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We consider solutions to the cosmological equations of motion in 11 dimensions with and without 4-form
charges. We show explicitly the correspondence between some of these solutions and known solutions in 10
dimensional string gravity. New solutions involving combinations of 4-form charges are explored.
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I. INTRODUCTION rections do indeed have an effect on the equations of motion
at early times and lead to new cosmological solutions. They
There is little doubt or discussion that classicalare not however very conducive to a de Sitter, or a more
Friedmann-Robertson-WalkefFRW) cosmology provides general inflationary phase, at least not without resorting to
an excellent description of the evolving Universe at latesupersymmetry breaking potentials for trapping the dilaton
times (say nucleosynthesis and beyondindeed, there is [3]. As an alternative, much effort has been invested in try-
little reason to doubt the validity of FRW cosmology back toing to resolve the standard cosmological problems with a
very early times corresponding to the grand unified theorypre-big-bang phasgl1], which appears in the general space
(GUT) epoch. At some point however, it is reasonable toof solutions to the string dilaton-gravity system. It still re-
suppose that Einstein gravity is modified, and at present, thmains to be seen, whether or not such models can success-
only consistent modification available is due to string theory fully solve all of the problems normally associated with in-
A strong argument in favor of such a modification is that it isflation and produce density perturbations consistent with the
not possible to bring Einstein’s general relativity in full ac- Cosmic Background ExplordlCOBE) measurements of the
cord with quantum mechanics, and hence, accepting the pomicrowave background anisotropy.
tulates of quantum mechanics, altering the theory of gravity Another interest of string gravity is the problem of an
seems inevitable. In the regime of large curvatures these ainitial (or final) cosmological singularity. The attempts to
terations should be expected to play a very significant roleaddress it included the use of winding modes wrapped
Since the singularity theorems of Hawking and Penidde around spatial directior{®], higher-derivative—higher-genus
state that such large curvature regions are a generic state ioiduced correctiong13], decompactification to higher di-
the early Universe, it then seems plausible to assume that mmensions with simultaneous insertion of D-brane type matter
this epoch the effects of quantum gravity strongly influencesources[23], instanton-like constructiong24], and models
the evolution of the Universe. There have been numerouwith generalized scalar-tensor coupling@5—33. Though
efforts attempting to explore the effects of string theory inwe know that the simple types of dilaton-axion modifications
cosmology{2—-21]. One could characterize the main aims of to Einstein gravity considered up to now are not capable of
many of these studies as either an attempt to utilize the ademoving singularitie§18,19,33, progress has been made
ditional degrees of freedom in the massless sector to induaencerning the form of the corrections need@®d]. Any
inflation [2,3,6,7,8,10,1]L or developing arguments on the such solution(at least from the 10D point of viemmust rely
type of modifications to Einstein gravity which are necessaryon non-perturbative features of the gravitational action or

to avoid a cosmological singularif®,13,14,16,18,19,20 come from some more complete theory of gravity at the
Much of the emphasis in previous work on string cosmol-string scale.
ogy has been on the modifications to Einstein graj/&g]. Out of the morass of different weakly, and strongly,

The modifications were accommodated either by enlargingoupled string theories, M theory is emerging as the single
the zero mass sector with the inclusion of the dilaton andunderlying theory capable of unifying all particle interactions
axion/moduli fields or by considering higher curvature termg34,35. At this time, our understanding of M theory is still
described by the low energy string action. Dilaton/axion cor-incomplete. While its various low energy limits, and the
links between them, are knowgwhich are the consistent
string theories and the 11D supergravity, related by the web
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"Email address: i.kogan1@physics.oxford.ac.uk sought for. A candidate that has been proposed recently is
*Email address: olive@mnhep.hep.umn.edu the M(atrix) theory, formulated as a large N-limit supersym-

0556-2821/98/5(1.2)/734014)/$15.00 57 7340 © 1998 The American Physical Society



57 COSMOLOGICAL SOLUTIONS IN M AND STRING THEORY 7341

metric matrix quantum mechani¢86]. An interesting shift moduli fields. An immediate consequence of this approach is
of the point of view that has emerged out of these developthat by means ofJ duality one can flow between different
ments is that the dilaton scalar field, present in all knownM-theory configuration, as exemplified [82]. The possible
string theories, has been demoted to merely another modul@lvantages of such modular democracyemain to be in-
field in the 11D supergravity. This could have important con-vestigated further.

sequences for cosmological applications. The troubles with Below we will survey several classes of cosmological so-
implementing conventional inflationary scenarios in stringlutions of the 11D theory which can be reduced to the solu-
theory arise because of the dilaton and its couplings to th#ons of string dilaton gravity. We will give the explicit re-
other modes in the string spectrum. In the arena of 110atonship of the string and M-theory solutions where
supergravity, such couplings are absent. Some of the olfPplicable. We will alsc_) study a case when the 4-f.orm field
stacles for inflation in dilaton-plagued string theories coulgStrength carries two different charges, a magnetic and an
perhaps be resolved by way of M theory. Let us be mor@leptnc one, Wh|c_:h do not corresp_ond_ to any of the combi-
specific: the extreme weak and strong coupling limits innations of form—flelq charges .studled in rgduced mpdels_so
string theory formulations correspond to the regimes wherdd (but can be given a string theory interpretation via
the size of the eleventh dimension becomes very small opcherk-Schwarz dimensional reductioMost of the solu-
very large. These limits sit in rather special portions of thetions still feature the unattractive properties of their lower-

phase space of the full theory, and perhaps should be Viewégmension.al stringy_relatives, in that they are singular_ apd
as unnatural. Indeed, there seems to be no reason why af'gV€ running moduli, and hence cannot be used for building
given very large energy scale the dynamics should treat ang" inflationary scenario by themselves. However, we will
direction in the Universe any differently than the others. On°NOW & special example where a flat space in 11 dimensions,
the other hand, the present knowledge of the low-energy limVi€wed by an observer accelerated along one of the circles,
its of M theory does not seem to prefer one construction ovefeduces to a singular dilatonic string cosmology. This ex-
the other. Since the limits where the moduli attain their ex-2MPle is not really inflation, but it moderates the singularity
tremes do exist within reach of solutions in the phase spac&y dimensional uplift.

it then seems logical to see if they can be dynamically un-

derstood from the M-theory point of view. For example, we  Il. STRING THEORY ACTIONS AND EQUATIONS

can imagine a scenario in string theory where in the limit OF MOTIONS

when the moduli converge towards their extrema, the effec- ; :
tive stringy description gmust be lifted to 11 dimensions Before we begin our study of the general M-theory in-

A - 'spired, 11D supergravity action, it will be useful to review
where some intrinsically M-theoretiand as yet unspecmazd_ some of the salient features of the effective field theory for-

) . . RS . D'ulation of string gravity as it pertains to cosmological so-
to find some inflationary scenario in this limit. This scenario) oo Neglecting for now the contribution to dynamics

could work in string theories essentially because of dualityfrom the 6D Calabi-Yau space, we can begin with the lowest
albeit the mechanism might take a different guise tHere. order 4D effective action of ’the Neveu-Schwarz—Neveu-

comprehensively the questions we pose above. However, vsvSeChwarZ(NS_NS) sector of any string constructiqa2}

can at least consider the known string cosmologies from the 1
advantage of the fldimension. We will therefore concen- S=f d*x\ge 2% R+4(V¢)2— 1—2HW}\H”””+2A .
trate here on the oxidation of 10D type IIA superstring )
theory cosmologies to 11D supergravity theory with the geo-

metric reinterpretation of the string coupling. There haverne 3-formH=dB is the field strength of the Kalb-Ramond
been se\_/eral interesting papers direc_tly gxploring cosmologi>_torm B, The stringy cosmological constantcan arise
cal solutions based on the M-theory-inspired acfi2® and  fom central charge deficit in conformal field theory con-
making use of string dualitig80]. Furthermore, many of the  gyr;ctions or by the reduction of higher rank form fields, as
earlier investigations of cosmological models with higher-,e \will see later. In four dimensions, this 3-form is dynami-

rank form-field charges in superstring modg&l] can be  c4)y dual to a pseudoscalar axion field. The correspondence
directly incorporated into the framework of the 11D super-jg given by

gravity by dimensionally oxidizing the solutions. In this way,
one obtains a description of the known string cosmologies, HMM:‘/QQM\@EW}\‘JMX 2)
which treats the dilaton field on equal footing with the other
resulting in the replacement of the 3-form kinetic term
coupled to the inverse string couplimg 2¢ by the pseudo-

U spirit, this would be similar to the proposetiut to date un- scalar kinetic _term coupled to the str_lng cougllng itself. By
known) scenario for solving the cosmological constant problem inMeans of a simple conformal rescaling,,—e*’g,,, , the
string theory. The idea is to find a duality relationship between g&ction can be put into the Einstein frame, where the Planck
string vacuum with unbroken supersymmetries and a vacuum witinass is constarifor simplicity, we set Z?=1):
all supersymmetries broken. Then duality would guarantee that the
cosmological constant, which is zero in the vacuum with unbroken
SUSY’s must also vanish in the vacuum without manifest SUSY’s.
Perhaps it is possible to hide inflation in string theory in this sense
too. With the FRW spatially flat ansatz for the metric,

szf d*XVA[R—2(V )2~ 2e**(V x)2+2Ae*?}. (3)
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ds?’=—n?(t)dt?+a?(t)dx? (4 generating technique described [i87]. Moreover, we can
obtain solutions with the axion field if we apply an SLR2,
wheren is a gauge parametéapse functioi, we can easily duality rotation to(6), as described ifi38,17]. These solu-
derive the equations of motion from the acti) (see e.g. tions can be written in terms of the functiorss and
[19]). They are exp(—2¢) describing the axion-less case. Following Cope-
. ) land et al. [17], they are
h=2h¢—3h2+p
. dS=(s?+r%e *?)(—dt?+a?(t)d%®)
pt6hp=0
— — qstpre *®
242 +3h2=6h¢—p/2+A=0 (5) e*'=s’e*tr2e x=%;;%;:m- )

where h=4&/a is the string-frame Hubble parameter, and

p=e*?y? is the effective energy density of the pseudo-scalafrpe 3form axion field isH=Q,d3%, in form notation,

axion field, and in the gauge=1. , where the constant charge is determined by the integration
These equations of motion are straightforward to solvecqnsiants, The solutions can be readily generalized to include

Many authors have already considered various aspects of theygitional scalar moduli, which arise from the reduction of

solutions, both in the Einstein frame and in the string frameyha 10p string theories. Note that for these solutions each

The simplest case is certainly the pure metric-dilaton solup anch now contains only one congruence of the system tra-
tion with vanishing cosmological constaf#,5,7,8,11,1%5  jectories. This is because as the string frame scale factor

which is given by two classes of solutions separated by thg,hroaches zero, the dominant source in the equations of
curvature singularity, used ifiL1] to construct the pre-big-  mqtion is the axion, since its contribution to the total stress

bang scenario: energy goes asaf(t). This term then forces the Universe to
1+v3 bounce away from zero volume and start expanding again.
Hence the qualitative picture of evolution in both branches is
that the Universe begins in a stage of contraction, reaches its
minimal volume and starts expanding again to infinity. One
(t<0) should note however, that such an axion-driven bounce does
not allow one to evade the cosmological singularity. Perhaps
the easiest way to see this is to note that the bounce occurs at
some small but finite value of the scale factor and some large
but still finite value of the coupling. When it occurs, the
(t>0). (6)  bounce changes only the sign of the Hubble parameter and

ori"Ot the sign of thep and therefore the coupling continues to

grow. The curvature singularities reside in the regime of very
large coupling which therefore can still be attained in the
axionic cosmologies. Since the Universe is now expanding,

wherep, g, r ands are real numbers satisfyings—qr=1.

F2MV3
dx?, e 2?=g 2% —

t
ds’ =—dt®+aj
t to

0

+2W3

t
ds? =—dt?>+aj

t 1¥v3
to )

dx?, e 2¢=e 2% —
to

In the string frame, both branches consist of two classes
solutions: expanding and contracting. The solutionst o0

are by now widely referred to as the-) branch, and those
for t>0 as the(—) branch. The proper definition of branche_s the axion’s contribution tg is red-shifted away, and even-

is derived from solving the quadratic constraint equat|onl Intually the Universe becomes dilaton dominated and therefore

(5) for ¢. The sign of each branch is determined by the signyyst inevitably run away towards the singularity. In other

of the square root which arises in the solution, where thgysrds, the bounce occurs at finite but negativand still
discriminant is not zero. If the discriminant vanishes any-q\olves towards the singularity &t 0.

where on the phase space trajectory, the branches connectpingly, we can obtain solutions with spatial curvature,

there. The solutions are isotroplc duals of each other. A gither by directly solving differential equations for models
goal of_the pre-_blg-bang scenario is the _connectlon of th&yith spatially curved sections8,15,21 or by using a Wick
expanding solutions in the two branches, in such a way thgtation and a dimensional reduction of the 5D Schwarzs-
the (+) branch chronologically precedes the) branch and  chjlg plack hole solution$28]. The equations of motion in-
hence the singularity would be removed. In spite of some&yding spatial curvaturébut for simplicity excluding the

recent result$20], it still remains to be seen if a coherent gyingy cosmological term and the axion contribuiame
and fully consistent description of branch-changing can be

found. It is interesting to note that in the E frame, both the ) k ) _ k

expanding and contracting metrics degenerate to a single h=2h¢—3h?-2—, 2¢?+3h?-6h¢+3—-=0

Einstein frame metric, and that the only difference between a a

the two subclasses of solutions is the sign of the dilaton field.

Since in the Einstein frame the switch of the sign of the

dilaton corresponds to the classical form of tBeduality

map, these solutions are alSaduals of each other. A= (V3 (9 + 99)) (S (| 94+ 94| ))( — d 92+ d Q)
Further generalizations of these solutions can be easily

obtained with the help of generating techniques. For ex-

ample, if we add the cosmological constant, we can find new ¢:(

solutions starting from(6) and applying a solution-

®

and the generic solutions are give$28,2]

C(I+9y) |\

S+ 90)) ©
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where d(), is the metric on the maximally symmetric 3D which most closely resembles the system we will study be-
spaces with constant curvatike andC andS are the trigo-  low, is that of[43] based on 10D supergravity with the ac-
nometric or hyperbolic cosine and sine, depending ortion Eq.(3). If we assumey,,,, to be maximally symmetric as
whetherk=1 ork= —1, respectively. The parameteisand  well, and work in the Einstein frame, where the effective
¥, are integration constants. We should mention here thatilaton field has the canonical kinetic term, the correct cos-
there also exist special solutions fke=1 cases, when the mological equations of motion with the dilaton as the only
string frame scale factor depends linearly on the comovingnatter field can be simply written as
time [5]. Note here that in contrast to the spatially flat mod-
els, the curved ones do not have an infinite amount of time a .
available for pole expansion. Rather, the clogedl solu- 3_+do=—2¢7 1D
- , a b

tions emerge out of the spatial curvature-controlled singular-
ity [(+) branch or end up in it (—) brancH, while the open i .2 .

. . : a a° 2k ab
k= —1 solutions begin in a contracting phase, and only re- —+2—+—=+d=+=-=0 (12
bound later, pole-expanding for a finite amount of time be- a a a ab
fore hitting the curvature singularity. This has been used re-

cently to argue that pre-big-bang viewed as inflation suffers b b? (d—1)ky a
from a fine tuning probleni21]. p T+ ab 0 (13
As we have seen above, the curvature singularity which
separates thé+) and (—) branches shows that near it the . :
. N . . ) . a bl .
cosmological evolution is dominated by the dilaton field é+|3=+d=|p=0. (14)
[33], where the string coupling =exp(®) diverges, and all a b

other degrees of freedom become irrelevant. Hence, all the . . . .

solutions in this regime are extremely well approximated by More detailed inspection of these equations shows that
the pure metric-dilaton configuration. Recently attempts hav egardless of the frame, the SO_IUt'O.nS for the scal_e_ factors
been made to dampen this singularity with the higher derivaP&have as powers of the comoving tif1,44. In addition,
tive and/or higher genus contributions to the equations O§hey are all singular, and. hence can .St'" be groupgd Into
motion[13,20,39,40 However, it has also been noticgts] different branches, much like when the internal space is con-
that there exist solutions in the model proposed by Damouptant Thus_:, th_e sys_terﬁil)—(l4)_ does not ad_m|t conven-
and Polyako\14] where the effective coupling function also fuonal de Sitter |nflat|or_1ary sol_utlon§The de Sitter solution
diverges, but the strong coupling limit string metric remainsi” [43] stems from a simple sign mistake (1) ]

completely smooth. In this context, the Damour-Polyakov

universality ansatz amounts to replacing the faetot® by a ll. TRANS-DIMENSIONAL COSMOLOGY
functionB(¢) =e 2%+ cy+c,e2?+--- in Eq.(1). An action

of this form was considered if18] in an attempt to achieve
a grgceful exit fr'om a pre.-blg-bang phase'ln the c!llaton- 0D string theory to 11D M theory in which we will interpret
gravity cosmological evolution. Such a solution was indee

. he string couplinge™2¢ as the scale factor of the #1di-
found, however, with the unpleasant aspect that though therr%ension%% 35. Cg)ﬁr starting point therefore, will be the
were no space-time singularities in the solution, there was 41D supergr’avity action '
point in the evolution in which the functioB(¢) changes

sign corresponding to a signature change in the metric.

As we have indicated above, our main goal in this paper is
to examine the cosmological implications of the oxidation of

From another perspective, extensions of the standard cos- S= f d“x\/§
mological solutions to higher dimensions have also been
considered41,47. There is a wide variety of motivations 1
for such considerations which we will not attempt to review X { R— EFil —
here. Most of then{in a cosmological settingare based on
an ansatz for the metric of the form Y

1 eM1 - H3V1 4N 4
2= — dt?+a2(t)gy; dX dxi +b2(t) g dXTdX"  (10) (4h)2(31? Jg

whereg;; is assumed to be a maximally symmetric 3-space <A = (15)
and g,,, some other metric describing tht compactifed R T

dimensions. Considerable effort was expended to investigate

the possibilities that such a system could account for inflawhere R is the scalar curvature of the 11D metric,
tion, whereby the FRW portion of the metric expands expo-and A . u,and F, . =49, A, are the 3-
nentially (or fast enoughat the expense of the remainidg  form potential and its 4-form field strength. The last
dimensions. Also, if we assume that the original theoryiarm is the Chern-Simons term foA. Our con-
which we want to study10) is devoid of the dilaton field, we . o 7 _
could retrieve the dilaton in lower dimensions. Upon Com_vent|onsA_ ?;gl Ag“”_dlgggul’lm)u'd MSRM”‘(‘;_F%I;%
pactification, it can be seen that the moduli from higher di- =" =(U3DA,, ., dx0. Tdx"s - an o
mensions can play the role of the dilaton, which was hoped™ (Y4)F ., ., dx#10. .. Odx*4. We choose units such
to be identified with the inflaton. An approach of this kind, that in the E frame we have 4 =1.
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Before we investigate the equations of motion cominggauge fields. Furthermore, while we in principle can obtain
from the action(15), let us first reduce to 10D to further an UQ1) field from the metric, which describes DO branes in
clarify our notation which will follow closely that of Witten the resulting type IIA theory, at this time we wish to consider
[34]. Assuming that the 1 direction is compact, we can only gauge-neutral cosmological solutions. This is because
carry out Kaluza-Klein reduction dfL5) to find our focus here is on making the M-theory reinterpretation of

the known string cosmological solutions. Indeed, such set-

1 ting of the gauge field to zero is consistent with the equations

S:f dlo’(\/91_1C>R11| Rio~ RilZFiK of motion, which are homogeneous in the cross terms. The
ansatz for the metric is then

1

- 4—8%1 T T RiPHZ ds?= —n?(t)dt?+a?(t)dx2+b?(t) GG Y (y)dyMdyN
2 2
1 elikav - vah g +Ru(tde (19)
- 384 Jg BuimoFoy o vgFrg oy where we again retain the lapse functiof(t) since we will

work in the action. The functiona(t), b(t) andR,(t) are
(16)  the radii of the three subspaced=°, MSY andSt of (18),
respectively, from the point of view of the 11D observer.
fter the reduction to 10DR4; is related to the string cou-
pling constantG1(y) in (19 is the metric on the Calabi-

where FKKM=2&[MVi]1 is the field strength of the Kaluza-
Klein gauge field coming from the metric and the reduce

2-forrE VIS B#V_AﬂlFll' and its 3-f0rr2 f'eldd strzngthf 'S Yau 3-fold, which depends only on the Calabi-Yau coordi-
H,.n=V B, +cyclic permutations. The reduced 4-form natesyM. We will not need the explicit dependence ®f"”
field strengthF acquires Chern-Simons type couplings to the o y in this work. It will be sufficient to keep in mind that
reduced 2- and 1-forms:F,,\,=F, .t (AH.\, this metric is Ricci-flat, i.e. thak,,y= 0. Still, this subspace
+cyclic permutations).  After a conformal rescaling influences the overall dynamics because it is nontrivially
J10= Rl‘llgs, and defining the dilaton by expf23)="TR1, warped in 11D, via the scale factb(t).

we find We will also ignore the possibility that the Calabi-Yau

factor in(18) can have nontrivial harmonic two-forms which

1 can support additional reduced(1) gauge fields. Herd=
S:J leX@[ e ?| Ry+4(V¢)*— 1_2H2) will be F(J:Fc))mpletely supported by th(g:J re?nainder of the base
manifold, i.e. theR,x M5~ X S' subspace. The Bianchi
1 1, identity for F is dF=0, which follows from the definition
_Eg':ul--.u,,_ZFKK F=dA, and in terms of the components, becomes

d1,F umey=0. By varying the action(15) with respect to

1 etameri-- Va1 Mg A,\, we find the propagation equation fér. The gauge
~ 384 7 Buyu,Foy . u Py g dynamics is therefore determined by
1 1 ev)\(f,ul S MgPT - - P
7 V Frmh= 2 Fouy o uFor ...
. . : . . . 32(3") Jg My---ba Pr---Pa
This is precisely the effective action which describes the low

energy limit of the IIA superstring. We can recognize the
first three terms as the NS-NS sector of the theory, and the
remaining ones as the Ramond-RamdRR) sector. It is

Or’[pF#V)\o.]ZO. (20)

If we restrict our attention to those configurations whEre

easy to rewrite this action in the ten-dimensional Einsteiqives only in theR. X MKE=0% St subspace, and require that
ing = e?2 - LS ; '
frame, by a further conformal rescalig=e®"ge . The ac the three-spacek/lg‘o is isotropic, we see tha must be

tion (17) can be reduced further to make contact with typeproportional to an exterior product of the volume form on

[IB and heterotic theories. M0 and f The two i v ind dent .
Since we want to relate the M-theory cosmological solu-7" '3 and a one-form. The two linearly independent possi-

tions to the stringy cosmologies studied so far, we will as-Pilities for this one-form arele anddt. Hence we are left
sume that the base manifold is split into Wlth Foijk andF . It is quite clear that one cannot con-
sider a case of non-zey,, because of the symmetry of
Mp=RX METOX St MSY (18 the three-spaca15=°. There are no invariant antisymmetric
tensors of rank Zas well as rank Jlin M§=° and because of
whereR, X M5~° is the spatially flat 4D FRW Univers&' this any non-zero value dfo,, will destroy the symmetry
is a circle corresponding to the ¥ idimension, and'\/lgY is  of the three-dimensional space. If we take into account the
some Calabi-Yau manifold, whose specifics are not necesD Calabi-Yau indices, we can write down objects like
sary for our purposes here. Here we will ignore all gravipho-Fo,4g WhereA,B are in the Calabi-Yau subspace, which has
tons which could arise from a generic dimensional reductiorharmonic two-forms and hence admit such terms. However,
of the metric. First, such degrees of freedom cannot arisbom the point of view of 4 dimensions, terms of this type
from mixing the Calabi-Yau sector with the space-time,behave just like scalar fields, after we reduce @nTheir
since the topology of Calabi-Yau spaces does not suppodontributions are in principle consistent with the presence of
harmonic 1-forms, that would be needed to carry the reduced maximally symmetric subspace in four dimensions, and
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there is noa priori reason to rule out such terms. Neverthe-because the Chern-Simons term(ib) does not depend on
less, here we will for simplicity set these terms equal to zerothe metric, and hence does not contribute to the stress-energy
With this, we see that in form notation, we can write tensor of F. However, it is much simpler to work in the

down the 4-form as follows: action, since the background9), (26) depends nontrivially
only on timet. We therefore dimensionally reduce the 11D
F=FordtUQs+F 100de003. (21)  action(15) to a 1D one, and then vary it with respect to the

independent degrees of freedanb andR,,, and the lapse

—d3¢g i _ 3 ; . .
Here 3=d"X is the comoving volume form of the three n. We can ignore the Chern-Simons term, since it does not

k:o . . . .
spaceMs . Since the Chern-Simons source in the first of ., \inte to either the equations of motion forfby virtue

Eq. (20) is proportional toFIF, it is always zero for the ot 51)] or the gravitational equations of motion, as we see
backgrounds we consider, and hence we will ignore it fromg. gy, (27). To proceed, we first need the Ricci scalaggf, .

now on[30]. _ _ The easiest way to find it is to use the tangent space repre-
Let us now solve the equations fBr ForFojj, Sinc€ We  gantation, which is given in terms of the 11-bein
assume that it depends only an the Bianchi identity is

vacuous, and so are the equatidhg-““=0. The remain- ds2= e, e0=ndt, e =a(t)dx¥,
ing Euler-Lagrange equation yields

1 d
a’b®R,, dt

bRy,
a3

eM=b(t)EM, e‘P=R11dg0 (28)
Oijk>

mik—i uijky = _
V,uF - \/—‘9#( ‘/§F )= M . . .
g and E™ are the internal 6-bein of the Calabi-Yau 3-fold
_o (22) MY, such thaG\ = 6KLI.EK.M E-y. The capital latin indi-
ces run from 1 to 6 andy_is just the 6X6 unit matrix. This
and so, “bastard” split of the 11-bein is similar to what is used in
the studies of the more complicated non-diagonal Bianchi
ad models[49]. The next step is to determine the spin connec-
Foijk= PWGOiJk (23 tion 1-formsw,y,. Since we assume that the backgro(ihe)

1 is torsion-less, we can usie?= — w?,e® to find the spin
where P is a constant of integration ane is the 4D  connection. This gives*,=(a’/na)e*, w"o=(b'/nb)e",
Levi-Civita symbol. We recognize this as the monopole an-w?,=(R1/nR)e® where the prime denotes derivatives
satz of Freund and Rub[45], and also Engleft46]. Similar ~ with respect to time. Defining the internal Calabi-Yau spin
cosmological backgrounds were consideredl4f]. We can  connection{y (details of which are not necessary for our
now look at the other modef ;. The Euler-Lagrange purposes we find thato™y=¢My. The set of connection
equations in(20) are trivial, since they contain only deriva- 1-forms with all indices lowered for convenience is simply
tives with respect ta andx*. However, the Bianchi identity

for this mode gives a’ b" |,
_ wko:ﬁey wMO:%e )
F(PijkdthQDDQg:O (24)
R
and hence OMN= {MN w(pO:anle(p' (29

Fe123=Q (25
The next step is to work out the curvature 2-forms, using
whereQ is another integration constant. In terms of the po-R_, = dw,,+ w,.Jw®,. We recall here that in the Calabi-
tential Ajj , we can write this mode a&=Q¢{)3. The lin-  yau sector, we will have the intrinsic curvature
ear dependence of the potential on the compact coordinatg, | = (1/2)Ry, unEMDEN. Using the curvature forms, we
means that this solution is the Scherk-Schwarz mod&,of can obtain the curvature components in the tangent basis.

which corresponds to a 4-brane wrapped around the gjicle The tangent space curvature componentd moemalized by
These generalized reductions were considered as means Rf, = (1/2)R,,.£°0e"]
breaking supersymmetfy7], and in contemporary develop-

ments have found the interpretation pfbranes wrapped 12

! !

l/a a
around longitudinal tor[48]. The combined solution there- Rkojo=— nlna + n2a2 Okjs
fore is

1 AW 12

F= b6R11a3dtDQ3+Qd<pDQ3. (26) RmoLo= — ﬁ(%) + 7p2 oML
The Einstein equations of motion which are obtained by 1/ Ry \’ Rif
the variation of the actiofiL5) with respect to the 11D metric Reop0=—| = -7 |

N\nNRy; nN“Ri;
9., are

1 1 vop ) Ri8'
Rp,v_ Eg,u,VRZ 1_F,u.)\(rpFV - 9_6g,LLVF)\O'pa) (27) R:pk(pj :m Kj
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R;b’ a'? whereug contains a finite renormalization of the mass scale
RemeLl =25 1 0mL  Rikim= =222 (6ji Skm™ Sjm1) M,; by the volume of the Calabi-Yau 3-fold¥s and the
N“R.b n<a : : )
period 27 of ¢. V is the comoving volume of the 3-space
o MEC,

In addition to the gravitational part of the action, the

RuMiL === 60
KMIL™ nZap “KI“ML gauge terms give

b12 2 24 .7:% .7:%
- _ F =— —+ = (34
RMNLK_bZ Runikt n2b2(5ML5NK OmkOnL)- (30) pne @b\ n2 T R2
. - . . . with
The contraction of indices is the interior product, and hence
a tensor operation, so it does not depend on the basis. Hence o o af o o
we can contract the indices of these components, using the Fi=P bIZRZ. F5=Q°%. (35
11

flat tangent space metrig,,,, to get the tangent space Ricci

_ d . .
tensor components},,= 7°Racpg. Contracting again, we  when we substitute— (1/48)F2 ,, . into the action along

get tgﬁ BJCCi scalar, which of course is basis independentiih the explicit form of the Ricci scalaf32), we find that
R=7""7""Rapcq- The tangent space Ricci tensor is after omitting a boundary term, and usihg S/(ugV), the
action becomes

. 31 a’ ’+ a’? 1(7211)’ R;Z
= -3 - — —| = 6 2|16
00 nlna %2 |n\nRy) | nZR%, I=f dt] Ryb 2, n’b R a3
n 2a3 1 2R11a3 2 11
1/b’ ) ’ N b/2
— _ — - 12 12 ! ! ! ! AN
X|6— — .
6—7+30 7 +6 AR +1 R +36—
1({a"\’ a2 Rja a'b’ (36)
Ri=|nlnal "3n%2 " nZra T O n7an| % . . . . .
1 To find the equations of motion for the remaining gravita-
L " L L tional degrees of freedom, we first vary this action with re-
R _1[ Ru Ri1 +3 Ria N R1ib spect ton,a,b,R,; and then insert the expressions &rin
¢ ninRy/  nPRZ, TnPRpa nPRyb (35)—i.e. we treat as a constant under variations. This
reproduces the correct equations of motion, as is easy to
P 2 ' . check. Choosing the gauge=1, and introducing the mini-
b R1qb a’'b o g ; "
Run=Run+|— —| +6 + +3 S . superspace ‘“particle coordinatest=In(a), 8=In(b) and
MN MN n\nb n2b2 nZR b n2 b MN . . . .
11 a v=In(Ry), we obtain the following equations of motion:

(31
6a’?+308'%2+6a’'y' +128"y'+36a’ B’
Recalling thatR,,y=0 for Calabi-Yau spaces, we see that

2 2
the equations of motion do not discern any intrinsic proper- _ P_6727712{3_ Q_e*Zy*Ga
ties of the Calabi-Yau spaces. Now, the Ricci scalar is 2 2
2 Ry a’ b"\’ R/Z a'2 " 12 - [ P2 —-2y—12p Q2 —-2y-6
— i+3_+6_ +2i+12— o'+ 3a +6a,8+ay=—?e Y —?e LA
n\nRy “na nb n’RY n’a’
2 2
blz b,'R’jll.l a“R’Z,ll a'b’ " 12 ! Pt P —2y—12 Q —2y—6
+ + + + : B'+6B'%+3a' B+ By = e P H+ e 20
A2 e t12 nbR, 6 naR; 36 22 6 6
(32) PZ QZ
,yrr+,y/2+3a/,yr+6ﬁ/,yr:_e—27—12/3__e—27—60z.
. . L . 6 3
It contains a term of second order in derivatives. We will 37)

eliminate it from the effective reduced Lagrangian by a par-

tial integration, and omission of the ensuing boundary termThese equations resemble the equations of motion of a me-

since we are only interested in the bulk equations of motiorthanical system evolving with frictiofthe terms bilinear in

here. The gravitational Lagrangian isC£=\gR first derivatives. The constraint equation can be thought of

=GcyNR11@2%0°R=\/GcyL. The action(15) then is as a generalized energy integral. To make the mechanical
analogy for (37) more precise, we will introduce a new
gauge below, which will remove the friction terms.

SZJ’ dllX\/gR:f dtd®xd®ydenR;a%h%VGeyR At this point, however, it is illustrative to review the 11D
Kasner solutions, defined by settify=Q=0. The Kasner
ansatz corresponds to choosiag=aqy/t, B’ =By/t and

— — 3K6
_'“va dtL_'“RVJ dtnRy,a"0"R (33 =, /t. So the equation€37) give
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QSJF 5B§+a07’o+ 2Bovo+6aBy=0 frarr_le. For both pf these two cases, the conformal transfor-
mation and the field redefinition of the scalar field look for-
ao=3a2+6ayBo+ aoYo mally the same. They areg,,=Ri;"§,, and
¢=*(V3/2)InRq; [note that these field redefinitions are
Bo=6B2+3a0B0+ BoYo slightly different from those used to obtain E4.7) because
we are now reducing from 5D to 4D as opposed to from 11D
Yo= Y2+ 3apy0+ 6800 (38)  to 10D]. Since in the two cases the radius of the eleventh

dimensions depends on time differently, we need to carry out

The solutions come in several varietigd) if none of the coordinate transformations separately. In cage (e thus
ao, B andy, are zero, they must satisfyid+68,+ y,=1 find the string-frame comoving time to be-t="3/2 while
(as one can easily see from the latter three equations, whidlr case {i) the transformation isr~tG=¥?’4 When we
degenerate to this single equaticend 3o5+6835+ y5=1  Substitute the field redefinitions and these coordinate trans-
(which arises after taking the square the equation above arf@'mations into the solutions, both cases lead precise(§)to
then subtracting from it the first equation frof@88); (2) a  AS one can now see, this solutidf) is highly degenerate
few degenerate cases, where the possibilitiesdgr 8, 7o) from the point of view of M theory as the same solution in
are () (0,0,, (ii) (1/2,0—1/2), (i) (—1/3,1/3,0), {v)  String theory can be obtained from several different solutions
(5/9,~1/9,0) and ¢) (0,2/7~5/7). In fact, caseif is lo- in M theory.
cally just the 11D flat space in Milne coordinates, as can be Reductions of this type have not been given much atten-
seen by applying a simple coordinate transformation. Tdion before, since they employ a dimensional descent inside
make the contact with string models we have discussed eaM theory, making contact with strings only at the very end.
lier, in particular with the actiori17), we note that solutions However, they are none the less interesting, since by being
(i) and (v) correspond to 10D modular string cosmology soluti_ons of the 11D supergravity equations of motion they
solutions with the constant dilaton field, whilé and @)  Ccertainly belong to the general phase space of M theory. An
can be understood as particular solutions with both rollinghteresting feature of the case) (discussed above is that it
dilaton and rolling moduli fields. The generic Bianchi mod- Offers a reinterpretation of the pre-big-bang curvature singu-
els where all the scale factors depend on time also corrdarity in (6) as a Rindler horizon in 11D, in a way very
spond to string cosmologies with rolling dilaton and moduli Similar to what has been discussed[#8]. However, since
fields. However, the two cases wher@g- y,=0, and 0 the horizon |nvo'lves thg compact coordinate along the circle
+ ag# Bo#0 produce precisely the metric-dilaton string so-S" of (18), the singularity has not been completely removed
lutions (6), as can be immediately verified by following the from the 11D geometry. Instead, the periodicitygfmplies
procedure outlined above, in the discussion leadingl®.  that the Rindler wedges of the 11D manifold contain closed
Namely, first dimensionally reduce from 11D to 10D type llatime-like curves, and moreover that the manifold is not
string theory and then down to 4D assuming that the interndriausdorff, as observed if23]. A difference between our
six dimensions span an isotropic six-torus. example and those @23] is that we use the fldirection to
Finally, perhaps the most curious interpretations of thesélefine the horizon, and hence lift the singularity, thus going
solutions arise in the following way. There may exist reduc-outside of the realm of string theory constructions. In this
tion procedures which map 11D solutions to lower dimen-case, we regulate thedstring coupling by decompactifying
sional stringy ones, and in particular 4D solutions, but in adirectly into the 11D supergravity phase, rather than trying to
way which involves a phase of M theory not belonging to Stabilize the coupling within the string framework. The ben-
known string theories. For example, if we take the apparentifit of this approach is the softening of the singularity,
trivial case () or the curved caseii), we can map them hamely the curvature singularity is absent, but the space-time
both onto the same metric-dilaton solutio®. The solu- exhibits geodesic incompleteness. However, this still cannot
tions, however, acquire the guise of string theory only at the?€ taken as an example of graceful exit in pre-big-bang. Such
very end—in both cases we first perform the dimensionafn extension of the solution involves an ascent to 11D super-
reduction on the Calabi-Yau space, producing a simple Eingravity which does not belong to the original pre-big-bang
stein theory in five dimensions as a result. To check that thi§cenario. Furthermore, at the transition, the function which
is a consistent truncation of the 11D theory one only needorresponds to the effective string coupling is really very
recall that the equations of motion for the Calabi-Yau scalesSmall, as opposed to very large—which is in contrast to the
factor are homogeneoysee e.g(37)]. Then, in a manner generic situation in the pre-big-bang scenario. The flow of
similar to that discussed by Behrndt andr§te in[28], we  the coupling in this example is opposite to the flow of the
go one dimension down to four, obtaining an action of acoupling in various implementations of pre-big-bang. In a
scalar-tensor theory of gravity in a Brans-Dicke frame: ~ Sense, this example appears to accomplish one of the goals of
pre-big-bang—singularity softening—while failing to attain
the other—pole inflation.

S= J d*x\GR1R. (39)
The hats denote the Brans-Dicke frame quantities. In this V. COSMIC BRANES
frame, our solutions ij and (i) are Ry=t, Returning to the general case with two charges, we will
d¥=—dt®+dx? andR ;= 1\t, d¥¥=—dt?+td%?. Tosee use a more suitable gauge to examine solution8df We
that both of these solutions are conformal to the solu§)n  note that the terms which are bilinear in the first derivatives
we perform another conformal transformation, to the stringof the fieldsa, 8 and y in (37) are always proportional to
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(3a’+6B'+vy'). In fact, this is the reason why the three =)
. . . . —3a_
equations of motion in the Kasner case degenerated to just € = 30.
one. This implies that we can gauge away all such terms by 0

cosh 3,7, e®F=ebPot6h17 cosh P, 7

using a different time coordinate. So ldt=nd7, where e87=e870* 6717 cosh P, . (44)
n=exp(3x+6B+7). Then we can rewrite the equations of
motion (37) as(where the overdots denotederivative$ The constraint relates the integration constants according to
P2 5 30,8§+ 12,8171=90§/2. These solutions are valid for both
602+ 3082+ 6ay+ 128y + 36aB= —edi— Q_e12ﬁ >0 and7_-<_0, and7=0 is the s!ngglarlty. I\_Iote tha_t we can
2 2 take the limit wheny= 8, by adjusting the integration con-

stants, in which case this reduces to the solutions discussed

. P_2 6o _2 128 H_ P_2 6y _2 128 very recently by Lukas and Ovr{i82].
=773 € 3 e, B= 6 € 6 € Consider now thé>=0 cases. Here there is more variety,
which may appear slightly puzzling since one might expect
. P2 . Q? L that there should be a kind of duality correspondence be-
Y=g 3¢ 28, (400 tween theP=0 andQ=0 cases. The equations of motion
are
These equations admit the mechanical analogy we have in- Q?
dicated at the end of the previous section. The constraint can 6a2+3082+6ay+128y+36aB=— —e'?
be thought of as the conservation of energy—it is just the 2

Hamiltonian, with the requirement th&t=0. If we take the ) ) )
derivative-dependent terms in the constraint to denote the = Q_elzﬂ B= Q_elZB y=— Q_e12ﬁ (45)
kinetic energy, and the exponentials to be the potential, such 3 ’ 6 '
thatH=T+W, we can define the Lagrangian asT—W. . ) .
One can then show that the second order equations of mélote that now we need to solve tigeequation, which again
tions follow from the variation of this Lagrangian. Similar iS @ Liouville equation, and the rest follows easily. However,
equations of motion were considered recently3a. also note that since the RHS of tifeequation is positive,
Before continuing with the investigation of the general there are more possibilities for the value of the integration
solutions, we will first review the cases when one of theconstantsj. First, we again get the integral of motion,
charges is zero. These cases were consider¢ad [30], 5
[17], and we include them here for completeness. We will B2=6,+ Q_elzg (46)
see that the two possibilities lead to different subclasses of 36
solutions. Let us begin with the cag=0. This case corre- . _ . .
sponds to the axionic cosmology extended to 10D by thé(vhere 0, is the integration constant, which now can be any

addition of rolling moduli, which has been investigated re-real number. Wherd; =0, the solution is

cently by Copeland, Lidsey and Wanf#4]. The equations 1
of motion reduce to e6ﬁzm, e3@=g3®0t 37| 7| @3r=g370"377|4|
T
. . .. . .. P? (47)
6a+30B°+6ay+128y+36aB= —€5* _ _
2 with 6a(a;+ y;)=0. When#;>0, the solutions are
. P? . P? . P? Q
— 6a — 6a — 6a — . .
a=——e*, p=—e y=—e (41) e 6= sinh 60,7, e3*=e3%0"317sinh 69,7
3 6 6 6\/0—1 1 | 1 |
and it is clear that they are easily integrable—all we need to eay_e370+3y17-|sinh 6\/0_7-| (48)
- 1

do is solve thea equation, and the rest reduce to simple

double integrals. Ther equation is the familiar Liouville 5nq the constraint give&i+a1y1=301. This case should
equation. It can be integrated once to give the first integral o the dual of the cas®=0 considered before. Finally

p2 when 6,<0, the solutions are
a’= 05— g€ (42)
e %= sin 6y] 64| 7|,
where 0(2) is a positive integration consta(if it were zero or 1l
negative, we would have found=0 and soP=0). This 3a_ a3agt3ar7ain & AT
separates variables, and we can rewrite it as the integral e =€ V]sin 646,71
d(e—3%) e¥r=e¥0"3117sin 6y]6y]|. (49

\/aoze*fia_pZ/g *3(7+ 7o) “3 The constraint now givea'er a,y,=—360,. Because the

solutions are given in terms of trigonometric functions, they
where 75 is another integration constant. We can set it toare without an analogue in tht@=0 case discussed above.
zero by a time translation. After all the integrations, we findHence, this sub-family has a larger phase space.
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What can we do with the equation87) when both .
charges are nonzero? Consider the equations fand 3. If Tpoal
we look at their linear combinations, we can see that 1ol
a+2B=0. This gives us one integral of motion:
a+2B=c(7—7y). Herec and r, are integration constants. 0.9
We can choosey=0, by a time translation. This allows us
to rewrite the equationg&t0) in terms of only two variables: 08
a andy. We find
. : : 0.7¢
15c°—9a”+6ca+ 12cy=P?e®*— Q%7 %
04 03 -02 01 0 01
2 2 2 2
.C.YZ _ P_e6a_ Q_eGCT— 6a :i/: P_e6a_ Q_eGCT—Ga. (@) t
3 3 ' 6 3
(50) 1.2f b
These equations are not easily integrable. For example, con- 10
siderc=0. (We can choose this sinaeis arbitrary) Now, '
all the reference tgy in the constraint disappears. It becomes 08
9&2: QZe— 6a__ P2e6a (51)
0.6
and we can verify that this is just the first integral of the
equation. This equation separates variables, so we can write 0.4
the solutions as ®) 04 03 -02 -01 0  OF
da _ ig (52 fg c(t)
Q 16
(Note that we can still shift the time to get rid of another 14
integration constant, since wher= 0 our previous shift was 12
not necessary. The integral can be simplified using 10
z=+P/Q exp(), and we can rewrite it as 2
4
dz VPQT
= 3Q . (53 2
v1-2 04 03 02 01 0 01
(c) t

This integral belongs to a type of binomial differentials .
which cannot be integrated in terms of elementary functions, F!G: 1. The scale factors of the 3-spaeg, Calabi-Yau 6-fold
I_(Q) and the circleS* (c). The Calabi-Yau space always expands

as shown over a hundred years ago by Chebyshev. T iie the circle shrink ding to the fi  th "
analysis becomes even more complicated when we considé/lg' € he circle shrinks, corresponding fo the flow oTIh€ coupling

L . m the strong to weak regime, in contrast to the conventional

c#0. In order to obtain information about these cases, we " . . . . )
have to resort to numerical methods. pre-blg-bang solutlc_)ns. Th_e 3-space b(_agln_s with a zero radius and

It should be clear that the initial sizes of the three Sub_expands to its maximum size, after which it recollapses.
spaces in19) are not independent parameters on their ownThe case§+,—,+) and (+,+,+) evolve into case$—,+,
Rather, they combine with the chargBsand Q and the ) in a way effectively similar to the generic idea of branch-
eleven-dimensional Planck magshich enters by defining  changing(which in this case does not correspond to the exit,
the time scale of the evolutiorio give the relevant param- sjnce all the solutions where “branch-changing” occurs pos-
eters for numerical integration. Hence we can simply set alkess singularities in the futye This however does not mean
of them to one at the beginning and vary the two chargespat the generic behavior of a cosmology with two charges
solutions according to the relative signs of time derivativeshe signs of initial values of “scale velocities,” we can find
of the three scale factors i{19). According to this classifi- gjfferent types of evolution depending on the ratios of the
cation there are priori eight possibilitiegsince each initial  gerivatives. We present several typical cases where we show
“scale velocity” can be either positive or negativeHow-  the scale factors of the 3-spa@, Calabi-Yau 6-foldb) and
ever, by time reversal we can correlate the subclasses, affe circleS! (©). In Fig. 1, we show +,+,—) case where
arrive at the conclusion that we only need to consider foukhe Calabi-Yau space always expands while the circle
types of initial conditions, which we denote by ordered trip-shrinks, corresponding to the flow of the coupling from the
lets [sgn@g),sgnbp),sgnRq19: (+,+,+), (+,+,—), (+, strong to weak regime, in contrast to the conventional pre-
—,+) and (—,+,+). The solutions however turn out to be big-bang solutions. The 3-space begins with a zero radius
connected further by dynamics, as can be seen in the figureand expands to its maximum size, after which it recollapses,
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FIG. 2. In this example the effect of the Calabi-Yau on the FIG. 3. While the evolution in this case initially looks like that
3-space is similar to spatial curvature: the 3-space begins again with Fig. 4, eventually the flows of the internal subspaces are inter-
zero radius, and expands toward a pole-like inflation while thechanged and the dynamics becomes similar to that in Fig. 1, with a
Calabi-Yau 6-fold shrinks to zero size. The coupling always flowsfuture 3-space big crunch.
from weak to strong.

past singularity. Here the solution for the 3-space starts out
characteristic of a positively curved FRW space-time, thouglvery small and grows while the Calabi-Yau scale and the
here we have takefk=0. In the example of Fig. 2, we look coupling scale start large and decrease. However, at some
at a(+,—,+) case where the effect of the Calabi-Yau on themoment the flows of the scale factaasandb reverse, and
3-space is similar to spatial curvature: the 3-space beginthe 3-space shrinks to zero size while the Calabi-Yau space
again with zero radius, and expands toward a pole-like inflapole inflates. The coupling always flows from strong to
tion while the Calabi-Yau 6-fold shrinks to zero size. The weak.
coupling always flows from weak to strong. The situation in  Aside from disclosing a number of solutions, our numeri-
Figure 3 can describe several cagdepending where we cal investigation suggests that the solutions in @&j.when
choose the initial time—for example(+,—,+), but also(+, viewed as cosmological backgrounds of type IlA string
+,+) and(—,+,+). While the evolution in this case initially theory and M theory are really rather special in that they
looks like that in Fig. 2, eventually the flows of the internal have infinitely old inflating past branches. Most charged so-
subspaces are interchanged and the dynamics becomes sititions appear to have spatial sections which evolve out of a
lar to Fig. 1, with a future 3-space big crunch. In Fig. 4, wepast spatial singularity, much like the=1 solutions de-
show a solution similar to that in Fig. 5, but with a more scribed in Eq.(9). This is clearly the effect of the 4-form
complex flow of the coupling scale. In Fig. 5 we find an charges, and therefore it seems that the efficiency of the pre-
example which in some respect is the most similar to thebig-bang scenario to produce inflation is very limited from
original pre-big-bang solution), since it does not have a the point of view of type IIA string theory, because of the
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FIG. 4. Similar to example of Fig. 3, but with a more complex  FIG. 5. This case does not have a past singularity. Instead, the
flow of the coupling scale. solution for the 3-space starts out very small and grows while the
Calabi-Yau scale and the coupling scale start large and decrease.
fine tuning problems discussed|i21]. In these cases, many However, at some moment the flows of the scale factoendb
of the solutions either recollapse too soon or emerge out d€verse, and the 3-space shrinks to zero size while the Calabi-Yau
an initial singularity.(While there may be some doubt as to space pole inflates. The coupling always flows from strong to weak

what happens in four dimensions after dimensional reducl this case.

tion, note that the doubly singular such as those presented H‘ecompactification of the M dimension. Further, this al-

Figs. 1 3, and 4 clearlly_ will remain doubly singular after lows for an egalitarian description of the string moduli fields,
reduction, hence providing an example of our argument hich arise due to compactification, and can be related by
here) U-duality maps. In the process of this 11-dimensional rein-
terpretation of solutions, we have shown that in some simple
V. CONCLUSION cases the cqsmological curvature singularities_ can be _moder-
ated. In particular, some of the known scalar-field dominated
In this article, we have considered several aspects of theosmological solutions are equivalent to a flat 11-
application of M theory in cosmology. Our main aim has dimensional space-time, which however has a pathological
been to cast the known string cosmological backgrounds, aspology that could involve closed time-like curves in its
well as some of their more straightforward generalizationsmaximal extension. The acausal domain is separated from
as 11-dimensional metric-4-form configurations. This pointthe physical sector of the space-time by a horizon, which
of view is useful in order to study the large coupling limits of upon dimensional reduction produces the coupling and cur-
string cosmologies, which is ill-defined in string perturbationvature singularities.
theory, but can be completely understood in terms of the Before closing, we would like to note some aspects re-
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garding the initial singularity in the context of M theory. As dx(a)/d In a=B(\). The 8 function B(\) can be easily cal-
we have discussed earlier, one goal of the pre-big-bang sceulated for any particular cosmological solution. It is inter-
nario is the smooth transition from @t)-branch solution esting to ask whether or not this “renormalization group”
(which evolves towards singularitieo a (—)-branch solu-  (RG) flow could correspond to an actual quantum RG flow in
tion (which evolves away from singularitiesin [18], a so-  a ten-dimensional theory or even in a four-dimensional one
lution to the gravitational equations of motion based on theafter compactification. For example, it would be very inter-
Damour-Polyakov ansatz showed such a smooth transitiorsting to find an example featuring logarithmic behavior
By an appropriate choice of the corrected coupling functiorrather than the above scaling, which could give inflationary
B(¢), a non-singular solution has been found. However, thexxpansion,a(t) ~exp(t), in the lower-dimensional mani-
solution was not without its peculiarities. In the two solu- fold. Unfortunately, we could not find any M-theoretic cos-
tions presented if18], the evolution of the dilaton caused mological solution with exponential inflation in the physical
the functionB(¢) to pass through zerfin fact this is a three-dimensional space and power-law evolution in the
general requirement of any such solution as it must utilize aRleventh dimension. However, this posibillity does not seem
“egg” with B<<O (see[18] for detail9], essentially indicat- excluded at this point. Indeed, solutions with such behavior
ing a signature change in 10 dimensions. However, the tenwould be of great interest, as they could be used for inflation
dimensional picture may be misleading, because in the corsimultaneous with running coupling. Hence, an affirmative
text of M mtheory, we should only look at the functi@f#)  answer to the question of existence of such solutions would
as being related to the radius of the 11th dimension. There, lfe an extremely interesting result. A conceptual difficulty to
appears that we could view the evolution as a process afurpass here is that the cosmological evolution under consid-
decompactification, where the eleventh dimension blows ugration is purelyclassicalby definition—no quantization of
and then shrinks again. From this point of view, we need noiM theory was performed in our analygsimply because it
see any change of signature at all. In this way, the compacioes not exist yg¢t—while the ordinary RG flow is an en-
radius would “bounce” at infinity. At this moment, in sup- tirely quantumphenomenon. In a way, the situation is remi-
port of this we can only offer an analogy with the bounceniscent of the anomaly treatment in Wess-Zumino-Witten-
picture in Liouville field theory of non-critical strings pro- Novikov o models, where in the fermionic picture, the
posed by one of us some time g@®], which was used later anomaly is quantum while in the bosonic is appears purely
in the study of a non-equilibrium temporal flow and a closed-classical. Perhaps a similar connection can be established
time-like path formalism for non-critical strings h%1]. Be-  here. Indeed, the fact that in the classical formulation of M
cause the Liouville field is ultimately connected with time in theory one may have a flow of coupling constant is quite

non-critical string theory, it is very tempting to think about interesting and certainly deserves further investigation.
possible connections between these two pictures of evolution

in M theory and non-critical string theory. We hope to return
to this issue in the future.

Finally, we should mention the possibility of relating cos-  We would like to thank A. Linde, R. Kallosh, J. Rahmfeld
mological evolution in M theory we have discussed hereand G. Ross for useful conversations. I.1.K. was supported in
with renormalization group flows. As we have seen, duringpart by PPARC, Royal Society and Lockey foundation travel
cosmological expansion not only is the spatial sca(e) grants and K.A.O. was supported in part by DOE grant DE-
evolving with time, but so is the coupling constax(t). FG02-94ER-40823. This paper was started when N.K. and
This means that one can consider the evolution of the coukl.K. visited the University of Minnesota and they are grate-
pling constantx not as a function of time, but as a function ful to the Department of Physics and Institute of Theoretical
of the scale factor a, A=\(a), leading to Physics for hospitality and stimulating environment.
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