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Abelian-projected effective gauge theory of QCD with asymptotic freedom
and quark confinement
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Department of Physics, Faculty of Science, Chiba University, Chiba 263, Japan
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Starting from SU~2! Yang-Mills theory in 311 dimensions, we prove that the Abelian-projected effective
gauge theories are written in terms of the maximal Abelian gauge field and the dual Abelian gauge field
interacting with magnetic monopole current. This is performed by integrating out all the remaining non-
Abelian gauge field belonging to SU~2!/U~1!. We show that the resulting Abelian gauge theory recovers
exactly the same one-loop beta function as the original Yang-Mills theory. Moreover, the dual Abelian gauge
field becomes massive if the monopole condensation occurs. This result supports the dual superconductor
scenario for quark confinement in QCD. We give a criterion of dual superconductivity and point out that the
magnetic monopole condensation may be estimated from the classical instanton configuration. Therefore there
can exist an effective Abelian gauge theory which shows both asymptotic freedom and quark confinement
based on the dual Meissner mechanism. The inclusion of an arbitrary number of fermion flavors is straight-
forward in this approach. Some implications to the lower dimensional case will also be discussed.
@S0556-2821~98!05110-8#

PACS number~s!: 11.15.Tk, 11.15.Ha, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

It is one of the most important problems in particle phy
ics to clarify the physical mechanism which realizes qu
and gluon confinement. An important question is, what
the most relevant degrees of freedom to describe the con
ment? In the mid-1970s, the idea of the dual Meiss
vacuum of quantum chromodynamics~QCD! was proposed
by Nambu @1#, ’t Hooft @2#, and Mandelstam@3#. In this
scenario, the monopole degrees of freedom play the m
important role in the confinement. This aspect can be s
explicitly through a procedure calledAbelian projectionby ’t
Hooft @2#. Under Abelian projection the non-Abelian gaug
theory can be regarded as an Abelian gauge theory wi
magnetic monopole@4#. For the confinement mechanism
there are other proposals@5# which we do not discuss in thi
paper.

Abelian projection@2# is to fix the gauge in such a wa
that the maximal torus group of the gauge groupG remains
unbroken. It goes on as follows for the gauge group SU~N!.

~1! One chooses a gauge-dependent local quantityX(x)
5XA(x)TA which transforms adjointly under the gaug
transformation: i.e.,

X~x!→X8~x!:5U~x!X~x!U†~x!. ~1.1!

~2! One performs the gauge rotation so thatX becomes
diagonal:

X8~x!5diag„l1~x!, . . . ,lN~x!…, ~1.2!

wherel i(x) ( i 51, . . . ,N) are eigenvalues.
~3! At the space-time point where the eigenvalues are

generatel i(x)5l j (x) ( iÞ j ,i , j 51, . . . ,N), a monopolelike
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~hedgehog! singularity appears. The singularity appea
in the Abelian gauge fieldam(x) extracted from the non-
Abelian gauge fieldAm8 (x)5U(x)@Am(x)1( i /g) ]m#U†(x).
The monopole singularity is characterized as a topolog
quantity.

~4! At the generic point where the eigenvalues do n
coincide, the gauge is not determined completely, since
diagonal gauge rotationU @an element of the largest Abelia
subgroup U(1)N21, the maximal torus group#,

U~x!5diag~eiu1~x!, . . . ,eiuN~x!!, (
i 51

N

u i~x!50,

~1.3!

leavesX invariant. Therefore, within this gauge, the theo
reduces to an (N21) fold Abelian gauge-invariant theory.

Monte Carlo studies of the Abelian projection were ini
ated by Ref.@6# and the maximal Abelian gauge~MAG! was
adopted in the simulation on the lattice@7#. Recent extensive
studies of Abelian projection~see @8# for a review! have
confirmed theAbelian dominanceproposed in Ref.@9#. This
states that the non-Abelian gauge fieldAm

a in
SU(N)/U(1)N21, behaving as a charged field under residu
U(1)N21 gauge rotation, is not important in the low energ
physics and the maximal Abelian part U(1)N21 plays the
dominant role in quark and gluon confinement. In analyti
studies, Abelian dominance was assumed from the begin
to construct the effective low energy theory of QCD@9,10#.
Assuming Abelian dominance, one can show that, if mo
pole condensation occurs, charged quarks and gluons
confined due to the dual Meissner effect. Monopole cond
sation is expected to bring about mass for the dual ga
field. An effective theory of monopole currents was inves
gated also on the lattice@11#. In fact, recent Monte Carlo
simulations@12# support Abelian dominance and furthermo
monopole dominance. However, there seems to be no an
lytical proof of Abelian dominance.
7467 © 1998 The American Physical Society
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A deficit of Abelian projection is the gauge dependence
the procedure of Abelian projection. The quantityX is a
gauge-dependent quantity and the field variable in which
monopole appears is not a gauge-invariant quantity. Th
fore the result seems to depend crucially on the gauge
lected in Abelian projection. However, this would not be
real problem, since it is possible to put Abelian projection
a gauge-invariant form, if we desire to do so; see@13,14#.

The real problem is another in our view. In the Abelia
projected theory, the magnetic monopole degrees of free
appear as the singularity in the Abelian gauge field. T
magnetic currentkm is obtained as the divergence of the du
Abelian field strengthf̃ mn ,

]n f̃ mn5km , f̃ mn :5
1

2
emnrs f rs, ~1.4!

in a similar way that the equation of motion relates the fi
strengthf mn to the electric currentj m ,

]n f mn5 j m . ~1.5!

If the U~1! potential am is nonsingular, the Abelian field
strengthf mn :5]man2]nam leads to vanishing magnetic cu
rent,km50, which is nothing but the Bianchi identity for th
U~1! field, ]n f̃ mn[0. So if one needs the nonzero magne
current, the Abelian field must include a singularity. Ho
ever, we do not think that it is sound as a quantum fi
theory to treat the singularity of the field variable as t
essential ingredient from the very outset. In the lattice ga
theory, such a singularity does not appear due to lattice re
larization @15# and the monopole contribution is extracte
from the gauge-invariant magnetic flux, although monop
dominance is supported in the Monte Carlo simulation on
lattice. Moreover, it should be noted that the magnetic mo
pole does not exist in the original non-Abelian gauge theo
The magnetic monopole appears only after Abelian pro
tion ~see Appendix C!.

The purpose of this paper is toderive the Abelian-
projected effective gauge theory~APEGT! of QCD as a
quantum field theory, from which we should start the analy
sis. For simplicity, we restrict the following argument to th
G5SU(2) case. The SU~3! case is more involved and wil
be presented in a subsequent paper. In this paper, wit
using various assumptions~actually with no assumptions!,
we derive the APEGT of Yang-Mills~YM ! theory and QCD.
This is done by integrating out off-diagonal fields belongi
to SU~2!/U~1! based on the functional integral formalism
We use the word ‘‘effective’’ in the sense of the Wilso
renormalization group@16#, since the Abelian-projected
theory is obtained after integrating out the degrees of fr
dom corresponding to the non-Abelian gauge fieldsAm

6 :
5(Am

1 6 iAm
2 )/A2 which behave asmassivecharged matter

fields and do not play an important role in the low ener
physics of confinement. Such a strategy can be exactly
formed in theN52 supersymmetric YM theory and QCD
@17#.

We show that the off-diagonal field gives rise to a no
trivial magnetic monopole current for the Abelian part,
f
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Km5
1

2
]n~emnrseab3Ar

aAs
b !, a,b51,2. ~1.6!

In other words, the charged off-diagonal gluon field plays
role of the source of the monopole. Although the definiti
~1.6! of monopole current seems to be different from t
usual definition based on the singularity of the Abelian fie
we show that both are equivalent to each other~apart from
the Dirac string singularity!. In the APEGT, the singularity
does not appear apparently, although we can always inc
the singularity if necessary.

The effective dual Ginzburg-Landau~GL! theory derived
assuming Abelian dominance does not have sufficient p
dictive power, since it contains undetermined free para
eters. On the contrary, all the quantities in the APEGT
calculable and all the effects of the non-Abelian gauge fi
are included in the APEGT. In fact, we show that t
APEGT recovers exactly the same one-loop beta function
that of the original non-Abelian gauge theory. The dual Ab
lian gauge field follows naturally in the course of the deriv
tion of the theory and has a coupling with the monopo
current. This interaction leads to the dual Meissner effect
to monopole condensation. The resulting nonzero mas
the dual gauge field gives the nonzero string tension,
linear potential for static quarks. Thus the string tension
determined by the monopole loop condensa
^Km(x)Km(x)&/d (4)(0) ~see Sec. IV for a precise definition!.
The monopole condensate plays the role of the order par
eter for confinement.

Moreover, we discuss the possibility that the nonze
monopole condensation is derived from the instanton c
figuration. Hence the instanton may lead to confinem
against conventional wisdom@18#.

In our approach, the inclusion of fermions is straightfo
ward. Hence the APEGT is also a starting point to study
relationship between confinement and chiral symme
breaking~or restoration! @19,20#.

This paper is organized as follows. In Sec. II, we deri
the APEGT for the maximal Abelian part by integrating o
the remaining non-Abelian gauge field. In this step, we
troduce an auxiliary tensor field which is converted to t
dual gauge field. The dual gauge field is essential for discu
ing the dual Meissner effect in Sec. IV. The APEGT is fir
obtained in a form including a logarithmic determinant. T
logarithmic determinant is explicitly calculated. It generat
the gauge-invariant form due to U~1! gauge invariance. An
effect of this term is the renormalization of the Abelia
gauge field. In Sec. III, we calculate the one-loop beta fu
tion without using the Feynman diagram. It is shown to ag
with the original non-Abelian gauge theory. In this sense,
effective theory recovers asymptotic freedom. In Sec. IV,
discuss the dual Meissner effect. If monopole loop cond
sation occurs, the dual vector field becomes massive. In
V, we include the fermion in the APEGT. In Sec. VI, w
discuss the lower dimensional case. In the final section
give our conclusions and a discussion.

II. ABELIAN-PROJECTED EFFECTIVE GAUGE THEORY

A. Separation of the Abelian part and introduction
of the dual field

First, we decompose the fieldAm into the diagonal@maxi-
mal Abelian U~1!# and the off-diagonal parts SU~2!/U~1!,
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Am~x!5 (
A51

3

Am
A~x!TA:5am~x!T31 (

a51

2

Am
a ~x!Ta.

~2.1!

We adopt the following convention. The generators of
Lie algebraTA(A51, . . . ,N221) for the gauge groupG
5SU(N) are taken to be Hermitian satisfying@TA,TB#

5 i f ABCTC and normalized as tr(TATB)5 1
2 dAB. The genera-

tors in the adjoint representation are given by@TA#BC5
2 i f ABC . We define the quadratic Casimir operator
C2(G)dAB5 f ACDf BCD. For SU~2!, TA5(1/2)sA (A
51,2,3) with Pauli matricessA and the structure constan
f ABC5eABC. The indicesa,b, . . . denote the off-diagona
parts.

Then the field strength

Fmn~x!:5 (
A51

3

Fmn
A ~x!TA:

5]mAn~x!2]nAm~x!2 i @Am~x!,An~x!#

~2.2!

is decomposed as

Fmn~x!5@ f mn~x!1Cmn~x!#T31Smn
a ~x!Ta,

f mn~x!:5]man~x!2]nam~x!,

Smn
a ~x!:5Dm@a#abAn

b2Dn@a#abAm
b ,

Cmn~x!T3:52 i @Am~x!,An~x!#, ~2.3!

where the derivativeDm@a# is defined by

Dm@a#5]m1 i @amT3,•#, Dm@a#ab:5]mdab2eab3am .
~2.4!

Hence the diagonal partF mn
3 of the field strength is given by

F mn
3 5 f mn1Cmn , Cmn :5eab3Am

a An
b . ~2.5!

Next, we rewrite the Yang-Mills action

SY M@A#52
1

2g2E d4xtr~FmnFmn!. ~2.6!

By using

tr~ f mnSmn!505tr~CmnSmn!, ~2.7!

the YM action is rewritten as

SY M@A#52
1

4g2E d4x@~ f mn1Cmn!21~Smn
a !2#. ~2.8!
Here we introduce an antisymmetric auxiliary tensor field
Bmn in order to linearize the (Cmn)2 term. This procedure

on-
e

enables us to perform a Gaussian integration over the
diagonal gluon fieldsAm

a (a51,2).1 It turns out that the ten-
sor fieldBmn plays the role of the ‘‘dual’’ field to the Abelian
gluon fieldam . We find that there are two ways to introduc
the ‘‘dual’’ tensor field.

One way is to introduce the tensor fieldBmn such that the
tensorBmn is the dual of the diagonal field strengthF rs

3 ,

Bmn↔
1

2
emnrsF rs

3 5
1

2
emnrs~ f rs1Crs!. ~2.9!

This is achieved in the tree level by the following action:

SapBF-Y M@A,B#5E d4xF1

4
emnrsBrs~ f mn1Cmn!

2
1

4
g2BmnBmn2

1

4g2 ~Smn
a !2G .

~2.10!

This theory is equivalent to the BF-YM theory,

SBF-Y M@A,B#5E d4xF1

4
emnrsBrs

A Fmn
A 2

1

4
g2Bmn

A BmnAG .
~2.11!

Actually, by identifyingBmn5Bmn
3 , the action~2.10! is ob-

tained from Eq.~2.11! by separating the diagonal part from
the off-diagonal part and integrating out the off-diagon
auxiliary tensor fieldBmn

a (a51,2). Quite recently, the
equivalence of the BF-YM theory with the YM theory ha
been proved at the quantum level; see@22#. This theory is
interesting from the topological point of view.

Another way is to introduce the tensor field as a dual
Crs at the tree level,

Bmn↔
1

2
emnrsCrs . ~2.12!

Thus we are lead to the action,

SapY M@A,B#5E d4xF2
1

4g2
~ f mn f mn12 f mnCmn!

1
1

4
emnrsBrsCmn2

1

4
g2BmnBmn

2
1

4g2
~Smn

a !2G . ~2.13!

In this case,1
2 emnrs f rs is generated through the radiativ

correction as shown in Sec. II D. In either case, Gauss
integration overBmn recovers the action~2.8! and hence the
original YM action. This model~2.13! is simpler than the
model ~2.10! in the actual treatment, since the topologic
theory needs some delicate treatment@22#. ~The equivalence
of the two formulations is shown in Appendix A.! In what

1This procedure is similar to the field strength approach for n
Abelian gauge theory@21#.



t o
te

th

l

n

s-
al
y

G

i

o
th

ca
in
ug
se
ne
be
e

T

f
ple

7470 57KEI-ICHI KONDO
follows, we focus on the action~2.13! which is essentially
equivalent to that derived by Quandt and Reinhardt@23#.

B. Gauge fixing

We discuss the gauge-fixing term. This is independen
the choice of the action. The gauge-fixing term is construc
based on the Becchi-Rouet-Stora-Tyutin~BRST! formalism.
We consider a gauge given by

F6@A,a#:5~]m6 i jam!Am
650, ~2.14!

F3@a#:5]mam50, ~2.15!

where we have used the (6,3) basis2

O6:5~O16 iO2!/A2. ~2.16!

The gauge fixing withj50 is the Lorentz gauge,]mAm

50. In particular,j51 corresponds to the differential form
of the maximal Abelian gauge which is expressed as
minimization of the functional

R@A#:5
1

2E d4x$@Am
1 ~x!#21@Am

2 ~x!#2%

5E d4xAm
1~x!Am

2~x!. ~2.17!

The differential MAG condition~2.14! corresponds to a loca
minimum of the gauge-fixing functionalR@A#, while the
MAG condition ~2.17! requires the global~absolute! mini-
mum. The differential MAG condition~2.14! fixes the gauge
degrees of freedom in SU~2!/U~1! and is invariant under the
residual U~1! gauge transformation. An additional conditio
~2.15! fixes the residual U~1! invariance. Both conditions
~2.14! and ~2.15! then completely fix the gauge except po
sibly for the Gribov problem. It is known that the differenti
MAG ~2.14! does not spoil renormalizability of YM theor
@24#. An implication of this fact is shown in Appendix B.

From physical point of view, we expect that the MA
introduces the nonzero massmA for the off-diagonal gluons,
Am

1 ,Am
2 . This is suggested from the form~2.17! which is

equal to the mass term forAm
1 ,Am

2 , although we need an
independent proof of this statement. This motivates us
integrate out the off-diagonal gluons in the sense of the W
sonian renormalization group~RG! and allows us to regard
the resulting theory as the low energy effective gauge the
written in terms of massless fields alone which describes
physics in the length scaleR.mA

21 . Abelian dominance will
be realized in the physical phenomena occurring in the s
R.mA

21 . In this sense the choice of MAG is not unique
realizing Abelian dominance. We can equally take the ga
so that the off-diagonal gluon fields acquire nonzero mas
Then the Abelian-projected effective gauge theory obtai
by integrating out the massive off-diagonal gluons will
valid in the low energy region below the energy scale giv
by the off-diagonal gluon mass.

2In this basis, (6P6Q75P1Q21P2Q15PaQa,
(6(6)P7Q652P1Q21P2Q15 i eab3PaQb(a,b51,2).
f
d
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e
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e
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We introduce the Lagrange multiplier fieldf6 andf3 for
the gauge-fixing functionsF6@A# and F3@A#, respectively.
It is well known that the gauge fixing term in the BRS
quantization is given by@25#

LGF52 idBGg f , ~2.18!

whereGg f carries the ghost number21 and is a Hermitian
function of the Lagrange multiplier fieldsf6,f3, ghost field
cA, antighost fieldc̄A, and the remaining field variables o
the original Lagrangian. In this paper we consider a sim
gauge given by

Gg f5(
6

c̄7S F6@A,a#1
a

2
f6D1 c̄3S F3@a#1

b

2
f3D .

~2.19!

For the most general gauge fixing, see@26#.
The BRST transformation in the usual basis is

dBAm5Dmc:5]mc2 i @Am ,c#,

dBc5 i
1

2
@c,c#,

dBc̄5 if,

dBf50,

dBBmn52 i @c,Bmn#. ~2.20!

Then the BRST transformation in the (6,3) basis is given by

dBAm
65~]m6 iam!c67 iAm

6c3,

dBam5]mc31 i ~Am
1c22Am

2c1!,

dBc657 ic3c6,

dBc352 ic1c2,

dBc̄6,35 if6,3,

dBf6,350,

dBBmn
6 57 ic6Bmn

3 6 ic3Bmn
6 ,

dBBmn
3 5 i ~c1Bmn

2 2c2Bmn
1 !. ~2.21!

Under a local U~1! gauge transformation,

am→am1]mv, O6→e7 ivO6 O3→O3. ~2.22!

Henceam transforms as a U~1! gauge field, whileAm
6 and

Bmn
6 behave as charged matter fields under the U~1! gauge

transformation. It turns out thatBmn
3 and

Cmn5 i(
6

~6 !Am
6An

7 ~2.23!

are U~1! gauge invariant as expected.
In the usual basis, we can write
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Gg f5 (
a51,2

c̄aS Fa@A,a#1
a

2
faD1 c̄3S F3@a#1

b

2
f3D ,

~2.24!

where

Fa@A,a#:5~]mdab2jeab3am!Am
b :5Dmab@a#jAm

b .
~2.25!

For the gauge-fixing function~2.19! with the BRST trans-
formation ~2.21!, or ~2.24! with ~2.20!, straightforward cal-
culation leads to the gauge-fixing Lagrangian~2.18!,

LGF5faFa@A,a#1
a

2
~fa!21 i c̄aDmab@a#jDm

bc@a#cc

2 i j c̄a@Am
a Amb2Am

c Amcdab#cb1f3F3@a#1
b

2
~f3!2

1 i c̄3]m]mc32 i c̄3]m~eab3Am
a cb!

1 i c̄aeab3@~12j!Am
b ]m1Fb@A,a##c3. ~2.26!

This reduces to the usual form in the Lorentz gauge,j50.
Finally we introduce the source term

LJ5Am
a Jma1faJf

a , ~2.27!

which will be necessary to calculate the correlation fun
tions.

C. Integration over SU„2…/U„1…

Our strategy is to integrate out the off-diagonal fieldsfa,
Am

a , ca, c̄a ~andBmn
a for BF-YM case! belonging to the Lie

algebra of SU~2!/U~1! and to obtain the effective Abelia
gauge theory written in terms of the diagonal fieldsam ,Bmn

@and ghost fieldsc3,c̄3 if we need a completely gauge-fixe
theory also for the residual U~1! gauge invariance#.

First of all, whenaÞ0,3 the Lagrange multiplier fieldfa

can be easily integrated out. The result is

faFa@A,a#1
a

2
~fa!21faJf

a→2
1

2a
~Fa@A,a# !2

2
1

a
Fa@A,a#Jf

a .

~2.28!

Next, as a preliminary procedure to integrate outAm
a , we

rewrite the last term in the action~2.13! as

3The case ofa50 should be treated separately. SinceFa@A,a#
5DA is linear inAm

a , the fa integration can be performed finall
after integrating out theAm

a field. However, it generates the add
tional complicated logarithmic determinant lndet@DQ21D#. Such a
case was treated in@23#. The choice of gauge-fixing paramete
should not change the physics, since it appears due to the g
choice. Therefore we do not treat this case in this paper.
-

~Smn
a !2522Am

a Wmn
abAn

b12]m~An
aSmn

a !,

Wmn
ab :5~Dr@a#Dr@a# !abdmn2eab3f mn2Dm@a#acDn@a#cb,

~2.29!

where we have used

@Dm@a#ac,Dn@a#cb#52eab3f mn . ~2.30!

Discarding the surface term,4 we arrive at

SY M5SY M@a,A,B,c,c̄;J#5S1@a,B#1S2@a,c,c̄#

1S3@a,A,B,c,c̄;J#, ~2.31!

S15E d4xF2
1

4g2
f mn f mn2

1

4
g2BmnBmnG , ~2.32!

S25E d4xF i c̄aDmac@a#jDm
cb@a#cb1 i c̄3]m]mc3

1f3~]mam!1
b

2
~f3!2G , ~2.33!

S35E d4xF 1

2g2
Am

a Qmn
abAn

b1Am
a S Gm

a 1
1

a
Dmab@a#jJf

b

1JmaD G , ~2.34!

Qmn
ab :5~Dr@a#Dr@a# !abdmn22eab3f mn

1
1

2
g2eab3emnrsBrs22ig2j~ c̄acb2 c̄cccdab!dmn

2Dm@a#acDn@a#cb1
1

a
Dm@a#j

acDn@a#j
cb , ~2.35!

Gm
c :5 i ~]mc̄3!ecb3cb1 i c̄aeab3@~12j!~]mc3!dbc

2jebc3amc3#2 i ]m~ c̄aeac3c3!, ~2.36!

where we have rescaled the parametera to absorb theg
dependence.

All the terms appearing in the resulting YM action are
most quadratic inAm

a . Therefore the fieldAm
a (a51,2) in S3

can be eliminated using the Gaussian integration and we
tain

ge4This will be justified, since the off-diagonal gluons become m
sive due to the MAG.
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iS05 ln E @dAm
a #expH i E d4xF 1

2g2
Am

a Qmn
abAn

b1Am
a S Gm

a 1
1

a
Dmab@a#jJf

b 1JmaD G J
52

1

2
lndet~Qmn

ab !1
g2

2
Gm

a ~Q21!mn
abGn

b1g2S 1

a
Dmac@a#jJf

c 1JmaD ~Q21!mn
abGn

b

2
g2

2a
Jf

a Dab@a#j~Q21!mn
abDncd@a#jJf

d 1
g2

a
Jma~Q21!mn

abDnbc@a#jJf
c 1

g2

2
Jma~Q21!mn

abJnb. ~2.37!

Thus we obtain the effective Abelian gauge theory

SE5S0@a,B,c,c̄;J#1S1@a,B#1S2@a,c,c̄#,

S052
1

2
ln det~Qmn

ab !1
g2

2
Gm

a ~Q21!mn
abGn

b1g2S 1

a
Dmac@a#jJf

c 1JmaD ~Q21!mn
abGn

b2
g2

2a
Jf

a Dab@a#j~Q21!mn
abDncd@a#jJf

d

1
g2

a
Jma~Q21!mn

abDnbc@a#jJf
c 1

g2

2
Jma~Q21!mn

abJnb. ~2.38!
s

is

d

ub-
u-
As will be shown in the next subsection, ln detQ gives the
renormalization of the fieldsam , Bmn , andca. The residual
U~1!-invariant theory is obtained by puttingf350 and c̄3

5c350 ~henceGm
a 50). Therefore, the resulting APEGT i

greatly simplified.
On the other hand, the effective Abelian BF-YM theory

obtained ifS1 andQmn
ab in S3 are replaced by

S15E d4xF1

4
emnrsBrs f mn2

1

4
g2BmnBmnG ,

Qmn
ab :5~Dr@a#Dr@a# !abdmn2eab3f mn1

1

2
g2eab3emnrsBrs

22ig2j~ c̄acb2 c̄cccdab!dmn2Dm@a#acDn@a#cb

1
1

a
Dm@a#j

acDn@a#j
cb , ~2.39!

where theG is the same as Eq.~2.36!. This case is discusse
in Appendix A.

D. Calculation of logarithmic determinant

In the MAG (j51), the last two terms inQ cancel by
taking a51 ~they disappear also fora50 @23#!,

Qmn
ab :5~Dr@a#Dr@a# !abdmn22eab3f mn

1
1

2
g2eab3emnrsBrs

22ig2~ c̄acb2 c̄cccdab!dmn . ~2.40!

In order to calculate ln detQ, we use thez function regu-
larization or heat kernel method~see, e.g.,@27#!,

ln det Q52 lim
s→0

d

ds

m2s

G~s!
E

0

`

dtts21Tr~e2tQ!, ~2.41!
where Tr is understood in the functional sense. In this s
section the calculations are performed in a Euclidean form
lation.

First, we calculate the trace ofe2tQ. To estimate this
quantity, we use the plane wave basis,

Tr~e2tQ!5E d4x tr^xue2tQux&

5E d4x trE d4k

~2p!4 e2 ikxe2tQeikx. ~2.42!

By making use of the relation,

@Dm
ab ,e6 ikx#56 ikme6 ikxdab, ~2.43!

we find

e2 ikxe2t~Dr[a] 2!abdmneikx5exp$2t~Dr@a#ac1 ikrdac!

3~Dr@a#cb1 ikrdcb!dmn%.

~2.44!

Furthermore, the rescaling ofkm , km→km /At, leads to

Tr~e2tQ!5E d4x
1

t2
tr E d4k

~2p!4
ekmkm

3exp@2~2iAtkmDm1tQ!#

5E d4x
1

t2(n50

`
~21!n

n!

3tr E d4k

~2p!4
ekmkm

~2iAtkmDm1tQ!n,

~2.45!
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where we have omitted the unit operator,dabdmn . It is ob-
vious that all terms odd with respect tokm in the expansion
go to zero in the integration. Thus we obtain5

Tr~e2tQ!2Tr~e2tQ0!5E d4x

16p2
trF1

2
Q22D2Q1

1

6
~2D2D2

1DmDnDmDn!G1O~ t !, ~2.47!

where we have used the cyclicity of trace and the repla
ment

kmkn→
1

4
k2dmn ,

kmknkakb→
1

24
~k2!2~gmngab1gmagnb1gmbgna!,

~2.48!

which is applied in the integrand of the integration formu

E d4k

~2p!4
ek2

~k2!m5
~21!m

16p2
~m11!! ~m50,1,2, . . . !.

~2.49!

Separating the first term from the other terms inQ,

Qmn
ab :5~Dr@a#Dr@a# !abdmn1Q̃mn

ab , ~2.50!

we see that

Tr~e2tQ!2Tr~e2tQ0!5
1

16p2E d4x trF1

2
Q̃2

1
1

6
DmDn~DmDn2DnDm!G1O~ t !

5
1

16p2E d4x trS 1

2
Q̃2

1
1

12
@Dm ,Dn#@Dm ,Dn# D1O~ t !,

~2.51!

where any cross term betweenD andQ̃ does not appear.
The first term is obtained as

trS 1

2
Q̃2D52k f mn f mn2

1

2
g4kBmnBmn2kg2emnrsBrs f mn

28g4~ c̄acb2 c̄cccdab!~ c̄bca2 c̄dcddba!, ~2.52!

5The zero-order term of the expansion with respect tot is equal to
the free term

Tr~exp@2tQ0# !:5Tr~exp@2t]2dabdmn#!5
4N~N21!*d4x

16p2t2
.

~2.46!
e-

and the second term is

trS 1

12
@Dm ,Dn#@Dm ,Dn# D5

21

3
k f mn f mn, ~2.53!

where

k:5C2~G!:5 f 3cdf 3cd52. ~2.54!

Thus we obtain~apart from the four-ghost interaction term
see Appendix B! the U~1!-invariant result

1

2
ln det Qmn

ab5E d4xF 1

4g2
zaf mn f mn1

1

4
zbg2BmnBmn

1
1

2
zcBmn f̃ mn1¯G , ~2.55!

where

za52
20

3
k

g2

16p2
ln m, zb512k

g2

16p2 ln m,

zc514k
g2

16p2
ln m. ~2.56!

Therefore, in the absence of the sourceJm
a 505Jf

a ,

S01S15E d4xF2
11za

4g2
f mn f mn2

11zb

4
g2BmnBmn

1
1

2
zcBmn f̃ mn1¯G . ~2.57!

Integrating out theBmn field, we will obtain an additional
contribution

2
1

4g2
zc

2~11zb!21f mn f mn. ~2.58!

However, at the one-loop level, this term is irrelevant. The
fore, the cross term does not contribute at the one-loop le

For later convenience, we calculate another determin
coming from the integration over ghost fields. For the act

SF5E d4xic̄aDm
ac@a#Dm

cb@a#cb, ~2.59!

we obtain, up to one loop,

Sc5 ln E @dc̄#@dc#expH 2E d4xc̄aDm
ac@a#Dm

cb@a#cbJ
5 ln det~Dm

ac@a#Dm
cb@a# !

5E d4x
1

4g2
za8 f mn f mn1¯,

za8 :5
2

3
k

g2

16p2
ln m. ~2.60!
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For the Abelian-projected effective BF-YM theory, se
Appendix A.

E. APEGT with a monopole

The antisymmetric~Abelian! tensorBmn has the Hodge
decomposition in 311 dimensions~see Sec. VI for other
dimensions!:

Bmn5bmn1x̃mn , bmn :5]mbn2]nbm .

x̃mn5
1

2
emnab~]axb2]axb!. ~2.61!

The tensorBmn has six degrees of freedom, while the fiel
bm andxm have eight. This mismatch is not a problem, sin
two degrees are redundant; the gauge transformations

bm~x!→bm8 ~x!5bm~x!2]mu,

xm~x!→xm8 ~x!5xm~x!2]mw ~2.62!

leaveBmn invariant. In the function integral, the integratio
over Bmn is replaced by an integration overbm and xm ,
provided that the gauge degrees of freedom are fixed in
~2.62!. These gauge fixings are not explicitly presented in
following, since they can be easily implemented.

In this case, we obtain

S01S15E d4xF2
11za

4g2
f mn f mn2

11zb

4
g2~bmnbmn

1x̃mnx̃mn!1
1

2
zcbmn f̃ mn1

1

2
zcxmn f mn1¯G .

~2.63!

At the one-loop level, integration overx leads to

SE5E d4xF2
11za

4g2
f mn f mn1 i c̄aDm

ac@a#Dm
cb@a#cb

2
11zb

4
g2bmnbmn2zcbmkmG , ~2.64!

where we have defined the magnetic current

km:5]n f̃ mn , f̃ mn :5
1

2
emnrs f rs. ~2.65!

Here we have neglected ghost self-interaction terms~see Ap-
pendix B! and higher derivative terms coming from the log
rithmic determinant ofQ. This is the APEGT written in
terms of the Abelian gauge fieldam and the dual gauge field
bm ~the effect of the off-diagonal ghost field is studied in t
next section!. This theory has U(1)e3U(1)m symmetry
where the Abelian gauge fieldam has U(1)e symmetry and
the dual Abelian gauge fieldbm has U(1)m symmetry which
is guaranteed by the conservation]mkm50. If the fieldam is
singular, the magnetic currentkm is nonzero and couple
with the dual fieldbm . This interaction leads to the dua
q.
e

Meissner effect ; see Sec. IV. In the absence of magn
current, the dual fieldbm decouples from the theory. Not
that the renormalizations of the fieldsam ,bm are different
from each other.

The APEGT can be considered as an interpolating the
which reduces to a theory with an actionS@a# by integrating
out thebm field or to another theory withS@b# by integrating
out theam field. The theoryS@a# is suitable for describing
the weak coupling region, whileS@b# is more suitable for the
strong coupling region. However, both theories give a d
description of the same physics. In the next section, we
an aspect of this picture.

III. ONE-LOOP BETA FUNCTION
AND ASYMPTOTIC FREEDOM

Neglecting the contribution from the dual gauge field, t
APEGT is reduced to the U(1) gauge theory,

SE@a,c,c̄#5E d4xF2
11za

4g2
f mn f mn1 i c̄aDm

ac@a#Dm
cb@a#cbG .

~3.1!

This APEGT is similar to scalar quantum electrodynami
But the scalar field is replaced with the ghost field. We c
show that the running couplingg exhibits asymptotic free-
dom; i.e., the beta function has a negative coefficient. T
beta function is obtained from the calculation of the logari
mic determinant in the previous section.

We define the wave function renormalization foram and
ca by

am
R5Za

21/2am , cR5Zc
21/2c. ~3.2!

For the three-pointamcc̄ vertex, the renormalized cou
pling constant is defined by

gR5Za
1/2ZcZg

21g. ~3.3!

It should be remarked that the effective Abelian gauge the
~3.1! has U~1! gauge invariance and we can derive the Wa
Takahashi~WT! identity for this symmetry. For example, th
three-point vertex function and the ghost propagator obey
well-known WT identity which is similar to that in scala
QED. This implies thatZg5Zc ~independently of the orde
of the perturbation!. Therefore the coupling constant for th
amcc̄ vertex is determined byZa alone,

gR5Za
1/2g. ~3.4!

Note thatZa is obtained by integrating the ghost field, i.e
ln det D2, if we remember Eq.~2.60!. Adding this contribu-
tion to Eq.~3.1!, we obtain

Za512za1za8511
g2

16p2

22C2~G!

3
ln m,

C2~G!:5 f 3cdf 3cd52. ~3.5!
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Thus theb function is easily calculated:

b~g!:5m
dgR

dm
52

b0

16p2
gR

3 , b05
11C2~G!

3
.0.

~3.6!

Thus the APEGT exhibits asymptotic freedom as the origi
YM theory.6

In order to obtain the RG beta function, we could ha
used the Feynman graph technique. By perturbation exp
sion in the coupling constant, we can ascertain the W
relationZg5Zc .7 The origin of asymptotic freedom (za8) is
understood as follows. By the Ward relation, asympto
freedom is explained by the vacuum polarization of the A
lian gauge field alone. This diagram up to orderg2 is quite
similar to those of scalar QED by replacing the comp
scalar fieldsf,f* with the ghost, antighost fieldsca,c̄a:

c̄aDm
ab@a#Dm

bc@a#cc↔u~]m2 ieam!fu2

52f* ~]m2 ieam!2f.
~3.8!

An essential difference is the signature due to a ghost lo
This minus sign changes the nonasymptotic freedom of
lar QED into asymptotic freedom in the effective Abelia
gauge theory in question. The additional dominant contri
tion (za) comes from the gluon self-interaction which is a
ready included in the action of the APEGT through the c
culation of 2(1/2)ln detQ. A summation of two
contributions gives exactly the same beta function as
original YM theory.

In other words, the APEGT is the Abelian gauge theo
with a QCD-like running coupling constantg(m),

SE@a#5E d4xF2
1

4g~m!2
f mn f mnG ,

1

g~m!2
5

1

g~m0!2
1

b0

8p2
ln

m

m0
. ~3.9!

IV. MONOPOLE CONDENSATION
AND THE DUAL MEISSNER EFFECT

In Sec. II, we have obtained the APEGT with magne
current~after the ghost integration!,

SE@a,b,k#5E d4xF2
1

4g2
f mn

R f Rmn2
1

4
bmn

R bRmn

6This fact was first obtained in the gaugea50 based on quite
complicated calculations@23#.

7Explicit calculation based on perturbation theory shows that

Zg5Zc512
g2

16p2
2~b23!ln m, ~3.7!

whereb is the gauge-fixing parameter.
l

n-
rd

c
-

p.
a-

-

-

e

y

2
1

g
zc /Zb

1/2bm
RkmG . ~4.1!

The interaction term between the dual gauge fieldbm and the
magnetic currentkm is generated by the radiative correctio
through the gluon self-interaction. The action leads to
field equation for the renormalized field,

]m f R
mn5 j R

n , ]mbR
mn5kR

n , ~4.2!

where we have defined

kR
m :5

1

g
~zc /Zb

1/2!km, Zb
1/2512zb/2. ~4.3!

Integrating out the dual fieldbm , we obtain the effective
action for the monopole loop,

SE@a,k#>E d4xF2
Za

21

4g2
f mn f mn1

1

g2
kmDmnknG ,

~4.4!

whereDmn is the massless vector propagator. Such a mo
pole action was predicted on a lattice in@11#.

For our purposes, it is more convenient to use the lo
Lagrangian formalism invented by Zwanziger@28# for a sys-
tem having both electric and magnetic currents.

Before that, we will give a different treatment which
helpful to discuss the relationship between the monop
condensation and the instanton. We show how the magn
monopole current is calculated in the original YM theory.

A. Definition of the monopole current

We show that the currentKm defined by

Km5
1

2
emnrs]n~eab3Ar

aAs
b !5

1

2
emnrs]nCrs ~4.5!

is interpreted as the magnetic monopole current. This cur
is topologically conserved, i.e.,]mKm50. For a while, we
use a different normalization of the fieldA→gA. Usually
the Abelian gauge field am defined by am(x)
:5tr@T3Am(x)# can have singularities if the fieldA is gauge
transformed by the rotation matrix U(x) as Am(x)
→Am

U(x),

Am
U~x!:5U~x!Am~x!U†~x!1

i

g
U~x!]mU†~x!, ~4.6!

such that the gauge transformed fieldAm
U(x) satisfies the

Abelian gauge-fixing condition, e.g., the MAG. It is this sin
gularity that leads to a nonzero magnetic current. Under
gauge transformation~4.6!, the field strength is transforme
asFmn(x)→Fmn

U (x),

Fmn
U ~x!5U~x!Fmn~x!U†~x!

5]mAn
U~x!2]nAm

U~x!2 ig@Am
U~x!,An

U~x!#,
~4.7!
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see Appendix C. The Abelian gauge field strength is
tracted as

f mn :5]man
U2]nam

U5tr@T3~]mAn
U2]nAm

U!# ~4.8!

5tr@T3~UFmnU†1 ig@Am
U ,An

U# !#. ~4.9!

The definition of the magnetic current is

km :5
1

2
emnrs]n f rs. ~4.10!

The first term in Eq.~4.6! is nonsingular. Hence Eq.~4.8!
shows that the first term gives a vanishing contribution in
magnetic current. Only the second term

Ãm~x!:5
i

g
U~x!]mU†~x! ~4.11!

gives a nonvanishing magnetic current. IfU(x) is not singu-
lar, Ãm is a pure gauge and hence the field strength c
structed from Ãm is zero, F̃mn(x):5]mÃn(x)2]nÃm(x)
2 ig@Ãm(x),Ãn(x)#[0. For the singularU(x), this is modi-
fied as

F̃mn~x!:5]mÃn~x!2]nÃm~x!2 ig@Ãm~x!,Ãn~x!#

5
i

g
U~x!@]m ,]n#U†~x!. ~4.12!

Thus we obtain the expression of the magnetic current,

km5
1

2
emnrs]ntr@T3~]rÃs2]sÃr!#

5
1

2
emnrs]ntr~T3ig@Ãr ,Ãs#!

1
1

2
emnrs]n trS T3

i

g
U@]r ,]s#U†D . ~4.13!

The magnetic current is composed of two parts. The sec
part corresponds to the contribution from the Dirac strin
Therefore the first part is the contribution from the magne
monopole which agrees with Eq.~4.5! in the original normal-
ization of the fieldA. This can be seen also from Eq.~4.9!,
since

km5
1

2
emnrs]ntr~T3ig@Ãr ,Ãs#!1

1

2
emnrs]ntr~T3Fmn

U !

5
1

2
emnrs]ntr~T3ig@Ãr ,Ãs#!

1
1

2
emnrs]ntrS T3

i

g
U@]r ,]s#U†D . ~4.14!

For details, see Appendix C.
-

e

n-

nd
.
c

B. Dual effective Abelian theory

In the following we present a somewhat different pictu
of monopole condensation leading to the dual Meissner
fect. By extracting thebm-dependent pieces from the actio
~2.31!, and inserting the identity

15E @dKm#dS Km2
1

2
emnrs]n~eab3Ar

aAs
b ! D , ~4.15!

the partition functionZY M is written as

ZY M@J#:5E dme2SY M

5E dmE @dKm#dS Km2
1

2
emnrs]n~eab3Ar

aAs
b ! D

3expH 2SY M@a,A,x,c,c̄;J#

2E d4xF2
1

4
g2bmnbmn1bmKmG J , ~4.16!

where the measuredm denotes the integration over all th
fields.

In order to see that the APEGT can exhibit a dual Mei
ner effect, we consider the effective actionS@b# written in
terms ofbm which is obtained by integrating out all the field
except forbm ,

ZY M@J#:5E @dbm#exp$2S@b#%. ~4.17!

ThenS@b# is obtained as

S@b#5
21

4
g2E d4xbmnbmn

1 lnK expF E d4xbm~x!Km~x!G L
0
, ~4.18!

where the expectation value for a functionf of the field is
defined by

^ f ~A!&0 :5E dm̃E @dKm#dS Km2
1

2
emnrs]n~eab3Ar

aAs
b ! D

3exp$2SY M@a,A,x,c,c̄;J#% f ~A!, ~4.19!

wheredm̃ denotes the normalized measure without@dbm# so
that ^1&051. It turns out that

S@b#5
21

4
g2E d4xbmn~x!bmn~x!1E d4x^Km~x!&0bm~x!

1
1

2E d4xE d4y^Km~x!Kn~y!&cb
m~x!bn~y!

1O~b3!, ~4.20!
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where ^Km(x)Kn(y)&c is the connected correlation func
ion obtained from the normalized expectation val
^ f (A)&:5^ f (A)&0 /^1&0 , e.g., ^ f (A)g(A)&c5^ f (A)g(A)&
2^ f (A)&^g(A)&.

We can obtain a similar expression for the APEGT us
the action~2.64!. Hence the argument in the next subsect
can be extended also to the APEGT.

C. Dual Meissner effect due to monopole condensation

The effective dual Abelian theoryS@b# has U~1! symme-
try, bm→bm1]mu, which is different from the U~1! symme-
try for the Abelian fieldam and is called the magneticU(1)m
symmetry hereafter. The magnetic current satisfies the c
servation]mKm50, consistently with the U(1)m symmetry.
This implies that the correlation function of the magne
monopole current is transverse,

^Km~x!Kn~y!&c5~dmn]22]m]n!M ~x2y!. ~4.21!

As long as the magnetic U(1)m symmetry is not broken, the
dual gauge fieldbm is always massless as can be seen fr
Eqs.~4.20! and~4.21!. Therefore a nonzero mass for the du
gauge field implies breakdown of the U(1)m symmetry.

If U(1) m symmetry is broken in such a way that

^Km~x!Kn~y!&c5g2dmnd~4!~x2y! f ~x!1¯, ~4.22!

the mass term is generated,

S@b#5E d4xF21

4
g2bmn~x!bmn~x!

1
1

2
g2mb

2bm~x!bm~x!1¯ G , ~4.23!

if we write f (x)5mb
2 . This can be called the dual Meissn

effect; the dual gauge field acquires a mass given by

mb
25

1

4g2 F~0!, ~4.24!

if the monopole loop condensation occurs in the sense t

F~x!:5 lim
y→x

^Km~x!Km~y!&c

d~4!~x2y!
Þ0. ~4.25!

This is a criterion of the dual superconductivity of QCD.8 It
is consistent with the picture of a dual superconductor s
nario for quark confinement proposed by Nambu@1#,
’t Hooft @2#, and Mandelstam@3#. In the translation-invarian
theory, F(x) is an x-independent constant which depen
only on the gauge coupling constantg. If we take a specific
classical configuration to estimate them, anx dependence
may appear; see the effective dual GL theory in the la
half of this subsection.

It should be remarked thatF is not a local order param
eter in the usual sense. In order to find the nonzero valu
mb , we must extract, from the magnetic monopole curr
correlation function̂ Km(x)Kn(y)&c , a piece which is pro-
portional to the Dirac delta functiond (4)(x2y) diverging as

8For other proposals, see@29# and references therein.
g
n

n-

l

t

e-

r

of
t

y→x. Therefore, if such a type of strong short-range cor
lation between two magnetic monopole loops does not ex
F is obviously zero. This observation seems to be consis
with the result of lattice simulations. Monopole loops ex
both in the confinement and the deconfinement phases. H
ever, in the deconfinement phase the monopole currents
dilute and the vacuum contains only short monopole loo
with some nonzero density. In the confinement phase, on
other hand, the monopole trajectories form infinite lo
loops and the monopole currents form a dense cluster
though there is a number of small mutually disjoint cluste
@30#.

It should be remarked that the APEGT does not need
scalar field. In this sense, the mechanism in which the d
gauge field acquires a mass is different from the dual Hi
mechanism. Nevertheless, we can always introduce a sc
field into the APEGT so as to recover the spontaneou
broken U(1)m symmetry,

1

2
mb

2bm~x!bm~x!→
1

2
mb

2@bm~x!2]mu~x!#2

5u@]m2 ibm~x!#f~x!u2,
~4.26!

where we identify

f~x!5
mb

A2
eiu~x!. ~4.27!

Indeed, the result is invariant underbm→bm1]ma and u
→u1a (f→eiaf). Such a scalar field is called a Stu¨ckel-
berg field or Batalin-Fradkin field@31#. The case~4.27! is
obtained as an extreme type II limit~London limit!,

lim
l→`

V~f!, V~f!:5l~ uf~x!u22mb
2/2!2, ~4.28!

or nonlinears model with a constraint,

d~ uf~x!u22mb
2/2!. ~4.29!

The valuef0 at which the potentialV(f) has a minimum is
proportional to the massmb of a dual gauge field,

mb5A2f05
AF

2g
. ~4.30!

In the deconfinement phase, the minimum is given byf0
50 (mb50), while in the confinement phase the minimu
is shifted from zerof0Þ0 (mbÞ0) which corresponds to
monopole condensation. Thus the dual Abelian gauge the
with an actionS@b# is equivalent to~the London limit of! the
dual GL theory~or the dual Abelian Higgs model with radia
part of the Higgs field being frozen!,

SdGL@b#5E d4xF21

4
bmnbmn1u~]m2 ig21bm!fu2

1l~ ufu22f0
2!21¯ G , ~4.31!

where we have rescaled the fieldbm→bm /g. Note that the
inverse couplingg21 has appeared as a coupling consta
This implies that the dual theory is suitable for describing
strong coupling region.
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Now we compare our approach with the previous a
proach@32,33# where a summation over the monopole tr
jectories is performed. The monopole trajectories are
pressed by the four-vectorxm5 x̄l

m(t l),l 51,2, . . . ,N,
wheret l is an arbitrary parameter characterizing the traj
tory andN is the total number of loops. Then the monopo
current is written as

Km~x!5
4p

g (
l 51

N

nlE dt lxG l
m~t l !d

~4!
„x2 x̄l~t l !…,

xG m:5
] x̄m

]t
, ~4.32!

with nl being the winding number. Then the interactio
bmKm between the dual field and the monopole curren
written as

E d4xbm~x!Km~x!5
4p

g (
l 51

N

nlE dt lbm„x̄l~t l !…xG l
m~t l !.

~4.33!

The summation over all configurations containing an ar
trary number of monopole loops with all possible windin
number and trajectories is performed based on the iden
@33#

(
N50

`
1

N! E )
l 51

N

@dx̄l #expH i(
l 51

N E dt l@MAxG l
2~t l !

1Qm„x̄l~t l !…xG l
m~t l !#J

5exp Tr ln H5det~H !

5E @df#expH i E d4x$u@]m1 iQm~x!#f~x!u2

2M2uf~x!u2%J ,
~4.34!

H:5
1

2
~pm2Qm!22

1

2
M2,

wheref is a complex scalar field. Both sides are equal to
vacuum-to-vacuum transition amplitude of the theory co
sisting of charged scalar particles of massM in the presence
of an external electromagnetic fieldQm .

If nl is restricted tonl561, a field theoretical quantity is
obtained,

u~]m1 igmbm~x!!f~x!u2, gm :5
4p

g
n,

where Qm5gmbm and f plays the role of the monopole
Assuming a mass term of the monopole field and the re
sive self-interaction among the monopoles, a low energy~in-
frared! effective theory of the GL type, the effective dual G
theory, was proposed@10#,
-
-
x-

-

s

i-

ty

e
-

l-

21

4
bmn~x!bmn~x!1u@]m1 igmbm~x!#f~x!u2

2l@ uf~x!u22v2#2. ~4.35!

If monopole condensation occurs in the sense thatuf(x)u
[vÞ0, the mass term of the dual gauge field is genera
and the GL theory reduces to@note that the normalization fo
the fieldbm is different from Eq.~4.23!#

21

4
bmn~x!bmn~x!1

1

2
mb

2bm~x!2, mb[gmv.

This is the so-called dual Meissner effect. Precisely spe
ing, the classical solution@34# f(x) is not a constant and is
a function ofx such thatf(x)→v as uxu→` andf(x)→0
as uxu→0. The characteristic length separating both beh
iors is the coherence lengthj:5A2/mf . The ratio

kGL :5d/j5mf /~A2mb! ~4.36!

is called the GL parameter whered:51/mb is the penetration
depth. The constantuf(x)u[vÞ0 corresponds tomf5` or
j50 andkGL5`, a special case of type II superconducto
kGL.1/A2. In the APEGT, this effect is expressed by t
x-dependent massmb(x).

D. Monopole action

It is easy to show that monopole condensation actu
occurs, if we use the lattice version@11,30# of the monopole
action9 ~4.4!,

Sm52
1

4g2(x
f mn~x! f mn~x!

1(
x,y

1

g2
km~x!Dmn~x2y!kn~y!. ~4.37!

The monopole condensate~4.25! is calculated as follows.
From Eq.~4.37!, we can extract the self-mass term

Sma5
D~0!

g2 (
x

km~x!km~x!, D~0!,`. ~4.38!

The self-mass term with constantukm(x)u51 ~see @11#! is
proportional to the length of monopole loops. The probab
ity that a monopole loop with lengthL will appear some-
where is

PL57Lexp~2Sma!5exp$@C2D~0!/g2#L%, ~4.39!

9On the lattice, the monopole action is obtained from the radia
fixed Abelian Higgs model~of Villain type! by lattice duality trans-
formation @35#.
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where C5 ln7 for a nonbacktracking walk on a four
dimensional hypercubic lattice. For sufficiently largeg2

@g2.D(0)/C#, PL↑` asL↑` and long loops give a domi
nant contribution to the functional integral. On the oth
hand, PL↓0 as L↑`, if g2 is small @g2,D(0)/C#. This
indicates that in the infinite volume limit long monopo
loops make no finite contribution. This is a simple energ
entropy~action-entropy! argument. Taking into account tha
the entropy contribution is equivalent to adding an action

Sen52C(
x

km~x!km~x!, C,`. ~4.40!

Therefore we obtain

F5S C2
D~0!

g2 D 21

. ~4.41!

This shows that, if the couplingg is sufficiently strong, we
have a positiveF and nonzeromb . In other words, if the
entropy of a monopole loop exceeds the energy, monop
condensation occurs. The region exhibiting monopole c
densation extends to smaller and smaller values ofg for
longer loops due to recent studies@30#. The above argumen
is valid for long loops. For more details, see@30#. The mono-
pole action in the continuum needs more careful treatmen
in three-dimensional case@36# which will be treated in a
subsequent paper.

In the usual language of field theory, the ter
km(x)Dmn(x2y)kn(y) corresponds to the quartic sel
interaction, especially the self-mass termkm(x)kn(x) to the
contact quartic self-interaction.10 Therefore, it is assumed
that the self-interaction among monopole loops does not
sentially change the above picture. It should be remar
that higher order expansion generates interactions betw
monopole loops. For example, the self-interaction among
monopoles,

^Km~x!Kn~y!Kr~z!Ks~w!&5l~g!@dmndrsd~4!~x2y!

3d~4!~z2w!d~4!~x2z!

1dmrdnsd~4!~x2z!

3d~4!~y2w!d~4!~x2y!

1dmsdnrd~4!~x2w!

3d~4!~y2z!d~4!~x2y!] 1¯,

~4.42!

induces quartic self-interactions forbm ,

10We remember that the quartic self-interaction in the scalarlw4

theory can be understood as the intersection probability of two
dom walks with a repulsive interaction.
r

-

le
-

as

s-
d
en
e

E d4xd4yd4zd4wbm~x!bn~y!br~z!bs~w!

3^Km~x!Kn~y!Kr~z!Ks~w!&

53l~g!E d4x@bm~x!bm~x!#21¯. ~4.43!

This renormalizes the mass term in Eq.~4.23! through radia-
tive corrections. In this sense the criterion~4.25! is the tree-
level criterion. The monopole interaction is expected to
weakly repulsive.

E. Another effective Abelian gauge theory and confinement

The effective Abelian theoryS@a# written in terms ofam
is obtained by integrating out the dual gauge field. T
theory with an actionS@a# gives a dual description of the
same physics as that given byS@b#. Following the Zwan-
ziger formalism@28# ~we do not repeat the details; see@10#
and @19#!, if the dual gauge field acquires nonzero massmb
~due to monopole condensation!, we obtain

Se f f@a#5E d4xF 21

4g~m!2
f mn~x! f mn~x!

1
1

2
am~x!

n2mb
2~x!

~n•]!21n2mb
2~x!

Xmn~]!an~x!G ,

~4.44!

Xmn~]!:5
1

n2
elmabelngdnang]b]d ,

where n is an arbitrary fixed four-vector appearing in th
Zwanziger formalism. The coupling constantg(m) is the
running coupling constant obeying the sameb function as
the YM theory. In the limitmb→0, Eq.~4.44! reduces to Eq.
~3.9!. Note that the local U(1)e symmetry is not broken and
am is massless, since

]mXmn505]nXmn . ~4.45!

The low energy effective theories~4.44! and ~4.31! lead
to the linear static potentialV(r ) between static color
charges and the string tensions is given by

V~r !5sr , s5
Q2

4p
mb

2f ~kGL!, ~4.46!

where f (x) is a function depending on the method of calc
lation @10,19#. The essential partmb

2 in the string tension
follows simply due to the dimensional analysis, irrespect
of the details of the calculation.

Monopole condensation can be estimated based on
classical configuration ofA(x) satisfying the gauge-fixing
conditionFa@A,a#50,

n-
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^Km~x!Km~y!&5ZY M
21 E @dA~x!#e2SY M[A]d~F@A,a# !

3E @dKm#dS Km2
1

2
g2emnrs]n

3~eab3Ar
aAs

b ! DKm~x!Km~y!. ~4.47!

Note that the MAG conditionF@A,a#50 is satisfied by the
classical multi-instanton solution@37,38# of ’t Hooft type,

Am
a ~x!5h̄mn

a ]n f ~x!,

h̄mn
a :5eamn1damdn42dandm452h̄nm

a . ~4.48!

Therefore the classical instanton configuration may hav
possibility to generate monopole condensation. Actually
has been shown that monopole loop formation and its c
densation are intimately correlated with the instanton c
figuration @13,39–45#. Therefore it is quite interesting to
clarify whether the instanton configuration gives sufficie
monopole loop condensation for quark confinement. The
tails of this problem will be given in a subsequent paper@46#.

V. INCLUSION OF A FERMION

In order to discuss QCD, we add the fermionic action

SF5E d4xc̄@ igmDm@A#2m#c, Dm@A#:5]m2 iAm .

~5.1!

The contribution from the fermionic action is evaluated a

E @dc̄#@dc#expH 2E d4xc̄$ igmDm@A#2m%cJ
5~det$ igmDm@A#2m%!Nf

5exp~Nf ln det$ igmDm@A#2m%!

5expFNf

2
ln det$ igmDm@A#2m%2G . ~5.2!

In a similar way as in Sec. II, we can calculate the logari
mic determinant

Tr„exp$2t~ igmDm@A# !2%…2Tr$exp@2t~ igm]m!2#%

5E d4x
g2

16p2

2

3
r ~F !~Fmn

a !21O~ t ! ~5.3!

and

ln
det~ igmDm@A# !2

det~ igm]m!2
5E d4x

g2

16p2

2

3
r ~F !lnm2~Fmn

a !2,

~5.4!

where r (F) is the dimension of fermion representation.
this calculation, we have used the commutator
a
it
n-
-

t
e-

-

@Dm@A#,Dn@A##52 iFmn . ~5.5!

At the one-loop level, it is easy to see that we can repl
(Fmn

a )2 in this contribution by (f mn)2. If we add this contri-
bution to the APEGT obtained in Sec. II, the APEGT
QCD is obtained~apart from the gauge-fixing term and th
Abelian ghost term!,

S5E d4xF2
11za

4g2
f mn f mn2

11zb

4
g2bmnbmn2zcbmKm

1c̄~ igmDm@a#2m!c1 i c̄aDm
bc@a#Dm

bc@a#ccG ,

Dm@a#:5]m2 iamT3. ~5.6!

In the regionKm>0, it is clear that this theory recovers th
one-loop beta function of QCD,

b05
11

3
C2~G!2

4

3
Nfr ~F !. ~5.7!

Monopole condensation and resulting dual Meissner ef
can be treated in a similar way as Sec. IV. We can disc
chiral symmetry breaking based on the APEGT of QCD, E
~5.6!; see, e.g.,@19#.

VI. LOWER DIMENSIONAL CASE

In the ~211!-dimensional case, we introduce the auxilia
vector field Bm @instead of the tensor fieldBmn in ~311!-
dimensional case#. Then, corresponding to Eq.~2.10! or
~2.13!, the action is rewritten as

SapBF-Y M@A,B#5E d3xF1

4
emnrBr~ f mn1Cmn!2

1

4
g2BmBm

2
1

4g2
~Smn

a !2G , ~6.1!

or

SapY M@A,B#5E d3xF2
1

4g2
~ f mn f mn12 f mnCmn!

1
1

4
emnrBrCmn2

1

4
g2BmBm2

1

4g2
~Smn

a !2G .

~6.2!

At the tree level, the dual vector field has the respect
correspondence

Bm↔
1

2
emrs~ f rs1Crs!,

1

2
emrsCrs . ~6.3!
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In order to discuss the monopole contribution, we use
decomposition11

Bm5]mf1
1

2
emabxab, xmn :5]mxn2]nxm . ~6.4!

Hence the APEGT of the~211!-dimensional YM theory is
given by

S1@a,f,x#5E d3xF2
1

4g2
f mn f mn2

1

4
g2@~]mf!21xmn

2 #G
~6.5!

and

Qmn
ab :5~Dr@a#Dr@a# !abdmn22eab3f mn

1
1

2
g2eab3~emnr]rf1xmn!

22ig2j~ c̄acb2 c̄cccdab!dmn2Dm@a#acDn@a#cb

1
1

a
Dm@a#j

acDn@a#j
cb . ~6.6!

In the ~211!-dimensional case, instead of the interacti
bmKm between the dual gauge field and the magnetic curr
we obtain the interaction term between the dual scalarf and
the monopole densityr,

r~x!f~x!, r~x!:5emnr]rCmn~x!, ~6.7!

since

E d3xemnrBrCmn5E d3x@2femnr]rCmn1xmnCmn#.

~6.8!

The effective dual theory is the scalar theory with

S@f#5E d3x@]mf~x!#21E d3x^r~x!&f~x!

1
1

2E d3xE d3y^r~x!r~y!&cf~x!f~y!1¯.

~6.9!

In the ~111!-dimensional case, the dual tensor reduces t
one-component scalarB,

SapBFY M@A,f#5E d2xF1

4
emn~ f mn1Cmn!f2

1

4
g2f2

2
1

4g2
~Smn

a !2G ~6.10!

or

11The vectorBm has three degrees of freedom, while the re
scalarf has one and the vectorxm has three. One redundant degr
of freedom corresponds to that of the gauge transformation ofxm .
e

t,

a

SapY M@A,f#5E d2xF2
1

4g2
~ f mn f mn12 f mnCmn!

1
1

4
emnfCmn2

1

4
g2f22

1

4g2
~Smn

a !2G .

~6.11!

The tree-level correspondence is given by

f↔
1

2
ers~ f rs1Crs!,

1

2
ersCrs . ~6.12!

Thus ~111!-dimensional YM theory is reduced to an effe
tive Abelian gauge theory with

S1@a,f#5E d2xF2
1

4g2
f mn f mn2

1

4
g2f2G , ~6.13!

and

Qmn
ab :5~Dr@a#Dr@a# !abdmn22eab3f mn1

1

2
g2eab3emnf

22ig2j~ c̄acb2 c̄cccdab!dmn2Dm@a#acDn@a#cb

1
1

a
Dm@a#j

acDn@a#j
cb . ~6.14!

In this case, the interaction term is induced,

f~x!emn f mn~x!. ~6.15!

It is interesting to compare these formulations with the p
vious approaches@36,47–49#. Detailed analyses of the lowe
dimensional case will be given in a forthcoming paper.

VII. CONCLUSION AND DISCUSSION

We have derived Abelian-projected effective gauge th
ries ~APEGT! of YM theory and QCD. This has been pe
formed by integrating out all off-diagonal non-Abelian gau
fields belonging to SU~2!/U~1!. The obtained APEGT is
written in terms of the maximal Abelian gauge fieldam and
the dual Abelian gauge fieldbm which couples to the mag
netic monopole currentKm . First, we have shown that th
APEGT has the same one-loop beta function as the orig
non-Abelian gauge theories. Hence the APEGT exhib
asymptotic freedom~at the one-loop level!.

Next, we have shown that the dual vector field introduc
to linearize the gluon self-interaction has an interaction w
the magnetic current. Because of this interaction, the d
gauge field can become massive if monopole loop conde
tion occurs. This is interpreted as the dual Meissner eff
We have shown that the mass of the dual gauge field is g
by the monopole loop condensation^Km(x)Km(x)&/d (4)(0)
Þ0. This is our criterion of dual superconductivity.
method of showing monopole condensation is to consider
monopole action. The lattice monopole action@11,30# gives
a simple proof of monopole condensation.

If we apply the Zwanziger formalism to the APEGT wit
a magnetic monopole, we can show that the static qu

l
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potential contains a linear part proportional to the qu
separation. The APEGT with a monopole is sufficient
show quark confinement. This supports Abelian dominan
Monopole dominance will be confirmed by evaluating t
monopole condensate, since the string tension is determ
from the massmb of the dual gauge field. We have pointe
out that this condensation can be estimated by the clas
instanton configuration. The intimate relationship betwe
confinement and instanton will be understood from the vie
point of a topological field theory of the Schwarz typ
BF-YM theory.

This work justifies some aspects of the pioneering wo
of Ezawa and Iwazaki@9# and Suzuki@10# based on the
effective dual GL model. However, the APEGT has no fr
parameter and is of predictive power in sharp contrast w
previous works where Abelian dominance was assumed f
the beginning. The APEGT has a complete corresponde
to the original YM theory.

We have chosen the gauge group SU~2! for mathematical
simplicity. To discuss confinement in the real world, w
must discuss the SU~3! case. This case will be treated in
subsequent paper@46#.
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APPENDIX A: APEGT OF BF-YM THEORY

In a similar way as in Sec. II, the APEGT of BF-YM
theory is obtained as

S01S11S25E d4xF2za

1

4g2
f mn f mn2

1

4
~11zb!g2BmnBmn

1
1

2
~12zc!Bmn f̃mn

1 i c̄aDmac@a#jDm
cb@a#cbG , ~A1!

where

za52
2

3
k

g2

16p2
ln m, zb512k

g2

16p2
ln m,

zc512k
g2

16p2
ln m. ~A2!
k

e.

ed

al
n
-

s

h
m
ce

y

,

a

s

Integrating out the tensor fieldB, we obtain

SE5E d4xF2za

1

4g2
f mn f mn2

1

4g2
~11zb!21

3~12zc!
2f mn f mn1 i c̄aDmac@a#jDm

cb@a#cbG .

~A3!

Hence, at the one-loop level, this reduces to

SE5E d4xF2~11h!
1

4g2
f mn f mn1 i c̄aDmac@a#jDm

cb@a#cbG ,

~A4!

where

h5za2zb22zc52
20

3
k

g2

16p2
ln m. ~A5!

This agrees with the APEGT of YM theory given in Sec.
Therefore, two types of APEGT are equivalent to each oth

APPENDIX B: GHOST INTERACTION
AND GAUGE FIXING

If we adopt a more general gauge-fixing functional

Gg f5(
6

c̄7S F6@A,a#1
a

2
f6D1 c̄3S F3@a#1

b

2
f3D

1ah(
6

~6 ! c̄3c̄6c71azc3c̄1 c̄2, ~B1!

the gauge-fixing partLGF52 idBGg f has the additional con
tribution

LGF8 52(
6

~6 ! c̄7
a

b
hF3@a#c62(

6
~6 ! c̄3hF6@A,a#c7

1(
6

~6 ! c̄7zF6@A,a#c32a~11z!h(
6

c̄3c3c̄6c7

2aS z1
a

b
h2D c̄1 c̄2c1c2. ~B2!

Therefore, the U~1!-invariant four-ghost interaction term
c̄1 c̄2c1c2 coming from the expansion of ln detQ,

~ c̄acb2 c̄cccdab!~ c̄bca2 c̄dcddba!

522c̄1c1c̄2c2522c̄1 c̄2c1c2, ~B3!
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is canceled by adding the BRST exact te
2 idB(c3c̄1c̄2)52 i $QB ,c3c̄1c̄2%. Such a term does no
influence the physical state characterized byQBuphys&50.
This is an implication of the renormalizability of YM theor
in the MAG.

APPENDIX C: MAGNETIC MONOPOLE
AND DIRAC STRING IN SU „2… GAUGE THEORY

In this appendix, we discuss how the Abelian objects,
Dirac magnetic monopole and Dirac string, are produced
to a singular gauge transformation in SU~2! non-Abelian
gauge theory.12

The non-Abelian field strengthFmn is defined using the
covariant derivative

Dm :5]m2 igAm ~C1!

as

Fmn5
i

g
@Dm ,Dn#5

i

g
@]m2 igAm ,]n2 igAn#. ~C2!

This is rearranged as

Fmn5
i

g
@]m ,]n#1@]m ,An#2@]n ,Am#2 ig@Am ,An#

5
i

g
@]m ,]n#1]mAn2]nAm2 ig@Am ,An#. ~C3!

It should be remarked that the first term on the RHS in
final line cannot be neglected when there is a singularity.
consider the local gauge transformation

Am→Am8 :5UAmU†1
i

g
U]mU†. ~C4!

Straightforward calculation using Eq.~C4! leads to

F mn8 :5]mAn82]nAm8 2 ig@Am8 ,An8# ~C5!
e
e

e
e

5U~]mAn2]nAm2 ig@Am ,An#!U†

1
i

g
U@]m ,]n#U†. ~C6!

This is consistent with Eq.~C3!; that is, the field strength
transforms covariantly,

Fmn→F mn8 :5UFmnU†. ~C7!

In what follows we assume thatAm is not singular and tha
the singularity inAm8 comes from the gauge rotationU. In
such a case, we callU the singular gauge rotation. Therefor
the gauge-transformed field strength is composed of
parts, the regular and the singular part,

F mn8 5F mn
r 81F mn

s 8,

F mn
r 8:5U~]mAn2]nAm2 ig@Am ,An#!U†,

~C8!

F mn
s 8:5

i

g
U@]m ,]n#U†.

First, we show that only the second part of the poten
A8m(x),

Am
s ~x!:5

i

g
U~x!]mU†~x!, ~C9!

gives rise to the nonvanishing magnetic current. The dia
nal partam

s of the gauge potentialAm
s is singular on the point

where the Dirac string exists. The direction of the Dir
string can be changed arbitrarily by the gauge transform
tion. Hence the Dirac string is not a physical object. Ac
ally, the magnetic charge is shown to obey the Dirac qu
tization condition. This can be seen as follows.

The local SU~2! matrix U(x) can be written in terms of
three Euler’s anglesa,b,g,
nal
U~x!5eig~x!s3/2eib~x!s2/2eia~x!s3/25S e~ i /2!@a~x!1g~x!# cos
b~x!

2
e~ i /2! @a~x!2g~x!# sin

b~x!

2

2e~2 i /2!@a~x!2g~x!# sin
b~x!

2
e~2 i /2!@a~x!1g~x!# cos

b~x!

2

D . ~C10!

Using the residual U~1! invariance after the MAG, we can chooseg(x)52a(x). A convenient choice is to takea(x)5
2g(x)5w(x), b(x)5u(x), and identity the anglesu andw with the polar and the azimuthal angles in the three-dimensio
polar coordinate of SU~2! so that

12This appendix is deeply indebted to Suganuma and Ichie@50#.
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U~x!u,w5exp~ iueWw•sW /2!

5S cos
u~x!

2
eiw~x! sin

u~x!

2

2e2 iw~x! sin
u~x!

2
cos

u~x!

2

D
5cos

u~x!

2
1 isW •eWw sin

u~x!

2
, ~C11!

eWw :52sin w~x!eWX1cosw~x!eWY , ~C12!

where (X,Y,Z) is identified with the space coordinates
xm5(0,rW)5(0,X,Y,Z) and

0,u:5arctan
AX21Y2

Z
,p,

0,w:5arctan
Y

X
,2p. ~C13!

This choice does not lose generality, since we can alw
rotate the matrix using the residual U~1! degrees of freedom
see@39# for details.13

For the gauge rotation~C12!, the three-dimensional par
of Am

s is

AW s~x!5
1

gr
@cosw~x!eWw1sin w~x!eW u#T1

1
1

gr
@sin w~x!eWw2cosw~x!eW u#T2

1
1

gr
tan

u~x!

2
eWwT3, ~C16!

where we have used

¹:5eW r

]

]r
1

eW u

r

]

]u
1

eWw

r sin u

]

]w
. ~C17!

The diagonal Abelian part is defined by

am8 :52tr~T3Am8 !. ~C18!

13If we take g(x)5a(x) and write a(x)5g(x)5w(x), b(x)
5u(x),

U~x!5S eiw~x! cos
u~x!

2
sin

u~x!

2

2sin
u~x!

2
e2 iw~x! cos

u~x!

2

D . ~C14!

For this choice ofg, the Dirac string appears on the positiveZ axis,
sinceb50,p corresponds to

U~x!0,w5S eiw~x! 0

0 e2 iw~x!D , U~x!p,w5S 0 1

21 0D . ~C15!
ys

In this case,14

aW s~x!5
1

gr
tan

u

2
eWw5

1

gr

12cosu

sin u
eWw ~C21!

or

as
m~x!5„a0

s~x!,aW s~x!…5
1

gr~r 1Z!
~0,2Y,X,0!.

~C22!

The vector potentialaW s is singular on the negativeZ axis and
is not defined foru5p. Then the rotation is given by

¹3aW s~x!5BW m1BW DS5
rW

gr3
1

4p

g
d~X!d~Y!u~2Z!eWZ .

~C23!

This implies that¹3aW s(x)5 rW/gr3 except along the nega
tive Z axis. The singularity along the negativeZ axis is
called the Dirac string. This cannot be avoided as long as
uses a single expression for the gauge potential in the w
space. A method to avoid the singularity is using the W
Yang monopole@51#. It is impossible to construct a singl
singularity-free potential which is defined everywhere. Wh
considering the total space, we need at least two express
for the vector potential.

The magnetic monopole sits atrW50,

¹•BW m5k0
m~x!, k0

m~x!5
4p

g
d~3!~x!. ~C24!

The four-dimensional expression of the magnetic current

1

2
emnrs]s f mn5kr~x!, km~x!5

4p

g
dm0d~3!~x!,

~C25!

where the Abelian-projected field strength is defined,

f mn :5]man
s2]nam

s :5tr@T3~]mAn
s2]nAm

s !#. ~C26!

The magnetic fluxF obtained by integratingBW m over any
closed surface containing the origin is

Fm :5E
S
BW m•dSW 5

4p

g
. ~C27!

14The four-dimensional expression is given by

am
s ~x!52

1

g
@cosb~x!]ma~x!1]mg~x!#. ~C19!

The angleg(x) does not appear in the U~1!-invariant quantity. Ac-
tually, the magnetic current given by

km~x!5
1

g
emnrs]n@]r cosb~x!]sa~x!# ~C20!

does not contain the angleg. For more details, see@13#.
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On the other hand, the magnetic fluxF obtained by integratingBW Ds over any closed surface containing the origin is

FDs :5E
S
BW Ds•dSW 52

4p

g
. ~C28!

We observe that the singular gauge potentialAm
s satisfies the following relation:

]mAn
s2]nAm

s 5
i

g
$]m~U]nU†!2]n~U]mU†!%

5
i

g
$~]mU !~]nU†!2~]nU !~]mU†!%1

i

g
~U]m]nU†2U]n]mU†!

5
i

g
$~]mU !U†U~]nU†!2~]nU !U†U~]mU†!%1

i

g
~U@]m ,]n#U†!

5
i

g
$2~U]mU†!~U]nU†!1~U]nU†!~U]mU†!%1

i

g
~U@]m ,]n#U†!

5
i

g
@ iU ]mU†,iU ]nU†#1

i

g
~U@]m ,]n#U†!

5 ig@Am
s ,An

s#1
i

g
~U@]m ,]n#U†!, ~C29!
g

e

m

o

,

where we have used

UU†51, ]m~UU†!5~]mU !U†1U~]mU†!50.
~C30!

Hence the Abelian-projected field strength reads

f mn5tr~T3ig@Am
s ,An

s# !1trS T3
i

g
U@]m ,]n#U†D .

~C31!

If U is not singular, the last term in Eq.~C29! or ~C31! is
absent, sinceAm

s is a pure gauge which gives a vanishin
field strength for nonsingularU(x),

Fmn :5]mAn
s2]nAm

s 2 ig@Am
s ,An

s#[0. ~C32!

The last term in Eq.~C29! corresponds to the singularity du
to a Dirac string as shown shortly.

Now we clarify the physical meaning of the last ter
( i /g)(U@]m ,]n#U†)(3). We show that15

U~x!@]X ,]Y#U†~x!522pnid~X!d~Y!u~2Z!s3 .
~C33!

To prove this, we first show that

@]X ,]Y#w~x!52pnd~X!d~Y!. ~C34!

This is a result of the Stokes theorem; for the arbitrary tw
dimensional regionS including (X,Y)5(0,0),

15This is derived also from homotopy theory
P2„SU(N)/U(1)N21

…5P1„U(1)N21
…5ZN21. In particular,

P2„SU(2)/U(1)…5P1„U(1)…5Z; see argument in Ref.@6#.
-

E
S
dXdY@]X ,]Y#w5E

S
d2S detS ]X ]Y

]Xw ]Yw
D

5E
S
d2S¹3~¹w!

5 R
C5]S

]mwdxm5Dw52pn

52pnE
S
dXdYd~X!d~Y!, ~C35!

where the integern comes from the multivaluedness ofw.
Whenu50 ~i.e., on the positiveZ axis!,

U~x!0,w5S 1 0

0 1D , ~C36!

which does not give a nontrivial contribution in Eq.~C33!.
On the other hand, foru5p ~i.e., on the negativeZ axis!,

U~x!p,w5S 0 e1 iw~x!

2e2 iw~x! 0 D . ~C37!

Then, using Eq.~C34!,

U~x!p,w@]X ,]Y#U~x!p,w
† 52 i @]X ,]Y#w~x!s3

522p ind~X!d~Y!s3 .

~C38!

This proves the statement~C33!.
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The relation ~C33! shows that the term
( i /g) (U@]m ,]n#U†)(3) produces a magnetic field only alon
the negativeZ axis,

BZ
Ds :5

i

g
~U@]X ,]Y#U†!~3!5

4pn

g
d~X!d~Y!u~2Z!.

~C39!

So this is identified with the Dirac string~not the magnetic
monopole! extending from the origin to infinity along th
negativeZ axis ~due to the above choice of U! in three-
dimensional space. Hence the divergence ofBZ

Ds is nonzero
at the origin,

k0
Ds5¹•BZ

Ds :5]Z

i

g
~U@]X ,]Y#U†!~3!52

4pn

g
d3~x!,

~C40!

which should be compared with Eq.~C28!.
Finally, we give an alternative definition of the Abelian

projected field strength,

f mn5tr~T3ig@Am
s ,An

s# !1trS T3
i

g
U@]m ,]n#U†D .

~C41!

This is the Abelian field strength obtained from the singu
gauge potential and consists of the magnetic monopole
and the Dirac string part as shown above. In the RHS,
second term tr(T3 ( i /g)U@]m ,]n]U†) expresses a magnet
field on the Dirac string and vanishes elsewhere. Theref
the remaining part tr(T3ig@Am

s ,An
s#) denotes the field

strength of the magnetic monopole defined everywhe
Hence, the magnetic monopole part of the magnetic cur
defined by

kr :5
1

2
emnrs]s f mn ~C42!

is equivalent to

Kr5
1

2
emnrs]s~geab3Am

a An
b!. ~C43!

In the three-dimensional slices, this describes a magn
monopole with magnetic charge

gm :5E K0~x!d3x5
4p

g
n,

ggm

4p
5n, ~C44!

wheren is an integer. This is nothing but the Dirac quan
zation condition.
e
er
r
rt
e

e,

e.
nt

tic

In the original YM theory, as a result of the Jacobi ide
tity

emnrs@Dn ,@Dr ,Ds##50, ~C45!

the Bianchi identity always holds,

05emnrsDnFrs ,

emnrs]nFrs5 igemnrsAnFrs52igAnF̃mn . ~C46!

After gauge fixing, the Bianchi identity for the residual U~1!
is violated,

emnrs]r f mn8 Þ0, ~C47!

which leads to the magnetic monopole. In the original Y
theory, the magnetic monopole does not exist. However, n
that

emnrs]rFmn8 ~3!Þ0, Fmn8 ~3!:52tr~T3Fmn8 !, ~C48!

since

emnrs]rFmn8 ~3!5emnrs]r~]man82]nam8 !

2emnrs]rig~@Am8 ,An8# !~3!

5emnrs]r
i

g
~U@]m ,]n#U†!~3!. ~C49!

The RHS is equal to the Dirac string contribution@45,39#
Incidentally, the four-vector

Kr
Ds5

1

2
emnrs]r

i

g
~U@]m ,]n#U†!~3! ~C50!

denotes the trajectory

Km~x!5E dt
]ym~t!

]t
d~4!

„x2y~t,0!…, ~C51!

as the boundaryxm5ym(t,0) of the Dirac sheet described b
ym(t,s) ~world sheet of the Dirac string, i.e., two
dimensional surface swept by the Dirac string in fou
dimensional space!,

vmn~x!:5
i

g
„U~x!@]m ,]n#U†~x!…~3!

5E dtds
]~ym,yn!

]~t,s!
d~4!

„x2y~t,s!…. ~C52!

The Yang-Mills theory is further discussed from the top
logical point of view in a subsequent paper@52#.
s.

e,

-
r-
@1# Y. Nambu, Phys. Rev. D10, 4262~1974!.
@2# G. ’t Hooft, Nucl. Phys.B190 @FS3#, 455 ~1981!.
@3# S. Mandelstam, Phys. Rep.23, 245 ~1976!.
@4# P.A.M. Dirac, Proc. R. Soc. LondonA133, 60 ~1931!; Phys.

Rev.74, 817 ~1948!.
@5# G. ’t Hooft, Nucl. Phys.B138, 1 ~1978!; L. Del Debbio, M.

Faber, J. Greensite, and S. Olejnik, Center dominance, ‘‘C
ter vortices and confinement,’’ hep-lat/9708023; M. Bak
n-
,

J.S.Ball, and F. Zachariasen, Phys. Rep.209, 73 ~1991!.
@6# A. Kronfeld, G. Schierholz, and U.-J. Wiese, Nucl. Phy

B293, 461 ~1987!.
@7# A. Kronfeld, M. Laursen, G. Schierholz, and U.-J. Wies

Phys. Lett. B198, 516 ~1987!.
@8# M.I. Polikarpov, in Lattice ’96, Proceedings of the Interna

tional Symposium, St. Louis, Missouri, edited by C. Be
nard et al. @Nucl. Phys. B ~Proc. Suppl.! 53, 134 ~1997!#,



v,

S

.

,’’

ys
nd
-
,’’

ar

a

of
r-

l.

,

r,

n

’

, in
el-

ki,

’’

d

rk
,

57 7487ABELIAN-PROJECTED EFFECTIVE GAUGE THEORY OF . . .
hep-lat/9609020; M.N. Chernodub and M.I. Polikarpo
‘‘Abelian projections and monopoles,’’ hep-th/9710205.

@9# Z.F. Ezawa and A. Iwazaki, Phys. Rev. D25, 2681~1982!; 26,
631 ~1982!.

@10# T. Suzuki, Prog. Theor. Phys.80, 929 ~1988!; S. Maedan and
T. Suzuki, ibid. 81, 229 ~1989!; T. Suzuki, ibid. 81, 752
~1989!.

@11# J. Smit and A.J. van der Sijs, Nucl. Phys.B422, 349 ~1994!;
B355, 603 ~1991!.

@12# T. Suzuki and I. Yotsuyanagi, Phys. Rev. D42, 4257~1990!;
S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura,
Ohno, and T. Suzuki, Phys. Lett. B272, 326 ~1991!; 285, 343
~1992!.

@13# R.C. Brower, K.N. Orginos, and C.-I. Tan, Phys. Rev. D55,
6313~1997!; in Lattice ’96 @8#, p. 488, hep-lat/9608012; R.C
Brower, T.L. Ivanenko, J.W. Negele, and K.N. Orginos,ibid.,
p. 547, hep-lat/9608086.

@14# S.V. Shabanov, ‘‘The monopole dominance in QCD
hep-th/9611228; Mod. Phys. Lett. A11, 1081~1996!.

@15# T.A. DeGrand and D. Toussaint, Phys. Rev. D22, 2478
~1980!.

@16# K.G. Wilson, Sci. Am.241, 158 ~1979!; Rev. Mod. Phys.55,
583 ~1983!.

@17# N. Seiberg and E. Witten, Nucl. Phys.B426, 19 ~1994!; B431,
484 ~1994!.

@18# C.G. Callan, Jr., R. Dashen, and D.J. Gross, Phys. Rev. D17,
2717 ~1978!.

@19# S. Sasaki, H. Suganuma, and H. Toki, Prog. Theor. Phys.94,
373 ~1995!; H. Suganuma, S. Sasaki, and H. Toki, Nucl. Ph
B435, 207 ~1995!; S. Umisedo, S. Sasaki, H. Suganuma, a
H. Toki, ‘‘Monopole dominance for dynamical chiral
symmetry breaking in the dual Ginzburg-Landau theory
hep-ph/9609499.

@20# O. Miyamura, Phys. Lett. B353, 91 ~1995!.
@21# M.B. Halpern, Phys. Rev. D16, 1798~1977!.
@22# M. Martellini and M. Zeni, Phys. Lett. B401, 62 ~1997!; F.

Fucito, M. Martellini, and M. Zeni, Nucl. Phys.B496, 259
~1997!; A.S. Cattaneo, P. Cotta-Ramusino, F. Fucito, M. M
tellini, M. Rinaldi, A. Tanzini, and M. Zeni, ‘‘Four-
dimensional Yang-Mills theory as a deformation of topologic
BF theory,’’ hep-th/9705123.

@23# M. Quandt and H. Reinhardt, ‘‘Field strength formulation
SU~2! Yang-Mills theory in the maximal abelian gauge: pe
turbation theory,’’ hep-th/9707185.

@24# H. Min, T. Lee, and P.Y. Pac, Phys. Rev. D32, 440 ~1985!.
@25# T. Kugo and S. Uehara, Nucl. Phys.B197, 378 ~1982!.
@26# H. Hata and I. Niigata, Nucl. Phys.B389, 1331~1993!.
@27# D.I. Dyakonov, V.Yu. Petrov, and A.V. Yung, Sov. J. Nuc

Phys.39, 150 ~1984!; Phys. Lett.130B, 385 ~1983!.
@28# D. Zwanziger, Phys. Rev. D3, 880 ~1971!; R.A. Brandt, F.
.

.

-

l

Neri, and D. Zwanziger,ibid. 19, 1153~1979!.
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