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General relativistic solitons
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A general relativistic and nontopological soliton is constructed by coupling a nonlinear scalar field to the
standard gravitational field. Our results replicate the basic features of the special relativistic case: namely, a
singularity-free lump with a discrete spectrum of eigensolutions. The central singularities and horizon that
appear in the black hole solitons of string theory are not pref86656-282198)05912-§
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[. INTRODUCTION Here Eg. (1.1) abbreviates the gravitational equations:
namely,
Since the discovery of solitons in string theory by
Strominger[1] in 1990, many other multidimensional soli- 8k ,
tons have been discussed. Some of these bear a greater re- Ria=KO,y, K= B 1.1)

semblance to black holes, however, then to classical solitons

and have been called “solitonic black holes” since theyand Eq.(1.2) is intended to represent the equations of motion
carry Schwarzchild-like singularities. They are supposed tQf all the matter fields contributing # ,,, , the source of the
be physically allowed if the singularity lies inside the eventgrayitational field. The solutions of Eq&L.1) and(1.2) must
horizon according to the hypothesis of cosmic censorshipsatisfy the following boundary conditions in order to repre-
They are also considered possible candidates for the role @fent solitons: all fields must vanish at large radii and all
preons. fields must remain everywhere finite including the origin

This picture of an elementary particle differs from the where we shall also require vanishing first derivatives to
earlier conception of an elementary particle demanded by gvoid cusp singularities.

unitary field theory, where the particles have no independent
existence but are simply singularity-free lumps of field. A
well known early attempt at such a thedqBorn and Infeld
[2] did succeed in the construction of solitonic lumps but Let us consider as the source of the gravitational field a
these field structures still carried central singularities. Consingle complex nonlinear scalar field described by the La-
sequently the point particles were not purged from the theorgrangian
but persisted as singularities.

Since that time singularity-free solitons have been con- 1
structed at the special relativistic leid—5]. We are here L=3 9“1 pdny b +F (| 1?) (2.9
interested in exploring this question at the general relativistic
level. Itis a very familiar fact that macroscopic balls of fluid, \yith the following energy-momentum tensor:
such as stars, may be held in equilibrium by the compensa-
tion of hydrodynamic forces by gravitational forces; and in oL 1
these examples there is no singularity at the origin. In the 0,0 = Era gl
standard treatment of a star the gravitational field is compen- 9 (2.2)
sated by pressure and density fields related by an equation of
state. Here we should like to consider the possibility that the
gravitational field is compensated not by phenomenological
fields such as pressure and density but by fundamental fields
which do not become singular at the origin and which do noffhen
force the gravitational field to become singular either.

If Sis the total action, we need to investigate the simul-

Il. THE NONLINEAR SCALAR FIELD

1 . 1
:Ea(,u,lpﬁ)\)l// _Eg,u,)\l-'

taneous equations O =05 90, 2.3
6S
g =0, (1.1  Where
55 6=0"0,,, (2.9
5—11)2 =0. (1.2) or
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1 . O ) By Egs.(3.3) and(3.4),
O =5 o™ +—- F(l¥l%). (2.5
viEA _ R’ 2 wz )\*VRZ 3.6
We shall consider only spherically symmetric structures with Tz |R)ze 3.6
harmonic time dependence and therefore set
and, by Eqgs(3.5 and(3.6),
&21ﬂ= &3¢:O, (26)
Noet-1 K K w?
9 ) __:___Fe)\+_ (R’)2+—e"_”Rz]
==y, y=RME". o277 4 ¢’
ar (3.7)
(2.7)
Finally by Eq. (3.6
Then y by Eq.(3.6)
1lw? 1 [v+N]—[v+X]o
— P2, 2
®00—2C2 R+ F(R%)goo; K L, W
=—§fdrr (R") +?e R%[>0. (3.8
1 12 1 2
G)1125 (R)“+ > F(R%)0911,
(2.8 IV. EQUATIONS OF MOTION OF

1 2
®22:§ F(R%) g2z,

1 2
G)3325 F(R%)0as.

Ill. GRAVITATIONAL FIELD

Let us adopt the following metric:

ds?=e""dt?—eMdr?—r2(d#?+sirfode?), (3.1)

wherev(r) and\(r) are to be determined by the field equa-

tions. Then

v/r V’)\/ (V/)2 v

—aVl—A
Roo=¢ 2 " a 4T

v\ (Vr)Z N

T T
(3.2
R e 14 v'r N'r
2»=€ 2 2 )
R33:R225ir]20,

where the prime denotes differentiation with respect to

These equations, denoted by E#.2) in the Introduction,
are

IFE(|y?
AN ;lTlf') =0, (4.2
where
V=0, (4.2
and

Then
gV L V=" d,0\h—g* T, 3t

=g%9gdo i+ g1 91— g Ly v ip

(4.4
and Eq.(4.1) becomes by Eq€3.1) and (4.3
R+ = (N )R 2 R eh o R+e aF—o
E(V -\ ) F (S} ? (S ﬁ_ .
(4.5

Since we are considering the special case in which the non-

linear scalar field is the sole source of the gravitational field,

V. PHENOMENOLOGICAL FIELDS

the graviational equations of motion previously denoted by

Eqg. (1.2, are, by Egs(2.8) and(3.2),

1 v\ (v')2 v K \ w? N
[‘z e il L=
(3.3
1, N () N] K N
bu— R —T}—E[—Fe +(R")?],
(3.9
rA'r K
RN BN WA =N A
1+v 5" e 2Fre. (3.5

The soliton is now described by the four equati¢8s3),
(3.4), (3.5, and(4.5. We may compare these equations with
equations describing internal stellar structure.

The energy momentum tensor, describing matter at rest at
each point, is

0aB:puau/3’+ p(uauﬁ_gaﬁ): (5 1)

o

L dxe %0.0
u _ds_(uy ] !Q'

Then[6]
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A N L K p+3p \ 5.2 i N oet-1 0 5
B e N PR B LR fml e |7 69
VN N PP if we assume
2774 T‘T}‘K[E_E e 063

. lim F[R?(r)]=0. (6.6)
1 v =\ e PP, r—o

[FZ 2 _FZ_K[ 7 2/ 64

The preceding equation holds if we assume f#@R?] is a

There are two fields opposing gravitational contraction inPolynomial without a constant term, since we expe@t) to
both the soliton and the star, nameB(r) andF[R?] in the  Vvanish exponentially. Equatioi6.5 may be solved to give
one case op(r) andp(r) in the other case.

If the gravitational field is the same in the two cases, one
may try to describe the fundamental fielér) and F[R?]
in terms of two effective or phenomenological fielgsand
p, by equating the right-hand sides of the two £8t8)—(3.5
and(5.2—(5.4). Then

2m

)\_>1__

(6.7)

e

and choosing the constant in E§.3) to vanish one has

2m
w? e'—1——. (6.9
F=p+3p—— R%e”, (5.5 r
\ o \ Therefore at great distances the gravitational field becomes
—Fe'+(R)*=(p—p)e’, (5.6 the Schwarzschild field, corresponding to
F=p—p. (5.7 2m
AN——, (6.9
The match described by Eq%.5—(5.7) shows that the soli-
ton and stellar problems are really not comparable since Egs.
(5.6) and (5.7) imply . 2m 6.10
- .

R'=0. (5.9

. . N .. Herem s the geometric mass and is related to the usual mass
An additional difference between the two situations lies in 2= . )
24, by mc=kM, wherek is Newton’s constant. Then the

the existence in the stellar case of a distinguished surface . ) :

which the internal and external solutions n?ust match, Wh”eequatlon of motior(4.5 becomes at great distances
in the soliton case there is no corresponding surface. Since
there is little to be learned, at least about the scalar case,
from the stellar analogue, let us return to the soliton problem.

2

2 w oF
R'+—-R' +— R+
r C

RO

(6.1
sincev’ and\’, as well asy and \, all vanish at great dis-
tances.

Equation(6.11) agrees with the special relativistic equa-
tions asr — .

The key question is now whether the finiteness boundary

VI. BOUNDARY CONDITIONS

At large distances we require the vanishingyef) and

P (r):

limR(r)=limR’(r)=0. (6.1  condition can be satisfied at the origin.
r—ee r—e By Eq.(3.6) (v+)) is an even function of. Therefore set
Then this condition and Ed3.6) imply A=l I pr 24 Iy ooe, (6.123
lim (v’ +\")=0 (6.2)
r—e =N+ nr2+n,ré+---. (6.12b
or Then by Eq.(3.6) to lowest order on the left
lim(v+\)=const. (6.3 K w2
e 2(I2+n2)+4(l4+n4)r2=—E[(R’)2+EQ— e*-VRZ}
By Eq.(3.7) (6.13
N N-1 K
lim| ~— +————— F(R%)e|=0. 6.4 2
rel T r 2 )
__ rem2, @ 2
Then 4(1,4ny) K[R (0)*+ R(0) } (6.14
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We require thaR(r) be finite atr=0. We also require that

R’(r) vanish atr=0; otherwise spherical symmetry would

imply a cusp inR(r) atr=0. Therefore

R'(0)=0. (6.15
To satisfy Eqs(6.14) and(6.15 set
2
o+ =g R(0). (6.16
Then also by Eq(6.15
R(r)=ag+ar+--- . (6.17

By Egs. (6.12 and (6.17), Eq. (3.7 now reads to lowest
order

K
3|2+5|4r2—E (FotFir+For?)(1+1g+1,r2)

2,2 1o 2
+Kjasr +Z?(a0+2aoa2r )| =0, (6.18
where
F[R?(r)]=Fg+Fr+F,r2. (6.19
Hence
K 1 o,
F,=0, (6.22

K , Ko?
5'4_ E (F2(1+Io)+F0|2)+ Ka2+ ——zaoaz=0

2cC
(6.22

At this point we must make some assumptions about th

functional F[R?]. Let

B C
F[R3(r)]=A+ = R*+— R%,

5 7 (6.23

where

A=0, C>0, B<O. (6.24)

For comments on this mathematical rather than physical

choice see Secs. X and XI. Then

2 B 2 2
F(agt+ayr )=§ (ag+2apa,r<)

C
+— (a3+4ada,r?)+0(r*) (6.25

4
and
B 2 C 4
FO;E agt Z ag= F(R(O)), (62@
C
F,=Baga,+ = aga,. (6.27

2
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Equations(6.20 and(6.22 now determine\(r) in terms of
R(r) nearr=0. v(r) may then be found from Ed3.6) in

the same region. All of these functions appear well-behaved
nearr =0.

VII. COMPLETE SOLUTIONS

The exact equations that must be satisfied are the gravita-
tional equations of motiofB8.3)—(3.5 and the separate equa-
tion of motion (4.5). These may be restated as

Y 1_e)\ 2

K K w
= + — N_ /2+_ A—vp2 ]
; 2 2Fe 4(R) C2e R<l, (7.
v et—1 K K w?
— o AN | "2 A—rvp2
. . Fe 4[(R) e R } (7.2
R+ 2R A2 (v \ R’+—w2 A
y RAZIAIR Tz e &R

(7.3

The boundary conditions at=0 will be chosen as follows:

A=\'=1"=R'=0 (7.4
By Egs.(3.9), (6.9, and(6.10
N(0)+»(0)<0,
and by Eq.(7.4)
v(0)<(0). (7.5

The three functions\, v, and R are then codetermined by
Eqgs.(7.)—(7.3).

In order to gain some preliminary information about the
complete solution, let us consider the special relativistic

fimit: namely,

A=v=0 (7.6
which corresponds to the vanishing of the energy momentum
tensor of the scalar field or to settitkg=0. In this limit the
equation of motiorn(4.4) or (4.5 becomes

R”+2R’+aF—0 7
F (9_R_ ] ( '7)
whereF differs fromF by replacingd by B= w?/c?+B. Let

us now study the soliton solutions of E..7) with the idea
that they are closely related to the soliton solutions of Eq.
(7.3. To do this we introduce the following functional
H(R,R’):

1 ~
H= E(R’)2+F(R). (7.9
By Eq. (7.7) one has
dH 2
W——F(R )2. (7.9
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FIG. 2. The radial eigensolution and the bounding solutiorss

andp, for the scalar field equation in the special relativistic limit.

FIG. 1. Phase plane for the scalar field equation in the specialhe pointsP, Q, andS in Fig. 1 are represented by the straight

relativistic limit.

The analysis of Eq(7.7) depends on the portrait 6f(R,R")
in the phase planeR,R’ plane [3].
The closed curves in Fig. 1 are lines of constantif H

linesP, Q, andS.

9°H

Wzl at P, Q, and S. (7.19

is represented as height above the phase plane, then th&glows that all three point®, Q, andS are minima in the
points P and S are minima andQ is a saddle point, as we R’ girection. Therefore® and S are minima in both direc-

shall now show.
We have, by Eqs(7.8) and(6.23),

M F - ;
ﬁzﬁzBR'FCR, (7.10
PH F ,
WZWZB+3CR . (7.11

The extrema of in the R direction are given by Eq7.10:

B 1/2
R=0, =i(—6) , (7.12
((92—H> =B<0 (7.13
IR? o ’ '
(aZH) =
W P’S——ZB>0. (7.19

ThereforeQ is a maximum andP,S are minima in theR
direction.
In the R" direction we have

dH

R R0

at P, Q, and S, (7.15

tions andQ is a saddle point. Combining this fact with Eq.
(7.9, we see that a solution curve must always enB,a,
or S independent of its starting point. For example, the
curvess andp spiral into the pointsS and P.

This information in the phase plane may now be carried
over to configuration spad€&ig. 2). The pointsS, P, andQ
in Fig. 1 whereR’ =0 represent the constant solutions of Eq.
(7.7).

The curves, s, andq in Fig. 1 are now shown in Fig. 2
and

lim

Po—So—0

(7.17

{ ROFROS) | b

2

As py andsy are brought closer tqg the oscillatory behav-
ior of p ands recedes to infinity and botph ands approach
the eigensolutiorg, which terminates at the saddle pof@t
with no oscillations. The eigensolutions are thus defined by
the bounding classes of curves that terminatd®aand S
similar to the way that irrationals are defined by the Dede-
kind cut.

In this way the soliton solutions of E(q7.7) may be
found. The same procedure may then be followed to obtain
the corresponding solutions of EZ.3). The soliton solu-
tions of Eq.(7.6) and also of Eq(7.3) are eigensolutions of
a nonlinear differential equation. As such they differ funda-
mentally from the eigensolutions of a ScHioger problem,
since the normalization is not arbitrary but is itself an eigen-
value of the nonlinear equation. The soliton eigensolutions
still determine the mass of the soliton just as the Sdimger
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FIG. 4. \ and v corresponding to the eigensolution in Figure

R 3(b).
dv e'-1 6 dy \?
= _ _7 ~2 \N—1y,2
dx x 4% ( dx Tote y}
1 B , 7Y 4
—Exe” Ey +Zy , (7.19
d?y [1-e* 1(B , v ,| 2]dy
o | Tx T2l 2YTaY ) X dx
_[B/y+ ,yry3]e)\_e}\7v&)2y' (720)
where
o
x=rlry, ,8:71,//38,
=yl _ K 2c 5—K 2 7.2
) ; y =l i, 7—?1/’0 » 052 o (7.21)
FIG. 3. (@ Numerical non-noding bounding solutions for the &= wr,/c, ﬂ’:rgB, 'y'=r§1//(2)C.

scalar equation coupled to gravity. The values of the parameters in

Eg. (7.2) are §=-0.0001 (since K is negative, g'=—0.001, Herer, is a fundamental length anf, is a fundamental real

¥ =0.0005, and»2=0.0005. (b) Eigensolution with assumed field strength. There is a large class of solutions lying in the
asymptotic form, corresponding to the bounding solution&jn parameter spaces(vy, s, o).

eigensolutions determine the energy of an atom. In general VIIl. NUMERICAL SOLUTIONS
the soliton eigensolutions node in the same way as the

Schralinger wave functions We have obtained numerical solutions of the coupled

We shall look for structures in which the solutions of Eq. €9uations(7.18—(7.20 with boundary condition$7.4),(7.5

(7.3 approximate the solutions of E7.7). Since these so- and different initial values'oR(r). The parameters in Eq
lutions must be determined numerically, let us next put Eqs(7'23 are chosen approprlatel_y to maximize the sensitivity
(7.1—(7.3) in dimensionless form as follows: and convergence of the numerical algorithm. In particular we

take @2<B’, to obtain the bounding solutions.
We find solutions similar in behavior to the special rela-

dv 1-e* o [[dy\* ., tivistic case presented in Fig. 2. As the initial valueRgf)
ax- x  aXlax) Tee Y is increased we make the transition from a solution that tends
towards pointS to one that tends toward poiR. These
+} xeh E y2+ v v (7.18 “bounding solutions” are shown in Fig.(8). By bringing
2 2 470 ' the initial pointspy and s, together, one obtains the initial
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satisfied. The results are presented in Fig. 4.

R Continuing to increase the initial value B{r) for a fixed
value of v(r) we find noding bounding solutions that termi-
nate at the two minima. Figurd& shows a case that termi-
nates at pointS while Fig. 5b) shows the corresponding
solution that terminates at poift. As in the nodeless case
by bringing the initial points of the bounding solutions to-
gether we define a noding eigensolution. The procedure
works as well here as for the special relativistic case.

IX. MASS

At the special relativistic level of description the mass of
s a soliton is the integral of the energy density:

r
V Mc?= J Oood X, 9.1

where 6 is the energy density of a Lorentz invariant field.
(@) When the source field is locked to the gravitational field
in a composite structure, the contribution of the gravitational
field to the mass must be taken into account. Since the en-
ergy and momentum of the gravitational field cannot be lo-
calized, however, there is no general relativistic tensor cor-
responding to thé,,, , either for the gravitational field itself

of for the source fields. Instead there is a so-called pseudo-
energy-momentum tensor; and although this may be con-
structed in a variety of ways, it always leads, upon integra-
tion, to the same energy-momentum vector. For example,
there is the original choice of Einstein:

/\ r I'=\—gg"{leré,—rars} (9.2)

in terms of which the total conserved energy-momentum
vector of the soliton is

P — 1[ ar 0
TR M g

) integrated over all space. If the metric is independent of
time, this three-dimensional integral may be converted to the
FIG. 5. (a) Numerical noding i=1) bounding solution which  surface integral
terminates at poing, for the scalar equation coupled to gravity.

Y1dx 9.3

Same values for the parameters as in Figlb3.Numerical noding _ 1 ar o g

(n=1) bounding solution which terminates at pof for the sca- Pu=- K < W g"n;dS, (9.4)
lar equation coupled to gravity. Same values for the parameters as

in Fig. 3. where$S? is the sphere at infinity.

_ _ . _ In particular the energy is
value of R(r) belonging to an eigensolution. We obtain the

eigensolution in Fig. @) in the following manner. We de- 1 ar
finer as the value of for which the two bounding solutions Po=~— K fsz (a9
start to separate. Far<r. we take the average of the two .
bounding solutions as described in E@.17. Forr>r;. we  sinceg* is diagonal in our work.

.9% 9%7;ds, 9.5

assume the approximate asymptotic foRmAe 2'/r. The The integrand may be simplified by the observafi6h
parametera and A are found by matching the values Bf

andR’ atr=r. To find the functions\(r) and»(r) corre- ar \/_ oi ir op_ i
sponding to the eigensolution, we use the asymptotic formgg 0% g% "2 [900959” ~ 9009’ "Gy 997"~ 9795 G00l -
(6.9 and(6.10 as initial values for the integration which is (9.6)

performed backwards starting at=7198.5, andfeeding

the values for the eigensolution previously obtained. The valTo complete the evaluation of the energy integral one needs
ues form in the asymptotic form$6.9) and(6.10 and forr, the form of the metric on the sphere at infinity. We have
are constrained by requiring that the conditiong at0 are  already seen that and », and thereforeg,,,, acquire the



57 GENERAL RELATIVISTIC SOLITONS 7325

Schwarzschild form at great distances. The Schwarzschild A
metric may in turn be written in the following isotropic form: v= r—i‘ (10.5
s=1
1 m\
T 2p m \4 e Ps
A= rrl: dt?—| 1+ 2 (dx2+dy?+dZ?). R=— 520 s (10.6
1+ —
2p By Egs.(6.3), (6.7), and(6.9), let us approximate Eq$10.4)
9.7 and (10.5 by
In terms of this metric, one has by E@®.6) om
LT , N (1 m ) 08 A= T+Ez, (10.7
g oo, éM—73|l-5~ :
d(d; 2
(9;9%) p p —om a
and therefore by Eq9.5) V=TT o2 (10.8
Po=mc*/k=M. (9.9  The solution of the linearized equati¢h.3) in flat space is a
i , ) . spherical Hankel function:
According to Eq.(6.9) m is determined by the asymptotic
shape of the curva(r) in accordance with the equivalence e
principle. R(N)=——: (10.9a
X. STABILITY AND MASS Let us carryR to the same order in~ ! as\ and v. Then
The Lagrangian of the nonlinear scalar field in flat spaceR(r) becomes
is e P1
R(r)= . (1+T , (10.9h
1
L= 2 9" 9. bon g™ +F(|4l?) (10.3 _ _
wherea andp, are determined by the exact solutions of the
B nonlinear equatior(7.3).
=T-V. (102 We may satisfy the linearize(7.3) to orderr ~2 by sub-

The Hamiltonian density is stituting Eqs.(10.7), (10.8, and(10.9b in this equation. We

find
EHZ_F:E Mm2+v (10.3 4am al w? 2m 2
2 2 ’ ’ ex%—-f——z —2R+—2R,+(R”+—R,)
r rejc r r
ThenF=—V whereV is the usual potential. With the choice om  a
(6.24) the coefficient oR* in V is negative so tha¥ is not +ex;{ TJF? BR=0, (10.10

positive definite and consequeniljis not physically accept-
able at the quantum level as a free field. In our work, how-
ever, ¢ is not a free field; it is instead bound to the gravita-
tional field and at the classical level it is only necessary that 2p,a
the complete structure representing the soliton have a posi- R"+ T R’=(a2+ 7 )R
tive mass. Strictly speaking the flat space limit is unphysical
since it is not possible to turn off the universally coupled by Eq.(10.9b to terms of order 2. Then Eq.(10.10 im-
gravitational field. Alternatively the potential functidmay plies the following relation:

be made positive definite by addind=4 term with a positive

here

(10.12)

N

4m a-+8m?

coefficient. This would add two new saddle points outside 2pia | 2ma w
the separatrix but would not essentially change the general a+ 2 | T2 - r2 2
argument, although it would limit the number of eigensolu-
tions be restricting the initial poinR(0) to lie between the 2m a+4m?
separatrix and the new saddle point. ittt =2 } 0 (10.12
Let us next compute the mass, which is now determined
by Egs.(9.9 and(6.7) rather than Eq(9.1). The masses of to the same order, or
the various noding solutions can therefore be read off from )
the A curves at large values of the radius. The three func- w
tions,\, v, R, may be expanded in powers of Ht larger as a’+ oz TB=0-B<0, (10.13
follows:
A w? w? 1 ) w?
\=S |_S 104 4m C2+2mB—O—> = 2B and a’=z
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0w’ B w?
2pie—2matal Z+5 +8m2€2—+2m28=0.
(10.15

By Egs.(10.14 and(10.15

p;—m+2m?a=0 (10.16
and

1 1/;

mZE[1+(1—8p1a) 2]. (10.17
If p1=0,
_ 1 10.1
and
1
R(r)~ - e "/m (10.19
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tions, called soliton stars. The present paper, on the other
hand, was stimulated by the more recent string papers on
solitonic black holes and our conjecture that there may be
regular nontopological solitons in either these theories or in
other fundamental completions of Einstein theory. As a pre-
liminary to a more extended study we have based our work
on a nonlinear field chosen for its simplicity rather than for
its relation to a more fundamental theory.

The particular model studied in this paper was chosen in
order to examine the influence of the gravitational field on
the structure of a previously studied special relativistic soli-
ton [3]. The present work does succeed in replicating the
basic features of the special relativistic cdaesingularity-
free lump with a discrete spectrum of eignesolutions. It also
turns out that the method of analysis previously employed in
the special relativistic case may be extended to the general
relativistic problem.

The main contribution of the present paper probably turns
on this last point, since the special method employed in the
1951 paper was restricted to a two-dimensional phase space
while the current problem requires a six-dimensional phase

Hence the massn, fixes the rate of decrease of both the space. Although it is still not clear how to construct a mul-

gravitational field\(r) and the matter fieldR(r) at large

tidimensional dissipative function generaliziiy8), we now

distances from the soliton. The valuepf, as well as all the ~know that exactly the same numerical procedure can be em-
ps, are determined bRR(0). Hence the mass of the soliton is ployed to determine the eigenfunctions and eigenvalues of

fixed by the eigenvalu®k,(0), wheren is the number of

nodes.

the nonlinear scalar equation even when it is one member of
a set of coupled differential equations. The extension of the

Note also that these conclusions are compatible with th@umerical analysis in this way opens up the possibility of

analysis of Sec. VII which requires th&=w?/c?+B be
negative.

XI. DISCUSSION

discussion more complex fields.

Finally we want to emphasize that the arguments of the
present paper go through for nonlinear potentials with a
lower bound, as remarked in the paragraph on stability.

Just as in a Schdinger eigenvalue problem, we obtain

After completing this investigation we have learned of anthe eigenfunctions by rejecting the irregular solutions. The

extensive literature on boson sta. Although the concep-

resulting spectrum of eigenvaluémassekis evidently very

tual model employed in all of this literature is formally very sensitive to the choice of the total field. Since the matter field
similar to the model studied in our paper, the particular redin this paper was chosen for its simplicity and for easy com-
search closest to our work was carried out by Lee and colparison with the earlier study of the special relativistic case,
laboratord 8] who have studied a class of general relativisticand since it does not emerge from a fundamental theory, this
solitons generated by nonlinear scalar fields. They employ aodel is by itself of mainly mathematical interest. On the
different form of the self-interaction and more importantly a other hand, our results as well as the results of éeal. and
method of analysis completely different from that describedothers makes it likely that nontopological solitons exist ei-
in our paper. On the basis of their calculations they were ledher in string models or in other fundamental completions of

to discuss the possibility of cold, stable stellar configura-gravitational theon|9].
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