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Asymptotic dynamics in scalar field theory: Anomalous relaxation
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We analyze the dynamics of dissipation and relaxation in the unbroken and broken symmetry phases of
scalar theory in thenonlinearregime for large initial energy densities, and afterlinear unstabilities~parametric
or spinodal! are shut off by the quantum back reaction. A new time scale emerges that separates the linear from
the non-linear regimes. This scale is non-perturbative in the coupling and initial amplitude. The non-
perturbative evolution is studied within the context of theO(N) vector model in the largeN limit. A combi-
nation of numerical analysis and the implementation of a dynamical renormalization group resummation via
multi-time-scale analysis reveals the presence of unstable bands in the nonlinear regime. These are associated
with power law growth of quantum fluctuations, that result in power law relaxation and dissipation with
non-universal and non-perturbative dynamical anomalous exponents. We find that there is substantial particle
production during this non-linear evolution which is of the same order as that in the linear regime and results
in a non-perturbative distribution. The expectation value of the scalar field vanishes asymptotically transferring
all of the initial energy into produced particles via the non-linear resonances in the unbroken symmetry phase.
The effective mass squared for the quantum modes tends asymptotically to a constant plus oscillatingO(1/t)
terms. This slow approach to asymptotia causes the power behavior of the modes which become free harmonic
modes for late enough time. We derive a simple expression for the equation of state for the fluid of produced
particles that interpolates between radiation-type and dust-type equations according to the initial value of the
order parameter for unbroken symmetry. For broken symmetry the produced particles are asymptotically
massless Goldstone bosons with an ultrarelativistic equation of state. We find the onset of a novel form of
dynamical Bose condensation in the collisionless regime in the absence of thermalization.
@S0556-2821~98!04910-8#

PACS number~s!: 11.10.Jj, 11.15.Pg, 98.80.Cq
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I. INTRODUCTION AND MOTIVATION

The next generation of high luminosity heavy ion colli
ers at Brookhaven and CERN will offer the possibility
probing the dynamics of states of high energy density
possibly strongly out of equilibrium. The energy densiti
attained for central collisions at central rapidity will hop
fully allow us to study the quark-gluon plasma and also
chiral phase transition in a situation that parallels t
achieved in the very early stages of the Universe@1–5#. Dy-
namical phenomena and nonequilibrium and collective
fects are expected to take place on time scales of a few
of fm/c and length scales of a few fermis.

This unparalleled short time and length scale regime
dynamical phenomena, soon to be probed experiment
has sparked a considerable effort to study thedynamicsof
strongly out of equilibrium situations within the realm o
quantum field theory.

The usual semi-phenomenological framework to study
dynamics is based on the transport approach in term
single ~quasi-!particle distribution functions with collisiona
relaxation @6–8#. The best known dynamical processes
relaxation are those of~few body! collisions and dephasing
processes akin to Landau damping@7–16#. Our understand-
ing of these relaxational processes is usually based on
turbative expansions, linearized approximations or small
570556-2821/98/57~12!/7388~28!/$15.00
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partures from equilibrium. The validity of these coar
grained descriptions of relaxational dynamics within t
realm of high energy and high density regimes in quant
field theory is not clear and a closer scrutiny of relaxatio
phenomena is warranted.

Whereas equilibrium phenomena are fairly well und
stood and there are a variety of tools to study perturba
and non-perturbative aspects, strongly out of equilibriu
phenomena are not well understood and require differ
techniques.

Our goal is to deal with the out of equilibrium evolutio
for large energy densities in field theory, that is, a lar
number of particles per volumem23, wherem is the typical
mass scale in the theory. The most familiar techniques
field theory, based on the S-matrix formulation of transiti
amplitudes and perturbation theory, apply in the oppos
limit of low energy density, and since they only provid
information onin → out matrix elements, are unsuitable fo
calculations of time dependent expectation values.

Recently non-perturbative approaches to study part
production@17#, dynamics of phase transitions@17,18# and
novel forms of dissipation@20# have emerged that provide
promising framework to study the dynamics for large ene
densities like in heavy ion collisions.

Similar tools are also necessary to describe consiste
the dynamical processes in the early Universe@20#. In par-
7388 © 1998 The American Physical Society
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ticular it has been recognized that novel phenomena ass
ated with parametric amplification of quantum fluctuatio
can play an important role in the process of reheating
thermalization@19,20–23#. It must be noticed that the dy
namics in cosmological spacetimes is dramatically differ
to the dynamics in Minkowski spacetime. Both in fixe
Friedmann-Robertson-Walker~FRW! @36# and de Sitter@35#
backgrounds and in a dynamical geometry@37# the dynami-
cal evolution is qualitatively and quantitatively differe
from the Minkowski case considered in the present pape

Our program to study the dynamical aspects of relaxa
out of equilibrium both in the linear and non-linear regim
has revealed new features of relaxation in the collisionl
regime in scalar field theories@20,24#. Recent investigations
of scalar field theories in the non-linear regime, includi
self-consistently the effects of quantum back reaction in
energy conserving and renormalizable framework, h
pointed out a wealth of interesting non-perturbative pheno
ena both in the broken and unbroken symmetry phases@20#.
These new phenomena are a consequence of the
equilibrium evolution of an initial state of large energy de
sity which results in copious particle production leading to
non-thermal and non-perturbative distribution of particl
Our studies have focused on the situation in which theam-
plitude of the expectation value of the scalar field is no
perturbatively large,A'Al^F&/m'O(1) (m is the mass of
the scalar field andl the self-coupling! and most of the
energy of the initial state is stored in the ‘‘zero mode,’’ i.
the ~translational invariant! expectation value of the scala
field F. Under these circumstances the initial energy den
«'m4/l. During the dynamical evolution the energy in
tially stored in one~or few! modes of the field is transferre
to other modes, resulting in copious particle production i
tially either by parametric amplification of quantum fluctu
tions in the unbroken symmetry phase or spinodal instab
ties in the broken symmetry phase. This mechanism
energy dissipation and particle production results in a nu
ber of produced particles per unit volume,N}m3/l, which
for weak coupling is non-perturbatively large@20#. We call
this first stage dominated either by parametric or spino
unstabilities the ‘‘linear regime.’’

We recognized@20# a newdynamicaltime scalet1 where
the linear regime ends. By the timet1 the effects of the
quantum fluctuation on the dynamical evolution become
the same order as the classical contribution given by
evolution of the expectation value of the field. The ‘‘no
linear regime’’ starts by the timet1. In the case of broken
symmetry, this time scale corresponds to the spinodal s
at which the back reaction of quantum fluctuations shut
the spinodal instabilities. At this scale non-perturbative ph
ics sets in and the non-linearities of the full quantum the
determine the evolution. This time scalet1, which we call the
non-linear time, is a non-universal feature of the dynami
and depends strongly on the initial state and n
perturbatively on the coupling, ast1} log@l21# for weak cou-
pling @20#.

The purpose of this paper is to carefully analyze thenon-
linear dynamics of relaxation after the timet1 in a weakly
coupled scalar field theory within a non-perturbative se
consistent scheme. We focus on the asymptotic time reg
both in the unbroken and broken symmetry states. Here
ci-
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provide refined numerical analysis of the non-equilibriu
evolution that reveals the onset of widely separated re
ational time scales. We use adynamical renormalization
group implemented via a multitime scale analysis to provi
an analytic description of the asymptotic dynamics and
tablish that relaxation occurs via power laws with anomalo
dynamical exponents.

The main results of this article can be summarized
follows:

The hierarchy of separated time scales allows us to im
ment a dynamical renormalization group resummation
the method of multitime scale analysis. The novel result t
emerges from this combination of numerical and dynami
renormalization group analysis is the presence ofnon-linear
resonancesthat lead to asymptotic relaxation described
non-universal power laws. These power laws are determine
by dynamical anomalous exponentswhich depend non-
perturbatively on the coupling.

The effective mass felt by the quantum field modes
high energy density situations varies with time and depe
on the fields themselves, reflecting the nonlinear characte
the dynamics. Both for broken and unbroken symmetry
effective mass tends asymptotically to a constant. This c
stant is non-zero and depends on the initial state for unb
ken symmetry. For broken symmetry, the effective ma
tends to zero, corresponding to Goldstone bosons. In b
cases the effective mass approaches itst5` value as 1/t
times oscillating functions.

The fact that the effective mass tends asymptotically t
constant implies that the modes become effectivelyfree.
Non-resonant modes oscillate harmonically for timest.t1.
Resonant modes change from non-universal power beha
to oscillatory behavior at a time that depends on the w
number of the mode. Only the modes in the borders of
band resonate indefinitely.

In the unbroken symmetry case, we find that the expe
tion value relaxes to zero asymptotically with a no
universal power law. The initial energy density which is no
perturbatively large goes completely into the production
massive particles. The asymptotic particle distribution is
calized within a band determined by the initial conditio
with non-perturbatively large amplitude;1/Al which could
be described as a ‘‘semiclassical condensate’’ in the unb
ken phase.

The particle distribution in the condensate is nontrivi
We establish sum rules that yield explicit values for integr
over such an asymptotic distribution. We derive in this w
the asymptotic equation of state. For unbroken symmetry
interpolates between dust and radiation according to the
tial field amplitude.

In the broken symmetry phase when the initial expec
tion value of the scalar field~order parameter! is close to the
false vacuum~at the origin! we similarly find the onset of
non-linear resonances at times larger than the non-lin
~spinodal! time t1. The expectation value of the order param
eter approaches for late times a nonzero limit that depe
on the initial conditions.

The effective time dependent mass vanishes as 1/t, result-
ing in the asymptotic states being Goldstone bosons. We
find a hierarchy of time scales of whicht1} ln@l21# is the
first and another longer time scalet2}1/Al. As a conse-
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7390 57D. BOYANOVSKY et al.
quence of the non-linear resonances the particle distribu
becomes localized fort.t1 at very low momentum, result
ing again in a ‘‘semiclassical condensate’’ with no
perturbatively large amplitude;1/Al. Asymptotically the
equation of state is that of radiation although the parti
distribution ~Goldstone bosons! is non-thermal.

For even larger time scales,t;AV ~whereV stands for
the volume of the system!, we find for broken symmetry a
novel form of Bose condensation in the collisionless regi
that results from a linear growth in time of homogeneo
quantum fluctuations.

The article is organized as follows: In Sec. II we briefl
summarize the nature of the approximations, the n
equilibrium framework and some of the previous results
the benefit of the reader and for coherence. In Sec. III
study the unbroken symmetry case and distinguish the lin
regime of parametric amplificationt,t1 from the non-linear
regime (t.t1) in which the back reaction of quantum fluc
tuations dominates the evolution. In Sec. IV we study
latter regime in the unbroken symmetry case and we find
particle production continues beyondt.t1 and non-linear
resonances develop, leading to power law relaxation.
provide a full numerical analysis and implement a renorm
ization group resummation of secular terms via a multi-tim
scale approach. Asymptotic sum rules and the equatio
state are discussed in detail. In Sec. V we study the dynam
in the broken symmetry phase, establishing a difference
tween the early and intermediate scales dominated by s
odal instabilities and the asymptotically large time sc
dominated by non-linear resonances leading to power
relaxation. We provide a numerical analysis as well as ar
ments based on multitime scale resummation. We fin
novel form of Bose condensation with a quadratic time
pendence for the formation of an homogeneous condens

Conclusions and further questions are summarized at
end of the article.

II. PRELIMINARIES

As our previous studies of scalar field theory have
vealed @20#, there are two very important parameters th
influence the quantum dynamics: the strength of the coup
constantl and the initial energy density in units of the sca
field massm. If in the initial state most of the energy i
stored in a few modes, the energy density is determined
the amplitude of the expectation value of those modesA
'Al^F&/m. The value of this field amplitude determine
the regime of applicability of perturbation theory method
Usual S-matrix theory treatments~in terms of a perturbative
expansion! are valid in the small amplitude regimeA!1
even for high energies. However, when the initial state ha
large energydensityperturbative methods are invalid.

We shall be concerned here with thenon-perturbativere-
gime in whichA5Al^F&/m.O(1). It is important to point
out that for a large field amplitude, even for very weak
coupled theories non-linear effects will be important a
must be treated non-perturbatively. This is the case un
consideration. Having recognized the non-perturbative
ture of the problem for large amplitudes we must invoke
non-perturbative, consistent calculational scheme which
spects the symmetries~continuous global symmetries an
n
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energy-momentum conservation!, is renormalizable and
lends itself to a numerical treatment.

We are thus led to consider theO(N) vector model with a
quartic self-interaction@20# and the scalar field in the vecto
representation ofO(N).

The action and Lagrangian density are given by

S5E d4xL,

L5
1

2
@]mFW ~x!#22V„FW ~x!…,

V~FW !5
l

8NS FW 21
2Nm2

l D 2

2
Nm4

2l
.

~2.1!

The canonical momentum conjugate toFW (x) is

PW ~x!5FẆ ~x!, ~2.2!

and the Hamiltonian is given by

H~ t !5E d3xH 1

2
PW 2~x!1

1

2
@¹FW ~x!#21V~FW !J . ~2.3!

The calculation of expectation values requires the study
a density matrix, whether or not the initial state is pure
mixed. Its time evolution in the Schro¨dinger picture is deter-
mined by the quantum Liouville equation

i
]r̂

]t
5@H,r̂ #. ~2.4!

The expectation value of any physical magnitudeA is given
as usual by

^A&~ t !5Tr@ r̂~ t !A#. ~2.5!

The time evolution of all physical magnitudes is unitary
we see from Eq.~2.4!.

In the present case we will restrict ourselves to a tran
tionally invariant situation; i.e., the density matrix commut
with the total momentum operator. In this case the or
parameter̂ FW (xW ,t)& will be independent of the spatial coo
dinatesxW and only depends on time.

We write the fieldFW as FW 5(s,pW ) wherepW represents
the N21 ‘‘pions,’’ and choose the couplingl to remain
fixed in the largeN limit. In what follows, we will consider
two different cases of the potential~2.1!, V(s,pW ), with
(m2,0) or without (m2.0) symmetry breaking.

We can decompose the fields into its expectation value
and fluctuationsx(xW ,t) about it:

s~xW ,t !5F~ t !AN1x~xW ,t !, ~2.6!

with F(t) being a c-number of order 1 in theN→` limit
andx an operator.

To leading order the largeN-limit is implemented by con-
sidering a Hartree-like factorization~neglecting 1/N terms!
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and assumingO(N21) invariance by writing

~2.7!

whereC(xW ,t) is a quantum operator@20#. Alternatively the
large N expansion is systematically implemented by intr
ducing an auxiliary field@17#. To leading order the two
methods are equivalent.

The generating functional of real time non-equilibriu
Green’s functions can be written in terms of a path integ
along a complex contour in time, corresponding to forwa
and backward time evolution, and if the initial density mat
describes a state of local thermodynamic equilibrium at fin
temperature, a branch down the imaginary time axis. T
requires doubling the number of fields which now carry
label 6 corresponding to forward (1) and backward (2)
time evolution@25,26#.

We shall not rederive here the field evolution equatio
for translationally invariant quantum states; the reader is
ferred to the literature.~See Refs.@25–27#.! In the leading
order in the largeN approximation the theory become
Gaussian at the expense of a self-consistent cond
@17,20,27#; this in turn entails that the Heisenberg field o
eratorC(xW ,t) can be written as

C~xW ,t !5E d3k

~2p!3

1

A2
@akW f k~ t !eikW•xW1akW

†
f k* ~ t !e2 ikW•xW#,

~2.8!

where ak , ak
† are the canonical creation and annihilati

operators, and the mode functionsf k(t) are solutions of the
Heisenberg equations of motion@17,20,27# to be specified
below for each case.

Our choice of initial conditions on the density matrix
that of the vacuum for the instantaneous modes of the Ha
tonian at the initial time@20,27#. Therefore we choose th
initial conditions on the mode functions to represent posit
energy particle states of the instantaneous Hamiltoniant
50, which is taken to be the initial time. That is,

f k~0!5
1

AWk

, ḟ k~0!52 iAWk, Wk5Ak21M0
2,

~2.9!

where the massM0 determines the frequenciesvk(0) and
will be defined explicitly later as a function ofF(0) @see
Eqs.~3.5! and ~5.4!#.

With these boundary conditions, the mode functio
f k(0) correspond to positive frequency modes~particles! of
the instantaneous quadratic Hamiltonian for oscillators
massM0.

We point out that the behavior of the system depe
mildly on the initial conditions on the mode functions as w
have found by varying Eqs.~2.9! within a wide range. In
particular, the various types of linear and nonlinear re
nances are independent of these initial conditions@20,27#.

It proves convenient to introduce the following dime
sionless quantities:
-

l
d

e
is

s
-

n

il-

e
t

s

f

s

-

t5umut, q5
k

umu
, Vq5

Wk

umu
, ~2.10!

h2~t!5
l

2umu2
F2~ t !, ~2.11!

gS~t!5
l

2umu2
@^C2~ t !&R2^C2~0!&R# ~S~0!50!,

~2.12!

g5
l

8p2
, wq~t![Aumu f k~ t !. ~2.13!

Here^C2(t)&R stands for the renormalized composite ope
tor @see Eq.~3.7! for an explicit expression#.

In theN5` limit the field x(xW ,t) decouples and does no
contribute to the equations of motion of either the expec
tion value or the transverse fluctuation modes.

III. UNBROKEN SYMMETRY

A. Evolution equations in the largeN limit

In this caseMR
25uMRu2, and in terms of the dimension

less variables introduced above the renormalized equat
of motion are found to be~see Refs.@20,27#!

ḧ1h1h31gh~t!S~t!50, ~3.1!

F d2

dt2
1q2111h~t!21gS~t!Gwq~t!50, ~3.2!

wq~0!5
1

AVq

, ẇq~0!52 iAVq,

h~0!5h0 , ḣ~0!50. ~3.3!

Hence,

M2~t![11h~t!21gS~t! ~3.4!

plays the role of a~time dependent! effective mass squared
As mentioned above, the choice ofVq determines the

initial state. We will choose these such that att50 the quan-
tum fluctuations are in the ground state of the oscillators
the initial time. Recalling that by definitiongS(0)50, we
choose the dimensionless frequencies to be

Vq5Aq2111h0
2. ~3.5!

The Wronskian of two solutions of Eq.~3.2! is given by

W@wq ,w̄q#52i , ~3.6!

while gS(t) is given by the self-consistent condition@20,27#
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7392 57D. BOYANOVSKY et al.
gS~t!5gE
0

`

q2dqH uwq~t!u22
1

Vq

1
u~q21!

2q3
@2h0

21h2~t!1gS~t!#J . ~3.7!

We thus see that the effective mass at timet contains all
q-modes and the zero mode at the same timet. The evolu-
tion equations are then nonlinear but local in time in t
infinite N limit.

B. Particle number

Although the notion of particle number is ambiguous in
time dependent non-equilibrium situation, a suitable defi
tion can be given with respect to some particular poin
state. We consider two particular definitions that are phy
cally motivated and relevant as we will see later. The fi
corresponds to defining particles with respect to the ini
Fock vacuum state, while the second corresponds to defi
particles with respect to the instantaneous adiabatic vac
state.

In the former case we write the spatial Fourier transfo
of the fluctuating fieldC(xW ,t) in Eq. ~2.8! and its canonical
momentumP(xW ,t) as

cq~t!5
1

A2
@aqwq~t!1a2q

† wq* ~t!#

Pq~t!5
1

A2
@aqẇq~t!1a2q

† ẇq* ~t!#

with the time independentcreation and annihilation opera
tors, such thataq annihilates the initial Fock vacuum stat
Using the initial conditions on the mode functions, t
Heisenberg field operators are written as

cq~t!5U21~t!cq~0!U~t!5
1

A2Vq

@ ãq~t!1ã 2q
† ~t!#

Pq~t!5U21~t!Pq~0!U~t!

52 iAVq

2
@ ãq~t!2ã 2q

† ~t!#

ãq~t!5U21~t!aqU~t!

with U(t) the time evolution operator with the bounda
conditionU(0)51. The Heisenberg operatorsãq(t) ,ãq

†(t)
are related toaq ,aq

† by a Bogoliubov~canonical! transforma-
tion ~see Refs.@20,27# for details!.

The particle number with respect to the initial Fo
vacuum state is defined in term of the dimensionless v
ables introduced above as

Nq~t!5^ã q
†~t!ãq~t!&5

1

4
FVquwq~t!u21

uẇq~t!u2

Vq
G2

1

2
.

~3.8!
i-
r
i-
t
l

ng
m

i-

We consider here zero initial temperature so the occupa
number vanishes att50.

In order to define the particle number with respect to
adiabatic vacuum state we note that the mode equat
~3.2!, ~5.2! are those of harmonic oscillators with time d
pendent squared frequencies

vq
2~t!5q2111h2~t!1gS~t!. ~3.9!

When the frequencies are real~as is the case for unbroke
symmetry!, the adiabatic modes can be introduced in t
following manner:

cq~t!5
1

A2vq~t!
@aq~t!e2 i *0

t vq~t8!dt8

1a2q
† ~t!ei *0

t vq~t8!dt8# ~3.10!

Pq~t!52 iAvq~t!

2
@aq~t!e2 i *0

t vq~t8!dt8

2a2q
† ~t!ei *0

t vq~t8!dt8# ~3.11!

where nowaq(t) is a canonical operator that annihilates t
adiabatic vacuum state, and is related toaq , aq

† by a Bogo-
liubov transformation. This expansion diagonalizes the
stantaneous Hamiltonian in terms of the canonical opera
aq(t), aq

†(t). The adiabatic particle number is given by

Nq
ad~t!5^aq

†~t!aq~t!&

5
1

4
Fvq~t!uwq~t!u21

uẇq~t!u2

vq~t!
G2

1

2
. ~3.12!

These adiabatic modes and the corresponding adiab
particle number have been used previously within the n
equilibrium context@17# and will be very useful in the analy
sis of the energy below. Both definitions coincide att50
becausevq(0)5Vq . ~For non-zero initial temperature se
Refs.@20,27,17#!.

The total number of produced particlesNad(t) per vol-
ume uMRu3 is given by

Nad~t![E d3q

~2p!3Nq
ad~t!. ~3.13!

The asymptotic behavior of the mode functions ensures
this integral converges@20,27#.

C. Early time evolution: Parametric resonance

Let us briefly review the dynamics in the weak couplin
regime and for times small enough so that the quantum fl
tuations, i.e.gS(t), are not large compared to the ‘‘tre
level’’ quantities. As shown in Refs.@20,27#, the back-
reaction termgS(t) is small for smallg during an interval
say 0<t,t1. This timet1, to be determined below, will be
called the nonlinear time and it determines the time sc
when the back-reaction effects and therefore the quan
fluctuations and non-linearities become important.
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During the interval of time in which the back-reactio
termgS(t) can be neglected Eq.~3.1! reduces to the classi
cal equation of motion~in dimensionless variables!

ḧ1h1h350. ~3.14!

The solution of this equation with the initial conditions~3.3!
can be written in terms of elliptic functions with the resul

h~t!5h0cn~tA11h0
2,k!, k5

h0

A2~11h0
2!

, ~3.15!

where cn stands for the Jacobi cosine. Notice thath(t) has
period 4v[4K(k)/A11h0

2, whereK(k) is the complete el-
liptic integral of first kind.

Inserting this form forh(t) in Eq. ~3.2! and neglecting
gS(t) yields

F d2

dt2
1q2111h0

2cn2~tA11h0
2,k!Gwq~t!50.

~3.16!

This is the Lame´ equation for a particular value of th
coefficients that make it solvable in terms of Jacobi functio
@20,27#.

Since the coefficients of Eq.~3.16! are periodic with pe-
riod 2v @notice thath(t12v)52h(t)#, the mode func-
tions can be chosen to be quasi-periodic~Floquet type! with
quasi-period 2v:

Uq~t12v!5eiF ~q!Uq~t!, ~3.17!

where the Floquet indicesF(q) are independent oft. In the
allowed zones,F(q) is real and the functionsUq(t) are
bounded with a constant maximum amplitude. In the forb
den zonesF(q) has a non-zero imaginary part and the a
plitude of the solutions either grows or decreases expon
tially. The mode functionswq(t) obey the boundary
conditions, Eq.~3.2!, and they are not Floquet solution
However, they can be expressed as linear combination
Floquet solutions@20,27# as follows:

wq~t!5
1

2AVq
F S 12

2iVq

Wq
DUq~2t!1S 11

2iVq

Wq
DUq~t!G ,

~3.18!

whereUq(0)51 and

Wq522qAh0
2

2
111q2

h0
2

2
2q2

. ~3.19!

We find two allowed bands andtwo forbidden bands
@20,27# for Eq. ~3.16!. In the physical regionq2.0 the al-
lowed band corresponds to

h0
2

2
<q2<1` ~3.20!

and the forbidden band to
s

-
-
n-

of

0<q2<
h0

2

2
. ~3.21!

The modes in the forbidden band, 0,q,h0 /A2, grow ex-
ponentially with time~parametric resonance! while those in
the allowed band,h0 /A2,q,`, oscillate in time with con-
stant amplitude. Analytic expressions for all modes we
given in @20,27#. The modes from the forbidden band 0,q
,h0 /A2 dominateS(t). For 0,t,t1, S(t) oscillates
with an exponentially growing amplitude. This amplitud
~envelope! Senv(t) can be represented to a very good a
proximation by the formula@20,27#

Senv~t!5
1

NAt
eBt, ~3.22!

whereB andN are functions ofh0 given by

B~h0!58A11h0
2q̂~124q̂!1O~ q̂3!,

N~h0!5
4

Ap
Aq̂

~413h0
2!A415h0

2

h0
3~11h0

2!3/4 @11O~ q̂!#,

~3.23!

and the elliptic nomeq̂ can be written as a function ofh0 as

q̂~h0!5
1

2

~11h0
2!1/42~11h0

2/2!1/4

~11h0
2!1/41~11h0

2/2!1/4, ~3.24!

with an error smaller than;1027.
Using this estimate for the quantum fluctuationsS(t), we

can now estimate the value of the non-linear time scalet1 at
which the back reaction becomes comparable to the clas
terms in the differential equations. Such a time is defined
gS(t1);(11h0

2/2). From the results presented above,
find

t1'
1

B~h0!
logFN~h0!~11h0

2/2!

gAB~h0!
G . ~3.25!

The time interval fromt50 to t;t1 is when most of the
particle production takes place. Aftert;t1 the quantum
fluctuation become large enough to begin shutting off
growth of the modes and particle production slows do
dramatically. This dynamical time scale separates two d
tinct types of dynamics; fort,t1 the evolution of the quan-
tum modeswq(t) is essentially linear, the back-reaction e
fects are small and particle production proceeds
parametric amplification. Recall that the zero modeh(t)
obeys the non-linear evolution equation~3.14!. Fort.t1 the
quantum back-reaction effects are as important as the
level termh(t)2 and the dynamics is fully non-linear.

We plot, in Fig. 1,t1 as a function of the initial amplitude
h0 for different values of the couplingg.

The growth of the unstable modes in the forbidden ba
shows that particles are created copiously (;1/g for t
;t1). Initially ( t50), all the energy is in the classical zer
mode~expectation value!. Part of this energy is rapidly trans
formed into particles through parametric resonance dur
the interval 0,t,t1. At the same time, the amplitude of th
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7394 57D. BOYANOVSKY et al.
expectation value decreases as is clearly displayed in Fi
We plot in Fig. 3 the adiabatic number of particles@as de-
fined by Eq.~3.13!# as a function of time.

The momentum distribution of the produced particles f
lows the Floquet index and is peaked atq' 1

2 h0(12q̂)
@20,27#; this is shown in Fig. 4.

IV. ASYMPTOTIC NONLINEAR EVOLUTION

A. Numerical analysis

In the previous section we have summarized the dyna
cal evolution in thelinear regime in which the back-reactio
effects can be neglected and estimated thefirst new, non-
perturbative dynamical time scalet1 as that beyond which
the dynamics is fully non-linear.

In this section we present the time evolutionafter the
nonlinear timet1, that is, when the back reactiongS(t) is
important and the full solutions to the non-linear equatio
~3.1!–~3.3! are needed. We have implemented a refined
merical treatment for a wide range of initial amplitudes a
couplings. The numerical method uses a fourth order Run
Kutta algorithm and 16-point Gauss integrations for the

FIG. 1. The nonlinear time for the unbroken symmetry case a
function of h0 according to Eq.~3.25! for g51023 andg510212.

FIG. 2. The zero modeh(t) vs t for the unbroken symmetry
case withh051, g51023.
2.

-

i-

s
-

e-
-

tegrals overq and is appended with a fast Fourier transfo
~FFT! analysis to determine the frequency spectrum of
oscillatory component. The precision of our results is be
than 1 part in 105.

To begin with, we observe thatgS(t) andh2(t) oscillate
with the same frequency andoppositephase. Thus, a remark
ably cancellation takes place between these two terms in
effective mass squared. This phase opposition is analog
to Landau damping@14#. One sees such a cancellation com
paring Fig. 2 forh(t), Fig. 5 for gS(t) and Fig. 6 for
M2(t).

Moreover, we see thatM2(t) tends to a constant valu
for t→`. We find numerically that this value turns out to b

M`
2 511

h0
2

2
~4.1!

for the values ofg and h0 considered in Figs. 1–12~up to
corrections of orderg that are beyond our numerical prec

a FIG. 3. The total number of produced particles as a function
time for h051, g510212. After the exponential increase aroun
t5t15163.7 . . . ,Nad(t) keeps growing. For timest.200, Eq.
~4.30! gives a very good approximation to the numerical resu
~after averaging over oscillations!.

FIG. 4. Momentum distribution of the produced particlesn(q)
[q2Nq

ad(t) at the nonlinear timet5t1 for h054, g51029.
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sion!. It must be noticed thatM`
2 coincides with the lower

border of the allowed band~3.20!.
FurthermoreM2(t) approaches its asymptotic limit~4.1!,

oscillating with decreasing amplitude. More precisely, us
a detailed numerical analysis of the asymptotic behavior
fast Fourier transforms we find, from our numerical resu
for t.t1 @see Figs. 6~a! and 6~b!#,

M2~t!5M`
2 1

p1~t!

t
1OS 1

t2D ~4.2!

with

p1~t!5K1cos@2M`t12a2log~t/t1!1g1#1K2cos@2M0t

12b2log~t/t1!1g2#, ~4.3!

where K1, K2, g1 and g2 are constants and an excelle
numerical fit for the coefficientsa2 andb2 is given by

a2'0.16 ln
1

g
10.6

b2'0.620.16 ln
1

g
~4.4!

within a wide range of~weak! couplings and initial values o
h(0). Wealso find that the coefficientsK1, K2 vary linearly
with ln(1/g) a result that will be obtained self-consistent
below.

Since the effective mass tends asymptotically to the c
stant valueM` , the expectation valueh(t) oscillates with
frequencyM` and theq-modeswq(t) with frequency

v~q![Aq21M`
2 . ~4.5!

@Notice thatv(q)5vq(t51`).# These oscillation frequen
cies are confirmed by the numerical analysis of the evolu
of the expectation value and theq-modes. Figures 7~a!–7~c!
display the momentum distribution of the created particle
different times. One of the noteworthy features is th
whereas up to timet't1 the distribution only has one pea
at the value of maximum Floquet exponent, for larger tim

FIG. 5. The quantum fluctuationsgS(t) as a function of time
for h051, g51029.
g
d

s

-

n

t
t

s

the back-reaction effects introduce new structure and os
lations, keeping thebordersof the band fixed throughout th
evolution in the non-linear regime.

The numerical results displayed in Figs. 7~a!–7~c! show
that the position of the main peakq0(t) decreases with time
We performed a numerical fit for the time dependence of
peak position and found its behavior to be well described
the estimate

q0
2~t!'

K1

t
, ~4.6!

with the constantK1 introduced in Eq.~4.3! above. We will
provide an analytic, self-consistent description of this beh
ior below.

q-modes above and belowq0 behave quite differently.
Modes withq.q0(t) oscillate in time with constant ampli
tude. Modes withq,q0(t) also oscillate but with increasing
amplitude.

FIG. 6. ~a! The effective mass squared as a function of time
h054, g51029. Notice the asymptotic value'11h0

2/259. ~b!
The effective mass squared minus its value att5` times t as a
function of time for h052, g51029. This function oscillates in
time with constant amplitudeK11K2 and frequencies 2M`

52A11h0
2/2 and 2M052A11h0

2 @see Eq.~4.3!#.
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7396 57D. BOYANOVSKY et al.
FIG. 7. ~a! Momentum distribution of the produced particles
t525 for h054, g51029. Notice that the single peak present f
timest,t1 splits into two due to the nonlinear resonances. Ma
more peaks appear for subsequent times as shown in~b!. ~b! Mo-
mentum distribution of the produced particles att5200 for h0

54, g51029. Notice the main peak atq50.549 associated with
the main non-linear resonance (q50) and the secondary peak
q52.77 associated with the non-linear resonance atq5h0 /A2. The
positions of both peaks are correctly estimated by Eqs.~4.6! and
~4.43!, respectively.~c! Momentum distribution of the produce
particles att53000 forh051, g51023. Notice the main peak a
q50.067, in good agreement with the estimate given by Eq.~4.6!.
Equation~4.6! shows that the peak position inq decreases
monotonically as;1/At. As time evolves, more and mor
q-modes cross the peak and become purely oscillatory. O
the amplitude of theq[0 mode@which is not to be confused
with the expectation valueh(t)# keeps growing. As we shal
discuss in detail below, there is a band ofnon-linearunsta-
bility for 0 ,q,q0(t). We also find, numerically, that a
second non-linear resonance band appears just beloq
5h0 /A2 for q1(t),q,h0 /A2, and we find numerically
that

q1
2~t!'

h0
2

2
2

A2K2

t
. ~4.7!

However, the growing modes in this upper band give a mu
less important contribution to the physical magnitudes th
the first band.

The modes in between,q0(t),q,q1(t), oscillate for
timest.t1 with stationary amplitudeMq(t).

This crossover behavior of the modes can be expresse
introducing a q-dependent time scale beyond which t
modes become oscillatory. Such scale is given by

t I~q!5
K1

q2 ~4.8!

for the lower nonlinear band and

t II ~q!5
K2

h0
2

2
2q2

~4.9!

for the upper nonlinear band.
Both wq50(t) and h(t) obey Eq.~3.1! and are linearly

independent solutions, their difference arising from the i
tial conditions.wq50(t) has a growing amplitude while th
amplitude ofh(t) decreases with time. Since these are l
early independent solutions of the same equation, th
Wronskian is a non-vanishing constant. Therefore if one
lution grows, the other independent solution must decreas
order to respect the Wronskian condition~3.6!. Since the
total energy is conserved,h(t) must necessarily be a de
creasing solution.

The fact that the zero-mode amplitudeh(t) vanishes for
t5` implies thatall the available energy transforms int
particles for t5`. This conclusion which will be further
clarified in what follows is a consequence of the non-line
dynamics. It is the more remarkable because the parti
produced aremassiveand therefore there is a threshold
perturbativeparticle production. It will be seen in detail be
low that the particle production in this regime is a truly no
perturbative phenomenon associated with non-linear re
nances.

For t.t1 ,t I(q),t II (q) the effective mass squared ten
to a constant@see Eq.~4.1!#; therefore, the asymptotic behav
ior of wq(t) is given by

wq~t! 5
t→`

Aqeiv~q!t1Bqe2 iv~q!t1OS 1

t D ~4.10!

y
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FIG. 8. ~a! The amplitudeMq(t) of the mode functionwq50(t) as a function of time forh054, g51029. It grows as a power according
to Eq. ~4.22!. ~b! The amplitudeMq(t) of the mode functionwq50.3(t) as a function of time forh054, g51029. This amplitude grows
faster fort.t1 than theq50 amplitude but much slower than the exponential growth in the forbidden band 0,q,h0 /A2 for t,t1. ~c!
The amplitudeMq(t) of the mode functionwq50.4(t) as a function of time forh054, g51029. This mode grows untilt;K1 /q2;350. At
such time this mode crosses out of the nonlinear resonance band.~d! The amplitudeMq(t) of the mode functionwq50.6(t) as a function of
time for h054, g51029. This mode grows untilt;K1 /q2;150. At such time the mode crosses out of the nonlinear resonance ban
e

c-

is
with v(q) given by Eq.~4.5!. It is then convenient to define
the following functions:

Aq~t![
1

2
e2 iv~q!tFwq~t!2

i

v~q!
ẇq~t!G ,

Bq~t![
1

2
e1 iv~q!tFwq~t!1

i

v~q!
ẇq~t!G , ~4.11!

which for t.t1 are slowly varying functions oft, with the
asymptotic limits

lim
t→`

Aq~t!5Aq , lim
t→`

Bq~t!5Bq . ~4.12!

We can thus express the mode functionswq(t) in terms of
Aq(t) andBq(t) as follows:

wq~t!5Aq~t!eiv~q!t1Bq~t!e2 iv~q!t. ~4.13!

We obtain from Eq.~4.11!, for the square modulus of th
modes,
uwq~t!u25uAq~t!u21uBq~t!u212uAq~t!Bq~t!ucos@2v~q!t

1fq~t!# ~4.14!

where we have set

Aq~t!Bq~t!* 5uAq~t!Bq~t!ueifq~t!. ~4.15!

The Wronskian relation~3.6! implies that the functions
Aq(t) andBq(t) are related asymptotically through

uBq~t!u22uAq~t!u25
1

v~q!
~4.16!

plus terms that vanish asymptotically. The virtue of introdu
ing the amplitudesAq(t), Bq(t) is that their variation int is
slow, because the rapid variation of the mode functions
accounted for by the phase.

Figures 8–11 show the~scaled! modulus

Mq~t![AgAuAq~t!u21uBq~t!u2 ~4.17!
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FIG. 9. ~a! The phasefq(t) of the mode functionwq50(t) as a function of time forh054, g51029. This function follows Eq.~4.22!
with a very good approximation.~b! The phasefq(t) of the mode functionwq50.3(t) as a function of time forh054, g51029. ~c! The
phasefq(t) of the mode functionwq50.4(t) as a function of time forh054, g51029. ~d! The phasefq(t) of the mode functionwq50.6(t)
as a function of time forh054, g51029. This phase becomes an oscillatory function as the same time as the modulusMq(t) @see Fig. 8~d!#
stops growing.
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andfq(t) for some relevant cases. As shown in these figu
Mq(t) andfq(t) do not exhibit rapid oscillations with pe
riod 2p/v(q) and 2p/M` which are present inwq(t) and
h(t), respectively. That is, as anticipated above,Mq(t) and
fq(t) vary slowly with t.

For small couplingg, uwq(t)u2,uBq(t)u2 and uAq(t)u2 are
of order 1/g for q in the forbidden band and times later tha
t1 @20,27#. Therefore,Mq(t) becomes of order 1 after th
non-linear time scale for modes inside the band, and is
turbatively small for modes outside the band. Moreover,
~4.16! implies that uBq(t)u25uAq(t)u2@11O(g)# and for
modes inside the band we can approximate Eq.~4.14! as
follows:

guwq~t!u25Mq~t!2$11cos@2v~q!t1fq~t!#%@11O~g!#,
~4.18!

for 0,q,h0 /A2. This expression is very illuminating be
cause it displays a separation between the short time scal
s

r-
.

in

the argument of the cosine and the long time scales in
modulusMq(t) and phasefq(t).

We now introduce slowly varying coefficients for the o
der parameterh(t). Let us define

D~t![Ah~t!21ḣ~t!2/M`
2 ~4.19!

f~t![2M`t2arctanF ḣ~t!

h~t!
G . ~4.20!

Using the result that asymptotically the effective time dep
dent mass reaches the asymptotic limitM` and the fact that
h(t) is a real function we write

h~t!5D~t! cos@M`t1f~t!#F11OS 1

t D G . ~4.21!

We plot, in Figs. 12,D(t) andf(t) as functions oft.
We begin our numerical analysis by considering theq

50 mode function. After an exhaustive analysis we ha
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found thatAq50(t) andBq50(t) exhibit power behavior for
t.t1 ~see Figs. 8–10!. To our numerical precision thes
power laws can be fit by the following form:

Aq50~t!'t ia2@C1ta11C2t2a1#,

Bq50~t!'t2 ia2@C18t
a11C28t

2a1#,
~4.22!

where the numerical results yield, for theanomalous dynami-
cal exponents,

a1'0.27 ~4.23!

while a2 is thesameas in Eqs.~4.3!, ~4.4!.
The behavior~4.22! appears also in the evolution of th

expectation valueh(t) but with the growing power oft
absent (C15C18[0) resulting in the order parameter d
creasing with time, exhibiting a logarithmic phase:

FIG. 10. ~a! The modulus Mq(t) of the mode function
wq51.9207(t) as a function of time forh054, g510212. For times
later thant1526.85 . . . , this mode oscillates with stationary am
plitude. It lies outside both nonlinear resonance bands.~b! The
phasefq(t) of the mode functionwq51.9207(t) as a function of time
for h054, g510212.
h~t!5D0S t

t1
D 2a1

cos@M`t1a2log~t/t1!1 f 0#F11OS 1

t D G
~4.24!

where f 0 is a small constant. Therefore, comparing with E
~4.21! we find the remarkable result that theamplitudeof the
expectation value relaxes with a dynamical power law ex
nent,

D~t!5D0S t

t1
D 2a1F11OS 1

t D G , ~4.25!

and a logarithmically varying phase

f~t!5a2logS t

t1
D1 f 01OS 1

t D . ~4.26!

FIG. 11. ~a! The modulus Mq(t) of the mode function
wq52.75(t) as a function of time forh054, g51029. This function
grows until q52.75 gets out of the second nonlinear resonan
band. The estimate~4.43! (t;140) is in very good agreement wit
the numerical results plotted here.~b! The phasefq(t) of the mode
functionwq52.75(t) as a function of time forh054, g51029. This
phase changes its behavior~around t;140) when the modulus
Mq52.75(t) ceases to grow~a!.
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The timet1 appears here since it is the natural time scale
the non-linear phenomena.

The qÞ0 modes also grow with time with a power-lik
behavior for 0,q,q0(t) but with a larger power than th
q50 mode ~see Figs. 8–10!. Such growth is definitely
milder than the exponential increase of the modes inside
forbidden band in parametric resonance. Our interpreta
of this phenomenon is that 0,q,q0(t) is anon-linearreso-
nant band. It is not a resonance in a linear differential eq
tion ~as it is a parametric resonance!, but a new nonlinear
effect which is a consequence of the back reaction of
quantum fluctuations throughgS(t).

A second non-linear resonance band appears just be
q5h0 /A2 for q1(t),q,h0 /A2. However, we find nu-
merically that the contribution from this upper band to phy
cal quantities such as particle production is much sma
than the first band. The modes in between,q0(t),q
,q1(t), oscillate for timest.t1 with stationary amplitude
Mq(t).

The nonlinear resonant bands become narrower as a f

FIG. 12. ~a! The amplitudeD(t) of the zero modeh(t) as a
function of time for h054, g51029. This function exhibits a
power like decrease according to Eq.~4.25!. ~b! The phasef(t) of
the zero modeh(t) as a function of time forh054, g51029. This
function exhibits a logarithmic behavior according to Eq.~4.26!.
r

e
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e
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tion of time; i.e., q0(t) and h0 /A22q1(t) decrease with
time @q1(t) increases#.

The growth of the amplitudesMq(t) in the nonlinear
resonant bands for a fixedq stops whenq crosses the border
q0(t) or q1(t). After that time, suchq-modes oscillate with
constant amplitude; this behavior is displayed in Fig. 8~d!.
There is a crossover forq;q0(t) and for q;q1(t) from
monotonic growth to oscillatory behavior.

The phasefq(t) exhibits an analogous behavior@see Fig.
9~d!#.

The particle distribution exhibits marked peaks atq
'q0(t) and atq'q1(t), which are clearly displayed in Fig
7. Notice that the peak nearq'q1(t) has a much smalle
amplitude.

The mode exactly atq5h0 /A2 has an analogous beha
ior to theq50 mode~compare Fig. 13 with Fig. 8!. We find
to our numerical accuracy that the amplitudes behave as

FIG. 13. ~a! The amplitude Mq(t) of the mode function
wq5h0 /A2(t) as a function of time forh054, g51029. ~This cor-
responds to the upper border of the forbidden band.! This function
exhibits a power-like increase according to Eq.~4.27!. ~b! The
phasefq(t) of the mode functionwq5h0 /A2(t) as a function of
time for h054, g51029. ~This corresponds to the upper border
the forbidden band.! This phase exhibits a logarithmic behavio
according to Eq.~4.27!.
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Aq5h0 /A2~t!'t ib2@E1tb11E2t2b1#,

Bq5h0 /A2~t!'t2 ib2@E18t
b11E28t

2b1#.
~4.27!

The numerical calculations yield, for the dynamical exp
nents,

b1'0.19 ~4.28!

andb2 is thesameexponent as in Eqs.~4.3!, ~4.4!.
The growth of theq-modes in both nonlinear resona

bands leads to particle production. We see from Fig. 3
the number of particles continues to grow after the nonlin
time t5t1. Although this growth ismuch slowerthan before
t5t1, the total number of particles producedafter the time
t1 is substantial and turns to be of the same order of ma
tude than those produced beforet1.

The adiabatic number of produced particles,Nq
ad(t), can

be expressed for late times in terms of the mode amplitu
Mq(t) as follows:

Nq
ad~t!5

1

2g
v~q!Mq~`!21OS 1

t D1O~g! ~4.29!

where we used Eqs.~3.12!, ~4.10! and ~4.17!. Notice that
asymptotically the adiabatic particle number depends so
on the long time scale as the terms containing the fast o
lating function cos@2v(q)t1fq(t)# cancel out to ordert0 for
larget. This is one of the important advantages of this de
nition of the particle number.

For t@t1 the total number of produced particles a
proaches its asymptotic valueNad(`) as

Nad~t!5Nad~`!2
G

t
1OS 1

t2D , ~4.30!

where

gNad~`!5
1

4p2E
0

h0 /A2
q2dqv~q!Mq~`!21O~g!

~4.31!

andG is positive.
The numerical analysis shows thatgNad(`) andgG de-

pend very little ong for smallg,1023. BothNad(`) andG
grow with h0. Precise numerical fits yield the behavior

gNad~`!;0.007h0
2.8 ~4.32!

for a wide range of couplings andh0.
At this point we summarize the results from the numeri

analysis for the unbroken symmetry case:
The effective time dependent mass reaches a fi

asymptotic valueM` in the form given by Eqs.~4.2!, ~4.3!,
~4.4!. This in turn means that the modes becomefreeasymp-
totically with plane wave behavior and the non-linear se
consistent coupling between modes vanishes. The largN
limit yields free modes in the infinite time limit.

For weak coupling and fort.t1 there is a separation o
time scales, with a short time scale corresponding to osc
-

at
r

i-

es

ly
il-

-

l

te

-

a-

tions with frequencies corresponding to a mass'M` and a
longer time scale that depends ont1.

The amplitude of the expectation value relaxes with
power law with non-universal dynamical exponents an
logarithmic phases that vary solely on the long time sca
The expectation value vanishes asymptotically, despite
fact that its energy is dissipated into massive particles
which there are perturbative thresholds for production. T
relaxation mechanism isnon-linear and clearly non-
perturbative even at long times.

For t.t1 there are non-linear resonant bands which fo
at the edges of the original band for parametric amplificati
The width of these non-linear resonant bands vanishes
ymptotically, resulting in all modes oscillating harmonical
for asymptotically large time. Fort5` both unstable non-
linear bands@0,q,q0(t) andq1(t),q,h0 /A2# shrink to
zero. The crossover from power-like to oscillatory behav
takes place at theq-dependent time scales given by Eq
~4.8!, ~4.9!.

The particle distributionNq
ad(t) has a finite and nontrivia

limit for t→`. In particular, a consequence of the non-line
resonant bands is thatNq

ad(`) will be peaked atq50. The
asymptotic form of the distribution is a function of the initia
conditions and the couplingg. In particular,Nq

ad(`) is of
order 1/g for q,h0 /A2 and it is of order 1 forq.h0 /A2.
That is, the support of the particle distribution valid for sho
times t,t1 survives for all times includingt5`. Further-
more, for weak coupling the large number of particles ins
this band allows us to interpret this asymptotic state a
non-perturbative semiclassical condensate in the unbro
symmetry phase that has formed dynamically through
relaxation of the initial energy.

B. Asymptotic analysis I: Perturbation theory

In the previous section we presented an exhaustive
merical study of the evolution of the mode functions and
expectation value. In this section we provide an analytic p
turbative approach to explain and understand the nume
results.

In order to study analytically the asymptotic behavior f
late times, it is convenient to write the equations for t
expectation value and mode functions as follows:

F d2

dt2
1q21M`

2 1w~t!Gwq~t!50,

F d2

dt2
1M`

2 1w~t!Gh~t!50 ~4.33!

where

w~t![M2~t!2M`
2 5

p1~t!

t
1OS 1

t2D ~4.34!

andp1(t) given by Eq.~4.3! will be treated as a small per
turbation fort@t1.

These equations can be written as integral equations u
the proper Green’s function. That is,
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wq~t!5Aqeiv~q!t1Bqe2 iv~q!t

2E
t

`

dt8
sin v~q!~t82t!

v~q!
w~t8!wq~t8!.

~4.35!

Here we used the advanced Green’s function that obeys

F d2

dt2
1q21M`

2 G H u~t82t!
sin@v~q!~t82t!#

v~q! J 5d~t2t8!.

~4.36!

Sincew(t)5O(1/t), we can generate the asymptotic e
pansion forwq(t) just by iterating Eq.~4.35!. We find

wq~t!5Aqeiv~q!t1Bqe2 iv~q!t

2E
t

`

dt8
sin v~q!~t82t!

v~q!

p1~t8!

t8
@Aqeiv~q!t8

1Bqe2 iv~q!t8#dt81OS 1

t2D . ~4.37!

The integrals here can be performed in closed form up
terms ofO(1/t2) by using Eq.~4.3! for p1(t). The result is
given by

wq~t!5S AqF11
K1 sin C1~t!

4iM`v~q!t
1

K2 sin C2~t!

4iM0v~q!t G
1

Bq

8v~q!tH K1Fei „C1~t!22tv~q!…

v~q!2M`
1

e2 i „C1~t!12tv~q!…

v~q!1M`
G

1K2Fei „C2~t!22tv~q!…

v~q!2M0
1

e2 i „C2~t!12tv~q!…

v~q!1M0
G J Deiv~q!t

1S BqF12
K1 sin C1~t!

4iM`v~q!t
2

K2 sin C2~t!

4iM0v~q!t G
1

Aq

8v~q!tH K1Fe2 i „C1~t!22tv~q!…

v~q!2M`
1

ei „C1~t!12tv~q!…

v~q!1M`
G

1K2Fe2 i „C2~t!22tv~q!…

v~q!2M0

1
ei „C2~t!12tv~q!…

v~q!1M0
G J De2 iv~q!t1OS 1

t2D , ~4.38!

where

C1~t![2M`t12a2 log
t

t1
1g1

and

C2~t![2M0t12b2 log
t

t1
1g2 .

These expressions display resonant denominators
v(q)5M` and v(q)5M0. These resonances correspo
to q50 andq5h0 /A2, respectively. This perturbative ap
proach is expected to be valid when the first order correc
o

or

n

is smaller than the zeroth order correction. A necessary c
dition for its validity is given by

K1

v~q!t@v~q!2M`#
,1. ~4.39!

This implies, forq significatively smaller thanM` ,

q2.
K1

t
, ~4.40!

where we approximated

v~q!.M`1
q2

2M`
. ~4.41!

Thus in the regime where Eq.~4.40! holds the behavior of
the mode functions isoscillatory and given by Eq.~4.38!.
This is in agreement with the numerical results discusse
Sec. IV A. The equality sign in Eq.~4.40! yields Eq.~4.6! for
the peak position which was found numerically and theref
now interpreted as the result of a resonance condition. S
peaks can be seen also in the mode functions amplitu
displayed in Figs. 8, 11.

The resonance atq5h0 /A2 can be treated analogousl
The necessary condition for the validity of the perturbat
approach is then

K2

v~q!t@v~q!2M0#
,1.

Nearq5h0 /A2 we can write

v~q!.M01
h0~q2h0 /A2!

A2M0

.

Therefore, the oscillatory behavior~4.38! applies for

h0

A2
2q.

K2

h0t
. ~4.42!

The equality sign in Eq.~4.42! yields the peak positions o
the mode function amplitudes near such resonance:

q1~t!5
h0

A2
2

K2

h0t
. ~4.43!

These results are in remarkable agreement with our
merical calculations~see Figs. 8, 11!.

The position of the main peak in the particle distributio
precisely corresponds to the situation whereq2 is balanced
by the amplitude in the ‘‘potential’’2p1(t)/t. Namely, for
q2.K1 /t, we have oscillating modes and, forq2,K1 /t,
resonant~growing! modes. The same argument applies to
secondary peak.

C. Asymptotic analysis II: Multitime scales

The perturbative analysis took us a long ways towa
understanding the presence of the non-linear resonance
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sociated with back-reaction effects and revealed the pos
of these resonances in complete agreement with the num
cal study.

However, to describe the evolution of the modesinside
these bands the perturbative approach is insufficient an
non-perturbative method of resumming the potential sec
terms associated with the resonances must be implemen

The main observation from the numerical analysis is t
for weak coupling there are two widely separated tim
scales, the short time scale associated with oscillations
frequency determined by the asymptotic value of the eff
tive mass and a long scale associated with the non-lin
time t1. This suggests to implement a multitime scale ana
sis @28# which resums the secular terms and results in auni-
form expansion. This method implements adynamical renor-
malization group resummation which was alread
implemented successfully to non-equilibrium evolution
quantum field theory@29# and previously applied to quantum
mechanical problems@30,31#.

In this section we implement the method of multitim
scales to the equations for the expectation value and thq-
modeswhich we write in the form

F d2

dt2
1q21M2~t!Gwq~t!50 ~4.44!

F d2

dt2
1M2~t!Gh~t!50 ~4.45!

and use the asymptotic behavior of the effective m
squared obtained from the detailed numerical analy
M2(t) for t.t1:

M2~t!5M`
2 1

p1~t!

t
1OS 1

t2D ~4.46!

p1~t!5K1cos@2M`t12a2 ln~t/t1!1g1#

1K2cos@2M0t12b2 ln~t/t1!1g2# ~4.47!

M`
2 511

h0
2

2
, M0

2511h0
2

with t1' ln@1/g# @see Eq.~3.25!# being the non-linear time
scale.

As emphasized above, the non-perturbative dynamics
generated a new time scalet1 and for weak coupling there
are at least two widely separated time scales, the short
scale corresponding to the oscillatory behavior ofO(M`

21)
and the long time scale for non-linear relaxation of the or
of t1.

In order to implement the multitime scale analysis it
convenient to introduce the small quantitye and the follow-
ing two time variables (T0 andT1) by
n
ri-

a
ar
d.
t

th
-
ar
-

s
is

as

e

r

e5
1

t1
, T05t, T15eT05

t

t1
,

d

dt
5D01eD1 , Dn5

d

dTn
, n50,1

and to writep1(t)/t in a manner that displays at once th
dependence on the short and long time scales:

p1~t!

t
5eG~T0 ,T1!

G~T0 ,T1!5
K1

T1
cos@2M`T012a2 ln~T1!1g1#

1
K2

T1
cos@2M0T0

12b2 ln~T1!1g2#. ~4.48!

To O(e) the multitime scale analysis of the asympto
time dependence ofh, wq begins by proposing the following
uniform perturbative expansion for the solution:

h~T0 ,T1!5h~0!~T0 ,T1!1eh~1!~T0 ,T1!1•••

wq~T0 ,T1!5wq
~0!~T0 ,T1!1ewq

~1!~T0 ,T1!1•••.
~4.49!

D. q50 modes:h and wq50

We generically callf (T0 ,T1) bothh andwq50. The only
difference between these is that whereash is always real,
wq50 is complex; this difference will be accounted for in th
final form below. Comparing powers ofe, we find the fol-
lowing equations for theq50 modes to first order ine:

@D0
21M`

2 # f ~0!~T0 ,T1!50

@D0
21M`

2 # f ~1!~T0 ,T1!52@2D0D11G~T0 ,T1!#

3 f ~0!~T0 ,T1!. ~4.50!

The solution to Eq.~4.50! is obviously

f ~0!~T0 ,T1!5A~T1!eiM`T01B~T1!e2 iM`T0 ~4.51!

where forh the reality condition impliesB(T1)5A* (T1). If
the solution of Eqs.~4.50! is sought in terms of the Green’
function of the differential operator on the left hand side, o
finds that the term proportional to cos@2M`T0# in G(T0 ,T1)
would give rise to secular terms. Therefore the condition
a uniform expansion requires that the coefficients of th
secular terms vanish. This leads to the following different
equations for the dependence of the coefficients on thelong
time scaleT1:

D1A2
iK 1

4M`T1
ei2a2 ln~T1!1 ig1B50

D1B1
iK 1

4M`T1
e2 i2a2 ln~T1!1 ig1A50. ~4.52!
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We find the solutions

A~T1!5a6e~ i /2![2a2 ln~T1!1g1]T1
6a1 ,

B~T1!5b6e2~ i /2![2a2 ln~T1!1g1]T1
6a1 ,

a15AS K1

4M`
D 2

2a2
2, b65e7 ida6 ,

tand5
a1

a2
. ~4.53!

This solution confirms thepower law relaxation found
numerically and provides the consistency condition

K1
2516M`

2 ~a1
21a2

2!.

This condition is verified numerically to our level of pre
cision. In addition for weak coupling the numerical eviden
givesa1

2!a2
2 @see Eqs.~4.4! and ~4.23!#, leading to

K1'4M`a2 . ~4.54!

The final form of the solution is given by a linear comb
nation of the two independent solutions above, yielding

f ~T0 ,T1!5T1
a1C1cosFM`T01a2 ln~T1!1

g1

2
1

d

2G
1T1

2a1C2cosFM`T01a2 ln~T1!1
g1

2
2

d

2G
1O~e!

where forh the coefficientC2 is real andC150, whereas
they are complex and bothÞ0 for wq50. TheO(e) correc-
tion quoted above isboundas a function of time as it arise
from the perturbative solution without secular terms.

Therefore we quote the final form of the solutions

h~t!5D0S t

t1
D 2a1

cosFM`T01a2 ln~T1!1
g1

2
2

d

2G
wq50~t!5C1S t

t1
D a1

cosFM`T01a2 ln~T1!1
g1

2
1

d

2G
1C2S t

t1
D 2a1

cosFM`T01a2 ln~T1!1
g1

2
2

d

2G .
In addition, we have checked the constancy of the Wron
ian

wq50~t!ẇq50* ~t!2ẇq50~t!wq50* ~t!

52i

5M` sin d@C1C2* 2C1* C2#,

leading to the conclusion that neither of the coefficientsC6

can vanish forwq50. It is a matter of straightforward algebr
to find that these are indeed solutions of Eqs.~4.44! ~for q
k-

50) and~4.45! up to terms that fall off faster in time. Fur
thermore, auniform perturbative expansion ine can now be
carried out to the next order.

E. qÞ0 modes

Proposing a uniforme-expansion for the mode function
and keeping only up toO(e) we find the equation

@D0
212eD0D11q21M`

2 1eG~T0 ,T1!#@wq
~0!~T0 ,T1!

1ewq
~1!~T0 ,T1!#50. ~4.55!

SinceG contains the oscillating factors cos@2M`T0# and
cos@2M0T0#, a naive perturbative expansion ine will pro-
duce secular terms forvq'M` , M0, i.e. for q'0, M`

2

2M0
25h0

2/2; these were the values for which the reson
denominators in the perturbative expansion vanish. The
fore for these values ofq we must implement a multi-time
scale analysis to resum the secular terms.

1. Small but nonzero q2

A consistent expansion ine can be implemented by writ
ing q25eq1

2 with q1'O(1). This is a nonrelativistic ap-
proximation since thenq2 is much smaller thanM`

2 . The
zeroth order solution is clearly

wq
~0!~T0 ,T1!5Aq~T1!eiM`T01Bq~T1!e2 iM`T0.

Secular terms in a naive perturbative expansion will ar
from the term proportional toK1 in p1(t).

It is convenient to define the coefficients

aq~T1!5e2 i [a2 ln~T1!1~1/2!g1]Aq~T1!,

bq~T1!5ei [a2 ln~T1!1~1/2!g1]Bq~T1!.
~4.56!

Requesting that the coefficients of the secular terms in
perturbative solution vanish we obtain the following diffe
ential equations:

D1aq1
ia2aq

T1
2

iq1
2

2M`
aq2

iK 1

4M`T1
bq50

D1bq2
ia2bq

T1
1

iq1
2

2M`
bq1

iK 1

4M`T1
aq50.

These equations simplify considerably by introducing t
variablez as

z[
q2T1

2M`
. ~4.57!

Then, Eqs.~4.56! can be rewritten as two decoupled seco
order differential equations:

Fz
d2

dz2 1
d

dz
1z2 i 22a22

a1
2

z Gaq~z!50 ~4.58!

Fz
d2

dz2 1
d

dz
1z1 i 22a22

a1
2

z Gbq~z!50.
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These are confluent hypergeometric equations with the s
tions

Aq~z!5zia221/2Mia221/2,6a1
~2iz!,

Bq~z!5z2 ia221/2M 2 ia221/2,6a1
~2iz! ~4.59!

whereMl,m(z) stands for a Whittaker function@32#. We find
the asymptotic behavior to be given by@32#

Aq~z! 5
z→0

~2i !1/26a1zia26a1,

Bq~z! 5
z→0

~2i !1/26a1z2 ia26a1,

and

Aq~z! 5
z→`

~2i !2 ia211/2
G~162a1!

G~12 ia26a1!
eiz,

Bq~z! 5
z→`

~2i ! ia211/2
G~162a1!

G~11 ia26a1!
e2 iz.

In Fig. 14 we plotuAq(z)u and the phase ofe2 izAq(z) as a
function of z. One sees that the behavior of the numerica
computed modes in Figs. 8~c!, 8~d!, 9~c! and 9~d! is accu-
rately reproduced.

Using the integral representation for the solutions@32#,
we can find where the functionsAq(z) andBq(z) oscillate
with z and where they do not:

Aq~z!5kzia26a1E
0

1dt

t
ei $2zt1a2 log [~12t !/t] %@ t~12t !#6a1

wherek is a constant. This integral has stationary points

t5
1

2F16A12
2a2

z G .
For z.2a2 the stationary points are real, indicating a

oscillatory behavior, whereas they are complex forz,2a2,
implying a non-oscillatory behavior. We see from Eq
~4.57! and ~4.54! that the conditionz52a2 precisely corre-
sponds to the peak position~4.6!.

2. q2'M0
22M`

2

In this region of momentum we writeq25M0
22M`

2

1eq2
2 in order to implement a multi-time-scale analysis.

this case, secular terms in the perturbative expansione
will arise from the term proportional toK2 in p1(t), i.e. the
term cos@2M0T0#.

Using the same notation as in the previous subsection
zeroth order solution is now

wq
~0!~T0 ,T1!5Aq~T1!eiM0T01Bq~T1!e2 iM0T0.

~4.60!

Defining the coefficients

aq~T1!5e2~ i /2![2b2 ln~T1!1g2]Aq~T1!
u-

y

t

.

he

bq~T1!5e~ i /2![2b2 ln~T1!1g2]Bq~T1!.

Requesting that the coefficients of the secular terms in
perturbative solution vanish we obtain the following diffe
ential equations:

D1aq1 ib2

aq

T1
2 i

q2
2

2M0
aq2 i

K2

4M0T1
bq50

D1bq2 ib2

bq

T1
1 i

q2
2

2M0
bq1 i

K2

4M0T1
aq50.

As in the previous case these coupled first order differ
tial equations reduce to two decoupled confluent hyperg
metric equations with solution

FIG. 14. ~a! The pressure divided by the initial energy as
function of time forh051, g51026. Notice the asymptotic value
p(`)/«'1/3(112/h0

2)51/9. ~b! The pressure minus its value a
t5` timest as a function of time forh051, g51026. This func-
tion oscillates in time with constant amplitude and frequenc
2M`52A11h0

2/2 and 2M052A11h0
2.
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Aq~y!5yib221/2Mib221/2,6b1
~2iy !,

Bq~y!5y2 ib221/2M 2 ib221/2,6b1
~2iy !

where

y[
~h0

2/22q2!

2M0
t.

The transition from non-oscillatory to oscillatory behavi
takes place here aty52b2, implying that the modes with

q2,
h0

2

2
2

4b2M0

t

will grow in time.
The solutions for the mode withq5h0 /A2 correspond to

the exponents

wq5
h
A2

5t6b11 ib2

b15AS K2

4M0
D 2

2b2
2.

This analysis leads to the conclusion that as a consiste
condition, the constantsK1 andK2 can be expressed as fo
lows:

K1'4A11h0
2/2~0.16 logg2110.6!,

K2'4A11h0
2

3~20.16 logg2110.6!, ~4.61!

where we used Eqs.~4.4!, ~4.23! and ~4.28!.
Therefore the effective mass squared behaves as

M2~t!5M`
2 1

4

t
$M`a2 cos@2M`t12a2 log~t/t1!1g1#

1M0b2cos@2M0t12b2 log~t/t1!1g2#%

1OS 1

t2D .

We have confirmed these results numerically within o
precision.

These results are noteworthy; by implementing a mu
time scale analysis which is the dynamical equivalent o
renormalization group resummation@29# we have obtained a
power law relaxation for the expectation value withnon-
universal dynamical anomalous dimensions. The logarithmic
phases are clearly a consequence of the 1/t falloff of the
potential w(t) in the mode equations~4.33! just as in the
Coulomb problem. The power laws originate from the
summation of the secular terms arising from the non-lin
resonances, a non-perturbative result.

F. Energy and pressure

The energy-momentum tensor for this theory
Minkowski spacetime is given by
cy

r

-
a

-
r

Tmn5]mFW •]nFW 2gmnF1

2
]aFW •]aFW 2V~FW •FW !G .

~4.62!

Since we consider translationally as well as rotationa
invariant states, the expectation value ofTmn takes the fluid
form

E5
1

NV ^T00~x!&5
1

NVK 1

2
FẆ 21

1

2
~¹FW !21V~F!L

NVP~t!5^T11~x!&5^T22~x!&5^T33~x!&

5 K 1

3
~¹FW !21FẆ 22T00~x!L ,

with all off-diagonal components vanishing.
Hence,

P~t!1E5
1

NVK 1

3
~¹FW !21FẆ 2L

takes a particularly simple form.
Both E and P(t)1E can be expressed in terms of th

zero mode and theq-modes. All derivations including the
renormalization procedure can be found in Refs.@20,27,33#.
We just quote the final results in the unbroken symme
case, referring the reader to the above references for de

Eren5
2uMRu4

lR
H 1

2
ḣ21

1

2
~11h2!M2~t!2

M4~t!11

4

1gF«F~t!1
1

2
J1~h0!M2~t!1

M4~t!

32

1
M4~t!

8
lnS 1

2
M~t! D1C1~h0!G J , ~4.63!

where@20,27#

«F~t!52E
0

`

q2dqvq~t!Nq
ad~t!

J1~h0!52
11h0

2

4 F11 logS 11h0
2

4 D G
C1~h0!52

3

4
~11h0

2!J1~h0!.

Since energy is conserved~as can be verified explicitly by
using the equations of motion!, it is equal to the initial value,
given by

Eren5
2uMRu4

lR
«5

2uMRu4

lR
H 1

2
h0

2F11
1

2
h0

2G J . ~4.64!

The renormalized energy plus pressure takes the f
@20,27#
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P~t!ren1Eren5
2uMRu4

lR
@«1p~t!#

5
2uMRu4

lR
H ḣ21gE

0

`

q2dq

3S Uẇq~t!U21
1

3
q2Uwq~t!U2

2
4

3
q2
M2~t!

3q

1
u~q2K !

12q3

d2

dt2 @M2~t!# D J .

For times aftert1 we can restrict ourselves to the cont
bution from the expectation valueh and the modes in the
band 0,q,h0 /A2. Modes withq.h0 /A2 only yield per-
turbatively small correctionsO(g). Using Eq.~4.11! we can
write the integrands in Eqs.~4.63!–~4.65! as follows:

guwq~t!u25Mq~t!2$11cos@2v~q!t1fq~t!#%@11O~g!#,

guẇq~t!u25v~q!2Mq~t!2$12cos@2v~q!t1fq~t!#%

3@11O~g!#.

Inserting these expressions in Eqs.~4.63!–~4.65! yields

«5
1

2
ḣ21

1

2
~11h2!M2~t!2

M4~t!11

4

1E
0

h0 /A2
q2dq@q21M2~`!#Mq~t!21O~g!.

Taking now thet→` limit yields

«52
1

16
h0

41E
0

h0 /A2
q2dq@q21M2~`!#Mq~`!21O~g!.

~4.65!

We analogously find, for«1p(t),

«1p~t!5E
0

h0 /A2
q2dqF4

3
q21M2~`!GMq~t!2

2E
0

h0 /A2
q2dq cos@2v~q!t1fq~t!#

3F2

3
q21M2~`!GMq~t!21O~g!.

For large t the integral containing the oscillating cosinu
dies off. We thus obtain, combining both expressions,

p~`!5
1

3E0

h0 /A2
q4dqMq~`!21

1

16
h0

41O~g!.

~4.66!
G. Sum rules and the equation of state

Although we do not know the analytic form of the partic
distribution for late times@see Eq.~4.29!#, we are able to
compute its first two moments in the following way.

First, we can express the quantum fluctuationsgS(t) in
terms of the modes using Eqs.~3.7! and ~4.18!:

gS~t!5E
0

h0 /A2
q2dqMq~t!2$11cos@2v~q!t1fq~t!#%

1O~g!.

For large t the integral containing the oscillating cosinu
dies off. Using now thath(`)50, M2(t)511h(t)2

1gS(t) and Eq.~4.1! we obtain the first sum rule

E
0

h0 /A2
q2dqMq~`!25

1

2
h0

21O~g!.

Furthermore, equating the expression for the energy fot
5` @Eq. ~4.65!# with its initial value@Eq. ~4.64!# yields the
second sum rule

E
0

h0 /A2
q4dqMq~`!25

1

16
h0

41O~g!.

Combining the sum rules with the expressions for the
ergy and pressure, Eqs.~4.65! and ~4.66!, yields

p~`!5
1

12
h0

41O~g!

and

p~`!

«
5

1

3S 11
2

h0
2D 1O~g!.

We see that the bath of produced particles does not beh
asymptotically either as radiation or as nonrelativistic ma
but their equation of state interpolates between these
limits as a function of the initial amplitude ofh.

For largeh0, we find, as expected, radiation behavior

p~`!

«
5

h0→`1

3
1OS 1

h0
2D .

For smallh0, we find a cold matter behavior

p~`!

«
5

h0→01

6
h0

21O~h0
4!→0.

We notice that the energy and the asymptotic pressure
be expressed in a form that suggests a two component
formed by nonrelativistic and massless particles:

p~`!503
h0

2

2
1

1

3

h0
4

4

«5
h0

2

2
1

h0
4

4
.



o

ri

n

es

ro-

lue
e

o
tes.
n-
nd-

pe
n

c-

e
re-
dal

m-
i-
n

he
gs

he
gs

7408 57D. BOYANOVSKY et al.
h0
2/2 and h0

4/4 may be interpreted as the contributions
massless and massive particles to the total energy.

The pressure approaches its asymptotic limitp(`), oscil-
lating with decreasing amplitude. We find from our nume
cal analysis@see Figs. 15~a! and 15~b!# that this amplitude
falls off as;1/t. More precisely we find, for times later tha
t1,

p~t!5p~`!1
q1~t!

t
1OS 1

t2D .

Here,q1(t) oscillates with time with the same frequenci
2M` and 2M0 as the effective mass squared@see Eq.~4.3!#.

FIG. 15. ~a! Modulus of the functionAq(T1) obtained through
multi-time-scale analysis as a function ofq2t/M` . We give in Eq.
~4.59! its expression in terms of Whittaker functions. Notice t
resemblance with the full numerical solutions displayed in Fi
8~c! and 8~d!. ~b! Phase of the functionAq(T1) obtained through
multi-time-scale analysis as a function ofq2t/M` . We give in Eq.
~4.59! its expression in terms of Whittaker functions. Notice t
resemblance with the full numerical solutions displayed in Fi
9~c! and 9~d!.
f

-

V. BROKEN SYMMETRY

In the case of broken symmetryMR
252uMR

2 u and the field
equations in theN5` limit become@20,27,34#

ḧ2h1h31gh~t!S~t!50 ~5.1!

F d2

dt2
1q2211h~t!21gS~t!Gwq~t!50 ~5.2!

whereS(t) is given in terms of the mode functionswq(t)
by the same expression of the previous case, Eq.~3.7!. Here,
M2(t)[211h(t)21gS(t) plays the role of a~time de-
pendent! renormalized effective mass squared.

The choice of boundary conditions is more subtle for b
ken symmetry. The situation of interest is when 0,h0

2!1,
corresponding to the situation where the expectation va
rolls down the potential hill, beginning very close to th
origin. The modes withq2,12h0

2 are unstable and thus d
not represent simple harmonic oscillator quantum sta
Therefore onemustchoose a different set of boundary co
ditions for these modes. Our choice will be that correspo
ing to the ground state of anupright harmonic oscillator.
This particular initial condition corresponds to a quench ty
of situation in which the initial state is evolved in time in a
inverted parabolic potential~for early timest.0). Thus we
shall use the following initial conditions for the mode fun
tions:

wq~0!5
1

AVq

, ẇq~0!52 iAVq, ~5.3!

Vq5Aq2111h0
2 for q2,qu

2[12h0
2 ,

Vq5Aq2211h0
2 for q2.qu

2 , 0<h0
2,1. ~5.4!

along with the initial conditions for the expectation valu
given by Eq.~3.3!. Furthermore, because the adiabatic f
quencies cannot be defined for the modes in the spino
band, we use the definition, Eq.~3.8!, for the particle num-
ber.

A. Early time evolution: Spinodal unstabilities

As in the unbroken case, forg!1 we can neglectgS(t)
in Eqs.~5.1!,~5.2! until the spinodal timet1 defined to be the
time scale at which the quantum fluctuations become co
parable to the ‘‘tree level’’ terms. In addition, when the in
tial value of h0 is zero or much smaller than 1, we ca
neglecth(t)2 in the mode equations, which simplify to

F d2

dt2
1q221Gwq~t!50. ~5.5!

The solution of Eqs.~5.5! for the initial conditions~5.3!
takes the form

wq~t!5
1

2A12q4
$@A12q22 i ~11q2!#etA12q2

.

.
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1@A12q21 i ~11q2!#e2tA12q2
%

for 0,q2,1. The modes with higher wave numberq2.1
do not grow and their contribution togS(t) is subleading at
long times.

This solution exhibits the typical exponential growth
spinodal unstabilities. Very soon, the decreasing expone
can be neglected and we can set

wq~t!'
1

2A12q4
@A12q22 i ~11q2!#etA12q2

~5.6!

to a very good approximation.
Using such mode functions we can estimate the quan

fluctuationsgS(t) for short times. Insertingwq(t) given by
Eq. ~5.6! in Eq. ~3.7! the integral is dominated byq50 for
growing timest:

S~t!'
1

2E0

120 q2dq

12q4F11
q2

2
~11q2!Ge2tA12q2

'
Ap

8t3/2e2tF11OS 1

t D G . ~5.7!

Using this estimate for the quantum fluctuationsS(t), we
can now find the value of the spinodal time scalet1 at which
the back reaction becomes comparable to the classical t
in the differential equations. Such a time is defined
gS(t1);1. From the results presented above, we find

t1'
1

2
logFA8

p

1

gG1
3

4
log logF 8

Apg
G1•••. ~5.8!

The time interval fromt50 to t;t1 is when most of the
particle production takes place. Aftert;t1 the quantum
fluctuation shut off the exponential growth of the modes a
particle production slows down dramatically.

TABLE I. Spinodal time estimates from the analytic formu
~5.8! compared with the numerical results for different values of
couplingg5102n.

n52 log10g Spinodal time (t1) Numerical result
estimate fort1

5 7.85 7.87

6 9.14 9.14

7 10.40 10.40

8 11.65 11.40

9 12.89 12.87

10 14.14 14.10

12 16.55 16.90

14 19.00 19.29
ial

m

ms
y

d

We list in Table I the values of the spinodal time accor
ing to Eq.~5.8! and the corresponding position of the max
mum of gS(t) for different values ofg5102n and a fixed
h051024. We see that the two values are equal up to 2%

B. Asymptotic nonlinear evolution I: Numerical analysis

We present in this section the numerical analysis for
time evolutionafter the spinodal timet1 when the quantum
back reaction fromgS(t) becomes important and a full so
lution of the non-linear equations~5.1!, ~5.2! is required. We
have carried out a numerical integration of the integ
differential equations for a wide range of initial amplitud
and couplings, implementing the same algorithms and w
the same precision as in the unbroken symmetry case be
In the broken symmetry case we find numerically that
effective mass squared

M2~t![211h~t!21gS~t! ~5.9!

vanishes fort→`.
A detailed analysis that includes the FFT reveals t

M2(t) tends to zero, oscillating with decreasing amplitud
For t.t1 a very precise fit is obtained in the form~see Fig.
16!

M2~t!5
A

t
s~t! cosF2t12c2s~t! logS t

t1
D1gG1OS 1

t 2D
~5.10!

whereA, c2 and g are constants ands(t) is a slowly de-
creasing function withs(t1)'1. This slowly varying func-
tion can be well approximated by

s~t!'e2~t/t2!x
. ~5.11!

For small initial amplitudes (h0,1023), A andt0 are inde-
pendent ofh0 and their dependence ong can be numerically
fit as follows:

FIG. 16. The effective mass squared as a function of time
broken symmetryh051025, g510212. This function oscillates in
time as described by Eq.~5.10!.
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x'0.25, t0;1/Ag, A'0.64 log
1

g
21.9,

c2'0.620.16 log
1

g
~5.12!

for small couplings (g,1024).
These expressions reveal that aseconddynamical time

scalet2 emerges in the broken symmetry case. Furtherm
this new scale is widely separated from the non-linear sc
i.e. t2@t1 for weak coupling and small initial amplitude.

We also notice that the frequency of the oscillation of t
effective mass is given by the initial mass~for very small
h0), which is in agreement with the situation in the unbrok
phase@see Eq.~4.3!# since in this broken symmetry case th
effective mass vanishes asymptotically.

A power law relaxation was also reported in@34# for the
broken symmetry phase.

C. Evolution of the mode functions

Since the effective mass vanishes asymptotically,
q-modeswq(t) oscillate as

wq~t! 5
t→`

Aqeiqt1Bqe2 iqt1OS 1

t D , ~5.13!

behavior that is confirmed in our numerical analysis.
As for the unbroken symmetry case, it is convenient

introduce slowly varying amplitudesAq(t) andBq(t),

Aq~t![
1

2
e2 iqtFwq~t!2

i

q
ẇq~t!G ,

Bq~t![
1

2
e1 iqtFwq~t!1

i

q
ẇq~t!G , ~5.14!

to separate the evolution on short time scales from tha
the long time scales. We can thus express the mode func
wq(t) in terms ofAq(t) andBq(t) as follows:

wq~t!5Aq~t!eiqt1Bq~t!e2 iqt. ~5.15!

We find, from Eqs.~5.13!, ~5.14!,

lim
t→`

Aq~t!5Aq , ~5.16!

lim
t→`

Bq~t!5Bq . ~5.17!

We obtain, from Eq.~5.14! for the square modulus of th
modes,

uwq~t!u25uAq~t!u21uBq~t!u212uAq~t!Bq~t!u

3cos@2qt1fq~t!# ~5.18!

where we set

Aq~t!Bq~t!* 5uAq~t!Bq~t!ueifq~t!. ~5.19!
e,
e,

e

o

n
ns

The Wronskian relation~3.6! and Eq.~5.13! imply that the
functionsAq(t) andBq(t) are related through

uBq~t!u22uAq~t!u25
1

q
~5.20!

plus terms that vanish fast asymptotically. We plot in Fig
17 and 18 the~scaled! modulus as a function of time,

Mq~t![AgAuAq~t!u21uBq~t!u2, ~5.21!

andfq(t) for some relevant cases. This figure shows tha
anticipated,Mq(t) andfq(t) vary slowly with t.

For small couplingg, uwq(t)u2,uBq(t)u2 and uAq(t)u2 are
of order 1/g for q in the spinodal band 0<q<1 and times
later thant1 @20,27#. Therefore,Mq(t) is in that case of
order one. Moreover, Eq.~5.20! implies that uBq(t)u2
5uAq(t)u2@11O(g)# and we can approximate Eq.~5.18! as
follows:

FIG. 17. Momentum distribution of the produced particles at
5200 for broken symmetryh051025, g510212. Notice the main
peak atq50.020 and the secondary peak atq50.946 associated
with the non-linear resonance atq51. The positions of both peak
are correctly estimated by Eqs.~5.23! and ~5.24!, respectively.

FIG. 18. The total occupation number timesg per volumem23

as a function of time for broken symmetry,h051025, g510212. Its
limiting value isgN(`)'0.33.
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guwq~t!u25Mq~t!2$11cos@2qt1fq~t!#%@11O~g!#,
~5.22!

for 0,q,1.
We see from the numerical results~Fig. 19! that the mo-

mentum distribution of produced particles evolves with tim
In particular, the position of its peakqB(t) decreases with
time. From the numerical results we can fit the peak posit
by the form

qB~t!'
r 1

t2tB
, t.t1 , ~5.23!

wherer 1'3.8 for g,1024, h0,1025 andtB;t1.
SinceM2(`)50, the asymptotic equation for the ze

mode,ḧ(t)50, only admits a constant as bounded soluti
This is precisely what the numerical analysis yields.

FIG. 19. ~a! The amplitude Mq(t) of the mode function
wq51(t) as a function of time for broken symmetry,h051025, g
510212. It grows as a power according to Eq.~5.26!. ~b! The phase
fq(t) of the mode functionwq51(t) as a function of time for
broken symmetry,h051025, g510212. This function follows Eq.
~5.26! with a very good approximation.
.

n

.

We find two non-linear resonant bands fort.t1, the first
for 0,q,qB(t) and the second forqC(t),q,A12h0

2

'1. The value ofqC(t) follows by perturbation analysis
~see the next section!:

qC~t!'12
A

t2tC
s~t!, t.t1 , ~5.24!

wheretC;t1.
We see from Eqs.~5.23! and ~5.24! that both unstable

bands shrink to zero fort→`. The modes in these non
linear resonant bands grow as powers of time. The m
exactly atq50 is not resonant.h(t) tends to a constan
value fort→` while wq50(t) grows linearly with the time.

The order parameterh(t) tends for late times to a non
zero limit that depends on the initial conditions.

The modes between the unstable bands@qB(t),q
,qC(t)# oscillate in time with constant amplitude~see Fig.
18!.

FIG. 20. ~a! The modulus Mq(t) of the mode function
wq50.5(t) as a function of time forg510210, h051025, broken
symmetry. For times later thant1514.14 . . . , this mode oscillates
with stationary amplitude. It lies outside the nonlinear resonan
~b! The phasefq(t) of the mode functionwq50.5(t) as a function
of time for g510210, h051025, broken symmetry.
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Most of the particles are produced just before the timet1
~see Fig. 20!. Then, the particle number oscillates with d
creasing amplitude around its asymptotic limit. This limitin
value is proportional tog21 and independent ofh0 for small
h0 andg and approximately given by

N~`!'
0.330

4p2g
. ~5.25!

In the present case the particle number saturates aroundt1.
The vanishing of the effective mass in thet→` limit

implies that theq-modes become effectively free. As fo
unbroken symmetry~see Sec. III A!, the system tends as
ymptotically to a limit cycle. All modes oscillate harmon
cally for large enough times, since fort5` both unstable
bands@0,q,qB(t) and qC(t),q,1# shrink to zero. In
addition, the expectation value tends to a small cons
valueh(`)5h` .

In the present broken symmetry case we find that
modeq50 grows linearly in time, whereas modes withq
5A12h0

2'1 grow with a power law fort.t1 approxi-
mately given by

Aq51~t!'t ic2@D1tc11D2t2c1#,

Bq51~t!'t2 ic2@D18t
c11D28t

2c1#
~5.26!

~see Fig. 17! with

c1'0.24, c2'0.620.16 log
1

g
. ~5.27!

A more precise numerical fit yields that the dependence oc1
on g can be bounded by

Dc1

D logg21,431023. ~5.28!

D. Asymptotic nonlinear evolution II:
Perturbative and multitime scale analysis

As in the unbroken symmetry case, we can determ
analytically the position of the resonances by performin
perturbative analysis in a similar manner, in terms of
advanced Green’s function.

The effective massM2(t) vanishes fort→` in the bro-
ken symmetry case@see Eq.~5.10!#. Because the function
s(t) varies on even longer time scales of order 1/Ag, we can
perform a perturbative expansion on intermediate asympt
scales, betweent1 and the much longer time scale associa
with s(t). In this intermediate asymptotic regime we c
considers(t) to be constant.

We can thus study the mode equations

F d2

dt2
1q21M2~t!Gwq~t!50 ~5.29!

for late times, consideringM2(t) as a small perturbation
That is, we can write the integral equation including t
boundary conditions~5.13!
nt

e

e
a
e

ic
d

wq~t!5Aqeiqt1Bqe2 iqt

2E
t

`

dt8
sin q~t82t!

q
M2~t8!wq~t8!.

~5.30!

Iterating this integral equation and using Eq.~5.10! yields,
after calculation, if we take the functions(t) as a constant,

wq~t!5Aqeiqt1Bqe2 iqt2
Ae2~t/t0!x

8t H AqeiqtFeic~t!

q11

2
e2 ic~t!

q21 G2Bqe2 iqtFeic~t!

q21
2

e2 ic~t!

q11 G J ~5.31!

wherec(t)52t12c2s(t)log(t/t1)1f.
These expressions are singular atq561, revealing the

resonant band belowq51. Actually, these singularities dis
appear when the decrease ofs(t) with t is taken into ac-
count on time scalest@t2.

Notice that there is no resonance atq50 for broken sym-
metry.

For q2'1 the perturbative expansion breaks down for t
intermediate asymptotic time scalest1!t!t2.

In order to understand the behavior of the mode functio
in the resonant regions, we implement a multitime sc
analysis in the same manner as in the unbroken symm
case, introducing the parametere51/t1 and introducing the
long time scaleT15eT0 with T05t. The analysis is carried
out in exactly the same manner as before. The result is
the amplitudesAq51, Bq51 areexactlygiven by Eq.~5.26!.
Furthermore, a consistency condition arising from the mu
time scale analysis is that

A54Ac1
21c2

2'4c2 . ~5.32!

This condition is well verified in the numerical calculation
Since the effective squared mass vanishes asymptotic

and there are no resonances atq50 for sufficiently late
times, theq50 mode behaves as

w0~t!5L1Mt ~5.33!

where L and M are complex coefficients that can only b
obtained from the full time evolution. The Wronskian rel
tion ~3.6! implies that

Im@LM* #51, ~5.34!

showing thatMÞ0ÞL.
It follows from Eq. ~3.8! that the number ofq50 quanta

grows ast2 for asymptotically larget:

N0~t! 5
t→`1

4
A11h0

2uM u2t2. ~5.35!

Notice that the total number of particles tends to a cons
for t→` becauseN0(t) does not contribute to the total du
to the vanishing of the phase space factor asq2 at low mo-
mentum. This linear growth of the homogeneous quant
mode was also noticed in@34#.
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This situation is similar to Bose-Einstein condensation
which case the excess number of particles at a fixed temp
ture goes into the condensate, whereas the total numbe
particles outside the condensate is fixed by the temperatu
zero chemical potential. Theq50 mode does not contribut
to the energy, the pressure and the total particle number
it will become macroscopically occupied fort'AV with V
the volume of the system, in which case the number of p
ticles in the zero momentum mode becomes of the orde
the spatial volume. In this case this mode must be isola
and studied separately from theqÞ0 modes because its con
tribution to the momentum integral will be canceled by t
small phase space at small momentum much the same
as in usual Bose-Einstein condensation.

The presence of a Bose condensate through this ma
scopic zero momentum mode signals spontaneous symm
breaking even when the order parameter remains z
Therefore we identify thelinear growth in time of the q
50 mode as the onset of a novel form of Bose condensa
of Goldstone bosons and symmetry breaking in the collisi
less regime and in the absence of thermalization. This fo
of Bose condensation of Goldstone bosons in a collision
regime is similar to that reported recently within a differe
context@38#.

The time scale for the formation of the condensatet
'AV) is obviously much larger than the nonlinear scalet1
and the thermalization scale when corrections of orderN
are included. Therefore, the formation of the Bose cond
sate including 1/N corrections, which will include collisions
will require a further understanding of the dynamics and
the time scales involved.

E. Energy and pressure for broken symmetry: Sum rules

As shown in Refs.@20,27# the energy~4.63! and the pres-
sure~4.65! can be rewritten for broken symmetry as follow

Eren5
2uMRu4

lR
«,

«5
ḣ2

2
1

1

4
~h221!2

12gE
0

qu
q2dqVqNq~t!

1
g

2
S~t!F212h0

21M2~t!

2
g

2
S~t!G1O~g!,

Pren~t!5
2uMRu4

lR
p~t!, ~5.36!
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3
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1uẇ~t!u2G1ḣ21O~g!2«,

~5.37!
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up to corrections of orderh0
2!1 wherequ is the maximum

spinodally unstable wave vector~for h0
2!1qu51).

As for the unbroken symmetry case, we can use
asymptotic value of the effective mass squared and the c
servation of the energy to compute the first two moments
Mq

2(`) and to establish similar sum rules.
The vanishing of M2(`) implies that gS(`)51

1O(h0
2) and hence

E
0

1

q2dqMq
2~`!1O~g,h0

2!51, ~5.38!

where we used Eqs.~3.7! and ~5.22!.
Furthermore, equating the expression for the energy at

5` @Eq. ~5.36!# with its initial value

«5
1

4
1O~h0

2! ~5.39!

yields the second sum rule

E
0

1

q4dqMq
2~`!5

1

4
1O~g,h0

2!. ~5.40!

Using these sum rules allows us to compute the pres
in the t→` limit from Eq. ~5.36!:

p~`!5
1

12
1O~g,h0

2!, ~5.41!

leading to the equation of state for radiation,

p~`!5
1

3
«1O~g,h0

2!, ~5.42!

as is expected since the bulk of the produced particles
massless.

VI. CONCLUSIONS AND FURTHER QUESTIONS

In this article we have studied both numerically and an
lytically the asymptotic non-equilibrium dynamics of rela
ation in a scalar field theory in the collisionless regime. W
have focused on the relaxation of initial states of very la
energy density that require a non-perturbative treatment
controlled manner, maintaining renormalizability, ener
conservation and all of the relevant conservation laws. D
tailed numerical analysis revealed the presence of new
namical and non-perturbative time scales and non-lin
resonant bands that result in the power law growth of qu
tum fluctuations and a power law of relaxation for the exp
tation value of the scalar field. A separation between the t
scales for weak coupling allowed us to implement a dyna
cal renormalization group resummation of secular terms
the method of multi-time scales and confirmed and co
pleted the numerical results.

This dynamical renormalization group resummation o
secular terms leads to power law relaxation withanomalous
dynamical exponents which arenon-universal depending
non-perturbatively on the coupling constant.

In the unbroken symmetry phase the expectation va
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vanishes asymptotically, transferring all of the initial ener
into production of massive particles, as a result of the n
linear resonances and despite the presence of perturb
thresholds to particle production. The asymptotic distribut
is non-thermal and non-perturbative in the band where p
metric resonance takes place at early times. It can be in
preted as a ‘‘semiclassical condensate’’ in the unbro
phase, a result of the relaxation of the initial energy dens
The equation of state of the produced particles interpola
between dust and radiation domination as a function of
initial amplitude of the expectation value of the scalar fie

In the broken phase the numerical evolution reveale
hierarchy of time scales, and the relaxation of the order
rameter is with anomalous power laws. Again an implem
tation of the dynamical renormalization group revealed
presence of non-linear resonances that result in particle
duction after the spinodal time. Non-universal power la
relaxation appears with exponents depending n
perturbatively on the coupling constant. The coupling co
stant dependence is similar for the unbroken and bro
symmetry cases. The asymptotic distribution of particles
localized at low momenta and is non-perturbative and n
thermal, but the equation of state is that of radiation. We a
found the onset of a novel form of Bose condensation in
collisionless regime and without thermalization but with e
tremely long time scales.

Although this body of results provides for a deeper und
standing of the non-equilibrium dynamics in the collisionle
regime, and thus we believe it represents a quantum fi
theory example ofnon-linear dynamics, there are very many
unanswered questions that deserve further study:~i! The fact
s

-

n

-
ive
n
a-
r-
n
y.
s
e
.
a

a-
-
e
o-

-
-
n

is
-
o
e
-

-
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ld

that the asymptotic distributions are of ‘‘soft’’ momenta an
semiclassical in the sense that the amplitude of the par
distribution inside the bands is}1/l, and that there is a
separation of time scales for weak coupling should allow
‘‘coarse grained’’ description in terms of quasi-particle d
tributions in the manner of Boltzmann.~ii ! The next order in
1/N must be pursued to incorporate consistently collisio
processes; probably~i! must be understood before this
separate the microscopic from the long time scales. Co
sions will compete with the collisionless processes and af
the onset of Bose condensation found in the collisionl
regime. Here there is the possibility that whereas therm
equilibrium is established on collisional time scales, chem
cal equilibrium may be established on much longer tim
scales, resulting in a non-vanishing chemical potential.

Only a deeper understanding of~i! and ~ii ! will lead to a
complete understanding of the different regimes, collisio
less, kinetic and hydrodynamic, which could account
thermalization, chemical equilibration and all of the impo
tant relaxational phenomena.

ACKNOWLEDGMENTS

The authors thank F. Cooper, I. Egusquiza, H. J. Gia
mini, E. Mottola and L. Yaffe, for stimulating discussion
D.B. thanks the NSF for partial support through grants PH
9605186 and LPTHE for warm hospitality. R.H. is support
by DOE grant DE-FG02-91-ER40682. We thank NATO f
partial support. LPTHE is Laboratoire Associe´ au CNRS
VA280.
.

-
ited

E.

ev.
f,
.

,

C

@1# L. P. Csernai,Introduction to Relativistic Heavy Ion Collision
~Wiley, England, 1994!.

@2# C. Y. Wong, Introduction to High-Energy Heavy Ion Colli
sions~World Scientific, Singapore, 1994!.

@3# J. W. Harris and B. Muller, Annu. Rev. Nucl. Part. Sci.46, 71
~1996!; B. Muller in Particle Production in Highly Excited
Matter, edited by H. H. Gutbrod and J. Rafelski~NATO Ad-
vanced Study Institute, Series B: Physics, Vol. 303! ~Plenum,
New York, 1993!; B. Muller, The Physics of the Quark Gluo
PlasmaLecture Notes in Physics Vol. 225~Springer-Verlag,
Berlin, 1985!.

@4# J.-e. Alam, S. Raha, and B. Sinha, Phys. Rep.273, 243~1996!.
@5# H. Meyer-Ortmanns, Rev. Mod. Phys.68, 473 ~1996!.
@6# X. N. Wang and M. Gyulassy, Phys. Rev. D44, 3501~1991!;

45, 844 ~1992!.
@7# K. Geiger and B. Muller, Nucl. Phys.B369, 600 ~1992!.
@8# K. Geiger, Phys. Rep.258, 237~1995!; Phys. Rev. D46, 4965

~1992!; 47, 133~1993!; in Quark Gluon Plasma 2, edited by R.
C. Hwa ~World Scientific, Singapore, 1995!.

@9# H.-T. Elze and U. Heinz, inQuark Gluon Plasma, edited by R.
C. Hwa ~World Scientific, Singapore, 1990!, and references
therein.

@10# X.-N. Wang, inQuark Gluon Plasma 2@8#.
@11# S. Mrowczynski, inQuark Gluon Plasma@9#, and references

therein.
@12# M. Gyulassy,Quark Gluon Plasma@9#, and references therein
@13# P. Danielewicz, Ann. Phys.~N.Y.! 152, 239 ~1984!; St.

Mrowczynski and P. Danielewicz, Nucl. Phys.B342, 345
~1990!.

@14# E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics~Perga-
mon, New York, 1981!.

@15# J. P. Blaizot, J. Y. Ollitrault and E. Iancu,Quark Gluon
Plasma@8#; J.-P. Blaizot, in Proceedings of the Fourth Sum
mer School and Symposium on Nuclear Physics, 1991, ed
by D. P. Min and M. Rho~unpublished!.

@16# H. A. Weldon, Phys. Rev. D28, 2007 ~1983!; Ann. Phys.
~N.Y.! 228, 43 ~1993!.

@17# Y. Kluger, J. M. Eisenberg, B. Svetitsky, F. Cooper, and
Mottola, Phys. Rev. Lett.67, 2427 ~1991!; Phys. Rev. D45,
4659 ~1992!; 48, 190 ~1993!; F. Cooper, inParticle Produc-
tion in Highly Excited Matter@3#; F. Cooper and E. Mottola,
Mod. Phys. Lett. A2, 635 ~1987!; F. Cooper, S. Habib, Y.
Kluger, E. Mottola, J. P. Paz, and P. R. Anderson, Phys. R
D 50, 2848 ~1994!; F. Cooper, S.-Y. Pi, and P. N. Stanciof
ibid. 34, 3831~1986!; F. Cooper, Y. Kluger, E. Mottola, and J
P. Paz,ibid. 51, 2377~1995!; F. Cooper and E. Mottola,ibid.
36, 3114~1987!; Y. Kluger, F. Cooper, E. Mottola, J. P. Paz
and A. Kovner, Nucl. Phys.A590, 581c ~1995!; M. A.
Lampert, J. F. Dawson, and F. Cooper, Phys. Rev. D54, 2213
~1996!; F. Cooper, Y. Kluger, and E. Mottola, Phys. Rev.
54, 3298~1996!.



,

a,
.

. D

.

A

v
L.

.
n

.

d

l-

s
e

,

is
J.

.

hys.

D

n,

A.

S.

nd

57 7415ASYMPTOTIC DYNAMICS IN SCALAR FIELD . . .
@18# D. Boyanovsky and H. J. de Vega, Phys. Rev. D47, 2343
~1993!; D. Boyanovsky, D.-S. Lee, and A. Singh,ibid. 48, 800
~1993!; D. Boyanovsky, H. J. de Vega, and R. Holman,ibid.
51, 734 ~1995!.

@19# J. Traschen and R. Brandenberger, Phys. Rev. D42, 2491
~1990!; Y. Shtanov, J. Traschen, and R. Brandenberger,ibid.
51, 5438 ~1995!; L. Kofman, A. Linde, and A. Starobinsky
Phys. Rev. Lett.73, 3195~1994!; 76, 1011~1996!; L. Kofman,
astro-ph/9605155~1996!; S. Yu. Khlebnikov and I. I.
Tkachev, Phys. Rev. Lett.77, 219 ~1996!; Phys. Lett. B390,
80 ~1997!; D. T. Son, Phys. Rev. D54, 3745 ~1996!;
hep-ph/9601377; I. I. Tkachev, Phys. Lett. B376, 35 ~1996!;
A. Riotto and I. I. Tkachev,ibid. 385, 57 ~1996!; E. W. Kolb
and A. Riotto, Phys. Rev. D55, 3313 ~1997!; D. I. Kaiser,
ibid. 53, 1776 ~1996!; 57, 702 ~1998!; 56, 706 ~1997!; H.
Fujisaki, K. Kumekawa, M. Yamaguchi, and M. Yoshimur
Phys. Rev. D53, 6805 ~1996!; M. Yoshimura, Prog. Theor
Phys.94, 873 ~1995!; hep-ph/9605246~1996!; H. Fujisaki, K.
Kumekawa, M. Yamaguchi, and M. Yoshimura, Phys. Rev
53, 6805 ~1996!; 54, 2494 ~1996!; S. Kasuya and M. Ka-
wasaki, Phys. Lett. B388, 686 ~1996!.

@20# D. Boyanovsky, H. J. de Vega and R. Holman, inProceedings
of the Second Paris Cosmology Colloquium, Observatoire de
Paris, 1994, edited by H. J. de Vega and N. Sanchez~World
Scientific, Singapore, 1995!, pp. 127–215; inAdvances in As-
trofundamental Physics,Erice Chalonge Course, edited by N
Sanchez and A. Zichichi~World Scientific, Singapore, 1995!;
D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee, and
Singh, Phys. Rev. D51, 4419~1995!; D. Boyanovsky, H. J. de
Vega, R. Holman, and J. Salgado,ibid. 54, 7570~1996!.

@21# S. A. Ramsey, B. L. Hu, and A. M. Stylianopoulos, Phys. Re
D ~to be published!, hep-ph/9709267; S. A. Ramsey and B.
Hu, Phys. Rev. D56, 678 ~1997!; 56, 661 ~1997!.

@22# I. Zlatev, G. Huey, and P. J. Steinhardt, astro-ph/9709006
@23# D. Boyanovsky, D. Cormier, H. J. de Vega, and R. Holma

Phys. Rev. D55, 3373~1997!; D. Boyanovsky, D. Cormier, H.
J. de Vega, R. Holman, A. Singh, and M. Srednicki,ibid. 56,
1939 ~1997!; D. Boyanovsky, D. Cormier, H. J. de Vega, R
Holman, and S. P. Kumar, astro-ph/9707267; Phys. Rev. D57,
2166 ~1998!; D. Boyanovsky, D. Cormier, H. J. de Vega, an
R. Holman,ibid. 55, 3373~1997!.

@24# D. Boyanovsky, M. D’Attanasio, H. J. de Vega, and R. Ho
man, Phys. Rev. D54, 1748~1996!.

@25# For a thorough exposition of non-equilibrium methods in co
mology see, for example, E. Calzetta and B.-L. Hu, Phys. R
.

.

,

-
v.

D 35, 495 ~1988!; 37, 2838 ~1988!; J. P. Paz,ibid. 41, 1054
~1990!; 42, 529 ~1990!; B.-L. Hu, in Bannf/Cap Workshop on
Thermal Field Theories: Proceedings, edited by F. C. Khanna
R. Kobes, G. Kunstatter, and H. Umezawa~World Scientific,
Singapore, 1994!, p. 309; inProceedings of the Second Par
Cosmology Colloquium,Observatoire de Paris, edited by H.
de Vega and N. Sa´nchez~World Scientific, Singapore, 1995!,
p. 111, and references therein.

@26# J. Schwinger, J. Math. Phys.2, 407 ~1961!; P. M. Bakshi and
K. T. Mahanthappa,ibid. 4, 1 ~1963!; 4, 12 ~1963!; L. V.
Keldysh, Sov. Phys. JETP20, 1018~1965!; A. Niemi and G.
Semenoff, Ann. Phys.~N.Y.! 152, 105 ~1984!; Nucl. Phys.
B230, 181 ~1984!; E. Calzetta, Ann. Phys.~N.Y.! 190, 32
~1989!; R. D. Jordan, Phys. Rev. D33, 444 ~1986!; N. P.
Landsman and C. G. van Weert, Phys. Rep.145, 141 ~1987!;
R. L. Kobes and K. L. Kowalski, Phys. Rev. D34, 513~1986!;
R. L. Kobes, G. W. Semenoff, and N. Weiss, Z. Phys. C29,
371 ~1985!.

@27# D. Boyanovsky, H. J. de Vega and R. Holman, inProceedings
of the Vth Erice School ‘‘D. Chalonge,’’ Current Topics in
Astrofundamental Physics, edited by N. Sa´nchez and A. Zichi-
chi ~World Scientific, Singapore, 1997!, pp. 183–270.

@28# A. Nayfeh, Perturbation Methods~Wiley, New York, 1973!;
A. Nayfeh and D. T. Mook,Nonlinear Oscillations~Wiley,
New York, 1979!.

@29# H. J. de Vega and J. F. J. Salgado, Phys. Rev. D56, 6524
~1997!, and references therein.

@30# C. M. Bender and L. M. A. Bettencourt, Phys. Rev. D54, 7710
~1996!; Phys. Rev. Lett.77, 4114 ~1996!, and references
therein.

@31# I. L. Equsquiza and M. A. Valle-Basagoiti, hep-th/9611143
@32# I. S. Gradshteyn and I. M. Ryshik,Table of Integrals, Series

and Products~Academic, New York, 1980!.
@33# J. Baacke, K. Heitmann, and C. Patzold, hep-ph/970627; P

Rev. D55, 2320~1997!.
@34# F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev.

55, 6471~1997!.
@35# D. Boyanovsky, D. Cormier, H. J. de Vega, and R. Holma

Phys. Rev. D55, 3373~1997!.
@36# D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman,

Singh, and M. Srednicki, Phys. Rev. D56, 1939~1997!.
@37# D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman, and

P. Kumar, astro-ph/9707267.
@38# D. Boyanovsky, H. J. de Vega, S. P. Kumar, R. Holman, a

R. D. Pisarski, Phys. Rev. D ~to be published!,
hep-ph/9711258.


