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Effective QED actions: Representations, gauge invariance, anomalies, and mass expansions
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We analyze and give explicit representations for the effective Abelian vector gauge field actions generated
by charged fermions with particular attention to the thermal regime in odd dimensions, where spectral asym-
metry can be present. We show, throughz-function regularization, that both small and large gauge invariances
are preserved at any temperature and for any number of fermions at the usual price of anomalies: helicity
~parity! invariance will be lost in even~odd! dimensions, and in the latter even at zero mass. Gauge invariance
dictates a very general ‘‘Fourier’’ representation of the action in terms of the holonomies that carry the novel,
large gauge-invariant, information. We show that large~unlike small! transformations and hence their Ward
identities are not perturbative order-preserving, and clarify the role of~properly redefined! Chern-Simons terms
in this context. From a powerful representation of the action in terms of massless heat kernels, we are able to
obtain rigorous gauge-invariant expansions, for both small and large fermion masses, of its separate parity even
and odd parts in arbitrary dimension. The representation also displays both the nonperturbative origin of a finite
renormalization ambiguity and its physical resolution by requiring decoupling at infinite mass. Finally, we
illustrate these general results by explicit computation of the effective action for some physical examples of
field configurations in the three-dimensional case, where our conclusions on finite temperature effects may
have physical relevance. Non-Abelian results will be presented separately.@S0556-2821~98!01012-1#

PACS number~s!: 11.10.Wx, 11.15.Bt, 11.30.Er, 11.30.Rd
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I. INTRODUCTION

Effective gauge field actions, induced by integrating o
their sources, play an essential role in physics. Here we
study the result of integrating out charged fermions mi
mally coupled to an Abelian vector potential, with empha
on odd dimensions, especiallyD53, and on the thermal re
gime in which topological considerations are both essen
and delicate. The corresponding non-Abelian analysis wil
presented subsequently@1#. Three-dimensional QED (QED3)
models are interesting for a number of reasons: From a
oretical point of view they provide fascinating examples
interrelations between quantum mechanics, unusual ga
invariance, topology, and discrete space-time symmet
@2,3#. On more physical grounds, they are natural candida
for the description of planar phenomena in the conden
matter context@4# or the high-temperature regime of fou
dimensional models@5#.

Many intriguing features of odd-dimensional dynami
stem from the existence of the unconventional, par
violating, but apparently gauge invariant and well-defin
Chern-Simons~CS! term, which has its simplest, quadrati
form in the planar (d53) case@3#:
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I CS5E d3xelmnAlFmn . ~1.1!

However, as we shall see,I CS is neither gauge invarian
~which is in fact one essential reason for its interest! nor is it
generically well defined, but it can be ‘‘improved’’; it als
does not appear ‘‘unaccompanied’’ in the effective actio
Understanding these points plays a pivotal role both in a
lyzing QED3, as well as incorporating correctly possib
‘‘bare’’ CS terms that could be present in a descent from
D54 QED topological action ‘‘theta’’ term*F∧F. In this
connection, one must also come to terms with the pro
quantization requirements, stemming from their gauge
pendence, on the coefficients ofI CS. We will deal with I CS
in Sec. II, as part of a general analysis of the complete
fective actions and their gauge properties, extending w
begun in Ref.@6#. We will then review why the perturbative
expansion of the effective action in the coupling constan
not invariant under large~not contractable to the identity!
gauge transformations, thereby invalidating the usual per
bative Ward identity counting. Analyzing how gauge inva
ance constrains the form of the full effective action in term
of its dependence on the variables carrying the local
global degrees of freedom, namely the field strength and
holonomy, will bring in the CS term~in its correct, ‘‘im-
proved’’ guise! as the carrier of global information.

In Sec. III, we shall detail the properties of the Dira
determinant in the rigorous framework ofz-function regular-
7444 © 1998 The American Physical Society
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57 7445EFFECTIVE QED ACTIONS: REPRESENTATIONS, . . .
ization with particular attention to the delicate interplay b
tween large gauge invariance and spectral asymmetry.
analysis will make manifest the necessary clash in o
~even! dimensions between parity~helicity! and gauge in-
variance. In odd dimension an ‘‘intrinsic’’ parity anomal
i.e., one nonvanishing even for massless~hence formally par-
ity conserving! fermions, is generally present and it is ide
tified with theh function, more precisely withh~0! @7#. This
quantity will be seen to be a discontinuous gauge invar
functional of the fields, containing, as a single unit, the
action together with a nonlocal object given by the inde
while the former can be easily recovered in a perturba
approach, the latter, being discontinuous, becomes man
only through a nonperturbative investigation of the Dir
determinant. We shall also notice that the parity-violati
part of the effective action suffers from a sign ambigu
whose mathematical origin stems from having to specif
choice of cut in the definition of the complex power of th
Dirac eigenvalues; physically, this is a finite regularizati
effect which has its counterpart also in the perturbative
gime. The ambiguity can be fixed by requiring a vanishi
effective action, i.e., ‘‘decoupling,’’ in the infinite fermion
mass limit. We then obtain an explicit ‘‘spectral’’ represe
tation of the action in terms of massless heat kernels.

In Sec. IV, we use this representation to derive system
~gauge-invariant! mass-expansions in both small and lar
mass regimes. These expansions, valid for any dimensi
may have a wider applicability and so are given in so
detail.

In Sec. V, many of the general features encountered in
previous sections are illustrated by explicit integration
presence of some specific, physically nontrivial, gauge fi
configurations. This also provides a useful check of the m
formal results developed in the earlier sections.

Many results presented here, such as large gauge in
ance and mass expansions, can be shown to extend stra
forwardly to the non-Abelian context. These, as well so
features intrinsic to the non-Abelian case will be discusse
Ref. @1# and also illustrated through explicit configuratio
examples.

II. D53: LARGE GAUGE INVARIANCE, EFFECTIVE
ACTION, CS TERMS

In this section we shall focus for concreteness on the
portant and illustrative case ofd53, but much of the discus
sion is general. Our three-space hasS1(time)3S2 topology,
S2 being a compact Riemann two-surface such as a sp
S2 or a torusT2, depending on the desired spatial bounda
conditions. We work with a finite two-volume in order t
avoid infrared divergences associated with the continu
spectrum in an open space. Most considerations present
this section apply naturally to more familiar three-spac
such as the usualS13R2 assumed in the perturbative a
proach. However, compactS2 allowing for magnetic flux are
more physical and will become essential in our full nonp
turbative construction below.

The S1 circle is identified with euclidean time and it
lengthb51/kT is the inverse of the temperature. Spinors a
required to satisfy antiperiodic boundary conditions

c~ t1b,x!52c~ t,x!, c̄~ t1b,x!52c̄~ t,x!, ~2.1!
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while the U~1! gauge field is chosen to be periodic,

Am~ t1b,x!5Am~ t,x!. ~2.2!

~In the presence of other nontrivial cycles, such asT3, one
must specify the periodicity conditions also in their chara
teristic directions.! The fermion action is taken to be

Sf5 i E d3xc̄~D” 1m!c, ~2.3!

whereDm[]m1 iAm is the usual U~1! covariant derivative,
and thegm are Hermitian. Requiring the gauge transform
tions U

Am→Am2 iU 21]mU, U[exp@ iV~ t,x!#, ~2.4!

to respect these periodicities forces them to be periodic
well, but allowing the phaseV to obey

V~ t1b,x!2V~ t,x!52pn, nPZ. ~2.5!

Different n in Eq. ~2.5! specify gauge transformations be
longing to different homotopy classes; only transformatio
with the samen can be continuously deformed into eac
other. ThoseV(t,x) with nÞ0 generate ‘‘large’’ gauge
transformations. A representative for each such class
easily be constructed,

Un~ t,x!5expS i
2p

b
ntD . ~2.6!

„The composition lawUn3Um5Un1m expresses the math
ematical statement thatP1@U(1)#5Z.… Understanding how
the invariance under the transformations~2.6! constrains the
form of the effective action is a central issue. We begin
showing that the existence of a nontrivialUn invalidates the
usual perturbative Ward identity counting. Restoring~for the
moment! explicit dependence on the coupling constante, a
gauge transformation has the form

Am→Am2
i

e
U~ t,x!21]mU~ t,x!5Am→Am1

1

e
]mṼ~ t,x!,

~2.7!

with U(t,x)5exp@iṼ(t,x)#. If n50, Ṽ(t,x) is strictly peri-
odic ~‘‘small’’ transformation!, and the apparent nonanalyt
1/e behavior in Eq.~2.7! can be made to disappear by red
fining Ṽ(t,x)5eV(t,x). Thus a perturbative expansion wi
be small-invariant order by order because, after the resca
Eq. ~2.7! cannot mix different orders of perturbation theor
Instead under the large transformations~2.6!, the gauge con-
nection changes as follows:

A0→A01
2p

e
n, Ai→Ai . ~2.8!

A rescaling will merely hide the 1/e factor in the boundary
conditions, leaving Eq.~2.8! unaffected. This intrinsic 1/e
dependence means that only thefull effective action~as we
shall show!, butnot its individual expansion terms~including
CS parts! will remain large gauge invariant. In fact the shi
in Eq. ~2.8! can mix all orders of perturbation theory.~Per-
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turbative noninvariance will also characterize any other
pansion that fails to commute with the above boundary c
dition.!

Let us now see precisely howlarge gauge invariance re
stricts the possible structure of the determinant, or indee
any well-defined gauge field functional. To simplify our a
gument and avoid irrelevant spatial homotopies, we s
take S2 to be the sphere. Because of the existence of
nontrivial S1 cycle, we can construct, besidesFmn , a second
and independent gauge-invariant object, the holonomy

W~b,x![expS i E
0

b

A0~ t8,x!dt8D
[exp@ ibA0~x!#. ~2.9!

We will show thatFmn and W together completely specify
Am up to a gauge. What information carried byW(b,x), or
equivalently byA0 , is not already contained in the fiel
strength? The gradient ofW obeys

¹W5 iWE
0

b

dt8@¹A0~ t8,x!2] t8A~ t8,x!#

52 iWE
0

b

E~ t8,x!dt8,

Ei[F0i ~2.10!

because *0
bdt8] t8A(t8,x) vanishes by periodicity~2.2!;

equivalently,

2¹A0~x!5
1

b E
0

b

dt8E~ t8,x!. ~2.11!

Since W is unimodular, the linearity of Eq.~2.10! implies
thatW is the product of a~generically nonlocal! functional of
E and of the two-geometry times a constant phase fac
The integrability~vanishing curl! of Eq. ~2.10! is insured by
the Bianchi identity; its general solution is obtained from t
divergence of Eq.~2.11! to yield

A0~x!5
2p

b
a2E

0

b

dt8E d2yG~x,y!¹•E~ t8,y!.

~2.12!

Here the Green’s functionG(x,y) on the two-sphere obey
DG(x,y)5I2P, whereP is the projector on the zero mode
The constant part ofA0(x) corresponds to the constant pha
part exp(2pia) of W, while the rest ofA0(x) exhibits theE
and two-geometry dependence. Thus the new informa
carried byW is encoded entirely in the topological degree
freedoma, the flat connection;1 it transforms according to
a→a11 under large transformations. The fermion determ

1The appearance of topological degrees of freedom governing
havior under homotopically nontrivial transformations is not u
usual and occurs in other contexts and dimensions. In two dim
sions, for example, all the dynamics of Yang-Mills theories
described by such variables.
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nant can now be viewed as a functional of bothFmn anda.
Its invariance is assured if the effective actionG obeys the
additionalfinite Ward identity

G~a11,Fmn!5G~a,Fmn!, ~2.13!

namely, if G is periodic in a; equivalently, Eq.~2.13! ex-
presses the invariance ofG under the Abelian large transfor
mation groupZ. The periodicity ina permits us to Fourier
expandG:

exp@2G~Fmn ,a!#5 (
k52`

`

@Ĝk
~1!~Fmn!cos 2pka

1Ĝk
~2!~Fmn!sin 2pka#. ~2.14!

Before going further, however, we want to reexpressa in
terms of an appropriate functional of the gauge field~but of
course not ofFmn alone, as it is insensitive toa!. This is
precisely the role ofI CS, as defined by Eq.~1.1! ~or rather of
its corrected version, as we shall see! and we must therefore
consider its properties in detail. Under the gauge transfor
tion ~2.4!, ~2.5!, we have

I CS~AU!→I CS~A!1E d3xelmn]l~VFmn!5I CS~A!1DI CS.

~2.15!

Although the gauge term in Eq.~2.15! is a total divergence,
dropping it is not generally permitted, since

DI CS5E d3xelmn]l@V~ t,x!Fmn#

52E
0

b

dt] tE
S
d2x@V~ t,x!B~ t,x!#

12E
0

b

dtE
S
d2xe i j ] i@V~ t,x!Ej #

52E
S
d2x@V~b,x!2V~0,x!#B~0,x!. ~2.16!

The magnetic (B[F12) and electric fields, being physica
must be periodic int. The electric contribution in Eq.~2.16!
vanishes ifS2 does not allow nontrivial boundary condition
~the gauge invariantEi cannot have jumps, whileV must
also be a well-defined two-scalar onS2!. On the other hand
the magnetic term does not vanish for large transformatio
where Eq.~2.16! becomes

DI CS54pnE
S2

d2xB~0,x!54pnFS2~B!. ~2.17!

The magnetic fluxF is in general nonvanishing, time inde
pendent~by the Bianchi identity!, and as a topological ne
cessity@8#, F/2p is integer quantized. It would thus see
that any bare CS action, conveniently defined asm/16p2I CS,
shifts by mkn/2 under large gauge changes. Consequen
the requirement that the phase exponential of any action~the
relevant object at the quantum level! be gauge invariant

e-
-
n-
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would seem to enforce the quantization condition2 on the CS
parameterm/2p that it be an even integer. Unfortunatel
while this quantization argument is attractive,I CS is not even
well defined, precisely due to the very reasonFÞ0 for
quantization. Briefly stated,FÞ0 requires nontrivial con-
nectionsA on S2, thereby makingI CS manifestly patch de-
pendent~a well-defined action is not patch-dependent!. This
major deficiency inI CS should make one suspicious of th
validity of the above quantization requirement. Fortunate
I CS can be ‘‘improved,’’ but we will see that the quantizatio
of the ~bare! coefficient of the improvedI CS becomesm/2p
5n rather than 2n.

We now sketch a heuristic ‘‘derivation’’ ofI CS, since
precise ones were given long ago@9–11#; a new derivation
@12# will also justify it. Consider the particular gauge tran
formation

V~ t,x!52F E
0

t

dt82
t

b E
0

b

dt8GA0~ t8,x![OA0[Ã0~ t,x!,

~2.18!

in its effect onI CS. SinceV(t,x) is manifestly periodic int
@V(b)5V(0)50#, we are allowed to neglect the dive
gence in (DI CS) and thusI CS(A)5I CS(A

U), where it is easy
to check that the transformed fields are3

A0
U~ t,x!5

1

b E
0

b

dt8A0~ t8,x!5A0~x!,

~2.19!

Ai
U~ t,x!5Ai~0,x!1Ẽi~ t,x!.

In terms of these variables,I CS has the form

I CS~A!52E
0

b

dtE d2x$A0~x!B~ t,x!

1e i j @Ẽi~ t,x!1Ai~0,x!#Ej~ t,x!%

52E
0

b

dtE d2x@A0~x!B~ t,x!1e i j Ẽi~ t,x!Ej~ t,x!

1e i j Ai~0,x!] jA0~x!#

52E
0

b

dtE d2x$A0~x!@B~ t,x!1B~0,x!#

1e i j Ẽi~ t,x!Ej~ t,x!%2K, ~2.20!

K[22E d3xe i j ] j@Ai~0,x!A0~x!#, ~2.21!

where, to reach the last term of the second equality, we h
used Ej (t,x)52] jA0(x)1]0Aj

U(t,x) and then dropped
]0Aj

U(t,x) by periodicity. The sumĪ CS[I CS1K is perfectly

2Mathematically this quantization relies on the fact th
P1@U(1)#5Z. In the non-Abelian regime, quantization ofm/2p is
of course always required@3#.

3Note that theO operation projects out any time-independent fa
tors.
,

ve

well defined~and small gauge invariant! since it contains no
explicit A dependence and represents the advertized ‘‘
proved’’ CS term. The boundary termK fails to vanish for
interesting configurations, involving nontrivial fluxF, be-
cause there the connectionA is different on the two patche
that cover the sphere.4 @Note that perturbative calculations i
the usual expansion about a trivial (Am50) connection will
never see theK term; to include a reference backgroun
would complicate even the one-loop computation consid
ably.# We may now rewriteI CS as the sum of terms depend
ing only on theFmv together with those depending on the fl
connection, from the constant part5 of A0 in Eq. ~2.12!,

Ī CS58paF1Q@F#516p2na1Q~F !, nPZ.
~2.22!

This representation thus demonstrates thatĪ CS is not indepen-
dent, but is determined bya andF, its behavior under large
transformations being completely governed bya. It also en-
ables us to compute the correct quantization of the coe
cient in abare ĪCS action ~which must of course depend o
Ī CS, not I CS!: Under a large gauge transformation,a→a
11, Ī CS→ Ī CS18pF, that is,Ī CS changes by 16p2k, so that
the barem/2p must be an integer, not just an even one.

Having established the role ofĪ CS as the carrier of the
holonomy information, we return to the Fourier expansion
the action~2.14! and reexpress thea dependence there in
terms of Ī CS:

e2G~F, Ī CS!5 (
k52`

`

@Gk
~1!~F !cosk~ Ī CS/8pn!

1Gk
~2!~F !sin k~ Ī CS/8pn!#. ~2.23!

This form will be concretely realized by explicit field con
figurations in Sec. V. For our purposes, it shows how expl
CS terms can be present, when ‘‘protected’’ by sines a
cosines, without loss of large invariance, but this invarian
is lost in a power series expansion. As is necessary, we
confirm this formal analysis in Sec. III, when we obtain t
properly regularized determinant.

We are now in a position to settle and old paradox aris
in naive perturbative calculations ofG: At one-loop~which is
everything if the photon is not dynamic! level, the fermions
give rise to an effective CS contribution, irrespective

t

-

4The patch dependence ofK is easily described schematically
Consider two patches defined by~for simplicity! some arbitrary
latitude cutu5u0 . Then if A6 denote the respective values of th
Af(u0) on the upper and lower caps, it is manifest thatK
;*df(A12A2)A0(u0). Clearly, K depends on the patch choic
u0 and does not vanish ifFÞ0, due to the usual nontrivial gaug
gauge difference on the patches familiar from magnetic monop
constructions.

5Here another arbitrary choice was made in keeping the cons
part of A even though it appeared in differentiated form in t
second equality’s last term. This choice of whatphysical term to
divide betweenK andĪ CS led to the coefficient shown in Eq.~2.22!.
Fortunately, this is also the correct answer from@9–12#.
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whether there is an initial bare one. The calculation of
coefficient is straightforward@13#,

Dm

2p
5

e2

2
tanhFbm

2 G , ~2.24!

which is noninteger for genericb5(kT)21. However, since
at the same time it was~correctly! thought both that Eq.
~2.24! seems to signal an irremediable large gauge anom
and that the matter actionI f5 i *(dx)c̄(D” 1m)c and the
process of integrating out its excitations to obtain the eff
tive action exp(2G@A#)5det(iD”1im) should be intrinsically
gauge invariant, this paradox has generated a conside
literature. Opinions have differed widely: one claim is th
there is no anomaly, due to some obscure nonperturba
mechanism that restores the integer nature ofm @14,15#. Spe-
cifically, Ref. @14# conjectured that the usual perturbati
definition of the CS coefficient through the two-point fun
tion is not physically relevant and a possible nonperturba
one in terms of the complete effective action was propos
Given a large gauge transformationUL of winding number
n, a new renormalizedmR is to be defined according t
2pnmR5G@UL

21]mUL#2G@0#, and its integer nature is sup
posed to be protected by some topological Ward identity
Ref. @15#, under the~incorrect! assumption that the only
parity-violating contribution in the effective action is the C
term, it is shown that the path-integral formulation of t
theory is consistent only ifm remains a temperature
independent integer. Another point of view accepts the te
perature dependence in Eq.~2.24! as a correct prediction o
the theory entailing, for example, the breakdown of t
anyonic description of superfluidity@4#.

We have already seen how to dispel the paradox forma
A first step in understanding the real nature of this puz
was recently taken in Ref.@16#; a solvable one-dimensiona
Abelian analogue of the problem was carefully analyzed
in particular its effective action was computed in clos
form: While gauge invariant~at least for an even number o
fermions!, its perturbative expansion indeed contained
~one-dimensional! CS term with the temperature-depende
coefficient~2.24!. This result thus allowed the coexistence
large gauge invariance of the full action and nonquantiza
of the perturbative CS coefficient. It was then established
Ref. @6#, that the effective action, independent of the num
of fermions, is indeed invariant under both small and la
transformations using the classic results of Refs.@17,18# that
permit a clear definition of the Dirac operator’s function
determinant by means ofz-function regularization, as we
shall show in detail in Sec. III. We shall also see how Che
Simons term’s noninvariance is precisely compensated
accompanying nonlocal contributions in the effective act
that are not perturbatively visible.

Finally we mention another historical misunderstand
which goes back to the original papers, Refs.@19# and @20#:
the relation between the number of fermions and gauge
variance in three dimensions. It is often stated that, in co
plete analogy with the SU~2! anomaly in four dimensions
@21#, large gauge invariance in three dimensions is ma
tained only for an even number of fermions or more p
cisely for a certain choice of matter multiplets@16,22#. What
is true here is that in the evenNf case one can define som
e
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what different regularizations that preserve both gauge
parity, something that is indeed not achievable for oddNf .
With our regularization prescription, however, large gau
invariance is always preserved, while parity is alwa
anomalous for both even and odd number of charges.

III. THE ACTION: REGULARIZATION,
REPRESENTATION, AND ANOMALIES

We now turn to the implementation of the formal fram
work of Sec. II, by regularizing the fermion determinant a
then exhibiting its properties. We shall review the definiti
of the Dirac operator’s determinant in the rigorous fram
work of thez-function approach@17,18,23# for arbitrary di-
mension. Although this has become a very popular techni
and a well-established mathematical subject, we believe
worth reexamining in order to point out some subtleties
culiar to odd-dimensional manifolds. Specifically, we w
stress the delicate interplay between spectral asymme
large gauge invariance, parity anomalies, and perturba
expansions. In the process a compact integral represent
of the z function for massive electrons in terms of the ma
less gauge invariant heat kernels will be derived for all
mensions. It will enable us to provide, in Sec. IV, detail
expansion of both the parity odd and even parts for small
large fermion masses.

The mathematical tool that allows us to make sense of
formal product of the eigenvaluesPln

ln defining the deter-
minant isz-function regularization, which, for normal opera
tors such asi (D” 1m) on a compact manifold, reduces to

z~s![ (
lnPspectrum

~ln!2s; ~3.1!

in the sum each eigenvalueln in the spectrum is repeate
according to its multiplicity.6 The convergence of the serie
~3.1! for Res.d in d dimensions is assured by a classic
result on the asymptotic growth of eigenvalues@18#, which
for the massive Dirac operator reads

lim
n→`

nulnu2d.const. ~3.2!

Here the eigenvalue sequence is ordered so thatul0u<ul1u
<¯ . Actually one can go further and show thatz(s) for
s.d defines an analytic function that can be extended t
meromorphic function with only simple poles. In particul
its analytic extension is regular ats50 and its derivative

6There is an intrinsic ambiguity, the scale dependence of the
mensionfulln , hidden in Eq.~3.1!. Strictly speaking, to construc
thez function one should use the dimensionless ratioln /m, with an
arbitrary scalem. The determinant is therefore actually undete
mined up to terms proportional toz(0)ln m @23#, namely, to the
well-known trace anomaly. In odd dimensions this contribution
course vanishes. Note also that the extension toN fermions simply
involves the product of the individual determinants.
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there defines the determinant according to Hawkin
relation7 @23#

det i ~D” 1m!5exp@2z8~0!#; G@A#5z8~0!. ~3.3!

Since the complex power is a multivalued function, a care
definition ofln

2s is required to avoid ambiguities in Eq.~3.1!
and thence in Eq.~3.3!. We take it to be exp(2s ln ln) where
the cut of the logarithm is chosen to be over the real posi
axis, 0<arg(ln),2p, enabling us to rewritez(s) in the more
convenient form

z~s!5 (
Re ln.0

~ln!2s1exp~2 ips! (
Re ln,0

~2ln!2s.

~3.4!

A different cut may alter the determinant@i.e., produce terms
that are not proportional to its intrinsic ambiguityz~0!# only
if it intersects the line Imz5m and thereby has crossed a
infinite number of eigenvalues. In that case, instead of
~3.4!, one would have

z~s!5 (
Re ln.0

~ln!2s1exp~ ips! (
Re ln,0

~2ln!2s.

~3.5!

Equation~3.5! has been rewritten by using the same cut as
Eq. ~3.4! in order to compare them; we have also dropp
contributions proportional toz~0!. This alternative choice
does not affect gauge invariance, but, as we shall see l
does change the sign of the possible parity anomaly term
G@A# as was noted in Ref.@24# by more complicated consid
erations. It represents the nonperturbative analogue of
more familiar sign ambiguity encountered in defining t
perturbative series via, e.g., Pauli-Villars regularizatio
There, it appears as an explicit dependence on the
M /uM u of the regulator mass.8 We will return to the signifi-
cance and fixing of the ambiguity.

Turning now to gauge invariance in this framework, it
clear that it hinges on that of the eigenvalue spectrum.
small transformations do not affect theln at all, while the
large ones merely permute them, as in usual illustration
index theorems@7#. Thus every well-defined symmetri
function of the spectrum, such asz(s) and henceG@A# is
unchanged and so gauge invariant. This argument does
rely on the particular topology of the manifold we are co
sidering, and it will hold for finite temperature space-tim
that are products ofS1 times a (d21)-dimensional compac
manifold.

7Although our discussion is focused on the Dirac operator, all
results extend, with slight modifications, to the larger class of
elliptic pseudodifferential operators@17# with a ray of minimal
growth ~Agmon ray!.

8It has been pointed out that a larger ambiguity in the perturba
approach can be obtained by using more than one Pauli-Villars
@25#. This unnatural result has a~likewise unnatural! counterpart in
z-function regularization: use the well-known ‘‘product anomaly
det(AB)Þdet(A)det(B) to bring in definitions that differ in the num
ber of determinants, each of whose cuts is to be separately fix
s

l
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To investigate the properties of the determinant m
closely, we must rewrite the ‘‘abstract’’z function in terms
of the well-established machinery of the heat-kernel eq
tion. ~This task is not completely trivial because our opera
is not positive definite.! Let us illustrate this first in the mass
less case and then proceed to the massive one. This will
allow a simpler connection to earlier results.

At m50, the eigenvalues being real, a parity transform
tion is simply

ln→2ln , ~3.6!

so we can decomposez(s) into

z~s![zPC~s!1zPV~s!, ~3.7!

parity even and odd parts,

zPC~s![
11exp~7 ips!

2 (
lnPspectrum

~ ulnu!2s, ~3.8!

zPV~s![
12exp~7 ips!

2

3S (
ln.0

~ln!2s2 (
ln,0

~2ln!2sD , ~3.9!

while the7 keeps track of the relevant ambiguity in chan
ing cut. These two objects can be now easily related to
square D” 2 of the Dirac operator~the Laplacian on the
spinors! and to theh function of D” . Explicitly we have

zPC~s!5
11exp~7 ips!

2
zD/ 2~s/2!,

zPV~s!5
12exp~7 ips!

2
h~s!. ~3.10!

Both zD/ 2(s) and h(s) are well-defined and gauge-invaria
quantities, which admit an explicit heat-kernel representat

zD/ 2s~s!5
1

G~s!
E

0

`

dtts21 Tr@exp~2tD” 2!#, ~3.11!

h~s!5
1

G@~s11!/2#
E

0

`

dtt~s11!/221

3Tr@D” exp~2tD” 2!#. ~3.12!

Since both functions are analytic9 at s50, the Dirac deter-
minant takes the form

det~D” !5expF2
1

2
zD/ 28 ~0!7

ip

2
h~0!6

ip

2
zD/ 2~0!G .

~3.13!

While the7 in front of h~0! represents a relevant ambigui
in the definition of the determinant, thezD/ 2(0) contribution

e
e

e
ld

.

9While the regularity ofzD/
2 is to be expected, that ofh~0! is a

nontrivial result and we refer the interested reader to Ref.@18#.
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7450 57S. DESER, L. GRIGUOLO, AND D. SEMINARA
can be reabsorbed in the first term by choosing the s
parameter5 to bem521. @Note, in fact, that Eq.~3.10! im-
plies z(0)5zD/ 2(0); also z~0! vanishes at oddd, being es-
sentially the conformal anomaly.# In even dimensions the
existence ofgd11 , which anticommutes with the Dirac op
erator, entails the absence of spectral asymmetry and thu
vanishing ofh~0! so that also the first7 is harmless. In odd
dimensions~no gd11! no symmetry prevents us from havin
h(0)Þ0 and consequently from having anomalous par
violating terms in the effective action whose overall sign
not determined. UnlikezD/ 2(0), h~0! cannot be reabsorbed a
its parity is opposite to that ofzD/ 28 (0). While h~0! is a
gauge-invariant functional of the field, it is neither local n
continuous. It can be explicitly computed with the help of t
Atiyah-Patodi-Singer theorem~see, e.g., Ref.@7#! and con-
sists of two parts: a continuous local functional given by
appropriate dimensional~improved! CS action plus a highly
nonlocal discontinuous contribution given by the ‘‘index
p(N12N2). HereN1 is the number of positive eigenvalue
that become negative asAm is continuously deformed to
some reference~background! connection10 Bm , and vice
versa forN2 . Note that~large! gauge invariance is main
tained through a cancellation between the CS action and
nonlocal index contribution as advertized earlier. The
Lagrangian is a local polynomial of dimensiond in the fields
and their derivatives, so it should, in principle, be removab
unlike the index. If we make this choice, we obviously lo
large gauge invariance: under transformations of wind
numbern the determinant is multiplied by a phase fact
exp(ipn). Instead, parity invariance is recovered in spite
the surviving index contribution, because while the ind
changes sign under parity, it is of the formip3 an integer,
which leaves the determinant unchanged.~The effective ac-
tion actually changes by the acceptable phase 2p in.!

We are now ready to deal with the massive case. Le
first note that the above massless parity decomposition
holds formally, but it has lost its physical meaning becaus
parity transformation here means

ln→2ln* . ~3.14!

The eigenvalues have, in fact, become complex since
euclidean Dirac mass is anti-Hermitian: they are given
ln1 im, whereln are those of the massless operator~andiD”
is Hermitian!. In this case, by means of the Mellin represe
tation of the complex power, we can write, for the par
even and odd parts,

10While Bm can be taken to be zero for trivial bundles, the inte
esting Abelian case as we have seen always involves a flux
hence nontrivial ones. In this context see, e.g., Ref.@7#. Indeed, as
shown in Ref.@1# the introduction of the reference connection
another way to reach the correctĪ CS.
le
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zPC~s!5

expS 7 i
ps

2 D
G~s!

E
0

`

dtts21cosS mt7
ps

2 D
3(

ln

exp~2ulnut !, ~3.15!

zPV~s!5
exp@7 i ~ps/2!#

iG~s!
E

0

`

dtts21sinS mt7
ps

2 D
3F (

ln.0
exp~2ulnut !2 (

ln,0
exp~2ulnut !G .

~3.16!

The kernels in Eqs.~3.15! and~3.16! can be again written in
term of the heat kernels of the square of the massless D
operator and of itsh function. We shall begin by considerin
the parity-conserving partzPC(s). The first step is to find a
function F(s,t) such that

E
0

`

dtts21cosS mt7
ps

2 Dexp~2lt !

5E
0

`

dtF~s,t !exp~2l2t !. ~3.17!

This integral equation can be easily solved by interpretin
as an identity between Laplace transforms. In fact one
immediately write

F~s,t !5
1

2p i Eg2 i`

g1 i`

dl exp~lt !E
0

`

dpps21

3cosS mp7
ps

2 Dexp~2Alp!, ~3.18!

whereg is a real constant that exceeds the real part of all
singularities of the second integral. With the help ofF(s,t),
the zPC(s) takes the form

zPC~2s!5
1

G~s!
E

0

`

dtts21K7~ t,s!(
ln

exp~2tln
2!

5
1

G~s!
E

0

`

dtts21K7~ t,s!Tr@exp~2tD” 2!#,

~3.19!

where

K7~ t,s![exp~7 ips!@K ~1!~ t,s!62mAtK ~2!~ t,s!#

5exp~7 ips!Fcos~ps!FS 1

2
1s,

1

2
;2m2t D

62mAt
G~11s!

G~s11/2!

3sin~ps!FS 11s,
3

2
;2m2t D G ~3.20!

nd
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and F(a,b;z) denotes the confluent hypergeometric fun
tion. Let us now perform the analogous analysis for
parity-violating contributionzPV(s). This time we need a
function F(s,t) satisfying the integral identity

E
0

`

ts21sinS mt7
ps

2 Dexp~2lt !5E
0

`

F~s,t !l exp~2l2t !.

~3.21!

The explicit form of thisF(s,t) can be constructed, as be
fore, by means of the Laplace transform. In particular we

F~s,t !5
1

2p i Eg2 i`

g1 i` dl

Al
exp~lt !E

0

`

dpps21

3sinS mp7
ps

2 Dexp~2Alp!, ~3.22!

with g is in Eq. ~3.18!. In terms of this new kernel, the
parity-violating part becomes

zPV~s!56
i

G@~s11!/2#
E

0

`

dtt~s21!/2G7~ t,s!

3(
ln

lnexp~2tln
2!

56
i

G@~s11!/2#
E

0

`

dtt~s21!/2G7~ t,s!

3Tr@D” exp~2tD” 2!#, ~3.23!

with

G7~ t,s![expS 7 i
ps

2 D sinS ps

2 D
3@G~1!~ t,s!72mAtG~2!~ t,s!#
-

-
av
om

n
or
-
e

t

5expS 7 i
ps

2 D sinS ps

2 D S FS s

2
,

1

2
;2m2t D

72mAt
G~12s/2!

G@~12s!/2#
FS 11s

2
,

3

2
;2m2t D D .

~3.24!

Equations~3.19! and~3.23! are the promised ‘‘spectral’’ rep
resentations for thez and h functions, and in particular the
weights G7 and K7 encode all the information about th
mass dependence of our determinant.@Actually they contain
more, because they hold for alls and not only ats50.#
Therefore they can be used to investigate the propertie
the effective action in different mass limits. In the next se
tion we shall use them to derive expansions of the effec
action for small and large masses. With their help, one
also show that the general considerations developed in
massless case extend unchanged to the massive one.

IV. LARGE AND SMALL MASS EXPANSIONS

The parity-conserving part of the effective action is giv
by

GPC@A#5
d

ds
zPC~s!U

s50

5
1

2

d

ds
zPC~2s!U

s50

5
1

2

d

ds

3F 1

G~s!
E

0

`

dtts21K7~ t,0!Tr@exp~2tD” 2!#G
s50

1 lim
s→0

1

G~s!
E

0

`

dtts21
dK7

ds
~ t,s!

3Tr@exp~2tD” 2!#. ~4.1!

The limits s→0 in Eq. ~4.1! is a delicate point, detailed in
Appendix A. The final result is
GPC@A#5
1

2

d

ds
zD/ 21m2~s!U

s50

7
p i

2
zD/ 21m2~0!15 G loc

odd@A#56sgn~m!Ap (
k50

~d21!/2
~22!k

~2k11!!!
~m2!k11/2Hd2122k ,

G loc
even@A#52 (

k51

d/2 F (
j 51

k
~22! j 21

j

1

~2 j 21!!! ~k2 j !! G ~ im!2kHd22k ,

~4.2!
b-
ons
where Hn are the Seeley–de Witt@1# coefficients for the
massless Laplacian on the spinor: Tr@exp(2tD” 2)#
5(n50

` Hnt
(n2d)/2. That the nonlocal part of the parity

conserving action@1/2zD/ 21m28 (0)# is governed by the mas
sive Laplacian might be expected, but, surprisingly, we h
extra dimension-dependent local contributions coming fr
the s derivative of the kernelK6(s,t). Note that in odd
dimensions, in contrast to the even ones, their sign depe
on the choice of cut. This phenomenon will become m
relevant for the parity-violating part.
e

ds
e

The analysis of the parity-violating effective action is su
stantially easier due to the absence of singular contributi
ass→0; one obtains

GPV@A#5
d

ds
zPV~s!U

s50

5 lim
s→0

6
i

G@~s11!/2#
E

0

`

dtt~s21!/2
dG7~ t,s!

ds

3Tr@D” exp~2tD” 2!#. ~4.3!
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The derivative of the kernelG7(t,s) at s50 can be explic-
itly computed and gives

dG7~ t,s!

ds U
s50

5
p

2 FFS 0,
1

2
,2m2t D

7
2

Ap
mAtFS 1

2
,

3

2
,2m2t D G

5
p

2 S 17
2 sgn~m!

Ap
E

0

mAt
exp~2z2!dzD .

~4.4!

Thus the parity-violating part of the action turns out to be~in
odd d, where it exists!

GPV@A#56
ip

2
h~0!2 i sgn~m!E

0

` dt

At

3Tr@D” exp~2tD” 2!#E
0

umuAt
dz exp~2z2!

5@612sgn~m!#
ip

2
h~0!1 i sgn~m!E

0

` dt

At

3Tr@D” exp~2tD” 2!#E
umuAt

`

dz exp~2z2!.

~4.5!

In d53 a similar representation forGPV@A# was given in
Ref. @26#. There, the cut giving the plus sign was implicit
chosen. As we shall see below, this corresponds to requ
‘‘decoupling,’’ i.e., vanishing ofG, as the fermion mass goe
to 1`. Note, again, that the sign in front of the pari
anomaly is entirely dependent on the choice of branch. A
clear from its representation ourGPV differ from the odd-
mass partG̃PV of G,

G̃PV@A#[
1

2
~G@A,m#2G@A,2m# !, ~4.6!

asGPV has even mass parts as well~andGPC odd ones!. This
G̃PV clearly cannot detect the intrinsic anomaly~the one at
m[0!; as a result the possibility of decoupling in the infini
mass limit is not manifest.~Also in a nonflat background
geometry or higher dimensions, the above definition actu
contains parity-conserving terms.!

Both Eqs.~4.2! and~4.5! can be used as starting points f
a mass expansion of the theory. Let us first consider
small mass limit: in the parity-conserving case we sim
have to Taylor-expandzD/ 21m2(s) in power of mass. For odd
dimension
g

is

ly

e

GPC
odd@A#5

1

2

d

ds
zD/ 2~0!1 (

k51

`

~ im!2k
zD/ 2~k!

2k
1G loc

odd@A#,

~4.7!

whereG loc
odd@A# is specified in Eq.~4.2!. The appearance o

the even power can be understood as a consequence o
behavior of the Dirac mass term under parity. Instead,
local contributions (G loc

odd@A#), proportional tom2k11, origi-
nate from a compensation between vanishing and diverg
terms ass goes to zero. The even dimensional case is m
delicate, due to the fact thatzD/ 2(s) has in general simple
poles forn51,2, . . . ,d/2. The final result can be presente
in the form

GPC@A#5
1

2

d

ds
zD/ 2~0!1 (

k5d/211

`

~ im!2k
zD/ 2~k!

2k

1 (
k51

d/2
1

2

d

ds F 1

G~s!
E

0

`

dtts1n21Tr~exp2tD” 2!G
1G loc

even@A#. ~4.8!

Analogously, Taylor-expanding the parity-violating part, w
obtain

GPV@A#56 i
p

2
h~0!2 i (

k50

`

~21!k
m2k11

2k11
h~2k11!.

~4.9!

Note the presence of the intrinsic parity anomaly te
6 i (p/2)h(0): it is theonly one proportional to an even,m0,
power of the mass. We have already stated that it cont
the CS action, but this doesnot mean that there are no othe
CS contributions hidden in the rest of the series. The la
mass analysis below and the examples in Sec. V will indic
that they are actually present. Furthermore their coefficie
are obviously mass and consequently temperature depen
~the mass can appear only through a dimensionless comb
tion such asbm, though other combination are possible
there are other relevant scales in the problem, e.g., the
ume of the manifold!. On the other hand, gauge invariance
entirely unaffected by this: each term in the series is ma
festly gauge invariant, sinceh(s) is. The large mass limit is
a more delicate issue, corresponding to an asymptotic ex
sion of the action. In the case ofGPC, a simple application of
Watson’s lemma11 gives in the odd-dimensional case

GPC@A#5Ap@216sgn~m!#

3 (
n50

~d21!/2
~22!n

~2n11!!!
~m2!n11/2Hd2122n

1
1

2 (
n5~d11!/2

` GS n2
d

2D
~m2!n2d/2 H2n , ~4.10!

while in even dimensions we have

11It essentially states@27# that an asymptotic expansion inm of

integrals such as*2`
` dte2tm2

f (t) can be obtained by integrating th
asymptotic expansion off (t) term by term.
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GPC@A#5 (
n5d11/2

`
G~n2d/2!

~m2!n2d/2 H2n

1
1

2 (
n50

d/221
~2m2!d/22n

G~d/2112n!

3F (
k51

d/22n
1

k
2 ln

m2

m2GH2n2
1

2
ln

m2

m2 Hd

2 (
n50

d/221

~2m2!d/22n

3F (
k51

d/22n
1

~2k21!!!

~22!k21

k~d/22n21!! GH2n .

~4.11!

Essentially, to obtain Eqs.~4.10! and~4.11!, one expands the
kernel Tr@exp(2tD” 2)# for small t and integrates term by
term. The asymptotic nature of this series means that te
exponentially small in the mass, i.e.,O(e2bm), cannot be
seen. This can have quite dramatic consequences, as we
show through explicit examples in Sec. V. Nevertheless
expansion is both large and small gauge invariant order
order. In Eqs.~4.10! and~4.11! we have inserted the explic
form of the local terms: we mention first that in odd dime
sions the divergent contributions~in the large mass limit! are
nonvanishing only when gravity~through the geometry o
the manifold! is involved. This can be inferred from th
structure of the heat-kernel coefficients: for example, in th
dimensionsH1 andH2 correspond to the cosmological ter
and to the Einstein action, respectively. In general their
efficient is strongly dependent on the cut. For positive ma
the branch chosen in Eq.~3.4! gives zero~i.e., the fermion
decouples!, while the one in Eq.~3.5! would give a limit
value of 2 ~no decoupling!. For negative mass, the rever
situation occurs with coefficient (22,0). This shows vividly
that the choice of the cut is not just a matter of conventi
but affects physical predictions. It is interesting to notice t
in d53 the first nontrivial correction to the infinite mas
limit ~the H4 coefficient! is a Maxwell (Fmn

2 ) term, with
coefficient 1/48pumu, in agreement with earlier calculation
@19,26,28#. In the even-dimensional case the expansion
independent of the cut, as one would expect, and also
volves logarithmic dependence on the mass, due to the
vanishing of the trace anomaly there.

The analysis of the behavior of the parity-violating part
more intricate, and a straightforward application of Watso
lemma is not possible. However, looking at Eq.~4.5!, one
realizes that, for large mass, only smallt can contribute. The
larget behavior is, in fact, suppressed by the vanishing of
error function. Thus we can again expand the kernel
integrate term by term. This time we use the heat-ker
expansion Tr@D” exp(2tD” 2)#5(n50

` Pnt
(n2d21)/2, wherePn are

different from zero only for oddn. We therefore obtain
s

ill
e
y

e

-
s,

,
t

is
n-
n-

s

e
d

el

GPV~A!5@216sgn~m!#
ip

2
h~0!

1 i (
n50

`
P2n11

~m2!n2~d21!/2

G~n2d/211!

2n112d
.

~4.12!

Let us stress again the asymptotic nature of this series.
~local and invariant functionals of the gauge fields and of
geometry! P2n11 coefficients differ from zero only forn
.(d21)/2. In the limit of infinite mass, the only possibl
surviving term is therefore proportional to the gauge inva
ant h~0!, but different coefficients are possible, in comple
analogy with the parity conserving sector:~2,0! for large
positive mass and the cut as in Eq.~3.4!; (0,22) for large
negative mass and the cut as in Eq.~3.5!. Thus, given a sign
of the fermion mass, the branch can be always chosen so
the fermion completely decouples~or not!! in the infinite
mass limit. This double pair of possibilities completely mim
ics the analogous perturbative result in the presence of
Pauli-Villars regulator. There the final asymptotic res
would have been

GPV@A#.@sgn~m!1sgn~M !#I CS, ~4.13!

wherem is the fermion mass, whileM is the mass of the
regulator. Form positive, we have~2,0! as M→(1`,
2`), for m negative we have instead (0,22) as M→
(1`,2`). The absence of the index in the perturbati
result implies the loss of manifest gauge invariance for fin
masses sinceI CS has no counterpart to restore it~nor does it
acquire the required boundary terms needed to make it
defined!.

V. EXPLICIT GAUGE FIELD EXAMPLES

For concrete illustrations of how the perturbative parad
is circumvented, let us now consider some explicit examp
of actions and large gauge transformations. We start by
viewing, according to Ref.@6#, the (011)-dimensional toy
model of Ref.@16#. It consists ofN fermions on a circle of a
radiusb interacting with a U~1! field through the Lagrangian

L5(
i 51

N

c̄ i~ t !S i
d

dt
1A~ t !1 imDc i~ t !. ~5.1!

The large transformations are taken to be

U~ t !5exp@ i f ~ t !#,

where f ~b!2 f ~0!52pn. ~5.2!

The integern is the winding number of the mapU(t), i.e.,
2p in5*0

bdtU(t)21U8(t). The analog of parity in three di
mensions is here charge conjugationA→2A; while mass-
less fermions are invariant, massive ones violate this sym
try. @Had a bare CS term, herekA(t), been present in Eq
~5.1!, invariance of the path integral under large transform
tions would require thatk in Eq. ~5.1! be quantized, entirely
as inD53.#
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The eigenvalue problem corresponding to t
(011)-dimensional Dirac operator can be exactly solved

ln5
2p

b S n2
1

2D1
2p

b
a1 im, nPZ, ~5.3!

where a is the average ofA: a5(1/2p)*0
bA(t)dt. The z

function can be computed in closed form in terms of t
Hurwitz function @29# zH(s,q)

z~s!5NS b

2p D sFzHS a1
1

2
1 i

bm

2p
,sD

1exp~7 ips!zHS 1

2
2a2 i

bm

2p
,sD G . ~5.4!

Throughout, the7 keeps track of the relevant ambiguity
choice of cut. The determinant is now easily evaluated
rectly from its definition,

exp@2G~A!#5detS i
d

dt
1A~ t !1 imD

5exp@2z8~0!#

5F2S coshS bm

2 D cospa

2 i sinhS bm

2 D sin paDexpS 6 ipa7
bm

2 D GN

[@11e6~2p ia2bm!#N. ~5.5!

Note that this action depends ona only via theS1 holonomy
exp(2pia) and thus is manifestly gauge invariant under
large transformation,a→a11, for either cut and for anyN,
even or odd. In the middle term this occurs through a s
cancellation between the separate factors. Though the v
of final expression in Eq.~5.5! seems to depend complete
on the choice of cut, the intermediate equality makes it cl
that only the charge conjugation anomalous contribution
affected, in agreement with the general results of Sec.
Notice also the necessary presence of an ‘‘intrinsic’’~i.e.,
even present atm50! charge conjugation anomal
Im GCV@A#5 iN(a2@a#), where@a# denotes the integer pa
of a. This is what allows us to preserve large gauge inva
ance independently ofN. This result also clearly exhibits
what was claimed on general grounds in Sec. III for t
parity anomalous contribution, namely, theh~0!: only the
combination of the continuous part, given by the CS actioa
and the discontinuous contribution coming from the ind
@a# is gauge invariant. Had we opted instead~as in Ref.@16#!
for the (011) equivalent of the more usualC-preserving
regularization, the exp(iNpa) factor in Eq.~5.5! would have
been missing and only evenN would have kept invariance
just as in (211).

Dimension (011) is also a good laboratory for testin
the mass expansions discussed in Sec. IV and in partic
that for large mass. If we apply the one-dimensional a
logue of parity conserving or violating expansions~4.10! and
~4.12! @or directly from Eq.~5.5!#, we obtain

G@A#.~0,22!F ip~a2@a# !2
bm

2 G , m.0, ~5.6!
i-

n
lue

r
is
I.

i-

e

x

lar
-

G@A#.~2,0!F ip~a2@a# !2
bm

2 G , m,0. ~5.7!

This is a concrete realization of what was stated at the en
Sec. IV. Let us also notice that all the 1/m corrections are
identically zero. One can understand this result from t
different points of view. First, beyond the terms shown
Eqs.~5.6! and~5.7!, all the others are exponentially small i
the mass and thus they cannot affect the asymptotic se
Secondly, the one-dimensional Dirac operator coupled t
gauge field is always locally gauge equivalent to the free
@since locallyA(t)5] tB(t)#. This means that the local coe
ficient of its heat-kernel expansion must be trivial, and d
matically shows how much information can be lost in a lar
mass expansion, even though the final result is gauge inv
ant. In other words, when topological degrees of freed
such asa are involved, an expansion in the local coefficien
of the heat kernel can rarely retain the complete dynamic
the theory.

Though very instructive because of its soluble nature, o
might wonder if the mechanism realized in the toy (011)
model is shared by its three-dimensional counterpart, wh
a complete solution of the theory is not at our disposal.
more realistic example in this direction is to consider
purely magnetic configuration with fluxF(B)52pn in d
53. It is an easy exercise to show that the most gen
potential, up to a gauge transformation, generating suc
field is

Am[S 2p

b
a,A~x! D , ~5.8!

wherea is a flat S1 connection and the two-potentialA is
static, living on the two-dimensional Riemann manifoldS2.
The large transformations are associated to theS1 map a
→a11, as in the (011)-dimensional case.~For S of genus
greater than 0, large transformations corresponding to
nontrivial cycles ofS can be also constructed, but we w
not discuss them. Here we will only be interested in the o
relevant in the finite temperature regime.!

We now proceed to compute the partition function for
single Dirac fermion in the background~5.8!. Since the latter
is time-independent, we can decouplet by looking for eigen-
vectors of the form

ĉ~ t,x,y!5expF2
2p

b S n1
1

2D t Gc~x,y!. ~5.9!

~In finite temperature field theory the integer factorn in the
phase is usually known as the Matsubara frequency.! The 1

2

factor takes care of the antiperiodic boundary conditions
the fermion. The eigenvalue problem for thed53 operator
iD” thus reduces to an infinite series of effective tw
dimensional ones parametrized byn,

iD” c5 iD”̂ c1
2p

b S a01n1
1

2Dg0c5~l2 im!c[l̂c.

~5.10!
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Here iD”̂ is the massless Dirac operator on the tw
dimensional manifoldS. The key observation is that th

spectrum ofD” can be reconstructed once that ofD”̂ is known.
In fact let

f~x,y!5„f1~x,y!,f2~x,y!… ~5.11!

be a~two-component! eigenvector ofD”̂ , with eigenvaluem
Þ0. Then the vectors

c6~x,y!5„f1~x,y!,C6f2~x,y!…,

C6[2
2p

bm S a01n1
1

2D
6A 4p2

b2m2 S a1n1
1

2D 2

11 ~5.12!

are eigenvectors ofD” with eigenvalues

l~6 !5 im6A2p

b S a1n1
1

2D 2

1m2. ~5.13!

As might be expected from theg0 in Eq. ~5.10!, each non-

vanishing eigenvalue ofD”̂ generates two eigenvalues ofD” of
equal multiplicity. This symmetrical behavior suggests th
they will not produce a spectral asymmetry and thus play
role in the clash between invariances under large and pa
transformation. In fact, by using the representation~3.16! for
zPV(s), it is immediate to see that their contribution the
vanishes.

We come now to KerD”̂ . The Atiyah-Singer theorem tell
us that it is spanned byn1 spinorsf1

0 (x,y) with positive
chirality and n2 spinors f2

0 (x,y) with negative chirality,
wheren12n25n is the flux of theA; chirality is defined by
g0f6

0 (x,y)56f6
0 (x,y). Both f1

0 (x,y) and f2
0 (x,y) are

eigenvectors ofD” as well, but with eigenvalues

l~6 !
0 5 im6

2p

b S n1a1
1

2D . ~5.14!

The chiral asymmetry of the KerD”̂ is inherited by the spec
trum of D” : in fact l2

0 and l1
0 have different degeneracy

This, as we shall see, will give rise to a nonvanishing anom
lous parity contribution.

The ensuingz function is12

12Having already noticed that no asymmetry is entailed by
eigenvaluesl (6) , we have written((l (1)l (2))

2s instead of
((l (1))

2s1((l (2))
2s. In fact, in absence of spectral asymmetr

these two quantities coincide up to local terms. The differen
proportional to the volume ofS in this case, can be evaluated wi
the help of the spectral representation given in Sec. III.
-

t
o
ity

-

z~s!5n1zHS 1

2
1a1 i

bm

2p
,sD

1exp~2 ips!n1zHS 1

2
2a2 i

bm

2p
,sD

1n2zHS 1

2
2a1 i

bm

2p
, sD

1exp~2 ips!n2zHS 1

2
1a2 i

bm

2p
,sD

1 (
n,mk

Fm21
4p2

b2 S a1n1
1

2D 2

1mk
2G2s

,

~5.15!

where the discrete sum runs overnPZ and mkP@Spec(D”̂ )

2Ker(D”̂ )#. Let us denote the sum term by the symb
zD/̂ 2(s) even though that identification is not entirely corre
The determinant can be then computed and we obtain13,14

exp@2G~A!#5@exp~2bm12p ia !11#n1

3@exp~2bm22p ia !11#n2

3exp@2z
D”̂ 2
8 ~0!#. ~5.16!

From Eq.~5.16! it is manifest that the determinant splits
the product of two (011)-dimensional contributions and
reduced expression depending onA, S, and the flat connec-
tion a. Amusingly, one can go further and partially compu
2z

D”̂ 2
8 (0), namely, perform the sum overn. To this end, one

first defines a Mellin representation of the complex pow
and then Poisson resums the series inn ~see Appendix B!. In
this way, we end up with a series forzD/̂ 2(s) that is analytic
at s50 and whose derivative ats50 leads to

exp„2zD/̂
2~s!…5U)

mk

@11exp~2bAmk
21m212p ia !#U2

3exp@2pF2~n11n2!mb#

F[z~b2/4p2!~D”̂ 21m2!~21/2!. ~5.17!

That the above infinite product is convergent follows imm
diately from the estimate~3.2!. We have thus provided the
explicit general form~5.16!,~5.17!, for the complete effective
action in the background~5.8!. It is a trivial exercise to com-
pute in particular its parity-violating part~under a→2a!.
The term governed byzD/̂ 2(s) is unaffected, so we obtain

e

,

13After the derivation in Ref.@6# of the general form~5.16! for the
effective action, its odd-mass partG̃PV ~4.6! ~rather than the true
GPV itself! was recalculated in Ref.@30a# in a different way. The
result there, which was its main content, was incorrect. Upon
vate explanation of their mistake to the authors, a second, corre
version @30b# properly acknowledged our corrections. Howeve
that acknowledgment did not survive in the published version@30c#,
nor in its erratum@30d# stating the true date of the revised versio
@30c#.

14A recent computation@31# of G̃PV agrees with that implied by
Eq. ~5.16!.
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GPV@A#5~n12n2!H arctanF tanS bm

2 D tan†p~a2@a# !‡G
6p~a2@a# !J . ~5.18!

The above equation exhibits the remarkable property
GPV@A# that it factorizes into a part dependent only on t
holonomya times one that involves, through (n12n2), the
flux F on S2 since as we saw (n12n2)5F/2p. This is
both in accord with our initial ‘‘Fourier’’ representation a
well as a general consequence of the index theorem on p
uct manifolds~for details see Ref.@18#, p. 288!. @We have
written the redundant combination (a2@a#) rather thana in
the argument of the tan above to emphasize its fundame
role.#

A simple but interesting special case of Eq.~5.8! where
the eigenvaluesmk are known explicitly is the instanton o
the flat unit torus:Ai52pne i j x

j . Here mk
254punku with

2n degeneracy, while 2pz (b2/4p2)(D”̂ 21m2)(21/2)
5n(4pn)1/2bzH(21/2,m2/2pn)2(n11n2)mb. Substitut-
ing into Eq.~5.17! we obtain

exp@2G~A!#

5U)
k51

`

„11exp~2bA4punku1m212p ia !…U4n

3expFn~4pn!1/2bzHS 21/2,
m2

2pnD22mnbG .
~5.19!

There are a number of other informative general propertie
be drawn from Eqs.~5.16!,~5.17!. First their invariance unde
a→a11 is manifest and its structure is consistent with E
~2.14!. Second, it is clear that a perturbative~i.e., in powers
of a! expansion of Eqs.~5.16! and~5.17! loses periodicity in
a and hence does not see large invariance order by order
example the Chern-Simons term (I CS5pan) has a coeffi-
cient 12tanh(bm/2). The usually quoted coefficient omit
the 1 that represents the intrinsic parity-anomaly price of
gauge-invariant regularization and hence persists atm50.
As we saw in Sec. III there is actually an ambiguity in
sign ~reflecting a choice of cut!, also present in other regu
larizations, for example, through the factor limM→6` sgn(M)
in Pauli-Villars, even at perturbative Feynman diagram lev
As we discussed, with our intrinsic parity-violating gaug
preserving choice the ambiguity is physically reflected in
degree of decoupling of a heavy fermion.

VI. CONCLUSIONS

After first deriving a generic form for the Abelian gaug
field effective action in arbitrary dimensions purely on gau
invariance grounds, we were able to represent it in de
using z-function regularization. In the process, we found
uniform preservation of gauge invariance, under both sm
and large transformations, which in odd dimensions is link
with parity anomalies due to the possibility of spectral asy
metry. We thereby connected the machinery of index th
rems to the more prosaic question of how improved Che
f

d-

tal

to

.

or

r

l.
-
e

e
il

ll
d
-
-
-

Simons terms~that carry the large gauge information! could
be present in the finite temperature thermal field theory
gime without violating the overall gauge invariance; this w
closely related to theh function. From our original represen
tations, we were able to give ‘‘spectral’’ representations
the massive Dirac determinant in terms of the masslessz and
h functions. In turn, this enabled us to provide explicit e
pansions for both parity even and odd parts of the effec
action in the small as well as large mass limit. A number
subtleties inherent in these expansions were discussed.
important aspect is that there is a finite regularization am
guity in the full nonperturbative action that parallels th
well-known perturbative one where there is a residual Pa
Villars regulator ambiguity: results depend on the sign of
mass even as it tends to infinity. For us, the ambiguity wa
a twofold possibility of complex plane cut. A physically ap
pealing choice was to insist on ‘‘decoupling’’ as the ele
tron’s mass becomes infinite. These ambiguities differ fr
the usual polynomial freedom associated with regularizati
simply because there are no gauge-invariant polynom
available here. Instead, they are reflected in the nearest
sible way to that: through the discrete value of the coeffici
of h~0!, which contains the local, ‘‘polynomial’’ CS term. In
connection with the importance of the flat direction as re
resenting the large gauge aspects, we noted that these as
would only be found in perturbative diagrams if one us
fermion propagators in the ‘‘flat potential vacuum’’ rath
than simply the usual free ones. Finally, we provided so
explicit gauge field configuration examples to show t
emergence of our general results in concrete cases invol
external fields.
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APPENDIX A

We start by consideringGPC@A# defined in Eq.~4.1!. Re-
calling that

K7~ t,0!5FS 1

2
,

1

2
,2m2t D5exp~2m2t !, ~A1!

the first term in Eq.~4.1! can be cast as

1

2

d

ds
zD/ 21m2~s!U

s50

, ~A2!

i.e., 1
2 the effective action corresponding to the massive L

placian on the spinor. Because of the 1/G(s) factor in front
of the integral, the simple poles ats50 of the second inte-
gral in Eq.~4.1! give rise to a nonvanishing result. Since th
singular behavior occurs whent is near 0~the integral is
regular neart5`!, we can reduce the integration region
the finite interval~0,1! and use the asymptotic expansion f
Tr@exp(2tD” 2)#:
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Tr@exp~2tD” 2!#5 (
n50

`

Hnt ~n2d!/2, ~A3!

to evaluate the integral. HereHn are the Seeley–de Wit
coefficients, local functionals of the gauge field and ba
ground geometry, invariant under small and large trans
mations. The integral turns out to be

7
p i

2
zD/ 21m2~0!1

1

2
lim
s→0

1

G~s!
E

0

1

dtts21

3 (
n50

`

Hnt ~n2d!/2FdK~1!

ds
62mAt

dK~2!

ds G . ~A4!

Let us drop, for the moment, the contribution proportional
zD/ 21m2(0). Taylor expandingK ( i ) in the second term and
performing the integral int, we obtain for the rest of Eq
~A4!
th
-
en
e
ca

d

-
r-

1

2
lim
s→0

(
n50

`

(
k50

` FHn

k!

dk

dtk S d

ds
K ~1!~ t,s! D

t50

3
1

G~s!„s1~n2d!/21k…

62m
Hn

k!

dk

dtk S d

ds
K ~2!~ t,s! D

t50

3
1

G~s!„s1~n2d11!/21k…G . ~A5!

Letting s→0 in the previous equation, because of t
1/G(s), we will get a vanishing result unlessn5d22k or
n5(d21)22k. Thus we can write this contribution as
the
1

2 (
n50

`

(
k50

` Fdn,d22k

Hn

k!

dk

dtk S d

ds
K ~1!~ t,s! D6mdn,~d21!22k

Hn

k!

dk

dtk S d

ds
K ~2!~ t,s! D G

s,t50

. ~A6!

Taking account of the fact that only the even coefficientH2n are different from zero in the heat-kernel expansion for
Laplacian, the first term contributes only ifd is even while the second only ifd is odd. Explicitly we have

GPC@A#5
1

2

d

ds
zD/ 21m2~s!U

s50

7
p i

2
zD/ 21m2~0!15

1

2 (
k50

d/2
Hd22k

k!

dk

dtk S d

ds
K ~1!~ t,s! D

s,t50

, d even,

6m (
k50

~d21!/2
Hd2122k

k!

dk

dtk S d

ds
K ~2!~ t,s! D

s,t50

, d odd ,

~A7!
lex

and
,

where we have restored the contribution proportional to
z(0)5zD/ 21m2(0). Let usnotice that the cut ambiguity af
fects odd dimensions, while the local terms in even dim
sion are insensitive to it. Thez~0! part can, as usual, b
reabsorbed in a redefinition of the scale. The local parts
be explicitly computed with the result

G loc
odd@A#56sgn~m!Ap (

k50

~d21!/2
~22!k

~2k11!!!

3~m2!k11/2Hd2122k ~A8!

in the odd-dimensional case, while ford even

G loc
even@A#52 (

k51

d/2 F (
j 51

k
~22! j 21

j

1

~2 j 21!!! ~k2 j !! G
3~ im!2kHd22k . ~A9!

APPENDIX B

There is a very standard technique for evaluating the
rivative ats50 of a series such as
e

-

n

e-

F~s!5(
mk

(
nPZ

F b2

4p2 ~m21mk
2!1S a1n1

1

2D 2G2s

.

~B1!

One starts by writing a Mellin representation of the comp
power and then interchanges the sum with the integral int

F~s!5(
mk

(
nPZ

1

G~s!
E

0

`

dtts21

3expF2
b2

4p2 ~m21mk
2!t2S a1n1

1

2D 2

t G
5

1

G~s! (
mk

E
0

`

dtts21(
nPZ

3expF2
b2

4p2 ~m21mk
2!t2S a1n1

1

2D 2

t G .
~B2!

The above integral exhibits a singularity ats50 whent ap-
proaches zero as well. In order to remove this obstacle
thus computeF 8(0), we can usePoisson resummation
namely, the identity
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(
nPZ

f ~n!5 (
nPZ

f̂ ~n!, ~B3!

where f̂ (n)[*2`
` dx exp(2pinx)f(x). In our case we have

F~s!5
Ap

G~s! (
mk

E
0

`

dtts23/2

3 (
nPZ

expF2
b2

4p2 ~m21mk
2!t

2
p2n2

t
22p i S a1

1

2DnG . ~B4!

Notice that the integral is now regular att50 for everys,
whenn is different from zero, so we can write

F~s!5
Ap

G~s! (
mk

E
0

`

dtts23/2

3 (
nPZ, nÞ0

expF2
b2

4p2 ~m21mk
2!t

2
p2n2

t
22p i S a1

1

2DnG
1ApG~s21/2!@zb2/4p2~D” 21m2!~s21/2!

2~b2m2/4p2!2s11/2~n11n2!#. ~B5!

Performing the integral, we obtain
re

od

e

s.
F~s!5
Ap

G~s! (
mk

(
nPZ, nÞ0

3expF22p i S a1
1

2DnG
3S 2p2unu

bAmk
21m2D s21/2

Ks21/2~bunuAmk
21m2!

1G~s21/2!Ap@zb2/4p2~D” 21m2!~s21/2!

2~b2m2/4p2!2s11/2~n11n2!#, ~B6!

whereKn(x) is the Bessel function. We can now take th
derivative and lets→0, because the series is convergent a
defines a holomorphic function ats50,

F 8~0!5 (
nPZ, nÞ0

1

unu

3expF22p i S a1
1

2Dn2bunuAmk
21m2G

~B7!

12pz~D” 21m2!~21/2!2bm~n11n2!.
~B8!

Recalling that ln(12x)5(k51
` xk/k, we can compute the sum

and finally find

F 8~0!5 ln )
mk

u11exp@2p ia1bAmk
21m2#u2

12pzD/ 21m2~21/2!2bm~n11n2!, ~B9!

as reported in Ref.@6#.
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@15# N. Bralić, C. Fosco, and F. Schaposnik, Phys. Lett. B383, 199

~1996!; D. Cabra, E. Fradkin, G. Rossini, and F. Schaposn
ibid. 383, 434 ~1996!.

@16# G. Dunne, K. Lee, and C. Lu, Phys. Rev. Lett.78, 3434
~1997!.

@17# R. T. Seeley, Amer. Math. Soc. Proc. Symp. Pure Math.10,
288 ~1967!; B. S. DeWitt,Dynamical Theory of Groups and
Fields ~Gordon and Breach, New York, 1965!.

@18# P. B. Gilkey, Invariance Theory, the Heat-Equation and th
Atiyah-Singer Index Theorem~CRC, Boca Raton, 1995!.

@19# A. N. Redlich, Phys. Rev. Lett.52, 18 ~1984!; Phys. Rev. D
29, 2366~1984!.

@20# L. Alvarez-Gaume´ and E. Witten, Nucl. Phys.B324, 269
~1983!.



J.

In

-

,

57 7459EFFECTIVE QED ACTIONS: REPRESENTATIONS, . . .
@21# E. Witten, Phys. Lett.117B, 324 ~1982!.
@22# O. Aharony, A. Hanany, K. Intriligator, N. Seiberg, and M.

Strassler, Nucl. Phys.B499, 67 ~1997!; J. de Boer, K. Hori,
and Y. Oz,ibid. B500, 163 ~1997!.

@23# S. W. Hawking, Commun. Math. Phys.55, 133 ~1977!.
@24# R. E. Gamboa Saravi, G. L. Rossini, and F. A. Schaposnik,

J. Mod. Phys. A11, 2643~1996!.
@25# J. Gegelia, A. Khelashvili, and N. Kiknadze, Phys. Rev. D55,

3897 ~1997!.
@26# H. Leutwyler, Helv. Phys. Acta63, 660 ~1990!.
@27# M. J. Ablowitz and A. S. Fokas,Complex Variables: Introduc-
t.

tions and Applications~Cambridge University Press, Cam
bridge, England, 1997!.

@28# I. Affleck, J. A. Harvey, and E. Witten, Nucl. Phys.B206, 413
~1982!.

@29# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic, New York, 1980!.

@30# C. D. Fosco, G. L. Rossini, and F. A. Schaposnik~a!
hep-th/9705124 version 1;~b! hep-th/9705124 version 2;~c!
Phys. Rev. Lett.79, 1980~1997!; ~d! 79, 9296~E! ~1997!.

@31# I. J. R. Aitchison and C. D. Fosco, Phys. Rev. D57, 1171
~1998!.


