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Cosmological solutions in M and string theory
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We consider solutions to the cosmological equations of motion in 11 dimensions with and without 4-form
charges. We show explicitly the correspondence between some of these solutions and known solutions in 10
dimensional string gravity. New solutions involving combinations of 4-form charges are explored.
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I. INTRODUCTION

There is little doubt or discussion that classic
Friedmann-Robertson-Walker~FRW! cosmology provides
an excellent description of the evolving Universe at la
times ~say nucleosynthesis and beyond!. Indeed, there is
little reason to doubt the validity of FRW cosmology back
very early times corresponding to the grand unified the
~GUT! epoch. At some point however, it is reasonable
suppose that Einstein gravity is modified, and at present,
only consistent modification available is due to string theo
A strong argument in favor of such a modification is that it
not possible to bring Einstein’s general relativity in full a
cord with quantum mechanics, and hence, accepting the
tulates of quantum mechanics, altering the theory of gra
seems inevitable. In the regime of large curvatures these
terations should be expected to play a very significant r
Since the singularity theorems of Hawking and Penrose@1#
state that such large curvature regions are a generic sta
the early Universe, it then seems plausible to assume th
this epoch the effects of quantum gravity strongly influen
the evolution of the Universe. There have been numer
efforts attempting to explore the effects of string theory
cosmology@2–21#. One could characterize the main aims
many of these studies as either an attempt to utilize the
ditional degrees of freedom in the massless sector to ind
inflation @2,3,6,7,8,10,11# or developing arguments on th
type of modifications to Einstein gravity which are necess
to avoid a cosmological singularity@9,13,14,16,18,19,20#.

Much of the emphasis in previous work on string cosm
ogy has been on the modifications to Einstein gravity@22#.
The modifications were accommodated either by enlarg
the zero mass sector with the inclusion of the dilaton a
axion/moduli fields or by considering higher curvature ter
described by the low energy string action. Dilaton/axion c
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rections do indeed have an effect on the equations of mo
at early times and lead to new cosmological solutions. Th
are not however very conducive to a de Sitter, or a m
general inflationary phase, at least not without resorting
supersymmetry breaking potentials for trapping the dila
@3#. As an alternative, much effort has been invested in t
ing to resolve the standard cosmological problems with
pre-big-bang phase@11#, which appears in the general spa
of solutions to the string dilaton-gravity system. It still re
mains to be seen, whether or not such models can succ
fully solve all of the problems normally associated with i
flation and produce density perturbations consistent with
Cosmic Background Explorer~COBE! measurements of the
microwave background anisotropy.

Another interest of string gravity is the problem of a
initial ~or final! cosmological singularity. The attempts t
address it included the use of winding modes wrapp
around spatial directions@9#, higher-derivative–higher-genu
induced corrections@13#, decompactification to higher di
mensions with simultaneous insertion of D-brane type ma
sources@23#, instanton-like constructions@24#, and models
with generalized scalar-tensor couplings,@25–33#. Though
we know that the simple types of dilaton-axion modificatio
to Einstein gravity considered up to now are not capable
removing singularities@18,19,33#, progress has been mad
concerning the form of the corrections needed@20#. Any
such solution~at least from the 10D point of view! must rely
on non-perturbative features of the gravitational action
come from some more complete theory of gravity at t
string scale.

Out of the morass of different weakly, and strong
coupled string theories, M theory is emerging as the sin
underlying theory capable of unifying all particle interactio
@34,35#. At this time, our understanding of M theory is sti
incomplete. While its various low energy limits, and th
links between them, are known~which are the consisten
string theories and the 11D supergravity, related by the w
of dualities!, the full description of the theory is still being
sought for. A candidate that has been proposed recent
the M~atrix! theory, formulated as a large N-limit supersym
7340 © 1998 The American Physical Society
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57 7341COSMOLOGICAL SOLUTIONS IN M AND STRING THEORY
metric matrix quantum mechanics@36#. An interesting shift
of the point of view that has emerged out of these devel
ments is that the dilaton scalar field, present in all kno
string theories, has been demoted to merely another mod
field in the 11D supergravity. This could have important co
sequences for cosmological applications. The troubles w
implementing conventional inflationary scenarios in stri
theory arise because of the dilaton and its couplings to
other modes in the string spectrum. In the arena of 1
supergravity, such couplings are absent. Some of the
stacles for inflation in dilaton-plagued string theories co
perhaps be resolved by way of M theory. Let us be m
specific: the extreme weak and strong coupling limits
string theory formulations correspond to the regimes wh
the size of the eleventh dimension becomes very smal
very large. These limits sit in rather special portions of t
phase space of the full theory, and perhaps should be vie
as unnatural. Indeed, there seems to be no reason why
given very large energy scale the dynamics should treat
direction in the Universe any differently than the others.
the other hand, the present knowledge of the low-energy
its of M theory does not seem to prefer one construction o
the other. Since the limits where the moduli attain their e
tremes do exist within reach of solutions in the phase sp
it then seems logical to see if they can be dynamically
derstood from the M-theory point of view. For example, w
can imagine a scenario in string theory where in the lim
when the moduli converge towards their extrema, the eff
tive stringy description must be lifted to 11 dimension
where some intrinsically M-theoretic~and as yet unspecified!
mechanism saturates moduli evolution. It might be poss
to find some inflationary scenario in this limit. This scena
could work in string theories essentially because of dual
albeit the mechanism might take a different guise there.1

At his moment, we are far from being able to addre
comprehensively the questions we pose above. However
can at least consider the known string cosmologies from
advantage of the 11th dimension. We will therefore concen
trate here on the oxidation of 10D type IIA superstri
theory cosmologies to 11D supergravity theory with the g
metric reinterpretation of the string coupling. There ha
been several interesting papers directly exploring cosmol
cal solutions based on the M-theory-inspired action@29# and
making use of string dualities@30#. Furthermore, many of the
earlier investigations of cosmological models with high
rank form-field charges in superstring models@31# can be
directly incorporated into the framework of the 11D sup
gravity by dimensionally oxidizing the solutions. In this wa
one obtains a description of the known string cosmolog
which treats the dilaton field on equal footing with the oth

1In spirit, this would be similar to the proposed~but to date un-
known! scenario for solving the cosmological constant problem
string theory. The idea is to find a duality relationship betwee
string vacuum with unbroken supersymmetries and a vacuum
all supersymmetries broken. Then duality would guarantee tha
cosmological constant, which is zero in the vacuum with unbro
SUSY’s must also vanish in the vacuum without manifest SUSY
Perhaps it is possible to hide inflation in string theory in this se
too.
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moduli fields. An immediate consequence of this approac
that by means ofU duality one can flow between differen
M-theory configuration, as exemplified in@32#. The possible
advantages of such amodular democracyremain to be in-
vestigated further.

Below we will survey several classes of cosmological s
lutions of the 11D theory which can be reduced to the so
tions of string dilaton gravity. We will give the explicit re
lationship of the string and M-theory solutions whe
applicable. We will also study a case when the 4-form fie
strength carries two different charges, a magnetic and
electric one, which do not correspond to any of the com
nations of form-field charges studied in reduced models
far ~but can be given a string theory interpretation v
Scherk-Schwarz dimensional reduction!. Most of the solu-
tions still feature the unattractive properties of their lowe
dimensional stringy relatives, in that they are singular a
have running moduli, and hence cannot be used for build
an inflationary scenario by themselves. However, we w
show a special example where a flat space in 11 dimensi
viewed by an observer accelerated along one of the circ
reduces to a singular dilatonic string cosmology. This e
ample is not really inflation, but it moderates the singular
by dimensional uplift.

II. STRING THEORY ACTIONS AND EQUATIONS
OF MOTIONS

Before we begin our study of the general M-theory i
spired, 11D supergravity action, it will be useful to revie
some of the salient features of the effective field theory f
mulation of string gravity as it pertains to cosmological s
lutions. Neglecting for now the contribution to dynamic
from the 6D Calabi-Yau space, we can begin with the low
order 4D effective action of the Neveu-Schwarz–Neve
Schwarz~NS-NS! sector of any string construction@22#:

S5E d4xAge22fH R14~¹f!22
1

12
HmnlHmnl12LJ .

~1!

The 3-formH5dB is the field strength of the Kalb-Ramon
2-form Bmn . The stringy cosmological constantL can arise
from central charge deficit in conformal field theory co
structions or by the reduction of higher rank form fields,
we will see later. In four dimensions, this 3-form is dynam
cally dual to a pseudoscalar axion field. The corresponde
is given by

Hmnl5&e2fAgemnlr]rx ~2!

resulting in the replacement of the 3-form kinetic ter
coupled to the inverse string couplinge22f by the pseudo-
scalar kinetic term coupled to the string coupling itself. B
means of a simple conformal rescaling,gmn→e2fgmn , the
action can be put into the Einstein frame, where the Pla
mass is constant~for simplicity, we set 2k251!:

S5E d4xAḡ$R̄22~¹f!222e4f~¹x!212Le2f%. ~3!

With the FRW spatially flat ansatz for the metric,
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ds252n2~ t !dt21a2~ t !dxW2 ~4!

wheren is a gauge parameter~lapse function!, we can easily
derive the equations of motion from the action~1! ~see e.g.
@19#!. They are

ḣ52hḟ23h21r

ṙ16hr50

2ḟ213h226hḟ2r/21L50 ~5!

where h5ȧ/a is the string-frame Hubble parameter, a
r5e4fẋ2 is the effective energy density of the pseudo-sca
axion field, and in the gaugen51.

These equations of motion are straightforward to sol
Many authors have already considered various aspects o
solutions, both in the Einstein frame and in the string fram
The simplest case is certainly the pure metric-dilaton so
tion with vanishing cosmological constant@4,5,7,8,11,15#,
which is given by two classes of solutions separated by
curvature singularity, used in@11# to construct the pre-big
bang scenario:

ds1
2 52dt21a0

2U t

t0
U72/)

dxW2, e22f5e22f0U t

t0
U16)

~ t,0!

ds2
2 52dt21a0

2S t

t0
D 62/)

dxW2, e22f5e22f0S t

t0
D 17)

~ t.0!. ~6!

In the string frame, both branches consist of two classe
solutions: expanding and contracting. The solutions fort,0
are by now widely referred to as the~1! branch, and those
for t.0 as the~2! branch. The proper definition of branche
is derived from solving the quadratic constraint equation
~5! for ḟ. The sign of each branch is determined by the s
of the square root which arises in the solution, where
discriminant is not zero. If the discriminant vanishes an
where on the phase space trajectory, the branches con
there. The solutions are isotropicT duals of each other. A
goal of the pre-big-bang scenario is the connection of
expanding solutions in the two branches, in such a way
the ~1! branch chronologically precedes the~2! branch and
hence the singularity would be removed. In spite of so
recent results@20#, it still remains to be seen if a cohere
and fully consistent description of branch-changing can
found. It is interesting to note that in the E frame, both t
expanding and contracting metrics degenerate to a si
Einstein frame metric, and that the only difference betwe
the two subclasses of solutions is the sign of the dilaton fi
Since in the Einstein frame the switch of the sign of t
dilaton corresponds to the classical form of theS-duality
map, these solutions are alsoS duals of each other.

Further generalizations of these solutions can be ea
obtained with the help of generating techniques. For
ample, if we add the cosmological constant, we can find n
solutions starting from ~6! and applying a solution-
r

.
he
.
-

e

of

n
n
e
-
ect

e
at

e

e
e
le
n
d.

ily
-
w

generating technique described in@37#. Moreover, we can
obtain solutions with the axion field if we apply an SL(2,R)
duality rotation to~6!, as described in@38,17#. These solu-
tions can be written in terms of the functionsa and
exp(22f) describing the axion-less case. Following Cop
land et al. @17#, they are

d s̄25~s21r 2e24f!„2dt21a2~ t !dxW2
…

e2f̄5s2e2f1r 2e22f, x̄5
qs1pre24f

s21r 2e24f ~7!

wherep, q, r ands are real numbers satisfyingps2qr51.
The 3-form axion field isH5QAd3xW , in form notation,
where the constant charge is determined by the integra
constants. The solutions can be readily generalized to inc
additional scalar moduli, which arise from the reduction
the 10D string theories. Note that for these solutions e
branch now contains only one congruence of the system
jectories. This is because as the string frame scale fa
approaches zero, the dominant source in the equation
motion is the axion, since its contribution to the total stre
energy goes as 1/a6(t). This term then forces the Universe t
bounce away from zero volume and start expanding ag
Hence the qualitative picture of evolution in both branches
that the Universe begins in a stage of contraction, reache
minimal volume and starts expanding again to infinity. O
should note however, that such an axion-driven bounce d
not allow one to evade the cosmological singularity. Perh
the easiest way to see this is to note that the bounce occu
some small but finite value of the scale factor and some la
but still finite value of the coupling. When it occurs, th
bounce changes only the sign of the Hubble parameter
not the sign of theḟ and therefore the coupling continues
grow. The curvature singularities reside in the regime of v
large coupling which therefore can still be attained in t
axionic cosmologies. Since the Universe is now expand
the axion’s contribution tor is red-shifted away, and even
tually the Universe becomes dilaton dominated and there
must inevitably run away towards the singularity. In oth
words, the bounce occurs at finite but negativet and still
evolves towards the singularity att50.

Finally, we can obtain solutions with spatial curvatur
either by directly solving differential equations for mode
with spatially curved sections@8,15,21# or by using a Wick
rotation and a dimensional reduction of the 5D Schwar
child black hole solutions@28#. The equations of motion in-
cluding spatial curvature~but for simplicity excluding the
stringy cosmological term and the axion contribution! are

ḣ52hḟ23h222
k

a2 , 2ḟ213h226hḟ13
k

a2 50

~8!

and the generic solutions are given@8,28,21#

ds25m„C16)~q1q0!…„S17)~ uq1q0u!…~2dq21dVk!

ef5S C~q1q0!

S~ uq1q0u! D
6)

~9!
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57 7343COSMOLOGICAL SOLUTIONS IN M AND STRING THEORY
where dVk is the metric on the maximally symmetric 3
spaces with constant curvaturek, andC andS are the trigo-
nometric or hyperbolic cosine and sine, depending
whetherk51 or k521, respectively. The parametersm and
q0 are integration constants. We should mention here
there also exist special solutions fork51 cases, when the
string frame scale factor depends linearly on the comov
time @5#. Note here that in contrast to the spatially flat mo
els, the curved ones do not have an infinite amount of t
available for pole expansion. Rather, the closedk51 solu-
tions emerge out of the spatial curvature-controlled singu
ity @~1! branch# or end up in it@~2! branch#, while the open
k521 solutions begin in a contracting phase, and only
bound later, pole-expanding for a finite amount of time b
fore hitting the curvature singularity. This has been used
cently to argue that pre-big-bang viewed as inflation suff
from a fine tuning problem@21#.

As we have seen above, the curvature singularity wh
separates the~1! and ~2! branches shows that near it th
cosmological evolution is dominated by the dilaton fie
@33#, where the string couplingls5exp(f) diverges, and all
other degrees of freedom become irrelevant. Hence, all
solutions in this regime are extremely well approximated
the pure metric-dilaton configuration. Recently attempts h
been made to dampen this singularity with the higher der
tive and/or higher genus contributions to the equations
motion @13,20,39,40#. However, it has also been noticed@18#
that there exist solutions in the model proposed by Dam
and Polyakov@14# where the effective coupling function als
diverges, but the strong coupling limit string metric rema
completely smooth. In this context, the Damour-Polyak
universality ansatz amounts to replacing the factore22f by a
functionB(f)5e22f1c01c1e2f1¯ in Eq. ~1!. An action
of this form was considered in@18# in an attempt to achieve
a graceful exit from a pre-big-bang phase in the dilato
gravity cosmological evolution. Such a solution was inde
found, however, with the unpleasant aspect that though t
were no space-time singularities in the solution, there wa
point in the evolution in which the functionB(f) changes
sign corresponding to a signature change in the metric.

From another perspective, extensions of the standard
mological solutions to higher dimensions have also b
considered@41,42#. There is a wide variety of motivation
for such considerations which we will not attempt to revie
here. Most of them~in a cosmological setting! are based on
an ansatz for the metric of the form

ds252dt21a2~ t !gi j dxidxj1b2~ t !gmndxmdxn ~10!

wheregi j is assumed to be a maximally symmetric 3-spa
and gmn some other metric describing thed compactifed
dimensions. Considerable effort was expended to investi
the possibilities that such a system could account for in
tion, whereby the FRW portion of the metric expands exp
nentially ~or fast enough! at the expense of the remainingd
dimensions. Also, if we assume that the original theo
which we want to study~10! is devoid of the dilaton field, we
could retrieve the dilaton in lower dimensions. Upon co
pactification, it can be seen that the moduli from higher
mensions can play the role of the dilaton, which was hop
to be identified with the inflaton. An approach of this kin
n
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which most closely resembles the system we will study
low, is that of @43# based on 10D supergravity with the a
tion Eq.~3!. If we assumegmn to be maximally symmetric as
well, and work in the Einstein frame, where the effecti
dilaton field has the canonical kinetic term, the correct c
mological equations of motion with the dilaton as the on
matter field can be simply written as

3
ä

a
1d

b̈

b
522ḟ2 ~11!

ä

a
12

ȧ2

a2 1
2k

a2 1d
ȧ

a

ḃ

b
50 ~12!

b̈

b
1~d21!

ḃ2

b2 1
~d21!kd

b2 13
ȧ

a

ḃ

b
50 ~13!

f̈1S 3
ȧ

a
1d

ḃ

b
D ḟ50. ~14!

A more detailed inspection of these equations shows
regardless of the frame, the solutions for the scale fac
behave as powers of the comoving time@17,44#. In addition,
they are all singular, and hence can still be grouped i
different branches, much like when the internal space is c
stant. Thus, the system~11!–~14! does not admit conven
tional de Sitter inflationary solutions.@The de Sitter solution
in @43# stems from a simple sign mistake in~11!.#

III. TRANS-DIMENSIONAL COSMOLOGY

As we have indicated above, our main goal in this pape
to examine the cosmological implications of the oxidation
10D string theory to 11D M theory in which we will interpre
the string couplinge22f as the scale factor of the 11th di-
mension@34,35#. Our starting point therefore, will be th
11D supergravity action

S5E d11xAg

3H R2
1

48
Fm1 . . . m4

2

2
1

~4! !2~3! !2

em1 . . . m3n1 . . . n4l1 . . . l4

Ag

3Am1 . . . m3
Fn1 . . . n4

Fl1 . . . l4J ~15!

where R is the scalar curvature of the 11D metri
and Am1 . . . m3

and Fn1 . . . n4
54] [n1

An2 . . . n4] are the 3-
form potential and its 4-form field strength. The la
term is the Chern-Simons term forA. Our con-
ventions are gmn5diag(21,1W 10), Rm

nls5]lGns
m

2 . . . , A5(1/3!)Am1 . . . m3
dxm1∧ . . . ∧dxm3 and F5dA

5(1/4!)Fm1 . . . m4
dxm1∧ . . . ∧dxm4. We choose units such

that in the E frame we have 16pGN51.
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Before we investigate the equations of motion com
from the action~15!, let us first reduce to 10D to furthe
clarify our notation which will follow closely that of Witten
@34#. Assuming that the 11th direction is compact, we can
carry out Kaluza-Klein reduction of~15! to find

S5E d10xAg10R11H R102R11
2 1

4
FKK

2

2
1

48
F̄m1 . . . m4

2 2
1

12
R11

22Hmnl
2

2
1

384

em1m2n1 . . . n4l1 . . . l4

Ag
Bm1m2

Fn1 . . . n4
Fl1 . . . l4J

~16!

whereFKKmn
52] [mVn]

11 is the field strength of the Kaluza
Klein gauge field coming from the metric and the reduc
2-form is Bmn5Amn11, and its 3-form field strength is
Hmnl5¹mBnl1cyclic permutations. The reduced 4-for
field strengthF̄ acquires Chern-Simons type couplings to t
reduced 2- and 1-forms: F̄mnls5Fmnls1(AmHnls

1cyclic permutations). After a conformal rescalin
g105R11

21gs , and defining the dilaton by exp(2f/3)5R11,
we find

S5E d10xAgsH e22fS Rs14~¹f!22
1

12
H2D

2
1

48
F̄m1 . . . m4

2 2
1

4
FKK

2

2
1

384

em1m2n1 . . . n4l1 . . . l4

Ag
Bm1m2

Fn1 . . . n4
Fl1 . . . l4J .

~17!

This is precisely the effective action which describes the l
energy limit of the IIA superstring. We can recognize t
first three terms as the NS-NS sector of the theory, and
remaining ones as the Ramond-Ramond~RR! sector. It is
easy to rewrite this action in the ten-dimensional Einst
frame, by a further conformal rescalinggs5ef/2gE . The ac-
tion ~17! can be reduced further to make contact with ty
IIB and heterotic theories.

Since we want to relate the M-theory cosmological so
tions to the stringy cosmologies studied so far, we will a
sume that the base manifold is split into

M115Rt3M3
k503S13M6

CY ~18!

whereRt3M3
k50 is the spatially flat 4D FRW Universe,S1

is a circle corresponding to the 11th dimension, andM6
CY is

some Calabi-Yau manifold, whose specifics are not nec
sary for our purposes here. Here we will ignore all graviph
tons which could arise from a generic dimensional reduct
of the metric. First, such degrees of freedom cannot a
from mixing the Calabi-Yau sector with the space-tim
since the topology of Calabi-Yau spaces does not sup
harmonic 1-forms, that would be needed to carry the redu
d

e

n

-
-

s-
-
n
e

,
rt
d

gauge fields. Furthermore, while we in principle can obt
an U~1! field from the metric, which describes D0 branes
the resulting type IIA theory, at this time we wish to consid
only gauge-neutral cosmological solutions. This is beca
our focus here is on making the M-theory reinterpretation
the known string cosmological solutions. Indeed, such s
ting of the gauge field to zero is consistent with the equati
of motion, which are homogeneous in the cross terms.
ansatz for the metric is then

ds252n2~ t !dt21a2~ t !dxW21b2~ t !GMN
CY ~y!dyMdyN

1R11
2 ~ t !dw2 ~19!

where we again retain the lapse functionn2(t) since we will
work in the action. The functionsa(t), b(t) andR11(t) are
the radii of the three subspacesM3

k50, M6
CY andS1 of ~18!,

respectively, from the point of view of the 11D observe
After the reduction to 10D,R11 is related to the string cou
pling constant.GMN

CY (y) in ~19! is the metric on the Calabi
Yau 3-fold, which depends only on the Calabi-Yau coor
natesyM. We will not need the explicit dependence ofGCY

on y in this work. It will be sufficient to keep in mind tha
this metric is Ricci-flat, i.e. thatRMN50. Still, this subspace
influences the overall dynamics because it is nontrivia
warped in 11D, via the scale factorb(t).

We will also ignore the possibility that the Calabi-Ya
factor in ~18! can have nontrivial harmonic two-forms whic
can support additional reduced U~1! gauge fields. HereF
will be completely supported by the remainder of the ba
manifold, i.e. theRt3M3

k503S1 subspace. The Bianch
identity for F is dF50, which follows from the definition
F5dA, and in terms of the components, becom
] [rFmnls]50. By varying the action~15! with respect to
Anls we find the propagation equation forF. The gauge
dynamics is therefore determined by

¹mFmnls5
1

32~3! !2

enlsm1 . . . m4r1 . . . r4

Ag
Fm1 . . . m4

Fr1 . . . r4

] [rFmnls]50. ~20!

If we restrict our attention to those configurations whereF
lives only in theRt3M3

k503S1 subspace, and require tha
the three-spaceM3

k50 is isotropic, we see thatF must be
proportional to an exterior product of the volume form o
M3

k50 and a one-form. The two linearly independent pos
bilities for this one-form aredw and dt. Hence we are left
with F0i jk and Fw i jk . It is quite clear that one cannot con
sider a case of non-zeroF0w jk , because of the symmetry o
the three-spaceM3

k50. There are no invariant antisymmetr
tensors of rank 2~as well as rank 1! inM3

k50 and because o
this any non-zero value ofF0w jk will destroy the symmetry
of the three-dimensional space. If we take into account
6D Calabi-Yau indices, we can write down objects lik
F0wAB whereA,B are in the Calabi-Yau subspace, which h
harmonic two-forms and hence admit such terms. Howe
from the point of view of 4 dimensions, terms of this typ
behave just like scalar fields, after we reduce onw. Their
contributions are in principle consistent with the presence
a maximally symmetric subspace in four dimensions, a
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there is noa priori reason to rule out such terms. Neverth
less, here we will for simplicity set these terms equal to ze

With this, we see that in form notation, we can wri
down the 4-form as follows:

F5F0123dt∧V31Fw123dw∧V3 . ~21!

Here V35d3xW is the comoving volume form of the three
spaceM3

k50. Since the Chern-Simons source in the first
Eq. ~20! is proportional toF∧F, it is always zero for the
backgrounds we consider, and hence we will ignore it fr
now on @30#.

Let us now solve the equations forF. ForF0i jk , since we
assume that it depends only ont, the Bianchi identity is
vacuous, and so are the equations¹mFm0 jk50. The remain-
ing Euler-Lagrange equation yields

¹mFm i jk5
1

Ag
]m~AgFm i jk !52

1

a3b6R11

d

dt S b6R11

a3 F0i jk D
50 ~22!

and so,

F0i jk5P
a3

b6R11
e0i jk ~23!

where P is a constant of integration ande0i jk is the 4D
Levi-Civita symbol. We recognize this as the monopole a
satz of Freund and Rubin@45#, and also Englert@46#. Similar
cosmological backgrounds were considered in@42#. We can
now look at the other mode,Fw i jk . The Euler-Lagrange
equations in~20! are trivial, since they contain only deriva
tives with respect tow andxk. However, the Bianchi identity
for this mode gives

Ḟw i jkdt∧dw∧V350 ~24!

and hence

Fw1235Q ~25!

whereQ is another integration constant. In terms of the p
tential Ai jk , we can write this mode asA5QwV3 . The lin-
ear dependence of the potential on the compact coordi
means that this solution is the Scherk-Schwarz mode oA,
which corresponds to a 4-brane wrapped around the circlw.
These generalized reductions were considered as mea
breaking supersymmetry@47#, and in contemporary develop
ments have found the interpretation ofp-branes wrapped
around longitudinal tori@48#. The combined solution there
fore is

F5
P

b6R11
a3dt∧V31Qdw∧V3 . ~26!

The Einstein equations of motion which are obtained
the variation of the action~15! with respect to the 11D metric
gmn are

Rmn2
1

2
gmnR5

1

12
FmlsrFn

lsr2
1

96
gmnFlsrv

2 ~27!
-
.

f

-

-

te

of

y

because the Chern-Simons term in~15! does not depend on
the metric, and hence does not contribute to the stress-en
tensor ofF. However, it is much simpler to work in the
action, since the background~19!, ~26! depends nontrivially
only on timet. We therefore dimensionally reduce the 11
action ~15! to a 1D one, and then vary it with respect to th
independent degrees of freedoma, b andR11, and the lapse
n. We can ignore the Chern-Simons term, since it does
contribute to either the equations of motion forF @by virtue
of ~21!# or the gravitational equations of motion, as we s
from ~27!. To proceed, we first need the Ricci scalar ofgmn .
The easiest way to find it is to use the tangent space re
sentation, which is given in terms of the 11-bein

ds25habe
aeb, e05ndt, ek5a~ t !dxk,

eM5b~ t !EM, ew5R11dw ~28!

and EM are the internal 6-bein of the Calabi-Yau 3-fo
MCY, such thatGMN

CY 5dKLEK
MEL

N . The capital latin indi-
ces run from 1 to 6 anddKL is just the 636 unit matrix. This
‘‘bastard’’ split of the 11-bein is similar to what is used i
the studies of the more complicated non-diagonal Bian
models@49#. The next step is to determine the spin conne
tion 1-formsvab . Since we assume that the background~19!
is torsion-less, we can usedea52va

b∧eb to find the spin
connection. This givesvk

05(a8/na)ek, vM
05(b8/nb)eM,

vw
05(R118 /nR11)e

w where the prime denotes derivative
with respect to time. Defining the internal Calabi-Yau sp
connectionzMN ~details of which are not necessary for o
purposes!, we find thatvM

N5zM
N . The set of connection

1-forms with all indices lowered for convenience is simpl

vk05
a8

na
ek, vM05

b8

nb
eM,

vMN5zMN , vw05
R118

nR11
ew. ~29!

The next step is to work out the curvature 2-forms, us
Rab5dvab1vac∧vc

b . We recall here that in the Calab
Yau sector, we will have the intrinsic curvatur
RKL5(1/2)RKLMNEM∧EN. Using the curvature forms, we
can obtain the curvature components in the tangent ba
The tangent space curvature components are@normalized by
Rab5(1/2)Rabcde

c∧ed#

Rk0 j 052F1

n S a8

naD 8
1

a82

n2a2Gdk j ,

RM0L052F1

n S b8

nbD 8
1

b82

n2b2GdML

Rw0w052F1

n S R118

nR11
D 8

1
R118

2

n2R11
2 G ,

Rwkw j5
R118 a8

n2R11a
dk j



c
en
t

ci

en

a
er

il
ar
rm
io

ale

e

e

a-
e-

is
y to

me-

of
ical

7346 57NEMANJA KALOPER, IAN I. KOGAN, AND KEITH A. OLIVE
RwMwL5
R118 b8

n2R11b
dML Rjklm5

a82

n2a2 ~d j l dkm2d jmdkl!

RkM jL5
a8b8

n2ab
dk jdML

RMNLK5
1

b2 RMNLK1
b82

n2b2 ~dMLdNK2dMKdNL!. ~30!

The contraction of indices is the interior product, and hen
a tensor operation, so it does not depend on the basis. H
we can contract the indices of these components, using
flat tangent space metrichab , to get the tangent space Ric
tensor components:Rab5hcdRacbd. Contracting again, we
get the Ricci scalar, which of course is basis independ
R5habhcdRabcd. The tangent space Ricci tensor is

R00523F1

n S a8

naD 8
1

a82

n2a2G2F1

n S R118

nR11
D 8

1
R118

2

n2R11
2 G

26F1

n S b8

nbD 8
1

b82

n2b2G
Rk j5F1

n S a8

naD 8
13

a82

n2a2 1
R118 a8

n2R11a
16

a8b8

n2abGdk j

Rww5
1

n S R118

nR11
D 8

1
R118

2

n2R11
2 13

R118 a8

n2R11a
16
R118 b8

n2R11b

RMN5RMN1F1

n S b8

nbD 8
16

b82

n2b2 1
R118 b8

n2R11b
13

a8b8

n2abGdMN .

~31!

Recalling thatRMN50 for Calabi-Yau spaces, we see th
the equations of motion do not discern any intrinsic prop
ties of the Calabi-Yau spaces. Now, the Ricci scalar is

R5
2

n S R118

nR11
13

a8

na
16

b8

nbD 8
12

R118
2

n2R11
2 112

a82

n2a2

142
b82

n2b2 112
b8R118

n2bR11
16

a8R118

n2aR11
136

a8b8

n2a8b8
.

~32!

It contains a term of second order in derivatives. We w
eliminate it from the effective reduced Lagrangian by a p
tial integration, and omission of the ensuing boundary te
since we are only interested in the bulk equations of mot
here. The gravitational Lagrangian isL5AgR
5AGCYnR11a

3b6R5AGCYL. The action~15! then is

S5E d11xAgR5E dtd3xWd6ydwnR11a
3b6AGCYR

5mRVE dtL5mRVE dtnR11a
3b6R ~33!
e
ce

he

t:

t
-

l
-
,
n

wheremR contains a finite renormalization of the mass sc
M11 by the volume of the Calabi-Yau 3-foldV6 and the
period 2p of w. V is the comoving volume of the 3-spac
M3

k50.
In addition to the gravitational part of the action, th

gauge terms give

Fmnls
2 52

24

a6 SF1
2

n2 1
F2

2

R11
2 D ~34!

with

F1
25P2

a6

b12R11
2 F2

25Q2. ~35!

When we substitute2(1/48)Fmnls
2 into the action along

with the explicit form of the Ricci scalar~32!, we find that
after omitting a boundary term, and usingI 5S/(mRV), the
action becomes

I 5E dt

n H R11b
6

2a3 F1
21

n2b6

2R11a
3 F2

22R11a
3b6

3S 6
a82

a2 130
b82

b2 16
a8R118

aR11
112

R118 b8

R11b
136

a8b8

ab D J .

~36!

To find the equations of motion for the remaining gravit
tional degrees of freedom, we first vary this action with r
spect ton,a,b,R11 and then insert the expressions forF in
~35!—i.e. we treatF as a constant under variations. Th
reproduces the correct equations of motion, as is eas
check. Choosing the gaugen51, and introducing the mini-
superspace ‘‘particle coordinates’’a5 ln(a), b5 ln(b) and
g5 ln(R11), we obtain the following equations of motion:

6a82130b8216a8g8112b8g8136a8b8

5
P2

2
e22g212b2

Q2

2
e22g26a

a913a8216a8b81a8g852
P2

3
e22g212b2

Q2

3
e22g26a

b916b8213a8b81b8g85
P2

6
e22g212b1

Q2

6
e22g26a

g91g8213a8g816b8g85
P2

6
e22g212b2

Q2

3
e22g26a.

~37!

These equations resemble the equations of motion of a
chanical system evolving with friction~the terms bilinear in
first derivatives!. The constraint equation can be thought
as a generalized energy integral. To make the mechan
analogy for ~37! more precise, we will introduce a new
gauge below, which will remove the friction terms.

At this point, however, it is illustrative to review the 11D
Kasner solutions, defined by settingP5Q50. The Kasner
ansatz corresponds to choosinga85a0 /t, b85b0 /t and
g85g0 /t. So the equations~37! give
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a0
215b0

21a0g012b0g016a0b050

a053a0
216a0b01a0g0

b056b0
213a0b01b0g0

g05g0
213a0g016b0g0 . ~38!

The solutions come in several varieties:~1! if none of the
a0 , b0 andg0 are zero, they must satisfy 3a016b01g051
~as one can easily see from the latter three equations, w
degenerate to this single equation! and 3a0

216b0
21g0

251
~which arises after taking the square the equation above
then subtracting from it the first equation from~38!; ~2! a
few degenerate cases, where the possibilities for (a0 ,b0 ,g0)
are (i ) ~0,0,1!, (i i ) (1/2,0,21/2), (i i i ) (21/3,1/3,0), (iv)
(5/9,21/9,0) and (v) (0,2/7,25/7). In fact, case (i ) is lo-
cally just the 11D flat space in Milne coordinates, as can
seen by applying a simple coordinate transformation.
make the contact with string models we have discussed
lier, in particular with the action~17!, we note that solutions
( i i i ) and (iv) correspond to 10D modular string cosmolo
solutions with the constant dilaton field, while (i i ) and (v)
can be understood as particular solutions with both roll
dilaton and rolling moduli fields. The generic Bianchi mo
els where all the scale factors depend on time also co
spond to string cosmologies with rolling dilaton and mod
fields. However, the two cases where 2b01g050, and 0
Þa0Þb0Þ0 produce precisely the metric-dilaton string s
lutions ~6!, as can be immediately verified by following th
procedure outlined above, in the discussion leading to~17!.
Namely, first dimensionally reduce from 11D to 10D type I
string theory and then down to 4D assuming that the inte
six dimensions span an isotropic six-torus.

Finally, perhaps the most curious interpretations of th
solutions arise in the following way. There may exist redu
tion procedures which map 11D solutions to lower dime
sional stringy ones, and in particular 4D solutions, but in
way which involves a phase of M theory not belonging
known string theories. For example, if we take the appare
trivial case (i ) or the curved case (i i ), we can map them
both onto the same metric-dilaton solutions~6!. The solu-
tions, however, acquire the guise of string theory only at
very end—in both cases we first perform the dimensio
reduction on the Calabi-Yau space, producing a simple E
stein theory in five dimensions as a result. To check that
is a consistent truncation of the 11D theory one only ne
recall that the equations of motion for the Calabi-Yau sc
factor are homogeneous@see e.g.~37!#. Then, in a manner
similar to that discussed by Behrndt and Fo¨rste in @28#, we
go one dimension down to four, obtaining an action o
scalar-tensor theory of gravity in a Brans-Dicke frame:

S5E d4xAĝR11R̂. ~39!

The hats denote the Brans-Dicke frame quantities. In
frame, our solutions (i ) and (i i ) are R115t,
dŝ252dt21dxW2 andR1151/At, dŝ252dt21tdxW2. To see
that both of these solutions are conformal to the solution~6!,
we perform another conformal transformation, to the str
ch
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frame. For both of these two cases, the conformal trans
mation and the field redefinition of the scalar field look fo
mally the same. They are gmn5R11

16)ĝmn and
f56()/2)lnR11 @note that these field redefinitions a
slightly different from those used to obtain Eq.~17! because
we are now reducing from 5D to 4D as opposed to from 1
to 10D#. Since in the two cases the radius of the eleve
dimensions depends on time differently, we need to carry
coordinate transformations separately. In case (i ), we thus
find the string-frame comoving time to bet;t (36))/2, while
for case (i i ) the transformation ist;t (36))/4. When we
substitute the field redefinitions and these coordinate tra
formations into the solutions, both cases lead precisely to~6!.
As one can now see, this solution~6! is highly degenerate
from the point of view of M theory as the same solution
string theory can be obtained from several different solutio
in M theory.

Reductions of this type have not been given much att
tion before, since they employ a dimensional descent ins
M theory, making contact with strings only at the very en
However, they are none the less interesting, since by be
solutions of the 11D supergravity equations of motion th
certainly belong to the general phase space of M theory.
interesting feature of the case (i ) discussed above is that
offers a reinterpretation of the pre-big-bang curvature sin
larity in ~6! as a Rindler horizon in 11D, in a way ver
similar to what has been discussed in@23#. However, since
the horizon involves the compact coordinate along the cir
S1 of ~18!, the singularity has not been completely remov
from the 11D geometry. Instead, the periodicity ofw implies
that the Rindler wedges of the 11D manifold contain clos
time-like curves, and moreover that the manifold is n
Hausdorff, as observed in@23#. A difference between our
example and those of@23# is that we use the 11th direction to
define the horizon, and hence lift the singularity, thus go
outside of the realm of string theory constructions. In th
case, we regulate the 4D string coupling by decompactifying
directly into the 11D supergravity phase, rather than trying
stabilize the coupling within the string framework. The be
efit of this approach is the softening of the singulari
namely the curvature singularity is absent, but the space-t
exhibits geodesic incompleteness. However, this still can
be taken as an example of graceful exit in pre-big-bang. S
an extension of the solution involves an ascent to 11D su
gravity which does not belong to the original pre-big-ba
scenario. Furthermore, at the transition, the function wh
corresponds to the effective string coupling is really ve
small, as opposed to very large—which is in contrast to
generic situation in the pre-big-bang scenario. The flow
the coupling in this example is opposite to the flow of t
coupling in various implementations of pre-big-bang. In
sense, this example appears to accomplish one of the goa
pre-big-bang—singularity softening—while failing to atta
the other—pole inflation.

IV. COSMIC BRANES

Returning to the general case with two charges, we w
use a more suitable gauge to examine solutions of~37!. We
note that the terms which are bilinear in the first derivativ
of the fieldsa, b and g in ~37! are always proportional to



e
ju
b

of

c
th

th
u

m
r

ra
he

i
s

th
e

le

ra

l

to
nd

g to
h
n
-
ssed

y,
ect
be-
n

er,

ion

ny

,

ey
e.

7348 57NEMANJA KALOPER, IAN I. KOGAN, AND KEITH A. OLIVE
(3a816b81g8). In fact, this is the reason why the thre
equations of motion in the Kasner case degenerated to
one. This implies that we can gauge away all such terms
using a different time coordinate. So letdt5ndt, where
n5exp(3a16b1g). Then we can rewrite the equations
motion ~37! as ~where the overdots denotet derivatives!

6ȧ2130ḃ216ȧġ112ḃġ136ȧḃ5
P2

2
e6a2

Q2

2
e12b

ä52
P2

3
e6a2

Q2

3
e12b, b̈5

P2

6
e6a1

Q2

6
e12b

g̈5
P2

6
e6a2

Q2

3
e12b. ~40!

These equations admit the mechanical analogy we have
dicated at the end of the previous section. The constraint
be thought of as the conservation of energy—it is just
Hamiltonian, with the requirement thatE50. If we take the
derivative-dependent terms in the constraint to denote
kinetic energy, and the exponentials to be the potential, s
that H5T1W, we can define the Lagrangian asL5T2W.
One can then show that the second order equations of
tions follow from the variation of this Lagrangian. Simila
equations of motion were considered recently in@31#.

Before continuing with the investigation of the gene
solutions, we will first review the cases when one of t
charges is zero. These cases were considered in@29#, @30#,
@17#, and we include them here for completeness. We w
see that the two possibilities lead to different subclasse
solutions. Let us begin with the caseQ50. This case corre-
sponds to the axionic cosmology extended to 10D by
addition of rolling moduli, which has been investigated r
cently by Copeland, Lidsey and Wands@44#. The equations
of motion reduce to

6ȧ2130ḃ216ȧġ112ḃġ136ȧḃ5
P2

2
e6a

ä52
P2

3
e6a, b̈5

P2

6
e6a, g̈5

P2

6
e6a ~41!

and it is clear that they are easily integrable—all we need
do is solve thea equation, and the rest reduce to simp
double integrals. Thea equation is the familiar Liouville
equation. It can be integrated once to give the first integ

ȧ25u0
22

P2

9
e6a ~42!

whereu0
2 is a positive integration constant~if it were zero or

negative, we would have foundȧ50 and soP50!. This
separates variables, and we can rewrite it as the integra

E d~e23a!

Au0
2e26a2P2/9

573~t1t0! ~43!

where t0 is another integration constant. We can set it
zero by a time translation. After all the integrations, we fi
st
y
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e23a5U P

3u0
Ucosh 3u0t, e6b5e6b016b1t cosh 3u0t

e6g5e6g016g1t cosh 3u0t. ~44!

The constraint relates the integration constants accordin
30b1

2112b1g159u0
2/2. These solutions are valid for bot

t.0 andt,0, andt50 is the singularity. Note that we ca
take the limit wheng5b, by adjusting the integration con
stants, in which case this reduces to the solutions discu
very recently by Lukas and Ovrut@32#.

Consider now theP50 cases. Here there is more variet
which may appear slightly puzzling since one might exp
that there should be a kind of duality correspondence
tween theP50 andQ50 cases. The equations of motio
are

6ȧ2130ḃ216ȧġ112ḃġ136ȧḃ52
Q2

2
e12b

ä52
Q2

3
e12b, b̈5

Q2

6
e12b, g̈52

Q2

3
e12b. ~45!

Note that now we need to solve theb equation, which again
is a Liouville equation, and the rest follows easily. Howev
also note that since the RHS of theb equation is positive,
there are more possibilities for the value of the integrat
constantu0

2. First, we again get the integral of motion,

ḃ25u11
Q2

36
e12b ~46!

whereu1 is the integration constant, which now can be a
real number. Whenu150, the solution is

e6b5
1

uQtu
, e3a5e3a013a1tutu, e3g5e3g013g1tutu

~47!

with 6a1(a11g1)50. Whenu1.0, the solutions are

e26b5U Q

6Au1

sinh 6Au1tU , e3a5e3a013a1tusinh 6Au1tu

e3g5e3g013g1tusinh 6Au1tu ~48!

and the constraint givesa1
21a1g153u1 . This case should

be the dual of the caseQ50 considered before. Finally
whenu1,0, the solutions are

e26b5U Q

6Auu1u
sin 6Auu1utU ,

e3a5e3a013a1tusin 6Auu1utu

e3g5e3g013g1tusin 6Auu1utu. ~49!

The constraint now givesa1
21a1g1523u1 . Because the

solutions are given in terms of trigonometric functions, th
are without an analogue in theQ50 case discussed abov
Hence, this sub-family has a larger phase space.
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What can we do with the equations~37! when both
charges are nonzero? Consider the equations forä andb̈. If
we look at their linear combinations, we can see t
ä12b̈50. This gives us one integral of motion
a12b5c(t2t0). Herec andt0 are integration constants
We can chooset050, by a time translation. This allows u
to rewrite the equations~40! in terms of only two variables
a andg. We find

15c229ȧ216cȧ112cġ5P2e6a2Q2e6ct26a

ä52
P2

3
e6a2

Q2

3
e6ct26a, g̈5

P2

6
e6a2

Q2

3
e6ct26a.

~50!

These equations are not easily integrable. For example,
sider c50. ~We can choose this sincec is arbitrary.! Now,
all the reference tog in the constraint disappears. It becom

9ȧ25Q2e26a2P2e6a ~51!

and we can verify that this is just the first integral of theä
equation. This equation separates variables, so we can
the solutions as

E da

AQ2e26a2P2e6a
56

t

9
. ~52!

~Note that we can still shift the time to get rid of anoth
integration constant, since whenc50 our previous shift was
not necessary.! The integral can be simplified usin
z5AP/Q exp(3a), and we can rewrite it as

E dz

A12z4
56

APQt

3
. ~53!

This integral belongs to a type of binomial differentia
which cannot be integrated in terms of elementary functio
as shown over a hundred years ago by Chebyshev.
analysis becomes even more complicated when we cons
cÞ0. In order to obtain information about these cases,
have to resort to numerical methods.

It should be clear that the initial sizes of the three su
spaces in~19! are not independent parameters on their ow
Rather, they combine with the chargesP and Q and the
eleven-dimensional Planck mass~which enters by defining
the time scale of the evolution! to give the relevant param
eters for numerical integration. Hence we can simply set
of them to one at the beginning and vary the two charg
Here it is useful to begin by first classifying cosmologic
solutions according to the relative signs of time derivativ
of the three scale factors in~19!. According to this classifi-
cation there area priori eight possibilities~since each initial
‘‘scale velocity’’ can be either positive or negative!. How-
ever, by time reversal we can correlate the subclasses,
arrive at the conclusion that we only need to consider f
types of initial conditions, which we denote by ordered tr
lets @sgn(ȧ0),sgn(ḃ0),sgn(Ṙ11 0): ~1,1,1!, ~1,1,2!, ~1,
2,1! and ~2,1,1!. The solutions however turn out to b
connected further by dynamics, as can be seen in the figu
t
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The cases~1,2,1! and ~1,1,1! evolve into cases~2,1,
1!, in a way effectively similar to the generic idea of branc
changing~which in this case does not correspond to the e
since all the solutions where ‘‘branch-changing’’ occurs po
sess singularities in the future!#. This however does not mea
that the generic behavior of a cosmology with two charg
can be completely reduced down to only two cases. Gi
the signs of initial values of ‘‘scale velocities,’’ we can fin
different types of evolution depending on the ratios of t
derivatives. We present several typical cases where we s
the scale factors of the 3-space~a!, Calabi-Yau 6-fold~b! and
the circleS1 ~c!. In Fig. 1, we show a~1,1,2! case where
the Calabi-Yau space always expands while the cir
shrinks, corresponding to the flow of the coupling from t
strong to weak regime, in contrast to the conventional p
big-bang solutions. The 3-space begins with a zero rad
and expands to its maximum size, after which it recollaps

FIG. 1. The scale factors of the 3-space~a!, Calabi-Yau 6-fold
~b! and the circleS1 ~c!. The Calabi-Yau space always expan
while the circle shrinks, corresponding to the flow of the coupli
from the strong to weak regime, in contrast to the conventio
pre-big-bang solutions. The 3-space begins with a zero radius
expands to its maximum size, after which it recollapses.
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characteristic of a positively curved FRW space-time, thou
here we have taken3k50. In the example of Fig. 2, we look
at a~1,2,1! case where the effect of the Calabi-Yau on t
3-space is similar to spatial curvature: the 3-space be
again with zero radius, and expands toward a pole-like in
tion while the Calabi-Yau 6-fold shrinks to zero size. T
coupling always flows from weak to strong. The situation
Figure 3 can describe several cases~depending where we
choose the initial time!—for example,~1,2,1!, but also~1,
1,1! and~2,1,1!. While the evolution in this case initially
looks like that in Fig. 2, eventually the flows of the intern
subspaces are interchanged and the dynamics becomes
lar to Fig. 1, with a future 3-space big crunch. In Fig. 4, w
show a solution similar to that in Fig. 5, but with a mo
complex flow of the coupling scale. In Fig. 5 we find a
example which in some respect is the most similar to
original pre-big-bang solutions~6!, since it does not have

FIG. 2. In this example the effect of the Calabi-Yau on t
3-space is similar to spatial curvature: the 3-space begins again
zero radius, and expands toward a pole-like inflation while
Calabi-Yau 6-fold shrinks to zero size. The coupling always flo
from weak to strong.
h

ns
-

imi-

e

past singularity. Here the solution for the 3-space starts
very small and grows while the Calabi-Yau scale and
coupling scale start large and decrease. However, at s
moment the flows of the scale factorsa andb reverse, and
the 3-space shrinks to zero size while the Calabi-Yau sp
pole inflates. The coupling always flows from strong
weak.

Aside from disclosing a number of solutions, our nume
cal investigation suggests that the solutions in Eq.~6! when
viewed as cosmological backgrounds of type IIA stri
theory and M theory are really rather special in that th
have infinitely old inflating past branches. Most charged
lutions appear to have spatial sections which evolve out o
past spatial singularity, much like thek51 solutions de-
scribed in Eq.~9!. This is clearly the effect of the 4-form
charges, and therefore it seems that the efficiency of the
big-bang scenario to produce inflation is very limited fro
the point of view of type IIA string theory, because of th

ith
e
s

FIG. 3. While the evolution in this case initially looks like tha
in Fig. 4, eventually the flows of the internal subspaces are in
changed and the dynamics becomes similar to that in Fig. 1, wi
future 3-space big crunch.
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fine tuning problems discussed in@21#. In these cases, man
of the solutions either recollapse too soon or emerge ou
an initial singularity.~While there may be some doubt as
what happens in four dimensions after dimensional red
tion, note that the doubly singular such as those presente
Figs. 1, 3, and 4 clearly will remain doubly singular aft
reduction, hence providing an example of our argum
here.!

V. CONCLUSION

In this article, we have considered several aspects of
application of M theory in cosmology. Our main aim h
been to cast the known string cosmological backgrounds
well as some of their more straightforward generalizatio
as 11-dimensional metric-4-form configurations. This po
of view is useful in order to study the large coupling limits
string cosmologies, which is ill-defined in string perturbati
theory, but can be completely understood in terms of

FIG. 4. Similar to example of Fig. 3, but with a more compl
flow of the coupling scale.
of

c-
in

t

e

as
,
t

e

decompactification of the 11th dimension. Further, this al
lows for an egalitarian description of the string moduli field
which arise due to compactification, and can be related
U-duality maps. In the process of this 11-dimensional re
terpretation of solutions, we have shown that in some sim
cases the cosmological curvature singularities can be mo
ated. In particular, some of the known scalar-field domina
cosmological solutions are equivalent to a flat 1
dimensional space-time, which however has a patholog
topology that could involve closed time-like curves in i
maximal extension. The acausal domain is separated f
the physical sector of the space-time by a horizon, wh
upon dimensional reduction produces the coupling and c
vature singularities.

Before closing, we would like to note some aspects

FIG. 5. This case does not have a past singularity. Instead,
solution for the 3-space starts out very small and grows while
Calabi-Yau scale and the coupling scale start large and decre
However, at some moment the flows of the scale factorsa and b
reverse, and the 3-space shrinks to zero size while the Calabi-
space pole inflates. The coupling always flows from strong to w
in this case.



s
sc

th
tio
io
th
u-
d

a

te
o

e,
s

u
no
a

-
ce
-
r
d

in
ut
tio
rn

s-
r

in

o
n

r-
’’
in
ne
r-

ior
ry

-
s-
al
the
em
ior
ion
ive
uld
to
sid-

-
i-
n-
e
ely
hed
M
ite

ld
d in
vel
E-

and
e-
cal

7352 57NEMANJA KALOPER, IAN I. KOGAN, AND KEITH A. OLIVE
garding the initial singularity in the context of M theory. A
we have discussed earlier, one goal of the pre-big-bang
nario is the smooth transition from a~1!-branch solution
~which evolves towards singularities! to a ~2!-branch solu-
tion ~which evolves away from singularities!. In @18#, a so-
lution to the gravitational equations of motion based on
Damour-Polyakov ansatz showed such a smooth transi
By an appropriate choice of the corrected coupling funct
B(f), a non-singular solution has been found. However,
solution was not without its peculiarities. In the two sol
tions presented in@18#, the evolution of the dilaton cause
the function B(f) to pass through zero@in fact this is a
general requirement of any such solution as it must utilize
‘‘egg’’ with B,0 ~see@18# for details!#, essentially indicat-
ing a signature change in 10 dimensions. However, the
dimensional picture may be misleading, because in the c
text of M mtheory, we should only look at the functionB(f)
as being related to the radius of the 11th dimension. Ther
appears that we could view the evolution as a proces
decompactification, where the eleventh dimension blows
and then shrinks again. From this point of view, we need
see any change of signature at all. In this way, the comp
radius would ‘‘bounce’’ at infinity. At this moment, in sup
port of this we can only offer an analogy with the boun
picture in Liouville field theory of non-critical strings pro
posed by one of us some time ago@50#, which was used late
in the study of a non-equilibrium temporal flow and a close
time-like path formalism for non-critical strings by@51#. Be-
cause the Liouville field is ultimately connected with time
non-critical string theory, it is very tempting to think abo
possible connections between these two pictures of evolu
in M theory and non-critical string theory. We hope to retu
to this issue in the future.

Finally, we should mention the possibility of relating co
mological evolution in M theory we have discussed he
with renormalization group flows. As we have seen, dur
cosmological expansion not only is the spatial scalea(t)
evolving with time, but so is the coupling constantl(t).
This means that one can consider the evolution of the c
pling constantl not as a function of time, but as a functio
of the scale factor a, l5l(a), leading to
-

l.
.
.

ys
e-

e
n.
n
e

n

n-
n-

it
of
p
t
ct

-

n

e
g

u-

dl(a)/d ln a5b(l). The b function b~l! can be easily cal-
culated for any particular cosmological solution. It is inte
esting to ask whether or not this ‘‘renormalization group
~RG! flow could correspond to an actual quantum RG flow
a ten-dimensional theory or even in a four-dimensional o
after compactification. For example, it would be very inte
esting to find an example featuring logarithmic behav
rather than the above scaling, which could give inflationa
expansion,a(t);exp(ct), in the lower-dimensional mani
fold. Unfortunately, we could not find any M-theoretic co
mological solution with exponential inflation in the physic
three-dimensional space and power-law evolution in
eleventh dimension. However, this posibillity does not se
excluded at this point. Indeed, solutions with such behav
would be of great interest, as they could be used for inflat
simultaneous with running coupling. Hence, an affirmat
answer to the question of existence of such solutions wo
be an extremely interesting result. A conceptual difficulty
surpass here is that the cosmological evolution under con
eration is purelyclassicalby definition—no quantization of
M theory was performed in our analysis~simply because it
does not exist yet!—while the ordinary RG flow is an en
tirely quantumphenomenon. In a way, the situation is rem
niscent of the anomaly treatment in Wess-Zumino-Witte
Novikov s models, where in the fermionic picture, th
anomaly is quantum while in the bosonic is appears pur
classical. Perhaps a similar connection can be establis
here. Indeed, the fact that in the classical formulation of
theory one may have a flow of coupling constant is qu
interesting and certainly deserves further investigation.
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