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Abelian-projected effective gauge theory of QCD with asymptotic freedom
and quark confinement
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Starting from SW2) Yang-Mills theory in 3+1 dimensions, we prove that the Abelian-projected effective
gauge theories are written in terms of the maximal Abelian gauge field and the dual Abelian gauge field
interacting with magnetic monopole current. This is performed by integrating out all the remaining non-
Abelian gauge field belonging to $2)/U(1). We show that the resulting Abelian gauge theory recovers
exactly the same one-loop beta function as the original Yang-Mills theory. Moreover, the dual Abelian gauge
field becomes massive if the monopole condensation occurs. This result supports the dual superconductor
scenario for quark confinement in QCD. We give a criterion of dual superconductivity and point out that the
magnetic monopole condensation may be estimated from the classical instanton configuration. Therefore there
can exist an effective Abelian gauge theory which shows both asymptotic freedom and quark confinement
based on the dual Meissner mechanism. The inclusion of an arbitrary number of fermion flavors is straight-
forward in this approach. Some implications to the lower dimensional case will also be discussed.
[S0556-282(98)05110-9
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I. INTRODUCTION (hedgehoy singularity appears. The singularity appears
in the Abelian gauge field,(x) extracted from the non-
~ Itisone of the most important p_roblem_s in par'_ucle phys-Abelian gauge field4, (x) =U(X)[A,(x) +(i/9) aM]UT(x).
ics to clarify the physical mechanism which realizes quarkThe monopole singularity is characterized as a topological
and gluon confinement. An important question is, what arequantity.
the most relevant degrees of freedom to describe the confine- (4) At the generic point where the eigenvalues do not
ment? In the mid-1970s, the idea of the dual Meissnecoincide, the gauge is not determined completely, since any
vacuum of quantum chromodynami@@CD) was proposed diagonal gauge rotatiod [an element of the largest Abelian
by Nambu[1], 't Hooft [2], and Mandelstani3]. In this  subgroup U(1)~*, the maximal torus groudp
scenario, the monopole degrees of freedom play the most N
important role in the confinement. This aspect can be seen , . .
explicitly through a procedure callekbelian projectiorby 't U(x)=diag e, ... ™), Z’l 6(x)=0,
Hooft [2]. Under Abelian projection the non-Abelian gauge (1.3
theory can be regarded as an Abelian gauge theory with a
magnetic monopold4]. For the confinement mechanism, leavesX invariant. Therefore, within this gauge, the theory
there are other proposdls] which we do not discuss in this reduces to anN—1) fold Abelian gauge-invariant theory.
paper. Monte Carlo studies of the Abelian projection were initi-
Abelian projection[2] is to fix the gauge in such a way ated by Ref[6] and the maximal Abelian gaugMAG) was
that the maximal torus group of the gauge gr@ipemains adopted in the simulation on the lattitg]. Recent extensive
unbroken. It goes on as follows for the gauge grouguU  Studies of Abelian projectiorisee[8] for a review have
(1) One chooses a gauge_dependent local quamm Confirmed theAbe“an dominanc@roposed in Reﬂ:g] Th|S
=XA(X)TA which transforms adjointly under the gauge States that the non-Abelian gauge field\} in

transformation: i.e., SU(N)/U(1)N~1, behaving as a charged field under residual
U(1)N1 gauge rotation, is not important in the low energy
X(x) =X (x): =U(xX)X(x)UT(x). (1.2 physics and the maximal Abelian part U{L) plays the

dominant role in quark and gluon confinement. In analytical
(2) One performs the gauge rotation so tixabecomes studies, Abelian dominance was assumed from the beginning

diagonal: to construct the effective low energy theory of QC®10].
Assuming Abelian dominance, one can show that, if mono-
X'(x)=diag\1(X), ... An(X)), (1.2 pole condensation occurs, charged quarks and gluons are
confined due to the dual Meissner effect. Monopole conden-
where)i(x) (i=1, ... N) are eigenvalues. sation is expected to bring about mass for the dual gauge
(3) At the space-time point where the eigenvalues are defield. An effective theory of monopole currents was investi-
generate\;(x) =\;(x) (i#j,i,j=1,... N), amonopolelike gated also on the latticEL1]. In fact, recent Monte Carlo

simulationd 12] support Abelian dominance and furthermore
monopole dominanceHowever, there seems to be no ana-
*Email address: kondo@cuphd.nd.chiba-u.ac.jp lytical proof of Abelian dominance.
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A deficit of Abelian projection is the gauge dependence of 1
the procedure of Abelian projection. The quantityis a K”:Eﬁy(f”vpofabsAﬁAg), a,b=12. (1.6
gauge-dependent quantity and the field variable in which the
monopole appears is not a gauge-invariant quantity. Therdn other words, the charged off-diagonal gluon field plays the
fore the result seems to depend crucially on the gauge seole of the source of the monopole. Although the definition
lected in Abelian projection. However, this would not be a(1.6) of monopole current seems to be different from the
real problem, since it is possible to put Abelian projection inusual definition based on the singularity of the Abelian field,
a gauge-invariant form, if we desire to do so; §&8,14. we show that both are equivalent to each otfegart from
The real problem is another in our view. In the Abelian- the Dirac string singularity In the APEGT, the singularity
projected theory, the magnetic monopole degrees of freedoP€S ot appear apparently, although we can always include
appear as the singularity in the Abelian gauge field. Théh€ Singularity if necessary.

magnetic currenk, is obtained as the divergence of the dual__The effective dual Ginzburg-Landd(L) theory derived
L ~ assuming Abelian dominance does not have sufficient pre-
Abelian field strengtif ,,,

dictive power, since it contains undetermined free param-
eters. On the contrary, all the quantities in the APEGT are
~ ~ 1 calculable and all the effects of the non-Abelian gauge field
Fuv'= 5 €upot®”, (1.4 are included in the APEGT. In fact, we show that the
APEGT recovers exactly the same one-loop beta function as
that of the original non-Abelian gauge theory. The dual Abe-
in a similar way that the equation of motion relates the fieldiian gauge field follows naturally in the course of the deriva-

strengthf ,, to the electric curreng,,, tion of the theory and has a coupling with the monopole
current. This interaction leads to the dual Meissner effect due
of, =] (1.5 to monopole condensation. The resulting nonzero mass of
=l .

the dual gauge field gives the nonzero string tension, i.e.,
linear potential for static quarks. Thus the string tension is
If the U(1) potentiala, is nonsingular, the Abelian field determined by the monopole loop condensate,
strengthf ,,,:=4,a,—d,a, leads to vanishing magnetic cur- (KM(x)KM(x)>/5(4)(O) (see Sec. IV for a precise definitipn
rent,k,, =0, which is nothing but the Bianchi identity for the The monopole condensate plays the role of the order param-
U(1) field, 4”F,,,=0. So if one needs the nonzero magnetic®ter for confinement. o
current, the Abelian field must include a singularity. How-  Moreover, we discuss the possibility that the nonzero
ever, we do not think that it is sound as a quantum fielgnonopole condensation is derived from the instanton con-
theory to treat the singularity of the field variable as theﬂguranton. Hen;:_e trlle _|n§tan'580n may lead to confinement
essential ingredient from the very outset. In the lattice gaqugzlirI]nguf(;nvergallgﬂatr\:gsingaisi]o.n of fermions is straiahtfor-
theory, such a singularity does not appear due to lattice regu- Pp ’ . . . 9
. T ward. Hence the APEGT is also a starting point to study the
larization [15] and the monopole contribution is extracted

. ) . relationship between confinement and chiral symmetry
from the gauge-invariant magnetic flux, although m°n°p°|eoreaking(or restoratioh [19,20)
dominance is supported in the Monte Carlo simulation on the This paper is organized’ as. follows. In Sec. II. we derive

Iat'ilcz. More(?[ver_, ': §h?huld b_e_no':ed thitt;[hF magnetlcﬂrronofhe APEGT for the maximal Abelian part by integrating out
pole does not exist in the original non-Abelian gauge theoryy, . remaining non-Abelian gauge field. In this step, we in-

T_he magnetic mqnopole appears only after Abelian PrOI€CH oduce an auxiliary tensor field which is converted to the
tion (see Appendix €

Th f thi is tderive the Abeli dual gauge field. The dual gauge field is essential for discuss-

. et gurpf)]?s? ot this pa:rp:er ISPEgEII';/e f eCD elian- ing the dual Meissner effect in Sec. IV. The APEGT is first
projected etiective gauge .eo'(\A of Q as @  gptained in a form including a logarithmic determinant. The
quantum field theoryfrom which we should start the analy-

sis. For simplicity, we restrict the following argument to the Iogarithmic_dete_rminant is explicitly caIcuIa_ted. !t generates
_ ! h i involved and will the gauge-lnvarlant _form due to(l gauge invariance. A_n
k?e Srléég%tggsi?\. ;— seusgae) 32‘;(: Isarr;(?re":nm)isveaaer Withoegect of this term is the renormalization of the Abelian
usinpg various assumptior?actuaﬁy I?/vit.h no ass%ngpti,oms 5 uge Eeld. In Secr.] I, we caICL:ante the one-lc;lop beta func-
X . tion without using the Feynman diagram. It is shown to agree
we d‘?“"e the APEGT Of Yang—MHI(;\{M) theo_ry and QCD'. with the original non-Abelian gauge theory. In this sense, the
This is done by integrating out off-diagonal fields belong'ngeffective theory recovers asymptotic freedom. In Sec. IV, we
to SU2)/U(1) based on the functional integral formalism. discuss the dual Meissner effect. If monopolé loop éonaen-

We use _the_word effective n the sense pf the Wllson sation occurs, the dual vector field becomes massive. In Sec.
renormalization group[16], since the Abelian-projected V. we include the fermion in the APEGT. In Sec. VI. we
theory Is obtained after Integrating out the degrees of freeai’scuss the lower dimensional case. In tHe final éectfon we
dom corresponding to the non-Abelian gauge fiem§: give our conclusions and a discussion.
=(AL=iA2)/\2 which behave asnassivecharged matter
fields and do not play an important role in the low energy|l. ABELIAN-PROJECTED EFFECTIVE GAUGE THEORY
physics of confinement. Such a strategy can be exactly per- _ ) _ _
formed in theN=2 supersymmetric YM theory and QCD A. Separation of the Abelian part and introduction
[17]. of the dual field

We show that the off-diagonal field gives rise to a non-  First, we decompose the field, into the diagonalmaxi-
trivial magnetic monopole current for the Abelian part, mal Abelian U1)] and the off-diagonal parts $R)/U(1),
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3 2 enables us to perform a Gaussian integration over the off-
A 0= ALOOTA =a,(x) T3+ > AL () T2, diagonal gluon field#\}, (a=1,2) It turns out that the ten-
A=l a=l 21 fieldB,,, plays the role of the “dual” field to the Abelian

gluon fielda, . We find that there are two ways to introduce
We adopt the following convention. The generators of thethe “dual” tensor field. _

Lie a|gebraTA(A: 1,... ,NZ_ 1) for the gauge grou[j_; One way Is to introduce the tensor flE&LV such that the
=SU(N) are taken to be Hermitian satisfyingl®, T5] tensorB,,, is the dual of the diagonal field strenngFp(,,
=ifABTC and normalized as ti*T®) = 1 5"B. The genera- 1 1

tors in the adjoin_t representation_ are gi_ve_n By gc= B#VHEEMVP"}",?U=Ee“VP"(fngGC,,). (2.9
—ifagc. We define the quadratic Casimir operator by

C,(G)8"B=fACPfBCD  For SU2), TA=(1/2)d* (A

i ) ' A This is achieved in the tree level by the following action:
=1,2,3) with Pauli matrices”™ and the structure constant

fABC=¢ABC The indicesa,b, ... denote the off-diagonal N
parts. Supevul ABI= [ 4§ 7B (1,5,
Then the field strength
1 1
3 _ N2 my__ 2
g B/.LVB Z(Szv) .
Fun(X):= 2 Fo (0TA: 4 49
A (2.10
=9, A ) = 9, A,L () I [ALX), A (X)] This theory is equivalent to the BF-YM theory,
(2.2 1 L
is decomposed as SBF—YM[-AvB]:f d*x ZG’”’MB/;Ufﬁy— ZQZB,AWB”VA}-
(2.11
Fou(X)=[f () +C, ()] T3+ 82 (x)T?,
w0 =0+ Cu(X)] r(X) Actually, by identifyingB,,, =55, the action(2.10) is ob-
f,,(X):=3,a,(X)—d,a,(X), tained from Eq.(2.11) by separating the diagonal part from
. . K the off-diagonal part and integrating out the off-diagonal
wa(x):=Dﬂ[a]abA*3—DV[a]abAb, auxiliary tensor fieldB;, (a=1,2). Quite recently, the
equivalence of the BF-YM theory with the YM theory has
CW(X)T?’:z —i[AL(X),A, ()], (2.3 been proved at the quantum level; §@2]. This theory is

interesting from the topological point of view.
Another way is to introduce the tensor field as a dual to

where the derivativ® ,[a] is defined by ¢ at the tree level
po ’

D [al=d,+i[a,T3 -], D,a]**=d,6"—€"a,. 1
2.9 B 5 €7Cyp (2.12

Hence the diagonal paﬁiv of the field strength is given by
Thus we are lead to the action,

Fo =t Chyy Cpi=eSAAD. (2.5 .
Next, we rewrite the Yang-Mills action SapYM[A'B]:f dx| - 4—gz(fwfw+2fwcw)
— 1 d4 y /2% 2.6 1 1
SYM[A]_ - 2_g2 Xtr(]‘—ﬂ,,]: ) ( . ) + Zep,vp(erUC’uV_ Zng,uvB'uy
By using 1 e 019
tr(f,,S*)=0=tr(C,,S""), 2.7 ag? " | '
the YM action is rewritten as In this case,%e’”P"fp(, is generated through the radiative

correction as shown in Sec. I D. In either case, Gaussian
1 integration oveB ,, recovers the actiof2.8) and hence the
- 4 2 2 My
SyulAl= 492f d™X[(F p+Cpur) +(SZV) ] 28 original YM action. This modek2.13 is simpler than the
model (2.10 in the actual treatment, since the topological
Here we introduce an antisymmetric auxiliary tensor fieldtheory needs some delicate treatm@&|. (The equivalence
B,, in order to linearize theC(W)2 term. This procedure of the two formulations is shown in Appendix Aln what

This procedure is similar to the field strength approach for non-
Abelian gauge theorj21].
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follows, we focus on the actiof2.13 which is essentially We introduce the Lagrange multiplier fielef= and ¢ for
equivalent to that derived by Quandt and Reinhd2d. the gauge-fixing function§*[A] and F3[A], respectively.
It is well known that the gauge fixing term in the BRST
B. Gauge fixing guantization is given by25]
We discuss the gauge-fixing term. This is independent of Lop=—18Gys, (2.18

the choice of the action. The gauge-fixing term is constructed
based on the Becchi-Rouet-Stora-TyutBRST) formalism.  whereGg; carries the ghost number1 and is a Hermitian
We consider a gauge given by function of the Lagrange multiplier fieldg™, #°, ghost field

- : + c”, antighost fieldc”, and the remaining field variables of
* = (M MAT = ! !
FrLA.a]:=(o"xiga)A, =0, (214 the original Lagrangian. In this paper we consider a simple
F3[a]:=o#a,=0, (215  9auge given by
where we have used the=(3) basi$ Ggf:E E+( F*[A,a]+ §¢:) +c3 Fa]+ §¢3)_
0= (0'=i02)/\2. (2.16 . (2.19

The gauge fixing withé=0 is the Lorentz gaugeg,A*  For the most general gauge fixing, 4@6].
=0. In particular,£=1 corresponds to the differential form  The BRST transformation in the usual basis is
of the maximal Abelian gauge which is expressed as the _ L .

minimization of the functional oA, =DyC1=0,C—i[ A, C],

1
R[A]:=%f d*){[AL() 1+ [AZ(x) 1%} dgc=iz[c,cl,
=f d*AT (A (X). (217 Sac=i9,

ogp=0,

The differential MAG condition(2.14) corresponds to a local

minimum of the gauge-fixing functionaR[A], while the 8eB,,= —i[c,B,,]. (2.20
MAG condition (2.17) requires the globa{absolut¢ mini-

mum. The differential MAG conditiori2.14) fixes the gauge Then the BRST transformation in the=(3) basis is given by
degrees of freedom in SB)/U(1) and is invariant under the

residual U1) gauge transformation. An additional condition SeA, =(d,*ia,)c FiA,c,
(2.195 fixes the residual (1) invariance. Both conditions
(2.14 and (2.15 then completely fix the gauge except pos- Sga,=d,c3+i(A cT—A,ch),
sibly for the Gribov problem. It is known that the differential
MAG (2.14 does not spoil renormalizability of YM theory Sgc™ =Ficc”,
[24]. An implication of this fact is shown in Appendix B.
From physical point of view, we expect that the MAG sgc’=—ic*cT,
introduces the nonzero mass, for the off-diagonal gluons, o
A, A% This is suggested from the fonf2.17) which is SgC™ =igp™ 73,
equal to the mass term fok;, A%, although we need an ' s
independent proof of this statement. This motivates us to dgp="=0,
integrate out the off-diagonal gluons in the sense of the Wil- 3 5
sonian renormalization groufRG) and allows us to regard 6gB,,,= Fic*B;,*ic’B,,,
the resulting theory as the low energy effective gauge theory 3 -
written in terms of massless fields alone which describes the o8B, =i(c"B,,—Cc " B,,). (2.2

physics in the length scakR> m;l. Abelian dominance will
be realized in the physical phenomena occurring in the scal
R>m,!. In this sense the choice of MAG is not unique in a,—a,+td,0, O e °0" 0303 (222
realizing Abelian dominance. We can equally take the gauge

so that the off-diagonal gluon fields acquire nonzero massesiencea, transforms as a (1) gauge field, WhiIeAM and

Then the Abelian-projected effective gauge theory obtalnqui behave as charged matter fields under ti&) gauge
by integrating out the massive off-diagonal gluons will betransformaﬂon It turns out tth3 and

valid in the low energy region below the energy scale given
by the off-diagonal gluon mass.

gnder a local W1) gauge transformation,

c,w=i§ (2)AA; (2.23

An this basis, =.PTQ =P*Q +P Q*=P3Q? are U1) gauge invariant as expected.
3. ()PTQT=—P*Q +P Q" =ie®PaQb(a,b=1,2). In the usual basis, we can write
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_ @ — S )2=—2A3WAPAPL 25 (ARS?
Gyi= > Ca(Fa[A,a]+ —¢?|+c® F¥al+ Edﬁ), (Sun)*= u WP+ 20,(A,S,,),
a=1,2 2 2
2.2
(224 w2 =(DalD,[a])®s,,~ €, ~D,[a]*D,[a],
(2.29
where
Fa . ausab ab3uy Ab « _ (yaby a1EAD where we have used
[A.a]:=(9"6%"— £e*™ak)A, :=D** [a]*A .
(2.295
[D,.[a]*D,[a]®]=—e*f,, (2.30
For the gauge-fixing functiof2.19 with the BRST trans-
formgtlon(Z.ZD, or (2.29 Wlth (2.20), stra|g_htforward cal- Discarding the surface terfrwe arrive at
culation leads to the gauge-fixing Lagrangi@il8),
a — b Sym=Svmla.AB,c,c;d]=S[a,B]+S;[a.c,c]
or= ¢°FA.a]+ 5 (4% +ic* D a] D, Talc’ _
+S;[a,A,B,c,c;J], (2.31)
— i ECTAZAKP — AC ARC 5]+ 33 a] + §(¢3)2 i
1 1
_ _ S =f d*x| - —f,.f*"——g°B,,B*"|, (2.32
+ic?9r,c3—ic o(€2BALCP) ' | 4g® ” 4
+icqe[(1-£)A 9"+ F[Aa]]c’. (2.26 i
_ 4, e £mch b, -3 3
This reduces to the usual form in the Lorentz gauge0. Sz_J d*x| ic?D#@9a]*D},Ta]c’+ic d*d,c
Finally we introduce the source term )
B
Ly=A2Ha 4 235, 2.27) +¢3(o"a,)+ §(¢3)2 , (2.33
which will be necessary to calculate the correlation func-
tions.
S;= f d*x Aa QLAY+ A2 Ga+ Dﬂab[a]ﬁJ‘;;
C. Integration over SU(2)/U(1)
Our strategy is to integrate out the off-diagonal fietfs Ja
A7, c?, c® (andB;,, for BF-YM case belonging to the Lie +J : (2.39
algebra of SWR2)/U(1) and to obtain the effective Abelian
gauge theory wrltten in terms of the diagonal fie&s,B,,, X .
[and ghost fields® ,c3 if we need a completely gauge- flxed QMV- (D,[a]D, [a])*?5,,— 2%,
theory also for the residual () gauge invariance 1
First of all, whena# 0,2 the Lagrange multiplier field? + _gZGabSEwpg —2ig2&(cicP—cocts?P) 8
can be easily integrated out. The result is 2
1
o 1 _ ac cb, — ac ch
H2F A a]+ §(¢a)2+ ¢a33$_>_ Z(Fal:A’a])Z DM[a] D, [a]*’+ aDM[a]g D,,[a]§ (2.3
1 a a —a 3
- FilAald,. GS:=i(9,c%) e3P +ic? e[ (1-£)(9,c%) 8
(2.29 — £eP%a,c%]—id,(ce¥Sc®), (2.36

Next, as a preliminary procedure to integrate Agt, we
rewrite the last term in the actiof2.13 as

3The case ofa=0 should be treated separately. Sifc¥A,a]
=DA is linear inAa the ¢? integration can be performed finally
after integrating out thé\’, field. However, it generates the addi-
tional complicated logarithmic determinant Ind@Q~D]. Such a
case was treated if23]. The choice of gauge-fixing parameter

where we have rescaled the parameteto absorb theg
dependence.

All the terms appearing in the resulting YM action are at
most quadratic irA% . Therefore the field\’ (a=1,2) in S;
can be eliminated usmg the Gaussian mtegratlon and we ob-
tain

should not change the physics, since it appears due to the gaugéThis will be justified, since the off-diagonal gluons become mas-

choice. Therefore we do not treat this case in this paper.

sive due to the MAG.
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iSp=In f[dAa]exp{ fd“

1 g .
=5 Inde(Q}) + 5 GL(Q MG +¢?

2
g “1yabpyy
— 535D alé(Q™);aD " aléd

Thus we obtain the effective Abelian gauge theory

SE:so[a,B,c,EJ]+sl[a,B]+sz[a,cE],

1 a 1\abe~b
SO=—§Inde(Q )+ G(Q ) G+g

92 —1\ab~vb 1yab qvb
+EJMa(Q )aeD P a]édg+ JMa(Q |

As will be shown in the next subsection, Ind@tgives the
B,.,» andc® The residual

renormalization of the fielda,,,
U(1)-invariant theory is obtained by putting®=0 andc?
=c3=0 (henceG} =
greatly simplified.

On the other hand, the effective Abelian BF-YM theory is

obtained ifS; and Qf‘f; in S3 are replaced by

sl—f d*x

Q2":=(D,[alD,[a])?"s,,

e’”p"B f 4ngWB’“’ :

po! uv

_ 6ab3f 26ab3

2 g p,Vpa'BpU

—2ig2&(c?c—cc°5%) 5,,— D [a]*°D [a]®

1
+ ;D#[a]chy[a]gb (2.39

where theG is the same as E@2.36). This case is discussed

in Appendix A.

D. Calculation of logarithmic determinant

In the MAG ((=1), the last two terms ifQ cancel by
taking @=1 (they disappear also far=0 [23)),

Q2h:=(D,[a]D,[a])?s,,— 26253

+ %ngabs Br”

ep,vpa

—2ig?(cic? (2.40

In order to calculate Ind€), we use thg function regu-
larization or heat kernel methdgee, e.g.[27]),

—c%c6%)5,,,

d wp? (= s—1 t
= lim— — - -tQ
IndetQ leOdsr(s)fo dtes 1 Tr(e'Q), (2.4

1
7 Aan‘};A5+ A2

0). Therefore, the resulting APEGT is
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1
Ga+ ZD“ab[a]gJSSJrJ“a

J

1D,u,aC[a]§JC + Jma (Q 1)abi
2 92
+—I(QTHD alfdg+ 5 IAHQ T (237
2
,uacl:a]ch 4 gua (Q 1)abi zgaJ?ﬁDab[a]g(Qfl)zt:}Dvcd[a]gJ?b
(2.38

where Tr is understood in the functional sense. In this sub-
section the calculations are performed in a Euclidean formu-
lation.

First, we calculate the trace & '©. To estimate this
quantity, we use the plane wave basis,

Tr(e*‘Q)zf d*x tr(x|e"*Q|x)

=f d*x tr e kxe~tQelkx (2.4
By making use of the relation,
[Dab,eiikX]:iik’ueiikxaab’ (243

we find

e ikxgt(D,[a]%)2%5,, glkx — exp{ —t(D [a]?°+ik,6%)
X(D,[a]®®+ik,5%)8,,}.
(2.44

Furthermore, the rescaling &f,, kM—>k”/\/f, leads to

1 d*k
Tr(e“Q)=f d“xt—2 trf ekuk”

(2m)*

X exf — (2i\tk*D ,+1tQ)]
:f d4X—E (_1)

t2n=0 n!

ekl (2i \tk*D , +1Q)",

(2.4H
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where we have omitted the unit operatég,d,,, . It is ob-

vious that all terms odd with respect kg, in the expansion

7473

and the second term is

0 to zero in the integration. Thus we obtain 1 -1 ,
9 9 tr 1—2[D#,D,,][D#,D,,]>=Tl<fwf” . (253
4 1 1
Tr(e’tQ)—Tr(e’tQ0)=j 6.2 tr EQZ—D2Q+6(20202 where
7T
k:=C,(G):=f3cdf3cd=2 (2.59
+Db,D,D,D,)|+0(1), (247 Thus we obtair(apart from the four-ghost interaction terms;

ment

1 2
Kuku— 7 K28,

1
k,u.kvkakﬁ_) ﬂ_(kz)z(gﬂvgaﬁ+ g#agvﬁ+ gp,ﬁgva)i
(2.48

which is applied in the integrand of the integration formula

d*k ., (—1m
e (k®)"=—"(m+1)! (m=0,1.2, ...).
f(zwr‘ (kK)™= = (m+ )l ( )
(2.49
Separating the first term from the other termsJn
Qi%:=(D,[a]D,[a])®5,,+Q%, (250
we see that

Tr(e ') —Tr(e ') =

1.
=0
2Q

1
f d*x tr
1672

1
+€DMD,,(D#D,,—D,,DM)

1 f 1.
d*x tr(— 2
1672 2Q

1
+ 1_2[D,U.!DV][D,U. le/]

+0(1)

+0(t),

(2.51
where any cross term betweenandQ does not appear.
The first term is obtained as

1"'2 v 1 4 2% 2 _pvpo
tr EQ =2«f,,f 59 kB, ,B*"—Kkg“e Boof v

—8g*(c?cP—c°c®62P)(cPea—clcdsh?), (2.52

5The zero-order term of the expansion with respedtimequal to
the free term
AN(N—1) fd*x

Tr(exf —tQo]):=Tr(exd —td?5*°s,,,]) = =

(2.46

see Appendix Bthe U)-invariant result
where we have used the cyclicity of trace and the replace-

5 Indethf;=f d*x

1 mv 1 2 nv
4—gzzafﬂ,,f +ZZbg BMVB

+ ;ZCBM;fMV-G--“ , (2.55
where
20 g2 g2
zaz—gxl6772 In w, Zb:+2KW In w,
z.=+4«k ¢ In . (2.56
1672

Therefore, in the absence of the souﬂ§<-3=0=JEl ,

1+z 1+2z,
so+sl=fd4x - 4gzaflw — =4 9’B.B"
1
+5ZBuf it (2.57)

Integrating out theB,,, field, we will obtain an additional
contribution

(2.58

1 2 -1 v
_4._9220(1+Zb) fMVf’u' .

However, at the one-loop level, this term is irrelevant. There-

fore, the cross term does not contribute at the one-loop level.
For later convenience, we calculate another determinant

coming from the integration over ghost fields. For the action

Se= J d*xic®D27a]DS alc®, (2.59
we obtain, up to one loop,
S.=In f[d?][dc]exp[—f d*xc*DaTa]DSalc”
=Inde(D3Ta]Da])

:fd‘lxisz frre...
492 a’ puv ’

g2

1672

!

2
ZaZ=§K

In . (2.60
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For the Abelian-projected effective BF-YM theory, see Meissner effect; see Sec. IV. In the absence of magnetic

Appendix A.

E. APEGT with a monopole

The antisymmetriqAbelian) tensorB,, has the Hodge
decomposition in 31 dimensions(see Sec. VI for other
dimensiong

Bu,=b,,+Xu, bu,i=d,b,—d,b,.

K= e FXP— %P, (2.60
ur— o Spvaf

The tensoB,,, has six degrees of freedom, while the fields
b, andy, have eight. This mismatch is not a problem, since

two degrees are redundant; the gauge transformations
b,(x)—b,(x)=b,(x)—d,0,

X ()= X (X) =X (X) =, (2.62

leaveB,,, invariant. In the function integral, the integration

over B, is replaced by an integration ovér, and y,,,

current, the dual field, decouples from the theory. Note
that the renormalizations of the fields, b, are different
from each other.

The APEGT can be considered as an interpolating theory
which reduces to a theory with an acti6pa] by integrating
out theb , field or to another theory wit§[ b] by integrating
out thea, field. The theorySa] is suitable for describing
the weak coupling region, whilg[ b] is more suitable for the
strong coupling region. However, both theories give a dual
description of the same physics. In the next section, we see
an aspect of this picture.

IIl. ONE-LOOP BETA FUNCTION
AND ASYMPTOTIC FREEDOM
Neglecting the contribution from the dual gauge field, the

APEGT is reduced to the U(1) gauge theory,

1+z,
492

v i~amac ch b
f.fr+ic®DiTalD}Talc”|.

Sga,c,cl= f d*x
(3.1

provided that the gauge degrees of freedom are fixed in Ecrhis APEGT is similar to scalar quantum electrodynamics.
(2.62. These gauge fixings are not explicitly presented in thegt the scalar field is replaced with the ghost field. We can

following, since they can be easily implemented.
In this case, we obtain

1+z
®9%(b,,,b""

1+z
2, e —

_ 4
SO+Sl_f d X 492 72 4

~ ~ 1 ~
+X,1LVXMV) + Ezcb,uvf/uf’_ EZCX,U.Vf/LV—’_. e

(2.63

At the one-loop level, integration over leads to

Z -
SEzf d*x| — ngza‘fﬂ,,f““rica‘Df}C[a]fo’[a]cb
1+2z, ) ,
2 9 b,,b*"—zb k*], (2.69
where we have defined the magnetic current
kt:=9"t,,, fw:zzewpgfp“ (2.65

Here we have neglected ghost self-interaction tefses Ap-

pendix B and higher derivative terms coming from the loga-

rithmic determinant ofQ. This is the APEGT written in

show that the running coupling exhibits asymptotic free-
dom; i.e., the beta function has a negative coefficient. The
beta function is obtained from the calculation of the logarith-
mic determinant in the previous section.
We define the wave function renormalization oy and
c? by
ak=2,"a

cr=2; Y%, (3.2

W

For the three—poinaﬂcz vertex, the renormalized cou-

pling constant is defined by
Or=24"2:24"0. (3.3

It should be remarked that the effective Abelian gauge theory
(3.1) has U1) gauge invariance and we can derive the Ward-
Takahash{WT) identity for this symmetry. For example, the
three-point vertex function and the ghost propagator obey the
well-known WT identity which is similar to that in scalar

QED. This implies thaZ,=Z. (independently of the order
of trf perturbation Therefore the coupling constant for the

a,cc vertex is determined by, alone,

2

9r=23"g (3.4

Note thatZ, is obtained by integrating the ghost field, i.e.,

terms of the Abelian gauge fieltl, and the dual gauge field In detD?, if we remember Eq(2.60. Adding this contribu-
b, (the effect of the off-diagonal ghost field is studied in thetion to Eq.(3.1), we obtain

next section This theory has U(1JXU(1), symmetry
where the Abelian gauge field, has U(1), symmetry and
the dual Abelian gauge field,, has U(1), symmetry which
is guaranteed by the conservatiopk”=0. If the fielda,, is

singular, the magnetic currerkt, is nonzero and couples
with the dual fieldb, . This interaction leads to the dual

g2 22C,(G)
;3 Inm

Z,=1-2z,+z,=1+ Tom

C,(G):=f3cdg3cd=7 (3.5
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Thus theg function is easily calculated: 1
- gzc/zg’zbfjkﬂ : 4.1
dgr by _1C(6)_

dp 16m2°% 3 ' , ,
The interaction term between the dual gauge figJcand the
(3.6 magnetic currenk,, is generated by the radiative correction
Ehrough the gluon self-interaction. The action leads to the
ield equation for the renormalized field,

B(g):=u

Thus the APEGT exhibits asymptotic freedom as the origina
YM theory®

In order to obtain the RG beta function, we could have 9 fE=(L. o bEV=KY 4.2)
used the Feynman graph technique. By perturbation expan- #R IRy TeTR TR '
sion in the coupling constant, we can ascertain the Wargjhare we have defined
relationZy=2Z, .” The origin of asymptotic freedonef) is
understood as follows. By the Ward relation, asymptotic 1
freedom is explained by the vacuum polarization of the Abe- K& =—(z./1Z§2k*,  ZiP=1-zy2. (4.3
lian gauge field alone. This diagram up to ordgris quite g
similar to those of scalar QED by replacing the complex |nteqrating out the dual field,,, we obtain the effective
scalar fieldsg, * with the ghost, antighost fields?,c®: action for the monopole loop,

-1
a

— 4
sE[a,k]_f d*x e
39 (4.4)

An essential difference is the signature due to a ghost loopvhereD,,, is the massless vector propagator. Such a mono-
This minus sign changes the nonasymptotic freedom of scd20le action was predicted on a lattice[tl].

lar QED into asymptotic freedom in the effective Abelian ~For our purposes, it is more convenient to use the local
gauge theory in question. The additional dominant contribul-2grangian formalism invented by Zwanzides for a sys-
tion (z,) comes from the gluon self-interaction which is al- tem having both electric and magnetic currents.

ready included in the action of the APEGT through the cal- Before that, we will give a different treatment which is
culation of —(1/2)IndetQ. A summation of two helpful to discuss the relationship between the monopole

contributions gives exactly the same beta function as th&ondensation and the instanton. We show how the magnetic

c®DMa]D T alct|(d,—iea,) d|?

1
| FfA7+ kED , k7,
=—¢*(d,—iea,)’d. 9

original YM theory. monopole current is calculated in the original YM theory.
In other words, the APEGT is the Abelian gauge theory
with a QCD-like running coupling constag( ), A. Definition of the monopole current
We show that the currer, defined by
SE[a]=j d*x| — f 047,
4g(p)? # K":le‘“’”"av( Eab3AaAb): Ee”“”p"&vc , (45
2 ptal 9 p
5= s+t —Ih—. (3.9 is interpreted as the magnetic monopole current. This current
g(u)® g(mo)® 87 Ho is topologically conserved, i.ed,K*=0. For a while, we
use a different normalization of the field—g.4. Usually
IV. MONOPOLE CONDENSATION the Abelian gauge field a, defined by a#(X)
AND THE DUAL MEISSNER EFEECT I=tI’[T3A#(X)] can have singularities if the field is gauge

. . _ transformed by the rotation matrix WY as .A,(x)
In Sec. Il, we have obtained the APEGT with magnet|c_>A;li(X),

current(after the ghost integration

i
I I B Ag(x)::U(x)AM(x)uT(xHEU(x)aMuT(x), (4.6
poz f = g bLb
g

SE[a,b,k]zf d*x

such that the gauge transformed fiel!ljf(x) satisfies the
Abelian gauge-fixing condition, e.g., the MAG. It is this sin-
gularity that leads to a nonzero magnetic current. Under the

5This fact first obtained in th 0 based it . : :
1S fact was [irs: ovlamned in the gauge== based on quite gauge transformatiof4.6), the field strength is transformed

complicated calculationg23].

"Explicit calculation based on perturbation theory shows that aS]:uv(X)_’]:th(x)'
¢’ Fius(¥)=U(X) F,,(0UT(x)
Zy=Z=1- ——2(B=3)In u, (3.7)
1612

= 9,47 (X) = 0, A5 (%) —igLAL(X), A} (0)],
where g3 is the gauge-fixing parameter. 4.7
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see Appendix C. The Abelian gauge field strength is ex- B. Dual effective Abelian theory

tracted as In the following we present a somewhat different picture

_ U U 5 U U of monopole condensation leading to the dual Meissner ef-
fuv:=du8, = 3,8, =0[T(9, A, —d,A)] (48 fect. By extracting theéb ,-dependent pieces from the action
(2.31), and inserting the identity
=t T3(UF, U +ig[ AL, AV])]. (4.9

1
1= f [dK"]zS(K“—Ee“”f’”ﬂ,,(eabgAsAf’,)), (4.15

The definition of the magnetic current is

the partition functionZy, is written as
k .

w5 €urpo

J"tre. (4.10

. . . ) ZYM[J]::f dueSrm
The first term in Eq.(4.6) is nonsingular. Hence Ed4.8
shows that the first term gives a vanishing contribution in the
magnetic current. Only the second term

1

=J d/J,J’ [dK“]é(K”—Ee””P"&V(eamAzAg))
~ i
A, (x):==U(x)3,UT(x) (4.12 _

g xXexp —Symla,A, x,c,c;J]
gives a nonvanishing magnetic currentUIfx) is not singu-
lar, :Zlﬂ is a pure gauge and hence the field strength con- —f d*x
structed from A, is zero, F,,(x):=d,4,(x)— d,4,(X)
—ig[A,(x),A,(x)]=0. For the singulalJ(x), this is modi-  where the measurdu denotes the integration over all the

L g2, o+ b
—Zg wv + KM

] , (4.19

fied as fields.
In order to see that the APEGT can exhibit a dual Meiss-
Foun(x):=3,A,(x) = 3,A4,(x)—ig[A,(x),A4,(x)] ner effect, we consider the effective acti€fb] written in

terms ofb,, which is obtained by integrating out all the fields
i except forb,,,
=§U(X)[(9,L,r?y]UT(X)- (4.12

| | | Zod3)- [ [dbJexp-Sbll. (417
Thus we obtain the expression of the magnetic current,
Theng[b] is obtained as

k.= €upod M T3, A= 0y A,)]

— -1 2 4 3%
o S b]= 2 g°| d’xb,,b
a"tr(T3ig[ A4, ,4,])

= E €uvpo

+In<ex;{f d*xb,(X)K ,(x) > , (418
0

1
+ EG#VPO'

. (413

3" tr(T3|§U[ap,ao]uT
where the expectation value for a functiérof the field is

The magnetic current is composed of two parts. The secondefined by

part corresponds to the contribution from the Dirac string. L

Therefore the first part is the contribution from the magnetic ~

monopole which agprees with E@L.5) in the original norm%l- (f(A))o:= J d“J’ [dK¥] 5( K#= Eewwav( EabgAiAg))

ization of the fieldA. This can be seen also from Ed.9),

since X exp{— Syl @A, x,c,C; I (A), (4.19
” L~ o~ 1 v wheredu denotes the normalized measure withjadib , ] so
K= 5 €urpod WTAIGLA, AL D)+ 5 €410 H(TPF,) that<1>:= 1. It turns out that "
= e (TGLA, A, ]) -1
2 €uvpo alAp A S[b]zngf d4xbw(x)b*”(x)+J’ d*x(K ,(X))ob*(x)
+Ee atr T3i—U[a a,]u’ (4.14 10 [ s
2 et TG UL, 9,107 - #5 ] 0 [ K 00K, ) 00D )

For details, see Appendix C. +0(b%), (4.20
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where (K ,(X)K,(y)). is the connected correlation funct- y—x. Therefore, if such a type of strong short-range corre-
ion obtained from the normalized expectation valuelation between two magnetic monopole loops does not exist,
(F(A)):=(f(A))o/(1)y, e.g., {f(A)g(A)).=(f(A)g(A)) & is obviously zero. This observation seems to be consistent
—(f(A)){a(A)). with the result of lattice simulations. Monopole loops exist
We can obtain a similar expression for the APEGT usingboth in the confinement and the deconfinement phases. How-
the action(2.64). Hence the argument in the next subsectionever, in the deconfinement phase the monopole currents are

can be extended also to the APEGT. dilute and the vacuum contains only short monopole loops
with some nonzero density. In the confinement phase, on the
C. Dual Meissner effect due to mon0p0|e condensation Othel’ hand, the m0n0p0|e tl‘ajeCtorleS fOI'm |nf|n|te |0ng

. . loops and the monopole currents form a dense cluster, al-
The effective dual Abelian theorg[b] has U1) symme-  yhqgh there is a number of small mutually disjoint clusters
try, b,—b,+d,6, which is different from the () symme- [30].

try for the Abelian fielda, and is called the magneti¢(1)n, It should be remarked that the APEGT does not need any
symmetry hereafter. The magnetic current satisfies the CORs|ar field. In this sense, the mechanism in which the dual
servationd,K*=0, consistently with the U(1) symmetry.  g4,,9e field acquires a mass is different from the dual Higgs
This implies that the correlation function of the magnetic ochanism. Nevertheless, we can always introduce a scalar
monopole current is transverse, field into the APEGT so as to recover the spontaneously

(KuOOKY)e= (8,02~ 3,0)M(x=y). (4,29 Proken U(Lh symmetry,

As long as the mag_netic U(})symmetry is not broken, the Emgbﬂ(x)bﬂ(x)ﬂEmg[bﬂ(x)_aﬂg(x)]z
dual gauge field,, is always massless as can be seen from 2 2
Egs.(4.20 and(4.2]). Therefore a nonzero mass for the dual ) )
gauge field implies breakdown of the U(]symmetry. =|[d,—ib,(x)]1p(X)|?,
If U(1),, symmetry is broken in such a way that (4.26

where we identify
<KM(X)KV(Y)>CZ925W5(4)(X_Y)f(x)+'", (423

= % i 6(x)
the mass term is generated, ¢(x) \/Ee ' .27
B 4 -1 5 v Indeed, the result is invariant under,—b,+d,a and 0
S{b]= | d 29 b, (X)b#*(x) — 0+ a (¢p—€e'“P). Such a scalar field is called a 8kel-
1 berg field or Batalin-Fradkin field31]. The casg4.27) is
+ Egzmgbﬂ(x)bﬂ(x)Jr--- , (4.23 obtained as an extreme type Il limitondon limit),

imV(e), V(o) :=\(p(x)|?—mi2)?, (4.28

if we write f(x)=m§. This can be called the dual Meissner A—oo (¢ (¢ |40 b

effect; the dual gauge field acquires a mass given by or nonlinears model with a constraint,
1
2__

My =292 20 (4.24 8(| p(x)[2—m?/2). (4.29

if the monopole loop condensation occurs in the sense thatrhe valueg, at which the potential/($) has a minimum is
K (x)K proportional to the mass, of a dual gauge field,
B(x):= jm 0K e g

—= - "4, (4.2 /
(4)(y— o
y—x 0 (X—y) m,= \/E(ﬁo:E. (4.30

In the deconfinement phase, the minimum is givendgy

=0 (mp=0), while in the confinement phase the minimum
is shifted from zerogy#0 (my,#0) which corresponds to
monopole condensation. Thus the dual Abelian gauge theory
with an actiong[ b] is equivalent tqthe London limit of the

dual GL theory(or the dual Abelian Higgs model with radial
Part of the Higgs field being frozen

This is a criterion of the dual superconductivity of QE&m.
is consistent with the picture of a dual superconductor sce
nario for quark confinement proposed by Nambii,

't Hooft [2], and Mandelstarfi3]. In the translation-invariant
theory, ®(x) is an x-independent constant which depends
only on the gauge coupling constant If we take a specific
classical configuration to estimate them, -ardependence
may appear; see the effective dual GL theory in the latte

half of this subsection. a1 , - 5
It should be remarked thab is not a local order param- SdGL[b]:f d*%| b (9,197 "b,) 4|
eter in the usual sense. In order to find the nonzero value of
m,, we must extract, from the magnetic monopole current +0(| |2 p5)2+--+], (4.30

correlation functior(K ,(x)K,(y))c, a piece which is pro-

portional to the Dirac delta functiod®(x—y) diverging as hare we have rescaled the fid b, /g. Note that the

inverse couplingg™! has appeared as a coupling constant.
This implies that the dual theory is suitable for describing the
8For other proposals, s¢&9] and references therein. strong coupling region.
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Now we compare our approach with the previous ap- -1 _
proach[32,33 where a summation over the monopole tra- Tbﬂy(x)b“”(XH|[(9,¢+|9mbﬂ(x)]¢(x)|2
jectories is performed. The monﬂ)ole trajectories are ex-
pressed by the four-vectox“=x{(7),I=12, ... N, =M p(x)|*~v?]?, (4.39

where 7, is an arbitrary parameter characterizing the trajec-

tory andN is.the total number of loops. Then the monopole|f monopole condensation occurs in the sense tigdi)|
current Is written as =p#0, the mass term of the dual gauge field is generated,
and the GL theory reduces foote that the normalization for
the fieldb,, is different from Eq.(4.23]

N

K”(X):%lel n|f drxf(m) 8V (x=x(m)),

— wv 1 2 2 —
i 2 P (OB + 5 mb, (%)%, Mp=gpv.
XHi=—, (4.32
aT

This is the so-called dual Meissner effect. Precisely speak-

with n; being the winding number. Then the interactioning, the classical solutiof84] ¢(x) is not a constant and is

b, K# between the dual field and the monopole current isa function ofx such thatg(x)—v as|x|— and ¢(x)—0

written as as|x|—0. The characteristic length separating both behav-

N iors is the coherence length= \/Elmd). The ratio
4 — .
f d*xb,, (X)K¥(x)= ?;1 n | drb, o4 (7)X{(m).
(4.33

The summation over all configurations containing an arbiS called the GL parameter whege=1/m, is the penetration
trary number of monopole loops with all possible winding 9€Pth. The constanth(x)|=v#0 corresponds ten, =< or
number and trajectories is performed based on the identitf=0 @ndxgL==, a special case of type Il superconductors

KoL:=0lE=myl(y2my) (4.36

[33] kgL>1/\2. In the APEGT, this effect is expressed by the
x-dependent massi,(X).
o0 N N
1 _
il i K2(m)
NZO N!flljl [dx,]exp{lzl f dn[MVx“(n) D. Monopole action
It is easy to show that monopole condensation actually
+0 (x G occurs, if we use the lattice versiphl,30 of the monopole
QM( 1(T1))X] (ﬂ)]} actior? (4.4),

=expTrinH=deiH) 1
Sn= =332 fu(0 100
- [d¢]exp[i | @il +i, 0010001 g

1
+2, SKEOD,,(x—y)K!(Y).  (4.3D)
_M2|¢(X)|2}], X,y g2 “
(4.39
1 1 The monopole condensatd.25 is calculated as follows.
H:= E(pM—QM)Z— EMZ, From Eq.(4.37, we can extract the self-mass term

where¢ is a complex scalar field. Both sides are equal to the _D(0)
vacuum-to-vacuum transition amplitude of the theory con- Sma= 9° ; kK“(x)k*(x),  D(0)<e.  (4.39
sisting of charged scalar particles of magsn the presence
of an external electromagnetic fief@, .

If n, is restricted tan,= * 1, a field theoretical quantity is
obtained,

The self-mass term with constafk,(x)|=1 (see[11]) is

proportional to the length of monopole loops. The probabil-

ity that a monopole loop with length will appear some-

. where is

(0, +i1gmb, (X)) p(X)[?, Omi="5 M
P_=7"exp(— Sy, =exp[C—D(0)/g?]L}, (4.39

where Q,=gnb, and ¢ plays the role of the monopole.

Assuming a mass term of the monopole field and the repul-

sive self-interaction among the monopoles, a low en¢irgy  °0n the lattice, the monopole action is obtained from the radially

frared effective theory of the GL type, the effective dual GL fixed Abelian Higgs modefof Villain type) by lattice duality trans-

theory, was proposed.0], formation[35].
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where C=In7 for a nonbacktracking walk on a four-

dimensional hypercubic lattice. For sufficiently largg J d*xd*yd*zd*wb,(x)b,(y)b,(2)b,(W)
[g?>>D(0)/C], P 1> asL1% and long loops give a domi-

nant contribution to the functional integral. On the other X (KL ()K(Y)K(2)K (W)

hand, P, |0 asL{®, if g% is small[g?<D(0)/C]. This

indicates that in the infinite volume limit long monopole

loops make no finite contribution. This is a simple energy- :3)\(g)j d4x[b#(x)b#(x)]z+---. (4.43
entropy (action-entropy argument. Taking into account that

the entropy contribution is equivalent to adding an action,
This renormalizes the mass term in £4.23 through radia-

tive corrections. In this sense the criteri@h25 is the tree-
So= —CE k4(x)k“(x), C<o. (4.40 level criterion._ The monopole interaction is expected to be
X weakly repulsive.

Therefore we obtain E. Another effective Abelian gauge theory and confinement

The effective Abelian theor§ a] written in terms ofa,,
( D(O))l is obtained by integrating out the dual gauge field. This
(I): —

(4.41 theory with an actior§[a] gives a dual description of the
same physics as that given I8/b]. Following the Zwan-
ziger formalism[28] (we do not repeat the details; Sgk0]
and[19]), if the dual gauge field acquires nonzero meags

This shows that, if the coupling is sufficiently strong, we ,
(due to monopole condensatiprve obtain

have a positiveb and nonzeram,. In other words, if the
entropy of a monopole loop exceeds the energy, monopole
condensation occurs. The region exhibiting monopole con- ¢ [a]:f d*x -1
densation extends to smaller and smaller valueg) dbr eff 49(u)?
longer loops due to recent studiggf]. The above argument
is valid for long loops. For more details, sgg8]. The mono- 1 nzmﬁ(x)
pole action in the continuum needs more careful treatment as + Eaf‘(x (n-3)2+n2m2(x)
in three-dimensional cas86] which will be treated in a b
subsequent paper.

In the usual language of field theory, the term (4.49
k“(X)D,,(x—y)k"(y) corresponds to the quartic self- 1
interaction, especially the self-mass tekff(x)k”(x) to the X, (0):= — eMaBerrYon n 9.9,
contact quartic self-interactiol. Therefore, it is assumed r n? vk
that the self-interaction among monopole loops does not es-
sentially change the above picture. It should be remarkeq haren is an arbitrary fixed four-vector appearing in the
that higher order expansion generates interactions bet""eeﬂvanziger formalism. The coupling constagfx) is the
monopole loops. For example, the self-interaction among th?unning coupling constant obeying the sagefunction as

f () F47(X)

Xu(d)a’(x) |,

monopoles, the YM theory. In the limitm,— 0, Eq.(4.44) reduces to Eq.
(3.9. Note that the local U(1)symmetry is not broken and
(KL ()KL (YK (DK (W) =N(Q)[8,,8,,6Y(x~y) a, is massless, since
x 8 (z—w) 8 (x—z) Xy =0=09"X,,. (4.45

(4)(y—
+6up0y00 T (X=2) The low energy effective theorigg.44) and (4.31) lead
X W (y—w) 5 (x—y) to the linear static potentiaV(r) between static color
charges and the string tensionis given by

+8,56,,0 M (x—w) Q
X 5D (y—2) 8 (x—y)] +- -, V(r)=or, o= —mpyf(xeL), (4.49

41
(4.42

wheref(x) is a function depending on the method of calcu-
induces quartic self-interactions fbr, , lation [10,19. The essential pann; in the string tension

follows simply due to the dimensional analysis, irrespective

of the details of the calculation.

19Ve remember that the quartic self-interaction in the scalgt Monopole condensation can be estimated based on the

theory can be understood as the intersection probability of two ranclassical configuration ofA(x) satisfying the gauge-fixing
dom walks with a repulsive interaction. conditionF3[A,a]=0,
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_ _ [DJALDJ[A]l=—1F,,. (5.5
<KM(X)K,L(y)>=Zw1/|f [dA(x)Je” S S(F[A,a]) g g
1 At the one-loop level, it is easy to see that we can replace
Xf [dK,] 5( K= 5 0%€0p00" (#2,)% in this contribution by {,,)2 If we add this contri-
2 bution to the APEGT obtained in Sec. Il, the APEGT of
QCD is obtainedapart from the gauge-fixing term and the
X(EabSA;\AE)) KL (K, (y). (4.47  Abelian ghost term

1+z, 1+z, ,

2 T T O b, K

Note that the MAG conditiori-[ A,a]=0 is satisfied by the S
classical multi-instanton solutidr87,39 of 't Hooft type, - X

AL =75,0,8 (%), — _ TRODCL 4 179bCf e
+y(iy*D,Ja]-m)y+ic®D, Ta]D Talc®|,

;ZV L= Eaﬂv—’_ 5a,u51/4_ 5av5;/,4: _;i,u . (448)

Therefore the classical instanton configuration may have a Dal:=d,—ia,T°. (5.6
possibility to generate monopole condensation. Actually, it

has been shown that monopole loop formation and its cont the regionK ,=0, it is clear that this theory recovers the
densation are intimately correlated with the instanton conene-loop beta function of QCD,

figuration [13,39—-48. Therefore it is quite interesting to

clarify whether the instanton configuration gives sufficient

monopole loop condensation for quark confinement. The de- by=

11 4
3 C2(G)— g Nir (F). (5.7
tails of this problem will be given in a subsequent pa@é.

3

Monopole condensation and resulting dual Meissner effect
can be treated in a similar way as Sec. IV. We can discuss
In order to discuss QCD, we add the fermionic action chiral symmetry breaking based on the APEGT of QCD, Eq.
(5.6); see, e.g.[19].

V. INCLUSION OF A FERMION

S,:=fd4xE[iy“Dﬂ[A]—m]¢//, DJIAL=0,~iA,.

(5.1) VI. LOWER DIMENSIONAL CASE

o o o In the (2+1)-dimensional case, we introduce the auxiliary
The contribution from the fermionic action is evaluated as ector field B, [instead of the tensor fiel&,, in (3+1)-

dimensional cage Then, corresponding to Eq2.10 or
f [dw][dw]exp{ _f d*x YD, [ A]—m} ¢] (2.13, the action is rewritten as

= (detiy*D, [A]—m™ sapBFYM[A,BFf d°
=exp(N¢ Indeti y*D,[ A]—m})

1 Hvp 1 2 M
ZE Bp(fMV'f‘CMV —Zg B,uB

: 6.1

=exp{% Indeti y*D,[ A]—-m}?|. (5.2) _4_92(52,,)2

In a similar way as in Sec. Il, we can calculate the logarith-or
mic determinant

t(i 21y t(i 2 1
Tr(exp —t(i y*D,[AD ) — Tr{iexd —t(iy*d,)]} SapYM[-AvB]ZJ d3x —4—gz(fwfw+2fWCW)
2
2
:f d“le 5 37 (F)(F5,)2+0(1) (5.3 1 1 1
T vV 2 2
+ ZEM poCl“,— Zg BMB’M— 4—(32(87”) .
and
(6.2
deti y“D [ A])? 2
In H—“[Z]=j d“xg—2 §r(F)In,u2(ff‘w)2, At the tree level, the dual vector field has the respective
detiy“d,) 16m correspondence
(5.4
wherer (F) is the dimension of fermion representation. In E wpo E Upa
this calculation, we have used the commutator B 5 (foot Coo)s 2°€ Coor- ©3
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In order to discuss the monopole contribution, we use the

decompositioh* SaPYM[A,qS]:J’ d?x +2f,,C,.)

1
- 4_92(fp,vf,u.1/

1
Bu=0,0% 5 €uapX™®s Xuvi=0uXo— X, (6.4 1 1 1
v % pap mv uAv  YvAu
? g IO GO S
Hence the APEGT of thé2+1)-dimensional YM theory is

given by (6.11
1 1 The tree-level correspondence is given by
Sl[avd)!X]:J’ d3x _Ff/.wf,u,v_ Zgz[(aﬂ¢)2+szv]l 1 1
g (65) d)(_) Eepa(fﬂrr+cprr)! Eepgcplr . (612
and Thus (1+1)-dimensional YM theory is reduced to an effec-
QZE _ (Dp[a]Dp[a])ab(SW— Zeab3f,w tive Abelian gauge theory with
1 o ans S[a,¢]= | d’ g —392¢2 (6.13
—I—Eg € (ew,pﬁqu—l—)(#,,) 1L, 492 mviprT g ) -
—2ig?¢(ccP—ccts?%) 5, — D [a]*°D [a]®® and
1 1
+—D,[a]¢'D,[a]f’. 6.6 Qui:=(D,[alD,[a])*°5,,~2¢*%f ,,+ 5 9% e, ¢
In the (2+1)-dimensional case, instead of the interaction —2i92§(§‘cb—?°c°5""b)5w—DM[a]aCDV[a]Cb
b, K# between the dual gauge field and the magnetic current, 1
we obtain the interaction term between the dual scaland +=D,[a]?D,[a]®. (6.14
the monopole density, a HETE T
p(X)B(X), p(X):=€""3,C,,(X), (6.70  Inthis case, the interaction term is induced,
since D(X) €, (X)) (6.19

5 5 It is interesting to compare these formulations with the pre-
j d XE”V”B,JCMFJ d°X[— h€""?3,C 0+ X 1, Coun]- vious approachel86,47—-49. Detailed analyses of the lower
(6.9) dimensional case will be given in a forthcoming paper.

The effective dual theory is the scalar theory with VIl. CONCLUSION AND DISCUSSION

_ B B B We have derived Abelian-projected effective gauge theo-
SLe1= | dX[9,¢(x)]°+ | d**(p(X)) b(X) ries (APEGT) of YM theory and QCD. This has been per-
L formed by integrating out all off-diagonal non-Abelian gauge
i 3 fields belonging to S(2)/U(1). The obtained APEGT is
* Zf d Xf dY(p()p(Y))ch(X) E(y) +- . written in terms of the maximal Abelian gauge fielg and
the dual Abelian gauge field, which couples to the mag-

(6.9 netic monopole currer,, . First, we have shown that the
In the (1+1)-dimensional case, the dual tensor reduces to #APEGT has the same one-loop beta function as the original
one-component scald, non-Abelian gauge theories. Hence the APEGT exhibits
asymptotic freedontat the one-loop level
1 1 Next, we have shown that the dual vector field introduced
—e!(f,,+CL)d— Zgztbz to linearize the gluon self-interaction has an interaction with
4 the magnetic current. Because of this interaction, the dual
1 gauge field can become massive if monopole loop condensa-
S W)21 (6.10  tion occurs. This is interpreted as the dual Meissner effect.
We have shown that the mass of the dual gauge field is given
by the monopole loop condensatigk ,(x)K#(x))/54(0)
or #0. This is our criterion of dual superconductivity. A
method of showing monopole condensation is to consider the
monopole action. The lattice monopole actidri,3Qq gives
UThe vectorB, has three degrees of freedom, while the real@ simple proof of monopole condensation.
scalarg has one and the vectqr, has three. One redundant degree  If we apply the Zwanziger formalism to the APEGT with
of freedom corresponds to that of the gauge transformatign,of & magnetic monopole, we can show that the static quark

SaperyM A, ¢]= f d*x
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potential contains a linear part proportional to the quarkintegrating out the tensor field, we obtain

separation. The APEGT with a monopole is sufficient to

show quark confinement. This supports Abelian dominance.

Monopole dominance will be confirmed by evaluating the SE:J d*x

monopole condensate, since the string tension is determined

from the massn, of the dual gauge field. We have pointed

out that this condensation can be estimated by the classical o

instanton configuration. The intimate relationship between ><(1—zc)2fwf’”+ic""D’“’"C[a]foL'D[a]cb

confinement and instanton will be understood from the view-

point of a topological field theory of the Schwarz type,

BF-YM theory. (A3)
This work justifies some aspects of the pioneering work

of Ezawa and lwazakj9] and Suzuki[10] based on the

effective dual GL model. However, the APEGT has no free

parameter and is of predictive power in sharp contrast with

previous works where Abelian dominance was assumed fronPe= j d*x

the beginning. The APEGT has a complete correspondence

1 1
f o fa (142, ¢

SHence, at the one-loop level, this reduces to

1 v~ pact o 1€[Ch b
—(1+h)4—ngwf/‘ +ic’D#*Ta]*D Ta]c

to the original YM theory. (A4)
We have chosen the gauge group(3Uor mathematical
simplicity. To discuss confinement in the real world, we Where
must discuss the SB) case. This case will be treated in a
subsequent papé46]. 20 g2
h=za—zb—22c=—§;<16772 In w. (A5)
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If we adopt a more general gauge-fixing functional

B

+c3| Filal+ Ed’s)

= + 43 +
Gg= ; c*( F-[Aa]+ Eg{f
APPENDIX A: APEGT OF BF-YM THEORY

In a similar way as in Sec. Il, the APEGT of BF-YM +anY, ()¢ e +arcSctc, (B1)
theory is obtained as x
the gauge-fixing parfgr= —i 6gGys has the additional con-
1 tribution
So+51+52=f d*x —za4—ngWfW—Z(1+zb)gZBWBW
— + 3 + F
1 5 Lop==2 ()¢ gnFiale™ =2 (£)CqF [Aale
+§(1_ZC)BMVfMV - -
B +> () FT[Aalcd— a(1+ ) nY, Acictct
+ic®D#aléDSalc |, (A1) * *
_ 2 2| it i nt o
a§+I81;cccc. (B2)
where
5 5 Ihgrefore, the ({)-invariant four-ghost interaction term
Z,=— =K 9 Inw, zp=+2« 9 In u, c"c c*c” coming from the expansion of Ind€g,
3" 1672 2
, (c®cP— c°c®62P)(Pca— cdcd 5P)
g
Z.=+2k In w. A2 o _
¢ 6m2 (A2) =-2clctc’c®’=-2c'cc’c, (B3
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is canceled by adding the BRST exact term :U(aMAV_aVA#_ig[AN,AV])UT
—idg(c®ctc)=—i{Qg,c3c"c"}. Such a term does not _

influence the physical state characterized @y|phys =0. + I—U[o" a,]ut. (CH)
This is an implication of the renormalizability of YM theory g

in the MAG.

This is consistent with Eq(C3); that is, the field strength
APPENDIX C: MAGNETIC MONOPOLE transforms covariantly,
AND DIRAC STRING IN SU (2) GAUGE THEORY

[ T
In this appendix, we discuss how the Abelian objects, the Fuv= Ty =UF LU (C7)

Dirac magnetic monopole and Dirac string, are produced due

to a S|tnhgula9rz gauge transformation in @ non-Abelian |, \hat follows we assume that,, is not singular and that

gauge theory. the singularity inA!, comes from the gauge rotatids. In
Th_e ntog A_beil_an field strengtlf,, is defined using the such a case, we cdll the singular gauge rotation. Therefore,

covariant derivative the gauge-transformed field strength is composed of two

parts, the regular and the singular part,
D,:=d,~1gA, (Cy

r r S 7
as ]-'W—}“W’+]-"M,

i i
F,,==[D,,D,]==[d,—igA,,d,—igA,]. (C2 _
a g[ wDs] 9[ p 194 94l (€2 ) =Ud,A,~d,A,~iglA, A,]DUT,

C8
This is rearranged as €8
i . S r.__ I_ T
Fur=glon 91+ 10,0 A= [9, A,1 =100 A AL Fur' = gULu, 0]V
i .
= a[%,t?V]JF%AV—f?VAM—Ig[AM,Ay]- (C3 First, we show that only the second part of the potential
A’ (%),
It should be remarked that the first term on the RHS in the
final line cannot be neglected when there is a singularity. We o +
consider the local gauge transformation AL (x):= §U(X)‘9MU (x), (C9)

gives rise to the nonvanishing magnetic current. The diago-
nal parta;, of the gauge potentiall;, is singular on the point
where the Dirac string exists. The direction of the Dirac
string can be changed arbitrarily by the gauge transforma-
tion. Hence the Dirac string is not a physical object. Actu-
Straightforward calculation using E¢C4) leads to ally, the magnetic charge is shown to obey the Dirac quan-
tization condition. This can be seen as follows.
The local SW2) matrix U(x) can be written in terms of
Frv =0, A,=3d,A,—ig[ A}, A]] (C5  three Euler's angles, 3,7,

[
A,— A, =UAUT+ auaﬁu*. (C4)

e(i/2)[a(x)+y(x)] COS@ e(i/2)[a(x)—y(x)] Sin@
U (X) — ei 'y(X)(rS/ZeiB(X)(rz/Zei a(x)ogl2_ ] (ClO)

B(X) B(X)

— el 121e00=300) gjn - (~I2Le(x)+ 4] o

Using the residual () invariance after the MAG, we can chooséx)=— a(x). A convenient choice is to take(x)=
—y(X)=¢(X), B(X)=0(x), and identity the angleg and ¢ with the polar and the azimuthal angles in the three-dimensional
polar coordinate of S(2) so that

12This appendix is deeply indebted to Suganuma and &0



7484 KEI-ICHI KONDO 57
- > H 4
U(X) ., = XH(i 66, 512) In this casé
0(x) 0(x) 1 0. 1 1—-cosé.
_— (x) oS, _ e
cos— e'¢™ sin —— a(x)= - tanse,= gr sing ¢ (C2y
oo gin 20 6(X) co 6(X) or
2
ox) . . 6(x a%(x)=(a$(x),a%x))= ———==(0,— Y, X,0).
—COSQ-HO' €, sin(—) (C11) ® 0 gr(r+2)
2 2 (C22
€,:=—Ssin @(X)€ex+CoS p(X)Ey, (C12  The vector potentia® is singular on the negativ2 axis and

where (X,Y,Z) is identified with the space coordinates of

x“=(0,)=(0X,Y,Z) and

JXZFY?
0<o:= arctanT< T,

Y
0<¢: =arctar§< 2. (C13

is not defined ford=7r. Then the rotation is given by

- R R r 4 N
VX&) =Byt Bps=—5 + ga(m S(Y)6(—2)6,.
ar

(C23

This implies thatV x a%(x) = r/gr® except along the nega-
tive Z axis. The singularity along the negative axis is
called the Dirac string. This cannot be avoided as long as one
uses a single expression for the gauge potential in the whole

This choice does not lose generality, since we can alway§pace. A method to avoid the singularity is using the Wu-
rotate the matrix using the residua(1) degrees of freedom; Yang monopolg51]. It is impossible to construct a single

see[39] for details!®

singularity-free potential which is defined everywhere. When

For the gauge rotatiofiC12), the three-dimensional part considering the total space, we need at least two expressions

of Aj, is
N 1 . N
AS(x)= a[cos e(x)e,+sin p(x)e,]T!

1 N .
+ a[sm @(x)e,—Cos (X)) T?

+ ! t 609+ T3, C16
ar an——¢, (C19
where we have used
Vil S0, S c1

R rsingde’ (€17

The diagonal Abelian part is defined by

r . 3 47

a,:=2t(T°A)). (C18

Bif we take y(x)=a(x) and write a(x)=y(x)=o¢(x), B(X)
=0(x),

i lx 0(x) . 0(x)
¢ cos—— : sin——
U = Cl
(x) 8(x) . 8(x) (C19
—smT e cos——

For this choice ofy, the Dirac string appears on the posit&eaxis,

since 3=0,7 corresponds to

gle(x) 0

0 1
0 e ie() |’ U(X)ﬁ,‘p=(_l 0). (C1H

U(X)O,qo:(

for the vector potential.
The magnetic monopole sits Bt 0,

Bn=kI(x), Q(x):%ﬁa@(x). (C24)

The four-dimensional expression of the magnetic current is

1

E e,u, Vp(TaO'f y73%

S 5,002(),
(c29

where the Abelian-projected field strength is defined,

=k,(x),  ku(x)=

- . 3
fi=d,8,—0,a =t[T(d,A;—3,45)]. (C26
The magnetic fluxb obtained by integrating,,, over any
closed surface containing the origin is

- . A
cpm:zf B, d&= — (C27)
s g
The four-dimensional expression is given by
s _ 1
aM(x)——§[cosﬁ(x)a#a(x)+a#y(x)]. (C19

The angley(x) does not appear in the()-invariant quantity. Ac-
tually, the magnetic current given by

1
Ku(X) = €u1podu[ 9, COS B(X)dga(X)] (C20

does not contain the anghe For more details, s€d 3].
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On the other hand, the magnetic fldx obtained by integratinﬁiDs over any closed surface containing the origin is

- o 4
(I)DS::j BDS.dS:__' (C28)
s g

We observe that the singular gauge potenﬂél satisfies the following relation:
i
3, A5—3,A5= a{aﬁ(uaVUT) -a,(Ua,uh}

i i
=a{(a#U)(avuT)—(aVU)(aﬂuT)}Jrg(uaﬂayuf—uayaﬂuh
| t t t t i t
_5{(0"U)U Ua,uh—(a,U)u'U(a,U"}+ a(U[a#,ay]U )
! UUTUUTUUTUU*iU ut
_5{_( a,UNUas,u")+(Ua,u’)(Ud, )}+§( [dy.d,]JUT)
~Lhiua,utivautts Lo ut
_a[l ap, i aV ]+§( [ap,!&v] )

—ig[ A ,Ai]+'§(U[aﬂ,ay]uT>, (29

where we have used dy Oy
dedY[ﬂx,ﬂy]¢=deSde
uut=1, g,UUNH=(9,U)UT+U,UN=0. s s Ix¢  Ive
(C30
— 2
Hence the Abelian-projected field strength reads - Ld SVX(Ve)
i
f ., =tr(T3ig[ A5, AS]) +tr T3§U[8M,0V]UT)- = %Ciasaﬂcpdx":A@:an
(C3)
If U is not singular, the last term in EGC29 or (C31) is =2wnLdXdY5(X)6(Y), (C3H

absent, sinceél; is a pure gauge which gives a vanishing

field strength for nonsingulad (x), where the integen comes from the multivaluedness of

Foni=0,A5= 0,45, —ig[ A, , A5]=O0. (C32) When 6=0 (i.e., on the positiveZ axis),

The last term in Eq(C29 corresponds to the singularity due 1
to a Dirac string as shown shortly. U(X)o,,= o 1)’ (C36
Now we clarify the physical meaning of the last term

i 1)(3)
(i19)(U[d,,9,]U")™. We show thalf which does not give a nontrivial contribution in EG33.

UX)[ 9y, avJUT(X) = — 27ni 8(X) 8(Y) 6( - Z) 5. On the other hand, foé= = (i.e., on the negativ& axis),
(C33 _
0 etie)
To prove this, we first show that U(X)ﬁ,‘p:( _eie0 g ) (C37)
[Ix,dv]e(X)=2mnd(X)o(Y). (C39

Then, using Eq(C34),
This is a result of the Stokes theorem; for the arbitrary two-

dimensional regior® including (X,Y)=(0,0), U(X)w,gp[f?x,f?Y]U(X);(p: —i[dx,dv]e(X) o3
- ==2mind&(X)8(Y)os.

This is derived also from homotopy theory, (C38
IL(SUMN)/UMN"H=TT,(U)N"H=2zN"1.  In  particular,
IT,(SU(2)/U(1)=11,(U(1))=Z; see argument in Ref6]. This proves the stateme(i€33).
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The relation (C33 shows that the term In the original YM theory, as a result of the Jacobi iden-
(i/9) (U[d,,,9,]UM)® produces a magnetic field only along tity
the negativeZ axis,

E,LLVPO'[DV v[Dp 7D0']]:01 (C45)
[ 4mn i i identi
B?S:= —(U[dy,ay]UNH®= S(X)8(Y)6(~2). the Bianchi identity always holds,
9 g 0= €100, F
(C39) pvpo= v/ po
So this is identified with the Dirac strin@not the magnetic EWPU&V]:W:igewpUAV]:pUZZigA;]‘.;w_ (C46)

monopolé extending from the origin to infinity along the o ] N . .

dimensional space. Hence the divergenc®Bf is nonzero IS Violated,
at the origin, €vpod? ), #0, (C47

which leads to the magnetic monopole. In the original YM

ky*=V-B2®:=0 i—(U[a ayJUH®=— 4ina3(x)
0 z " %g X0y g ' theory, the magnetic monopole does not exist. However, note

(C40  that
which should be compared with E(C28). Ewpgap]:;ww);&o, fLy(3)3:2tr(T3va)v (C48)
Finally, we give an alternative definition of the Abelian-
projected field strength, since
3. s s 3 | + 6;;Vp0'apf;1,v(3>: eﬂvpoﬁp(&ua;_ava;l,)
f,,=t(Toig[ A, , A D) +tr| T°~U[d,,d,]JU"|. ) S 3
9 — €uupo?”ig([A], AP
(C4y _
This is the Abelian field strength obtained from the singular =€ (9PI_(U[(9 J ]UT)(3). (C49
mVpo g mrv

gauge potential and consists of the magnetic monopole part
and the Dirac string part as shown above. In the RHS, the'he RHS is equal to the Dirac string contributiptb, 39
second term t3(i/g)U[ 4, ,d,]U") expresses a magnetic  |ncidentally, the four-vector

field on the Dirac string and vanishes elsewhere. Therefore,

o 3 . 1 i
the remaining part tf(!g[As AS]) dengtes the field Kgszifuvwﬁp_(u[ﬁu'(7v]UT)(3) (C50
strength of the magnetic monopole defined everywhere. g
Hence, the magnetic monopole part of the magnetic currefanotes the trajectory
defined by

3y ,(7)
1 K =fd B 59 (x—y(7,0), C51
N S (ca2 W= | dr—=E—=59(x-y(7,0),  (C5

as the boundary, =y ,(7,0) of the Dirac sheet described by

is equivalent to Yu(7,0) (world sheet of the Dirac string, i.e., two-

1 b3 na nb dimensional surface swept by the Dirac string in four-
Kp=5 €unpsd”(GEALA,). (C43  dimensional spage
In the three'dlmensmn_al slices, this describes a magnetic w,“,(x):z—(U(x)[ﬁﬂ,ay]UT(x))“)
monopole with magnetic charge g
A7 g0Om J a(y*,y")
i 3y " _ — 4) (y —

Om: f Ko(x)d3x g ar M (C44 drdo 7o) M (x—y(r,0)). (C52
wheren is an integer. This is nothing but the Dirac quanti- The Yang-Mills theory is further discussed from the topo-
zation condition. logical point of view in a subsequent pafgég].
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