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We analyze and give explicit representations for the effective Abelian vector gauge field actions generated
by charged fermions with particular attention to the thermal regime in odd dimensions, where spectral asym-
metry can be present. We show, througfunction regularization, that both small and large gauge invariances
are preserved at any temperature and for any number of fermions at the usual price of anomalies: helicity
(parity) invariance will be lost in evefodd dimensions, and in the latter even at zero mass. Gauge invariance
dictates a very general “Fourier” representation of the action in terms of the holonomies that carry the novel,
large gauge-invariant, information. We show that latgelike smal) transformations and hence their Ward
identities are not perturbative order-preserving, and clarify the rolproperly redefinedChern-Simons terms
in this context. From a powerful representation of the action in terms of massless heat kernels, we are able to
obtain rigorous gauge-invariant expansions, for both small and large fermion masses, of its separate parity even
and odd parts in arbitrary dimension. The representation also displays both the nonperturbative origin of a finite
renormalization ambiguity and its physical resolution by requiring decoupling at infinite mass. Finally, we
illustrate these general results by explicit computation of the effective action for some physical examples of
field configurations in the three-dimensional case, where our conclusions on finite temperature effects may
have physical relevance. Non-Abelian results will be presented sepaf&8556-282(198)01012-1

PACS numbes): 11.10.Wx, 11.15.Bt, 11.30.Er, 11.30.Rd

I. INTRODUCTION

les= J d3xe A F (1.3

v
Effective gauge field actions, induced by integrating out
their sources, play an essential role in physics. Here we wilHowever, as we shall seécs is neither gauge invariant
study the result of integrating out charged fermions mini-(which is in fact one essential reason for its interest is it
mally coupled to an Abelian vector potential, with emphasisgenerically well defined, but it can be “improved”; it also
on odd dimensions, especially= 3, and on the thermal re- does not appear “unaccompanied” in the effective actions.
gime in which topological considerations are both essentiaUnderstanding these points plays a pivotal role both in ana-
and delicate. The corresponding non-Abelian analysis will bdyzing QED;, as well as incorporating correctly possible
presented subsequenfll]. Three-dimensional QED (QEP  “bare” CS terms that could be present in a descent from the
models are interesting for a number of reasons: From a théd® =4 QED topological action “theta” ternf FOF. In this
oretical point of view they provide fascinating examples ofconnection, one must also come to terms with the proper
interrelations between quantum mechanics, unusual gauggiantization requirements, stemming from their gauge de-
invariance, topology, and discrete space-time symmetriependence, on the coefficients lfs. We will deal with | g
[2,3]. On more physical grounds, they are natural candidatei# Sec. Il, as part of a general analysis of the complete ef-
for the description of planar phenomena in the condensefkctive actions and their gauge properties, extending work
matter contex{4] or the high-temperature regime of four- begun in Ref[6]. We will then review why the perturbative
dimensional model§5]. expansion of the effective action in the coupling constant is
Many intriguing features of odd-dimensional dynamicsnot invariant under largénot contractable to the identity
stem from the existence of the unconventional, parity-gauge transformations, thereby invalidating the usual pertur-
violating, but apparently gauge invariant and well-definedbative Ward identity counting. Analyzing how gauge invari-
Chern-SimongC9) term, which has its simplest, quadratic, ance constrains the form of the full effective action in terms
form in the planar §=3) cas€3]: of its dependence on the variables carrying the local and
global degrees of freedom, namely the field strength and the
holonomy, will bring in the CS terniin its correct, “im-

*Email address: Deser@binah.cc.brandeis.edu proved” guise as the carrier of global information.
"Email address: Griguolo@irene.mit.edu In Sec. Ill, we shall detail the properties of the Dirac
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ization with particular attention to the delicate interplay be-while the U1) gauge field is chosen to be periodic,
tween large gauge invariance and spectral asymmetry. This

analysis will make manifest the necessary clash in odd ALt B X)=A,(t,X). (2.2
(even dimensions between paritfhelicity) and gauge in-
variance. In odd dimension an “intrinsic” parity anomaly,
i.e., one nonvanishing even for massléssnce formally par-
ity conserving fermions, is generally present and it is iden-
tified with the » function, more precisely witiy(0) [7]. This _

guantity will be seen to be a discontinuous gauge invariant Si=i | d3y(D+m)y, (2.3
functional of the fields, containing, as a single unit, the CS

action together with a nonlocal object given by the i”dex?whereDME&MHAﬂ is the usual 1) covariant derivative,

approach, the latter, being discontinuous, becomes manifegg,s y

only through a nonperturbative investigation of the Dirac
determinant. We shall also notice that the parity-violating A,—A,—iU"19,U, U=exdiQ(t,x)], (2.9

part of the effective action suffers from a sign ambiguity

whose mathematical origin stems from having to specify &0 respect these periodicities forces them to be periodic as
choice of cut in the definition of the complex power of the well, but allowing the phasg€) to obey

Dirac eigenvalues; physically, this is a finite regularization

effect which has its counterpart also in the perturbative re- Q(t+B.x)—Q(t,x)=2mn, nel. (2.9
gime. The ambiguity can be fixed by requiring a vanishing
effective action, i.e., “decoupling,” in the infinite fermion
mass limit. We then obtain an explicit “spectral” represen-
tation of the action in terms of massless heat kernels.

In Sec. IV, we use this representation to derive systemati
(gauge-invariant mass-expansions in both small and large
mass regimes. These expansions, valid for any dimension
may have a wider applicability and so are given in some 20
detail. U,{t,x)zex;{i — nt). (2.6

In Sec. V, many of the general features encountered in the B
previous sections are illustrated by explicit integration in
presence of some specific, physically nontrivial, gauge fiel

configurations. This also provides a useful check of the MOr€ o invariance under the transformatia@se) constrains the

formal results developed in the earlier sections. . _form of the effective action is a central issue. We begin by
Many results presented here, such as large gauge invari;

ance and mass expansions, can be shown to extend straig g_owing that the existence of a nontrivid), invalidates the
forwardly to the non-Abelian context. These, as well some" ual perturbative Ward identity counting. Restorif the

features intrinsic to the non-Abelian case will be discussed irgnomen) explicit dependence on the coupling constana

Ref. [1] and also illustrated through explicit configuration gauge transformation has the form
examples.

(In the presence of other nontrivial cycles, suchTds one
must specify the periodicity conditions also in their charac-
teristic directions. The fermion action is taken to be

Different n in Eq. (2.5 specify gauge transformations be-
longing to different homotopy classes; only transformations
with the samen can be continuously deformed into each
ther. Those((t,x) with n#0 generate “large” gauge
ransformations. A representative for each such class can
g,asily be constructed,

The composition lawJ,, XU ,=U,. , expresses the math-
matical statement thal;[U(1)]=Z.) Understanding how

i 1~

A= A= S U T, UE0=A— AL+ 2 0,0(6X),
Il. D=3: LARGE GAUGE INVARIANCE, EFFECTIVE >
ACTION, CS TERMS 2.7

In this section we shall focus for concreteness on the imWith U(t,x) =exdiQ(t,x)]. If n=0, Q(t,x) is strictly peri-
portant and illustrative case df=3, but much of the discus- ©dic (“small” transformation, and the apparent nonanalytic
sion is general. Our three-space Igi§time)x 32 topology, ~ 1/e behavior in Eq(2.7) can be made to disappear by rede-
32 peing a compact Riemann two-surface such as a sphefi@ing Q(t,x) =eQ(t,x). Thus a perturbative expansion will
S? or a torusT?, depending on the desired spatial boundarybe small-invariant order by order because, after the rescaling,
conditions. We work with a finite two-volume in order to Eg. (2.7) cannot mix different orders of perturbation theory.
avoid infrared divergences associated with the continuouiistead under the large transformatid@s), the gauge con-
spectrum in an open space. Most considerations presented mgction changes as follows:
this section apply naturally to more familiar three-spaces,
such as the usua'x R? assumed in the perturbative ap-
proach. However, compagf allowing for magnetic flux are
more physical and will become essential in our full nonper-
turbative construction below. A rescaling will merely hide the &/factor in the boundary

The S circle is identified with euclidean time and its conditions, leaving Eq(2.8) unaffected. This intrinsic &
length 8= 1/xT is the inverse of the temperature. Spinors aredependence means that only flw effective action(as we

CS parts will remain large gauge invariant. In fact the shift

Y(t+ B,X)=— (t,X), J(Hﬁ,x): —Z(t,x), (2.)  in Eq. (2.8 can mix all orders of perturbation theor§Rer-

27
Ao—>A0+ ? n, Ai—>Ai . (28)
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turbative noninvariance will also characterize any other exnant can now be viewed as a functional of bétl, anda.
pansion that fails to commute with the above boundary conits invariance is assured if the effective actibrobeys the

dition.) additionalfinite Ward identity
Let us now see precisely holarge gauge invariance re-
stricts the possible structure of the determinant, or indeed of I'a+1F,)=I(aF,,), (213

any well-defined gauge field functional. To simplify our ar-

gument and avoid irrelevant spatial homotopies, we shalhamely, ifI" is periodic ina; equivalently, Eq.(2.13 ex-
take 32 to be the sphere. Because of the existence of th@resses the invariance bfunder the Abelian large transfor-
nontrivial St cycle, we can construct, besides, , a second mation groupZ. The periodicity ina permits us to Fourier
and independent gauge-invariant object, the holonomy expandrl™:

B .
W(ﬁ,X)Eexp(ifo Ao(t’,X)dt’) exr[—F(FW,a)]=kZ [[}M(F,,)cos 2rka

=exli BAo(X)]. (2.9 +T@(F,,)sin 2rka].  (2.14

We will show thatF,, and W together completely specify
A, up to a gauge. What information carried #($3,x), or
equivalently by A, is not already contained in the field
strength? The gradient & obeys

Before going further, however, we want to reexprasa
terms of an appropriate functional of the gauge figddt of
course not ofF,, alone, as it is insensitive ta). This is
precisely the role of -5, as defined by Eq1.1) (or rather of
B its corrected version, as we shall sead we must therefore
VYW= iWJ dt'[VAq(t’,x)— dp A(t’,x)] consider its properties in detail. Under the gauge transforma-

0 tion (2.4), (2.5, we have

H B ! !
:"WJO E(tx)dt’, ICS(AU)—>ICS(A)+J A, (OF,,) =1 A)+Al cs.
(2.15
Although the gauge term in E@2.15 is a total divergence,

because [§dt’ gy A(t’,x) vanishes by periodicity(2.2;  dropping it is not generally permitted, since
equivalently,

Ei=Foi (2.10

1 B , , AlCS:J dSXG)\’uVﬁ)\[Q(t,X)FMV]
—VAO(X)=E jo dt'E(t’,x). (2.11)

B
_ 2
—2fo dtatLd x[Q(t,%)B(t,%)]

Since W is unimodular, the linearity of Eq2.10 implies
thatW is the product of &generically nonlocalfunctional of 5
E and of the two-geometry times a constant phase factor. +2f dtf d2xel 9Tt X)E.
The integrability(vanishing curl of Eq. (2.10 is insured by o O] Axe i Q(t,x)E{]
the Bianchi identity; its general solution is obtained from the

divergence of Eq(2.11) to yield =ZLdzx[Q(ﬂ,x)—Q(O,x)]B(O,x). (2.16

2 B
— Y Aa_ ’ 2 . !
Ao(x)= B a fo dt fd yG(xy)V-E("y). The magnetic B=F,,) and electric fields, being physical,

(2.12  must be periodic in. The electric contribution in Eq2.16
vanishes if$.? does not allow nontrivial boundary conditions
Here the Green’s functios(x,y) on the two-sphere obeys (the gauge invarianE; cannot have jumps, whil€ must
AG(x,y)=I-1, wherel is the projector on the zero modes. also be a well-defined two-scalar &7). On the other hand,
The constant part afly(x) corresponds to the constant phasethe magnetic term does not vanish for large transformations,
part exp(2ria) of W, while the rest of4y(x) exhibits theE  where Eq.(2.16 becomes
and two-geometry dependence. Thus the new information
carried byW is encoded entirely in the topological degree of )
freedoma, the flat connectiofi;it transforms according to AICS=477nJ;2d xB(0x)=4mnds2(B). (2.17)
a—a+1 under large transformations. The fermion determi-
The magnetic fluxd is in general nonvanishing, time inde-
pendent(by the Bianchi identity, and as a topological ne-
IThe appearance of topological degrees of freedom governing b&essity[8], ®/2m is integer quantized. It would thus seem
havior under homotopically nontrivial transformations is not un- that any bare CS action, conveniently definedis6ml s,
usual and occurs in other contexts and dimensions. In two dimershifts by ukn/2 under large gauge changes. Consequently,
sions, for example, all the dynamics of Yang-Mills theories isthe requirement that the phase exponential of any aétitn
described by such variables. relevant object at the quantum leyvdde gauge invariant
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would seem to enforce the quantization condition the CS  well defined(and small gauge invariansince it contains no
parameteru/27 that it be an even integer. Unfortunately, explicit A dependence and represents the advertized “im-
while this quantization argument is attractiVggis not even proved” CS term. The boundary teri fails to vanish for
well defined, precisely due to the very reas@n#0 for interesting configurations, involving nontrivial flu®, be-
quantization. Briefly statedp #0 requires nontrivial con- cause there the connectidnis different on the two patches
nectionsA on 3.2, thereby making s manifestly patch de- that cover the sphefe{Note that perturbative calculations in
pendent(a well-defined action is not patch-dependeiihis  the usual expansion about a trivigh (=0) connection will
major deficiency inl -5 should make one suspicious of the never see th& term; to include a reference background
validity of the above quantization requirement. Fortunatelywould complicate even the one-loop computation consider-
I cs can be “improved,” but we will see that the quantization ably.] We may now rewritd g as the sum of terms depend-
of the (bare coefficient of the improved.s becomesu/27  ing only on theF ,, together with those depending on the flat

=n rather than 2. connection, from the constant padf A, in Eq. (2.12,
We now sketch a heuristic “derivation” of -5, since _

precise ones were given long af@-11]; a new derivation lcs=8ma®+Q[F]=16m7?na+Q(F), neZ.

[12] will also justify it. Consider the particular gauge trans- (2.22

formation

This representation thus demonstrates thats not indepen-
dent, but is determined by andF, its behavior under large
transformations being completely governedabyit also en-
(2.18 ables us to compute the correct quantization of the coeffi-
cient in abare I¢g action (which must of course depend on
in its effect onlcs. Since()(t,x) is manifestly periodic irt lcs, not Icg): Under a large gauge transformatiom—a
[Q(B)=0(0)=0], we are allowed t8 neglect the diver- 4 | 1 gxd, thatis,| s changes by 162, so that
gence in Qlcg and thud cf(A) =Ic(A"), where itis easy  he pareu/2z must be an integer, not just an even one.

to check that the transformed fields are Having established the role dtg as the carrier of the
1 (8 holonomy information, we return to the Fourier expansion of
Ag(t,x)z E f dt’ Ag(t’,x) = Ap(X), the action(2.14 and reexpress tha dependence there in
0 (2.19  terms oflcs:

t t (B ~
Q(t’X):_[fodt,_E 0 dt,:|A0(t/,X)EOAOEAo(t,X),

AY(t,x)=A;(0X)+E;(t,x).

—“T(F.lcd— (1) -~
e ' (F)cosk(lc48mn
In terms of these variablesgg has the form k:E—oo [P (IcgBn)

B +T2(F)sin k(I cg8mn) 1. 2.2
ICS(A)=ZJ dtf d?x{ Ag(X)B(t,x) < (F)sink(lcg8mn)] 2.23

0 This form will be concretely realized by explicit field con-
+ e”[Ei(t,x) +A(0X)JE;(t,%)} figurations in Sec. V. For our purposes, it shows hovy explicit
CS terms can be present, when “protected” by sines and
cosines, without loss of large invariance, but this invariance
is lost in a power series expansion. As is necessary, we will
confirm this formal analysis in Sec. Ill, when we obtain the

= 2thf d?X[ Ag(¥)B(t,%) + € E;(t,%)E;(t,X)
0

+ €l A(0X)d;Ap(X) ] properly regularized determinant.
We are now in a position to settle and old paradox arising
B . . . . e
zzf dtf d2x{ Ay(x)[B(t,x)+B(0X)] in naive perturbative calculations bf At one-loop(which is
0

everything if the photon is not dynanjitevel, the fermions

e give rise to an effective CS contribution, irrespective of
+E|]Ei(t,X)Ej(t,X)}_K, (220)

K=—2[ d3eVa,[A(0X)Ay(X)], 2.2
f € J[ (00 Ao(0)] 2.29 “The patch dependence &f is easily described schematically:

. Consider two patches defined Kfor simplicity) some arbitrary
where, to reach the last term of the second equality, we havgiitude cutd= 6,. Then if A~ denote the respective values of the

used Ej(t,x)=—0;Ao(X)+doA]'(t,X) and then dropped A4(8,) on the upper and lower caps, it is manifest thét

&OAJ»U(t,x) by periodicity. The sumc=Icst+K is perfectly ~/d¢(A"—AT)Au(6,). Clearly, K depends on the patch choice
0, and does not vanish i # 0, due to the usual nontrivial gauge
gauge difference on the patches familiar from magnetic monopole
constructions.

“Mathematically this quantization relies on the fact that Syere another arbitrary choice was made in keeping the constant
IT;[U(1)]=Z. In the non-Abelian regime, quantization @f27 i part of A even though it appeared in differentiated form in the
of course always requiref@]. second equality’s last term. This choice of wipdtysicalterm to

3Note that the® operation projects out any time-independent fac- divide betweerkK and! cgled to the coefficient shown in E¢2.22).
tors. Fortunately, this is also the correct answer frf@n-12].
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whether there is an initial bare one. The calculation of thewhat different regularizations that preserve both gauge and

coefficient is straightforwarfi13], parity, something that is indeed not achievable for dtd
With our regularization prescription, however, large gauge
Ap € Bsm invariance is always preserved, while parity is always

o 2 2| (2.24 anomalous for both even and odd number of charges.

which is noninteger for generig=(«T) 1. However, since
at the same time it wagcorrectly thought both that Eq.
(2.24 seems to signal an irremediable large gauge anomaly

and that the matter actiohy=i/(dx)y(D+m)¢ and the We now turn to the implementation of the formal frame-
process of integrating out its excitations to obtain the effecwork of Sec. Il, by regularizing the fermion determinant and
tive action exp{-ITA])=det(d +im) should be intrinsically then exhibiting its properties. We shall review the definition
gauge invariant, this paradox has generated a considerali¢ the Dirac operator's determinant in the rigorous frame-
literature. Opinions have differed widely: one claim is thatwork of the {-function approacti17,18,23 for arbitrary di-
there is no anomaly, due to some obscure nonperturbativéension. Although this has become a very popular technique
mechanism that restores the integer naturg pf4,15. Spe-  and a well-established mathematical subject, we believe it is
cifically, Ref. [14] conjectured that the usual perturbative worth reexamining in order to point out some subtleties pe-
definition of the CS coefficient through the two-point func- culiar to odd-dimensional manifolds. Specifically, we will
tion is not physically relevant and a possible nonperturbativetress the delicate interplay between spectral asymmetry,
one in terms of the complete effective action was proposedarge gauge invariance, parity anomalies, and perturbative
Given a large gauge transformatidh of winding number  expansions. In the process a compact integral representation
n, a new renormalizegug is to be defined according to of the ¢ function for massive electrons in terms of the mass-
27Tn,uR=F[U[107MU|_]—T[O], and its integer nature is sup- less gauge invariant heat kernels will be derived for all di-
posed to be protected by some topological Ward identity. I'mensions. It will enable us to provide, in Sec. 1V, detailed
Ref. [15], under the(incorrec} assumption that the only expansion of both the parity odd and even parts for small and
parity-violating contribution in the effective action is the CS large fermion masses.

term, it is shown that the path-integral formulation of the The mathematical tool that allows us to make sense of the
theory is consistent only ifu remains a temperature- formal product of the eigenvalueﬁ)\nxn defining the deter-

independent integer. Another point of view accepts the temmjnant is¢-function regularization, which, for normal opera-

perature dependence in E&.24 as a correct prediction of tors such as( +m) on a compact manifold, reduces to
the theory entailing, for example, the breakdown of the

anyonic description of superfluidity].

We have already seen how to dispel the paradox formally. £(s)= E (N)S: 3.0)
A first step in understanding the real nature of this puzzle Apespectum '
was recently taken in Refl16]; a solvable one-dimensional
Abelian analogue of the problem was carefully analyzed and ) ) )
in particular its effective action was computed in closedin the sum each eigenvalug, in the spectrum is repeated
form: While gauge invariantat least for an even number of according to its multiplicity’ The convergence of the series
fermions, its perturbative expansion indeed contained a3-D for Res>d in d dimensions is assured by a classical
(one-dimensionalCS term with the temperature-dependentresult on the asymptotic growth of eigenvaljés], which
coefficient(2.24). This result thus allowed the coexistence of for the massive Dirac operator reads
large gauge invariance of the full action and nonquantization
of the perturbative CS coefficient. It was then established in ; —d_
Ref.[6], that the effective action, independent of the number r!'fl N[ const. (3.2
of fermions, is indeed invariant under both small and large
transformations using the classic results of REfg,18 that
permit a clear definition of the Dirac operator's functional Here the eigenvalue sequence is ordered so|tgts|\ |
determinant by means af-function regularization, as we <---. Actually one can go further and show thg(s) for
shall show in detail in Sec. Ill. We shall also see how Cherns>d defines an analytic function that can be extended to a
Simons term’s noninvariance is precisely compensated byeromorphic function with only simple poles. In particular
accompanying nonlocal contributions in the effective actionits analytic extension is regular at=0 and its derivative
that are not perturbatively visible.

Finally we mention another historical misunderstanding
which goes back to the original papers, R¢#0] and[20]: erpere is an intrinsic ambiguity, the scale dependence of the di-
the relation between the number of fermions and gauge ingmensionfulx ,, hidden in Eq.(3.1). Strictly speaking, to construct
variance in three dimensions. It is often stated that, in cOMhe / function one should use the dimensionless rafiéy, with an
plete analogy with the S@) anomaly in four dimensions arpitrary scalex. The determinant is therefore actually undeter-
[21], large gauge invariance in three dimensions is mainNmined up to terms proportional t&(0)In x [23], namely, to the
tained only for an even number of fermions or more pre-well-known trace anomaly. In odd dimensions this contribution of
cisely for a certain choice of matter multipldts5,22. What  course vanishes. Note also that the extensioN fermions simply
is true here is that in the eveé¥y case one can define some- involves the product of the individual determinants.

IIl. THE ACTION: REGULARIZATION,
REPRESENTATION, AND ANOMALIES
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there defines the determinant according to Hawking’s To investigate the properties of the determinant more
relatiorf [23] closely, we must rewrite the “abstract function in terms
of the well-established machinery of the heat-kernel equa-
deti(D+m)=exd —¢'(0)]; T'[A]=¢'(0). (3.3 tion. (This task is not completely trivial because our operator
is not positive definitg.Let us illustrate this first in the mass-
Since the complex power is a multivalued function, a carefuless case and then proceed to the massive one. This will also
definition Of)\;S is required to avoid ambiguities in E('.S.l) allow a simpler connection to earlier results.
and thence in Eq3.3. We take it to be exp{sin \;) where At m=0, the eigenvalues being real, a parity transforma-
the cut of the logarithm is chosen to be over the real positivaion is simply
axis, Osarg(\,,)<2m, enabling us to rewrité(s) in the more
convenient form A== Np, (3.6

S0 we can decomposis) into
{(s)={pdS) + {puS), 3.7

) o parity even and odd parts,
A different cut may alter the determindiife., produce terms

()= 2 (\p) Stexp—ims) X (=) S
ReN,>0 Rer,<0
(3.9

that are not proportional to its intrinsic ambiguiff0)] only _ l+exp(xims) e
if it intersects the line Inz=m and thereby has crossed an {pdS)= 2 N E;pemmm‘nl) , (38
infinite number of eigenvalues. In that case, instead of Eq. "
(3.4), one would have 1—exp( Timws)
S =—F5——
(9= 2 O >texplins) 3 (~hy) >
n n —S__ — —S
(3.5 IR T N

Equation(3.5) has been rewritten by using the same cut as inyhile the = keeps track of the relevant ambiguity in chang-
Eq. (3.4 in order to compare them; we have also droppedng cut. These two objects can be now easily related to the
contributions proportional t@(0). This alternative choice squared? of the Dirac operator(the Laplacian on the

does not affect gauge invariance, but, as we shall see late$pinorg and to thes function of B. Explicitly we have
does change the sign of the possible parity anomaly terms in

I'[A] as was noted in Ref24] by more complicated consid- 1+expFims)

erations. It represents the nonperturbative analogue of the {pd(s)= D {p2(s/2),

more familiar sign ambiguity encountered in defining the

perturbative series via, e.g., Pauli-Villars regularization. 1—exp(Fims)

There, it appears as an explicit dependence on the sign {pv(S) = ————— n(s). (3.10
M/|M| of the regulator massWe will return to the signifi-

cance and fixing of the ambiguity. Both {p2(s) and 5(s) are well-defined and gauge-invariant

Turning now to gauge invariance in this framework, it is quantities, which admit an explicit heat-kernel representation
clear that it hinges on that of the eigenvalue spectrum. But

small transformations do not affect thg at all, while the 1 ? el )

large ones merely permute them, as in usual illustrations of {p28(S)= gy f dtt>™ " Trlexp(—tD9)], (3.11
: : , (s) Jo

index theorems[7]. Thus every well-defined symmetric

function of the spectrum, such d%s) and hencd'[A] is

> : . 1 il
unchanged and so gauge invariant. This argument does not n(s)= j dtt(st 21
rely on the particular topology of the manifold we are con- Il(s+1)/2] Jo
sidering, and it will hold for finite temperature space-times x 2
: X ; T -t ) 3.1
that are products 08! times a @— 1)-dimensional compact D exp(—tD%)] (312
manifold. Since both functions are analytiat s=0, the Dirac deter-

minant takes the form

1, i i
"Although our discussion is focused on the Dirac operator, all the de(D)zeX[{ ) 52(0)17 n(O)i? {p2(0) |.

results extend, with slight modifications, to the larger class of the (3.13
elliptic pseudodifferential operatorfsl7] with a ray of minimal '
growth (Agmon ray. While the ¥ in front of 7(0) represents a relevant ambiguity

81t has been pointed out that a larger ambiguity in the perturbativ . . P
approach can be obtained by using more than one Pauli-Villars fiel%l1 the definition of the determinant, t2(0) contribution
[25]. This unnatural result has(ikewise unnaturalcounterpart in
{-function regularization: use the well-known “product anomaly”
det(AB)#det(d)det) to bring in definitions that differ in the num-  ®While the regularity of(é, is to be expected, that af(0) is a
ber of determinants, each of whose cuts is to be separately fixed.nontrivial result and we refer the interested reader to Ri].
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can be reabsorbed in the first term by choosing the scale s

parametet to be = — 1. [Note, in fact, that Eq(3.10 im- EXF{ +1 7) o S

plies £(0)={p2(0); also £(0) vanishes at oddl, being es- (pS)= T f dtt51cos(mt17)
0

sentially the conformal anomalyln even dimensions the
existence ofyy, 1, Which anticommutes with the Dirac op-
erator, entails the absence of spectral asymmetry and thus the X exp —|\lb), (3.19
vanishing of7(0) so that also the firs¥ is harmless. In odd M

dimensiongno vy4, 1) N0 symmetry prevents us from having exd Fi(msl2)] [ s

7(0)#0 and consequently from having anomalous parity-/,,(s)= —————— J dtts‘lsin(mti—)
violating terms in the effective action whose overall sign is ' (s) 0 2
not determined. Unlikép2(0), 7(0) cannot be reabsorbed as

its parity is opposite to that of;.(0). While 7(0) is a X }\ZO exp(—|?\n|t)—)\§<:0 eXD(—|?\n|t)}
gauge-invariant functional of the field, it is neither local nor " "
continuous. It can be explicitly computed with the help of the (3.16

Atiyah-Patodi-Singer theorersee, e.g., Refl7]) and con- . . . .
sists of two parts: a continuous local functional given by theThe kernels in Eqg(3.19 and(3.18 can be again written in

; ; - . : term of the heat kernels of the square of the massless Dirac
approprlatg d|me'n5|onalmproyed'CS e}ctlon plus ablghly” operator and of it function. We shall begin by considering
nonlocal discontinuous contribution given by the “index

7(N,—N_). HereN, is the number of positive eigenvalues the parity-conserving pagpc(s). The first step is to find a

that become negative a&, is continuously deformed to functionF(s,t) such that

some referencebackgroungl connectior® B,, and vice - S

versa forN_. Note that(large gauge invariance is main- j dttSICOE(mW?) exp(—At)

tained through a cancellation between the CS action and the 0

nonlocal index contribution as advertized earlier. The CS o 5

Lagrangian is a local polynomial of dimensidrin the fields = JO dtF(s,t)exp(—A\-t). (3.17
and their derivatives, so it should, in principle, be removable,

large gauge invariance: under transformations of windingas an identity between Laplace transforms. In fact one can
numbern the determinant is multiplied by a phase factorimmediately write

exp(mn). Instead, parity invariance is recovered in spite of

the surviving index contribution, because while the index 1 y+io o _
changes sign under parity, it is of the foim X an integer, Fish=5—+ L_iw dx exp()\t)fo dpp’
which leaves the determinant unchangeéthe effective ac-
tion actually changes by the acceptable phasén2)

We are now ready to deal with the massive case. Let us
first note that the above massless parity decomposition still
holds formally, but it has lost its physical meaning because avherevy is a real constant that exceeds the real part of all the
parity transformation here means singularities of the second integral. With the helpFds,t),

the {ps) takes the form

Xcos(mpi%s) exr(—\/xp), (3.18

— * 1 *
A=~ Ap . (3.14 lpd28)= —— f dtts K- (t,5) >, exp(—t\2)
L(s) Jo o
The eigenvalues have, in fact, become complex since the 1 ® e )
euclidean Dirac mass is anti-Hermitian: they are given by “T(s) fo dtt® K= (t,s) Trlexp(—tD7) ],
Nn+im, where\, are those of the massless operdsordi D (3.19

is Hermitian). In this case, by means of the Mellin represen-
tation of the complex power, we can write, for the parity where
even and odd parts,
K. (t,s)=exp Tims)[KD(t,s)+2mtK@(t,s)]

1 1
=exp( Fims)| cog mws)P 5ts, 5;—m2t)
%hile B,, can be taken to be zero for trivial bundles, the inter- +2myt I'(1+s)
esting Abelian case as we have seen always involves a flux and - I'(s+1/2)
hence nontrivial ones. In this context see, e.g., R&f.Indeed, as 3
shown in Ref[1] the introduction of the reference connection is xsin(7s)®| 1+s, —;—mzt) (3.20
another way to reach the corrdgls. 2
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and ®(a,B;z) denotes the confluent hypergeometric func-

tion. Let us now perform the analogous analysis for the =exr<1i W_S) sin(w—s)(¢>(i E'—mzt)
parity-violating contributionp\(s). This time we need a 2 2 2'2°
function F(s,t) satisfying the integral identity I(1-5/2) 1+s 3
- e _m2
F2mt o) ( 2 2 t))

fmt31sin<mt1%s> exp(—\t)= fmF(S,t)K exp(—\2t).
) . (3.24

2
3.23 Equationg3.19 and(3.23 are the promised “spectral” rep-
The explicit form of thisF(s,t) can be constructed, as be- resentations for th¢ and » functions, and in particular the

fore, by means of the Laplace transform. In particular we geweights G and K- encode all the information about the
mass dependence of our determingActually they contain

more, because they hold for al and not only ats=0.]
exp(xt)j dpp*?t Therefore they can be used to investigate the properties of
the effective action in different mass limits. In the next sec-

y+ie d\

y-im YA
tion we shall use them to derive expansions of the effective
7S . : :
mp:_) exp — \/Xp), (3.22 action for small and large masses. W|t_h their help, one can
2 also show that the general considerations developed in the
massless case extend unchanged to the massive one.

F(st)=

Xsin

with y is in Eq. (3.18. In terms of this new kernel, the

parity-violating part becomes IV. LARGE AND SMALL MASS EXPANSIONS
The parity-conserving part of the effective action is given
- (s—1)/2
tpv(s)= _F[(s+1 2] f =G (Ls) by
d 1d 1d
X D Apexp(—tA2) FPdA]:d_S {pd(S) =§d—S§Pc(25) =5 ds
N s=0 s=0
- (s—1)/2 f dttS 1K - (1,00 Tr{ exp( —tD? }
r[<s+1/21f dtts D26 (t,5) h() ALOTe(-0%)|
XTI[D exp —tDh?)], 3.2 1 dK;
[ X )] (3.23 +lim m dtts 1
with s—0
G- (tsi=ex =i sl 7| XTiexi~t0?)). 3
The limits s—0 in Eq. (4.1) is a delicate point, detailed in
x[GD(t,s) F2mtG@(t,s)] Appendix A. The final result is
(d=1)/2 (—2)k
d _ 2\ k+1/2
Prd Al= 3 45 fo2+m(S) 7 {p2+m2(0) + @2 [k (gt 1
=0 ﬁ)\f:er[A]—_E > - - | (im)Z*Hg_ 5,
k=1 [f=1 I @=Di(k=])!
4.2
|
where H,, are the Seeley—de Wiftl] coefficients for the The analysis of the parity-violating effective action is sub-

massless Laplacian on the spinor: [@xp(-tD?)]  sStantially easier due to the absence of singular contributions
=3 Ht"Y2 That the nonlocal part of the parity- @5S—0; one obtains
conserving action 1/24"{2,2+m2(0)] is governed by the mas-

sive Laplacian might be expected, but, surprisingly, we have I'elA]=52 {pu(S)
extra dimension-dependent local contributions coming from

the s derivative of the kerneK.(s,t). Note that in odd s—1)f2 dG-(t,s)
dimensions, in contrast to the even ones, their sign depends I|m —m j dtt' T ds

on the choice of cut. This phenomenon will become more

relevant for the parity-violating part. XTr D exp(—tD?)]. 4.3

s=0
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The derivative of the kernéb—(t,s) at s=0 can be explic- §|z> ( k)
ity computed and gives d[A]— 5 d {p2(0)+ Z (im)2< =+ T2 A7,
(4.7
whereT') d[A] is specified in Eq(4.2). The appearance of
dG=(t,s) _r ®| 0 1 —m?t the even power can be understood as a consequence of the
ds <0 2 2’ behavior of the Dirac mass term under parlty Instead, the
local contributions T2 A7), proportional tom?**, origi-

nate from a compensation between vanishing and divergent
terms ass goes to zero. The even dimensional case is more
delicate, due to the fact thdly2(s) has in general simple
poles forn=1,2, ... d/2. The final result can be presented

- in the form
T 2sgr(m) [mit 5
== 1I—f exp(—z%)dz|. oc
’ Fod Al= 2 = 20+ S (imy? 24
PARI™ 5 gs *0? k=d2+1 2k
4.9
S 1d 1 s+n—1 2
+k21 2ds|T(9 dtt Tr(exp—tD9)
Thus the parity-violating part of the action turns out to(lre
oddd, where it exists +TRsTA] 4.8

Analogously, Taylor-expanding the parity-violating part, we

» dt obtain

Pl A=+ 5(0)—i sgrim) [~ <2
o\t

2k+1

Im|\E IpfA]l=*i - ﬂ(o)—lz (—1) S 7(2k+1).
XTr[ D exq—tDZ)]fo dz exp(— %) .

Note the presence of the intrinsic parity anomalyoterm
™ . *i(m/2)n(0): itis theonly one proportional to an evem’,
=[=1=sgrm)] 2 7(0)+1 sgr(m) JO ﬁ pov(ver ())fn'ghg mass. We ¥1ave glrepady stated that it contains
the CS action, but this doe®t mean that there are no other
CS contributions hidden in the rest of the series. The large
mass analysis below and the examples in Sec. V will indicate
that they are actually present. Furthermore their coefficients
4.9 are obviously mass and consequently temperature dependent
(the mass can appear only through a dimensionless combina-
In d=3 a similar representation fdfp\[A] was given in  tion such asBm, though other combination are possible if
Ref.[26]. There, the cut giving the plus sign was implicitly there are other relevant scales in the problem, e.g., the vol-
chosen. As we shall see below, this corresponds to requiringme of the manifold On the other hand, gauge invariance is
“decoupling,” i.e., vanishing ofl", as the fermion mass goes entirely unaffected by this: each term in the series is mani-
to +o. Note, again, that the sign in front of the parity festly gauge invariant, sincg(s) is. The large mass limit is
anomaly is entirely dependent on the choice of branch. As i more delicate issue, corresponding to an asymptotic expan-
clear from its representation olitpy differ from the odd-  sion of the action. In the case b, a simple application of

XTI D exrx—tDZ)] dz exp(—7%)

ImlVE

mass paripy of T, Watson’s lemm# gives in the odd-dimensional case

3 1 Tpd Al=al —1+sgrm)]

Ip[A]=5 (F[A,m]-T[A,—m]), (4.6 -2 o

2 (—2)
X 2 ey (MA)MHG o
Ao (2n+ 1)

asI'py has even mass parts as wehdI pc 0odd oneg This
= L d
I'py clearly cannot detect the intrinsic anomdthe one at - r( n— _)
m=0); as a result the possibility of decoupling in the infinite } 2 H 4.10
mass limit is not manifest(Also in a nonflat background 2 n=(&F 1y (MP)n-d2 20 :

geometry or higher dimensions, the above definition actuall
contains parity-conserving terms.

Both Eqgs.(4.2) and(4.5 can be used as starting points for
a mass expansion of the theory. Let us first consider the
small mass limit: in the parity-conserving case we simply Ut essentially statef27] that an asymptotic expansion in of
have to Taylor-expandp2. 2(S) in power of mass. For odd integrals such a§” .. dte”"™f(t) can be obtained by integrating the
dimension asymptotic expansion df(t) term by term.

¥Nhile in even dimensions we have
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“ T(n—d/2) i
I'edAl= ———az Hon Fpy(A)=[—1%xsgnm)] 2 7(0)
n=d+12 (M%)
_ - P [(n—d/i2+1)
d2-=1  _ 2ydi2-n i an+l
+£ D (—=m%) +'n§=:0 (MA@ 02 2ni1d
2 4=0 I'(d/2+1-n)
(4.12
di2—n 2 2 . . . .
x| S - m H 1 In H Let us stress again the asymptotic nature of this series. The
=1 kK w? o2 27 (local and invariant functionals of the gauge fields and of the
geometry P,,,; coefficients differ from zero only fon
dr2—1 >(d—1)/2. In the limit of infinite mass, the only possible
- 2 (—m?)d2=n surviving term is therefore proportional to the gauge invari-
n=0 ant 7(0), but different coefficients are possible, in complete
analogy with the parity conserving sectd®,0) for large
a2 n 1 (—2)k1t positive mass and the cut as in E8.4); (0,—2) for large
X k§=:1 (2k—D)!I k(d/2—n—1)1| 2" negative mass and the cut as in E85). Thus, given a sign

of the fermion mass, the branch can be always chosen so that
(4.11) the fermion completely decouplgsr not!) in the infinite
mass limit. This double pair of possibilities completely mim-
ics the analogous perturbative result in the presence of one
Pauli-Villars regulator. There the final asymptotic result

E tially, to obtain Eq$4.1 d(4.11), ds th
ssentially, to obtain Eq$4.10 and(4.11), one expands the would have been

kernel Tfexp(—tD?)] for small t and integrates term by
term. The asymptotic nature of this series means that terms _

exponentially small in the mass, i.@(e ™), cannot be PedAl=[sgrim)+sgriM)]lcs, 413
seen. This can have quite dramatic consequences, as we Witherem is the fermion mass, whil/ is the mass of the
show through explicit examples in Sec. V. Nevertheless theegulator. Form positive, we have(2,0) as M— (+,
expansion is both large and small gauge invariant order by-«), for m negative we have instead (02) as M—
order. In Eqs(4.10 and(4.11) we have inserted the explicit (+o,—x). The absence of the index in the perturbative
form of the local terms: we mention first that in odd dimen- result implies the loss of manifest gauge invariance for finite
sions the divergent contributiorim the large mass limitare  masses sinck-g has no counterpart to restore(iitor does it
nonvanishing only when gravitjthrough the geometry of acquire the required boundary terms needed to make it well
the manifold is involved. This can be inferred from the defined.

structure of the heat-kernel coefficients: for example, in three

dimensiondH; andH, correspond to the cosmological term V. EXPLICIT GAUGE EIELD EXAMPLES

and to the Einstein action, respectively. In general their co- ) i i

efficient is strongly dependent on the cut. For positive mass, FOF concrete illustrations of how the perturbative paradox
the branch chosen in E3.4) gives zerofi.e., the fermion is cwc_umvented, let us now consider some explicit examples
decouples while the one in Eq(3.5 would give a limit O.f acpons and Igrge gauge transformatloqs. We. start by re-
value of 2(no decouplin For negative mass, the reverse viewing, according to Refl8], the (0+ 1)-dimensional toy

situation occurs with coefficient2,0). This shows vividly model OT Ref.[lﬁ]. It (?OHSIStS O.N fermions on a circle 01_‘ a
that the choice of the cut is not just a matter of convention,radlusﬂ interacting with a 1) field through the Lagrangian
but affects physical predictions. It is interesting to notice that N d

in d=3 the first nontrivial correction to the infinite mass /;:2 z//i(t)(i a+A(t)+im
limit (the H, coefficien} is a Maxwell (Ffw) term, with =1

coefficient 1/48r|m|, in agreement with earlier calculations The large transformations are taken to be
[19,26,28. In the even-dimensional case the expansion is 9

i(1). (5.)

independent of the cut, as one would expect, and also in- Ut =exdif(t)]
volves logarithmic dependence on the mass, due to the non- ’
vanishing of the trace anomaly there. where f(8)—f(0)=2mn. (5.2

The analysis of the behavior of the parity-violating part is
more intricate, and a straightforward application of Watson'stpe integem is the winding number of the mag(t), i.e.,
lemma is not possible. However, looking at H4.9), one 5 7in= (AdtU(t) " *U’(t). The analog of parity in three di-
larget behavior is, in fact, suppressed by the vanishing of thgess fermions are invariant, massive ones violate this symme-
error function. Thus we can again expand the kernel angry. [Had a bare CS term, hefeA(t), been present in Eq.
integrate term by term. This time we use the heat-kerne{5.1), invariance of the path integral under large transforma-
expansion T exp(—tD?)]==;_,Pt"" 9 V2 whereP, are  tions would require thak in Eq. (5.1) be quantized, entirely
different from zero only for odah. We therefore obtain as inD=3]
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The eigenvalue problem corresponding to the _ Am
(0-+1)-dimensional Dirac operator can be exactly solved: I[A]=(2,0|im(a=[a)——-|, m<0. (5.7
2w 1, 27 ] This is a concrete realization of what was stated at the end of
)‘H_F =3t atim neZ, (53 sec. IV. Let us also notice that all theml/corrections are

identically zero. One can understand this result from two

where a is the average of\: a=(1/27r)f€A(t)dt. The ¢  different points of view. First, beyond the terms shown in

function can be computed in closed form in terms of theEds.(5.6) and(5.7), all the others are exponentially small in
Hurwitz function[29] ¢y (s,q) the mass and thus they cannot affect the asymptotic series.

Secondly, the one-dimensional Dirac operator coupled to a
) gauge field is always locally gauge equivalent to the free one

1 _Bm
a+§+| E,S

1 - Bm
E a IE,S .

[since locallyA(t) = 3;B(t)]. This means that the local coef-
ficient of its heat-kernel expansion must be trivial, and dra-
matically shows how much information can be lost in a large
(5.4 mass expansion, even though the final result is gauge invari-
ant. In other words, when topological degrees of freedom
Throughout, theT keeps track of the relevant ambiguity in SUch asa are involved, an expansion in the local coefficients
choice of cut. The determinant is now easily evaluated diOf the heat kernel can rarely retain the complete dynamics of

rectly from its definition, the theory. _ _
Though very instructive because of its soluble nature, one

might wonder if the mechanism realized in the toyHD)
model is shared by its three-dimensional counterpart, where
_ , a complete solution of the theory is not at our disposal. A
=exg —¢'(0)] i, . AR .
m more realistic example in this direction is to consider a
2(003!‘( '8_) cos wa purely magnetic configuration with flu(B)=2zn in d
2 =3. It is an easy exercise to show that the most general

é(s)=N(%) [zH

+exp(FimS){y

exp:—F(A)]:de(i %+A(t)+im

N

m m ' ' i
_isin ,3_ sin 7a | ex tiwaI'B— poter_mal, up to a gauge transformation, generating such a
2 2 field is
E[1+ei(2ﬂ-iafﬁm)]N. (55)
2
Note that this action depends aronly via theS! holonomy A= 7 a,A(x)), (5.9

exp(2ma) and thus is manifestly gauge invariant under a
large transformationa— a+ 1, for either cut and for aniy,
even or odd. In the middle term this occurs through a sigrwherea is a flatS! connection and the two-potentiél is
cancellation between the separate factors. Though the valugatic, living on the two-dimensional Riemann manifald.

of final expression in Eq(5.5 seems to depend completely The large transformations are associated to $hemap a

on the choice of cut, the intermediate equality makes it clear-a+1, as in the (6 1)-dimensional caséFor X of genus
that only the charge conjugation anomalous contribution igyreater than 0, large transformations corresponding to the
affected, in agreement with the general results of Sec. llinontrivial cycles of2 can be also constructed, but we will
Notice also the necessary presence of an “intrins{c®.,  not discuss them. Here we will only be interested in the ones
even present atm=0) charge conjugation anomaly relevant in the finite temperature regime.

Im e [A]=iN(a—[a]), where[a] denotes the integer part ~ We now proceed to compute the partition function for a
of a. This is what allows us to preserve large gauge invarisingle Dirac fermion in the backgrourifl.8). Since the latter
ance independently dN. This result also clearly exhibits is time-independent, we can decoupley looking for eigen-
what was claimed on general grounds in Sec. lll for thevectors of the form

parity anomalous contribution, namely, thg0): only the

combination of the continuous part, given by the CS acéion A om 1
and the discontinuous contribution coming from the index w(t,x,y)=ex;{— i (n+ Z
[a] is gauge invariant. Had we opted instdad in Ref[16]) B 2
for the (0+1) equivalent of the more usu&-preserving

regularization, the exp{a) factor in Eq.(5.5 would have  (|n finite temperature field theory the integer factom the

been missing and only evew would have kept invariance, phase is usually known as the Matsubara frequenEye 2

justasin (2+-1). factor takes care of the antiperiodic boundary conditions for
Dimension (O+1) is also a good laboratory for testing the fermion. The eigenvalue problem for the=3 operator

the mass expansions discussed in Sec. IV and in particulay thus reduces to an infinite series of effective two-
that for large mass. If we apply the one-dimensional anagimensional ones parametrized by

logue of parity conserving or violating expansiddsl0 and
(4.12 [or directly from Eqg.(5.5], we obtain

tiy(xy). (5.9

2

Y= (A —im)y=\y.
(5.10

1
DY=iDy+ o | agtnt 5

. m>0, (5.6 B

I'[A]=(0,—2)

ia-r(a—[a])—'BTm
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Here iD is the massless Dirac operator on the two-
dimensional manifoldX. The key observation is that the

spectrum ofp can be reconstructed once thatlbis known.
In fact let

(X,y) = (1(X,Y), 2(X,Y)) (5.19

be a(two-componenteigenvector oﬁ), with eigenvalueu
#0. Then the vectors

P (X,Y)=(d1(X,y),Cx da(X,y)),

Com— 27 [ agins
AR
+\/4Tr2 ++12+1 5.1
* W arn E ( . 2
are eigenvectors dp with eigenvalues
, 27 12
A+)y=im= 7 a+n+§ + u”. (5.13

As might be expected from thg, in Eq. (5.10, each non-
vanishing eigenvalue d generates two eigenvaluesbfof

equal multiplicity. This symmetrical behavior suggests that

they will not produce a spectral asymmetry and thus play n

role in the clash between invariances under large and parit

transformation. In fact, by using the representati®i6 for
{py(8), it is immediate to see that their contribution there
vanishes.

We come now to Kdb. The Atiyah-Singer theorem tells
us that it is spanned by, spinorsdﬁ(x,y) with positive
chirality and v_ spinors ¢° (x,y) with negative chirality,
wherev, —v_=nis the flux of theA; chirality is defined by
Yo% (xy) =+ 4%(x,y). Both %(x,y) and ¢°(x,y) are
eigenvectors ofp as well, but with eigenvalues

0 ) 2 1
)\(t)=|mt7 n+a+ 5

5 (5.19

The chiral asymmetry of the KBr is inherited by the spec-
trum of D: in fact A\° and )\‘i have different degeneracy.

This, as we shall see, will give rise to a nonvanishing anoma- ;

lous parity contribution.
The ensuing’ function is?

REPRESENTATIONS. . 7455
1 . Bm
L(S)=v Y §+a+| E,S
. 1 . Bm
+exp(—imS)v,{y >-a-i E’S
1 . Bm
+v_0ly E—a+| Py S
. 1 . Bm
+exp—ims)v_{y §+a—| Z‘S
4772 1 2 -s
+ > [mP+— latn+ | +ud| |
n, ug B 2
(5.19

where the discrete sum runs ouee Z and ,uke[Specé))

—Ker(lf))]. Let us denote the sum term by the symbol
{p2(s) even though that identification is not entirely correct.
The determinant can be then computed and we obititn

exgd —T'(A)]=[exp(—Bm+2mia)+ 1]+
X[exp—Bm—27mia)+1]"-

X ex = £5(0)]. (5.16
From Eq.(5.16 it is manifest that the determinant splits in
the product of two (6 1)-dimensional contributions and a
reduced expression depending An%, and the flat connec-
tion a. Amusingly, one can go further and partially compute
—552(0), namely, perform the sum over To this end, one
first defines a Mellin representation of the complex power
and then Poisson resums the series {isee Appendix B In

his way, we end up with a series fgp2(s) that is analytic
¥t s=0 and whose derivative at=0 leads to

2
exp(— £p2(s))= |11 [1+exp — BuZ+m?+27ia)]
Mk
Xexg2wF— (v, +v_)mB]

(5.17

That the above infinite product is convergent follows imme-
diately from the estimat€3.2). We have thus provided the
explicit general form5.16),(5.17), for the complete effective
action in the backgroun(b.8). It is a trivial exercise to com-
pute in particular its parity-violating pafundera— —a).
The term governed byp2(s) is unaffected, so we obtain

F= 5(32/472)(®2+ m2)( —-1/2).

SAfter the derivation in Ref[6] of the general forn5.16 for the
effective action, its odd-mass pdrpy (4.6) (rather than the true
I'py itself) was recalculated in Ref304| in a different way. The
result there, which was its main content, was incorrect. Upon pri-
vate explanation of their mistake to the authors, a second, corrected,

?Having already noticed that no asymmetry is entailed by theversion [30b] properly acknowledged our corrections. However,

eigenvalues\ .y, we have written>(\)\(_))"° instead of
3(N(+)) S+ Z(Ny) "5 Infact, in absence of spectral asymmetry,
these two quantities coincide up to local terms. The difference
proportional to the volume a in this case, can be evaluated with
the help of the spectral representation given in Sec. lIl.

that acknowledgment did not survive in the published vergaf],
nor in its erratun{30d] stating the true date of the revised version
[30d]. ~

1A recent computatiofi31] of I'py agrees with that implied by
Eq. (5.16).
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Simons termgthat carry the large gauge informatjocould
be present in the finite temperature thermal field theory re-
gime without violating the overall gauge invariance; this was
closely related to they function. From our original represen-
s w(a—[a])]. (5.18  tations, we were able to give “spectral” representations for
the massive Dirac determinant in terms of the massiessl
The above equation exhibits the remarkable property of? functions. In turn, this enabled us to provide explicit ex-
I'n[A] that it factorizes into a part dependent only on thepansions for both parity even and odd parts of the effective
holonomya times one that involves, through ( —v_), the action in the small as well as large mass limit. A number of
flux ® on 32 since as we sawy(, —v_)=®/27. This is  subtleties inherent in these expansions were discussed. One
both in accord with our initial “Fourier” representation as important aspect is that there is a finite regularization ambi-
well as a general consequence of the index theorem on pro@uity in the full nonperturbative action that parallels the
uct manifolds(for details see Ref(18], p. 289. [We have  Well-known perturbative one where there is a residual Pauli-
written the redundant combinatioma{[a]) rather thara in ~ Villars regulator ambiguity: results depend on the sign of its
the argument of the tan above to emphasize its fundamentglass even as it tends to infinity. For us, the ambiguity was in
role] a twofold possibility of complex plane cut. A physically ap-
A simple but interesting special case of E§.8) where Pealing choice was to insist on “decoupling” as the elec-
the eigenvalueg, are known explicitly is the instanton on tron’s mass becomes infinite. Thesg amb|g_umes d|ffgr from
the flat unit torus:A;=—mmne;x. Here pi=4m|nk with the usual polynomial freedom associated with regularization,

2n degeneracy, while  2¢(g21am2) 02+ m2)(— 112) simply because there are no gauge-invariant polynomials
=n(4mn)Y28¢,,(— L/2m2/2an) — (v + v_)mpB. Substitut- available here. Instead, they are reflected in the nearest pos-

taf7(a—[a])]

£gm
Ip[A]l= (v — V)[ arcta+tar< o3

ing into Eq.(5.17) we obtain sible way to that: through the discrete value of the coefficient
of 7(0), which contains the local, “polynomial” CS term. In
exd —T'(A)] connection with the importance of the flat direction as rep-

resenting the large gauge aspects, we noted that these aspects
would only be found in perturbative diagrams if one used
fermion propagators in the “flat potential vacuum” rather
than simply the usual free ones. Finally, we provided some

4n

kH (1+exp — BAm|nkK +m2+27ia))
=1

2 m? explicit gauge field configuration examples to show the
Xexgn(4mn)~BLy _1/2’_27rn —2mng|. emergence of our general results in concrete cases involving
external fields.
(5.19
There are a number of other informative general properties to ACKNOWLEDGMENTS

be drawn from Eqs5.16),(5.17). First their invariance under
a—a+1 is manifest and its structure is consistent with Eq.
(2.14. Second, it is clear that a perturbatifiee., in powers .
of a) expansion of Eqe5.16) and(5.17) loses periodicity in tive Agreement No. DE-FC02-94ER40818 and by INFN,
. ; Frascati, Italy.

a and hence does not see large invariance order by order. For
example the Chern-Simons terrhc=7an) has a coeffi-
cient 1—tanh(8Bm/2). The usually quoted coefficient omits APPENDIX A
the 1 th_at re_presents thg |n'Fr|n5|c parlty-anomaly price of our We start by consideringpd A] defined in Eq(4.1). Re-
gauge-invariant regularization and hence persistmat0. :

) . S om0 calling that
As we saw in Sec. lll there is actually an ambiguity in its
sign (reflecting a choice of cutalso present in other regu- 1
larizations, for example, through the factor jjm ... sgn) K- (t,0) :q)<_, -,
in Pauli-Villars, even at perturbative Feynman diagram level. 2°2
As we discussed, with our intrinsic parity-violating gauge-
preserving choice the ambiguity is physically reflected in thethe first term in Eq(4.1) can be cast as
degree of decoupling of a heavy fermion.

This work is supported by NSF Grant No. PHY-9315811,
in part by funds provided by the U.S. DOE under Coopera-

—m’t|=exp(—m?), (A1)

1d
VI. CONCLUSIONS 3 ds {p2+m2(s)

; (A2)
s=0

After first deriving a generic form for the Abelian gauge
field effective action in arbitrary dimensions purely on gaugei.e., 3 the effective action corresponding to the massive La-
invariance grounds, we were able to represent it in detaiplacian on the spinor. Because of thé'(ig) factor in front
using ¢-function regularization. In the process, we found aof the integral, the simple poles at=0 of the second inte-
uniform preservation of gauge invariance, under both smalgral in Eq.(4.1) give rise to a nonvanishing result. Since the
and large transformations, which in odd dimensions is linkedsingular behavior occurs whenis near O(the integral is
with parity anomalies due to the possibility of spectral asym-egular neat= o), we can reduce the integration region to
metry. We thereby connected the machinery of index theothe finite interval(0,1) and use the asymptotic expansion for
rems to the more prosaic question of how improved ChernTr[ exp(—tD?)]:
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- 1 o [H, d
Trlexp( —tD2)]= >, Ht("~ D72 (A3) = lim 2 2 n ( (t,s))
n=0 2 s—0 N=0 k=0 k' d t=0
to evaluate the integral. Herd, are the Seeley—de Witt 1

coefficients, local functionals of the gauge field and back-
ground geometry, invariant under small and large transfor-
mations. The integral turns out to be H, d*[d

+2m o oo (ds K@)(t, s))
Sl 0)+ = lim — fldtts’l e
+ 2 §D2+m2( ) 2 S[r(l) F(S) 0 1

“T(s) s+ (n—d+r D2+ k)|

(A5)

- dK® dK®
(n—d)/2 +
an:O H,t [ds +2myt i

Let us drop, for the moment, the contribution proportional tol‘ettlng s—>0'|n the previous equation, because of the
{p2+m2(0). Taylor expandingk” in the second term and 1I'(s), we will get a vanishing result unless=d -2k or
performing the integral irt, we obtain for the rest of Eq. n=(d—1)—2k. Thus we can write this contribution as
(Ad)

. (A4)

Hdk

1 o] 0

d . . H, d“ d
d_sK (t,8) | M6y (4—1)- 2kk|d_R ds

s,t=0

Taking account of the fact that only the even coefficielt, are different from zero in the heat-kernel expansion for the
Laplacian, the first term contributes onlydfis even while the second only @ is odd. Explicitly we have

dr2

: Ha—zy & ( d KM(t, s)) d even
1d o 2%, k' dtflds s,t:0' '
Ipd A]= {p2ym2(S)|  *F5 {p24m2(0)+ (d-1)12 (A7)
2ds s=0 2 +m z M d i K@(t,s) d odd
& ki dt*lds ) ico! '
|
where we have restored the contribution proportional to the 242 1\2]-s
£(0)={¢p2.m2(0). Let usnotice that the cut ambiguity af- Fs)=2 E M+ pp)+|atn+ S| |
fects odd dimensions, while the local terms in even dimen- # e’ (B1)

sion are insensitive to it. Thé(0) part can, as usual, be
reabsorbed in a redefinition of the scale. The local parts ca@®ne starts by writing a Mellin representation of the complex

be explicitly computed with the result power and then interchanges the sum with the integral in
1 0
(d—1)/2 K _ s—1
(—2) Fs)=2 > —f dtt
od _ ;
F|0C(TA]—ngr(m)\/; kZo (Zk-f‘—l)” ug NeZ F(S) 0
BZ 1 2
X (2K, o, (A8) xexp{—m(mzﬂiﬁ)t— a+n+ E) t}
in the odd-dimensional case, while fdreven L
S—
a2 Tk - F(S) J dtt rgz
eve (_ Z)J_l 1
A== | X — : : 1)2
P Eu= b @Dt k=)t xex;{ 4'8772 (M +pudt—|a+n+ 5) t}.
X(ImM)ZKH gy (A9) 2)
APPENDIX B The above integral exhibits a singularitysat 0 whent ap-

proaches zero as well. In order to remove this obstacle and
There is a very standard technique for evaluating the dethus computeF’(0), we can usePoisson resummation,
rivative ats=0 of a series such as namely, the identity
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~ a
> (=2 f(n), (B3) H$—\F
ne’ neZ I'(s) e nel, n#0
wheref(n)szwdx exp(2rinx)f(x). In our case we have Xexx{ —27i| a+ > n

feel
F(s)= dtts— %2
(s)= F@ E .
BZ
yp) (m?+ ud)t

X, exr{—
neZz

m2n?

t

—27i|a+ =

> n (B4)

Notice that the integral is now regular &0 for everys,
whenn is different from zero, so we can write

\/_ E dtts 3/2

FO=re 2 |,

’82 2 2
X exg —— (m+ t
M;#O % 2.2 (M)

71_2r]2

t

1
+=
a+|n

+NTT (5= U2)[ L rianz w2+ mey (S— 1/2)
_(B2m2/4,n_2)7s+l/2(

—2i

vytrvo)]. (B5)

Performing the integral, we obtain

27 n|

s—1/2
Koo 1o BIN| 12+ m?)
ﬁ\/r) 1/2 ,3| | Mk

+ (5= V27 L p2iam2p2+ m2 (S~ 1/2)
—(BPm?/Am?) " (v + )], (B6)

where K (x) is the Bessel function. We can now take the
derivative and les— 0, because the series is convergent and
defines a holomorphic function at=0,

1

neZ, n#0 W

Xexp{ —2mi| a+

+27mlp2eme2)(— 12— pm(v,+v_).

F'(0)=

1
5 n— ||\ ui+m?

(B7)

(B8)

Recalling that In(1—x)=Ef:lxk/k, we can compute the sum
and finally find

F'0)=In ] |1+exd2mia+ By u2+m?]|?
MKk

+2mlp2sm2(— 12— Bm(v, +v_),
as reported in Ref6].

(B9)
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