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Non-Abelian Chern-Simons coefficient in the Higgs phase

Hsien-chung Kao*
Department of Physics, Tamkang University, Tamsui, Taiwan 25137, Republic of China

~Received 29 October 1997; published 15 May 1998!

We calculate the one loop corrections to the Chern-Simons coefficientk in the Higgs phase of Yang-Mills
Chern-Simons Higgs theories. When the gauge group is SU(N), we show, by taking into account the effect of
the would-be Chern-Simons term, that the corrections are always integer multiples of 1/4p, as they should be
for the theories to be quantum-mechanically consistent. In particular, the correction is vanishing for SU~2!. The
same method can also be applied to the case where the gauge group is SO(N). The result for SO~2! agrees with
that found in the Abelian Chern-Simons theories. Therefore, the calculation provides us with a unified under-
standing of the quantum correction to the Chern-Simons coefficient.@S0556-2821~98!03612-1#

PACS number~s!: 11.10.Kk, 11.10.Gh, 11.15.Ex, 12.38.Bx
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Chern-Simons theories in 211 dimensions provide a
field-theoretic description of particle excitations with fra
tional spin and statistics, and thus can be used to study
fractional quantum Hall effect@1–3#. Furthermore, we can
put the theories in a self-dual form by including Higgs fiel
with a special sixth-order potential. When this happens,
systems admit a so-called Bogomol’nyi bound in energy@4#,
which is saturated by solutions satisfying a set of first-or
self-duality equations@5#. These solutions have a rich stru
ture especially when the gauge symmetry is non-Abelian
they are interesting in their own right@6#. It is also known
that the self-duality in these systems is a result of an un
lying N52 supersymmetry@7#.

The quantum correction to the Chern-Simons coeffici
is also interesting. In the Abelian case, when there are ne
massless charged particles nor spontaneous symmetry b
ing, Coleman and Hill have shown that the correction to
Chern-Simons coefficient can only come from the ferm
one-loop effect and is quantized (1/4p) @8#. When either of
the two conditions is violated, scalar particles may also c
tribute to the correction and higher-loop effect is genera
nonvanishing@9,10#. In particular, the one-loop correctio
looks complicated and is not quantized. For Abelian Che
Simons theories, this does not really cause a problem.

When the gauge symmetry is non-Abelian, however,
Chern-Simons coefficient must be an integer multiple
1/4p for the systems to be quantum-mechanically consist
Therefore, it is interesting to see whether the quantiza
condition survives the quantum correction. In the symme
phase, this has been shown to one loop@11#. When there is
no bare Chern-Simons term, it is also verified up to t
loops by considering the fermionic contribution@12#. In the
Higgs phase, the situation is more subtle. If there is a rem
ing symmetry in the Higgs phase, e.g., SU(N) with N>3, it
has been shown that the correction still satisfies the qua
zation condition@13–15#. In contrast, if the gauge symmetr
is completely broken, e.g., SU~2!, the correction is again
complicated and not quantized@16#. It is usually argued tha
this arises because there is no well-defined symmetry g
erator in the system.
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One can, however, take an alternative perspective to
whole thing. A more careful analysis suggests that so-ca
would-be Chern-Simons terms could exist in the effect
action which are completely gauge invariant and induce
the Higgs phase terms similar to the Chern-Simons one@16#.
In fact, the one-loop correction in the Higgs phase has b
shown to be identical to that in the symmetric phase fo
general class of renormalizable Abelian Chern-Simons th
ries @17#. Although the results reported in Ref.@18# look
complicated, we believe they can also be incorporated in
picture. Therefore everything will fit together well if we ca
show how it works in non-Abelian theories. Unfortunate
the calculation seems to be much too complicated, and
explicit demonstration is still lacking.

In this paper, we take up the on-going effort and calcul
the one loop corrections to the Chern-Simons coefficien
the Higgs phase of Yang-Mills-Chern-Simons Higgs the
ries. With the Higgs phase being in the fundamental SU(N),
we show that the corrections are always integer multiples
1/4p for all N. In particular, the correction is vanishing fo
SU~2!. The nice thing is that we can avoid the tedious c
culations encountered in Ref.@17# as will be explained later.
We also apply the same method to the case where the g
group is SO(N). In particular, the correction is vanishing fo
SO~2!, consistent with the result in Ref.@17#. We conclude
with some comment on the case where the Higgs field is
the adjoint representation.

Let us consider the following Yang-Mills Chern-Simon
theories with a complex Higgs fieldF in the fundamental
representation:

L5
1

g2trH 2
1

2g2 Fmn
2 2 ikemnrS Am]nAr2

2

3
iAmAnArD J

1uDmFu21l~ uFu22v2!2. ~1!

Here Dm5(]m2 iAm
mTm) and e01251. To be specific, we

choose the gauge group to be SU(N). The generators satisfy
@Tm,Tn#5 i f lmnTl , with the normalization tr$TmTn%5dmn/2.
Moreover,(m(Tm)ab(Tm)gd5 1

2 daddbg2(1/2N)dabdgd .
Because of its conceptual advantage, the background

method will be employed. For this purpose, we separateAm
7416 © 1998 The American Physical Society
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into the background partAm and the quantum partQm . In the
Higgs phase,F5f1w with w†w5v2. The gauge fixing
term is given by

Lg f5
1

2j
$~D̂mQm!m1 i j~w†Tmf2f†Tmw!%2, ~2!

where D̂m is the covariant derivative with the backgroun
field. Following standard procedure, one can find
Faddeev-Popov ghost term
s

-
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a
g

nt

n
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e

LFP52 tr$~D̂mh̄!~D̂mh!2 i ~D̂mh̄!@Qm ,h#%

1j~w†h̄hw2w†hh̄w!1j~w†h̄hf2f†hh̄w!.

~3!

From Eqs.~1!–~3!, we see to quadratic order inQm andf,
the relevant terms are
L05
1

2
Qm

mH F21

g2 ~]2dmn2]m]n!2
1

j
]m]n1 ikemnr]rGdmn1dmn@~w†TmTnw!1~w†TnTmw!#J Qn

n

1
1

2
fa

pH F2]21
1

2
jw2G~dabdpq2ŵa

pŵb
q!1@2]21mH

2 #~ ŵa
pŵb

q!1F ~N22!

2N
jw2G~eacebdŵc

pŵd
q!J fb

q

1 f lmnH 1

g2 ~]mAn
l !Qm

mQn
n1

1

g2 ~]mQn
l !Am

mQn
n1

1

g2 ~]mQn
l !Qm

mAn
n1

1

j
~]mQm

l !Am
mQn

n2
ik

2
emnrAm

l Qn
mQr

nJ
12~w†AmQmf!12~f†QmAmw!. ~4!
to
Here, fp51/A2(f1
p1 if2

p), wp5(w1
p1 iw2

p), ŵa
p5wa

p/Aw2,
with p,q51,2, . . . ,N denoting the components of the Higg
field. mH

2 54lw2, with w25(p,a(wa
p)25v2.

As pointed out in Ref.@16#, there could exist in the effec
tive action so-called would-be Chern-Simons terms, wh
are invariant even under the large gauge transformation
induce terms similar to the Chern-Simons one in the Hig
phase. In fact, one finds there are two such terms releva
our discussion:

O15emnri $F†Tm~DmF!2~DmF!†TmF%Fnr
m ,

O25emnri $F†~DmF!2~DmF!†F%~F†FnrF!. ~5!

In the Higgs phase, they give rise to

emnrAm
n Fnr

m $~w†TmTnw!1~w†TnTmw!%,

2emnrAm
n Fnr

m ~w†Tmw!~w†Tnw!, ~6!

respectively.
To extract the correction to the Chern-Simons coefficie

it is helpful to introduce the following projection operators
finding the propagators of the gauge and Higgs fields:
h
nd
s
to

t,

~P1!mn5dmn22@~ ŵ†TmTnŵ !1~ ŵ†TnTmŵ !#

1
2~N22!

~N21!
~ ŵ†Tmŵ !~ ŵ†Tnŵ !,

~P2!mn52@~ ŵ†TmTnŵ !1~ ŵ†TnTmŵ !#

24~ ŵ†Tmŵ !~ ŵ†Tnŵ !,

~P3!mn5
2N

~N21!
~ ŵ†Tmŵ !~ ŵ†Tnŵ !;

~7!

~R1!ab
pq5dpqdab2ŵa

pŵb
q2eacebdŵc

pŵd
q ,

~R2!ab
pq5ŵa

pŵb
q ,

~R3!ab
pq5eacebdŵc

pŵd
q .

It is easy to check that they indeed satisfy

Pi Pj5d i j Pi ;

RiRj5d i j Ri . ~8!

With these projection operators, it is now straightforward
obtain the propagators ofQm andf:
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Dmn
mn~k!5$@Dmn

1 ~k!#~P1!mn1@Dmn
2 ~k!#~P2!mn

1@Dmn
3 ~k!#~P3!mn%,

Dab
pq~k!5$@D1~k!#~R1!ab

pq1@D2~k!#~R2!ab
pq

1@D3~k!#~R3!ab
pq%. ~9!

Here,

Dmn
1 ~k!5

g2~k2dmn2kmkn!1g2Memnrkr

k2~k21M2!
1

jkmkn

k4 ,

Dmn
2 ~k!5

g2~k21MW1MW2!~dmn2kmkn /k2!1g2Memnrkr

~k21MW1
2

!~k21MW2
2

!

1
jkmkn

k2@k21~1/2!jw2#
,

Dmn
3 ~k!5

g2~k21MZ1MZ2!~dmn2kmkn /k2!1g2Memnrkr

~k21MZ1
2

!~k21MZ2
2

!

1
jkmkn

k2$k21@~N21!/N#jw2%
,

~10!

D1~k!5
1

@k21~1/2!jw2#
,

D2~k!5
1

~k21mH
2 !

,

D3~k!5
1

$k21@~N21!/N#jw2%
,

with M5kg2, and

MW65~aW61!M /2, aW5A11
2w2

k2g2;
MZ65~aZ61!M /2, aZ5A11
4~N21!/Nw2

k2g2 .

~11!

Note thatDmn
1 , Dmn

2 , andDmn
3 correspond to propagators o

the unbroken partsW andZ, respectively.
To determine the renormalization of the Chern-Simo

coefficient, we must calculate both the quantum correcti
of the bilinear and trilinear parts of the Chern-Simons ter
Thanks to the background field method, the effective act
is expected to have explicit gauge invariance. As a resul
is enough to consider the bilinear part. In fact, to one-lo
order only the two graphs in Fig. 1 contribute to the par
odd part of the vacuum polarization. They come from t
diagrams with a gauge loop and a gauge-Higgs loop, res
tively @15#. Carrying out the algebra we see that

@Pmn
mn~p!#odd5emnrpr$P1~p2!dmn1P2~p2!@~ ŵ†TmTnŵ !

1~ ŵ†TnTmŵ !#1P3~p2!~ ŵ†Tmŵ !~ ŵ†Tnŵ !%.

~12!

It is easy to see that the two would-be Chern-Simons te
only contribute toP2(0) andP3(0). Therefore, all we need
to calculate isP1(0) to find the correction to the Chern
Simons coefficient. In the Landau gauge,

FIG. 1. The one-loop diagrams that contribute to the parity o
part of the vacuum polarization.~a! involves an internal gluon loop
while ~b! involves an internal loop with both gluon and Higgs fiel
P1~p!5
~N21!

2
P Ia~p!1

1

2
P Ib~p!,

P2~p!52~N21!P Ia~p!2P Ib~p!1
N~N22!

~N21!
P Ic~p!1

N

~N21!
P Id~p!1P IIa~p!1P IIb~p!1

2N~N22!

~N21!
P IIc~p!

1
2

N~N21!
P IId~p!, ~13!

P3~p!5
~N22!

2
P Ia~p!1

~N12!

2
P Ib~p!2

N~N22!

~N21!
P Ic~p!2

N

~N21!
P Id~p!2P IIa~p!2P IIb~p!2

2N~N22!

~N21!
P IIc~p!

2
2

N~N21!
P IId~p!1

2~N21!

N
P IIe~p!12~N21!P II f ~p!.

Here,
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P Ia~p!5E d3k

~2p!3H M @k2p22~k•p!2#@4M2110k2210k•p18p2#

p2k2~k21M2!~k2p!2@~k2p!21M2# J 1E d3k

~2p!3H M @22k2p222~k•p!214p2~k•p!#

p2k2~k21M2!~k2p!2 J ,

P Ib~p!5E d3k

~2p!3H M @k2p22~k•p!2#

p2~k21MW1
2

!~k21MW2
2

!@~k2p!21MW1
2

#@~k2p!21MW2
2

#
J

3H 6M21
~k21MW1MW2!@2M218k224k•p14p2#

k2
1

@~k2p!21MW1MW2#@2M218k2212k•p18p2#

~k2p!2

1
~k21MW1MW2!@~k2p!21MW1MW2#@26k216k•p24p2#

k2~k2p!2 J
1E d3k

~2p!3H 22M ~k•p!@MW1MW212k222p2#

p2~k21MW1
2

!~k21MW2
2

!~k2p!2
1

M ~k21MW1MW2!@22k2p222~k•p!214k2~k•p!#

p2k2~k21MW1
2

!~k21MW2
2

!~k2p!2 J ,

~14!
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and all other integrals are given in the Appendix. Note t
P Ia andP Ib are identical to Eqs.~11! and~12! in Ref. @15#,
respetively, up to a factor. SinceP Ia andP Ib only involve
the diagram with a gluon loop, the result we obtain here
actually independent of the form of the Higgs potential.
the zero momentum limit,

P Ia~0!5
k

2puku
,

P Ib~0!50. ~15!

In the background field gaugeQm does not get renormal
ized. As a result,

k ren5k1P1~0!,

5k1
~N21!k

4puku
~16!

for N>3, in agreement with the results found in Refs.@13–
15#. Although the above result can also be obtained by c
culating the parity odd part of the vacuum polarization in t
unbroken sector as in Refs.@13–15#, this might be particular
to the case that the Higgs field is in the fundamental rep
sentation.

In the SU~2! case, the gauge symmetry is completely b
ken and there is no such a thing as unbroken part in
Higgs phase. As a result, all the terms involvingDmn

1 should
be set to zero and hence the correction to the Chern-Sim
coefficient is vanishing consistent with the claim in Re
@14#. An interesting point is that for SU~2! the group genera
tors Tm’s are proportional to the Pauli matrices. Making u
of the identity (smsn1snsm)52dmn , we see that the firs
term in Eq.~6! becomes proportional to the Chern-Simo
one. This explains why it is impossible to find the right co
rection to the Chern-Simons coefficient in the conventio
calculation.

We can perform similar calculation in the SO(N) case by
noting that there tr$TmTn%52dmn, (m(Tm)ab(Tm)gd
t

s

l-

-

-
e

ns
.

l

5daddbg2dgadbd , and (w†Tmw)50. The procedure is very
similar and we will just give the main result

P1~p!5~N23!P Ia~p!1P Ib~p!. ~17!

Here, P Ia and P Ib are identical to those in Eqs.~14! with
aW5A118w2/k2g2. Consequently,

k ren5k1
~N23!k

2puku
~18!

for N>3. It is interesting to see that for SO~3!, which is also
the adjoint representation of SU~2!, there is no correction in
the Higgs phase. For SO~2!, the gauge symmetry is agai
completely broken in the Higgs phase and the correction
also vanishing. This is consistent with the results found
Ref. @17#. Thus, we see that the Abelian result is really jus
special case of the non-Abelian ones.

Naturally, it is interesting to see whether this kind
analysis can be applied to the case where the Higgs field
the adjoint representation. Since there can be severa
equivalent vacua in these systems, it is nontrivial to sh
that the Chern-Simons coefficient is quantized in all t
Higgs phases. At this moment, there are at least two diffic
ties. First, we do not know the form of projection operato
such asP1, P2, andP3 in the adjoint representation. Secon
there could be an infinite number of would be Cher
Simons terms, e.g., i emnrtr$@(F†)n,Fnr#(DmFn)
2(DmFn)†@Fnr ,Fn#%, with n an arbitrary positive integer
As mentioned above, this may also make it impossible for
to find the correction to the Chern-Simons term by calcu
ing only the parity odd part of the vacuum polarization in t
unbroken sector.

The author is indebted to K. Lee for helpful communic
tion. This work was supported in part by the National S
ence Council of the ROC under Grant No. NSC87-2112-
032-002.
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APPENDIX

PIc~p!5E d3k

~2p!3H M@k2p22~k•p!2#

p2~k21MW1
2

!~k21MW2
2

!~k2p!2@~k2p!21M2#
JH@5M218k2212k•p18p2#

1
~k21MW1MW2!@2M212k212k•p#

k2 J 1E d3k

~2p!3H 22M ~k•p!@k22p2#

p2~k21MW1
2

!~k21MW2
2

!~k2p!2

1
M ~k21MW1MW2!@2k2p22~k•p!212k2~k•p!#

p2k2~k21MW1
2

!~k21MW2
2

!~k2p!2

1
MMW1MW2@k•p2p2#1M @2k2p22~k•p!212p2~k•p!#

p2k2~k2p!2@~k2p!21M2#
J ,

P Id~p!5E d3k

~2p!3H M @k2p22~k•p!2#

p2~k21MW1
2

!~k21MW2
2

!@~k2p!21MZ1
2

#@~k2p!21MZ2
2

#
J

3H 6M21
~k21MW1MW2!@2M218k224k•p14p2#

k2
1

@~k2p!21MZ1MZ2#@2M218k2212k•p18p2#

~k2p!2

1
~k21MW1MW2!@~k2p!21MZ1MZ2#@26k216k•p24p2#

k2~k2p!2 J 1E d3k

~2p!3H 2M ~k•p!@MW1MW212k222p2#

p2~k21MZ1
2

!~k21MZ2
2

!~k2p!2

1
2M ~k•p!@MZ1MZ212k222p2#

p2~k21MW1
2

!~k21MW2
2

!~k2p!2
1

M ~k21MW1MW2!@2k2p22~k•p!212k2~k•p!#

p2k2~k21MW1
2

!~k21MW2
2

!~k2p!2

1
M ~k21MZ1MZ2!@2k2p22~k•p!212k2~k•p!#

p2k2~k21MZ1
2

!~k21MZ2
2

!~k2p!2 J . ~A1!

In each of the above expressions, the first integral is identical to that of the corresponding Feynman diagram in t
Landau gauge, and the second integral comes from the combining effect of the ghost and unphysical Higgs bosons

P IIa~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2~k21MW1
2

!~k21MW2
2

!@~k2p!21mH
2 #
J ,

P IIb~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2~k21MW1
2

!~k21MW2
2

!~k2p!2J ,

P IIc~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2k2~k21M2!~k2p!2J ,
~A2!

P IId~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2~k21MZ1
2

!~k21MZ2
2

!~k2p!2J ,

P IIe~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2~k21MZ1
2

!~k21MZ2
2

!@~k2p!21mH
2 #
J ,

P II f ~p!5E d3k

~2p!3H M ~g2w2!~k•p!

p2~k21MW1
2

!~k21MW2
2

!~k2p!2J .
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