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We analyze the dynamics of dissipation and relaxation in the unbroken and broken symmetry phases of
scalar theory in thaeonlinearregime for large initial energy densities, and afteear unstabilities(parametric
or spinoda) are shut off by the quantum back reaction. A new time scale emerges that separates the linear from
the non-linear regimes. This scale is non-perturbative in the coupling and initial amplitude. The non-
perturbative evolution is studied within the context of thé€N) vector model in the larg&l limit. A combi-
nation of numerical analysis and the implementation of a dynamical renormalization group resummation via
multi-time-scale analysis reveals the presence of unstable bands in the nonlinear regime. These are associated
with power law growth of quantum fluctuations, that result in power law relaxation and dissipation with
non-universal and non-perturbative dynamical anomalous expondredind that there is substantial particle
production during this non-linear evolution which is of the same order as that in the linear regime and results
in a non-perturbative distribution. The expectation value of the scalar field vanishes asymptotically transferring
all of the initial energy into produced particles via the non-linear resonances in the unbroken symmetry phase.
The effective mass squared for the quantum modes tends asymptotically to a constant plus og8{llating
terms. This slow approach to asymptotia causes the power behavior of the modes which become free harmonic
modes for late enough time. We derive a simple expression for the equation of state for the fluid of produced
particles that interpolates between radiation-type and dust-type equations according to the initial value of the
order parameter for unbroken symmetry. For broken symmetry the produced particles are asymptotically
massless Goldstone bosons with an ultrarelativistic equation of state. We find the onset of a novel form of
dynamical Bose condensation in the collisionless regime in the absence of thermalization.
[S0556-282(198)04910-9

PACS numbgs): 11.10.Jj, 11.15.Pg, 98.80.Cq

[. INTRODUCTION AND MOTIVATION partures from equilibrium. The validity of these coarse
grained descriptions of relaxational dynamics within the
The next generation of high luminosity heavy ion collid- realm of high energy and high density regimes in quantum
ers at Brookhaven and CERN will offer the possibility of field theory is not clear and a closer scrutiny of relaxational
probing the dynamics of states of high energy density angphenomena is warranted.
possibly strongly out of equilibrium. The energy densities Whereas equilibrium phenomena are fairly well under-
attained for central collisions at central rapidity will hope- stood and there are a variety of tools to study perturbative
fully allow us to study the quark-gluon plasma and also theand non-perturbative aspects, strongly out of equilibrium
chiral phase transition in a situation that parallels thatphenomena are not well understood and require different
achieved in the very early stages of the Univdrke5]. Dy-  techniques.
namical phenomena and nonequilibrium and collective ef- Our goal is to deal with the out of equilibrium evolution
fects are expected to take place on time scales of a few terier large energy densities in field theory, that is, a large
of fm/c and length scales of a few fermis. number of particles per voluma~3, wherem is the typical
This unparalleled short time and length scale regime fomass scale in the theory. The most familiar techniques of
dynamical phenomena, soon to be probed experimentallfiield theory, based on the S-matrix formulation of transition
has sparked a considerable effort to study diyeamicsof =~ amplitudes and perturbation theory, apply in the opposite
strongly out of equilibrium situations within the realm of limit of low energy density, and since they only provide
guantum field theory. information onin — out matrix elements, are unsuitable for
The usual semi-phenomenological framework to study thecalculations of time dependent expectation values.
dynamics is based on the transport approach in terms of Recently non-perturbative approaches to study particle
single (quasijparticle distribution functions with collisional production[17], dynamics of phase transitioi47,18 and
relaxation[6—8]. The best known dynamical processes ofnovel forms of dissipatioi20] have emerged that provide a
relaxation are those dfew body) collisions and dephasing promising framework to study the dynamics for large energy
processes akin to Landau dampiifg-16]. Our understand- densities like in heavy ion collisions.
ing of these relaxational processes is usually based on per- Similar tools are also necessary to describe consistently
turbative expansions, linearized approximations or small dethe dynamical processes in the early Univel2@]. In par-
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ticular it has been recognized that novel phenomena assogirovide refined numerical analysis of the non-equilibrium
ated with parametric amplification of quantum fluctuationsevolution that reveals the onset of widely separated relax-
can play an important role in the process of reheating andtional time scales. We use dynamical renormalization
thermalization[19,20—23. It must be noticed that the dy- groupimplemented via a multitime scale analysis to provide
namics in cosmological spacetimes is dramatically differentan analytic description of the asymptotic dynamics and es-
to the dynamics in Minkowski spacetime. Both in fixed tablish that relaxation occurs via power laws with anomalous
Friedmann-Robertson-WalkéFRW) [36] and de Sittef35]  dynamical exponents.
backgrounds and in a dynamical geomdty] the dynami- The main results of this article can be summarized as
cal evolution is qualitatively and quantitatively different follows:
from the Minkowski case considered in the present paper.  The hierarchy of separated time scales allows us to imple-
Our program to study the dynamical aspects of relaxatiooment a dynamical renormalization group resummation via
out of equilibrium both in the linear and non-linear regime the method of multitime scale analysis. The novel result that
has revealed new features of relaxation in the collisionlesemerges from this combination of numerical and dynamical
regime in scalar field theorig®0,24]. Recent investigations renormalization group analysis is the presenceaf-linear
of scalar field theories in the non-linear regime, includingresonanceghat lead to asymptotic relaxation described by
self-consistently the effects of quantum back reaction in amon-universal power lawsThese power laws are determined
energy conserving and renormalizable framework, havéy dynamical anomalous exponentghich depend non-
pointed out a wealth of interesting non-perturbative phenomperturbatively on the coupling.
ena both in the broken and unbroken symmetry phf2@is The effective mass felt by the quantum field modes in
These new phenomena are a consequence of the nohigh energy density situations varies with time and depends
equilibrium evolution of an initial state of large energy den- on the fields themselves, reflecting the nonlinear character of
sity which results in copious particle production leading to athe dynamics. Both for broken and unbroken symmetry the
non-thermal and non-perturbative distribution of particles.effective mass tends asymptotically to a constant. This con-
Our studies have focused on the situation in whichahe  stant is non-zero and depends on the initial state for unbro-
plitude of the expectation value of the scalar field is non-ken symmetry. For broken symmetry, the effective mass
perturbatively largeA~ \A(®)/m~©(1) (mis the mass of tends to zero, corresponding to Goldstone bosons. In both
the scalar field and. the self-coupling and most of the cases the effective mass approachest s> value as 1/
energy of the initial state is stored in the “zero mode,” i.e. times oscillating functions.
the (translational invariantexpectation value of the scalar ~ The fact that the effective mass tends asymptotically to a
field ®. Under these circumstances the initial energy densitgonstant implies that the modes become effectiviege.
e~m?*\. During the dynamical evolution the energy ini- Non-resonant modes oscillate harmonically for tinizs ;.
tially stored in one(or few) modes of the field is transferred Resonant modes change from non-universal power behavior
to other modes, resulting in copious particle production ini-to oscillatory behavior at a time that depends on the wave
tially either by parametric amplification of quantum fluctua- number of the mode. Only the modes in the borders of the
tions in the unbroken symmetry phase or spinodal instabiliband resonate indefinitely.
ties in the broken symmetry phase. This mechanism of Inthe unbroken symmetry case, we find that the expecta-
energy dissipation and particle production results in a numtion value relaxes to zero asymptotically with a non-
ber of produced particles per unit volumg&m?3/\, which  universal power law. The initial energy density which is non-
for weak coupling is non-perturbatively larg20]. We call ~ perturbatively large goes completely into the production of
this first stage dominated either by parametric or spinodamassive particles. The asymptotic particle distribution is lo-
unstabilities the “linear regime.” calized within a band determined by the initial conditions
We recognized20] a newdynamicaltime scalet; where  with non-perturbatively large amplitude 1/\\ which could
the linear regime ends. By the time the effects of the be described as a “semiclassical condensate” in the unbro-
guantum fluctuation on the dynamical evolution become oken phase.
the same order as the classical contribution given by the The particle distribution in the condensate is nontrivial.
evolution of the expectation value of the field. The “non- We establish sum rules that yield explicit values for integrals
linear regime” starts by the timeg,. In the case of broken over such an asymptotic distribution. We derive in this way
symmetry, this time scale corresponds to the spinodal scalde asymptotic equation of state. For unbroken symmetry, it
at which the back reaction of quantum fluctuations shut offinterpolates between dust and radiation according to the ini-
the spinodal instabilities. At this scale non-perturbative phystial field amplitude.
ics sets in and the non-linearities of the full quantum theory In the broken symmetry phase when the initial expecta-
determine the evolution. This time scale which we call the  tion value of the scalar fieltbrder parametgiis close to the
non-linear time is a non-universal feature of the dynamics false vacuum(at the origin we similarly find the onset of
and depends strongly on the initial state and non-on-linear resonances at times larger than the non-linear
perturbatively on the coupling, ag=log[\ 1] for weak cou-  (spinoda) timet;. The expectation value of the order param-

pling [20]. eter approaches for late times a nonzero limit that depends
The purpose of this paper is to carefully analyzeribe-  on the initial conditions.
linear dynamics of relaxation after the tintg in a weakly The effective time dependent mass vanishes asdgult-

coupled scalar field theory within a non-perturbative self-ing in the asymptotic states being Goldstone bosons. We also
consistent scheme. We focus on the asymptotic time regiménd a hierarchy of time scales of whidhe=In[x™'] is the
both in the unbroken and broken symmetry states. Here wérst and another longer time scalgx1/\\. As a conse-
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guence of the non-linear resonances the particle distributioenergy-momentum conservatjonis renormalizable and
becomes localized far>t; at very low momentum, result- lends itself to a numerical treatment.
ing again in a “semiclassical condensate” with non- We are thus led to consider tkyN) vector model with a

perturbatively large amplitude- 1N, Asymptotically the quartic self-interaction20] and the scalar field in the vector
equation of state is that of radiation although the particlerepresentation oO(N).

distribution (Goldstone bosonss non-thermal. The action and Lagrangian density are given by
For even larger time scales~+V (whereV stands for

the volume of the systeinwe find for broken symmetry a S:f d*xr

novel form of Bose condensation in the collisionless regime '

that results from a linear growth in time of homogeneous
guantum fluctuations.

The article is organized as follows: In Sec. Il we briefly
summarize the nature of the approximations, the non-

1 - 2 -
£=5[0, B0 -V(@(x),

equilibrium framework and some of the previous results for . N[ ., 2Nm?|? Nm*
the benefit of the reader and for coherence. In Sec. Ill we V(q’)ZS_N o+ N TN
study the unbroken symmetry case and distinguish the linear (2.1

regime of parametric amplificatiar<t, from the non-linear

regime ¢>t;) in which the back reaction of quantum fluc- The canonical momentum Conjuga’[e(ﬁ(x) is

tuations dominates the evolution. In Sec. IV we study the

latter regime in the unbroken symmetry case and we find that ﬁ(x)z@(x) 2.2
particle production continues beyortd-t; and non-linear ' '
resonances develop, leading to power law relaxation. W@nd the Hamiltonian is given by

provide a full numerical analysis and implement a renormal-

ization group resummation of secular terms via a multi-time- a1, 1 . ’ -

scale approach. Asymptotic sum rules and the equation of H(t):f d°x EH (X)+§[V‘I’(X)] V(@) (23
state are discussed in detail. In Sec. V we study the dynamics

in the broken symmetry phase, establishing a difference be- The calculation of expectation values requires the study of
tween the early and intermediate scales dominated by spirr density matrix, whether or not the initial state is pure or
odal instabilities and the asymptotically large time scalemixed. Its time evolution in the Schdinger picture is deter-
dominated by non-linear resonances leading to power lawhined by the quantum Liouville equation

relaxation. We provide a numerical analysis as well as argu-
ments based on multitime scale resummation. We find a p .
novel form of Bose condensation with a quadratic time de- i—r =[H.p]. 2.9
pendence for the formation of an homogeneous condensate.

Conclusion.s and further questions are summarized at thepq expectation value of any physical magnitudiés given
end of the article. as usual by

Il. PRELIMINARIES (A () =Trl p(t).Al. (2.5

As our previous studies of scalar field theory have re-The time evolution of all physical magnitudes is unitary as
vealed[20], there are two very important parameters thatwe see from Eq(2.4).
influence the quantum dynamics: the strength of the coupling In the present case we will restrict ourselves to a transla-
constant and the initial energy density in units of the scalar tionally invariant situation; i.e., the density matrix commutes
field massm. If in the initial state most of the energy is with the total momentum operator. In this case the order

stored in_a few modes, the energy density is determined b%arameten(i)(i,t)) will be independent of the spatial coor-
the amplitude of the expectation value of those modes, dinatesx and only depends on time

~\(®)/m. The value of this field amplitude determines i o - - -
the regime of applicability of perturbation theory methods. We write the f,',eldq) as®=(o,m) wherem represents
Usual S-matrix theory treatment® terms of a perturbative 1€ N—1 “pions,” and choose the coupling to remain
expansioh are valid in the small amplitude regimé<1 fixed in the largeN limit. In what follows, we WI||»COHSIdeI’
even for high energies. However, when the initial state has &vo different cases of the potentiR.1), V(o,m), with
large energydensityperturbative methods are invalid. (m?<0) or without (m?>>0) symmetry breaking.

We shall be concerned here with then-perturbativere- We can decompose the fietd into its expectation value
gime in whichA= \\(®)/m=((1). It isimportant to point and fluctuationsy(x,t) about it:
out that for a large field amplitude, even for very weakly
coupled theories non-linear effects will be important and a(X,t) =D (1) YN+ x(X,1), (2.6
must be treated non-perturbatively. This is the case under
consideration. Having recognized the non-perturbative nawith ®(t) being a c-number of order 1 in tHé—o limit
ture of the problem for large amplitudes we must invoke aand xy an operator.
non-perturbative, consistent calculational scheme which re- To leading order the largd-limit is implemented by con-
spects the symmetriegontinuous global symmetries and sidering a Hartree-like factorizatiofneglecting 1IN terms
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and assuming®(N—1) invariance by writing k W,
r=[mlt, q:ma quw, (2.10
N-1
N o e et
7(Z,t) = ¥(Z,t)(1,1,---,1) 2.7
. _ (1) = —— D), (2.1
whereW (x,t) is a quantum operatd0]. Alternatively the 2|m|
large N expansion is systematically implemented by intro-
ducing an auxiliary field[17]. To leading order the two A
methods are equivalent. g3 (1) =———[(P*(1)r—(P?(0))r] (2(0)=0),
The generating functional of real time non-equilibrium 2|m|
Green’s functions can be written in terms of a path integral (2.12

along a complex contour in time, corresponding to forward
and backward time evolution, and if the initial density matrix N
describes a state of local thermodynamic equilibrium at finite g= Pyrl eq(T)=Vm[fi(D). (2.13
temperature, a branch down the imaginary time axis. This ™
requires doubling the number of fields which now carry aH ) , )
label = corresponding to forward) and backward {) ere(W=(t))g stands for the renormalized composite opera-
time evolution[25,26]. tor [see Eq.3.7) for an exphutﬁexpressmh

We shall not rederive here the field evolution equations IntheN=c limit the field y(x,t) decouples and does not
for translationally invariant quantum states; the reader is recontribute to the equations of motion of either the expecta-
ferred to the literature(See Refs[25-27.) In the leading tion value or the transverse fluctuation modes.
order in the largeN approximation the theory becomes
Gaussian at the expense of a self-consistent condition IIl. UNBROKEN SYMMETRY
[17,20,27; this in turn entails that the Heisenberg field op-

erator\If(i,t) can be written as A. Evolution equations in the largeN limit

In this caseM%=|Mg|?, and in terms of the dimension-

N d3k e . less variables introduced above the renormalized equations
Y(x,t)= f m[agfk(t)e'k'xwL agfﬁ(t)e"k‘x], of motion are found to bésee Refs[20,27)
8 P gn(nS(n)=0, (31

where a,, a] are the canonical creation and annihilation 2
operators, and the mode functiohgt) are solutions of the i) 2 _
Heisenberg equations of motidi7,20,27 to be specified 2 AT IR0 (7) | 9g() =0, (32
below for each case.
Our choice of initial conditions on the density matrix is 1
that of the vacuum for the instantaneous modes of the Hamil- - -
QDq(O) ‘Pq(o) iVQ

tonian at the initial timg20,27). Therefore we choose the \/Qq' >
initial conditions on the mode functions to represent positive
energy particle states of the instantaneous Hamiltonian at _ Ay
=0, which is taken to be the initial time. That is, 7(0)=m0,  7(0)=0. @3
1 Hence,
f(0)=—, f(0)=—iVW,, W=k>+M3,
«0) \/Wk «(0) k k 0 M?(7)=1+ 5p(7)%+g3(7) (3.9
(2.9
plays the role of dtime dependenteffective mass squared.

where the mas#1, determines the frequencies (0) and As mentioned above, the choice 6f, determines the
will be defined explicitly later as a function 6b(0) [see initial state. We will choose these such thatat0 the quan-
Egs.(3.5 and(5.4)]. tum fluctuations are in the ground state of the oscillators at

With these boundary conditions, the mode functionsthe initial time. Recalling that by definitiogX (0)=0, we
f(0) correspond to positive frequency modearticle3 of  choose the dimensionless frequencies to be
the instantaneous quadratic Hamiltonian for oscillators of
massM,. =Jo2+ 1+ n2. )
We point out that the behavior of the system depends Qq= Va1 7o S
mildly on the initial conditions on the mode functions as we
have found by varying Eq92.9) within a wide range. In
particular, the various types of linear and nonlinear reso- _ _
nances are independent of these initial conditi@@;27. MW eq, eql=2i, (3.6)
It proves convenient to introduce the following dimen-
sionless quantities: while g2 (7) is given by the self-consistent conditif20,27]

The Wronskian of two solutions of E@3.2) is given by
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o 1 We consider here zero initial temperature so the occupation
gE(T)=gf q?day |eq(7)|?— o number vanishes at=0.
0 q

In order to define the particle number with respect to the
adiabatic vacuum state we note that the mode equations

6(a—1) ic osc ith time de-
+ P [— 7]§+ A(0+g3(n]t. 3.7 (3.2, (5.2 are those of haymomc oscillators with time de
q pendent squared frequencies
We thus see that the effective mass at timeontains all wé(r)=q2+ 1+ 92(7)+g2(7). (3.9

g-modes and the zero mode at the same tim&he evolu-

tion equations are then nonlinear but local in time in theWhen the frequencies are re@s is the case for unbroken

infinite N limit. symmetry, the adiabatic modes can be introduced in the
following manner:

B. Particle number

Although the notion of particle number is ambiguous in a () =———
time dependent non-equilibrium situation, a suitable defini- V2wq4(7)
tion can be given with respect to some particular pointer e
state. We consider two particular definitions that are physi- +al (r)eou(Td7] (3.10
cally motivated and relevant as we will see later. The first
corresponds to defining particles with respect to the initial wq(7)
Fock vacuum state, while the second corresponds to defining [My(7)=—i 5
particles with respect to the instantaneous adiabatic vacuum
state.

In the former case we write the spatial Fourier transform

of the fluctuating field¥ (x, 7) in Eq. (2.8) and its canonical

[aq( T)e—ifgwq(r')dr'

[aq( T)efifgwq(f')df'

—al (el fova197] (3.10)

. where nowa,(7) is a canonical operator that annihilates the
momentumlI(x,7) as adiabatic vacuum state, and is relatedito a; by a Bogo-
1 liubov transformation. This expansion diagonalizes the in-
_ % stantaneous Hamiltonian in terms of the canonical operators
=—]a +a’ . . . . .
Yal7) \/E[ a¢a(7) a¢a (7)] aq(7), al(7). The adiabatic particle number is given by
Lo eal NG ={ag(maq(7)
(1) =—=lageq(7)+alqeq(7)] .
q \/E qYq q¥q 1 , |§Dq( T)|2 1
=27 @a(Dleq(7)] g | T2 (3.12
with the time independentreation and annihilation opera- q
tors, such thag, annihilates the initial Fock vacuum state.
Using the initial conditions on the mode functions, the
Heisenberg field operators are written as

These adiabatic modes and the corresponding adiabatic
particle number have been used previously within the non-
equilibrium contex{17] and will be very useful in the analy-

1 sis of the energy below. Both definitions coincide7at 0
1 _ = =t becausew,(0)=(,. (For non-zero initial temperature see
Po(7)=U"(7)hg(0)U(7) —Zﬂq[aq(r)Jrafq(T)] Refs.[20,§7,12). a
The total number of produced particlag9(r) per vol-

To(7) =4 H(n) 4 (0)U( 7) ume|Mg|2 is given by
Qg d*q
= —i f[aq(r)—aiq( 7)] Nad(r)sf (ZW)SNgd(T). (3.13
Eq(7)=L{‘1(r)an/l( 7) The asymptotic behavior of the mode functions ensures that

this integral convergel20,27).
with U(7) the time evolution operator with the boundary

conditionZ/(0)=1. The Heisenberg operatcﬁg(q-) ,53(7-) C. Early time evolution: Parametric resonance

t . .
are related t@q,a, by a Bogoliubov(canonica) transforma- Let us briefly review the dynamics in the weak coupling
tion (see Refs[20,27] for details. regime and for times small enough so that the quantum fluc-

The particle number with respect to the initial Fock tations, i.e.g3(7), are not large compared to the “tree
vacuum state is defined in term of the dimensionless varitaye|” quantities. As shown in Refs[20,27], the back-
ables introduced above as reaction termg= (7) is small for smallg during an interval
. ) say 0= 7<r. This timer,, to be determined below, will be
Ng(7)=(a (1) ag(n)= 1 Q| oq(7)[2+ [ @g(7)] }_ 1 called the nonlinear time and it determines the time scale

a q q 4|""ara Q4 2° when the back-reaction effects and therefore the quantum
(3.8 fluctuations and non-linearities become important.
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During the interval of time in which the back-reaction 2
termg3 (7) can be neglected E¢3.1) reduces to the classi- 0<qg’<—-. (3.21
cal equation of motioriin dimensionless variablgs

- B The modes in the forbidden band<@< 7,/+2, grow ex-
n+n+n’=0. (3.14 ponentially with time(parametric resonangevhile those in

The solution of this equation with the initial conditiof@3  the allowed bandy,/2<q<c, oscillate in time with con-

can be written in terms of elliptic functions with the result Stant amplitude. Analytic expressions for all modes were
given in[20,27]. The modes from the forbidden bane<@

70 <mno/\2 dominate3 (7). For 0<7<r;, 3(7) oscillates
n(7)=mnocn( 71+ 75,k), k=——=——== (319  with an exponentially growing amplitude. This amplitude
2(1+mp) (envelope .., (7) can be represented to a very good ap-

where cn stands for the Jacobi cosine. Notice th@t) has proximation by the formul420,27

period do=4K(k)//1+ 7702, whereK (k) is the complete el-

1
liptic integral of first kind. Sen(7)= WeBT, (3.22
Inserting this form fory(7) in Eq. (3.2 and neglecting T
g2 (7) yields whereB andN are functions ofy, given by
2 -~ ~ A~
R N S YN e PO B(70) =81+ 730(1-4Q) + O(&?),
d7? g
(3.1 \/—(4+3770)v4+57702 n
, 7]0) \/— (1+ 2)3/4 [1+O(q)]!
This is the Lameequation for a particular value of the 7o o 3.0
coefficients that make it solvable in terms of Jacobi functions (3.23
20,27. L A . .
[ Sir?ce the coefficients of EG3.16) are periodic with pe- and the elliptic nome can be written as a function of, as
riod 2w [notice thaty(7+2w)=— 7(7)], the mode func- i 1 (1+ )Y (14 p32) ¥

tions can be chosen to be quasi-perioditoquet type with
quasi-period :

Q(WO)ZE (1+77(2))1/4+(1+773/2)1/4, (3.249

Uq(T+ 2w)=e‘F(Q)Uq(T), (3.17)  with an error smaller than- 1077

Using this estimate for the quantum fluctuatidsr), we
where the Floquet indicds(q) are independent of. In the  can now estimate the value of the non-linear time sealat
allowed zonesfF(q) is real and the function&J () are  which the back reaction becomes comparable to the classical
bounded with a constant maximum amplitude. In the forbid-terms in the differential equations. Such a time is defined by
den zones(qg) has a non-zero imaginary part and the am-g3,(r;)~ (1+ 53/2). From the results presented above, we
plitude of the solutions either grows or decreases exponeriind
tially. The mode functionsey(7) obey the boundary

conditions, EQ.(3.2), and they are not Floquet solutions. 1 N(79)(1+ n(2)/2) (325
However, they can be expressed as linear combinations of T 0g .
4 g B(70) 9VB(70)

Floquet solution$20,27] as follows:

(7= Wl—zmq)u (=)+
(qu_Z\/Q_q[ Wa g\ — 7

210 The time interval fromr=0 to 7~ 7, is when most of the
1+ : q)u (n], particle production takes place. After~r; the quantum
Wy )19 fluctuation become large enough to begin shutting off the
(3.1  growth of the modes and particle production slows down
dramatically. This dynamical time scale separates two dis-
tinct types of dynamics; for<7; the evolution of the quan-
tum modesg,(7) is essentially linear, the back-reaction ef-
fects are small and particle production proceeds via
parametric amplification. Recall that the zero moglér)

whereU,(0)=1 and

Wo=—29 (319 obeys the non-linear evolution equati@h14). For 7> 7, the
quantum back-reaction effects are as important as the tree
level term »(7)? and the dynamics is fully non-linear.

We find two allowed bands andwo forbidden bands We plot, in Fig. 1,7, as a function of the initial amplitude
[20,27) for Eq. (3.16). In the physical regiom?>0 the al- 7o for different values of the coupling.
lowed band corresponds to The growth of the unstable modes in the forbidden band
shows that particles are created copiousty1{g for r
77(2) ~74). Initially (7=0), all the energy is in the classical zero

2
o SATste (320 mode(expectation value Part of this energy is rapidly trans-
formed into particles through parametric resonance during
and the forbidden band to the interval <7< 14. At the same time, the amplitude of the
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FIG. 1. The nonlinear time for the unbroken symmetry case as a FIG. 3. The total number of produced particles as a function of
function of 7, according to Eq(3.25 for g=10"2 andg=10 %2 time for 7,=1, g=10 2 After the exponential increase around
r=7,=1637 ..., N?(7) keeps growing. For times>200, Eq.
expectation value decreases as is clearly displayed in Fig. 2430 gives a very good approximation to the numerical results
We plot in Fig. 3 the adiabatic number of particles de-  (after averaging over oscillations
fined by Eq.(3.13] as a function of time. . . .
The momentum distribution of the produced particles fol-tegrals overy and is appended with a fast Fourier transform

; ; - FFT) analysis to determine the frequency spectrum of the
lows the Floquet index and is peaked @ 3 79(1—q) ( . - .
[20,27; this is shown in Fig. 4. oscillatory component. The precision of our results is better

than 1 part in 18,

To begin with, we observe tha® (7) and7?(7) oscillate
with the same frequency armgbpositephase. Thus, a remark-
ably cancellation takes place between these two terms in the
effective mass squared. This phase opposition is analogous

In the previous section we have summarized the dynamic, | angay dampingl4]. One sees such a cancellation com-
cal evolution in thdinear regime in which the back-reaction paring Fig. 2 for(r), Fig. 5 for g3(7) and Fig. 6 for

effects can be neglected and estimated fthet new, non- 2
perturbative dynamical time scatg as that beyond which Moreover, we see that2(7) tends to a constant value

the dynfamlcs IS fully non-linear. . . for 7—oo. We find numerically that this value turns out to be
In this section we present the time evolutiafter the

nonlinear timer,, that is, when the back reactia® (7) is 7
. . . . 2 0
important and the full solutions to the non-linear equations Me=1+ >
(3.1)—(3.3) are needed. We have implemented a refined nu-

merical treatment for a wide range of initial amplitudes andfor the values ofy and 7, considered in Figs. 1-1@ip to

couplings. The numerical method uses a fourth order Rungec'orrect'ons of orden that are bevond our numerical preci-
Kutta algorithm and 16-point Gauss integrations for the in- ! 9 Y ur-numerical precl

IV. ASYMPTOTIC NONLINEAR EVOLUTION

A. Numerical analysis

4.0

8 T T T T

1

n(q) at t=t, =20.47 for g=10;° eta(0)=4 —

I ‘ I I ' eta(t), g=0.001.' eta(0)=1 —
08 T b
0.6
04
02

0

-02

-0.4

-0.6

-0.8

I L 1 1 1 1 1 L 1 1 1
-1 ]
0 500 1000 1500 2000 2500 3000 [ 0.5 1 1.5 2 25 3 3.5 4

FIG. 2. The zero modey(7) vs 7 for the unbroken symmetry
case withn,=1, g=10 3.

FIG. 4. Momentum distribution of the produced particteg])
=g?N3%(7) at the nonlinear timer= r; for 7,=4,g=10""°.
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FIG. 5. The quantum fluctuatiorg (7) as a function of time @
for 7o=1,9=10"°. %

1 M2 (1)-M? (infty)], eta, =2, g=10° —

sion). It must be noticed that2 coincides with the lower — ® T
border of the allowed ban(8.20.

FurthermoreM?(7) approaches its asymptotic liri.1),
oscillating with decreasing amplitude. More precisely, using
a detailed numerical analysis of the asymptotic behavior ant
fast Fourier transforms we find, from our numerical results |,
for 7> 7; [see Figs. @) and Gb)],

40

M¥()= Mo+ &TT) + O(;) (4.2

with -60 -

p.(7)=K;cod 2 M, 7+ 2a,log( 7/ 1) + y1] + K,co§ 2 M7 -80
+2b2|Og( 7'/’7'1)"‘ ’)/2], (43) (b)

I I I 1 I I I I 1
0 100 200 300 400 500 600 700 800 900 1000

where K, K,, y; and y, are constants and an excellent FIG. 6. (a) The effective mass squared as a function of time for

. . .. . . — —109 H : 2109 __
numerical fit for the coefficienta, andb, is given by 70=4, g=10"". Notice the asymptotic value-1+ 7/2=9. (b)
The effective mass squared minus its valuerate times = as a

1 function of time for 7,=2, g=10"°. This function oscillates in
a,~0.16 In§+0.6 time with constant amplitudeK;+K, and frequencies 21,

=21+ 7;02/2 and 2My=21+ 7702 [see Eq.(4.3)].

b,~0.6—-0.16 Ir& (4.4  the back-reaction effects introduce new structure and oscil-
9 lations, keeping théordersof the band fixed throughout the
f evolution in the non-linear regime.

The numerical results displayed in Figga)~7(c) show
that the position of the main peajg(7) decreases with time.
We performed a numerical fit for the time dependence of the
peak position and found its behavior to be well described by
the estimate

within a wide range ofweak couplings and initial values o
7(0). Wealso find that the coefficients, K, vary linearly
with In(1/g) a result that will be obtained self-consistently
below.

Since the effective mass tends asymptotically to the con
stant valueM.,,, the expectation value(r) oscillates with
frequency M., and theg-modesg,(7) with frequency

2y~ K2
o(0)= g+ MZ. (4.5 do(m)~— (4.6

[Notice thatw(q) = wq(7= +=).] These oscillation frequen- with the constanK, introduced in Eq(4.3) above. We will
cies are confirmed by the numerical analysis of the evolutioprovide an analytic, self-consistent description of this behav-
of the expectation value and tlgemodes. Figures(@—7(c)  ior below.

display the momentum distribution of the created particles at g-modes above and belogy, behave quite differently.
different times. One of the noteworthy features is thatModes withq>qg(7) oscillate in time with constant ampli-
whereas up to time=~ 1, the distribution only has one peak tude. Modes withg<qy(7) also oscillate but with increasing
at the value of maximum Floquet exponent, for larger timesamplitude.
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¢ ' ; ' ) 201225, for g 10 etaOrms Equation(4.6) shows that the peak position indecreases
monotonically as~1/\/7. As time evolves, more and more
g-modes cross the peak and become purely oscillatory. Only
] the amplitude of theg=0 mode[which is not to be confused
with the expectation value( ) | keeps growing. As we shall
discuss in detail below, there is a bandnain-linear unsta-
bility for 0<q<qy(7). We also find, numerically, that a
second non-linear resonance band appears just below
] =1o/\2 for q,(7)<q<7ne/\2, and we find numerically
that

2 2k
q'f(r)~%—f z. 4.7

T

(a)o * ’ ' However, the growing modes in this upper band give a much
less important contribution to the physical magnitudes than
n(:]) att=200|c:rg=10’,9 etaéo)=4 — the first band.

The modes in betweermyy(7)<q<q;(7), oscillate for
times 7> 7, with stationary amplitudé/ 4(7).

This crossover behavior of the modes can be expressed by
. introducing a g-dependent time scale beyond which the
modes become oscillatory. Such scale is given by

Q)= (4.8

for the lower nonlinear band and

K
. . ()= — 2 4.9

(b) 54

T T T
n(q) at t=3000 for g=103 eta(0)=1 —

) for the upper nonlinear band.

Both ¢4-o(7) and »(7) obey Eq.(3.1) and are linearly
independent solutions, their difference arising from the ini-
1 tial conditions.¢q-o(7) has a growing amplitude while the
amplitude ofn(7) decreases with time. Since these are lin-
early independent solutions of the same equation, their
Wronskian is a non-vanishing constant. Therefore if one so-
1 lution grows, the other independent solution must decrease in
order to respect the Wronskian conditigd.6). Since the
total energy is conservedy(7) must necessarily be a de-

1 creasing solution.

) The fact that the zero-mode amplituggr) vanishes for
r=o0 implies thatall the available energy transforms into
08 particles for r=o. This conclusion which will be further

(© clarified in what follows is a consequence of the non-linear

dynamics. It is the more remarkable because the particles

FIG. 7. (8 Momentum distribution of the produced particles at produced aremassiveand therefore there is a threshold to
=25 for 5o=4, g=10"°. Notice that the single peak present for perturbativeparticle production. It will be seen in detail be-
times 7<<7; splits into two due to the nonlinear resonances. Manylow that the particle production in this regime is a truly non-
more peaks appear for subsequent times as showin).iib) Mo- perturbative phenomenon associated with non-linear reso-
mentum distribution of the produced particles &t 200 for 7, nances.
=4, g=10"°. Notice the main peak aj=0.549 associated with For 7>7,,7,(q),7,(q) the effective mass squared tends

the main non-linear resonancg<0) and the secondary peak at g 3 constanfsee Eq(4.1)]; therefore, the asymptotic behav-
q=2.77 associated with the non-linear resonanag=aizo /2. The  jor of @q(7) is given by

positions of both peaks are correctly estimated by E4€) and

(4.43, respectively.(c) Momentum distribution of the produced -

particles atr=3000 for 770=1, g=10"3. Notice the main peak at — Aoy B e i@y
g=0.067, in good agreement with the estimate given by (Bd). ™) q q 0

0.7

0.6

05

0.4

03 -

1
—) (4.10
.
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T T
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FIG. 8. (a) The amplitudeM4(7) of the mode functiorp,_,(7) as a function of time fom,=4, g= 10~ °. It grows as a power according
to Eq. (4.22. (b) The amplitudeM 4(7) of the mode functionp,_47) as a function of time for,=4, g=10"°. This amplitude grows
faster forr> 7, than theq=0 amplitude but much slower than the exponential growth in the forbidden barm@nol\/ﬁ for 7<74. (¢
The amplitudeM 4(7) of the mode functiorpy—q 4(7) as a function of time fom,=4, g= 10"°. This mode grows untit~K, /g~ 350. At
such time this mode crosses out of the nonlinear resonance (@rTthe amplitudeM 4(7) of the mode functiorp,—_, ¢ 7) as a function of
time for 5y=4, g=10"°. This mode grows untit~K, /q?~150. At such time the mode crosses out of the nonlinear resonance band.

with w(q) given by Eq.(4.5). It is then convenient to define | g T)|2=|Aq(7)|2+|Bq(T)|2+ 2|Aq(7)By(7)|cog2w(q) T
the following functions:

+ ¢g(7)] (4.19
1 i
Aqy(7)= Ee"”(q)f[ @q(7)— W%( T)}, where we have set
Ag(T)By(1)* =|Aq(7)By(7)|€' %™, (4.15

(4.11

1 . i
B (T)E—e“‘”(q”[@ (T)+ ——=¢q(7)
q 2 d w(q) "1 The Wronskian relation(3.6) implies that the functions

which for 7> 7, are slowly varying functions of, with the Aq(7) andB(7) are related asymptotically through
asymptotic limits

1
imAy(7)=Aq, limBy(7)=B,. (4.12 |Bq(r)|2—|Aq(r)|2=W (4.18

We can thus express the mode functigngér) in terms of plus terms that vanish asymptotically. The virtue of introduc-
Ay(7) andBy(7) as follows: ing the amplitude#\,(7), By(7) is that their variation inr is
a d slow, because the rapid variation of the mode functions is
(Pq(,r):Aq(T)eiw(Q)T_;_ Bq(r)e‘i“’(q”. (4.13 accounted for by the phase.
Figures 8—11 show théscaled modulus
We obtain from Eq(4.11), for the square modulus of the

modes, Mq(7)=VaVIAL(D)[2+[By(7)[2 (4.17)
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FIG. 9. (a) The phasepy(7) of the mode functionp,_o(7) as a function of time fom,=4, g=10"°. This function follows Eq(4.22
with a very good approximatior{b) The phasepy(7) of the mode functionp,—o i 7) as a function of time fomy,=4, g= 10°°. (c) The
phaseg,(7) of the mode functiorp,— 4(7) as a function of time fom,=4,g= 10°°. (d) The phasepy(7) of the mode functiorp,—q ¢(7)
as a function of time fom,=4, g=10"°. This phase becomes an oscillatory function as the same time as the mibins see Fig. &d)]
stops growing.

and¢q(7) for some relevant cases. As shown in these figureshe argument of the cosine and the long time scales in the

My (7) and ¢4(7) do not exhibit rapid oscillations with pe- modulusM(7) and phasep,( ).

riod 27/ w(q) and 2w/ M., which are present ipy(7) and We now introduce slowly varying coefficients for the or-

n(7), respectively. That is, as anticipated abovig,(7) and  der parameter(). Let us define

dq(7) vary slowly with 7. .
For small couplingg, |¢4(7)|2,|B4(7)|? and|A,(7)|* are D(7) = 7(7)2+ (72 M2 (4.19

of order 1§ for g in the forbidden band and times later than

7, [20,27). Therefore,M () becomes of order 1 after the ’{77( 7)

non-linear time scale for modes inside the band, and is per- d(1)=— M, 7—arctan——|.

turbatively small for modes outside the band. Moreover, Eq 7(7)

(4.16 implies that |B,(7)|*=|Aq(7)[?[1+0O(g)] and for

modes inside the band we can approximate @qld as

follows:

(4.20

Using the result that asymptotically the effective time depen-
dent mass reaches the asymptotic lirhit, and the fact that
n(7) is a real function we write

1

it

We plot, in Figs. 12D(7) and ¢(7) as functions ofr.
for 0<q< 7,/+/2. This expression is very illuminating be- ~ We begin our numerical analysis by considering the
cause it displays a separation between the short time scales#0 mode function. After an exhaustive analysis we have

1+ 0

9leq()|*=My(1)*{1+cod2w(q) T+ ¢g(7) ][ 1+0(9)], n(7)=D(7) cO§ M7+ ¢(7)] (4.21)

(4.18
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FIG. 10. (@ The modulus My(7) of the mode function
®q-192047) as a function of time fomy=4, g=10" ' For times
later than7,=26.8 . . ., this mode oscillates with stationary am-
plitude. It lies outside both nonlinear resonance barids.The
phasepy(7) of the mode functionp,—4 g0/ 7) as a function of time
for po=4,9=101*2

found thatA,-o(7) andBy-o(7) exhibit power behavior for
™7, (see Figs. 8—10 To our numerical precision these
power laws can be fit by the following form:

Ag=o(71)~ Tiaz[Clral-i- C,r 1],

By=o(7)~ 77132 C 781+ Chr 3],

(4.22

where the numerical results yield, for thromalous dynami-
cal exponents

a;~0.27 (4.23
while a, is thesameas in Eqs(4.3), (4.4).

The behavior(4.22 appears also in the evolution of the
expectation valuep(7) but with the growing power ofr
absent C,=C;=0) resulting in the order parameter de-
creasing with time, exhibiting a logarithmic phase:
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FIG. 11. (8 The modulus My(7) of the mode function
@q—2747) as a function of time fom,=4, g=10"°. This function
grows until q=2.75 gets out of the second nonlinear resonance
band. The estimat@!.43 (7~ 140) is in very good agreement with
the numerical results plotted hel®) The phasepy(7) of the mode
function @q_, -4 7) as a function of time fom,=4, g=10"°. This
phase changes its behavitaround 7~140) when the modulus

Mg-,747) ceases to grova).
1
1ol 2]
-

(4.29

L
n(r)= Do(%> co§ M., 7+ alog( /7)) + fol

wheref, is a small constant. Therefore, comparing with Eq.
(4.21) we find the remarkable result that tamplitudeof the
expectation value relaxes with a dynamical power law expo-

nent,
A 1
D(7)=Dg —) 1+0 —” (4.29
T1 T
and a logarithmically varying phase
T 1
¢(7)=aylog —) +fot+ O —). (4.26
T1 T
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FIG. 12. (a) The amplitudeD(7) of the zero modeyp(7) as a
function of time for 7,=4, g=10"°. This function exhibits a
power like decrease according to E4.25. (b) The phasep(r) of
the zero modey(7) as a function of time for,=4,g=10"°. This
function exhibits a logarithmic behavior according to E426).
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FIG. 13. (@ The amplitudeM4(7) of the mode function
(pq:%/vg(T) as a function of time fomy,=4, g=10"°. (This cor-
responds to the upper border of the forbidden bamtis function
exhibits a power-like increase according to Eg.27). (b) The
phasegq(7) of the mode functior‘qu:%,g(r) as a function of
time for 7,=4, g=10"°. (This corresponds to the upper border of
the forbidden bangl. This phase exhibits a logarithmic behavior
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The timer; appears here since it is the natural time scale folccording to Eq(4.27).

the non-linear phenomena.

The g#0 modes also grow with time with a power-like
behavior for 6<g<qg(7) but with a larger power than the
g=0 mode (see Figs. 8—10 Such growth is definitely

tion of time; i.e.,qo(7) and 5y/\2—q,(7) decrease with
time [g4(7) increaseb

milder than the exponential increase of the modes inside the The growth of the amplitudes/y(7) in the nonlinear
forbidden band in parametric resonance. Our interpretatiofesonant bands for a fixefstops whery crosses the borders

of this phenomenon is that0g<qy(7) is anon-linearreso-

go(7) or gq,(7). After that time, suclg-modes oscillate with

nant band. It is not a resonance in a linear differential equaconstant amplitude; this behavior is displayed in Fi¢d)8

tion (as it is a parametric resonancéut a new nonlinear

There is a crossover fay~qg(7) and forq~q;(r) from

effect which is a consequence of the back reaction of thenonotonic growth to oscillatory behavior.

guantum fluctuations througi. (7).

The phasep,(7) exhibits an analogous behavisee Fig.

A second non-linear resonance band appears just belo@(d)].

q=70/v2 for qi(7)<q<mo/y2. However, we find nu-

The particle distribution exhibits marked peaks @t

merically that the contribution from this upper band to physi-~do(7) and atg~q,(7), which are clearly displayed in Fig.
cal quantities such as particle production is much smaller. Notice that the peak neap=q,(7) has a much smaller

than the first band. The modes in betweamn(7)<q

<q,(7), oscillate for timesr> 7, with stationary amplitude

My(7).

amplitude.
The mode exactly aij= 7,/+/2 has an analogous behav-
ior to theq=0 mode(compare Fig. 13 with Fig.)8 We find

The nonlinear resonant bands become narrower as a funt® our numerical accuracy that the amplitudes behave as
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quﬂo/\"?( T)~ Tin[Elrbl-l— E2T_b1],

Bq:”o/\"?( T)~ T_in[Eirbl-I- Eér_bl].

(4.27)

7401

tions with frequencies corresponding to a mass1,, and a
longer time scale that depends on

The amplitude of the expectation value relaxes with a
power law with non-universal dynamical exponents and
logarithmic phases that vary solely on the long time scale.

The numerical calculations yield, for the dynamical expo-The expectation value vanishes asymptotically, despite the

nents,
b,~0.19 (4.28

andb, is the sameexponent as in Eqs4.3), (4.4).

fact that its energy is dissipated into massive particles for
which there are perturbative thresholds for production. The
relaxation mechanism isnon-linear and clearly non-
perturbative even at long times.

For 7> 1, there are non-linear resonant bands which form

The growth of theg-modes in both nonlinear resonant gt the edges of the original band for parametric amplification.
bands leads to particle production. We see from Fig. 3 thathe width of these non-linear resonant bands vanishes as-
the number of particles continues to grow after the nonlineagmptotically, resulting in all modes oscillating harmonically

time 7= 74. Although this growth isnuch slowethan before

=74, the total number of particles producatter the time

for asymptotically large time. For=« both unstable non-
linear band§0<q<qy(7) andqy(7)<q< 7,/+2] shrink to

71 is substantial and turns to be of the same order of magnizero. The crossover from power-like to oscillatory behavior

tude than those produced befarg
The adiabatic number of produced particlalg,d(r), can

takes place at thg-dependent time scales given by Egs.
(4.9, (4.9.

be expressed for late times in terms of the mode amplitudes The particle distributioiN3%(7) has a finite and nontrivial

My(7) as follows:

ad 1 2 1
Ng (T)=Ew(Q)Mq(°°) +0|-]+0(9) (429

where we used Eqg3.12), (4.10 and (4.17). Notice that

asymptotically the adiabatic particle number depends solel
on the long time scale as the terms containing the fast osci

lating function coRw(q) 7+ ¢¢(7)] cancel out to order? for

large 7. This is one of the important advantages of this defi-

nition of the particle number.

For >, the total number of produced particles ap-

proaches its asymptotic value?d(«) as

dey— dm_E
NBC(7) =N (0) T+(9 (4.30

1)
7'2 ,

1 0/V2
gNAY(0) = mfoﬂ g?dqo(q)My()2+0(g)
(4.31)

where

andG is positive.

The numerical analysis shows th@t2%() andgG de-
pend very little org for smallg<10~3. Both A?%() andG
grow with 74. Precise numerical fits yield the behavior

gANR9(0)~0.00773° (4.32

for a wide range of couplings ang,.

limit for 7— 0. In particular, a consequence of the non-linear
resonant bands is thAtgd(oc) will be peaked atj=0. The
asymptotic form of the distribution is a function of the initial
conditions and the coupling. In particular,Ngd(oo) is of
order 14 for q< 5,/+/2 and it is of order 1 fog> 7,/+/2.
That is, the support of the particle distribution valid for short

ﬁmes 7<<7, survives for all times including=o°. Further-

more, for weak coupling the large number of particles inside
this band allows us to interpret this asymptotic state as a
non-perturbative semiclassical condensate in the unbroken
symmetry phase that has formed dynamically through the
relaxation of the initial energy.

B. Asymptotic analysis I: Perturbation theory

In the previous section we presented an exhaustive nu-
merical study of the evolution of the mode functions and the
expectation value. In this section we provide an analytic per-
turbative approach to explain and understand the numerical
results.

In order to study analytically the asymptotic behavior for
late times, it is convenient to write the equations for the
expectation value and mode functions as follows:

At this point we summarize the results from the numericalwhere

analysis for the unbroken symmetry case:

The effective time dependent mass reaches a finite

asymptotic valueM,, in the form given by Eqs4.2), (4.3),
(4.4). This in turn means that the modes becdnee asymp-

totically with plane wave behavior and the non-linear self-

d2
— T2+ ME+W(7) | @q(7) =0,
dr
d2
g tMEtw(n n(n=0 (433
1
w(r)=M3(1)— M= pliT) +0 ?) (4.34

consistent coupling between modes vanishes. The Ibrge andp,(7) given by Eq.(4.3 will be treated as a small per-

limit yields free modes in the infinite time limit.

For weak coupling and for> 7, there is a separation of

turbation for7> 7.
These equations can be written as integral equations using

time scales, with a short time scale corresponding to oscillathe proper Green’s function. That is,
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qoq(T)=Aqei‘”(q)T+ qu—iw(q)r is smaller than the zeroth order correction. A necessary con-
dition for its validity is given by

= sino(q)(7' —17) , ,
—f dr T T ) (). K
g (@) L 1. (4.39
(435) CU(Q)T[‘U(Q)_MOO]
Here we used the advanced Green’s function that obeys This implies, forq significatively smaller thao\t..,
2 sifw(q)(7' = 7)] 2. K
. 2 2 r_ _ o >—, (44@
ER e (0(7 7) (@) =8(r—1"). ==
(4.36 where we approximated
Sincew(7)=0O(1/7), we can generate the asymptotic ex- 2
pansion foreg(7) just by iterating Eq(4.35. We find w(q) =M.+ 9 (4.4))

. , 2M,,°

goq(r)=Aqe""<q>T+ qu"“’(q”
_ , ) Thus in the regime where E.40 holds the behavior of
_ f:” - sin w(q)(7' —7) pa(r )FA glo(@)r’ the mode functions imscillatory and given by Eq(4.38.

- o(q) ot This is in agreement with the numerical results discussed in
Sec. IV A. The equality sign in Eq4.40 yields Eq.(4.6) for
the peak position which was found numerically and therefore
now interpreted as the result of a resonance condition. Such
peaks can be seen also in the mode functions amplitudes
The integrals here can be performed in closed form up tejisplayed in Figs. 8, 11.
terms of O(1/7%) by using Eq.(4.3) for py(7). The result is The resonance aj=7,/y2 can be treated analogously.
given by The necessary condition for the validity of the perturbative
approach is then

1
Y e

+Bge @7 ]dr’ + 0O

KisinWi(7) KssinW,(r
eq(7)=| Ag| L+ l il )+ 2 2(7)
diMy,w(Q)T  4diMpuw(q)T Ky
) ) 1.
By gl (V1(7)~270(a)) eu(%(rmm(q))} o(q) L w(q) = Mo]
+ Ky +
8w(q) 7| o(q)— M. w(Q)+ M. Nearq= 7,/+/2 we can write
el (Wa(1)—27(q)) = i(Va(r)+27w(q)) ) (@) \/_
+K + elw q)7 — /2
L o@-My  wlg)+M,g o(q)=Mo+ %.
Ky sinWy(r) K, sinW,(7) 0
M AiMaw(q) T 4iMow(q)T Therefore, the oscillatory behavi¢4.38 applies for
Aq e~ 1(¥1(n)—2r0(a) ei<w1<r>+2m<q>)} . K
+ K + /o _2
Bw(a)7| U w(q)—M. o(q)+ M. 7 P (4.42
e~ 1(¥a(1)—270(q)
+K, o =My The equality sign in Eq(4.42 yields the peak positions of
@(q 0 the mode function amplitudes near such resonance:
el (F2(1) +270(q)) ]) . 1
+———— |t e @71 0 —), 4.3 K
() + Mo T (438 (= 2- -2, (443
\/5 MoT
where
These results are in remarkable agreement with our nu-
r , ; -
P =2 M. 7+ 2a, log — + merical calculationgsee Figs. 8, 11
1(7)=2M..7+ 23, log PRE The position of the main peak in the particle distributions
q precisely corresponds to the situation whegfeis balanced
an

by the amplitude in the “potential— p(7)/ 7. Namely, for
g°>K, /7, we have oscillating modes and, fogf<K,/r,
W,(1)=2M,y7+2b, log T Yo resonanfgrowing modes. The same argument applies to the
T1 secondary peak.

These expressions display resonant denominators for
o(g)=M., and w(q)=.M,. These resonances correspond
to g=0 andq= 7/ \J2, respectively. This perturbative ap-  The perturbative analysis took us a long ways towards
proach is expected to be valid when the first order correctiomnderstanding the presence of the non-linear resonances as-

C. Asymptotic analysis Il: Multitime scales
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sociated with back-reaction effects and revealed the position 1 T

of these resonances in complete agreement with the numeri- €= To=7, T1= 6T0=T—,

cal study. ! .
However, to describe the evolution of the modeside d d

these bands the perturbative approach is insufficient and a —=Dy+€eD;, D,===—, n=0,1

non-perturbative method of resumming the potential secular dr dT,

hd to writep,(7)/7 in a manner that displays at once the

terms associated with the resonances must be implementeg
ependence on the short and long time scales:

The main observation from the numerical analysis is tha
for weak coupling there are two widely separated time
scales, the short time scale associated with oscillations with p1(7)
frequency determined by the asymptotic value of the effec-
tive mass and a long scale associated with the non-linear
time 74. This suggests to implement a multitime scale analy- K
sis[28] which resums the secular terms and results imia F(TO,T1)=—lcos{2MwTo+ 2a, IN(T1) + 4]
form expansion. This method implementsiynamical renor- Lk
malization group resummation which was already K
implemented successfully to non-equilibrium evolution in +—200i2MoTo
guantum field theory29] and previously applied to quantum T
mechanical problemg30,31.

In this section we implement the method of multitime
scales to the equations for the expectation value andjthe To O(e) the multitime scale analysis of the asymptotic
modeswhich we write in the form time dependence of, ¢, begins by proposing the following
uniform perturbative expansion for the solution:

=€l'(To,Ty)

+2b, IN(Ty) + 75]. (4.48

d2
L2 2 _
de"‘q +M(7) | @q(7)=0 (4.44 2(To T =70 (T, T1) + en™(To, Ty) + - - -
0q(To T =0(To, Ty + e (To, Ty) +- - -
42 (4.49
— + M?(7) | 9(1)=0 (4.45
dr D. =0 modes:» and ¢4-¢

We generically calf(T,,T,) both » and¢,—o. The only

and use the asymptotic behavior of the effective mas§lifference between these is that wherepss always real,

squared obtained from the detailed numerical analysi®q=o0 IS complex; this difference will be accounted for in the
M?(7) for 7> 1, final form below. Comparing powers &f we find the fol-

lowing equations for thgj=0 modes to first order if:

p1(7)

T

MY (r)= M2+ +0

1 [D§+ MZ1FO(T,,T1)=0
;z) (4.4

[D§+ MEIF M (To, T1)=—[2DoD ;1 +T(To, Ty)]

X fO(Ty,Ty). (4.50
p1(7)=Kco8§ 2 M 7+ 2a, In(7/71) + y4]
The solution to Eq(4.50 is obviously

+ chOiZMQT“F 2b2 In(T/ Tl) + ')/2] (44D ) )
fO(Ty, T =A(T,)eM=To+B(T;)e M=To (451
72 where forz the reality condition implie8(T,)=A*(T,). If
Me=1+ X ME=1+ 7} the solution of Eqs(4.50 is sought in terms of the Green’s

function of the differential operator on the left hand side, one
finds that the term proportional to @31, To] in I'(Ty,T4)
- - - O . would give rise to secular terms. Therefore the condition for
\;Vclt(;eﬁ In[1/g] [see Eq.(3.25] being the non-linear time a uniform expansion requires that the coefficients of these
As.emphasized above, the non-perturbative dynamics hagcular terms vanish. This leads to the following differential
generated a new time sc’ai@ and for weak coupling there equations for the dependence of the coefficients orichg

are at least two widely separated time scales, the short timy"e scaleT,:

scale corresponding to the oscillatory behaviorxiM, 1) iK, _
and the long time scale for non-linear relaxation of the order DA~ T 222 N(T)+ing=0
Of T1- o]
In order to implement the multitime scale analysis it is .
. . . Ky '
convenient to introduce the small quantiyand the follow- D,B e 122 IN(T+iyip—Q. (4.52

+ —_—
ing two time variables Ty and T;) by AM.. Ty
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We find the solutions =0) and(4.49 up to terms that fall off faster in time. Fur-
‘ . thermore, auniform perturbative expansion ia can now be
A(Ty)=a.elP[2a T+ nlT 2 carried out to the next order.
B(T,)=b. e (/222 'n(T1)+71]T;—’a11 E. g+#0 modes

Proposing a uniforme-expansion for the mode functions

a = ( K, —ag b. — g and keeping only up t@(e) we find the equation
aM., Co =
[D§+2eDoD+q°+ M5+ EF(ToyTl)][QDgO)(TO,Tl)
tans= ; (4.53 +epl)(To,T1)]1=0. (4.55

2
Sincel” contains the oscillating factors ¢@e\1.,T,] and

This solution confirms thepsower law relaxation found co§2MgT], a naive perturbative expansion éwill pro-

numerically and provides the consistency condition duce secular terms fap,~M.., My, i.e. forq~0, M2
) s o o — M3=53/2; these were the values for which the resonant
Ki=16MZ(ai+ay). denominators in the perturbative expansion vanish. There-

. e . i fore for these values af we must implement a multi-time-
This condition is verified numerically to our level of pre- ¢c5je analysis to resum the secular terms.

cision. In addition for weak coupling the numerical evidence
givesa’<aj [see Eqs(4.4) and(4.23], leading to 1. Small but nonzero §

(4.54 A consistent expansion ia can be implemented by writ-
ing q2=eq§ with q;~O(1). This is a nonrelativistic ap-
The final form of the solution is given by a linear combi- proximation since them? is much smaller than\(Z . The
nation of the two independent solutions above, yielding  zeroth order solution is clearly

K1~4Mwa2 .

a Y1 6 QDE]O)(TO T = Aq(Tl)eiMmTo+ Bq(Tl)e_iMwTO_
f(To,T1)=T73C.co§ M, To+a, In(T,)+ S+5

Secular terms in a naive perturbative expansion will arise
from the term proportional t&4 in py(7).
It is convenient to define the coefficients

ag(Ty)=e 12T+ W2ml 4 (T)),

—ay Y1 6
+T1 C_co MwTo‘l‘ ao |n(Tl)+ ?— E

+0O(€)
— Al In(Tq)+(1/2)
where for 5 the coefficientC_ is real andC, =0, whereas bg(Ty) =e'lee MV W2l (1)), (456

they are complex and bot# 0 for ¢4—,. The O(€) correc-
tion quoted above iboundas a function of time as it arises Requesting that the coefficients of the secular terms in the

from the perturbative solution without secular terms. perturbative solution vanish we obtain the following differ-
Therefore we quote the final form of the solutions ential equations:
T\ % 1 O ia,a, iq? iK
= — wTo+ + = —— 2%q _ 1 _ 1 _
7 D"( 71) CO{M Tora I+ 5 =7 S M Y VR Y VI Pl
T\ v, 9 iab, iq? iK
QD=(’T):C <_) CO{MOCT +a |n(T)+—+— _ 2 C]+ 1 + 1 =0.
q=0 |\ 7y ot & VT 5 T35 Dibq T, T, P 4MwT1aq 0
e i>_alcos{MwT0+a2 In(T1)+£—é} Thgse equations simplify considerably by introducing the
T 2 2 variablez as
In addition, we have checked the constancy of the Wronsk- B q°T,
ian z= 2 (4.57
@a—o( T @i—o(T) = @q—o( T) @%—o(T) Then, Egs(4.56 can be rewritten as two decoupled second
o order differential equations:
=2i
=M., sin [C,C*—C*C_] L | NP
% +CZ 1C_], Zﬁer_z Z—i— a2—7 a4(2)= (4.58
leading to the conclusion that neither of the coefficigbts ) 2
can vanish fokp— . It is a matter of straightforward algebra zd—+ i+z+i 2a,— a by(2)=0
to find that these are indeed solutions of E@s44 (for q dz  dz 2 z| '
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These are confluent hypergeometric equations with the solu 2

tions

Aq(z) = Ziazille iaz—llz,tal(ZiZ):

Bq(z) = ZiiaZil/zM —ia2—1/2,tal(2iz)

(4.59

whereM, ,(z) stands for a Whittaker functidr82]. We find
the asymptotic behavior to be given [32]

z—0
Aq(Z) — (2| )l/2ialziazta1’

z—0
Bq(z) — (2i)1/2ialzfia2ial,
and
2 . r(1+2a,)
— iy —iag+1/2 iz
Adz) = () g w ey
2o r(1*2a,) .
— iyiap+1/2 —iz
Bal2) = (2 v v ay ©

In Fig. 14 we plot|.44(2)| and the phase af "?4,(2) as a
function of z. One sees that the behavior of the numerically
computed modes in Figs(@, 8(d), 9(c) and 9d) is accu-
rately reproduced.

Using the integral representation for the solutigBg],
we can find where the functiond(z) and B,(z) oscillate
with z and where they do not:

1
Aq(Z) — kziazialj ?ei{ZZHaz log [(1—t)/t]}[t(1_t)]ia1
0

wherek is a constant. This integral has stationary points at

_11+ 1 2a,
=g 1= V-

For z>2a, the stationary points are real, indicating an
oscillatory behavior, whereas they are complex Zer2as,,
implying a non-oscillatory behavior. We see from Egs.
(4.57 and(4.54) that the conditiore=2a, precisely corre-
sponds to the peak positiga.6).

2. f=Miz— M2

In this region of momentum we writg?= M3— M2
+eq§ in order to implement a multi-time-scale analysis. In
this case, secular terms in the perturbative expansioa in
will arise from the term proportional t&, in p;(7), i.e. the
term co$2 My To].
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T T
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FIG. 14. (a) The pressure divided by the initial energy as a
function of time forz,=1, g=10"%. Notice the asymptotic value
p(=)/e~1/3(1+2/73)=1/9. (b) The pressure minus its value at
=00 times 7 as a function of time fomy,=1, g=10"°. This func-
tion oscillates in time with constant amplitude and frequencies

2M.. =21+ 732 and 2M=2\1+ 72.

bq(Tl) = (i/2)[2b2 In(T1) + 7] Bq(Tl)-

Requesting that the coefficients of the secular terms in the
perturbative solution vanish we obtain the following differ-
ential equations:

Using the same notation as in the previous subsection, the

zeroth order solution is now

goéO)(TO T1)= Aq(Tl)eiMoT0+ Bq(Tl)efiMOTO_
(4.60

Defining the coefficients

ay(Ty) =e (1202 IN(T vzl g (T

2
L8 a4 K _
Dlaq+|b2T1 i ZMan |4M0T1 bq=0
b 0> K
o ~q 2 . 2 _
Dibq |b2_|_l+| 2/\/tobqﬂ4/\/10_|_1a0I 0.

As in the previous case these coupled first order differen-
tial equations reduce to two decoupled confluent hypergeo-
metric equations with solution
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— \ibo—1/2pg . i
Aq(y)_y 2 M|b2—1/2,tbl(2|y)1 TMV:(?,U,(ﬁ.aV(IS_g,U«V

1~
Eaacb.aacb—vm).cp)}

By(y)=y P27 M iy 125, (21Y) (4.62
where Since we consider translationally as well as rotationally
) invariant states, the expectation valueTdf’ takes the fluid
(52— 9%) form
y= 2M, T.

1 1/1., 1 .
— 00 — 2 2
The transition from non-oscillatory to oscillatory behavior E= NV<T (X)) = NV< 5(1) + E(V(b) +V(q))>

takes place here at=2b,, implying that the modes with
— 1 — 22, — 33,
e NVP(7)=(TH(x))=(T2()) = (T%(x))
=T

T
1 . N

. o =<—(V<1>)2+c1>2—T°°(x>>,

will grow in time. 3

The solutions for the mode with= 7,/+2 correspond to

the exponents with all off-diagonal components vanishing.
_ Hence,
— by Fi
QDq: \%_T 1 2
P()+E= | =(VH)2+ 52
17 (NFE= 3V
bl_ 4—/\/10 —bs.

takes a particularly simple form.

This analysis leads to the conclusion that as a consistency Both E and P(7)+E can be expressed in terms of the
condition, the constanté; andK, can be expressed as fol- zero mode and theg-modes. All derivations including the

lows: renormalization procedure can be found in Rg20,27,33.
We just quote the final results in the unbroken symmetry
K,~4\1+ 75/2(0.16 logg~*+0.6), case, referring the reader to the above references for details:
Ko~4~1+ 2 2IMgl4f1., 1 MA(7T)+1
i 7o Eren="y |57+ 51+ PIMA(7) = ————
-1 R
X(—0.16 logg™*+0.6), (4.61
1. ) MA(7)
where we used Eq$4.4), (4.23 and (4.29. +9|ep(7)+ 53 () MA(7)+ —5—
/ 2 32
Therefore the effective mass squared behaves as
4 MO, (1/\4( )| +et( )H (4.63
—In| = , .
M2(7)= M2+ ~{ M2y CO§2M.. 7+ 22, log(r/my) + 71] 8 27T o
+ Mob,cog 2 M7+ 2b, log( 7/ 1) + 51} where[20,27
1 ® d
+0|=]|. sF(T)=2J g?dgwg(TING(7)
T 0
We have confirmed these results numerically within our 2 2
isi 1+ 1+
precision. J" () =— 1+log
These results are noteworthy; by implementing a multi- 4 4

time scale analysis which is the dynamical equivalent of a
renormalization group resummati¢®9] we have obtained a N 3 N
power law relaxation for the expectation value witon- C7(m0) == 7 (14 70)3" (170).
universal dynamical anomalous dimensiomke logarithmic
phases are clearly a consequence of the falloff of the
potentialw(r) in the mode equation$}.33 just as in the ging the equations of motigrit is equal to the initial value,
Coulomb problem. The power laws originate from the re-given by

summation of the secular terms arising from the non-linear

resonances, a hon-perturbative result. 2|Mgl* 2||V|R|4J 1,

ren Am € Mr lz o

Since energy is conservéds can be verified explicitly by

1,
1+ > M| (4.69
F. Energy and pressure

The energy-momentum tensor for this theory in The renormalized energy plus pressure takes the form
Minkowski spacetime is given by [20,27



2[Mgl*

P(7)rent Eren:)\—R[s +p(7)]

_2[Mgl*
=

|

%72+gf0 q2dq

. 1
§Dq(7) 2+§q2 QDq(T) 2

M?(7)
3q

For times afterr; we can restrict ourselves to the contri-
bution from the expectation valug and the modes in the
band 0<q< 7,/+2. Modes withq> 7,/y2 only yield per-
turbatively small correction®(g). Using Eq.(4.11) we can
write the integrands in Eq$4.63—(4.65 as follows:
M(7)*{1+cog2w(q) 7+ dg(7)

gleq(n|?= 1H1+0(9)],

)= 0(a)*Mq(1*{1-cod 2a(q) 7+ ¢q( )]}
X[1+0(g)].

g|€'0q(7'

Inserting these expressions in E¢$.63—(4.69 yields

1., 1 MA7m)+1
= 57t 5 (L P M) =
+JO”°/ 20|2dq[qz+/\/12(<>o)]l\/lq(f)2+O(@J)-

Taking now ther— o limit yields

I

We analogously find, foe +p(7),

1

o= qeri+ [ adal o+ M) ()7 Ot

(4.695

2 4
s+p(n)= [ Zquq[§q2+M2<w>}Mq<7)2

7]0/ E
0

2
X §q2+M2(°O)

2dq cog2w(q) 7+ ¢o(7)]

My(7)%+0(g).

For large 7 the integral containing the oscillating cosinus

dies off. We thus obtain, combining both expressions,

1 (ngl\2 4 5 1
p(°)=3 g dgMg() T no+<9(g)
3Jo

(4.66
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G. Sum rules and the equation of state

Although we do not know the analytic form of the particle
distribution for late timedsee Eq.(4.29], we are able to
compute its first two moments in the following way.

First, we can express the quantum fluctuatiglq 7) in
terms of the modes using Eq8.7) and (4.18):

N2
03 = | " q?damy {1+ cog20(@)r+ 0 )])

+0(9g).

For large 7 the integral containing the oscillating cosinus
dies off. Using now thaty()=0, M?(r)=1+ n(7)?
+92(7) and Eq.(4.1) we obtain the first sum rule

70IN2 1
f0° APdaMy()?=5 75+ O(g).

Furthermore, equating the expression for the energyrfor
= [Eq. (4.65] with its initial value[Eq. (4.64)] yields the
second sum rule

n0/\2
[
0

Combining the sum rules with the expressions for the en-
ergy and pressure, Eqgl.65 and (4.66), yields

1
*dgMg(=)?= 1575+ O(Q)-

_ 1 410
p() = 1575+ O(9)
and

p()

+0(0).

&

3 1+—2

7o

We see that the bath of produced particles does not behave
asymptotically either as radiation or as nonrelativistic matter
but their equation of state interpolates between these two
limits as a function of the initial amplitude of.

For largen,, we find, as expected, radiation behavior

0 770*“’1 1
p() O(_z)_
Mo

For small y, we find a cold matter behavior

3

p(e)™ 01
=5 n5+O(7g)—0

&

We notice that the energy and the asymptotic pressure can
be expressed in a form that suggests a two component fluid
formed by nonrelativistic and massless particles:
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90

80

70 |

T
|Aglfor g=10° —

V. BROKEN SYMMETRY

In the case of broken symmetky2=—|M2| and the field
equations in théN=co limit become[20,27,34

n—n+n3+gn(r)(7)=0 (5.1)

60

50 2

d
@+q2—1+ n(1)2+g3(7) |@g(1)=0 (5.2

40

30 |
where2 (7) is given in terms of the mode functions,(7)

by the same expression of the previous case(Ed). Here,
M3(1)=—1+n(7)%2+g2(7) plays the role of dtime de-
pendenk renormalized effective mass squared.

The choice of boundary conditions is more subtle for bro-
ken symmetry. The situation of interest is wher QS<1,
corresponding to the situation where the expectation value
: : rolls down the potential hill, beginning very close to the
phase of Aq (tau), g=107 etag=40 — origin. The modes witly?<1— 73 are unstable and thus do
not represent simple harmonic oscillator quantum states.
Therefore onanustchoose a different set of boundary con-
ditions for these modes. Our choice will be that correspond-
ing to the ground state of aupright harmonic oscillator.
This particular initial condition corresponds to a quench type
of situation in which the initial state is evolved in time in an
inverted parabolic potentidfor early timest>0). Thus we
shall use the following initial conditions for the mode func-

0 tions:
2+ - l
n ] 0q(0)=—=, ¢q(0)=—1Q, 53
Q4
.6 1 1 1 1
(b)O 100 200 300 400 500 qu \/m for q2<q3§1_ 77(2),
FIG. 15. (@ Modulus of the function4,(T;) obtained through Q4= Vo2—1+ 7702 for q>> qﬁ, o< ,73<1_ (5.4)

multi-time-scale analysis as a functionag#r/ M., . We give in Eq.

(4.59 its expression in terms of Whittaker functions. Notice the glong with the initial conditions for the expectation value
resemblance with the full numerical solutions displayed in Figs-given by Eq.(3.3). Furthermore, because the adiabatic fre-
8(c) and &d). (b) Phase of the functiotdy(T,) obtained through g encies cannot be defined for the modes in the spinodal

multi-time-scale analysis as a functionag#r/ M., . We give in Eq. band, we use the definition, E€B.8), for the particle num-
(4.59 its expression in terms of Whittaker functions. Notice the

resemblance with the full numerical solutions displayed in Figs.

9(c) and 9d).
A. Early time evolution: Spinodal unstabilities

2 4 . P As in the unbroken case, fg<1 we can neglecg (7)
/2 and 73/4 may be interpreted as the contributions of. ; : . :
Z]%ssless Z(r)\d mas{;ive particFI)es to the total energy. in Egs.(5.1),(5.2) until the spinodal timer; defined to be the

. T . time scale at which the quantum fluctuations become com-
The pressure approaches its asymptotic lipfiv), oscil- 4

lati th d : litude. We find f . parable to the “tree level” terms. In addition, when the ini-
fa:ngngllysi S[E;((:arsall:sig]sg ?g)p ;:]J del.Sb)? tlr?at trr?irsn ;nlf';ﬂri'tldrg:r"tial value of 7, is zero or much smaller than 1, we can

' . ‘ . neglect 2 in the mode equations, which simplify to
falls off as~ 1/7. More precisely we find, for times later than glectn(7) q plify

T1s g2
—Z—l—qz—l @q(7)=0. (5.5
r
qu(7) 1 . I .
p(7)=p(x)+ +0| =|. The solution of Egs.(5.5 for the initial conditions(5.3)
4 T takes the form
1

Here, q,(7) oscillates with time with the same frequencies

1) (7-):— P_i(l'i‘ 2) er\/lfqz
2M,, and 2M, as the effective mass squalege Eq(4.3)]. q 2 ‘/1_q4{[ q 91
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TABLE |. Spinodal time estimates from the analytic formula 1 . . . . T oor0t b
(5.8) compared with the numerical results for different values of the __| on (B for =10 em@=07 8 T |
couplingg=10~". }
0.6 H -
n=—log;g Spinodal time ¢;) Numerical result oal
estimate forr, ‘
0.2 H 4
5 7.85 7.87
6 9.14 9.14 02 H _
7 10.40 10.40 ll ]
061 _
8 11.65 11.40 sl ]
9 1289 1287 B 0 1(‘)0 2(‘)0 3(‘)0 4(‘)0 5(;0 6(‘)0 7(‘)0 8(‘)0 9(‘)0 1000
10 14.14 14.10 FIG. 16. The effective mass squared as a function of time for
broken symmetryp,=105, g=10 *2 This function oscillates in
12 16.55 16.90 time as described by E@5.10.
14 19.00 1929 We list in Table | the values of the spinodal time accord-

ing to Eq.(5.8) and the corresponding position of the maxi-
mum of g3 (7) for different values ofg=10"" and a fixed
7o=10"%. We see that the two values are equal up to 2%.

+VI—P+i(1+q?)le "1

for 0<g?<1. The modes with higher wave numbgt>1 B. Asymptotic nonlinear evolution I: Numerical analysis
%%Sifrg;w and their contribution g () is subleading at We present in this section the numerical analysis for the

: . - . . i lutionafter th i [ ti hen th
This solution exhibits the typical exponential growth of time evolutionafter the spinodal timer, when the quantum

. o X .tiack reaction frong2 (7) becomes important and a full so-
spinodal unstabilities. Very soon, the decreasing exponentlfilution of the non-linear equatiors.1), (5.2) is required. We
can be neglected and we can set BS :

have carried out a numerical integration of the integro-
differential equations for a wide range of initial amplitudes

@q(7)~ ;4[ /1—q2—i(1+q2)]e”1‘qz (5.9  and couplings, implementing the same algorithms and with
2J1—-q the same precision as in the unbroken symmetry case before.
o In the broken symmetry case we find numerically that the
to a very good approximation. effective mass squared
Using such mode functions we can estimate the quantum
fluctuationsg=(7) for short times. Inserting(7) given by M3(1)=—1+9(1)2+g3(7) (5.9
Eq. (5.6) in Eqg. (3.7) the integral is dominated bg=0 for
growing timesr: vanishes forr— o,
0 2 A detailed analysis that includes the FFT reveals that
1(1-0g°dq| q =2 2 R - -
S(7)~ _f —— 1+ = (1+g?) |e*™V1 4 M?=(7) tends to zero, oscillating with decreasing amplitude.
2Jo 1-¢ 2 For 7>, a very precise fit is obtained in the forfsee Fig.
16)
~ e 1+0 ! (5.7)
We 7| '

A T
Mz(r)z;s(r) cos 27+ 2¢,5(7) log -

1
Using this estimate for the quantum fluctuatiahér), we 1 +O( ?)
can now find the value of the spinodal time scajeat which (5.10
the back reaction becomes comparable to the classical terms

in the differential equations. Such a time is defined by :
whereA, c, and y are constants an is a slowly de-
g2 (71)~1. From the results presented above, we find 2 4 s(7) y

creasing function witts(r;)~1. This slowly varying func-
\/§ 1,3 a8
mg) 4799 g

tion can be well approximated by
The time interval fromr=0 to 7~ 7, is when most of the
particle production takes place. After~7; the quantum For small initial amplitudes £,<103%), A and 7, are inde-
fluctuation shut off the exponential growth of the modes andpendent ofypy and their dependence gncan be numerically
particle production slows down dramatically. fit as follows:

+y

1

Ty~ Elog +---. (598

s(r)~e (77, (5.1)
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0.8 T T T

T T
n(q) at t=200 for g=1072 eta(0)=107 BS —

1
x~0.25, 7o~1g, A~0.64Io%—1.9,

0.6 1

1
c,~0.6—0.16 Io% (5.12

for small couplings §<<10™%).

These expressions reveal thatseconddynamical time
scaler, emerges in the broken symmetry case. Furthermore
this new scale is widely separated from the non-linear scale
i.e. 7,> 7, for weak coupling and small initial amplitude. 02| _

We also notice that the frequency of the oscillation of the
effective mass is given by the initial mag®r very small o .
770), Which is in agreement with the situation in the unbroken
phase[see Eq(4.3)] since in this broken symmetry case the o : : : : :

0.4 H g

34 4

0.2 0.4 0.6 0.8 1 1.2
effective mass vanishes asymptotically.
A power law relaxation was also reported[®¢] for the FIG. 17. Momentum distribution of the produced particles at
broken symmetry phase. =200 for broken symmetryyo=10"°, g=10" 2 Notice the main

peak atq=0.020 and the secondary peakcpt 0.946 associated
with the non-linear resonance gt 1. The positions of both peaks
are correctly estimated by Eg&.23 and(5.24), respectively.
Since the effective mass vanishes asymptotically, the
g-modeseq(7) oscillate as The Wronskian relatiorf3.6) and Eq.(5.13 imply that the
functionsAq(7) andBy(7) are related through

C. Evolution of the mode functions

: (5.13

T— 0 . i 1
eq(7) = A'9+B e_'qT-I-O(— 1
! v T [Bo(DIP~|Aq(n)[*= (5.20

behavior that is confirmed in our numerical analysis.
As for the unbroken symmetry case, it is convenient t
introduce slowly varying amplitude&,(7) andBgy(7),

0plus terms that vanish fast asymptotically. We plot in Figs.
17 and 18 thdscaled modulus as a function of time,

Mq(7)=VaV[AL(D[Z+[By( 7%, (5.21

and ¢4(7) for some relevant cases. This figure shows that as
anticipated M y(7) and ¢4(7) vary slowly with 7.

For small couplingg, | ¢q(7)|2,|B4(7)|? and|A4(7)|* are
' (5.14 of order 1§ for q in the spinodal band € q=<1 and times

later than7; [20,27. Therefore,M(7) is in that case of

to separate the evolution on short time scales from that oarder one. Moreover, Eq(5.20 implies that |B,(7)|
the long time scales. We can thus express the mode functioris|Aq(7)|?[1+0(g)] and we can approximate E¢h.18 as
@q(7) in terms of Ay(7) andBg(7) as follows: follows:

q

1 .
Aq(T)E Ee_qu @q(T)_ (Pq(T)

1 i.
Bqy(7)= §e+'q7 @q(7)+ aqu(T)

@q(7)=Aq(T)EY+By(r)e 1", (515  °°

T T T T T
Particle number times g for g=107'2 stag=10',5 BS —

0.45 -

We find, from Eqs(5.13, (5.14),

04} 1

lim Aq(7)=Aq. (516 .l Wmm ]
T “Wmmwmmmmmmmm
lim By(7) =By B1D gl ]

T—®

02

We obtain, from Eq.(5.14 for the square modulus of the
modes,

0.15

|‘Pq(7')|2:|Aq(7)|2+|Bq(7')|2+2|Aq(T)Bq(T)| o.os—J 1
X 0§ 2q7+ ¢g(7)] (5.18 0 s

L L L
0 100 200 300 400 500 600 700 800 900 1000

where we set FIG. 18. The total occupation number timgper volumem ™3

. as a function of time for broken symmetryy=10"%, g=10"12 Its
Aq(T)Bo(1)* =|Ag(7)By( 7)€ %a(™. (5.19 limiting value isgA\{%=)~0.33.
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FIG. 19. (@ The amplitude M4(7) of the mode function
¢q=1(7) as a function of time for broken symmetry,=10"5, g
=10'2 It grows as a power according to E&.26). (b) The phase
¢q(7) of the mode functione,-,(7) as a function of time for
broken symmetryy,=10"5, g=10 *2 This function follows Eq.
(5.26 with a very good approximation.

1 L L L L L L 1 L
100 200 300 400 500 600 700 800 900 1000

gleq(*=Mq(1)*{1+cog2qr+ ¢q(7) ]} 1+0(9)],
(5.22

for 0<qg<1.
We see from the numerical resultSig. 19 that the mo-

mentum distribution of produced particles evolves with time.

In particular, the position of its peal{g(7) decreases with
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4 T T T T T T T T T
. -10 -5
Mq (t): modulus mode q=0.5 for g=10"", eta, =10 ,BS —

25 1

0.5 I 4

L L s s L L L s
200 300 400 500 600 700 800 900 1000

(a)

T T T T T T
M, (t): phase mode g=0.5 for g=10""°, eta, =10%,B8 —

10 H 4

L 1 1 L L 1 L L L
0 100 200 300 400 500 600 700 800 900 1000

FIG. 20. (8 The modulus My(7) of the mode function
@q—0s(7) as a function of time fog=10"1% 7,=10"°, broken
symmetry. For times later thany=14.14 . . . , this mode oscillates
with stationary amplitude. It lies outside the nonlinear resonance.
(b) The phasep,(7) of the mode functionp,_q 5 7) as a function
of time forg=10"% 7,=10"5, broken symmetry.

We find two non-linear resonant bands for 7, the first
for 0<q<qg(7r) and the second foqc(r)<q<\/1—7702
~1. The value ofqc(7) follows by perturbation analysis
(see the next sectign

Oe(7m)~1— s(7), T>7q, (5.29

T—1TC

time. From the numerical results we can fit the peak position

by the form

r
gs(7)~ ! )

T_TB

(5.23

T>T1,

wherer,;~3.8 forg<10 %, 7,<10 ° and rg~ 7;.
Since M?(x)=0, the asymptotic equation for the zero

WhereTc"‘Tl.

We see from Eqs(5.23 and (5.24 that both unstable
bands shrink to zero for—«~. The modes in these non-
linear resonant bands grow as powers of time. The mode
exactly atq=0 is not resonanty(7) tends to a constant
value for7—c while ¢4-o(7) grows linearly with the time.

The order parameten(7) tends for late times to a non-
zero limit that depends on the initial conditions.

The modes between the unstable barjdg(7)<q

mode, 7(7)=0, only admits a constant as bounded solution.<qc(7)] oscillate in time with constant amplitudeee Fig.

This is precisely what the numerical analysis yields.

19).
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Most of the particles are produced just before the time ¢q(7):Aqeiq7+ qu—iw
(see Fig. 20 Then, the particle number oscillates with de- )
creasing amplitude around its asymptotic limit. This limiting B f*d ,sing(7'— 7')M2 , ,
value is proportional tg~* and independent o, for small T T q (7)@q(7").
19 andg and approximately given by (5.30
Moo ~£230 (5.25 Iterating this integral equation and using E§.10 yields,
4m°g after calculation, if we take the functics{r) as a constant,
In the present case the particle number saturates arpund Ae— (770 Qi v(7)
The vanishing of the effective mass in the-o limit goq(r)queiq”r qufiqr_ —( Aqe‘qT
implies that theq-modes become effectively free. As for 87 q+1
unbroken symmetrysee Sec. lll 4, the system tends as- e i¥(7) el gmiw(n)
ymptotically to a limit cycle. All modes oscillate harmoni- — —Bge ™" — (5.3)
cally for large enough times, since far= both unstable q-1 q-1 q+1

bands[0<q<qg(7) and qc(7)<q<1] shrink to zero. In
addition, the expectation value tends to a small consta : \ .
These expressions are singulargat =1, revealing the

value 7(®)= 7, . . " )
In t?fe )preZent broken symmetry case we find that theresonant band belog=1. Actually, these singularities dis-

modeq=0 grows linearly in time, whereas modes with appear when the decrease s§fr) with 7 is taken into ac-

N S ith law forr> ;. count on time scales> 7,.
~ 7o~ 1 Grow with a power faw forr=7; approxi- Notice that there is no resonancegat 0 for broken sym-
mately given by

metry.
Forg?~1 the perturbative expansion breaks down for the
intermediate asymptotic time scalegs< r<7,.
In order to understand the behavior of the mode functions
(5.26 in the_re_sonant regions, we imp!ement a multitime scale
analysis in the same manner as in the unbroken symmetry
(see Fig. 1Y with case, introducing the parameter 1/7; and introducing the
long time scalel ;= €Ty with To= 7. The analysis is carried
1 out in exactly the same manner as before. The result is that
€;~0.24, c,~0.6-0.16 |0%- (527 the amplitudesA,_;, B4—; areexactlygiven by Eq.(5.26.
Furthermore, a consistency condition arising from the multi-

A more precise numerical fit yields that the dependenag of time scale analysis is that
on g can be bounded by

n\e/here Y(7) =27+ 2C,8(7)log(7 )+ ¢

Ag-1(7)~= 7D, 7%+ Dy 4],

Bg=1(7)~ T_iCZ[DiTCH- D,7r %]

A=4./ci+c5~4c,. (5.32

%<4X 10 3. (5.28 This_condition is vv_eII verified in the nume_:rical calculations.
Since the effective squared mass vanishes asymptotically
and there are no resonancescgt 0 for sufficiently late
D. Asymptotic nonlinear evolution Il times, theq=0 mode behaves as
Perturbative and multitime scale analysis

As in the unbroken symmetry case, we can determine ¢o(r)=L+Mr7 (5.33

analytical_ly the positio.n of the_resonances l_)y performing QvhereL andM are complex coefficients that can only be
perturbative analysis in a similar manner, in terms of the

\ . obtained from the full time evolution. The Wronskian rela-

advanced Green'’s function. tion (3.6) implies that

The effective masg\12(7) vanishes forr— o in the bro- '
ken symmetry casgsee Eq.(5.10]. Because the function Im[LM*]=1, (5.34
s(7) varies on even longer time scales of ordeyd,/we can
perform a perturbative expansion on intermediate asymptotishowing thatM #0+1L.
scales, between, and the much longer time scale associated It follows from Eq. (3.8) that the number ofj=0 quanta
with s(7). In this intermediate asymptotic regime we cangrows asr? for asymptotically larger:
considers(r) to be constant.

We can thus study the mode equations T
No(r) = ZV1+mgM|?7. (5.35
d2
— + 9%+ M? =0 5.2
dr? a (7) | @4(7) (529 Notice that the total number of particles tends to a constant

for 7—o becausdéNy(r) does not contribute to the total due
for late times, considering\?(7) as a small perturbation. to the vanishing of the phase space factogast low mo-
That is, we can write the integral equation including thementum. This linear growth of the homogeneous quantum
boundary condition$5.13 mode was also noticed {184].
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This situation is similar to Bose-Einstein condensation, inup to corrections of ordea<1 whereq, is the maximum
which case the excess number of particles at a fixed temperapinodally unstable wave vect¢for 775< 1q,=1).
ture goes into the condensate, whereas the total number of As for the unbroken symmetry case, we can use the
particles outside the condensate is fixed by the temperature aéymptotic value of the effective mass squared and the con-
zero chemical potential. Thg=0 mode does not contribute servation of the energy to compute the first two moments of
to the energy, the pressure and the total particle number bwi2(«) and to establish similar sum rules.
it will become macroscopically occupied fer= 'V with V the vanishing of M?() implies that g3(®)=1
the volume of the system, in which case the number of pars o(2) and hence
ticles in the zero momentum mode becomes of the order of
the spatial volume. In this case this mode must be isolated 1, ) 5
and studied separately from the: 0 modes because its con- Jl) g dgMg()+O(g, 75) =1, (5.39
tribution to the momentum integral will be canceled by the
small phase space at small momentum much the same Wayhere we used Eq$3.7) and (5.22.
as in usual Bose-Einstein condensation. _ Furthermore, equating the expression for the energy at
The presence of a Bose condensate through this macra- [Eq. (5.36] with its initial value
scopic zero momentum mode signals spontaneous symmetry
breaking even when the order parameter remains zero. 1
Therefore we identify thdinear growth in time of theq e=71T0O( %) (5.39
=0 mode as the onset of a novel form of Bose condensation
of Goldstone bosons and symmetry breaking in the collisionyje|gs the second sum rule
less regime and in the absence of thermalization. This form
of Bose condensation of Goldstone bosons in a collisionless 1 1
regime is similar to that reported recently within a different f q*dqMz()= Z+@(g,77§)- (5.40
context[38]. 0
The time scale for the formation of the condensate ( ging these sum rules allows us to compute the pressure

~ V) is obviou;ly much larger than the n_onlinear scale iy the r— oo limit from Eq. (5.36:
and the thermalization scale when corrections of ordir 1/

are included. Therefore, the formation of the Bose conden- 1 5
sate including M corrections, which will include collisions, p()= 151009, 70), (5.4
will require a further understanding of the dynamics and of
the time scales involved. leading to the equation of state for radiation,
E. Energy and pressure for broken symmetry: Sum rules 1
p(=)=3e+0(9, 7)), (5.42

As shown in Refs[20,27] the energy(4.63 and the pres-

sure(4.65 can be rewritten for broken symmetry as follows: . . .
(4.69 y y as is expected since the bulk of the produced particles are

2|Mgl* massless.
ren:TRSv
> VI. CONCLUSIONS AND FURTHER QUESTIONS
s=%+ Z(nz—l)2 In this article we have studied both numerically and ana-

lytically the asymptotic non-equilibrium dynamics of relax-
a ation in a scalar field theory in the collisionless regime. We

+ng q?dqQqNgy(7) have focused on the relaxation of initial states of very large
0 energy density that require a non-perturbative treatment in a

g controlled manner, maintaining renormalizability, energy
+ 52(7) -1- 77§+M2(T) conservation and all of the relevant conservation laws. De-
tailed numerical analysis revealed the presence of new dy-
g namical and non-perturbative time scales and non-linear
—EE(T) +0(9), resonant bands that result in the power law growth of quan-
tum fluctuations and a power law of relaxation for the expec-
2|Mgl* tation value of the sca_lar field. A separa_tion between the time
Pren(m)= rr p(7), (5.36  scales for weak coupling allowed us to implement a dynami-

cal renormalization group resummation of secular terms via
1 o the method of multi-time scales and confirmed and com-
p(T):gf qde[§|‘Pq( 7)|? pleted the numerical results. .
0 This dynamical renormalization group resummation of
secular terms leads to power law relaxation watiomalous
+ PP+ 0(g)—¢, dynamical exponents which a_mon-universaldepending
non-perturbatively on the coupling constant.
(5.37 In the unbroken symmetry phase the expectation value

+o(7)|2
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vanishes asymptotically, transferring all of the initial energythat the asymptotic distributions are of “soft” momenta and
into production of massive particles, as a result of the nonsemiclassical in the sense that the amplitude of the particle
linear resonances and despite the presence of perturbatisstribution inside the bands is1/\, and that there is a
thresholds to particle production. The asymptotic diStI’ibUtiOﬂseparation of time scales for weak coupling should allow a
is non-thermal and non-perturbative in the band where paracoarse grained” description in terms of quasi-particle dis-
metric resonance takes place at early times. It can be intefributions in the manner of Boltzmanfii) The next order in
preted as a “semiclassical condensate” in the unbroken/N must be pursued to incorporate consistently collisional
phase, a result of the relaxation of the initial energy denSityprocesses; probab|y) must be understood before this to
The equation of state of the produced particles interpolateseparate the microscopic from the long time scales. Colli-
between dust and radiation domination as a function of thgjons will compete with the collisionless processes and affect
initial amplitude of the expectation value of the scalar field.the onset of Bose condensation found in the collisionless
In the broken phase the numerical evolution revealed gegime. Here there is the possibility that whereas thermal
hierarchy of time scales, and the relaxation of the order paequilibrium is established on collisional time scales, chemi-
rameter is with anomalous power laws. Again an implemenca| equilibrium may be established on much longer time
tation of the dynamical renormalization group revealed thescales, resulting in a non-vanishing chemical potential.
presence of non-linear resonances that result in particle pro- Only a deeper understanding @f and (i) will lead to a
duction after the spinodal time. Non-universal power lawcomplete understanding of the different regimes, collision-
relaxation appears with exponents depending nontess, kinetic and hydrodynamic, which could account for

perturbatively on the coupling constant. The coupling conthermalization, chemical equilibration and all of the impor-
stant dependence is similar for the unbroken and brokegant relaxational phenomena.

symmetry cases. The asymptotic distribution of particles is
localized at low momenta and is non-perturbative and non-
thermal, but the equation of state is that of radiation. We also
found the onset of a novel form of Bose condensation in the
collisionless regime and without thermalization but with ex- The authors thank F. Cooper, I. Egusquiza, H. J. Giaco-
tremely long time scales. mini, E. Mottola and L. Yaffe, for stimulating discussions.
Although this body of results provides for a deeper underD.B. thanks the NSF for partial support through grants PHY-
standing of the non-equilibrium dynamics in the collisionless9605186 and LPTHE for warm hospitality. R.H. is supported
regime, and thus we believe it represents a quantum fieldy DOE grant DE-FG02-91-ER40682. We thank NATO for
theory example ohon-linear dynamicsthere are very many partial support. LPTHE is Laboratoire Associei CNRS
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