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An indication of spontaneous symmetry breaking is found in the two-dimensiogél model, where
attention is paid to the functional form of an effective action. An effective energy, which is an effective action
for a static field, is obtained as a functional of the classical field from the ground state of the Hamitidian
interacting with a constant external field. The energy and wave function of the ground state are calculated in
terms of DLCQ(discretized light-cone quantizatipnnder antiperiodic boundary conditions. A field configu-
ration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation
in the J—0 limit. It is shown that there exists a nonzero field configuration in the broken phaZg of
symmetry because of a boundary effd&0556-282(98)04812-7

PACS numbgs): 11.10.Ef, 11.15.Tk, 11.30.Qc

[. INTRODUCTION quantization [8,9]. There are two possibilities for the con-
sistent boundary condition on the fieltl(x): periodic and
In order to explain the properties of hadrons, it is stronglyantiperiodic boundary conditiorj40]. If we take a periodic
hoped that QCD particle spectra can be calculated with doundary condition and assume a uniform external field
reasonable approximation. Light-front field theory is one ofJ(x)=J, it would be possible in principle to obtain the ef-
the candidates to investigate QCD in the infrared regionfective potential from the effective energy. To do that, we
since a certain nonperturbative approximatigfamm- have to know the light-front longitudinal zero mode
Dancoff truncatioh becomes effectivd1—4]. Since this [8,11,1(,
method is based on a Hamiltonian formalism, one can obtain
mass spectra and wave functions of hadronic states that are 1 J Lo
i i i i bo=5-| dX &(x),
important for the calculation of nonperturbative physical 2LJ
quantities such as structure functidig.
It has been said that spontaneous chiral symmetry breakvhich appears in the second term of Ef.1). If we impose
ing is responsible for the finite masses of mesons in the chia periodic boundary condition on the field, a constraint equa-
ral limit. We need to know how the chiral condens@f@b) tion for the zero mode emerges. The light-front zero mode is
behaves in the chiral region to understand QCD mesong dependent variable and then should be represented with
However, one cannot extract information of spontaneougther oscillator modes. It has been numerically confirmed,
symmetry breaking from the vacuum, since the light-frontwith an approximation, that the zero mode gives rise to a
vacuum is always trivial. So the question is: How can wenonzero vacuum expectation value and the entire effect of
understand spontaneous symmetry breaking in light-fronspontaneous symmetry breaking comes from only one mode
field theory? It is standard practice to apply the method of12]. It seems that this scenario holds also in the calculation
the effective potential to such a problem. In order to defineof the light-front effective potential. The zero mode should
the effective potential on the light front, let us consider ahave a singular dependence on the external fietwiproduce
Legendre transfornfwhich we call the effective enerypf  a correct convex shape for the effective potential in the bro-
the ground state energy of the following Hamiltoni#,7]: ken phase. However, it does not work in practice solving the
constraint and calculating the vacuum energy including the

1.2

B . zero-mode effect, since the constraint equation is highly
H[J]=H _f d™ X I(x) (x), (1) complicated and it is difficult to find a reasonable technique
to solve it accurately. It is worthwhile to discuss the problem
where the external field is independent of time anohdi-  without the zero mode.

cates the spatial coordinate. The advantage of this consider- The vacuum expectation value that minimizes the effec-

ation is that it is possible to obtain the effective energy if wetive potential is a particular solution of the following quan-

could know only the ground state of the HamiltonildlhJ].  tum mechanical Euler-Lagrange equation:

If the external field does not depend on the spatial coordi-

nate, the effective potential is given as the effective energy ol'le]

divided by the total spatial volume of the system. Then, it S¢(X) =3, IX)—0, 1.3

would be natural to define the system in a finite bex

=x<L and take the thermodynamic limit—c after all whereI'[¢] is an effective action. Of course, there should

calculations. This is known as DLC(@iscretized light-cone exist also a space-dependent solution and it would be pos-
sible to see indications of symmetry breaking in it. Our aim
is to extract convexity of the effective potential from the

*Email address: taka@rcnp.osaka-u.ac.jp Hamiltonian searching for a nonuniform solution of Eg.
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(1.3). This will be done by assuming an antiperiodic bound- Z[J]:e—iW[J]T:<o|e—iH[J1T|o>, (2.2
ary condition and using a trick on the external field. Since

the translational invariance is broken by the external field, .

we can deal with the problem by avoiding the zero mode. H[J]:H_f d" "X J(x) (X)), 2.3
The translational invariance of the system is restored by tak-

ing theJ—0 limit after all the calculations. wherex means spatial coordinate agdx) is a field operator

In this paper, we look for an indication of spontaneousin the Schrdinger picture. The proof of Eq2.2) is given in
symmetry breaking in the two-dimensionaty* model by  Appendix A. In the relation2.2), it is understood that the
paying attention to a functional form of the effective energy,—ie prescription is taken, that is, the time coordinate is ro-
where the system is defined and solved using DUB@)], tated with a replacememi[J]—e '“H[J] (e<1). By sub-
which is essentially a nonperturbative method and usefustituting the decomposition of unity into E(.2) and taking
also as a conceptual tofl3]. The effective energy is ob- the T—c limit, we can see that the ground sta€g) of the
tained as a functional of the classical fidltie expectation HamiltonianH[J] dominates inZ[J],
value of the field operatprand a space-dependent nonuni-
form solution of the quantum mechanical Euler-Lagrange H[J]]05)=w[J3][0;), (2.4

equation is found. . . B
The essential point of this consideration is the imposi'fionWhere the state is normalized ¢3|05)=1. The connected

of an external field on the system. In order to describe thé;enerating functionaw[J] can be regarded as the ground

broken phase properly, we have to break the symmetry exalate energy of the Hamiltoniad[J]. By multiplying Eq.

plicitly by imposing an external field on the systéat, 10, (24 by the ground stat¢0,|, we have

The vanishing limit of the external field has to be taken after

the thermodynamic limit. It is impossible to figure out the <OJ|H|OJ>=W[J]+f d"Ix J(x) @(x), (2.5
properties of the effective energy if the order of the limits is

changed. In Refd.14,15, it has been shown that the second ,hare

derivative of the effective potential is always positive and in

particular the potential does not exist for small expectation @©(x)=(0,] $(x)|0;). (2.6)
values if spontaneous symmetry breaking occurs. If the sym-

metry breaks, the effective potential should have a flat botSince Eq.(2.5) is a Legendre transform af[ J], this quan-
tom and the finite expectation value of the field survives intity is just an effective action divided by the total tinfein
the J— 0 limit. The effective energy would also have a con- the case when the field(x) is static,

vex shape as a functional of the classical fiel&), since the

energy is a more general quantity than the potential and Ile(X)=e(X)]= =T (X)]. 2.7
should contain information of the potential.

This paper is organized as follows. In Sec. II, the effective'Ve call this quantity Eq(2.5) the effective energy] ¢]:

energy is defined in terms of a Hamiltonian that interacts =(04Hl0 28
with an external field)(x). It is explained how to obtain a A¢1=(05lH[0,). 28
physically meaningful field configuratiop(x). In Sec. Ill,  An actual expectation valug(x) of the field operatoks(x)

the DLCQ method is introduced under an antiperiodic conshould be given as a solution of the following generalized

dition to solve the eigenvalue problem given by the Hamil-gyler-Lagrange equation with vanishing external field:
tonian. An approximate value of the critical coupling con-

stant is calculated in a nonperturbative manner. Mass spectra O& o]

for periodic and antiperiodic boundary conditions are com- m:‘](x)* J(x)—0. (2.9
pared with each other for reference. In Sec. IV the effective

energy is calculated using DLCQ introduced in Sec. lll. Weln order to obtain the solutiow(x), we have to take three
will see that there seems to remain a nonzero configuratiosteps:(1) solve the eigenvalue proble(.4), (2) evaluate the
in the broken phase as a solution of the Euler-Lagrangenergy&] ¢], (3) find the stationary point of] ¢]. It is dif-
equation even if the external field is switched off. Section Vficult to clear the first step if the field is quantized in the

is devoted to summary and discussions. ordinary equal-time coordinate, because vacuum fluctuations
dominate and a higher Fock state seems to be needed to
Il. EEFECTIVE ACTION AND HAMILTONIAN represent the ground state of the Hamiltonian. In order to

solve Eq.(2.4) in a nonperturbative manner with a reason-
Let us consider a generating functiona[J] of the  able approximation, DLCQdiscretized light-cone quantiza-
Green’s function to define the effective energy in terms oftion) will be used in Sec. IV. The effective energye] will
the Hamiltonian(6,7] be obtained as a functional of the classical fieitk) by
diagonalizing the Hamiltoniahi[ J].

0). (2.2)

Z[J]=e‘WNl=<o|Tex;“ d" J(X) ()
I1l. CRITICAL COUPLING CONSTANT WITH DLCQ

; 4
If the external fieldJ(x) is independent of time, the partition A.DLCQ in the Xy, model
function can be written with a Hamiltoniaf[ J] that inter- In this section, we will consider DLC@8,9] in order to
acts with the external field in the following way: apply the method introduced in the previous section to the
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two-dimensional real scalar moddl6—19. An approximate
value of the critical coupling constait. will be calculated.
The Lagrangian density of the model is given by

1 A
£=5(0,¢0"$p=p?¢*) — 77 &*. 3.1

The light-front coordinate<™ = (x°+x%)/+/2 is defined and

VARIATIONAL CALCULATION OF THE EFFECTIVE ACTION

x™ andx~ are regarded as time and space, respectively. Thand

metric isgt =g~ "=1 andg**=g~ ~=0. The system is

put in a finite size box { L<x~ <L) and the field is quan-
tized with an antiperiodic boundary condition

$(L)=—a(-L) [10],

i
[P(X),d(Y) Ixr=y+=— 7e(X"—y7). (3.2
The field is expanded with oscillators at =0,
1 201 N L
B0 o= =3, —=[ae X +alelnx ],
V4mn=1 \/ﬁ
(3.3
where
N mMm - 1
kn :T, n=n—§, (34)
and

[am,at]1=6mn, [am.a,]=0, [al.,al]=0. (3.5

The Hamiltonian and momentum operators are
L L
H=f dx :TH 7, P=j dx:TH*:, (3.6
-L -L
where

THY =gt pd" p— g L. (3.7

7375
where
Ntp K
IK)="lim >,

Nip—= N=1ng,ny, ..., ny

X 6g n; ,KCnl,nZ ..... nN|n11n21 et vnN>7 (311)
-

N

|n1,n2,...,n,\,)zi1:[l ag0). (3.12

The Fock space is truncated by the number of partislas
and the harmonic resolutiok in actual calculations, since
the number of stated/s goes to infinity in the limitsNp
—oo and K—oo and it is impossible to manipulate infinite
dimensional matrices. Invariant makt and wave function

c; are obtained by diagonalizing the finite dimensional ma-
trix H” [20]

N
|\/|2ci:|<21 Hijci, (313
J:
where
Ns
Hij=(ilHlj), |K>=i21 cili). (3.14

After this, all quantities which have mass dimension will be
expressed in units oft?> due to the absence of transverse
component in this model.

The harmonic resolutiofK is a total sum ofN-particle
momenta, each of which carries a half-integer piege;n;
-1/2,

(3.19

Divergent tadpole diagrams are removed by normal orderingnen we have

The size of the box can be extracted frordl and P

(3.9

Explicit forms of H and IC are written in Appendix B. The
invariant masM of a state is
M2=KH. (3.9

Note that the invariant mass does not dependLoriThe
harmonic resolutiorfC has to be taken to infinity after all
calculations so as to give a finite fixed momenténin the
thermodynamic limitL—<. Then, we can say tha¥l de-
pends orL implicitly.

SinceH and P commute with each other, we can diago-

. (3.19

N Z

N
2 ni:K+
i=1

Since the left-hand side of E¢3.16) is always integer, the
number of particledN should be odd or even according to
whetherK is half-integer or integer, respectively. Then, odd
and even sectors decouple from each other. The resolkition

is set to be half-integer, because our purpose in this section is
to obtain a mass spectrum of the lightest particle state, which
belongs to the odd sector and can be seen as a one-bosonic
state.

B. Critical coupling constant

nalize these operators simultaneously. It is convenient to ex- The Tamm-Dancoff dependence of the lightest mass is

pand a general state as an eigenstatk’:of

KIK)=K]|K), (3.10

shown in Fig. 1. The mass squarklf of the lightest state is
plotted as a function of harmonic resolutihin a casex
=25u?, which is comparatively large and near to the critical



7376 TAKANORI SUGIHARA 57
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TABLE I. The K dependence of the lightest one-bosonic mass

%EE ig; M? is shown for various coupling ponstam\s/,,uzz5,10,15,20,2_5.
orr Npp=9* 7 The mass spectra are calculated in Fock space truncated\ith
=5 under antiperiodic boundary conditions.
06 | E
. M u?
e 1 2K 5 10 15 20 25
M2/u? ol & . 11 0.95800 0.86614  0.74880 0.61655 0.47481
B . 21 0.95471 0.85293 0.71987 0.56736 0.40190
03 r ® g ; e, 1 31 0.95341 0.84712 0.70629 0.54317 0.36476
e T 41 0.95268 0.84368 0.69787 0.52769 0.34045
ezr 1 51 0.95221 0.84134 0.69196 0.51657 0.32267
61 0.95188 0.83962 0.68750 0.50804  0.30883
e | 71 0.95163 0.83829 0.68398 0.50120 0.29763
N 81 0.95144  0.83722 0.68110 0.49555 0.28829
0O 1 20 30 40 50 60 70 80 90 100 110 120 130 91 0.95129 0.83634 0.67870 0.49079  0.28034
K 101 0.95116 0.83560 0.67666 0.48669 0.27346

111 0.95105 0.83497 0.67489 0.48312 0.26744
121 0.95096  0.83442 0.67334 0.47997 0.26209
131 0.95088 0.83394 0.67196 0.47716 0.25731
141 0.95081 0.83351 0.67074 0.47465  0.25301

FIG. 1. Mass squaret? of the lightest state is plotted as a
function of the harmonic resolutiod for various Tamm-Dancoff
truncationsN+p=3,5,7,9 under antiperiodic boundary conditions.
The coupling constant is taken as=25u?, which is relatively
large and near the critical point.~30u?. The definite value of the

critical coupling constank ; will be calculated later. The spectrum h in Table Il . ded lated value i
almost converges atl;p=7, which can be confirmed only in the shown in Table Ilm Is regarded as an extrapolated value in

small K region. Mass spectrum calculations will be executed inth€K— limit. Table Il is the same as Table | but for the
Fock space truncated withi=141/2 andNp=5. periodic case, where the zero mode has been removed from
the Hamiltonian.

In Fig. 2, the lightest massed? of two casegantiperi-

°°“|°'”.‘9 consta_n'o\c. This state can be seen as a ON€5gic and periodic boundary conditionare compared with
bosonic state, since one body component of the wave func:

o ) o ) each other. Extrapolated values, of the lightest mass
tion is dominant. A definite value af. will be calculated squared are plotted as functions of the coupling constant. In

INater; 3D|5an7109nds, plustgs,lsquarr]es&and_ crgs?_es dcqrreépondtﬁ periodic case, the calculation has been executed tenta-
T0—35,9,/,9, reSpectively, wher@rp 1S delined In EQ. ey excluding the zero mode from the Hamiltonian. By

(351]) Slnctet(;?e C;‘jONUp“r)g constlant $h large, tconvergenceﬁtting the points with curves and extrapolating the curves in
with reéspec andip IS Very slow. The spectrum seems Fig. 2, the approximate value of the critical coupling con-
almost to converge allp=7 in the smallK region. The stant). is found as

Cc

harmonic resolutiorK cannot be taken to be large values
whenNp is large because of the upper bounds of computa- {28.6325#2
=

(antiperiodig,

tional resources, especially a shortage of memory size. We ) o
30.843~ (periodig.

will continue our calculations witiN;p=5 and obtain the

critical coupling constank ;. by extrapolating the results, be- . ' . . .
cause the purpose of this section is to prepare a nonpertu}fﬁ is defined as the point that gives a massless eigenvalue

bative technique for the effective energy calculation and td ?(\9)=0. These values are nothing but upper bounds of
find an approximate value of the critical coupling constent the true value, bepagse DLCQ is a variational meth_od' a}nd
that is needed to draw a phase diagram. The effective enerd})€ SiZ€ of the variational space cannot be taken to infinity.
for both phases will be evaluated in the next section using '€ results Eq(3.18 are consistent with the values 22
DLCQ.

TheK dependence of the one-bosonic masses is shown i
Table | for various coupling constants, where the number ofﬂ

Farflcles IS trljlpcatCied WitiNrp=>5. Smci the mass fsEgctral regarded as the extrapolated value of the lightest state in the ther-
or 1arge coupling do not converge to the extent o t IS ca ‘modynamic limit K—c. This is the result under antiperiodic
culation, let us estimate where the spectra settle inkhe boundary conditions.

—oo |imit by expanding the mass squared witiK1uip to the

(3.18

TABLE II. The coefficientsm; (i=0,1,2) in the 1K expansion
.17) are obtained from a least squares fitting with the Marquardt-
evenberg algorithm by using a result shown in Tablem} is

second order, M p? mo m, m,
) m; m, 0.950070.00002 0.055940.00082 —0.06878+0.00432
M“(N)=mg+ ?"’ F (3.17 10 0.82974-0.00022 0.307980.00824 —0.59729-0.04307

15 0.66113-0.00077 0.822420.02820 —1.88593-0.14742
20 0.45652-0.00175 1.604820.06351 —4.01797-0.33191

The coefficientsn;(\) are obtained with least squares fitting 25  0.22399-0.00317 2.637850.11523 —6.97948-0.60219
using the Marquardt-Levenberg algorithm. The result is
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TABLE lll. The K dependence of the lightest one-bosonic massdominates in the mass spectrum calculation to confirm the
M? is shown for various coupling constanis,u?=5,10,15,20,25.  equivalence between both boundary conditions. It seems that

The mass spectra are calculated in Fock space truncatedWith g certain renormalization technique needs to be found to get
=5 under periodic boundary conditions, where the zero mode hag convergent result with smatl [21].

been removed from the Hamiltonian.

> IV. EFFECTIVE ENERGY
N u

K 5 10 15 20 25 A. Kink solution

10 0.97090 0.90555 0.82058 0.72361 0.61871 In this section, we will calculate the effective energy of
15 0.96607 0.88968 0.78996 067574 0.55186 the two-dimensional real scalar model with DLCQ and ob-
20 096326 0.88025 0.77142 0.64636 0.51036 tain an expectation valug(x ") as a solution of E¢(2.9). It

25 0.96139 0.87385 075862 0.62581 0.48105 IS possible to understand all the static physics of the system
30 0.96004 0.86915 0.74909 061031 045873 Once a solution of the Euler-Lagrange equati@rd) is ob-

35 0.95902 0.86551 0.74160 059802 044089 tained. The configuratiop(x™) must contain information of

40 095821 086259 0.73552 0.58794 0.42613 SPontaneous symmetry breaking independent of whether
45 095755 0.86018 073045 057945 0.41361 ©(X ) IS uniform or not. If we impose a periodic boundary
50 095700 085814 072612 057215  0.40279 condition on the fieldp(L) = ¢(—L) and assume a uniform

s ossess ossodo  07z2ar oseors  osaze iR QU T CONEE RS U L sl
60 0.95613 0.85488 0.71908 0.56015 0.38485 oy y P

65 095578 085355 071616 055513 037727 'OMMe 2
70 0.95548  0.85236 0.71355  0.55060 0.37041 1
V@)= 5-Ele(x7)=¢]
2L
<\ <55u? obtained in the conventional equal-time theory :iw 430 0 i1
[16], but much smaller tham.=4m(3+ \3)u’~59.5.2 S W) (053] 0/ 03), (4.2

[12], \¢=43.942 [17], and\ .= 40u? [19]. A convergence of _ , -
the spectrum in the antiperiodic case is slightly faster thavhere ¢ is a zero-mode part of the field operai(x )
the periodic one. The spectra are similar but we cannot con- 1L
clude clearly whether the two results coincide or not, since = - -

s L bo dx” (x7). 4.2
the spectra are extrapolated to the latgeregion in this 2L ) -,

calculation. It is interesting to see how the zero-mode effect _ _
A vacuum expectation value of the field operater

=(0;|¢(x7)|0,) is given as a solution of the following

1 == T T T T T T T
equation:
I * ] dW(e)
°° =J, J-0, 4.3
06 Periodic 1 where ¢ is independent of space because of translational
M2 invariance of the system. In order to evaluate the potential,
we have to consider a constrained zero ma@ge which is
04 F 4 H . . .
Antiperiodic given as a solution of the following constraint equatj8h
+ L )\
02| ‘e_} . g J' dx~ /1,2(]54- 6¢3_J =0. (4.9
o . . . . Lt . It is expected that the zero modg has a singular behavior
oo e e ® . Boo®oo® o with respect to the external fiellin the broken phase due to
Mu the convexity of the effective potentigl4,15. However, it

is difficult to solve Eq.(4.4) and represent the zero mode as
a superposition of other modes, since it is an operator valued
odic boundary conditions, each of which is represented with dia_nonllnear e_quatlon. It would be better if we could l_Jnders_,tand
monds and pluses, respectively. The lines are intended to guide ik mechanlsm of spontaneous symmetry breaking without
eye and used to calculated the critical coupling constantin the such a complicated zero—mode problem. .

periodic case, the zero mode has been omitted and the extrapolated L€t Us look for a nonuniform solution to avoid the zero-
values of the lightest state are obtained from calculations in Focknode problem. If we impose an antiperiodic boundary con-
space truncated witK =70 andNTD=5 in the same manner as the dItIOI’] on the f|e|d and assume a constant eXternal f|e|d
antiperiodic case. The critical coupling constants are calculated a$(X~ ) =J, a nonuniform solutiorp(x ™) that has a kink will
A=28.632%2 (antiperiodi¢ and A,=30.84312 (periodig  be obtained because the external field has a discontinuity at
searching for the massless poM£(\.)=0. the boundaryx™ = = L. There cannot exist a translationally

FIG. 2. The extrapolated valug, of the lightest state is plotted
as a function of the coupling constaxtfor antiperiodic and peri-
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invariant solution, since the system has been connected at the °
boundary with a twist. The purpose of this section is to see oot}
whether there exists a nonzero solutipfx ™) of Eq.(2.9) in Nrp =3+ 2nEfel/L
the limit J—0 after all of the calculations. o B % T

Since the system interacting with the constant external 08|
field is not translationally invariant under antiperiodic .1/ ool 1 amupaysz
boundary condition, we cannot diagonalize the Hamiltonian
and momentum operators at the same tjidgJ],P]#0. A o Neo =3
general state of Eq2.4) should be expanded as a superpo- |
sition of various momentum states

2Kyt

|W)=co|0)+ lim > |K=n/2),

Ky N=1

(4.5

Keat

) ) . FIG. 3. The effective energ§ ¢] and the generating functional
where the resolution takes both half-integer and intdger w[J] are plotted as functions df..,, for various Tamm-Dancoff
=1/2,1,3/2,2. .. K¢ andK, is set to be some finite value truncationsNyp=3,5,7 in the broken phase, whexe=50u2 and
that leads to convergence in the spectra. The odd and ever-0.01 are taken. The effective enerflyp] always takes a larger
sectors interact with each other due to the existence of @alue tharm[J]. A truncation withK ,=31/2 andNtp=7 seems
translationally noninvariant interaction, which can be ob-to give a spectrum that is near the convergent point. This parameter
served in Eq(B7). set will be used in the subsequent calculations.

It is possible to confirm that the sta(d.5) is expressed
with a complete set of momenta by taking the continuum 5 20 °
limit L—eo. Then TEel= W+ 2 (0ylfa(—L)ap+ 1 (—L)ay|0y),
v

A . (4.12
Plw)= >, (—K>|K>, (4.6)

K=o \L where coefficients,, are defined in Eq(B8). The spatial
integration has been performed before evaluating contrac-
tions of the operators in the second term of the right-hand
side. We can obtain the left-hand side as a functional of the
classical field(x™)=(04]#(x)|0;), which can be also

calculated by using the wave function of the ground state
|0,).-

becomes

ﬁ>|~1f>=f:dp PIP), .7

where
B. Numerical result

In Fig. 3, the generating functional[ J] and the effective
energyé] ¢] are plotted for varioudlp’s as functions of the
harmonic resolutiorK.; to check the convergence with re-
spect toK,, wherex=50u? and J=0.01 are taken. The
effective energy has been obtained by evaluating the right-
hand side of Eq(4.12. That is, the Legendre transform is
and numerically performed in terms of the eigenvalg]] and
the wave function0,) of the ground state of the Hamiltonian
H[J]. After this, we will take a parameter sét,,=31/2 and
N+ip=7 because this parameter set seems to give almost con-
vergent spectra. The convergence of the spectra is slightly
faster than mass spectrum calculation, because an expansion

In order to calculate the effective energy, an eigenvalu®f a state|¥) starts from the zero-body stajt@).
problem In Fig. 4, the classical fielg(x™) is plotted as a function
of the spatial coordinate both i@ symmetric § =0.1u?
<)o) and(b) broken \ =50u?>\,) phases, where the ex-
ternal field is changed at a regular intervalAof=0.05. We
is solved by numerical diagonalization of the Hamiltoniancan see that the field configuratigr{x ) is nearly uniform

|F‘>ENE:0 f [.11 dpi}c?(iEI pi—P) ¥n(P1.P2. - - - PN

X (4.8

il;[l a*(pi)}loy

LN/Z

In(P1,P2s - -

PN) = SN+ 272 N+1Cng -y
4.9

HLI| W) =w{3]|¥), (4.10

H[J]=(2=/L)H[J]. By substituting the energw[J] and
wave function|0;) of the ground state into the relation

2
(0| H[31[05) = T-w ], (4.12

the effective energy is given as

except at the boundary and has a twistat + L because of
the antiperiodicity of the field operata@s(x™).

In order to see how the magnitude of the classical field
behaves with changing, the J dependence of the classical
field ¢(x7) is shown in Fig. 5. The maximum valug,ax
=max ¢(x")} of the classical field is plotted as a function
of J both in symmetric x=0.1x2) and broken X =50u?)
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FIG. 4. The classical fieleb(x ") =(0,| ¢(x")|0;) is plotted as a function af~ both in (a) symmetric § =0.142) and(b) broken @
=50u?) phases fod=0,0.05,0.1, and 0.15, where Fock space is truncatediviti31/2 andNtp= 7. The vertical and horizontal axes stand
for ¢(x~) andx ™, respectively. We can observe that the classical fi€lki”) has a twist at the boundary = + L due to the antiperiodicity
of the field operatoks(x).

phases, which are represented with diamonds and pluses, re-In Fig. 6, the effective energ$] ¢] is plotted as a func-
spectively.J is increased at regular intervals. There is a onetion of ¢, instead of as a functional @f(x ™). In the sym-
to-one correspondence between the field configuratiometric phase X=0.1x2), we can see that the energje]
¢(x7) and the external field. In the symmetric phase, the has a minimum at the origin, where the state is composed
expectation value vanishes in tde-0 limit. In the broken  only of a zero-momentum stat®) (Fock vacuum The
phase, the curve tends to be closer to g, axis with  ground state of the Hamiltoniad[J] goes to|0) and gives
increasing harmonic resolutioi.,,. The classical field zero energy]¢]=0 in theJ—O0 limit. In the broken phase
¢(x~) approaches the origin quickly as decreasingrhis  (A=50u?), however, a situation is completely different
fact suggests the presence of a nonzero field configuratioilom the symmetric one. The effective energy has a flat bot-
@(x7) of the A\¢7,, model in the thermodynamic limit ~ tom. A state on the flat region has a wave function where
—00 (Kgy—). finite K components are dominant because of a twist at the
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FIG. 5. The maximum valugp,g,=max o(x ")} of the nonuni- of pmax instead of as a functional af(x ™), where Fock space is
truncated withK,=31/2 andN{p=7. Diamonds and pluses cor-

form classical fieldp(x ™) is plotted as a function of, where Fock "l ) > 5
space is truncated with,=31/2 andNp=7. Diamonds and '€SPond to symmetricA(=0.1..%) and broken X =50u") phases,
pluses correspond to symmetriov£0.14%) and broken r_espec_nve_ly. In the symmetnc phase, a ph_ysu:ally meaningful con-
=50u?) phases, respectively. The external figlis changed with figuration is at the origin, where the state is composed o_nly of the
an intervalAJ=0.005. In the broken phase, the magnitude of theF 0K vacuun0). In the broken phase, there seems to exist a non-
classical fieldp(x ™) rapidly approaches the origin dsdecreases. 2670 field configuration as a solution of the extended Euler-
This suggests the presence of a nonzero field configuratign) ~ -@drange equation in the—0 limit, since the bottom of the effec-
in the thermodynamic limit. — o (K g, ). tive energy is flat. T_hls de[nonsFrates the existence of an infinite
number of configurationg(x™) which are energetically equivalent.

boundary. The classical field which is placed in the edge of L -
the bottom jumps to zero in th&—0 limit. The classical increase because the resolution is not sufficient. It would be
field shows a singular behavior if the symmetry breaks sponb?ipelrisz t? exter;]d the DCL[(): Qwrﬂftgor? byhki)rl;]ter fggr%e tno ire:ll-
taneously. This fact supports the existence of an infinit stic models such as QCD, ch has highe ensions,
number of configurationsp(x™), which are energetically since we COUI.d no_t get a C_onver_gent result near the critical
equivalent, and a nonzero field configuration as a kink solyrégion even in this two-dimensional model. We need to
tion of the Euler-Lagrange equatiof2.9) in the broken renormalize the degrees of freedom of the harmonic resolu-
hase tion K [21]. It would be better if we could also construct an
P ' effective Hamiltonian by renormalizing higher Fock space
truncated by the number of particlésp [22].
V. SUMMARY AND DISCUSSIONS In the latter part of this paper, we have discussed sponta-
We have found an approximate value of the critical cou-neous symmetry breaking by searching for a state that mini-
pling constant and obtained the effective energy by usingnizes the effective energy. We have succeeded in finding an
DLCQ. In the symmetric phase, the effective energy has ahdication of spontaneous symmetry breaking, which is just
minimum at the origin, which is composed only of the trivial contained in the Hamiltonian with antiperiodic boundary

Fock vacuum. In the broken pha%a symmetry spontane- condition. This suggests that the Hamiltonian knows the ex-
ously breaks, which has been confirmed by seeing that thigtence of symmetry breaking in spite of an absence of a zero
bottom of the effective energy is flat. In the vanishidg Mmode. We have considered how to extract information about
limit, a nonzero expectation value of the field seems to reSymmetry breaking from the effective energy even though it
main. A field configuration, which has a twist, can be a so-S hatural to use an effective potential for such investigations.
lution of the quantum mechanically extended Euler-Itis easier to evaluate the effective energy than the effective
Lagrange equation. potential because there is no vacuum fluctuation and the

In Sec. Ill, mass spectrum calculation of particle stategruncation of Fock space with respect to particle numbers

has been done with DLCQ. In the critical region, conver-Works well in the light-front field theory.

gence of the spectra is very slow because the coupling con- If the order parameter one would like to consider is a
stant is large there. This is due to an insufficiency of thevacuum expectation value of a composite field such as
harmonic resolution to represent smélf components of (0|#(x)¥(x)|0), it is possible to trace spontaneous symme-
wave functions. By plotting the three-body wave function,try breaking by using a Hamiltonian that has an interaction
we can see that the wave function increases rapidlg™at between the composite operator and an external field. There
~0. A small finite K value cannot represent such a sharpare a couple of possibilities to figure out symmetry breaking
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for the composite operator. One way is to define the Sffective [t .
potential with the zero mode of the composite operatgr W'(t)):TeXp( : jtods d XJ(X)¢(S’X)) [Wi(to)),
Another way is to find a nonuniforntkink) solution of a (A8)

classical field(0;||0;) through the effective energy as . . .
discussed in this paper. To do that, we use a tricklog), where the time-ordered product is used due to the time de-

because the operatgny is always periodic even if any kinds p:zdengeA%f _the Eam'lal\tsomahi,r(]t). By substituting Egs.
of boundary conditions are imposed on the fermionic figld (A4) and (A8) into Eq. (A5), we have

Since the expectation value of the periodic operator can only _ t;

have an even number of kinks, we have to assume an evene M1t =g iHtT exr{if dtd" x J(x)qb(t,x)),
number of kinks also on the external field. to

(A9)

where| W (tg))=|V4(to)) is used. By sandwiching E¢A9
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:<0|Texp(if dtd" x J(x) #(t,x) ||0). (A10)
—-T/2

APPENDIX A: PARTITION FUNCTION AND

HAMILTONIAN
APPENDIX B: HAMILTONIAN

Let us prove that the following relation holds for the par-
tition function Z[J] when the external field is static ~ 1he unperturbed and the perturbedt, parts of the
I(x)=3(x) [6], Hamiltonian(2.3)

Z[J]E<O|Teifdnx~](x)¢(x)|0>:<O|e*iH[J]T|O>, (Al) 'H[J]ZZTWH[J]:H‘F’HJ, (Bl)

where
are expressed using creation and annihilation operators in the

H[J]=H+H,, HJE—J’ A% I B(x),  (A2) two-dimensional ¢* model. The unperturbed pakt is

© 2
y73
and x indicates 6—1)-dimensional spatial coordinates and H= E Taxan
¢ is a field operator represented in the Sclinger picture. n=1n
In order to prove the formul@Al), the interaction picture
will be defined regardindd ; as a perturbed part. 1 2\ i 67]1+;2;]3+54 -
Th hrdi i fi | i + - — —/——3a, a, a,. a
e Schrdinger equation for a general state vector is 4 2m oy 0y S net m n,3n,anan,
d (B2)
= [ Ws(t) =H[I[Ws(t)). (A3)
1A ” On,+ Tyt gy
and a formal solution is readily obtained by writing +-— E _—
) 6 47Tn1,n2,n3,n4=1 A /711712713’64
[W(t))=e MW (1)), (A4)
_ _ . _ _ x[a! al al a, +H.c]. (B3)
Define the interaction state vector in the following way: S
[P, (1)) = MW (1)), (A5) and the harmonic resolution is
The equation of motion of this state is easily found by car- K= . Tafa (B4)
rying out the time derivative =
. where
'ﬁm’l(t)): H(1)[W(1)), (A6)
~ 1 BE
n=n > (B5)

H|(t)EethHJe"Ht:—J’d”’li(x)¢(t,x), (A7)
Even if the external field is assumed to be constant

where ¢(t,x) is the field operator in the interaction picture. J(x")=J, J(x~) is not continuous at the boundary =
The solution of Eq(A6) is * L because of the antiperiodicity of the field operag).
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This discontinuity is reflected as a twist in the expectation *
value of the field operatot)(x). It is possible to shift the Hy=— E [fn(a)a§+f’,§(a)an] (B7)
position of the kink by taking the following external field: n=1

where
—J(—L=sx"<a),

JXI=1 ja<x—<L),

(B6) . (B8

¢ 2 [mas| . Ta.
n(a)—\/;..—ns/2 sin| Tn +ico Tn

o N _ Of course, physics should be independent of the posdion
wherea indicates the position of the kink; L<a<L. The It has been numerically confirmed that the ground state ei-
perturbed part o[ J] is given by genvalue ofH[J] is independent oé.
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