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Variational calculation of the effective action
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Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567, Japan

~Received 17 November 1997; published 20 May 1998!

An indication of spontaneous symmetry breaking is found in the two-dimensionallf4 model, where
attention is paid to the functional form of an effective action. An effective energy, which is an effective action
for a static field, is obtained as a functional of the classical field from the ground state of the HamiltonianH@J#
interacting with a constant external field. The energy and wave function of the ground state are calculated in
terms of DLCQ~discretized light-cone quantization! under antiperiodic boundary conditions. A field configu-
ration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation
in the J→0 limit. It is shown that there exists a nonzero field configuration in the broken phase ofZ2

symmetry because of a boundary effect.@S0556-2821~98!04812-7#

PACS number~s!: 11.10.Ef, 11.15.Tk, 11.30.Qc
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I. INTRODUCTION

In order to explain the properties of hadrons, it is stron
hoped that QCD particle spectra can be calculated wit
reasonable approximation. Light-front field theory is one
the candidates to investigate QCD in the infrared regi
since a certain nonperturbative approximation~Tamm-
Dancoff truncation! becomes effective@1–4#. Since this
method is based on a Hamiltonian formalism, one can ob
mass spectra and wave functions of hadronic states tha
important for the calculation of nonperturbative physic
quantities such as structure functions@5#.

It has been said that spontaneous chiral symmetry br
ing is responsible for the finite masses of mesons in the
ral limit. We need to know how the chiral condensate^c̄c&
behaves in the chiral region to understand QCD meso
However, one cannot extract information of spontane
symmetry breaking from the vacuum, since the light-fro
vacuum is always trivial. So the question is: How can
understand spontaneous symmetry breaking in light-fr
field theory? It is standard practice to apply the method
the effective potential to such a problem. In order to defi
the effective potential on the light front, let us consider
Legendre transform~which we call the effective energy! of
the ground state energy of the following Hamiltonian@6,7#:

H@J#5H2E dn21x J~x!f~x!, ~1.1!

where the external field is independent of time andx indi-
cates the spatial coordinate. The advantage of this cons
ation is that it is possible to obtain the effective energy if
could know only the ground state of the HamiltonianH@J#.
If the external field does not depend on the spatial coo
nate, the effective potential is given as the effective ene
divided by the total spatial volume of the system. Then
would be natural to define the system in a finite box2L
<x,L and take the thermodynamic limitL→` after all
calculations. This is known as DLCQ~discretized light-cone
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quantization! @8,9#. There are two possibilities for the con
sistent boundary condition on the fieldf(x): periodic and
antiperiodic boundary conditions@10#. If we take a periodic
boundary condition and assume a uniform external fi
J(x)5J, it would be possible in principle to obtain the e
fective potential from the effective energy. To do that, w
have to know the light-front longitudinal zero mod
@8,11,10#,

f05
1

2LE2L

L

dx2f~x!, ~1.2!

which appears in the second term of Eq.~1.1!. If we impose
a periodic boundary condition on the field, a constraint eq
tion for the zero mode emerges. The light-front zero mode
a dependent variable and then should be represented
other oscillator modes. It has been numerically confirm
with an approximation, that the zero mode gives rise to
nonzero vacuum expectation value and the entire effec
spontaneous symmetry breaking comes from only one m
@12#. It seems that this scenario holds also in the calculat
of the light-front effective potential. The zero mode shou
have a singular dependence on the external fieldJ to produce
a correct convex shape for the effective potential in the b
ken phase. However, it does not work in practice solving
constraint and calculating the vacuum energy including
zero-mode effect, since the constraint equation is hig
complicated and it is difficult to find a reasonable techniq
to solve it accurately. It is worthwhile to discuss the proble
without the zero mode.

The vacuum expectation value that minimizes the eff
tive potential is a particular solution of the following qua
tum mechanical Euler-Lagrange equation:

dG@w#

dw~x!
5J~x!, J~x!→0, ~1.3!

whereG@w# is an effective action. Of course, there shou
exist also a space-dependent solution and it would be p
sible to see indications of symmetry breaking in it. Our a
is to extract convexity of the effective potential from th
Hamiltonian searching for a nonuniform solution of E
7373 © 1998 The American Physical Society
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7374 57TAKANORI SUGIHARA
~1.3!. This will be done by assuming an antiperiodic boun
ary condition and using a trick on the external field. Sin
the translational invariance is broken by the external fie
we can deal with the problem by avoiding the zero mo
The translational invariance of the system is restored by
ing theJ→0 limit after all the calculations.

In this paper, we look for an indication of spontaneo
symmetry breaking in the two-dimensionallf4 model by
paying attention to a functional form of the effective energ
where the system is defined and solved using DLCQ@8,9#,
which is essentially a nonperturbative method and us
also as a conceptual tool@13#. The effective energy is ob
tained as a functional of the classical field~the expectation
value of the field operator! and a space-dependent nonu
form solution of the quantum mechanical Euler-Lagran
equation is found.

The essential point of this consideration is the imposit
of an external field on the system. In order to describe
broken phase properly, we have to break the symmetry
plicitly by imposing an external field on the system@11,10#.
The vanishing limit of the external field has to be taken af
the thermodynamic limit. It is impossible to figure out th
properties of the effective energy if the order of the limits
changed. In Refs.@14,15#, it has been shown that the seco
derivative of the effective potential is always positive and
particular the potential does not exist for small expectat
values if spontaneous symmetry breaking occurs. If the s
metry breaks, the effective potential should have a flat b
tom and the finite expectation value of the field survives
theJ→0 limit. The effective energy would also have a co
vex shape as a functional of the classical fieldw(x), since the
energy is a more general quantity than the potential
should contain information of the potential.

This paper is organized as follows. In Sec. II, the effect
energy is defined in terms of a Hamiltonian that intera
with an external fieldJ(x). It is explained how to obtain a
physically meaningful field configurationw(x). In Sec. III,
the DLCQ method is introduced under an antiperiodic c
dition to solve the eigenvalue problem given by the Ham
tonian. An approximate value of the critical coupling co
stant is calculated in a nonperturbative manner. Mass spe
for periodic and antiperiodic boundary conditions are co
pared with each other for reference. In Sec. IV the effect
energy is calculated using DLCQ introduced in Sec. III. W
will see that there seems to remain a nonzero configura
in the broken phase as a solution of the Euler-Lagra
equation even if the external field is switched off. Section
is devoted to summary and discussions.

II. EFFECTIVE ACTION AND HAMILTONIAN

Let us consider a generating functionalZ@J# of the
Green’s function to define the effective energy in terms
the Hamiltonian@6,7#

Z@J#5eiW[J]5^0uTexpF E dnx J~x!f~x!G u0&. ~2.1!

If the external fieldJ(x) is independent of time, the partitio
function can be written with a HamiltonianH@J# that inter-
acts with the external field in the following way:
-
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Z@J#5e2 iw[J]T5^0ue2 iH [J]Tu0&, ~2.2!

H@J#5H2E dn21x J~x!f~x!, ~2.3!

wherex means spatial coordinate andf(x) is a field operator
in the Schro¨dinger picture. The proof of Eq.~2.2! is given in
Appendix A. In the relation~2.2!, it is understood that the
2 i e prescription is taken, that is, the time coordinate is
tated with a replacementH@J#→e2 i eH@J# (e!1). By sub-
stituting the decomposition of unity into Eq.~2.2! and taking
the T→` limit, we can see that the ground stateu0J& of the
HamiltonianH@J# dominates inZ@J#,

H@J#u0J&5w@J#u0J&, ~2.4!

where the state is normalized as^0Ju0J&51. The connected
generating functionalw@J# can be regarded as the groun
state energy of the HamiltonianH@J#. By multiplying Eq.
~2.4! by the ground statê0Ju, we have

^0JuHu0J&5w@J#1E dn21x J~x!w~x!, ~2.5!

where

w~x!5^0Juf~x!u0J&. ~2.6!

Since Eq.~2.5! is a Legendre transform ofw@J#, this quan-
tity is just an effective action divided by the total timeT in
the case when the fieldw(x) is static,

G@w~x!5w~x!#52TE@w~x!#. ~2.7!

We call this quantity Eq.~2.5! the effective energyE@w#:

E@w#[^0JuHu0J&. ~2.8!

An actual expectation valuew(x) of the field operatorf(x)
should be given as a solution of the following generaliz
Euler-Lagrange equation with vanishing external field:

dE@w#

dw~x!
5J~x!, J~x!→0. ~2.9!

In order to obtain the solutionw(x), we have to take three
steps:~1! solve the eigenvalue problem~2.4!, ~2! evaluate the
energyE@w#, ~3! find the stationary point ofE@w#. It is dif-
ficult to clear the first step if the field is quantized in th
ordinary equal-time coordinate, because vacuum fluctuat
dominate and a higher Fock state seems to be neede
represent the ground state of the Hamiltonian. In order
solve Eq.~2.4! in a nonperturbative manner with a reaso
able approximation, DLCQ~discretized light-cone quantiza
tion! will be used in Sec. IV. The effective energyE@w# will
be obtained as a functional of the classical fieldw(x) by
diagonalizing the HamiltonianH@J#.

III. CRITICAL COUPLING CONSTANT WITH DLCQ

A. DLCQ in the lf111
4 model

In this section, we will consider DLCQ@8,9# in order to
apply the method introduced in the previous section to
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57 7375VARIATIONAL CALCULATION OF THE EFFECTIVE ACTION
two-dimensional real scalar model@16–19#. An approximate
value of the critical coupling constantlc will be calculated.

The Lagrangian density of the model is given by

L5
1

2
~]mf]mf2m2f2!2

l

4!
f4. ~3.1!

The light-front coordinatex65(x06x1)/A2 is defined and
x1 andx2 are regarded as time and space, respectively.
metric isg125g2151 andg115g2250. The system is
put in a finite size box (2L<x2,L) and the field is quan-
tized with an antiperiodic boundary conditio
f(L)52f(2L) @10#,

@f~x!,f~y!#x15y152
i

4
e~x22y2!. ~3.2!

The field is expanded with oscillators atx150,

f~x!ux1505
1

A4p
(
n51

` 1

Añ
@ane2 ikn

1x2
1an

†eikn
1x2

#,

~3.3!

where

kn
15

pñ

L
, ñ5n2

1

2
, ~3.4!

and

@am ,an
†#5dm,n , @am ,an#50, @am

† ,an
†#50. ~3.5!

The Hamiltonian and momentum operators are

H5E
2L

L

dx2:T12:, P5E
2L

L

dx2:T11:, ~3.6!

where

Tmn5]mf]nf2gmnL. ~3.7!

Divergent tadpole diagrams are removed by normal order
The size of the boxL can be extracted fromH andP

H5
L

2p
H, P5

p

L
K. ~3.8!

Explicit forms ofH andK are written in Appendix B. The
invariant massM of a state is

M25KH. ~3.9!

Note that the invariant mass does not depend onL. The
harmonic resolutionK has to be taken to infinity after a
calculations so as to give a finite fixed momentumP in the
thermodynamic limitL→`. Then, we can say thatM de-
pends onL implicitly.

SinceH and P commute with each other, we can diag
nalize these operators simultaneously. It is convenient to
pand a general state as an eigenstate ofK:

KuK&5KuK&, ~3.10!
e

g.

x-

where

uK&5 lim
NTD→`

(
N51

NTD

(
n1 ,n2 , . . . ,nN

K

3d (
i 51

N
ni ,Kcn1 ,n2 , . . . ,nN

un1 ,n2 , . . . ,nN&, ~3.11!

and

un1 ,n2 , . . . ,nN&[)
i 51

N

ani

† u0&. ~3.12!

The Fock space is truncated by the number of particlesNTD
and the harmonic resolutionK in actual calculations, since
the number of statesNs goes to infinity in the limitsNTD
→` and K→` and it is impossible to manipulate infinit
dimensional matrices. Invariant massM and wave function
ci are obtained by diagonalizing the finite dimensional m
trix Hi j @20#

M2ci5K(
j 51

Ns

Hi j cj , ~3.13!

where

Hi j 5^ i uHu j &, uK&5(
i 51

Ns

ci u i &. ~3.14!

After this, all quantities which have mass dimension will
expressed in units ofm2 due to the absence of transver
component in this model.

The harmonic resolutionK is a total sum ofN-particle
momenta, each of which carries a half-integer piece,ñi5ni
21/2,

K5(
i 51

N

ñi , ~3.15!

then we have

(
i 51

N

ni5K1
N

2
. ~3.16!

Since the left-hand side of Eq.~3.16! is always integer, the
number of particlesN should be odd or even according
whetherK is half-integer or integer, respectively. Then, od
and even sectors decouple from each other. The resolutioK
is set to be half-integer, because our purpose in this sectio
to obtain a mass spectrum of the lightest particle state, wh
belongs to the odd sector and can be seen as a one-bo
state.

B. Critical coupling constant

The Tamm-Dancoff dependence of the lightest mass
shown in Fig. 1. The mass squaredM2 of the lightest state is
plotted as a function of harmonic resolutionK in a casel
525m2, which is comparatively large and near to the critic
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7376 57TAKANORI SUGIHARA
coupling constantlc . This state can be seen as a on
bosonic state, since one body component of the wave fu
tion is dominant. A definite value oflc will be calculated
later. Diamonds, pluses, squares, and crosses correspo
NTD53,5,7,9, respectively, whereNTD is defined in Eq.
~3.11!. Since the coupling constant is large, converge
with respect toK andNTD is very slow. The spectrum seem
almost to converge atNTD57 in the smallK region. The
harmonic resolutionK cannot be taken to be large valu
whenNTD is large because of the upper bounds of compu
tional resources, especially a shortage of memory size.
will continue our calculations withNTD55 and obtain the
critical coupling constantlc by extrapolating the results, be
cause the purpose of this section is to prepare a nonpe
bative technique for the effective energy calculation and
find an approximate value of the critical coupling constantlc
that is needed to draw a phase diagram. The effective en
for both phases will be evaluated in the next section us
DLCQ.

TheK dependence of the one-bosonic masses is show
Table I for various coupling constants, where the numbe
particles is truncated withNTD55. Since the mass spectr
for large coupling do not converge to the extent of this c
culation, let us estimate where the spectra settle in thK
→` limit by expanding the mass squared with 1/K up to the
second order,

M2~l!5m01
m1

K
1

m2

K2
. ~3.17!

The coefficientsmi(l) are obtained with least squares fittin
using the Marquardt-Levenberg algorithm. The result

FIG. 1. Mass squaredM2 of the lightest state is plotted as
function of the harmonic resolutionK for various Tamm-Dancoff
truncationsNTD53,5,7,9 under antiperiodic boundary condition
The coupling constant is taken asl525m2, which is relatively
large and near the critical pointlc;30m2. The definite value of the
critical coupling constantlc will be calculated later. The spectrum
almost converges atNTD57, which can be confirmed only in th
small K region. Mass spectrum calculations will be executed
Fock space truncated withK5141/2 andNTD55.
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shown in Table II.m0 is regarded as an extrapolated value
the K→` limit. Table III is the same as Table I but for th
periodic case, where the zero mode has been removed
the Hamiltonian.

In Fig. 2, the lightest massesM2 of two cases~antiperi-
odic and periodic boundary conditions! are compared with
each other. Extrapolated valuesm0 of the lightest mass
squared are plotted as functions of the coupling constan
the periodic case, the calculation has been executed te
tively excluding the zero mode from the Hamiltonian. B
fitting the points with curves and extrapolating the curves
Fig. 2, the approximate value of the critical coupling co
stantlc is found as

lc5H 28.6329m2 ~antiperiodic!,

30.8431m2 ~periodic!.
~3.18!

lc is defined as the point that gives a massless eigenv
M2(lc)50. These values are nothing but upper bounds
the true value, because DLCQ is a variational method
the size of the variational space cannot be taken to infin
The results Eq.~3.18! are consistent with the values 22m2

TABLE I. The K dependence of the lightest one-bosonic ma
M2 is shown for various coupling constants,l/m255,10,15,20,25.
The mass spectra are calculated in Fock space truncated withNTD

55 under antiperiodic boundary conditions.

l/m2

2K 5 10 15 20 25

11 0.95800 0.86614 0.74880 0.61655 0.4748
21 0.95471 0.85293 0.71987 0.56736 0.4019
31 0.95341 0.84712 0.70629 0.54317 0.3647
41 0.95268 0.84368 0.69787 0.52769 0.3404
51 0.95221 0.84134 0.69196 0.51657 0.3226
61 0.95188 0.83962 0.68750 0.50804 0.3088
71 0.95163 0.83829 0.68398 0.50120 0.2976
81 0.95144 0.83722 0.68110 0.49555 0.2882
91 0.95129 0.83634 0.67870 0.49079 0.2803
101 0.95116 0.83560 0.67666 0.48669 0.2734
111 0.95105 0.83497 0.67489 0.48312 0.2674
121 0.95096 0.83442 0.67334 0.47997 0.2620
131 0.95088 0.83394 0.67196 0.47716 0.2573
141 0.95081 0.83351 0.67074 0.47465 0.2530

TABLE II. The coefficientsmi ( i 50,1,2) in the 1/K expansion
~3.17! are obtained from a least squares fitting with the Marqua
Levenberg algorithm by using a result shown in Table I.m0 is
regarded as the extrapolated value of the lightest state in the
modynamic limit K→`. This is the result under antiperiodi
boundary conditions.

l/m2 m0 m1 m2

5 0.9500760.00002 0.0559960.00082 20.0687860.00432
10 0.8297460.00022 0.3079860.00824 20.5972960.04307
15 0.6611360.00077 0.8224260.02820 21.8859360.14742
20 0.4565260.00175 1.6048260.06351 24.0179760.33191
25 0.2239960.00317 2.6378560.11523 26.9794860.60219
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57 7377VARIATIONAL CALCULATION OF THE EFFECTIVE ACTION
,lc,55m2 obtained in the conventional equal-time theo
@16#, but much smaller thanlc54p(31A3)m2;59.5m2

@12#, lc543.9m2 @17#, andlc540m2 @19#. A convergence of
the spectrum in the antiperiodic case is slightly faster th
the periodic one. The spectra are similar but we cannot c
clude clearly whether the two results coincide or not, sin
the spectra are extrapolated to the largeK region in this
calculation. It is interesting to see how the zero-mode eff

TABLE III. The K dependence of the lightest one-bosonic m
M2 is shown for various coupling constants,l/m255,10,15,20,25.
The mass spectra are calculated in Fock space truncated withNTD

55 under periodic boundary conditions, where the zero mode
been removed from the Hamiltonian.

l/m2

K 5 10 15 20 25

10 0.97090 0.90555 0.82058 0.72361 0.6187
15 0.96607 0.88968 0.78996 0.67574 0.5518
20 0.96326 0.88025 0.77142 0.64636 0.5103
25 0.96139 0.87385 0.75862 0.62581 0.4810
30 0.96004 0.86915 0.74909 0.61031 0.4587
35 0.95902 0.86551 0.74160 0.59802 0.4408
40 0.95821 0.86259 0.73552 0.58794 0.4261
45 0.95755 0.86018 0.73045 0.57945 0.4136
50 0.95700 0.85814 0.72612 0.57215 0.4027
55 0.95653 0.85640 0.72237 0.56578 0.3932
60 0.95613 0.85488 0.71908 0.56015 0.3848
65 0.95578 0.85355 0.71616 0.55513 0.3772
70 0.95548 0.85236 0.71355 0.55060 0.3704

FIG. 2. The extrapolated valuem0 of the lightest state is plotted
as a function of the coupling constantl for antiperiodic and peri-
odic boundary conditions, each of which is represented with
monds and pluses, respectively. The lines are intended to guid
eye and used to calculated the critical coupling constantlc . In the
periodic case, the zero mode has been omitted and the extrapo
values of the lightest state are obtained from calculations in F
space truncated withK570 andNTD55 in the same manner as th
antiperiodic case. The critical coupling constants are calculate
lc528.6329m2 ~antiperiodic! and lc530.8431m2 ~periodic!
searching for the massless pointM2(lc)50.
n
n-
e

ct

dominates in the mass spectrum calculation to confirm
equivalence between both boundary conditions. It seems
a certain renormalization technique needs to be found to
a convergent result with smallK @21#.

IV. EFFECTIVE ENERGY

A. Kink solution

In this section, we will calculate the effective energy
the two-dimensional real scalar model with DLCQ and o
tain an expectation valuew(x2) as a solution of Eq.~2.9!. It
is possible to understand all the static physics of the sys
once a solution of the Euler-Lagrange equation~2.9! is ob-
tained. The configurationw(x2) must contain information of
spontaneous symmetry breaking independent of whe
w(x2) is uniform or not. If we impose a periodic bounda
condition on the fieldf(L)5f(2L) and assume a uniform
external fieldJ(x2)5J, the effective potentialV(w) is ob-
tained as the effective energy divided by the total spa
volume 2L,

V~w![
1

2L
E@w~x2!5w#

5
1

2L
w~ j !1J^0Juf0u0J&, ~4.1!

wheref0 is a zero-mode part of the field operatorf(x2)

f0[
1

2LE2L

L

dx2f~x2!. ~4.2!

A vacuum expectation value of the field operatorw
5^0Juf(x2)u0J& is given as a solution of the following
equation:

dV~w!

dw
5J, J→0, ~4.3!

where w is independent of space because of translatio
invariance of the system. In order to evaluate the poten
we have to consider a constrained zero modef0, which is
given as a solution of the following constraint equation@8#,

E
2L

L

dx2S m2f1
l

6
f32JD50. ~4.4!

It is expected that the zero modef0 has a singular behavio
with respect to the external fieldJ in the broken phase due t
the convexity of the effective potential@14,15#. However, it
is difficult to solve Eq.~4.4! and represent the zero mode
a superposition of other modes, since it is an operator val
nonlinear equation. It would be better if we could understa
a mechanism of spontaneous symmetry breaking with
such a complicated zero-mode problem.

Let us look for a nonuniform solution to avoid the zer
mode problem. If we impose an antiperiodic boundary co
dition on the field and assume a constant external fi
J(x2)5J, a nonuniform solutionw(x2) that has a kink will
be obtained because the external field has a discontinui
the boundaryx256L. There cannot exist a translational

s
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7378 57TAKANORI SUGIHARA
invariant solution, since the system has been connected a
boundary with a twist. The purpose of this section is to s
whether there exists a nonzero solutionw(x2) of Eq. ~2.9! in
the limit J→0 after all of the calculations.

Since the system interacting with the constant exter
field is not translationally invariant under antiperiod
boundary condition, we cannot diagonalize the Hamilton
and momentum operators at the same time@H@J#,P#Þ0. A
general state of Eq.~2.4! should be expanded as a superp
sition of various momentum states

uC&5c0u0&1 lim
Kcut→`

(
n51

2Kcut

uK5n/2&, ~4.5!

where the resolution takes both half-integer and integeK
51/2,1,3/2,2, . . . ,Kcut andKcut is set to be some finite valu
that leads to convergence in the spectra. The odd and
sectors interact with each other due to the existence o
translationally noninvariant interaction, which can be o
served in Eq.~B7!.

It is possible to confirm that the state~4.5! is expressed
with a complete set of momenta by taking the continu
limit L→`. Then

P̂uC&5 (
K50

` S p

L
K D uK&, ~4.6!

becomes

P̂uC&5E
0

`

dP PuP&, ~4.7!

where

uP&[ (
N50

` E F)
i 51

N

dpi GdS (
i 51

N

pi2PDcN~p1 ,p2 , . . . ,pN!

3F)
i 51

N

a†~pi !G u0&, ~4.8!

and

cN~p1 ,p2 , . . . ,pN![
LN/2

2~N12!/2pN11
cn1 ,n2 , . . . ,nN

.

~4.9!

In order to calculate the effective energy, an eigenva
problem

H@J#uC&5w@J#uC&, ~4.10!

is solved by numerical diagonalization of the Hamiltoni
H@J#5(2p/L)H@J#. By substituting the energyw@J# and
wave functionu0J& of the ground state into the relation

^0JuH@J#u0J&5
2p

L
w@J#, ~4.11!

the effective energy is given as
the
e

al

n

-

en
a

-

e

2p

L
E@w#5

2p

L
w@J#1 (

n51

`

^0Ju f n~2L !an
†1 f n* ~2L !anu0J&,

~4.12!

where coefficientsf n are defined in Eq.~B8!. The spatial
integration has been performed before evaluating cont
tions of the operators in the second term of the right-ha
side. We can obtain the left-hand side as a functional of
classical fieldw(x2)5^0Juf(x2)u0J&, which can be also
calculated by using the wave function of the ground st
u0J&.

B. Numerical result

In Fig. 3, the generating functionalw@J# and the effective
energyE@w# are plotted for variousNTD’s as functions of the
harmonic resolutionKcut to check the convergence with re
spect toKcut, wherel550m2 and J50.01 are taken. The
effective energy has been obtained by evaluating the rig
hand side of Eq.~4.12!. That is, the Legendre transform
numerically performed in terms of the eigenvaluew@J# and
the wave functionu0J& of the ground state of the Hamiltonia
H@J#. After this, we will take a parameter setKcut531/2 and
NTD57 because this parameter set seems to give almost
vergent spectra. The convergence of the spectra is slig
faster than mass spectrum calculation, because an expa
of a stateuC& starts from the zero-body stateu0&.

In Fig. 4, the classical fieldw(x2) is plotted as a function
of the spatial coordinate both in~a! symmetric (l50.1m2

,lc) and ~b! broken (l550m2.lc) phases, where the ex
ternal field is changed at a regular interval ofDJ50.05. We
can see that the field configurationw(x2) is nearly uniform
except at the boundary and has a twist atx256L because of
the antiperiodicity of the field operatorf(x2).

In order to see how the magnitude of the classical fi
behaves with changingJ, the J dependence of the classic
field w(x2) is shown in Fig. 5. The maximum valuewmax
[max$w(x2)% of the classical field is plotted as a functio
of J both in symmetric (l50.1m2) and broken (l550m2)

FIG. 3. The effective energyE@w# and the generating functiona
w@J# are plotted as functions ofKcut for various Tamm-Dancoff
truncationsNTD53,5,7 in the broken phase, wherel550m2 and
J50.01 are taken. The effective energyE@w# always takes a large
value thanw@J#. A truncation withKcut531/2 andNTD57 seems
to give a spectrum that is near the convergent point. This param
set will be used in the subsequent calculations.
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FIG. 4. The classical fieldw(x2)5^0Juf(x2)u0J& is plotted as a function ofx2 both in ~a! symmetric (l50.1m2) and ~b! broken (l
550m2) phases forJ50,0.05,0.1, and 0.15, where Fock space is truncated withK531/2 andNTD57. The vertical and horizontal axes stan
for w(x2) andx2, respectively. We can observe that the classical fieldw(x2) has a twist at the boundaryx256L due to the antiperiodicity
of the field operatorf(x).
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to-one correspondence between the field configura
w(x2) and the external fieldJ. In the symmetric phase, th
expectation value vanishes in theJ→0 limit. In the broken
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w(x2) approaches the origin quickly as decreasingJ. This
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4 model in the thermodynamic limitL
→` (Kcut→`).
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In Fig. 6, the effective energyE@w# is plotted as a func-
tion of wmax instead of as a functional ofw(x2). In the sym-
metric phase (l50.1m2), we can see that the energyE@w#
has a minimum at the origin, where the state is compo
only of a zero-momentum stateu0& ~Fock vacuum!. The
ground state of the HamiltonianH@J# goes tou0& and gives
zero energyE@w#50 in theJ→0 limit. In the broken phase
(l550m2), however, a situation is completely differen
from the symmetric one. The effective energy has a flat b
tom. A state on the flat region has a wave function wh
finite K components are dominant because of a twist at
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boundary. The classical field which is placed in the edge
the bottom jumps to zero in theJ→0 limit. The classical
field shows a singular behavior if the symmetry breaks sp
taneously. This fact supports the existence of an infin
number of configurationsw(x2), which are energetically
equivalent, and a nonzero field configuration as a kink so
tion of the Euler-Lagrange equation~2.9! in the broken
phase.

V. SUMMARY AND DISCUSSIONS

We have found an approximate value of the critical co
pling constant and obtained the effective energy by us
DLCQ. In the symmetric phase, the effective energy ha
minimum at the origin, which is composed only of the trivi
Fock vacuum. In the broken phase,Z2 symmetry spontane
ously breaks, which has been confirmed by seeing that
bottom of the effective energy is flat. In the vanishingJ
limit, a nonzero expectation value of the field seems to
main. A field configuration, which has a twist, can be a s
lution of the quantum mechanically extended Eul
Lagrange equation.

In Sec. III, mass spectrum calculation of particle sta
has been done with DLCQ. In the critical region, conv
gence of the spectra is very slow because the coupling
stant is large there. This is due to an insufficiency of
harmonic resolution to represent smallk1 components of
wave functions. By plotting the three-body wave functio
we can see that the wave function increases rapidly atk1

;0. A small finite K value cannot represent such a sha

FIG. 5. The maximum valuewmax[max$w(x2)% of the nonuni-
form classical fieldw(x2) is plotted as a function ofJ, where Fock
space is truncated withKcut531/2 and NTD57. Diamonds and
pluses correspond to symmetric (l50.1m2) and broken (l
550m2) phases, respectively. The external fieldJ is changed with
an intervalDJ50.005. In the broken phase, the magnitude of
classical fieldw(x2) rapidly approaches the origin asJ decreases.
This suggests the presence of a nonzero field configurationw(x2)
in the thermodynamic limitL→` (Kcut→`).
f
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increase because the resolution is not sufficient. It would
hopeless to extend the DLCQ method by brute force to re
istic models such as QCD, which has higher dimensio
since we could not get a convergent result near the crit
region even in this two-dimensional model. We need
renormalize the degrees of freedom of the harmonic res
tion K @21#. It would be better if we could also construct a
effective Hamiltonian by renormalizing higher Fock spa
truncated by the number of particlesNTD @22#.

In the latter part of this paper, we have discussed spo
neous symmetry breaking by searching for a state that m
mizes the effective energy. We have succeeded in finding
indication of spontaneous symmetry breaking, which is j
contained in the Hamiltonian with antiperiodic bounda
condition. This suggests that the Hamiltonian knows the
istence of symmetry breaking in spite of an absence of a z
mode. We have considered how to extract information ab
symmetry breaking from the effective energy even thoug
is natural to use an effective potential for such investigatio
It is easier to evaluate the effective energy than the effec
potential because there is no vacuum fluctuation and
truncation of Fock space with respect to particle numb
works well in the light-front field theory.

If the order parameter one would like to consider is
vacuum expectation value of a composite field such

^0uc̄(x)c(x)u0&, it is possible to trace spontaneous symm
try breaking by using a Hamiltonian that has an interact
between the composite operator and an external field. Th
are a couple of possibilities to figure out symmetry break

FIG. 6. The effective energy 2pE@w#/L is plotted as a function
of wmax instead of as a functional ofw(x2), where Fock space is
truncated withKcut531/2 andNTD57. Diamonds and pluses cor
respond to symmetric (l50.1m2) and broken (l550m2) phases,
respectively. In the symmetric phase, a physically meaningful c
figuration is at the origin, where the state is composed only of
Fock vacuumu0&. In the broken phase, there seems to exist a n
zero field configuration as a solution of the extended Eu
Lagrange equation in theJ→0 limit, since the bottom of the effec
tive energy is flat. This demonstrates the existence of an infi
number of configurationsw(x2) which are energetically equivalen
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for the composite operator. One way is to define the effec
potential with the zero mode of the composite operatorc̄c.
Another way is to find a nonuniform~kink! solution of a
classical field^0Juc̄cu0J& through the effective energy a
discussed in this paper. To do that, we use a trick onJ(x),
because the operatorc̄c is always periodic even if any kind
of boundary conditions are imposed on the fermionic fieldc.
Since the expectation value of the periodic operator can o
have an even number of kinks, we have to assume an e
number of kinks also on the external field.
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APPENDIX A: PARTITION FUNCTION AND
HAMILTONIAN

Let us prove that the following relation holds for the pa
tition function Z@J# when the external field is stati
J(x)5J(x) @6#,

Z@J#[^0uTei *dnxJ~x!f~x!u0&5^0ue2 iH [J]Tu0&, ~A1!

where

H@J#5H1HJ , HJ[2E dn21x J~x!f~x!, ~A2!

and x indicates (n21)-dimensional spatial coordinates an
f is a field operator represented in the Schro¨dinger picture.
In order to prove the formula~A1!, the interaction picture
will be defined regardingHJ as a perturbed part.

The Schro¨dinger equation for a general state vector is

i
]

]t
uCS~ t !&5H@J#uCS~ t !&. ~A3!

and a formal solution is readily obtained by writing

uCS~ t !&5e2 iH [J] ~ t2t0!uCS~ t0!&. ~A4!

Define the interaction state vector in the following way:

uC I~ t !&5eiHt uCS~ t !&. ~A5!

The equation of motion of this state is easily found by c
rying out the time derivative

i
]

]t
uC I~ t !&5H I~ t !uC I~ t !&, ~A6!

H I~ t ![eiHtHJe
2 iHt52E dn21x J~x!f~ t,x!, ~A7!

wheref(t,x) is the field operator in the interaction pictur
The solution of Eq.~A6! is
e

ly
en

cs

t.

-

uC I~ t !&5T expS i E
t0

t

ds dn21x J~x!f~s,x! D uC I~ t0!&,

~A8!

where the time-ordered product is used due to the time
pendence of the HamiltonianH I(t). By substituting Eqs.
~A4! and ~A8! into Eq. ~A5!, we have

e2 iH [J] ~ t12t0!5e2 iHt 1T expS i E
t0

t1
dt dn21x J~x!f~ t,x! D ,

~A9!

whereuC I(t0)&5uCS(t0)& is used. By sandwiching Eq.~A9!
with the ground stateu0& of the HamiltonianH, which sat-
isfies Hu0&50, and settingt152t05T/2 (T is assumed to
be large!, we have

^0ue2 iH [J]Tu0&

5^0uT expS i E
2T/2

T/2

dt dn21x J~x!f~ t,x! D u0&. ~A10!

APPENDIX B: HAMILTONIAN

The unperturbedH and the perturbedHJ parts of the
Hamiltonian~2.3!

H@J#5
2p

L
H@J#5H1HJ , ~B1!

are expressed using creation and annihilation operators in
two-dimensionallf4 model. The unperturbed partH is

H5 (
n51

` m2

ñ
an

†an

1
1

4

l

4p (
n1 ,n2 ,n3 ,n451

` d ñ11ñ2 ,ñ31ñ4

Añ1ñ2ñ3ñ4

an1

† an2

† an3
an4

~B2!

1
1

6

l

4p
(

n1 ,n2 ,n3 ,n451

` d ñ11ñ21ñ3 ,ñ4

Añ1ñ2ñ3ñ4

3@an1

† an2

† an3

† an4
1H.c.#. ~B3!

and the harmonic resolution is

K5 (
n51

`

ñan
†an , ~B4!

where

ñ5n2
1

2
. ~B5!

Even if the external field is assumed to be const
J(x2)5J, J(x2) is not continuous at the boundaryx25
6L because of the antiperiodicity of the field operatorf(x).
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This discontinuity is reflected as a twist in the expectat
value of the field operatorf(x). It is possible to shift the
position of the kink by taking the following external field:

J~x2!5H 2J~2L<x2,a!,

J~a,x2,L !,
~B6!

wherea indicates the position of the kink,2L<a,L. The
perturbed part ofH@J# is given by
ev

s
.

.

y

n
HJ52 (

n51

`

@ f n~a!an
†1 f n* ~a!an# ~B7!

where

f n~a![
2J

Apñ3/2F2sinS pa

L
ñD1 i cosS pa

L
ñD G . ~B8!

Of course, physics should be independent of the positiona.
It has been numerically confirmed that the ground state
genvalue ofH@J# is independent ofa.
s.
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