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Non-Abelian Chern-Simons coefficient in the Higgs phase
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We calculate the one loop corrections to the Chern-Simons coeffieiemthe Higgs phase of Yang-Mills
Chern-Simons Higgs theories. When the gauge group iNyUfe show, by taking into account the effect of
the would-be Chern-Simons term, that the corrections are always integer multiplesrofas/they should be
for the theories to be quantum-mechanically consistent. In particular, the correction is vanishingZorT®d
same method can also be applied to the case where the gauge grouiNis Sk result for S@) agrees with
that found in the Abelian Chern-Simons theories. Therefore, the calculation provides us with a unified under-
standing of the quantum correction to the Chern-Simons coeffidi86656-282(98)03612-1

PACS numbgs): 11.10.Kk, 11.10.Gh, 11.15.Ex, 12.38.Bx

Chern-Simons theories in+42L dimensions provide a One can, however, take an alternative perspective to the
field-theoretic description of particle excitations with frac- whole thing. A more careful analysis suggests that so-called
tional spin and statistics, and thus can be used to study thgould-be Chern-Simons terms could exist in the effective
fractional quantum Hall effecfl-3]. Furthermore, we can action which are completely gauge invariant and induce in
put the theories in a self-dual form by including Higgs fieldsthe Higgs phase terms similar to the Chern-Simons[a6é
with a special sixth-order potential. When this happens, then fact, the one-loop correction in the Higgs phase has been
systems admit a so-called Bogomol'nyi bound in enddly  shown to be identical to that in the symmetric phase for a

which is saturated by solutions satisfying a set of first-ordefyeneral class of renormalizable Abelian Chern-Simons theo-
self-duality equationg5]. These solutions have a rich struc- o g [17]. Although the results reported in Refi8] look

ture especially when the gauge symmetry is non-Abelian an omplicated, we believe they can also be incorporated in this

:EZ%’ tﬁreeslglg‘irjiztlling i:wn t:]heeslg Oswsr]terﬁgﬁ]s z:[rIZsillic:)fkgr?vﬁg de [Qicture. Therefore everything will fit together well if we can
ty y show how it works in non-Abelian theories. Unfortunately,

lying N=2 supersymmetry7]. . .
The quantum correction to the Chern-Simons coefficienfhe palculaﬂon seems 1o b.e muc_:h too complicated, and an
plicit demonstration is still lacking.

is also interesting. In the Abelian case, when there are neith . .
massless charged particles nor spontaneous symmetry break-/" this paper, we take up the on-going effort and calculate
ing, Coleman and Hill have shown that the correction to thé"® One loop corrections to the Chern-Simons coefficient in
Chern-Simons coefficient can only come from the fermionth® Higgs phase of Yang-Mills-Chern-Simons Higgs theo-
one-loop effect and is quantized (&% [8]. When either of  ries. With the Higgs phase being in the fundamental I$}J(
the two conditions is violated, scalar particles may also conwe show that the corrections are always integer multiples of
tribute to the correction and higher-loop effect is generallyl/4m for all N. In particular, the correction is vanishing for
nonvanishing[9,10]. In particular, the one-loop correction SU(2). The nice thing is that we can avoid the tedious cal-
looks complicated and is not quantized. For Abelian Chernculations encountered in RgfL7] as will be explained later.
Simons theories, this does not really cause a problem.  We also apply the same method to the case where the gauge
When the gauge symmetry is non-Abelian, however, thegroup is SON). In particular, the correction is vanishing for
Chern-Simons coefficient must be an integer multiple 0fSQ(2), consistent with the result in ReffL7]. We conclude
1/47 for the systems to be quantum-mechanically consistentvith some comment on the case where the Higgs field is in
Therefore, it is interesting to see whether the quantizatiofthe adjoint representation.
condition survives the quantum correction. In the symmetric Let us consider the following Yang-Mills Chern-Simons
phase, this has been shown to one 1pbp]. When there is  theories with a complex Higgs fiel® in the fundamental
no bare Chern-Simons term, it is also verified up to tworepresentation:
loops by considering the fermionic contributiph?]. In the
Higgs phase, the situation is more subtle. If there isaremain- | 1 1
ing symmetry in the Higgs phase, e.g., SU(with N=3, it L= ?tr B 2_92':
has been shown that the correction still satisfies the quanti-
zation conditio{13—15. In contrast, if the gauge symmetry +]D @[>+ \(|®|*—v?)2 (1)
is completely broken, e.g., B), the correction is again
complicated and not quantiz¢di6]. It is usually argued that Here D,f(r?#—iA;TTm) and €y;o=1. To be specific, we
this arises because there is no well-defined symmetry gershoose the gauge group to be $)( The generators satisfy
erator in the system. [T™ T =if'"™"T', with the normalization {T™T"}=6M"/2.
Moreover,S (T op(T™) ;5= 3 80505, ~ (LI2N) 8,585
Because of its conceptual advantage, the background field
*Email address: hckao@ibm1.phys.tku.edu.tw method will be employed. For this purpose, we sepafgte
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into the background pa&,, and the quantum paQ,, . In the

Higgs phase®=¢+ ¢ Wlth o'e=v2. The gauge fixing
term is given by

_ 1 B m i tm tm 2
ng—z—g{(DMQM) +ié(e'Tp— 0" T 0)}, (2

where D « IS the covariant derivative with the background

Lep=21tr{(D,7) (D7)~

i(D,m[Q,. 71}
+e( o nne— o nne)+ e nnd—dTnne).

©)

field. Following standard procedure, one can find theFrom Egs.(1)—(3), we see to quadratic order @, and ¢,

Faddeev-Popov ghost term

_2(07 5,LLV_ (9;1.071/)

_1 m
Lo=5Qu z

1 1
ZPl | 92 T 2

apn apn (
(6ab5pq_ (Pg(Pg) +[- 9>+ ma](ﬁog@g) +

the relevant terms are

(9#,9 tiKke,,,d p} Omnt 5,”[(<PTT”‘T”¢)+(<PTT“Tm<p)]]Q“

2)
T

(eacebdﬁog@g) ¢g

1 1 i
+f"“”[g (9,A,)QQ} +7<a,LQ JALQ) +—z<a,LQ Joj “+g<a,LQ',L>A,TQ2—'76m WQl Q]

+2(¢"A,Q,4) T2($'Q A ,¢). 4
|
Here, ¢P=112(g1+i¢5), ¢P=(ef+ieh), of=wb/ Ve, (PDmn=ma— 2L (2TT™T"0) + (' T"T™5)]
with p,q=1,2, ... N denoting the components of the Higgs
: 2 _ 2 2_ P2_ 2 2(N—=-2) . A maa
field. mi=4rg?, with *=3 o(@f)*=v? N ( - )(QDTngo)(goTTngo),
As pointed out in Ref[16], there could exist in the effec- (N—1)
tive action so-called would-be Chern-Simons terms, which
are invariant even under the large gauge transformation and Ap o fnem
induce terms similar to the Chern-Simons one in the Higgs (P2)mn=2[(¢'T""0) + (o' T"T"e)]
phase. In fact, one finds there are two such terms relevant to A~
our discussion: —4(¢" ") (0" ),
(Po)mr= e (61T6) (1T
0,= E”V”I{QDTTm(D ®)—(D (D)Tqu)}vai 3)mn (N—1) ¢ LAY ®),
)
0,=e*"?i{®Y (D, ®)— (D, ®)'dHDTF, ). (5 . . n
g g : (Rl)gg: 5pq5ab_ (Pgﬁog_ facfbdﬁog‘Pg ,
In the Higgs phase, they give rise to
(Ro)B8= b,
uvp ANEM TTan 4 TTnTm , Apn
e"PALFT (e @)+ (e ®)} (Re)PI= e, cep0eP P
It is easy to check that they indeed satisfy
2e*PALFT (¢ TMe) (@' T ), (6)
Pi Pj = 6” Pi X
respectively. RiRj=6;R;. (8

To extract the correction to the Chern-Simons coefficient,

it is helpful to introduce the following projection operators in With these projection operators, it is now straightforward to
obtain the propagators @, and ¢:

finding the propagators of the gauge and Higgs fields:
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ATY(K) ={[AL,(K) (P mnt[AZ,(K) I(P2)mn
+[A3,(K1(Pg)mn},
DEA(K) ={[D (k) ](Ry) 5+ [D?(k)](Ro)58
+[D3(K)1(Ry)58- 9

Here,

_ PR,k k)+GMe, K Kk,

1
A,uv(k)_ k2(k2+M2) k4 s

9%(k*+My+ My-)(8,,— kK, /k?) +g°Me,,, k°
(K+ M2, ) (KR+M2,0)

¢k, .k,
TR (1éeT]”

AZ (k)=

~ gA(KP+Mz+Mz-)(8,,— KK, /k?)+g°Me,,, k?
(K+M2)(K+M3o)

A3 (k)

+ gk,ukv
K2{K2+[(N—1)/N]¢¢?}’
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FIG. 1. The one-loop diagrams that contribute to the parity odd
part of the vacuum polarizatiofa) involves an internal gluon loop,
while (b) involves an internal loop with both gluon and Higgs field.

4(N—1)/Ng?
- 22

Mzt:(azil)M/Z, az= \/1+ <29

(11)

Note thatA},, A2, andA®, correspond to propagators of
the unbroken part8/ andZ, respectively.

To determine the renormalization of the Chern-Simons
coefficient, we must calculate both the quantum corrections
of the bilinear and trilinear parts of the Chern-Simons term.
Thanks to the background field method, the effective action
is expected to have explicit gauge invariance. As a result, it
is enough to consider the bilinear part. In fact, to one-loop

order only the two graphs in Fig. 1 contribute to the parity

(100 odd part of the vacuum polarization. They come from the
diagrams with a gauge loop and a gauge-Higgs loop, respec-
DYK)= =, tively [15]. Carrying out the algebra we see that
O~ fier e
D2( k) =5 o [H;TD(p)]Odd: G,uvppp{Hl( pZ) 5mn+ HZ( pz)[((’)\DTTan;\D)
(k“+mpy)
+(@"T"TMe) 1+ 5(pA) (¢ TMe) (¢TT"¢)}.
1
D3(k)= — —, (12
{k“+[(N=1)/N]é¢"}
with M= «g?, and It is easy to see that the two would-be Chern-Simons terms
5 only contribute tall,(0) andII5(0). Therefore, all we need
L _ ¢ to calculate isII;(0) to find the correction to the Chern-
Mw==(aw=1)M/2, " aw 1+ k°g?’ Simons coefficient. In the Landau gauge,
(N-1D) 1 b
(p)=——M"(p)+ 5117(p),
I,(p)=—(N=DII'3(p)—I1'"°(p) + MH'°(|o)+ 11'%(p) +11"2(p) +11"°(p) + MH"C(lo)
2 (N—1) (N—1) (N—1)
Id
FNN-D (P, (13)
_(N=2) . (N+2) N(N=2) Id la b 2N(N—-2) ¢
Ha(p)=——H"(p)+ ——1I (IO)—WH (p)— (N—1)H (p)—11"%(p)—1I (p)_(NTH (p)
2(N-1)
o rrhd lle _ If

Here,
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" d3k jM[kzp —(k-p)?][4M?+ 10k?>— 10k - p+8p?] d3k [M[- 2k?p?—2(k-p)?+4p?(k-p)]
10~ | G~ oG WA= PG| ) | s |
15(p) f k | M[k2p?— (k- p)?]

PI= ] @m0 | 50 M2 (KB M2,k p)2 M2, L (k= )2t M2, ]
2 _ 2 2_ . 2 _ 2 N I — 2 2_ . 2
oz MMyl I\£2+8k 4k-p+4p?) [(k=p)*+ Mu-Mu (]|E I\/I)2+8k 12 p+8p?]
-p

+(k2+MW+MW7)[(k—p)2+MW+MW7][—6k2+6k~p—4p2]
k?(k—p)?
d3k J—2M(k-p)[MW+MW_+2k2—2p2] . M (k2+ M+ My-)[ — 2k2p?—2(k- p)?+ 4k?(k-p)]
(2m)°| p2(k2+ M2 ) (K2+ M2, ) (k—p)? p2KA(K2+ M. ) (K2 + M2 ) (k—p)?

(14)

and all other integrals are given in the Appendix. Note that=4,593,— 8,855, and @'T™e)=0. The procedure is very
I1'2 andII'® are identical to Eqs(11) and(12) in Ref.[15], similar and we will just give the main result

respetively, up to a factor. Sindé'? andII'® only involve

the diagram with a gluon loop, the result we obtain here is
actually independent of the form of the Higgs potential. In
the zero momentum limit,

I3(p)=(N=3)I1'*(p) + I1"°(p). 17

Here,IT'? and IT'"® are identical to those in Eq$14) with

I1'30)= o aw=v1+ 8¢?/ k’g®. Consequently,
27| k|’
11'°(0)=0. (15) _ (N=3)«
Kren= K+ 27| - (18

In the background field gaug@,, does not get renormal-

ized. As a result, for N=3. It is interesting to see that for $8), which is also

Kpon K+ T1,(0) the adjoint representation of $2), there is no correction in

ren 1S the Higgs phase. For 39), the gauge symmetry is again
(N=1)x completely broken in the Higgs phase and the correction is
AT (16) also vanishing. This is consistent with the results found in
Ref.[17]. Thus, we see that the Abelian result is really just a
special case of the non-Abelian ones.

=Kt 47T|K|

for N=3, in agreement with the results found in Refs3— Naturallv. it is int ting t hether this kind of
15]. Although the above result can also be obtained by cal- Ia uratly, tl) IS ml e(rjets Thg 0 see hW etherH IS fmld 0
culating the parity odd part of the vacuum polarization in the2Na ysis can be applied to the case where the Higgs field is in

unbroken sector as in Refd.3-15, this might be particular the .adljo"j[t repres_en:;\tlon Sn:ce th’r’t”? can tb_e_ slzetvererlll in-
to the case that the Higgs field is in the fundamental repre-equ'va ent vacua In these systems, 1L1s nontrivial to show
sentation. that the Chern-Simons coefficient is quantized in all the

Higgs phases. At this moment, there are at least two difficul-
In the SU2) case, the gauge symmetry is completely brog es. First, we do not know the form of projection operators

such as4, P,, andPj in the adjoint representation. Second,

E(Ieggt?giseeropsng Leesnuclte ?rileﬂ;irtreer;lizr:nt\g O{ﬁf%hser:ﬁg?mothere could be an infinite number of would be Chern-
e.g., ie**tr{[(®NH"F,1(D,P"

coefficient is vanishing consistent with the claim in Ref. imons _ terms,

: . 2 ' —(D ®MTF,, ,®"]}, with n an arbitrary positive integer.
[14]. ,?%n Interesting pomt is that for S@ the.group genera- - as mléntioned %bove, this may also make it impossible for us
tors T™s are proportional to the Pauli matrices. Making use

of the ity (7" ~23,, we see hat e frst o 109,10 SO1S00n 1o e Sher-Simons e by el
term in Eq.(6) becomes proportional to the Chern-Simons g only b P P

one. This explains why it is impossible to find the right cor- unbroken sector.

rection to the Chern-Simons coefficient in the conventional The author is indebted to K. Lee for helpful communica-

calculation. tion. This work was supported in part by the National Sci-
We can perform similar calculation in the S®) case by ence Council of the ROC under Grant No. NSC87-2112-M-

noting that there {T"T"}=26"" = (T™),e(TM),s  032-002.
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APPENDIX

. f M[Kp?— (k-p)’]
P (277)3 | P20+ M2, )+ M2, ) (k—p) (k—p)P+M?]

[5M2+8k?—12k- p+8p?]

+(|< +MW+MW)[—M2+2k2+2k-p]] f dk [ —2M(k- p)[K2— p?]
K2 (27)%| p2(k2+ M2,0) (K2 + M2, ) (k= p)>
M (k2+ My+My-)[ —k2p2— (k- p)2+2k3(k-p)]
p2k2(K2+ M2 ) (K2+ M, ) (k—p)?

MMy My [k-p—p?]+M[—k?p —(k-p>2+2p2<k-p>]]

p2k?(k—p)?[(k—p)?+M?]

m'(p)=

d*k | M[k?p?— (k- p)?]
(2m)°| p2(K2+ M2, ) (K2 + M2, )[(k—p)2+ M2, ][ (k—p)?+M>_]

(K>+ My +My-)[—M?2+8k?>—4k- p+4p?] . [(k—p)2+M,+M,-][—M?+8k?>—12k- p+8p?]

X1 6M2+
k2 (k—p)?

+(k2+MW+MW7)[(k—p)2+MZ+M27][—6k2+6k~p—4p2] f d3k I—M(k'p)[MW+MW7+2k2—2p2]
k2(k—p)2 (2m)%| p2(k2+MZ,) (K2+ M2 ) (k—p)>2
—M(k-p)[Mz+M5-+2k?>—2p?] . M (k2+ M+ My-)[ —k2p2— (k- p)2+ 2k?(k- p)]
P2(K2+MZ ) (K2+ME,-) (k—p)? P22(K2+ M2 ) (K2 + M5 (k—p)?

2 —K2p2_(k.D)2 2(k.
L MO+ Mz M2 ) —k?p?— (k- )+ 2K (k p)]]_ (AD)

P2k (K2 +M2.)(K2+M3_) (k—p)?

In each of the above expressions, the first integral is identical to that of the corresponding Feynman diagram in the usual
Landau gauge, and the second integral comes from the combining effect of the ghost and unphysical Higgs bosons:

o[ dk M(g%¢?)(k-p)
1"3(p)= J o) ]

p2 k2+Mw+)(k2+MW )[(k p)2+mH]

M(g2¢?)(k-p) ]

Hllb —
(P) f 2)%| p2(K2+ M2, ) (K2+ M2, ) (k—p)?

o M(g?¢%)(k-p)
H” (p)_f 277_ 3 p2k2(k2+M2)(k p)ZJ' (Az)

Hlld :f
P~ | @7 o K2+ M2 (K2+M3-) (k—p)?

M(g2¢?)(k-p) ]

Hlle —
(P) f 27)°| p2(K2+M2.)(K2+M2)[ (k= p)®+m?]

H'”(p)=f

i

k|

"l

k |

l

k | M(g?e?) (k- p)
i i
k|

?l

k|

™|

M(g®¢?)(k-p)
P2(K2+ M2, ) (K2+M2,-) (K= p)?
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