauge degrees of freedom. Several
sional system of homogenous Yang-Mills fields, we shallapproaches to its solution are known. Below we shall briefly
discuss the above ideas for a mechanical system, i.e. a sydiscuss the corresponding methods of practical construction
tem with a finite number of degrees of freedom. of the physical and the gauge degrees of freedom with and
without gauge fixing.

c(p,q) is the canonical Hamiltonian. Because of the

II. REDUCTION OF CONSTRAINED SYSTEMS

A. The definition of reduced phase space

Let us consider a system with theZlimensional Euclid- B. Reduced phase space with the Dirac gauge fixing method

ean phase spade spanned by the canonical coordinatgs General principles for imposing gauge fixing constraints
and their conjugate momenta and endowed with the ca- onto the canonical variables in the Hamiltonian approach
nonical simplectic structuréq; ,p;} = &;; . Suppose that the were proposed by Dirac in connection with the canonical
dynamics is constrained to a certainn(2m)-dimensional formulation of gravity[33]. According to the Dirac gauge
submanifoldI’; determined bym functionally independent fixing prescription, one starts with the introduction of as
constraints many new ‘“gauge” constraints
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Xa(P,q)=0 (2.7) F(p,a)]p=0, y=0=F(P*,Q*).

as there are first class constraif@sl), with the requirement Thus in the Dirac gauge-fixing method the problem of defi-
nition of the “true dynamical degrees” of freedom reduces
defl{x.(p.q),¢4(P,q)}||#0. (2.8)  to the problem of a “lucky” choice of the gauge condition.

This allows one to find the unknown Lagrange multipliers
u,(t) from the requirement of conservation of the gauge
conditions(2.7) in time 2

C. Reduced phase space with the Faddeev gauge fixing
method

An alternative to the Dirac gauge-fixing procedure has

: been proposed in the well-known paper by Faddgz3,
Xa={Xa Hch+ 2 {Xa @gHu=0, (2.9  devoted to the method of path integral quantization of a con-
b strained system. In contrast to the Dirac method, the main
jdea of the Faddeev method is to introduce an explicit pa-

and thus to determine the dynamics of system in a uniquéj

manner. A striking result of Dirac consists in the observation] 2Metrization of the reduced phase space. As in the Dirac

that such kind of fixation of Lagrange multipliets(t) is method, one introduces gauge fixing constraipigp,d)

equivalent to the following way of proceeding. One can drop 0, but now with the additional “Abelian” property
both the constraint$2.1) and the gauge fixing conditions

o 1) 1 ’ :Oy 2.1

(2.7) and at the same time achieve the reduction to the un- xa(poa)xs(PoQ)} (212

constrained theory by using the Dirac brackets and the requirement2.9) is fulfilled. Now, in accordance

. with the Abelian character of gauge conditiai@s12), there

{F.G}p={F,G}—{F.,&C.s{és .G}, (2.10  exists a canonical transformation to new coordinates

instead of the Poisson brackets. Hérdenotes the set of all ai—>Qi=Qi(a,p)

constraints(2.1) and (2.7) and C~! is the inverse of the _

Poisson matrixC,z={£,,éz}. In this method all coordi- Pi—>Pi=Pi(q.p) 213

nates of the phase space are treated on an equal footing agt:p tham of the newP’s coincide with the constraintg, :
all information on both initial and gauge constraints is ab-

sorbed into the Dirac brackets, which describe an effective P.=x.(4,p). (2.19
reduction in the number of degrees of freedom froro n N }
-m: The condition(2.8) allows one to resolve the constraints

(2.1) for the coordinate®),, in terms of the i—m) canoni-

n n cal pairs Qf ,P{), which span the 2{—m)-dimensional
21 {4;,pi }p.8. =N, 21 {di,pi,}pg.=n—m. surfaceX, determined by the equations
P,=0,

The inclusion of gauge constraints in addition to the initial

constraints allows one to take the constraint nature of the Q.=Q,(Q*,P*). (2.15
canonical variables into account by changing the initial ca- ] ) . )
Dirac brackets. The new canonical structure, being deperfrove that th*e surfac coincides with the true reduced
dent on the choice of gauge fixing-conditions, is very com-Phase spack™, independent of the choice of the gauge fix-
plicated in general and it is not clear how to deal with it, in ing conditions. In other words, it is necessary to find a crite-
particular, when we are quantizing the theory. However/ion for gauge conditions to be admissible. A radical method
there is a special case when the Dirac bracket coincides wit# solve this problem is not to use any gauge conditions at

the canonical one and looks like the Poisson bracket for adll- The following subsection will give a brief description of
unconstrained system defined B#: such an alternative gaugeless scheme to construct the re-
duced phase space without using gauge fixing functions.
- _”im oF dG OF iG
1F.Clole=o.x-0™ & | 5q7 3P ~ aPF 7q7 ) ) |
(2.1 If the theory contains only Abelian constraints one can
find a parametrization of reduced phase space as follows.
This representation of the Dirac brackets means that in term&ccording to a well-known theorertsee e.g[34]), it is al-
of the conjugate coordinate®* ,P* (i=1,...n—m) the ways possible to find a canonical transformation to a new set
reduced phase space is parametrized so that constraints vaf-canonical coordinates
ish identically and any functiok (p,q) given on the reduced

D. The gaugeless method

phase space becomks di—>Qi=Qi(a,p),
pi—>Pi=Pi(d,p), (2.16
SEverywhere in the article the dot over the letter denotes the desuch thatm of the new momenta,ﬁl, c ,Em), become

rivative with respect to the time variable. equal to the Abelian constraints, :
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(2.17 fields in (3+1)-dimensional space it seems worth setting
forth our approach to the same problem in +H0)-
dimensional space.

P.=¢.(9,p).

In terms of the new coordinate®(P), and Q*,P*) the

canonical equations read
lll. SU(2) YANG-MILLS FIELDS IN 0 +1 DIMENSIONS

Q*={Q* Hpnyd: Q=u(b), In order to explain our main idea how to construct the
physical variables we shall start with the non-Abelian Christ
p* ={P* ,Hpnyd. P=0, (2.19  and Lee model12,39. The Lagrangian of this model is
. . o 1 1
with the physical Hamiltonian L= 5 (Dx);(DX); — > V(x?), (3.2
Honyd P¥.Q*) :=Hc(P.Q)[p. 0.  (2.19

wherex; andy; are the components of three-dimensional

H pnys depends only on then-m) pairs of new gauge in- vectors and the covariant derivatidg is defined as

variant canonical coordinateQt,P*) and the form of the

canonical systen(2.18 expresses the explicit separation of (DX)i =Xi - geijky X (3.2
the phase space into physical and unphysical sectors One can see that this model is nothing else than Yang-Mills
_ theory in 0+ 1 dimensional space-time and that is invariant
A1 2(n— Q*| physical underSQ(3) gauge transformations.
P1 (n—=m) P* ] variables, Performing the Legendre transformations
2n : — — .
9 Q| unphysical P
Gn M\ 5] variables. pl=—, (3.3
Pn &y,
(2.20
) i i aL .

The arbitrary functionsi(t) enter into that part of the system Pi= — =Xt O€jkYXk
of equations, which contains only the ignorable coordinates IXi (3.4

Q, and momentaP,. A straightforward generalization of
this method to the non-Abelian case is not possible, since thgne obtains the canonical Hamiltonian
identification of momenta with constraints is forbidden due
to the non-Abelian character of the constraints. However, 1 2
there exists the possibility of a replacement of the constraints He=5 PiPi— €ijiXjPeyi+ V(X%), 3.9
¢, by an equivalent set of new constraibs, , _

and identifies the three primary constraiptsO as well as

®,=D,p¢p, defD| |,-0#0, (2.21)  the three secondary ones

describing the same surfafe but forming an Abelian alge- D;= € X Pk=0, (3.9

bra. There are different proofs of this statement, based on the

resolution of constraintg3—5], exploiting gauge-fixing con- °beying theSQ(3) algebra

ditions [35], or using the direct method of constructing the Bl .

Abelianization matrix as the solution of a certain system of (@i, Py} = €ijuc P .9
linear first order differential equation§36]. For non-  one easily verifies that the secondary constraints are func-
Abelian systems therefore, the construction of the Abeliantionally dependentx;®;=0. We shall now carry out the
ization matrix and the implementation of the above men-ppelianization procedure and choose

tioned transformation(2.16) to the new set of Abelian

constraint functions , completes the reduction of the phase D =x,p3—x3p2, DY =x3p;—x.p3, (3.8
space without using gauge fixing functions, solely in internal
terms of the theory. as the two independent constraints with the algebra
Before applying the gaugeless method to the construction
of the reduced phase space of homogeneous Yang-Mills X1 X2
u p p g u g-Mi {q)(lo) '(I)(ZO)}: _ x_3 (I)(lo)_ X_3 cI)(ZO)_ (3.9

The general iterative scheme of the construction of Abelian-

4 . .
In all cases, the proofs use the large freedom in the canonical oy matrix[37] consists of two steps for this simple case.
description of the constrained systems. Apart from the ordlnaryLet us at first excludad(© from the right hand side of Eq
canonical transformations there exist generalized canonical tran 1 )

formations[38] i.e., those which preserve the form of all constraints?s'g)' This can be achieved by performing the transformation

of the theory as well as the canonical form of the equations of dD: =

motion. The Abelianization transformati@@.21) is of course non- 1 1

canonical, but belongs to this class of generalized canonical trans- (1) . _ 4(0) (0)

formations. O, =0y, +Chy, (3.10
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with the functionC obeying the partial differential equation It is easy to verify that the contact transformation from the
Cartesian coordinates to the spherical ones

{cp<1°>,c:}:—@c+ = (3.1D
s Xa X,=I COS#, r= VX1 2+ X2+ X2,
Writing down a particular solution of this equation X,=F Sin sin 6,  §=arccos i x12 y
VX15+ X"+ X3
X1X2
C(x)= s (3.12 X3=T COS ¢ sin 6, ¢:arCtar6¥ (3.19
3

we get the algebra for new constraints

is just the required transformation. Indeed, using the corre-

X sponding generating function
(@ @)= 2 af, (313 PO 9 J
Now let us perform the second transformation FIX; py Po:Ppl= Pr VX1 + X% + X3
2) (1) + ad
C = arccos————
=y ks
X
OP: =BG, (3.14 +py arctarsx—z (3.19
with the functionB satisfying the equation
we get
2) X2
{®}”,B}=—B. (3.15
X3
. . . . _ F i
A particular solution of this equation B(x) =x5 1 Asre- p= (9_: p, COS O— pgﬂ, (3.20
sult of the two above transformations, the Abelian con- 281 r
straints equivalent to the initial non-Abelian ones have the
form
_JF i 6 Sin &4 sin¢>cos¢9+ CoS ¢
P2 = _ P2= 55, ~Prsinesin ¢+ Po r Py sin g’
1 = X2P3—X3P2, (3.21)
() — _ .
3= Xa (X3P1~X1P3) aF _ COS ¢ COS 6 sin ¢
p3=—=p, Sin 6 cos¢p+py P
X3 r rsiné
X1X2
+ 77 (XaP3—Xap2) |- (3.16 (3.22

X5+ X3

and convince ourselves that in terms of these new variables
the two independent constraints are indege-0 andp,=0
We are now ready to perform a canonical transformatiorin accordance witl{3.17). It is worth noting here that start-
to new variables so that two new momenta will coincide withing with the set of reducible constrair({3.6) and performing
the Abelian constraint3.16),° the above transformatio(8.19 one obtains the representa-
tion

A. Canonical transformation and reduced Hamiltonian

:(i' 5)X1_>22p1

Po=———= + Pg=XP3—X3p2. (3.17
X2"H X Dy=—py, Py=—pyCOSP+p, sin ¢ cot o,

SHere we introduce the compact notations for three-dimensional d;3=p, sin ¢+ P4 COS ¢ cot § (3.23
vectors X, p and multiply the constraintb® by the factor
VX2 +x32 to deal with constraints of one and the same dimension.
This multiplication conserves the Abelian character of the con-adapted to the Abelianization. The corresponding Abelian-
straints, sincd®$?, \x,>+x5°} =0. ization matrix for the reducible set of constraints is
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L —d, sin ¢—d3 cos ¢, d; sin ¢, d, cos¢
D= g (d, cos¢p—ds sin¢p)cot §, —ds;—d; cos¢ cotf, d,+d;sineg coté |,
cot 6, sin ¢, CcoSs ¢

with arbitrary d and d=d; cot #+d, sin ¢+ds cos¢. This i _ _

example demonstrates two important features of the Abelian- ﬁmatterzz[q'ah’wq’a_ Wy, Vo] -mW W,

ization procedurefi) it is not necessary to work with an 4.3
irreducible set of constraints, because the Abelianization pro-

cedure leads automatically to an irreducible set of conand the last term describes the interaction between the gauge
straints,(ii) in certain special coordinates the problem of theand the matter fields

solution of differential equations reduces to the solution of a

sim_ple algebraic prpblem. In terms of the new canonical L£i=9 EEW“(T"")M‘I’BAE‘, (4.4)
variables the canonical Hamiltonid8.5) reads

1 1 D(Z,s with the Pauli matrices,, a=1,2,3.
He==p2+ (p )_p Y= Pyt V() After the supposition of the spatial homogeneity of the
¢ 20" 2r? ot 0 wre D70 fields, (4.1) reduces to a finite dimensional model described
(329 by the Lagrangian

with the physical momentunp, = (X-p)/ X2+ Xp2+X32, 1 ([ — —
and phy Pr ( p) ! 2 8 L= E(DtA)ai(DtA)ai+ E(\Pa'yoqla_q,a’yoqra)_mqfa\pa
Ys=Y1+Y2 Sin p+y3 cos ¢ cot 6, —9paYatOiiaAai— V(A),

. where the nine spatial compone#ts are written in the form
Yo=Y2 COSp—Y3 Sin ¢. of a 3X3 matrix A,;, the time component of the gauge

potential is identified withY,: =AJ andD, denotes the co-
As a result, all the unphysical variables are separated frof)griant derivative

the physicakr andp, and their dynamics is governed by the
physical Hamiltonian obtained from the canonical one by (D{A)2i=Ani— J€ancY pAci -
putting p, andp, in (3.24 equal to zero
The part of the Lagrangian density corresponding to the self-
1 interaction of the gauge fields is gathered in the “potential”
Hohys=5 P+ V(). (325  V(A)

2

_9 5 T _ T2
IV. SPATIALLY HOMOGENEQOUS SU(2) V(A) 4 [tr (AAT) —tr(AAT) ]’ (4.5

DIRAC-YANG-MILLS FIELDS IN 3 +1 DIMENSIONS _ o , , , ,
while their interactions with the matter fields are via the

A. Canonical formulation of the model isospinor currents
The dynamics ofSU(2) Yang-Mills gauge fleldsﬁ\a(x) 1
minimally coupled to the isospinor fieldsP ,(x) in four- p¥]== EaVO(Ta)aﬂ\P,Ba
dimensional Minkowski space-time is defined by the 2

Lagrange density

: 1_—

L=Ly .+ Lonattert L - (4.1) Jial V1= 5 Vavi(7a)ap¥ - (4.9

The first term is the kinetic term of the non-Abelian fields ~ After Legendre transformation one obtains the canonical
Hamiltonian
L ! tr(F ,,F*") (4.2) 1
—m.=5 tr(F, F*"), . s .
VoM M HCZEEaiEai_"m‘Pa\I,a_g(fabcAciEbi_pa)Ya_gJiaAai

the second term corresponds to the matter part +V(A), 4.7

defined on the phase space endowed with the canonical sym-
5The matter isospinor variable®, are treated classically as a plectic structuresee Appendixand spanned by the bosonic

collection of four Grassmann quantltles Detailed notations are coland fermionic canonical variable¥{,Py ) (Aai,Eai) and
lected in the Appendix. (¥Y,,Py ) (\Ifa,Pq, ), where
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L B. Putting the constraints into the canonical form
PYa: gzo’ (4.8 1. Separation of first and second class constraints
a
The set of the 22 constrain®,: =(Py,®,Y) represent
a mixed system of first and second class constraints. The
L . ) ) ) .
Eai= — =Aai—9€ancYbAci» Poisson matriM 45: ={C 4,Cp} is degenerate on constraint
A shell, rank||M]| | ¢ ,-o=16. Hence among the constraints
(4.9 there are six first class ones.
In order to perform the reduction procedure let us start
9 i — with the separation of the first and second class constraints.
Py =L——=—-"Y,y0, The primary constraint®, “commute” with all the other
v, 2 constraints and thus we should deal only with constraints
(410  C/;: =(®,Y). The separation of constraints is achieved by
. a transformation to an equivalent set of constraifis
o i (T
Py, = 60V, L=~ ¥, =(®Y),

(4.11) C,=DxCp, (4.20

According to the definition of the canonical momeia8), 5o that the first class constrainds form the ideal of the
(4.10 and (4.1 the phase space is restricted by the threeyigepra

primary bosonic constraints

DY =0, {ODe_0=0, (4.20)
P, @12 @Y)=0. {®H4-o
and the pairs of second class constraint satisfy the canonical
and the sixteen Grassmann constraints algebra
i — i Y Y21=—
Yi=Py t5Vay0, Yi=Py +5%0¥,. (413 (Ve Yo} = = 0. 422

In order to transform the algebra of constraints to the canoni-
Thus the evolution of the system is governed by the totaFa| form let us at first perform the equivalence transforma-

Hamiltonian tion
_ a a 1,1 2 2 i i —
Hr=Hc+uy(t)Py+Y u (t)+us(t)Ys. (4.14 q).;:q)a—i_Yiz(Ta)a/}‘l,ﬁ—i_E\PB(Ta)BaYiv (4.23
The conservation of bosonic constraifdsl?) in time entails ] ) ]
the following further condition on canonical variables on the bosonic constrainte, and the equivalence transfor-
mation

Py,=0—®a=€apAciEri—pa[¥]=0, (4.1 Yoo sivly, Viov2, 4.2

which is the non-Abelian Gauss law. In contrast, the maingn the Grassmann constraints. The Poisson brackets of the
tenance of Grassmann constrailits andY?2 in time allows  pew constraints

to determine the Lagrange multiplieng(t) andu?(t) in the
expression4.14) for the total Hamiltonian. Taking into ac- {®L, D[} =€apPe, (4.29
count the Poisson brackets of constraints

{q)i 1q)j}=6ijkq)k+ Eijkpk[qf]l (416) ’Yi’q)all}ZEYé(Ta)ﬁai (426)
D, Yi=—w ) ga s 4.1 - i -

{ } ﬁYO(T)ﬁ ( D {Yi,q)é}z—lz(Ta)aﬁY%,

{Pa, Y2 = ¥o(Ta)ap¥ s, (4.18 (4.27)

(YL, Y5 = 18,570 (4.19 (Vo Y5t =—i8,p (4.28

one can convince oneself that no new constraints emerge astow the separation of the first class constraints on the sur-
hence that ternary constraints are absent in the theorjace Y =0 defined by the second class constraints. To
¢|Constraim <hei= 0. achieve this separation on the whole phase space it is neces-

To implement the reduction procedure without usingS&'y to apply the additional transformation

gauge fixing conditions we have to put the constraints into ~ R, ~
the canonical form discussed in the next paragraph. D =D Yo(Ta)up Vg (4.29
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One can verify that the first class constraints form the ideal o, & 9046 o
of the total set of constraints Pi=—= 2 E,, —Q*=trl E'— Q* |,
- Y e aQj ¥ IQ 9Qj
{Pa,Ppt=€apPe, {Y,P}=0, (4.30 (4.39
and the second class constraints obey the canonical algebra F, 1 T
(4.28. The explicit form of the resulting set of constraints is ~ P™ik= 0% 5 (O E+E O)ik. (4.40
~ 1 ~ 1 e
Yiz —iPy yo+= V=0, Yi: Py += yo¥=0, In or.der .to express the Hamiltonian .and the Gauss Iqw
a 2 a 2 constraints in terms of these new canonical pairs let us write

(4.3)  the field strengttE,; in the form

Eai=OaQ)Lii(P,P*;Q,Q%) (4.41

with a 3X 3 matrix L,; to be determined. One can immedi-
ately see that the symmetric part of the mattixs equal to
the new moment&®*

~ 1_— 1
D= €apAbiEcit g L7 EP\I'Ta')’OP\T'

i —
+ Z(Pq,Ta\If'F\If’TaP\T;):O. (4.32

In order to implement the reduction due to the second class
constraints(4.32 let us introduce the new canonical vari-

ables Qy ,Qy ) and (I3 ,Ily ) via

1
P*ikzz(l-ik+ Lki) (4.42

and a straightforward calculation shows that its antisymmet-

: = T — ric part is
V,=iy(Qy —Qu), W,=T§ -1, , (433 [°Pan!
1 _
- . 1 . E(Lik_l—ki):Eilk('}’_l)ls[(ﬂ_l)sjpj_Gmsn(P*Q*)mn]
Py =5y ~Iy )y, Py =5(Qu +Qy ). (434 (4.43
In terms of the new variables the constraints read with
Yi=Iy, =0, Y5=Qu =0, (4.39 1 |07Q) _ —
Q== €jmn| —— O(Q)| , (4.49
- i 2 IQ; mn
D= €a3pAbiEci— E :ifaTanPa: 0. (4.39
and
2. Canonical transformation to adapted coordinates Yic: =Q%i— Sik tr(Q%). (4.45

The example of the Christ and Lee model in Sec. IIIThus the final expression for field strendgh; in terms of the
shows that the realization of constraints by Abelianization isnew canonical vgriables is !
immediate if one performs a canonical transformation to a

new set of variables containing the gauge invariant ones as a

— NIP* . ! —-1p)
subset. Hence in order to simplify the Abelianization of con- Eai=Oa Q)P i+ iy Dis[(277P)s

straints let us single out the part of the gauge potenfigls — €smd P*Q* ) mnl1- (4.46
which is invariant under gauge transformations. Because un-
der a homogeneous gauge transformation the gauge poten- 3. Abelianization of first class constraints

tials transforms homogeneously one can achieve the separa-
tion of gauge degrees of freedom by the following simple
transformation

The formulation of the theory in terms of the new vari-
ables is adapted to the procedure of Abelianization. Using
the representation@.37) and(4.46 one can easily convince

Aai(@Q*)=Oak(5>Q* i (4.37) oneself that the variable@*_ and P* makErE) contribution
to the secondary constraintg.36) and Q,P enter well-
whereO is an orthogonal matrixQ e SO(3), andQ* is a  separated from the physical matter variables
positive definite symmetric matrix. This transformation in-
duces a point canonical transformation linear in the new ca-

~ — — i
— d,:=0 Q-1 X =0.
nonical momenta. The new canonical momerRj (P;) can a as( QP 2 v, (Ta)apQ Vg

be obtained using the generating function (4.4
o 3 . o In order to deal with the Abelianization it is useful to per-
Fa(E;Q,Q*)=2, EqA4i(Q,Q*)=tr(O(Q)Q*E") form the following canonical transformation on the Grass-
ai 4.38 mann variables

as I =P Upa(Q), QY =U3(QQ% . (448
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with the unitary matrixU in the two dimensional represen-

tation of SO(3) chosen such that
1 +
Oabzz tr(U TaU Tb). (449)

As a result, the Gauss law constraids47) take the form

o
D=0 P~ 5 Py (12)apQh ,=0. (450

Hence it is clear that the matriR ~! is just the matrix of
Abelianization D in (2.21). Hence, after performing the

Dirac transformation with the matriE)=Q(6) on the con-
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where M denotes the spin angular momentum ten&ay,
=€emsnts, and total spin vecto/;=04+ T, is the sum of
the gauge field spin vectofs=3€ns{Q* P*)mn and the
matter field ®, defined in(4.52. With (4.55 the uncon-
strained Dirac-Yang-Mills Hamiltonian reads

2
tr(y Mo+ S [1(Q)?

1 1
D.-Y.-M._— *\2_
Hobys™ = =3 1P e
—tr(Q*)*]—g tr(j*Q*) +im(P, ¥0Q% ).
(4.56

In order to achieve a more transparent form for the re-
duced Dirac-Yang-Mills systent4.56 one can perform a

canonical transformation expressing the physical coordinates

straints®, the equivalent set of Abelian constraints is ‘ :
Q* andP* in terms of new variables adapted for the analy-

P.—0..0.=0 (4.5)) sis of the rigid symmetry possessed by the reduced Hamil-
a Trasms o tonian systen{4.56). It is convenient to decompose the non-
with degenerate symmetric matr@* in the following way:
i . Q* =RT(4,6,4)DR(4.6,9) (457
®a:§ %a( Ta)aBQ‘I’B' (4.52

with the SO(3) matrix R parametrized by the three Euler
anglesy;: = (4,0, ¢), (see Appendixand with the diagonal

matrix D=diag, ,%>,X3). The corresponding canonical con-
jugate coordinatesp(,,p,,Pg4,P;) can be found by using the

C. Reduction due to the Gauss law
and the second class constraints

In the previous section, in accordance with the generageneratmg function

scheme of reduction formulated in Sec. Il D, the new set of p*1_ * D% — T *
constraints in canonical form have been obtained and the FIXi 9,0, 4P J=1(QTPT) =1r(R (X)D(§)R(X)I(D4 238)
adapted canonical pairs been chosen for the explicit imple- '
mentation of the Gauss law&.15 and the second class gas
constraints(4.28. After having rewritten the model in this
form, the construction of the unconstrained Hamiltonian sys-
tem is straightforward. In all expressions we can simply put

P=Q6 and ﬁq,a=Qq,a=0. In particular, in terms of the
“physical” electric field strengthg;

JF *pT
pi:%:tr(P R'aiR),
I

JF

— (aRT * * * *)
——tr(g—XiR[P Q*—Q*P*]|, (459

Eailp=0e=:0a(Q)&Ei(Q* ,P*), (453

the physical unconstrained  Hamiltonian Hpys:
= HC(PvQ)|Constraint shenmay be written as

wherea are the diagonal members of the orthogonal basis
for symmetric matricesxa=(a;,a;) i=1,2,3 given explic-
itly in the Appendix. The original physical momenig, can
1 2 then be expressed in terms of the new canonical variables as
HBiyd ™ =2 tr(E€h) + S [t(Q) 2~ tr(Q*)*]

phys 2 4

3 3
p* = RT( 2 7?3“5_" 2 Psa's) R
s=1 s=1

. . (4.60
—g r(j* Q) +im(Py %oy )
wherej* is the isospin current in terms of the new Grass-With Ps=ps and
mann variables :
i Pi:x-—l (cyclic permutationi #j#k) (4.61)
=3 Py, vi70(72) apQy - (4.54 :
and theSQ(3) left-invariant Killing vectors
With the aid of the identity dey eq Y 1)s= €an Yia Yo 2N sin
representatiori4.46) for the field strengths, we find the ex- _ +cos _sin ¢ cot § 46
plicit form for the “physical” electric field strength in terms 1= Sing P VP v Py, (462
of P* andQ*
_ cosy )
Eo=— Sn o Pyt sin ¢py+cosy cot Opy,,

1
5ki(Q*,P*):PEi+mfnktr(w\/l%]ﬂ, (4.59 4.63
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E3=py. (4.64 motionc; are zero. In this case the rank of the Poisson matrix
is rank|[{1;,1\{l[;,=¢,= 2, which means that there is one first

Representing the physical electric field strength in the  (|355 constraint and one pair of second class constraints.

alternative form The problem is now to separate the algebra of constraints
and to find the equivalent set of constraifits=0, so that
Ex=P* it —— (YY) ik T (4.65  the first class constrain?,; forms the center of the algebra
dety {¥,,¥;}=0, and the pair of second class constraints obey

the canonical algebré¥,,¥;}=1. After having passed to
new variables in the last section in order to isolate the gauge
degrees of freedom from the physical ones, we shall now
perform another canonical transformation from the physical
variables to new physical variables so that one of the new
momenta coincides with the first class constraint and
another pair of new canonical variables coincides with the
g 3 pair of second class constrainis, and V3. In terms of
2 _ these new canonical variables the reduced system is obtained
2 Z Xt X gE JSS)(S+Im(P“’ onq’ ) by reducing the Hamiltonia§4.56 to the integral surface
(4.66 (4.69. As a result the new Hamiltonian will depend on 4
' canonical pairs and one parameter which reflects the exis-
Note that for the pure Yang-Mills syste4.66) reduces to  tence of the integrals of motion. To demonstrate this let us
choose the integral constants @s-(0,0¢) without loss of
5 XJ2+XK generality. One can then write down the needed new set of
phys = E pi+ 2 CE [ Sinwamw2vis E X7x constraints, describing the surfa@e69, in the form
J

with the SO(3) generatorslg given in explicit form in the
Appendix, we finally get the following physical Hamiltonian
defined on the unconstrained phase space

13
727

§+0;)?
Xj+xk

3
1
D.—Y.—M.
Hors =3 2, P

4 cyclic

yclic (X3 k)2 1<j
(4'67) W, = 12412412 c2=0,

This completes our reduction of the spatially homogeneous
constraint Dirac-Yang-Mills system to the equivalent uncon-
strained system describing the dynamics of the physical dy-
namical degrees of freedom. However, apart from this reduc-
tion due to the underlying gauge symmetry, there is the W,=1,=0.
possibility to realize another type of reduction connected
with the rigid symmetry admitted by the unconstrained sysive are now ready to perform the transformation to special
tem (4.56). For simplicity, the discussion in the next section canonical variables so that the pair of second class con-
will be restricted to the pure Yang-Mills system and we shallstraints is equal to the one pair of the canonical variables and
show how to further reduce the obtained 12-dimensional SYSone equa| to the new momentém
tem (4.67) to an 8-dimensional one in general and, for a
special case to a 6-dimensional one using the corresponding My=V,, II;:=V¥;, X;=V,. (4.70
first integrals.

=0, (4.70

I2
V¥,=arcta
I3

and complete the set of canonical coordinates by the follow-
D. Further reduction using first integrals ing pair

The reduced Yang-Mills theori¢.67) has a rigid symme-

try connected with the existence of the first integrals X,= —arctarﬁ? , T=p,. 4.72
2

li= €ijxEajAak- (4.68 _ . . .

The canonical conjugate coordina¥Xg can be determined

For the subsequent reduction in the number of degrees afith the help of the generating function

freedom we shall use the integrals of moti@n68. One can

verify that in terms of the new variables they read= B 0 da

—Ri;lgk. In contrast to the reduction due to first class con- FL¥:0:¢.1Li]=11 ¢+ 114+ sin a

straints the values of first integrals are arbitrary and depend

on the initial conditions. In this case reduction means to con- X I3 sir? a—I5—115+ 211,11, cosa.

sider the subspaces of phase space which are the levels of

' L 4.73

fixed values for these first integrals

| i=Ci, (469
"In the exceptional case whan=0 we can consider the three
and the subsequent construction of the quotient space Witftegrals as first class constraints, and this circumstance leads to a
respect to the rigid symmetry group. Therefore, in contrast t@urther reduction of our system.
the reduction that we have done before, the first integrals iNn 8These types of variables are well-known from rigid body theory
general are a mixed system of first and second class coms Depri[41] or Andoyer[42,29 variables used in celestial me-
straints. By “in general” we mean that not all constants of chanics.
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Due to the symmetry th¥, is a cyclic coordinate and the We also adhere to this position and our task in this note was
reduced Hamiltonian depends only on the canonical pair to prepare the classical description of Yang-Mills mechanics
in a form that we are going to exploit for the description of
squeezed vacuufd3].

Xo=— arctarE é

gl =l7[ll H2=pzﬁ
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c . X5+ X3 X3+ X7 APPENDIX A: NOTATIONS AND SOME FORMULAS
Vo= [SIf ¢y —5——55+¢0S ¢ —5 > , . : I
2 (X5—X3) (X5—X1 1. Configuration variables and Hamiltonian structures

(4.79 SU(2) Dirac-Yang-Mills theory considered in this paper
It is interesting to point out the difference between the redncludes as dynamical variables the set of spin-1 gauge fields
duced Yang-Mills Hamiltoniart4.67) and the corresponding A.=AL72/2, a=1,2,3 in the adjoint representation of
one in the recent work by Dahmen and Raabe. In contrastU(2), with the corresponding field strengttF,,
with their representation for the gauge potentials, in which=F?,7%/2,
the gauge degrees of freedom are mixed with the rigid rota- a a a abenb ac
tional cyclic coordinates, we have started with the explicit Fouv=0,A,— d,A, T Qe ALA,, (A1)

separation of all physical degrees, including the rotational . . . . .
ongs. And only aftperythe redugtion in the nurgber of degree?nd_the matter spindBirac conjugate spingfield variables

of freedom due to the rigid symmetry the obtained Hamil-¥ (¥) in thelfundamcjntal representation®(2) with val-
tonian(4.74 coincides with the one obtained in the work by ues¥,=(¥,, ..., ¥;) obeying the Grassmann algebra
Dahmen and Raal@4] for pure Yang-Mills mechanics. ‘I’L‘I’ﬂﬁ‘l’};‘l’L:O- A2)

V. CONCLUDING REMARKS Generalized Poisson brackets for functions on a phase
space spanned by both even and odd coordindtgs
As mentioned in the introduction our investigation has=[(Y,Py),(A; E);(¥,,P, )] are defined as
pursued two goals. One is of pure theoretical interest. Be- “
cause of the homogeneity conditicBU(2) Dirac-Yang- 5 5
Mills field theory has greatly simplified to a finite dimen- {F(2),G(2)}: => F —wspg—0. (A3)
sional mechanical system, for which one can describe the AB 9Za 9Zg
equivalent unconstrained system in an explicit way. HOW-—rphe nonyanishing components of the canonical symplectic
ever, apart from this reason, there is also an interesting agg,m was=1Za,Zs) read explicitly
plication of this model. It has been known for a long time
that, if one considers the Euclidean QCD effective action as {Yqa,P2}=62, {A,.E"}=660 (A4)
a function of the non-Abelian electric and magnetic fieids
and B, one finds that there are field configurations, corre-for bosonic degrees of freedom and
sponding to nonvanishing andB fields, for which the value

< -

of the effective action is lower than that f&=0 andB=0 {\P“’P‘I’B}Z{P‘I’ﬂ’q’“}: ~Oap
[40]. This observation indicates a drastic difference between _ _
the true ground state of QCD and the corresponding pertur- (Vo Py} ={Py o} =—dup (A5)

bative vacuum and constitutes the basis of all models of o

condensates. One of the main reasons to study the dynamity fermionic degrees of freedom.

of spatially constant Yang-Mills fields, is the faith that the

corresponding zero momentum quantum operators are very 2. The Euler parametrization for SO(3) group
important for the description of the QCD ground state due to  The conventional representation®€(3) group elements
the presence of the IR singularity. There are many attemptg, terms of Euler angles,

to exploit the homogeneity approximation for gluon fields

with the aim to shed light on the vacuum structure of QCD. R(,0,p)=ePseM1eds, (AB)
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has been used in main text with the following matrix realiza-
tion for the generators); obeying the SQO(3) algebra
[Ji.Jj]= €ijidi:

00 O 00 -1
Jj=10 0 -1| g,=[0 0 0],
01 0 10 0
0 -1 0
=1 0 0
0 0 0

3. Basis for symmetric matrices

We use the orthogonal bam=(a ,a') for symmetric
matrices. They read explicitly
1 00
0 0 O
0 0O

alz ] 1

000
=0 1 0
000

HAMILTONIAN REDUCTION OF SU(2) DIRAC-YANG-. ..
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00
a=[0 0 0],
001
000 001
al=[ 0 0 1|, 42=|0 0 O]
010 100
10
o= 00
00

They obey the following orthonormality relations:

tr(ea;))=8;, t(eaa;)=28;, tlea;)=0. (A7)
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