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Dynamical system analysis for inflation with dissipation

H. P. de Oliveira* and Rudnei O. Ramos†

Universidade do Estado do Rio de Janeiro, Instituto de Fı´sica-Departamento de Fı´sica Teo´rica, 20550-013 Rio de Janeiro, RJ, Brazil
~Received 18 August 1997; published 3 December 1997!

We examine the solutions of the equations of motion for an expanding Universe, taking into account the
radiation of the inflaton field energy. We then analyze the question of the generality of inflationary solutions in
this more general setting of a dissipative system. We find a surprisingly rich behavior for the solutions of the
dynamical system of equations in the presence of dissipational effects. We also determine that a value of
dissipation as small as;1027 H can lead to a smooth exit from inflation to radiation.
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I. INTRODUCTION

It has been by now around 16 years since the idea
inflation @1# was introduced in order to solve some of t
underlying problems of the standard big bang theory. Si
then, inflation has become one of the most important pa
digms of early Universe cosmology. The main idea of infl
tion is the existence of a period of accelerated expansio
the Universe, when its energy density becomes dominate
a potential energy densityV(f) of a scalar fieldf ~the in-
flaton!. The dynamics of inflation depend on the specifics
the many models available describing inflation, but the ba
mechanisms are based on the equation of motion of a~ho-
mogeneous! inflaton field, represented by its classical equ
tion of motion

f̈13Hḟ1V8~f!50 ~1.1!

„an overdot represents a derivative with respect to time
V85(dV/df)… together with those of gravity.

The basic assumption of most inflationary models is
one related with the so-called slow-roll approximation:
some initial timet0 , the scalar field has a value far from th
minimum of the potentialV(f). At this time the scalar field
energy density dominates and the Universe enters the i
tionary era. Sufficient inflation, required to solve the ma
problems of the standard big bang theory, demands thaf
rolls down to the minimum sufficiently slowly. It is a com
mon belief that during this stage the particlelike matter co
ponents are all rapidly red-shifted away~as well as the tem-
perature, if we started initially in a thermal bath! and that the
evolution of f can be well represented by Eq.~1.1!. Later,
whenf hits the bottom of the potential and starts oscillati
in a time scale shorter than the Hubble time, all the ene
stored in the oscillating fieldf is then released in the form o
light particles thatf may be coupled to. These decay pro
ucts then thermalize, reheating the Universe. This final st
of inflation is the so-called reheating stage~for an account of
new developments in the theory of reheating, see, for
stance,@2# and references therein!.
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More recently, however, Berera and Fang@3# have shown
that these two distinct stages of inflation can be compoun
if the inflaton dissipates its energy into a thermal bath. Th
have shown that this new scenario is still consistent, prov
ing sufficient e-folding of inflation and generation of dens
perturbations of the right magnitude, and that these den
perturbations are consequences of thermal fluctuations
opposite to quantum fluctuations, generated during the sl
roll stage, in the supercooled inflationary scenario. This n
picture for inflation has been denominatedwarm inflation
@4,5#.

In this modified description of inflation, we must alter E
~1.1! to take into account the continuous dissipation of t
inflaton field in a thermal bath. A phenomenological way
doing this is, for example, by introducing a frictionlike ter
h(f)ḟ in Eq. ~1.1!. h~f! is the dissipation coefficient tha
comes from the damping or ‘‘decay’’ of the scalar fieldf
interacting with an environment or bath degrees of freedo
constituted by, for example, light fields or field modes thaf
may be coupled to. The form ofh~f! depends on the detail
of the interaction terms. The inclusion of a friction term
the equation of motion of the inflaton field, to study its ev
lution in the early stages of inflation, is not new. It has lo
been recognized that dissipative processes, associated
the inflaton decay during its evolution, are able to slow do
the rolling of the fieldf and, therefore, that these process
would be able to support inflation in inflationary models su
as new or chaotic inflation@6#. Recent works on microscopi
approaches to nonequilibrium dynamics of quantum fie
@5,7,8# support the introduction of a friction term of th
above form in the field equation of motion, especially und
certain conditions, such as near-equilibrium and when a l
expansion is valid. These studies~see also,@9,10#! have also
demonstrated the generality of dissipation~as well as fluc-
tuations! in the dynamics of fields in interaction with a ba
~thermal or quantum!. Thus, from the moment that we con
sider that the inflaton is coupled to light fields, which is
necessary condition for describing reheating, we must a
consider the possible effects of backreactions of these fie
which include dissipation through the decay of the inflat
also during the stage of inflation.

In principle we may consider, among other things, th
quantities such as sufficient inflation, the magnitude of init
density perturbations, the strength of coupling constants
741 © 1997 The American Physical Society



a
io

-r
in
a
n

he

ur
n

e-
w

ro
in
m
o

de
tio
ee
et

i
om
ay
po

t
pi
al
th
th
in
to
tin
ie
o

e
a
b
s
th
t
ri

ip
ap

th
er
en
th
tio
y

on

ion
i
e

riz

-

ein

h

ns.
on

e
cated

ex-
er-
-
e

i-
nt
is-

lds,
eld
-

le,
y a

ants
ich is
er

.
ing

on
on.
ical
ior
as
ng
’’

0

f
n

742 57H. P. de OLIVEIRA AND RUDNEI O. RAMOS
the inflaton field with other fields during the inflationary er
not only constrain, but also dictate how important dissipat
is during inflation. For instance it is known@11# that small
coupling constants are necessary in order that the slow
method to be a valid approximation, as well as for obtain
the right magnitude of initial density perturbations. Equiv
lently, density perturbations constrain quantum fluctuatio
to remain small during the slow-roll stage of inflation. On t
other hand, in the warm inflation picture of@3–5#, thermal
fluctuations, related to quite strong inflaton dissipation d
ing slow-roll, have been shown to be compatible with ge
eration of initial density perturbations, with minimal requir
ments on the inflationary potential, besides that of the slo
roll approximation.

Recent developments in nonequilibrium dynamical p
cesses in the early Universe, in particular during reheat
and the warm inflation picture, lead us to consider so
basic questions concerning dissipation during inflation. N
only a proper microphysical approach is necessary to un
stand the appearance of a non-negligible inflaton dissipa
at the early stages and/or during inflation, but we also n
to investigate how the classical inflaton dynamic g
changed in a dissipative environment. In this paper we w
be concerned with the latter question, since it can shed s
light about how specific prescriptions for dissipation m
change the dynamics in a pre-inflationary era, and then,
sibly, help to constrain field theoretic model candidates
describe inflation in this new setting. A detailed microsco
model will be presented in a forthcoming paper. The qu
tative analysis of the resulting set of field equations is
first step in understanding radiation energy properties of
Universe and in discriminating how general inflation is
dissipative systems. Such analysis includes the asymp
behavior of the solutions near the critical points represen
the initial singularity and the basic features of the trajector
in the phase space that will be important for the choice
initial conditions used in the numerical experiments. We p
form this study in the framework of the theory of dynamic
systems@12#. We then generalize earlier works on this su
ject ~see Refs.@13,14#!, which were previously done in term
of the classical set of equations for gravity plus that of
inflaton fieldf, without dissipation. This study is importan
both to understand the dynamics of inflation in a scena
such as warm inflation, as it is also an example of a diss
tive dynamical system, which may have other important
plications in early Universe cosmology.

The paper is organized as follows. In Sec. II we give
basic equations, define the region in phase space of int
to our study and discuss some of their properties for differ
kinds of dissipation. In Sec. III we present an analysis of
dynamical system of equations in the presence of dissipa
and determine the relevant asymptotic solutions of the s
tem of equations. In Sec. IV we study how dissipati
changes the number of physically relevant~advantageous!
trajectories, i.e., those having, e.g., a long enough inflat
ary stage. We also give limiting values of when dissipation
of relevance in the inflationary scenario. Section V is d
voted to discussions of our results and conclusions.

II. THE DYNAMICAL SYSTEM

We start by writing the basic equations that characte
our dynamical system:
,
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H25
8pG

3
~rf1r rad!2

k

a2 , ~2.1!

2Ḣ13H21
k

a2 528pG~pf1prad!, ~2.2!

f̈13Hḟ1V8~f!1h~f!ḟ50, ~2.3!

whereH5ȧ/a is the Hubble parameter andG51/Mpl
2 , with

Mpl the Planck mass.k50,11,21 for a flat, closed or open
Universe, respectively.rf(rad) andpf(rad) are the energy den
sity and pressure forf ~radiation!, respectively. We also
have the standard relations:rf5 1

2 ḟ21V(f), pf

5 1
2 ḟ22V(f) andprad5

1
3 r rad. Equations~2.1! and~2.2! are

the standard gravity equations derived from the Einst
equations. Equation~2.3! is the equation of motion for the
~homogeneous! scalar inflaton fieldf, with V(f) the effec-
tive potential forf. We have introduced dissipation throug
a friction termh(f)ḟ in the equation of motion.

Equation ~2.3! deserves some important consideratio
First, in a realistic model the field dependence of the fricti
term may not be exactly like the one given in Eq.~2.3!,
particularly in highly nonequilibrium situations and in a tim
dependent background, as some recent studies have indi
@10#. It has been demonstrated@7,8#, however, thath(f)ḟ
describes quite well the dissipation of the fieldf in a bath
environment in near-equilibrium and when a perturbative
pansion is valid. In spite of this and without a better und
standing from a field theoretic point of view of nonequilib
rium systems, we take for simplicity the friction term in th
form given in Eq.~2.3!. Since our analysis is mostly qual
tative, we expect that we will not miss much of the importa
behavior of the system given a different prescription for d
sipation. Secondly, we takeh~f! as a polynomial inf. This
is the case for standard polynomial interactions among fie
at least when a loop expansion in the fields is valid. The fi
dependence ofh~f! is highly dependent of the type of inter
action we consider of the scalar fieldf with the fields~or
modes! that describe the bath environment. For examp
h~f! may in some approximations be well represented b
constant in the case of linear couplings~like fc! @5#, or be
quadratic inf for quadratic couplings~like f2c2! @7#. h~f!
may also have a nontrivial dependence on coupling const
and temperature, as is the case at high temperatures, wh
the situation of interest in warm inflation scenarios. Furth
considerations onh~f! will be discussed below. Finally, Eq
~2.3! must be viewed as the equation obtained by averag
over a noise field, which is directly related to dissipati
through some generalized fluctuation-dissipation relati
This means we are considering the inflaton field as a class
background@8# and we are looking at the averaged behav
of the inflaton field in time. This is a good approximation
far as we look to the inflaton dynamics at a sufficiently lo
period of time when compared to the typical ‘‘wavelength
of the fluctuations, given by;@V9#21/2. Our scale of time
will be basically the duration of inflation, which is at least 2
times larger than that value~for e-folds of inflation larger
than 70!, as we will see in Sec. IV. Also, the amplitude o
fluctuations, given by the noise field two-point correlatio
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57 743DYNAMICAL SYSTEM ANALYSIS FOR INFLATION . . .
function, should not be too large during the inflaton evo
tion, implying, roughly, that our approximation of taking th
ensemble averaged equation of motion is better the small
the dissipation. Keeping in mind these considerations,
proceed with the definition of the equations representing
dynamical system.

We have thatrf andr rad evolve in time as@1#

ṙf13Hḟ21h~f!ḟ250, ~2.4!

ṙ rad14Hr rad2h~f!ḟ250. ~2.5!

Assuming a flat Universe (k50), from Eq. ~2.1!, we can
consider

r rad5
3

8pG
H22rf5

3

8pG
H22

1

2
ḟ22V~f! ~2.6!

as the first integral of Eq.~2.5!. Using pf and prad in Eq.
~2.2!, we can write forḢ the equation

Ḣ522H22
8pG

6
@ḟ224V~f!#. ~2.7!

Equations~2.3!, ~2.7!, together withḟ5 (df/dt), define a
three-dimensional~dissipative! dynamical system in the
phase space of (f,ḟ,H).

For definitiveness, we take the simplest potentialV(f),
which describes a massive scalar fieldf: V(f)5 1

2 m2f2.
The generalization of our results for more complicated
tentials, including self-interaction terms and symme
breaking, should not present too much difficulty. Next, w
takeh~f!, as discussed later, in the formh(f)5hnfn. We
can further constrain the form ofh~f! by noting that the
friction coefficient must be positive definite due to entro
requirements and the parity invariance of the potential. Th
hn.0 andn50 or an even integer. We analyze two ma
cases of possible interest: that ofn50, in which caseh re-
duces to a constant; and that ofn52, whenh}f2. Substi-
tutingV andh in Eqs.~2.3! and~2.7! and redefining variable
t→t/m, f→ (1/A8pG) x, ḟ→ (m/A8pG) y, H→mz,
h0→mb0 andh2→8pGmb2 , we obtain the dynamical sys
tem:

ẋ5y

ẏ523yz2x2bnxny ~2.8!

ż522z22
1

6
y21

1

3
x2.

The physical region in the phase space (x,y,z) is defined
by the conditionr rad>0 which, in the units of Eq.~2.8!,
corresponds to

3z22
1

2
y22

1

2
x2>0, ~2.9!

or, expressing the above relation forz, z2> 1
6 (x21y2),

which defines a conical volume in (x,y,z), with the physical
region r rad>0 inside the cone. Expanding universes (H
-

is
e

ur

-

s,

.0) correspond to those trajectories for whichz.0 ~inside
the upper half of the conical volume!. For our simple qua-
dratic potential there is only one critical point, namely, t
origin that represents the Minkowski spacetime. In genera
is an attractor and the form of approach depends upon
dissipation term. In fact we can distinguish two main typ
of approach depending on the kind of dissipation we m
have. If n50, we can readily show from Eq.~2.8! that the
trajectories on the physical region approach the origin in
direction given by thez-axis. Thez-axis itself represents the
usual Friedmann model with pure radiation and is, in t
case, an attractor for the late stages of field evolution. Ifb0
,2 the approach to thez-axis is oscillatory, while forb0
>2 it is exponential. Ifn52 the approach is always osci
latory tending to the origin on the surfacer rad50. In Figs.
1~a! to 1~c! we plot the field trajectories by a direct numer
cal integration of the system~2.8! for some representative
values of initial conditions and dissipative coefficients.

In the absence of dissipation, the conical surfacer rad50
is an invariant manifold. As a consequence, all initial cond
tions chosen on this surface will produce trajectories t
evolve on it and end at the origin. In particular, the dynam
cal system for whichr rad50 has been analyzed by Belinsk
et al. @13,14#. The effect of dissipation is to destroy the in
variant manifold since

ṙ radurrad50
5h~f!ḟ2Þ0. ~2.10!

In this case the trajectories may no longer lie completely
the surfacer rad50, even if the initial conditions are taken o
it. An important question we can ask is: in which way do t
curves cross the surfacer rad50 ? A simple way to answe
this question is, for example, by taking the scalar produc
r rad50 between the vector normal to the outside surface
the cone,nW }2¹W r rad5(x,y,26z), with the velocity field
vector of the trajectories on phase space,vW 5( ẋ,ẏ,ż):

nW •vW urrad50}2bnxny2. ~2.11!

Since we are consideringbn.0 andn even, we obtain that
nW •vW urrad50,0, which means that those trajectories that i

tially lie inside the cone~r rad.0 region! remain inside the
cone. The only trajectories that can cross the cone lie initia
outside it. This is a consequence of the requirement ofh~f!
be always positive definite. In particular we note that for
odd integern, we may have Eq.~2.11! positive forx,0 and
we could have trajectories leaving the regionr rad.0 to
r rad,0, in violation of the second law of thermodynamics

The inflationary region in phase space is defined by

ä

a
5Ḣ1H2.0, ~2.12!

which, in terms ofx, y andz, gives

2z22
1

6
y21

1

3
x2.0. ~2.13!
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FIG. 1. The field trajectories in phase space~projected in the planex,z! for the cases~a! no dissipation;~b! constant dissipation~b0

50.3 for dashed line,b050.7 for full line! and ~c! field dependent dissipation~b2510 for full line andb2590 for dashed line!. Initial
conditions for both cases are (x0 ,y0 ,z0)5(A6,1023,2.5). Dotted lines represent the lines wherer rad50.
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Trajectories satisfying Eq.~2.13! are the ones that are in th
inflationary regime. The intersection between the regions
fined by Eqs.~2.9! and~2.13! defines the inflationary physi
cal region of interest to us.

III. ANALYSIS AT INFINITY
AND ASYMPTOTIC SOLUTIONS

The analysis at infinity provide us with important info
mation concerning the behavior of solutions in the reg
wherex21y21z2→`. Such a region contains informatio
about the early stages of the universe just after the quan
domain, and therefore can be described by the classical e
tions. An important issue to be discussed is whether infla
plays the role of an attractor for most of solutions regardl
of the presence of dissipation. For our work, the followi
e-

n

m
ua-
n
s

coordinate transformation is found to be useful:

x5
u

w
, y5

v
w

, z5
1

w
, ~3.1!

where infinity is represented by the invariant manifoldw
50. The projections of the physical regionr rad>0 as well as
the inflationary domain (ä/a).0 on this plane, yield, re-
spectively, the regions described asu21v2<6 and 2u2

2v2>0. The idea underlying the choice of coordinates~3.1!
is to compactify infinity, so that a dynamical system in the
variables describes properly the basic features of
asymptotic behavior of the solutions. In Fig. 2, we presen
better view of the compactified region given by the cap
the conical region.
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57 745DYNAMICAL SYSTEM ANALYSIS FOR INFLATION . . .
The dynamical system~2.8! in the coordinatesu,v,w is

du

dt
5uwn/2S 21

v2

6
2

u2

3 D1vw~n/2! 11

dv
dt

5vwn/2S 211
v2

6
2

u2

3 D2uw~n/2! 112bnunvw12 ~n/2!

~3.2!

dw

dt
5w~n/2! 11S 21

v2

6
2

u2

3 D ,

where we have changed the time parameter in such a
that dt5w(n/2)11dt, which is valid forn50,2. The critical
points at infinity lie on the planew50 and their nature de
pend on the type of dissipation we are considering. Th
represent the initial singularity since, from Eqs.~3.5!–~3.8!
below, we see that the scale factor goes to zero at th
points. In addition, at the critical points the scalar of curv
ture R56(Ḣ12H2)5m2/w2(2u22v2) diverges. As stated
before two cases will be analyzed, namely,n50, for con-
stant dissipation, andn52, for field dependent dissipation.

A. Casen50

We adopt the following steps here and for the casen52
to analyze the region at infinityx21y21z2→`. First, we
determine all critical points on the surfacew50 that are
located in the region defined by 0<u<u* ~cf. Fig. 2!
(tanu*5A6), or in terms of the new coordinates~3.1!, in-
side the regionu21v2<6. Secondly, in performing the sta
bility analysis, we may obtain approximate solutions ne
those critical points and lying on the physical regio
Thirdly, the knowledge of unphysical trajectories that lie e
tirely on the surfacew50 is important since, by continuity
arguments, such trajectories determine the behavior of
integral curves of the system that lie within the cone but n
its surface@14#.

FIG. 2. View of the physical region of the phase space. T
infinity is compactified onto the planew50.
ay

y

se
-

r
.
-

he
r

After substitutingn50 into the system~3.2! and taking
w50, a two-dimensional system arises:

du

dt
5uS 21

v2

6
2

u2

3 D
dv
dt

5vS 211
v2

6
2

u2

3 D . ~3.3!

Five critical points are found: two repelling nodesP2(u
50,v5A6), P28(u50,v52A6), one saddleP0(u50,v
50), andP1(u5A6,v50), P18(u52A6,v50) which are
degenerate. In Fig. 3, these points are shown on the p
w50 together with the unphysical trajectories on it. No
that the projection of the coner rad50 onto the planew50 is
an integral curve of the system~3.3!. The regions nearP1 ,
P18 are the projections of the inflationary domain 2u22v2

>0 on w50. According to the phase portrait shown in Fi
3, the inflationary domain is an attractor for most trajectori
Actually this is a general feature of the system, as can
seen from Fig. 4, where we have plottedä/a as a function of
time. Initial values were purposefully taken away from t
inflationary region. Note how the system is driven to t
inflationary domain in the different cases of dissipation.

Curves emanate fromP2 and P28 to the interior of the
cone. The asymptotic behavior near these points is

H5
1

3t
,

f56A 3

4p
Mpl ln~mt!1

v0Mpl

2A8p
~mt!2/37

b0

mMpl
t,

~3.4!

wherev0 is an arbitrary constant and the signs6 indicate
which critical pointP2 , P28 we are considering. The eme

e FIG. 3. Phase portrait of the planew50 for the case of constan
dissipation (n50). The inflationary domain is represented as t
projection into the planew50.
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746 57H. P. de OLIVEIRA AND RUDNEI O. RAMOS
gence from these points corresponds to the growth of timt
from the instantt50 of the initial singularity. Near these
singularities,ḟ2@f2, meaning that the kinetic energy of th
scalar field is dominant over the potentialV(f) producing an
effective equation of statepf5rf . Therefore all curves
emanating fromP2 , P28 are not in the inflationary regime
Note that the influence of dissipation starts to be consid
able as far as the trajectories evolve away from the crit
points. It is also possible to integrate the dynamical sys
near the critical pointP0 , whose asymptotic behavior near
is characterized by

H5
1

2t
, f56

Mpl

2Apmt
, ~3.5!

where the initial singularity is denoted byt50.
The pointsP1 , P18 lie on the inflationary region and ar

attractors of trajectories on the invariant manifoldw50, sug-
gesting that they are also attractors for trajectories on
physical region but close to the invariant manifold. It can
shown that there is only one trajectory emerging fromP1

andP18 into the physical region, whose asymptotic solution

H52
1

3
mt, f56

mMpl

A8p
t, ~3.6!

where t increases from2`, the initial singularity. As ex-
pected, this solution is inflationary, sincem2f2@ḟ2, which
produces an effective equation of statepf52rf . All re-

FIG. 4. Plot ofä/a against time, in the units of Eq.~2.8!, for the
cases of no dissipation~full line!; constant dissipation (b0510),
dashed line; and field dependent dissipation (b2510/6), dotted
line. Initial conditions for both cases are (x0 ,y0 ,z0)
5(A6,1023,2.5).
r-
al
m

e
e

maining trajectories that visit a small neighborhood of the
points experience an inflationary phase as described abov
is worth pointing out that the asymptotic solution~3.6! cor-
responds to the direction of approach given byv5
2 (A6/3)w, which is equivalent to no dissipation~see the
analysis carried out by Belinskiiet al. @14#!. The influence of
dissipation, from a purely dynamical system analysis,
pears as a second order effect changing the former relatio
v52 (A6/3)w1 (A6/9)b0w2.

B. Casen52

The structure of the phase space forn52 is quite differ-
ent from the previous case. After substitutingn52 into the
system~3.2!, we obtain a two-dimensional dynamical syste
whose phase portrait is shown in Fig. 5. There are two li
of degenerate critical points, denoted byl 1(2`,u,`,v
5w50) andl 2(2`,v,`,u5w50). Here the projection
of the cone surfacer rad50, represented by the dashed circ
on Fig. 5, is not an integral curve of the system at infini
By continuity arguments, taking into account the unphysi
trajectories onw50, we infer that the trajectories within th
physical region, but near the planew50, originate outside
the regionr rad50, eventually outside the quantum doma
i.e., where the classical description is valid. Therefore, th
must be ruled out of our analysis. Nonetheless, some crit
points on the linesl 1 , l 2 may be the source of trajectories
the physical region. In fact, using standard methods to a
lyze sets of degenerated critical points@12#, we come to the
conclusion that the points at infinityP0 (u5v50), P1 (u
5A6,v50), P18 (u52A6,v50), P2 (u50,v5A6),
P28 (u50,v52A6) are the relevant ones and belong to
distinct nature from the remaining point, as we are going
describe. From the pointsP0 , P2 and P28 three-dimensional
pencils of trajectories emerge, whose asymptotic beha
near the pointsP0 andP2 , P28 , are given, respectively, by

H5
1

2t
, f56

Mpl

2Apmt
, ~3.7!

FIG. 5. Integral curves at infinity for the case of field depend
dissipation. The dashed circle represents the projection of the c
r rad50. The projection of the inflationary domain, into the pla
w50, is the same as in Fig. 3.
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H5
1

3t
, f56A 3

4p
Mpl ln~mt!. ~3.8!

In the above solutions the initial singularity is characteriz
by t50, or equivalently the pointsP0 and P2 , P28 , and the
emergence from the singularity corresponds to increas
time from this value. We remark that the solutions are
inflationary, but eventually evolve to this stage.

The most interesting class of solutions emanate from
pointsP1 , P18 on the linel 1 ~see Fig. 5!. It can be shown tha
a two-dimensional pencil of paths emerges from these po
along the same plane of the linel 1 and orthogonal to the
planew50. The asymptotic behavior in this region is cha
acterized byv50, which implies that the form of the solu
tions is the same as found in Eq.~3.6!.

IV. ADVANTAGEOUS TRAJECTORIES AND RADIATION
IN INFLATION WITH DISSIPATION

We now have a closer look at those trajectories in ph
space that may lead to a long enough inflationary stage
let us try to quantify these trajectories in a way similar to th
in @13#. During an inflationary period given byDt5t f2t i ,
the scale factor changes by

a~ t f !

a~ t i !
5expS E

t i

t f
H~ t !dtD . ~4.1!

Let us determine the above ratio in terms of the initial a
final values for the scalar field,f i andf f , respectively.

First note that the inflationary epoch can be characteri
by those trajectories that satisfy

mf@uḟu. ~4.2!

We consider the slow-roll approximation which, in the pre
ence of dissipation, can be written as

ḟ.2
m2f

3H1h~f!
. ~4.3!

We also assume thatrf@r rad ~see@3# and @5#!. Then, from
Eqs.~2.1! and ~4.2!, we can write

H.A4p

3

mufu
Mpl

. ~4.4!

Using Eqs.~4.4! and~4.3! in Eq. ~4.1!, we get the explicit
expression

a~ t f !

a~ t i !
.expF 2p

Mpl
2 ~f i

22f f
2!2A4p

3 E
f i

f f h~f!

mMpl
dfG .

~4.5!

For h(f)50 we recover the usual expression for the sc
factor ratio@1,13#. Taking h(f)5hnfn, n50,2, we finally
obtain
d

of
t

e

ts

e
nd
t

d

d

-

e

a~ t f !

a~ t i !
.expF 2p

Mpl
2 ~f i

22f f
2!

1A4p

3

hn

mMpl

~ uf i un112uf f un11!

n11 G . ~4.6!

The term in the above exponential gives the total number,N,
of e-folds during inflation. We have numerically checked t
validity of the above equation. The physically interesting t
jectories are as usual those withN*70 @1#.

With no dissipation,hn50, N;70 can be accomplishe
with f i'3.4Mpl andf f'0.2Mpl @1#. In the presence of dis
sipation, for a fixedN, dissipation decreases the values
both f i andf f . For the values off i andf f , which N;70
with hn50, we see from Eq.~4.6! that dissipation begins to
change considerablyN, say by more than 10%, forh0*m,
or h2*0.25m/Mpl

2 ~in terms of the dimensionless facto
bn , b0*1 and b2*0.01, respectively!. In both cases we
have an initial dissipation of orderh(f)*m. SinceH'm,
we must haveH&h(f) in order for dissipation to begin
changing the inflationary phase considerably.

The authors in@13,14# have characterized the measure
disadvantageous trajectories (N,70) as;m/Mpl , obtained
by the ratio of the trajectories beginning atufu,f i , in rela-
tion to the complete quantum boundary, of length 2pMpl

2 /m.
Since for fixedN the effect of dissipation is to reducef i , we
find that in the presence of dissipationm/Mpl (;1027) is the
upper bound for the measure of disadvantageous trajecto
Dissipation turns inflation even more general.

We can also evaluate the energy of the inflaton field tra
ferred to radiation during the inflationary stage, from, f
example, Eq.~2.5!. In Fig. 6 we plotr rad against time for
four different values ofbn . The mark indicates when th
trajectories leave the inflationary region~ä/a becomes nega
tive!. We find that there is a value ofbn for which radiation
is maximal, at the exit of the inflationary stage, given byb0 ,
b2'1 ~h0'm and h2'25m/Mpl

2 !. These results are fairly
independent of the initial conditions. Also, we can find
ideal range forbn such that we exit inflation smoothly to th
radiation era with the Universe sufficiently hot. At therma
ization

r rad5
p2g*

30
T4, ~4.7!

whereg* (;1022103) is the effective number of degrees o
freedom. If we impose that at the end of inflation we shou
have at leastT;m ~m.5.1027Mpl for the quadratic poten-
tial model @1#!, we have numerically obtained, for bothb0
andb2 , the approximate bound:

1027&bn&800. ~4.8!

Too high values ofbn lead to a longer inflationary period
Most of the inflaton’s energy is transferred to radiati
which is red-shifted away before the end of inflation. The
is no possibility of a reheating phase for these cases. On
other hand, very small values ofbn can provide a smooth
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exit from inflation to radiation and the inflaton field energ
density can still provide an additional reheating phase by
usual mechanisms.1 The maximum temperature reached
the thermal bath, at the exit of the inflationary stage in o
model, isT'1015 GeV, for b0 , b2'1.

V. DISCUSSIONS AND CONCLUSIONS

We have examined a dynamical system describing in
ton dynamics in the presence of dissipation. Dissipation
taken as being present throughout the inflaton’s evolu
and we have presented the changes in the phase diagram
to the effect of dissipation. Our results allow us to draw
series of important conclusions concerning the dynam
system and the physical system itself.

We have shown that the continuous production of rad
tion due to dissipation changes effectively the inflaton d
namical system. We have distinguished two main con
quences for the field trajectories in phase space due to
presence of dissipation:~a! In field independent dissipatio
~for b0>2! the trajectories tend towards thez-axis at the
final stages of evolution. In this regime the inflaton’s moti
is overdamped. The stronger the dissipation (b0@2) the
faster the field trajectories are attracted to thez-axis; ~b! In
field dependent dissipation the motion is initially damped
the field trajectories always tend to the cone surfacer rad

1At least forb0,2, when we are in the underdamped regime~see
Sec. II! and for any value ofb2 smaller than the upper value in Eq
~4.8!.

FIG. 6. r rad for different values of dissipation. The mark ind
cates the exit of the inflationary stage. Initial conditions a

(f i ,f i̇ ,Hi)5(3.4Mpl,0,3.4A4p/3m) (r radi
50).
e

r

-
is
n
due

al

-
-
e-
he

t

50. The stronger the dissipation the slower the field traj
tories tend to this surface.

From the physical system side we can also reach so
interesting conclusions which may have important con
quences for inflationary dynamics. We have seen that di
pation associated with inflaton decay not only supports in
tion but also draws all inflationary field trajectories into
longer stage of inflation. This is true for both kinds of diss
pation we have considered. In terms of a measure of
amount of trajectories possessing the required inflation
period, a similar analysis to the one given in@13,14# allows
us to reach the conclusion that inflation is even more gen
in the presence of dissipation.

Our results also allow us to reach some conclusions c
cerning warm inflation scenarios or non-isentropic inflatio
in particular concerning the problem of reheating. In no
isentropic inflation, as opposed to standard inflation, ther
the possibility of no reheating phase, due to the continu
production of entropy and heat, leading to a smooth e
from inflation to the radiation era@5,15#. We then expect tha
in these scenarios there is a strong damping of the infla
field’s motion in the direction of the minimum of the infla
ton’s potential. In this paper we have quantified how stro
the dissipation must be, when compared to the friction du
expansion, in order to achieve favorable scenarios of ra
tion at the exit from the inflationary stage. We have sho
that no reheating is only achieved in the overdamped reg
(b0.2) for constant dissipation, when there is no oscillato
motion of the inflaton around the potential minimum, or f
very high values ofb2 , when all the inflaton’s energy is
transfered to radiation and this is then red-shifted away
to the longer expansion.

A further question we may ask is about a possible re
ization of chaotic behavior in cosmology. In accord wi
some previous ideas in the realm of isotropic and anisotro
Bianchi IX cosmologies@16#, the Universe can experienc
two possible outcomes: collapse into the big crunch after
initial stage of expansion and expansion into the inflation
regime. In this way, chaotic behavior is associated with
indetermination of the final state~collapse or expansion! of
the Universe once a set of initial conditions in an infinite
mal region is chosen. We may say that the boundaries
collapse and expansion are mixed. In our case all orbits
tially in the physical regionr rad>0 are unavoidably attracte
to the state of unlimited expansion represented by the or
of the phase space2 ~cf. Fig. 1!. The orbits cannot randomly
explore the region inside the coner rad50. Therefore, we can
conclude that chaotic behavior does not take place for th
orbits lying in the physical region in the cases studied pre
ously, i.e., forn50,2. Such conclusions are also valid for th
case analyzed by Belinskii and Khalatnikov@14# in the realm
of Bianchi I anisotropic models.

Finally one of the most important results of this paper w
to show that even a value of dissipation as small ash(f)
;1027m ~compare with H;m! can still lead to very

2Similar conclusions are reached for the model studied by Be
skii et al. @13,14#.
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important consequences for inflationary dynamics, such
providing a smooth exit from inflation to radiation, and
also shows that the interaction of the inflaton field with oth
degrees of freedom, manifested in the form of dissipati
cannot in general be neglected. We are currently working
a detailed microscopic model for dissipation in inflation,
be presented in a forthcoming paper.
-

k,
,

A

,

as

r
,
n

ACKNOWLEDGMENTS

We would like to thank D. Boyanovsky and A. Berera f
useful discussions. We also thank J. E. Skea for reading
helping us to revise the text. This work was partially su
ported by Conselho Nacional de Desenvolvimento Cientı´fico
e Tecnolo´gico—CNPq~Brazil!.
. D

n,

f
ics

.

ni-

. D
@1# E. W. Kolb and M. S. Turner,The Early Universe~Addison-
Wesley, Reading, MA, 1990!; A. D. Linde, Particle Physics
and Inflationary Cosmology~Harwood Academic, Chur, Swit
zerland, 1990!.

@2# L. Kofman, A. Linde and A. A. Starobinskii, Phys. Rev. D56,
3258 ~1997!.

@3# A. Berera and L. Z. Fang, Phys. Rev. Lett.74, 1912~1995!.
@4# A. Berera, Phys. Rev. Lett.75, 3218~1995!.
@5# A. Berera, Phys. Rev. D54, 2519~1996!.
@6# A. Albrecht, P. J. Steinhardt, M. S. Turner and F. Wilcze

Phys. Rev. Lett.48, 1437~1982!; J. Yokoyama and K. Maeda
Phys. Lett. B207, 31 ~1988!.

@7# M. Gleiser and R. O. Ramos, Phys. Rev. D50, 2441 ~1994!;
M. Morikawa, ibid. 33, 3607~1986!; A. Hosoya and M. Saka-
gami, ibid. 29, 2228~1984!.

@8# D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee and
Singh, Phys. Rev. D51, 4419~1995!.

@9# B. L. Hu, J. P. Paz and Y. Zhang, inThe Origin of Structure in
the Universe, edited by E. Gunzig and P. Nardone~Kluwer
Academic, Norville, 1993!; B. L. Hu, J. P. Paz and Y. Zhang
Phys. Rev. D45, 2843 ~1993!; 47, 1576 ~1993!; E. Calzetta
and B. L. Hu,ibid. 49, 6636~1994!; 52, 6770~1995!; B. L. Hu
.

and A. Matacz,ibid. 51, 1577 ~1995!; A. Matacz, ibid. 55,
1860 ~1997!.

@10# D. Boyanovsky, R. Holman and S. Prem Kumar, Phys. Rev
56, 1958~1997!.

@11# A. Albrecht and R. H. Brandenberger, Phys. Rev. D31, 1225
~1985!; R. Brandenberger, H. Feldman and J. MacGibbo
ibid. 37, 2071~1988!; H. Feldman,ibid. 38, 459 ~1988!.

@12# O. I. Bogoyavlensky,Methods in the Qualitative Theory o
Dynamical Systems in Astrophysics and Gas Dynam
~Springer-Verlag, Berlin, 1985!.

@13# V. A. Belinskii, L. P. Grishchuk, Ya. B. Zel’dovich and I. M
Khalatnikov, Zh. Eksp. Teor. Fiz.89, 346 ~1985! @Sov. Phys.
JETP62, 195 ~1985!#.

@14# V. A. Belinskii and I. M. Khalatnikov, Zh. E´ ksp. Teor. Fiz.93,
784 ~1987! @Sov. Phys. JETP66, 441 ~1987!#.

@15# A. V. Nesteruk, R. Maartens and E. Gunzig, Portsmouth U
versity report PU-RCR-97-3, astro-ph/9703137.

@16# H. P. de Oliveira, I. D. Soares and T. J. Stuchi, Phys. Rev
56, 730 ~1997!; N. J. Cornish and J. J. Levin,ibid. 53, 3022
~1996!; E. Calzetta and E. El Hasi,ibid. 51, 2713 ~1995!; G.
Francisco and G. E. Matsas, Gen. Relativ. Gravit.20, 1047
~1988!.


