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General relativistic solitons
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A general relativistic and nontopological soliton is constructed by coupling a nonlinear scalar field to the
standard gravitational field. Our results replicate the basic features of the special relativistic case: namely, a
singularity-free lump with a discrete spectrum of eigensolutions. The central singularities and horizon that
appear in the black hole solitons of string theory are not present.@S0556-2821~98!05912-8#

PACS number~s!: 04.62.1v, 04.25.2g, 11.10.Lm
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I. INTRODUCTION

Since the discovery of solitons in string theory b
Strominger@1# in 1990, many other multidimensional sol
tons have been discussed. Some of these bear a great
semblance to black holes, however, then to classical soli
and have been called ‘‘solitonic black holes’’ since th
carry Schwarzchild-like singularities. They are supposed
be physically allowed if the singularity lies inside the eve
horizon according to the hypothesis of cosmic censors
They are also considered possible candidates for the ro
preons.

This picture of an elementary particle differs from th
earlier conception of an elementary particle demanded b
unitary field theory, where the particles have no independ
existence but are simply singularity-free lumps of field.
well known early attempt at such a theory~Born and Infeld!
@2# did succeed in the construction of solitonic lumps b
these field structures still carried central singularities. C
sequently the point particles were not purged from the the
but persisted as singularities.

Since that time singularity-free solitons have been c
structed at the special relativistic level@3–5#. We are here
interested in exploring this question at the general relativi
level. It is a very familiar fact that macroscopic balls of flui
such as stars, may be held in equilibrium by the compen
tion of hydrodynamic forces by gravitational forces; and
these examples there is no singularity at the origin. In
standard treatment of a star the gravitational field is comp
sated by pressure and density fields related by an equatio
state. Here we should like to consider the possibility that
gravitational field is compensated not by phenomenolog
fields such as pressure and density but by fundamental fi
which do not become singular at the origin and which do
force the gravitational field to become singular either.

If S is the total action, we need to investigate the sim
taneous equations

dS

dgml 50, ~1.1!

dS

dck 50. ~1.2!
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Here Eq. ~1.1! abbreviates the gravitational equation
namely,

Rml5KQml , K52
8pk

c2 ~1.18!

and Eq.~1.2! is intended to represent the equations of mot
of all the matter fields contributing toQml , the source of the
gravitational field. The solutions of Eqs.~1.1! and~1.2! must
satisfy the following boundary conditions in order to repr
sent solitons: all fields must vanish at large radii and
fields must remain everywhere finite including the orig
where we shall also require vanishing first derivatives
avoid cusp singularities.

II. THE NONLINEAR SCALAR FIELD

Let us consider as the source of the gravitational fiel
single complex nonlinear scalar field described by the
grangian

L5
1

2
gml] (mc]l)c* 1F~ ucu2! ~2.1!

with the following energy-momentum tensor:

uml5
]L

]gml2
1

2
gmlL

~2.2!

5
1

2
] (mc]l)c* 2

1

2
gmlL.

Then

Qml5uml2
1

2
gmlu, ~2.3!

where

u5gmluml ~2.4!

or
7318 © 1998 The American Physical Society
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57 7319GENERAL RELATIVISTIC SOLITONS
Qml5
1

2
] (mc]l)c* 1

gml

2
F~ ucu2!. ~2.5!

We shall consider only spherically symmetric structures w
harmonic time dependence and therefore set

]2c5]3c50, ~2.6!

]1c5
]c

]r
5c8, c5R~r !eivt.

~2.7!

Then

Q005
1

2

v2

c2 R21
1

2
F~R2!g00,

Q115
1

2
~R8!21

1

2
F~R2!g11,

~2.8!

Q225
1

2
F~R2!g22,

Q335
1

2
F~R2!g33.

III. GRAVITATIONAL FIELD

Let us adopt the following metric:

ds25en~r !dt22el~r !dr22r 2~du21sin2udw2!, ~3.1!

wheren(r ) andl(r ) are to be determined by the field equ
tions. Then

R005en2lF2
v9

2
1

n8l8

4
2

~n8!2

4
2

n8

r G ,
R115

n9

2
2

n8l8

4
1

~n8!2

4
2

l8

r
,

~3.2!

R225e2lF11
n8r

2
2

l8r

2 G21,

R335R22sin2u,

where the prime denotes differentiation with respect tor .
Since we are considering the special case in which the n
linear scalar field is the sole source of the gravitational fie
the graviational equations of motion previously denoted
Eq. ~1.1!, are, by Eqs.~2.8! and ~3.2!,

F2
1

2
n91

n8l8

4
2

~n8!2

4
2

n8

r G5
K

2 FFel1
v2

c2 el2nR2G ,
~3.3!

F 1

2
n92

n8l8

4
1

~n8!2

4
2

l8

r G5
K

2
@2Fel1~R8!2#,

~3.4!

F11n8
r

2
2

l8r

2 G2el52
K

2
Fr 2el. ~3.5!
h

n-
,
y

By Eqs.~3.3! and ~3.4!,

2
n81l8

r
5

K

2 F ~R8!21
v2

c2 el2nR2G ~3.6!

and, by Eqs.~3.5! and ~3.6!,

2
l8

r
5

el21

r 2 2
K

2
Fel1

K

4 F ~R8!21
v2

c2 el2nR2G .
~3.7!

Finally by Eq.~3.6!

@n1l#`2@n1l#0

52
K

2 E dr r F ~R8!21
v2

c2 el2nR2G.0. ~3.8!

IV. EQUATIONS OF MOTION OF c

These equations, denoted by Eq.~1.2! in the Introduction,
are

gml¹m¹lc2
]F~ ucu2!

]c*
50, ~4.1!

where

¹mc5]mc ~4.2!

and

¹m¹lc5]m]lc2Gml
s ¹sc. ~4.3!

Then

gml¹m¹lc5gml]m]lc2gmlGml
s ]sc

5g00]0]0c1g11]1]1c2gmlGml
1 ]1c

~4.4!

and Eq.~4.1! becomes by Eqs.~3.1! and ~4.3!

R91
1

2
~n82l8!R81

2

r
R81el2n

v2

c2 R1el
]F

]R
50.

~4.5!

V. PHENOMENOLOGICAL FIELDS

The soliton is now described by the four equations~3.3!,
~3.4!, ~3.5!, and~4.5!. We may compare these equations w
equations describing internal stellar structure.

The energy momentum tensor, describing matter at res
each point, is

uab5ruaub1p~uaub2gab!,
~5.1!

ua5
dxa

ds
5~u0,0,0,0!.

Then @6#
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F2
n9

2
1

n8l8

4
2

n8 2

4
2

n8

r G5KF r

2
1

3p

2 Gel, ~5.2!

Fn9

2
2

n8l8

4
1

n8 2

4
2

l8

r G5KF r

2
2

p

2 Gel, ~5.3!

F 1

r 2 1
n82l8

2r G2
el

r 2 5KF r

2
2

p

2 Gel. ~5.4!

There are two fields opposing gravitational contraction
both the soliton and the star, namely:R(r ) andF@R2# in the
one case ofp(r ) andr(r ) in the other case.

If the gravitational field is the same in the two cases, o
may try to describe the fundamental fieldsR(r ) andF@R2#
in terms of two effective or phenomenological fields,p and
r, by equating the right-hand sides of the two sets~3.3!–~3.5!
and ~5.2!–~5.4!. Then

F5r13p2
v2

c2 R2e2n, ~5.5!

2Fel1~R8!25~r2p!el, ~5.6!

F5p2r. ~5.7!

The match described by Eqs.~5.5!–~5.7! shows that the soli-
ton and stellar problems are really not comparable since E
~5.6! and ~5.7! imply

R850. ~5.8!

An additional difference between the two situations lies
the existence in the stellar case of a distinguished surfac
which the internal and external solutions must match, wh
in the soliton case there is no corresponding surface. S
there is little to be learned, at least about the scalar c
from the stellar analogue, let us return to the soliton proble

VI. BOUNDARY CONDITIONS

At large distances we require the vanishing ofc(r ) and
c8(r ):

lim
r→`

R~r !5 lim
r→`

R8~r !50. ~6.1!

Then this condition and Eq.~3.6! imply

lim
r→`

~n81l8!50 ~6.2!

or

lim
r→`

~n1l!5const. ~6.3!

By Eq. ~3.7!

lim
r→`

F l8

r
1

el21

r 2 2
K

2
F~R2!elG50. ~6.4!

Then
e

s.

at
e
ce
e,
.

lim
r→`

F l8

r
1

el21

r 2 G50 ~6.5!

if we assume

lim
r→`

F@R2~r !#50. ~6.6!

The preceding equation holds if we assume thatF@R2# is a
polynomial without a constant term, since we expectR(r ) to
vanish exponentially. Equation~6.5! may be solved to give

e2l→12
2m

r
~6.7!

and choosing the constant in Eq.~6.3! to vanish one has

en→12
2m

r
. ~6.8!

Therefore at great distances the gravitational field beco
the Schwarzschild field, corresponding to

l→
2m

r
, ~6.9!

n→2
2m

r
. ~6.10!

Herem is the geometric mass and is related to the usual m
M , by mc25kM, wherek is Newton’s constant. Then th
equation of motion~4.5! becomes at great distances

R91
2

r
R81

v2

c2 R1
]F

]R
50 ~6.11!

sincen8 and l8, as well asn and l, all vanish at great dis-
tances.

Equation~6.11! agrees with the special relativistic equ
tions asr→`.

The key question is now whether the finiteness bound
condition can be satisfied at the origin.

By Eq. ~3.6! ~n1l! is an even function ofr . Therefore set

l5 l 01 l 2r 21 l 4r 41•••, ~6.12a!

n5n01n2r 21n4r 41•••. ~6.12b!

Then by Eq.~3.6! to lowest order on the left

2~ l 21n2!14~ l 41n4!r 252
K

2 F ~R8!21
v2

c2 el2nR2G
~6.13!

and

4~ l 21n2!52KFR8~0!21
v2

c2 R~0!2G . ~6.14!
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We require thatR(r ) be finite atr 50. We also require tha
R8(r ) vanish atr 50; otherwise spherical symmetry wou
imply a cusp inR(r ) at r 50. Therefore

R8~0!50. ~6.15!

To satisfy Eqs.~6.14! and ~6.15! set

l 21h252
K

4

v2

c2 R~0!2. ~6.16!

Then also by Eq.~6.15!

R~r !5a01a2r 21••• . ~6.17!

By Eqs. ~6.12! and ~6.17!, Eq. ~3.7! now reads to lowes
order

3l 215l 4r 22
K

2
~F01F1r 1F2r 2!~11 l 01 l 2r 2!

1KFa2
2r 21

1

4

v2

c2 ~a0
212a0a2r 2!G50, ~6.18!

where

F@R2~r !#5F01F1r 1F2r 2. ~6.19!

Hence

3l 22
K

2
F0~11 l 0!1

1

4
K

v2

c2 a0
250, ~6.20!

F150, ~6.21!

5l 42
K

2
„F2~11 l 0!1F0l 2…1Ka2

21
K

2

v2

c2 a0a250.

~6.22!

At this point we must make some assumptions about
functionalF@R2#. Let

F@R2~r !#5A1
B

2
R21

C

4
R4, ~6.23!

where

A50, C.0, B,0. ~6.24!

For comments on this mathematical rather than phys
choice see Secs. X and XI. Then

F~a01a2r 2!5
B

2
~a0

212a0a2r 2!

1
C

4
~a2

414a0
3a2r 2!1O~r 4! ~6.25!

and

F05
B

2
a0

21
C

4
a0

45F„R~0!…, ~6.26!

F25Ba0a21
C

2
a0

3a2 . ~6.27!
e

al

Equations~6.20! and~6.22! now determinel(r ) in terms of
R(r ) nearr 50. n(r ) may then be found from Eq.~3.6! in
the same region. All of these functions appear well-beha
nearr 50.

VII. COMPLETE SOLUTIONS

The exact equations that must be satisfied are the gra
tional equations of motion~3.3!–~3.5! and the separate equa
tion of motion ~4.5!. These may be restated as

l8

r
5

12el

r 2 1
K

2
Fel2

K

4 F ~R8!21
v2

c2 el2nR2G , ~7.1!

n8

r
5

el21

r 2 2
K

2
Fel2

K

4 F ~R8!21
v2

c2 el2nR2G , ~7.2!

R91
2

r
R81

1

2
~n82l8!R81

v2

c2 el2nR1el
]F

]R
50.

~7.3!

The boundary conditions atr 50 will be chosen as follows:

l5l85n85R850. ~7.4!

By Eqs.~3.8!, ~6.9!, and~6.10!

l~0!1n~0!,0,

and by Eq.~7.4!

n~0!,~0!. ~7.5!

The three functionsl, n, and R are then codetermined b
Eqs.~7.1!–~7.3!.

In order to gain some preliminary information about t
complete solution, let us consider the special relativis
limit: namely,

l5n50 ~7.6!

which corresponds to the vanishing of the energy momen
tensor of the scalar field or to settingK50. In this limit the
equation of motion~4.4! or ~4.5! becomes

R91
2

r
R81

]F̃

]R
50, ~7.7!

whereF̃ differs fromF by replacingB by B̃5v2/c21B. Let
us now study the soliton solutions of Eq.~7.7! with the idea
that they are closely related to the soliton solutions of E
~7.3!. To do this we introduce the following functiona
H(R,R8):

H[
1

2
~R8!21F̃~R!. ~7.8!

By Eq. ~7.7! one has

dH

dr
52

2

r
~R8!2. ~7.9!
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The analysis of Eq.~7.7! depends on the portrait ofH(R,R8)
in the phase plane (R,R8 plane! @3#.

The closed curves in Fig. 1 are lines of constantH. If H
is represented as height above the phase plane, then
points P and S are minima andQ is a saddle point, as we
shall now show.

We have, by Eqs.~7.8! and ~6.23!,

]H

]R
5

]F̃

]R
5B̃R1CR3, ~7.10!

]2H

]R2 5
]2F̃

]R2 5B̃13CR2. ~7.11!

The extrema ofH in theR direction are given by Eq.~7.10!:

R50, R56S 2
B̃

C D 1/2

, ~7.12!

S ]2H

]R2 D
Q

5B̃,0, ~7.13!

S ]2H

]R2 D
P,S

522B̃.0. ~7.14!

ThereforeQ is a maximum andP,S are minima in theR
direction.

In the R8 direction we have

]H

]R8
5R850 at P, Q, and S, ~7.15!

FIG. 1. Phase plane for the scalar field equation in the spe
relativistic limit.
the

]2H

]R8 2 51 at P, Q, and S. ~7.16!

It follows that all three pointsP, Q, andS are minima in the
R8 direction. ThereforeP and S are minima in both direc-
tions andQ is a saddle point. Combining this fact with Eq
~7.9!, we see that a solution curve must always end atP, Q,
or S independent of its starting point. For example, t
curvess andp spiral into the pointsS andP.

This information in the phase plane may now be carr
over to configuration space~Fig. 2!. The pointsS, P, andQ
in Fig. 1 whereR850 represent the constant solutions of E
~7.7!.

The curvesp, s, andq in Fig. 1 are now shown in Fig. 2
and

lim
p02s0→0

F R~p!1R~s!

2 G5R~q!. ~7.17!

As p0 ands0 are brought closer toq0 the oscillatory behav-
ior of p ands recedes to infinity and bothp ands approach
the eigensolutionq, which terminates at the saddle pointQ
with no oscillations. The eigensolutions are thus defined
the bounding classes of curves that terminate atP and S
similar to the way that irrationals are defined by the Ded
kind cut.

In this way the soliton solutions of Eq.~7.7! may be
found. The same procedure may then be followed to ob
the corresponding solutions of Eq.~7.3!. The soliton solu-
tions of Eq.~7.6! and also of Eq.~7.3! are eigensolutions o
a nonlinear differential equation. As such they differ fund
mentally from the eigensolutions of a Schro¨dinger problem,
since the normalization is not arbitrary but is itself an eige
value of the nonlinear equation. The soliton eigensolutio
still determine the mass of the soliton just as the Schro¨dinger

al

FIG. 2. The radial eigensolutionq and the bounding solutionss
and p, for the scalar field equation in the special relativistic lim
The pointsP, Q, and S in Fig. 1 are represented by the straig
lines P, Q, andS.
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eigensolutions determine the energy of an atom. In gen
the soliton eigensolutions node in the same way as
Schrödinger wave functions.

We shall look for structures in which the solutions of E
~7.3! approximate the solutions of Eq.~7.7!. Since these so
lutions must be determined numerically, let us next put E
~7.1!–~7.3! in dimensionless form as follows:

dl

dx
5

12el

x
2

d

4
xF S dy

dx D 2

1v̂2el2ny2G
1

1

2
xelF b

2
y21

g

4
y4G , ~7.18!

FIG. 3. ~a! Numerical non-noding bounding solutions for th
scalar equation coupled to gravity. The values of the paramete
Eq. ~7.21! are d520.0001 ~since K is negative!, b8520.001,
g850.0005, and v̂250.0005. ~b! Eigensolution with assumed
asymptotic form, corresponding to the bounding solutions in~a!.
al
e

.

s.

dn

dx
5

el21

x
2

d

4
xF S dy

dx D 2

1v̂2el2ny2G
2

1

2
xelF b

2
y21

g

4
y4G , ~7.19!

d2y

dx2 5F 12el

x
1

1

2 S b

2
y21

g

4
y4D2

2

x G dy

dx

2@b8y1g8y3#el2el2nv̂2y, ~7.20!

where

x5r /r 0 , b5
r 0

2K

c2 c0
2B,

y5c/c0, g5
r 0

2K

c2 c0
2C, d5

K

c2 c0
2, ~7.21!

v̂5vr 0 /c, b85r 0
2B, g85r 0

2c0
2C.

Herer 0 is a fundamental length andc0 is a fundamental rea
field strength. There is a large class of solutions lying in
parameter space (b,g,d,v̂).

VIII. NUMERICAL SOLUTIONS

We have obtained numerical solutions of the coup
equations~7.18!–~7.20! with boundary conditions~7.4!,~7.5!
and different initial values ofR(r ). The parameters in Eq
~7.21! are chosen appropriately to maximize the sensitiv
and convergence of the numerical algorithm. In particular
take v̂2,b8, to obtain the bounding solutions.

We find solutions similar in behavior to the special re
tivistic case presented in Fig. 2. As the initial value ofR(r )
is increased we make the transition from a solution that te
towards pointS to one that tends toward pointP. These
‘‘bounding solutions’’ are shown in Fig. 3~a!. By bringing
the initial pointsp0 and s0 together, one obtains the initia

in

FIG. 4. l and n corresponding to the eigensolution in Figu
3~b!.
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value ofR(r ) belonging to an eigensolution. We obtain th
eigensolution in Fig. 3~b! in the following manner. We de
fine r c as the value ofr for which the two bounding solution
start to separate. Forr ,r c we take the average of the tw
bounding solutions as described in Eq.~7.17!. For r .r c we
assume the approximate asymptotic formR}Ae2ar/r . The
parametersa andA are found by matching the values ofR
andR8 at r 5r c. To find the functionsl(r ) andn(r ) corre-
sponding to the eigensolution, we use the asymptotic fo
~6.9! and ~6.10! as initial values for the integration which i
performed backwards starting atr `57198.5, andfeeding
the values for the eigensolution previously obtained. The v
ues form in the asymptotic forms~6.9! and~6.10! and forr `

are constrained by requiring that the conditions atr 50 are

FIG. 5. ~a! Numerical noding (n51) bounding solution which
terminates at pointS, for the scalar equation coupled to gravit
Same values for the parameters as in Fig. 3.~b! Numerical noding
(n51) bounding solution which terminates at pointP, for the sca-
lar equation coupled to gravity. Same values for the parameter
in Fig. 3.
s

l-

satisfied. The results are presented in Fig. 4.
Continuing to increase the initial value ofR(r ) for a fixed

value ofn(r ) we find noding bounding solutions that term
nate at the two minima. Figure 5~a! shows a case that term
nates at pointS while Fig. 5~b! shows the correspondin
solution that terminates at pointP. As in the nodeless cas
by bringing the initial points of the bounding solutions t
gether we define a noding eigensolution. The proced
works as well here as for the special relativistic case.

IX. MASS

At the special relativistic level of description the mass
a soliton is the integral of the energy density:

Mc25E u00dxW , ~9.1!

whereu00 is the energy density of a Lorentz invariant fiel
When the source field is locked to the gravitational fie

in a composite structure, the contribution of the gravitatio
field to the mass must be taken into account. Since the
ergy and momentum of the gravitational field cannot be
calized, however, there is no general relativistic tensor c
responding to theuml , either for the gravitational field itsel
of for the source fields. Instead there is a so-called pseu
energy-momentum tensor; and although this may be c
structed in a variety of ways, it always leads, upon integ
tion, to the same energy-momentum vector. For exam
there is the original choice of Einstein:

G5A2ggsr$Gsr
a Gab

b 2Gbr
a Gas

b % ~9.2!

in terms of which the total conserved energy-moment
vector of the soliton is

Pm52
1

K E ]lF ]G

]~]lgmn!
g0nGdxW ~9.3!

integrated over all space. If the metric is independent
time, this three-dimensional integral may be converted to
surface integral

Pm52
1

K E
S2

]G

]~] jg
mn!

g0nh jdS, ~9.4!

whereS2 is the sphere at infinity.
In particular the energy is

P052
1

K E
S2

]G

]~] jg
00!

g00h jdS, ~9.5!

sincegmn is diagonal in our work.
The integrand may be simplified by the observation@6#

]G

]~] jg
00!

5
1

2
A2g@g00]sgs j2g00g

j tgsr]tg
sr2gj s]sg00#.

~9.6!

To complete the evaluation of the energy integral one ne
the form of the metric on the sphere at infinity. We ha
already seen thatl and n, and thereforegmn , acquire the

as
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Schwarzschild form at great distances. The Schwarzsc
metric may in turn be written in the following isotropic form

dS25S 12
m

2r

11
m

2r

D 2

dt22S 11
m

2r D 4

~dx21dy21dz2!.

~9.7!

In terms of this metric, one has by Eq.~9.6!

g00
]G

]~] jg
00!

52m
xj

r3 S 12
m

2r D ~9.8!

and therefore by Eq.~9.5!

P05mc2/k5M . ~9.9!

According to Eq.~6.9! m is determined by the asymptoti
shape of the curvel(r ) in accordance with the equivalenc
principle.

X. STABILITY AND MASS

The Lagrangian of the nonlinear scalar field in flat spa
is

L5
1

2
gml] (mc]l)c* 1F~ ucu2! ~10.1!

[T2V. ~10.2!

The Hamiltonian density is

1

2
P22F5

1

2
P21V. ~10.3!

ThenF52V whereV is the usual potential. With the choic
~6.24! the coefficient ofR4 in V is negative so thatV is not
positive definite and consequentlyc is not physically accept-
able at the quantum level as a free field. In our work, ho
ever,c is not a free field; it is instead bound to the gravit
tional field and at the classical level it is only necessary t
the complete structure representing the soliton have a p
tive mass. Strictly speaking the flat space limit is unphysi
since it is not possible to turn off the universally coupl
gravitational field. Alternatively the potential functionV may
be made positive definite by adding aR6 term with a positive
coefficient. This would add two new saddle points outs
the separatrix but would not essentially change the gen
argument, although it would limit the number of eigenso
tions be restricting the initial pointR(0) to lie between the
separatrix and the new saddle point.

Let us next compute the mass, which is now determin
by Eqs.~9.9! and ~6.7! rather than Eq.~9.1!. The masses o
the various noding solutions can therefore be read off fr
the l curves at large values of the radius. The three fu
tions,l, n, R, may be expanded in powers of 1/r at larger as
follows:

l5(
s51

`
l̂ s

r s , ~10.4!
ild

e

-

t
si-
l

e
al
-

d

-

n5(
s51

`
n̂s

r s , ~10.5!

R5
e2ar

r (
s50

`
ps

r s . ~10.6!

By Eqs.~6.3!, ~6.7!, and~6.8!, let us approximate Eqs.~10.4!
and ~10.5! by

l>
2m

r
1

a

2r 2 , ~10.7!

n>
22m

r
2

a

2r 2 . ~10.8!

The solution of the linearized equation~7.3! in flat space is a
spherical Hankel function:

R~r !5
e2ar

r
. ~10.9a!

Let us carryR to the same order inr 21 as l and n. Then
R(r ) becomes

R~r !5
e2ar

r S 11
p1

r D , ~10.9b!

wherea andp1 are determined by the exact solutions of t
nonlinear equation~7.3!.

We may satisfy the linearized~7.3! to orderr 22 by sub-
stituting Eqs.~10.7!, ~10.8!, and~10.9b! in this equation. We
find

expF 4m

r
1

a

r 2G v2

c2 R1
2m

r 2 R81S R91
2

r
R8D

1expF 2m

r
1

a

2r 2GBR50, ~10.10!

where

R91
2

r
R85S a21

2p1a

r 2 DR ~10.11!

by Eq. ~10.9b! to terms of order 1/r 2. Then Eq.~10.10! im-
plies the following relation:

Fa21
2p1a

r 2 G2
2ma

r 2 1F11
4m

r
1

a18m2

r 2 G v2

c2

1F11
2m

r
1

a14m2

2r 2 GB50 ~10.12!

to the same order, or

a21
v2

c2 1B50→B,0, ~10.13!

4m
v2

c2 12mB50→
v2

c2 52
1

2
B and a25

v2

c2 ,

~10.14!
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2p1a22ma1aS v2

c2 1
B

2 D18m2
v2

c2 12m2B50.

~10.15!

By Eqs.~10.14! and ~10.15!

p12m12m2a50 ~10.16!

and

m5
1

4a
@11~128p1a!1/2#. ~10.17!

If p150,

m5
1

2a
~10.18!

and

R~r !;
1

r
e2r /m. ~10.19!

Hence the mass,m, fixes the rate of decrease of both th
gravitational fieldl(r ) and the matter fieldR(r ) at large
distances from the soliton. The value ofp1, as well as all the
ps , are determined byR(0). Hence the mass of the soliton
fixed by the eigenvalueRn(0), where n is the number of
nodes.

Note also that these conclusions are compatible with
analysis of Sec. VII which requires thatB̃5v2/c21B be
negative.

XI. DISCUSSION

After completing this investigation we have learned of
extensive literature on boson stars@7#. Although the concep-
tual model employed in all of this literature is formally ve
similar to the model studied in our paper, the particular
search closest to our work was carried out by Lee and
laborators@8# who have studied a class of general relativis
solitons generated by nonlinear scalar fields. They emplo
different form of the self-interaction and more importantly
method of analysis completely different from that describ
in our paper. On the basis of their calculations they were
to discuss the possibility of cold, stable stellar configu
e

-
l-

a

d
d
-

tions, called soliton stars. The present paper, on the o
hand, was stimulated by the more recent string papers
solitonic black holes and our conjecture that there may
regular nontopological solitons in either these theories o
other fundamental completions of Einstein theory. As a p
liminary to a more extended study we have based our w
on a nonlinear field chosen for its simplicity rather than f
its relation to a more fundamental theory.

The particular model studied in this paper was chosen
order to examine the influence of the gravitational field
the structure of a previously studied special relativistic so
ton @3#. The present work does succeed in replicating
basic features of the special relativistic case~a singularity-
free lump! with a discrete spectrum of eignesolutions. It al
turns out that the method of analysis previously employed
the special relativistic case may be extended to the gen
relativistic problem.

The main contribution of the present paper probably tu
on this last point, since the special method employed in
1951 paper was restricted to a two-dimensional phase s
while the current problem requires a six-dimensional ph
space. Although it is still not clear how to construct a mu
tidimensional dissipative function generalizing~7.8!, we now
know that exactly the same numerical procedure can be
ployed to determine the eigenfunctions and eigenvalues
the nonlinear scalar equation even when it is one membe
a set of coupled differential equations. The extension of
numerical analysis in this way opens up the possibility
discussion more complex fields.

Finally we want to emphasize that the arguments of
present paper go through for nonlinear potentials with
lower bound, as remarked in the paragraph on stability.

Just as in a Schro¨dinger eigenvalue problem, we obta
the eigenfunctions by rejecting the irregular solutions. T
resulting spectrum of eigenvalues~masses! is evidently very
sensitive to the choice of the total field. Since the matter fi
in this paper was chosen for its simplicity and for easy co
parison with the earlier study of the special relativistic ca
and since it does not emerge from a fundamental theory,
model is by itself of mainly mathematical interest. On t
other hand, our results as well as the results of Leeet al. and
others makes it likely that nontopological solitons exist
ther in string models or in other fundamental completions
gravitational theory@9#.
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