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Dynamical system analysis for inflation with dissipation
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We examine the solutions of the equations of motion for an expanding Universe, taking into account the
radiation of the inflaton field energy. We then analyze the question of the generality of inflationary solutions in
this more general setting of a dissipative system. We find a surprisingly rich behavior for the solutions of the
dynamical system of equations in the presence of dissipational effects. We also determine that a value of
dissipation as small as~10'H can lead to a smooth exit from inflation to radiation.
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I. INTRODUCTION More recently, however, Berera and Fdi8g have shown
that these two distinct stages of inflation can be compounded
It has been by now around 16 years since the idea off the inflaton dissipates its energy into a thermal bath. They
inflation [1] was introduced in order to solve some of the have shown that this new scenario is still consistent, provid-
underlying problems of the standard big bang theory. Sincéng sufficient e-folding of inflation and generation of density
then, inflation has become one of the most important paraperturbations of the right magnitude, and that these density
digms of early Universe cosmology. The main idea of infla-perturbations are consequences of thermal fluctuations, as
tion is the existence of a period of accelerated expansion ajpposite to quantum fluctuations, generated during the slow-
the Universe, when its energy density becomes dominated bpll stage, in the supercooled inflationary scenario. This new
a potential energy density(¢) of a scalar fieldg (the in-  picture for inflation has been denominataérm inflation
flaton). The dynamics of inflation depend on the specifics of{4,5].
the many models available describing inflation, but the basic In this modified description of inflation, we must alter Eq.
mechanisms are based on the equation of motion @foa (1.1 to take into account the continuous dissipation of the
mogeneousinflaton field, represented by its classical equa-inflaton field in a thermal bath. A phenomenological way of
tion of motion doing this is, for example, by introducing a frictionlike term

) _ ()¢ in Eq. (1.1). 7(¢) is the dissipation coefficient that
d+3HP+V' (p)=0 (1.7 comes from the damping or “decay” of the scalar field
interacting with an environment or bath degrees of freedom,
(an overdot represents a derivative with respect to time andonstituted by, for example, light fields or field modes tat
V'=(dV/d¢)) together with those of gravity. may be coupled to. The form of(¢) depends on the details
The basic assumption of most inflationary models is theof the interaction terms. The inclusion of a friction term in
one related with the so-called slow-roll approximation: atthe equation of motion of the inflaton field, to study its evo-
some initial timety, the scalar field has a value far from the lution in the early stages of inflation, is not new. It has long
minimum of the potential/(¢). At this time the scalar field been recognized that dissipative processes, associated with
energy density dominates and the Universe enters the inflakhe inflaton decay during its evolution, are able to slow down
tionary era. Sufficient inflation, required to solve the mainthe rolling of the field¢ and, therefore, that these processes
problems of the standard big bang theory, demands ¢hat would be able to support inflation in inflationary models such
rolls down to the minimum sufficiently slowly. It is a com- as new or chaotic inflatiof6]. Recent works on microscopic
mon belief that during this stage the particlelike matter com-approaches to nonequilibrium dynamics of quantum fields
ponents are all rapidly red-shifted awégs well as the tem- [5,7,8 support the introduction of a friction term of the
perature, if we started initially in a thermal batind that the  above form in the field equation of motion, especially under
evolution of ¢ can be well represented by E(..1). Later, certain conditions, such as near-equilibrium and when a loop
when ¢ hits the bottom of the potential and starts oscillatingexpansion is valid. These studiese also[9,10]) have also
in a time scale shorter than the Hubble time, all the energylemonstrated the generality of dissipati@s well as fluc-
stored in the oscillating fielg is then released in the form of tuationg in the dynamics of fields in interaction with a bath
light particles that$ may be coupled to. These decay prod- (thermal or quantum Thus, from the moment that we con-
ucts then thermalize, reheating the Universe. This final stagsider that the inflaton is coupled to light fields, which is a
of inflation is the so-called reheating stader an account of necessary condition for describing reheating, we must also
new developments in the theory of reheating, see, for inconsider the possible effects of backreactions of these fields,
stance[2] and references thergin which include dissipation through the decay of the inflaton
also during the stage of inflation.
In principle we may consider, among other things, that
*Email address: oliveira@symbcomp.uerj.br quantities such as sufficient inflation, the magnitude of initial
"Email address: rudnei@symbcomp.uerij.br density perturbations, the strength of coupling constants of
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the inflaton field with other fields during the inflationary era, 871G
not only constrain, but also dictate how important dissipation H2:T(P¢+Prad) a2 (2.1
is during inflation. For instance it is knowi 1] that small
coupling constants are necessary in order that the slow-roll
method to be a valid approximation, as well as for obtaining
the right magnitude of initial density perturbations. Equiva-
lently, density perturbations constrain quantum fluctuations
to remain small during the slow-roll stage of inflation. On the - - , o
other hand, in the wgrm inflation pictt?re m@—5], thermal $+3H+V'(d)+n($)$=0, 2.3
fluctuations, related to quite strong inflaton dissipation dur- .
ing slow-roll, have been shown to be compatible with gen-whereH =a/a is the Hubble parameter ari@i=1/M};, with
eration of initial density perturbations, with minimal require- M, the Planck mask=0,+1,—1 for a flat, closed or open
ments on the inflationary potential, besides that of the slowtniverse, respectively 4 aq) andp 4(raq) are the energy den-
roll approximation. _ o _ sity and pressure foe (radiation, respectively. We also
Recent developments in nonequilibrium dynamical pro-qqve  the standard reIations:p¢=%¢>2+V(¢), Py

cesses in the early Universe, in particular during reheating, , -, 3 :
and the warm inflation picture, lead us to consider some_ 2%°~V(¢) andprg= 3praq. Equationd2.1) and(2.2) are

basic questions concerning dissipation during inflation. Nofn€ standard gravity equations derived from the Einstein
only a proper microphysical approach is necessary to undefduations. Equatio2.3) is the equation of motion for the
stand the appearance of a non-negligible inflaton dissipatiofiomogeneoysscalar inflaton fieldp, with V(¢) the effec-

at the early stages and/or during inflation, but we also neetive potential for¢. We have introduced dissipation through

to investigate how the classical inflaton dynamic getsa friction term5( )¢ in the equation of motion.

changed in a dissipative environment. In this paper we will Equation (2.3) deserves some important considerations.
be concerned with the latter question, since it can shed sonyst, in a realistic model the field dependence of the friction
light about how specific prescriptions for dissipation mayterm may not be exactly like the one given in E@.3),
change the dynamics in a pre-inflationary era, and then, pogyarticularly in highly nonequilibrium situations and in a time
sibly, help to constrain field theoretic model candidates tajependent background, as some recent studies have indicated

describe inflation in this new setting. A detailed microscopic[lo]_ It has been demonstratéd,8], however, thaty( &) ¢
model will be presented in a forthcoming paper. The quali-yagerines quite well the dissipation of the fiejdin a bath

tfative ana}lysis of the r?su'ting set of field equations is theenvironment in near-equilibrium and when a perturbative ex-
first step in understanding radiation energy properties of thahsion js valid. In spite of this and without a better under-

Universe and in discriminating how general inflation is in ganding from a field theoretic point of view of nonequilib-
dissipative systems. Such analysis includes the asymptotj,, systems, we take for simplicity the friction term in the
behavior of the solutions near the critical points representin

he initial sinaulari d the basi h ; " ¥orm given in Eq.(2.3). Since our analysis is mostly quali-
the Initial singularity and the basic features of the trajectorie ative, we expect that we will not miss much of the important
in the phase space that will be important for the choice o

oL " X . , ehavior of the system given a different prescription for dis-
initial conditions used in the numerical experiments. We Pesipation. Secondly, we take(¢) as a polynomial ing. This
form this study in the framework of the theory of dynamical jg'the case for standard polynomial interactions among fields,
systemg 12]. We then generalize earlier works on this sub- 4 o5t when a loop expansion in the fields is valid. The field

ject (see Refs|13,14)), which were previously done in terms 4o endence of(4) is highly dependent of the type of inter-
,Of the clgssmal s_et of equqtlons for grawty p“_JS .that of theaction we consider of the scalar fielbl with the fields(or
inflaton field ¢, without dissipation. This study is important modes that describe the bath environment. For example,

both to understand the dynamics of inflation in a SCenario, ) may in some approximations be well represented by a

s_uch as warm inflation, as _it is also an examplg of a dissipazonstant in the case of linear couplingike @) [5], or be
tive dynamical system, which may have other important ap'quadratic ing for quadratic couplingglike ¢2¢2) [7]. 7(¢)

plications in early Universe cosmology. may also have a nontrivial dependence on coupling constants

The paper is organized as follows. In Sec. Il we give the temperature, as is the case at high temperatures, which is

basic equations, define the region in phase space of interegly gjtyation of interest in warm inflation scenarios. Further
to our study and discuss some of their properties for d'fferenEonsiderations ony(¢) will be discussed below. Finally, Eq.

Kinds O.f dissipation. In Sec. lll we present an analys_is .Of the(2_3) must be viewed as the equation obtained by averaging
dynamical system of equations in the presence of dissipatio)e; 5 noise field, which is directly related to dissipation

and determing the relevant asymptotic solutions Qf t.he SYShrough some generalized fluctuation-dissipation relation.
tem of equations. In Sec. IV we study how dissipation

; This means we are considering the inflaton field as a classical
changes the number of physically relevaativantageouys

; e h havi | b inflati background 8] and we are looking at the averaged behavior
trajectories, 1.e,, those having, e.g., & long enough inflationa e inflaton field in time. This is a good approximation as

ary stage. We also give limiting values of when dissipation isa; a5 e look to the inflaton dynamics at a sufficiently long
of relevanpe in _the inflationary scenario. Sectl_on V is de'period of time when compared to the typical “wavelength”
voted to discussions of our results and conclusions. of the fluctuations, given by-[V”]~Y2 Our scale of time
will be basically the duration of inflation, which is at least 20
times larger than that valudor e-folds of inflation larger
We start by writing the basic equations that characterizéhan 70, as we will see in Sec. IV. Also, the amplitude of
our dynamical system: fluctuations, given by the noise field two-point correlation

. k
2H+3H2+;=—8w6(p¢+ Prad» (2.2

Il. THE DYNAMICAL SYSTEM
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function, should not be too large during the inflaton evolu->0) correspond to those trajectories for which 0 (inside
tion, implying, roughly, that our approximation of taking the the upper half of the conical volumeFor our simple qua-
ensemble averaged equation of motion is better the smaller @ratic potential there is only one critical point, namely, the
the dissipation. Keeping in mind these considerations, werigin that represents the Minkowski spacetime. In general it
proceed with the definition of the equations representing ouis an attractor and the form of approach depends upon the

dynamical system. dissipation term. In fact we can distinguish two main types
We have thap, and p,q evolve in time ag1] of approach depending on the kind of dissipation we may
. ] ] have. Ifn=0, we can readily show from E¢2.8) that the
pyt3HG*+ n(¢) $*=0, (2.4  trajectories on the physical region approach the origin in the
direction given by the-axis. Thez-axis itself represents the
Pradt 4H prag— 1($) $p?=0. (2.5  usual Friedmann model with pure radiation and is, in this

case, an attractor for the late stages of field evolutiolf
Assuming a flat Universek=0), from Eq.(2.1), we can <2 the approach to the-axis is oscillatory, while forg,
consider =2 it is exponential. Ifn=2 the approach is always oscil-
3 3 1 Ia(t(;ry te(n(;ing toI thehor]igilr:jon the surfag%d=do. In Figs.
= H2_,,=— H2-Z 42— ) 1(a) to 1(c) we plot the field trajectories by a direct numeri-
Prad=gagH PsTgagH 2 V(9 (20 cal integration F:)f the syster(2.8) for some representative
values of initial conditions and dissipative coefficients.

as the first integral of Eq2.5). Using pgy and paq in EQ. In the absence of dissipation, the conical surfagg=0

(2.2, we can write forH the equation is aninvariant manifold As a consequence, all initial condi-
tions chosen on this surface will produce trajectories that

. 87G . . - . .
H=—2H2— T[¢2_4V(¢)]_ (2.77  evolve on it and end at the origin. In particular, the dynami-

cal system for whictp,,q—= 0 has been analyzed by Belinskii

) . i et al. [13,14). The effect of dissipation is to destroy the in-
Equations(2.3), (2.7), together with¢= (d¢/dt), define a yariant manifold since

three-dimensional(dissipativeé dynamical system in the
phase space of#,,H). : _ 2

For definitiveness, we take the simplest potentiat), pradlpradzo_ ($)$°#0. (2.19
which describes a massive scalar fighd V() =2m?¢2.
The generalization of our results for more complicated po4n this case the trajectories may no longer lie completely in
tentials, including self-interaction terms and symmetrythe surfacep,,q=0, even if the initial conditions are taken on
breaking, should not present too much difficulty. Next, weit. An important question we can ask is: in which way do the
take 7(¢), as discussed later, in the forp(¢)=7,¢". We  curves cross the surfage,;=0 ? A simple way to answer
can further constrain the form of(¢$) by noting that the this question is, for example, by taking the scalar product at
friction coefficient must be positive definite due to entropy p,,s=0 between the vector normal to the outside surface of

requirements and the parity invariance of the potential. Thuspe cone,no—Vp,.q= (X,y, —62), with the velocity field

7,>0 andn=0 or an even integer. We analyze two main vector of the traiectories on phase spage.(X.v.7):
e ) . are,(x,y,2):
cases of possible interest: thatrf 0, in which caser re- J P P (x.y2)

duces to a constant; and thatmf 2, when 7> ¢2. Substi- ..

tutingV and 5 in Egs.(2.3) and(2.7) and redefining variables n-vl, —o%—Bax"y% (211
t—t/m, ¢— (U\/87G)x, ¢— (m/\87G)y, H—mz

70— MpBy and »,—87Gmp,, we obtain the dynamical sys- Since we are considering,>0 andn even, we obtain that
tem: n-vl, —o<0, which means that those trajectories that ini-
tially lie inside the con€p,,¢>0 region remain inside the

x=y cone. The only trajectories that can cross the cone lie initially
o e oown outside it. This is a consequence of the requiremeni(af
y=—3yz=X= Xy 28 be always positive definite. In particular we note that for an
1 1 odd integem, we may have Eq2.11) positive forx<0 and
z=—272%2— ~y?+ =x2. we could have trajectories leaving the regipps~0 to
6 3 Prag<0, in violation of the second law of thermodynamics.

The physical region in the phase spagey(2) is defined The inflationary region in phase space is defined by

by the conditionp,,=0 which, in the units of Eq(2.8),

0 ds to a_.
corresponds a:|-|+|-|2>o, (2.12

1 1
3£—§ﬁ—§ﬁzq (2.9
which, in terms ofx, y andz, gives

or, expressing the above relation fay z2=21(x?+y?),
which defines a conical volume ixy,z), with the physical 2 Ey2+ £x2>0 2.13
region p,#&~0 inside the cone. Expanding universed ( 6 |
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FIG. 1. The field trajectories in phase spdpeojected in the plane,z) for the casega) no dissipationjb) constant dissipatiogs,
=0.3 for dashed lineB,=0.7 for full line) and (c) field dependent dissipatiofB,= 10 for full line and3,=90 for dashed ling Initial
conditions for both cases arey,,zo) = (1/6,10 %,2.5). Dotted lines represent the lines whefg=0.

Trajectories satisfying Eq2.13 are the ones that are in the coordinate transformation is found to be useful:
inflationary regime. The intersection between the regions de-

fined by Eqs(2.9) and(2.13 defines the inflationary physi- u
cal region of interest to us. X=o Y= Ty (3.1
IIl. ANALYSIS AT INFINITY

where infinity is represented by the invariant manifeld
AND ASYMPTOTIC SOLUTIONS

=0. The projections of the physical regipp,~0 as well as

The analysis at infinity provide us with important infor- the inflationary domaing/a)>0 on this plane, yield, re-
mation concerning the behavior of solutions in the regionspectively, the regions described ad+v?<6 and 212
wherex?+y?+z2—. Such a region contains information —v2=0. The idea underlying the choice of coordinatdd)
about the early stages of the universe just after the quantuis to compactify infinity, so that a dynamical system in these
domain, and therefore can be described by the classical equeaariables describes properly the basic features of the
tions. An important issue to be discussed is whether inflatiomsymptotic behavior of the solutions. In Fig. 2, we present a
plays the role of an attractor for most of solutions regardlesdetter view of the compactified region given by the cap of
of the presence of dissipation. For our work, the followingthe conical region.
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FIG. 2. View of the physical region of the phase space. Thed. F.lG't.3' th%e p?rrr:ral_t ?|f E[he plams=0 fgr t_he case of ::odnstantth
infinity is compactified onto the plang=0. issipation 0=0). The inflationary domain is represented as the
projection into the plangv=0.

X

The dynamical systerte.8) in the coordinatesi,v,w is After substitutingn=0 into the system(3.2) and taking

du v U2 w=0, a two-dimensional system arises:
ouw? 24 — - ) w2 +1
dr 6 3 du <2+ v? u?
_:u -
2 2 dr 6 3
g_v_vwn/z 14 %_ %) —uw 1 g i ()
’ (3.2 do (g r Y 3.3
| ar Y 6 3/ 33
22
aw_ el VW N - . ,
eyl 2+ 5 3 Five critical points are found: two repelling nodés(u

=0p=16), Py(u=0p=—6), one saddlePy(u=0p
where we have changed the time parameter in such a way0), andP;(u=6,v=0), Pi(u=—\6,0=0) which are
thatdt=w(d*+1d7 which is valid forn=0,2. The critical degenerate. In Fig. 3, these points are shown on the plane
points at infinity lie on the plan&v=0 and their nature de- W=0 together with the unphysical trajectories on it. Note
pend on the type of dissipation we are considering. Theyhat the projection of the cong,4=0 onto the planev=0 is
represent the initial singularity since, from E¢8.5—(3.8)  an integral curve of the syste(8.3. The regions neaP,,
below, we see that the scale factor goes to zero at thed® are the projections of the inflationary domain®2-v?
points. In addition, at the critical points the scalar of curva-=0 onw=0. According to the phase portrait shown in Fig.
ture R=6(H + 2H2) =m%w?(2u?—v?) diverges. As stated 3, the inflat.ior.\ary domain is an attractor for most trajectories.
before two cases will be analyzed, namety=0, for con- Actually this is a general feature of F.he system, as can be
stant dissipation, and=2, for field dependent dissipation. seen from Fig. 4, where we have plotteth as a function of
time. Initial values were purposefully taken away from the
A. Casen=0 inflationary region. Note how the system is driven to the
inflationary domain in the different cases of dissipation.
Curves emanate fror®, and P, to the interior of the
cone. The asymptotic behavior near these points is

We adopt the following steps here and for the case?
to analyze the region at infinity®+y?+z2—oc. First, we
determine all critical points on the surfaee=0 that are
located in the region defined by<09<6* (cf. Fig. 2 1
(tan#* =4/6), or in terms of the new coordinaté3.1), in- H=~
side the regioru?+v2<6. Secondly, in performing the sta-
bility analysis, we may obtain approximate solutions near
those critical points and lying on the physical region. b= /i M, In(mt) + voMyi (mt)235 Bo t
Thirdly, the knowledge of unphysical trajectories that lie en- ~ N4y 2\8m mMp
tirely on the surfacev=0 is important since, by continuity (3.9
arguments, such trajectories determine the behavior of the
integral curves of the system that lie within the cone but neawherev, is an arbitrary constant and the signsindicate
its surface14]. which critical pointP,, P, we are considering. The emer-
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-0.2 1 FIG. 5. Integral curves at infinity for the case of field dependent
dissipation. The dashed circle represents the projection of the cone
prag= 0. The projection of the inflationary domain, into the plane
w=0, is the same as in Fig. 3.

-0.4

5 10 15 20 25 maining trajectories that visit a small neighborhood of these
m t points experience an inflationary phase as described above. It
3 is worth pointing out that the asymptotic soluti¢®.6) cor-
FIG. 4. Plot ofa/a against time, in the units of EQ.8), forthe  responds to the direction of approach given by=
cases of no dissipatioffull line); constant dissipationd,=10), — (\/6/3)w, which is equivalent to no dissipatioisee the
dashed line; and field dependent dissipatiggy£10/6), dotted  gpalysis carried out by Belinskiit al.[14]). The influence of
line. _Initial ~conditions for both ~cases are x((Yo.20)  dissipation, from a purely dynamical system analysis, ap-
=(6,107%.25). pears as a second order effect changing the former relation to

v=— (V6/3)W+ (/6/9)BoW2.

B. Casen=2

gence from these points corresponds to the growth of time
from the instantt=0 of the initial singularity. Near these

singularities,»?> ¢2, meaning that the kinetic energy of the
scalar field is dominant over the potenti&l¢) producing an

effective equation of statg,=p,. Therefore all curves system(3.2), we obtain a two-dimensional dynamical system

; , . : : :
Elm?n?r?ntgtrirom?lz, P2 ardeOt_'” tt_he |r][flatt|o:1ag/ reglm%. whose phase portrait is shown in Fig. 5. There are two lines
ote that the Influence of dissipation starts 1o be considersy degenerate critical points, denoted by —~c<u<o,v

able as far as the trajectories evolve away from the cr|t|ca:W:0) andl,(— <y <o, u=w=0). Here the projection

points. It is. glso pgssible to integrate th? dynamical systgn&r the cone surface,,= 0, represented by the dashed circle
near the critical poinPy, whose asymptotic behavior near it on Fig. 5, is not an integral curve of the system at infinity.

is characterized by By continuity arguments, taking into account the unphysical
trajectories orw= 0, we infer that the trajectories within the

The structure of the phase space ffier 2 is quite differ-
ent from the previous case. After substituting 2 into the

H= i b= i&’ (3.5 physical region, but near the plame=0, originate outside
2t 2\7mt the regionp,,¢= 0, eventually outside the quantum domain,
i.e., where the classical description is valid. Therefore, they
where the initial singularity is denoted ty-0. must be ruled out of our analysis. Nonetheless, some critical

The pointsP,, P; lie on the inflationary region and are points on the line$;, |, may be the source of trajectories in
attractors of trajectories on the invariant manifelek 0, sug-  the physical region. In fact, using standard methods to ana-
gesting that they are also attractors for trajectories on thé/ze sets of degenerated critical poifil®], we come to the
physical region but close to the invariant manifold. It can beconclusion that the points at infinitp, (u=v=0), P, (u
shown that there is only one trajectory emerging frém = \/E,U:O), Pi (u=—\/5,u=0), P, (uzo,v:\/é),
andP; into the physical region, whose asymptotic solution ISP, (u=0p=— J6) are the relevant ones and belong to a

distinct nature from the remaining point, as we are going to

1 mMy, describe. From the point8,, P, and P, three-dimensional
H=—-mt, ¢== t, (3.6) . . . : _
3 8 pencils of trajectories emerge, whose asymptotic behavior
near the point$®, andP,, P5, are given, respectively, by
wheret increases from—«, the initial singularity. As ex-
pected, this solution is inflationary, sino&¢$2s> ¢2, which H= i b= i&' 3.7)
produces an effective equation of stagg=—p,. All re- 2t 2\mmt
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1 /3 aty) 2
H 3t Pp== . Mp In(mt). (3.8 At ~ex vE (p?— ¢?)
pl
In the above solutions the initial singularity is characterized [dm my (|i|" =™ 1)
by t=0, or equivalently the point®, andP,, P,, and the ?mMpl nti (4.9

emergence from the singularity corresponds to increase of

time from this value. We remark that the solutions are not . L
inflationary, but eventually evolve to this stage. The term in the above exponential gives the total numider,

The most interesting class of solutions emanate from th@f €-folds during inflation. We have numerically checked the
pointsP,, P’ on the linel; (see Fig. 5. It can be shown that validity of the above equation. The physically interesting tra-

; : : . lectories are as usual those wiki=70[1].
a two-dimensional pencil of paths emerges from these pomtlaeC . B - .
along the same plane of the ling and orthogonal to the _t\r/lv'thwng &SS'pagon'zno_z?v'l N~170| C‘;? be accomphfs(;]_ed
planew=0. The asymptotic behavior in this region is char- "' ¢i~3.4My, and ¢;~0.2My, [1]. In the presence of dis-
acterized by =0, which implies that the form of the solu- sipation, for a fixedN, dissipation decreases t_he values of
tions is the same as found in E.6). both ¢; and ¢; . For the values oty; and ¢;, which N~70
with #,=0, we see from Eq(4.6) that dissipation begins to

change considerabli, say by more than 10%, fogp,=m,
IV. ADVANTAGEOUS TRAJECTORIES AND RADIATION or 7,=0.25m/M}, (in terms of the dimensionless factors
IN INFLATION WITH DISSIPATION Bn, Bo=1 and B,=0.01, respectively In both cases we

We now have a closer look at those trajectories in phasBave an initial dissipation of ordey(¢)=m. SinceH~m,
space that may lead to a long enough inflationary stage anfeé must haveH=<(#) in order for dissipation to begin
let us try to quantify these trajectories in a way similar to thatchanging the inflationary phase considerably.

in [13]. During an inflationary period given bgt=t;—t;, ~ The authors ir{13,14 have characterized the measure of
the scale factor changes by disadvantageous trajectoried{70) as~m/My,, obtained
by the ratio of the trajectories beginning|at| < ¢;, in rela-
a(ty) t tion to the complete quantum boundary, of Iengbhl\zalm.
— =exp( j H(t)dt). (4.2 Since for fixedN the effect of dissipation is to redueg , we
a(t) ti find that in the presence of dissipatiodM , (~10"7) is the

upper bound for the measure of disadvantageous trajectories.
Let us determine the above ratio in terms of the initial andDissipation turns inflation even more general.

final values for the scalar field); and ¢¢, respectively. We can also evaluate the energy of the inflaton field trans-
First note that the inflationary epoch can be characterizegerred to radiation during the inflationary stage, from, for
by those trajectories that satisfy example, Eq(2.5). In Fig. 6 we plotp,,q against time for
four different values ofB,. The mark indicates when the
me>|¢|. 4.2 trajectories leave the inflationary regi¢a/a becomes nega-

tive). We find that there is a value ¢, for which radiation
We consider the slow-roll approximation which, in the pres-is maximal, at the exit of the inflationary stage, givengy,

ence of dissipation, can be written as Bo~1 (po~m and 772~25m/Mr2,|). These results are fairly
independent of the initial conditions. Also, we can find an
. m?¢ ideal range foiB,, such that we exit inflation smoothly to the
== - (4.3 radiation era with the Universe sufficiently hot. At thermal-
3H+7(¢) g
ization
We also assume that,> p,q (see[3] and[5]). Then, from 2
Egs.(2.1) and(4.2), we can write prad:3—o*T4, 4.7
47 m| |
H=\ 3 w." (4.4  whereg, (~10°—10% is the effective number of degrees of
Pl freedom. If we impose that at the end of inflation we should

have at leasT~m (sz.l(T7Mp, for the quadratic poten-
tial model[1]), we have numerically obtained, for bogy,
and 8,, the approximate bound:

at) 12w, o, AT (4 7(P) 10~ "< ,=800. 4.8
a(ti)—ex;{ 7 (44D \/3f d¢].

Using Egs.(4.4) and(4.3) in Eq. (4.1), we get the explicit
expression

M bi mMpI
(45  Too high values ofg, lead to a longer inflationary period.
Most of the inflaton's energy is transferred to radiation
For 7(¢)=0 we recover the usual expression for the scalewhich is red-shifted away before the end of inflation. There
factor ratio[1,13]. Taking (¢)= 7,¢", n=0,2, we finally is no possibility of a reheating phase for these cases. On the
obtain other hand, very small values @, can provide a smooth
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0.14 5 =0. The stronger the dissipation the slower the field trajec-
tories tend to this surface.

From the physical system side we can also reach some
interesting conclusions which may have important conse-
quences for inflationary dynamics. We have seen that dissi-
pation associated with inflaton decay not only supports infla-
tion but also draws all inflationary field trajectories into a
longer stage of inflation. This is true for both kinds of dissi-
pation we have considered. In terms of a measure of the
amount of trajectories possessing the required inflationary
period, a similar analysis to the one given[it8,14 allows
us to reach the conclusion that inflation is even more general
in the presence of dissipation.

g Our results also allow us to reach some conclusions con-
"X cerning warm inflation scenarios or non-isentropic inflation,

: in particular concerning the problem of reheating. In non-
isentropic inflation, as opposed to standard inflation, there is
the possibility of no reheating phase, due to the continuous
production of entropy and heat, leading to a smooth exit
from inflation to the radiation erd,15]. We then expect that

B , in these scenarios there is a strong damping of the inflaton
40.0 field’s motion in the direction of the minimum of the infla-
m t ton’s potential. In this paper we have quantified how strong
the dissipation must be, when compared to the friction due to
FIG. 6. proq for different values of dissipation. The mark indi- expansion, in order to achieve favorable scenarios of radia-
cates the exit of the inflationary stage. Initial conditions arey;n at the exit from the inflationary stage. We have shown
(¢1.¢i,Hi)=(3.4M,0,3.4/47/3M) (prag=0)- that no reheating is only achieved in the overdamped regime
(Bo>2) for constant dissipation, when there is no oscillatory
exit from inflation to radiation and the inflaton field energy motion of the inflaton around the potential minimum, or for
density can still provide an additional reheating phase by theery high values ofB,, when all the inflaton’s energy is
usual mechanismsThe maximum temperature reached by transfered to radiation and this is then red-shifted away due
the thermal bath, at the exit of the inflationary stage in ouro the longer expansion.
model, isT~10" GeV, for By, Bo~1. A further question we may ask is about a possible real-
ization of chaotic behavior in cosmology. In accord with
some previous ideas in the realm of isotropic and anisotropic
V. DISCUSSIONS AND CONCLUSIONS Bianchi IX cosmologieq16], the Universe can experience

We have examined a dynamical system describing inflalWO Possible outcomes: collapse into the big crunch after an
ton dynamics in the presence of dissipation. Dissipation idnitial stage of expansion and expansion into the inflationary
taken as being present throughout the inflaton’s evolutioh€gime. In this way, chaotic behavior is associated with an
and we have presented the changes in the phase diagram diéetermination of the final stat@ollapse or expansigrof
to the effect of dissipation. Our results allow us to draw athe Universe once a set of initial conditions in an infinitesi-
series of important conclusions concerning the dynamicamal region is chosen. We may say that the boundaries of
system and the physical system itself. collapse and expansion are mixed. In our case all orbits ini-

We have shown that the continuous production of radiatially in the physical regiom,,=0 are unavoidably attracted
tion due to dissipation changes effectively the inflaton dy-to the state of unlimited expansion represented by the origin
namical system. We have distinguished two main conseef the phase spatécf. Fig. 1). The orbits cannot randomly
guences for the field trajectories in phase space due to thexplore the region inside the copg,= 0. Therefore, we can
presence of dissipatiorfa) In field independent dissipation conclude that chaotic behavior does not take place for those
(for Bo=2) the trajectories tend towards ttzeaxis at the orbits lying in the physical region in the cases studied previ-
final stages of evolution. In this regime the inflaton’s motionously, i.e., fom=0,2. Such conclusions are also valid for the
is overdamped. The stronger the dissipatiggy%2) the case analyzed by Belinskii and Khalatnikid4] in the realm
faster the field trajectories are attracted to #haxis; (b) In  of Bianchi | anisotropic models.
field dependent dissipation the motion is initially damped but ~ Finally one of the most important results of this paper was

the field trajectories always tend to the cone surfagg  to show that even a value of dissipation as smallygg)
~10 'm (compare withH~m) can still lead to very

0.12

0.10

0.08

0.06

8n /(MpI m) . Prag

0.04

0.0247

0.00

0.0

IAt least for 8y< 2, when we are in the underdamped regiimee
Sec. 1) and for any value of3, smaller than the upper value in Eq.  Similar conclusions are reached for the model studied by Belin-
(4.9. skii et al. [13,14].
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