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We perform fully relativistic calculations of binary neutron stars in corotating, circular orbit. While New-
tonian gravity allows for a strict equilibrium, a relativistic binary system emits gravitational radiation, causing
the system to lose energy and slowly spiral inwards. However, since inspiral occurs on a time scale much
longer than the orbital period, we can treat the binary to be in quasiequilibrium. In this approximation, we
integrate a subset of the Einstein equations coupled to the relativistic equation of hydrostatic equilibrium to
solve the initial value problem for binaries of arbitrary separation. We adopt a polytropic equation of state to
determine the structure and maximum mass of neutron stars in close binaries for polytropic ndice$.5
and 2. We construct sequences of constant rest-mass and locate turning points along energy equilibrium curves
to identify the onset of orbital instability. In particular, we locate the innermost stable circular orbit and its
angular velocity. We construct the first contact binary systems in full general relativity. These arise whenever
the equation of state is sufficiently soft1.5). A radial stability analysis reveals no tendency for neutron
stars in close binaries to collapse to black holes prior to mef§&556-282(198)02112-2

PACS numbg(s): 04.40.Dq, 04.20.Ex, 04.25.Dm, 97.60.Jd

[. INTRODUCTION Many investigators have also studied the binary problem
within a post-Newtonian framework. As long as the stars are
Neutron star binaries are interesting for numerous reawell separated they can be approximated by point sources. In
sons. Several neutron star binary systems are known to exittis case hydrodynamical effects are neglected and the gravi-
even within our own galaxy1]. For some of these systems tational waveform can be calculated to second post-
(including PSR B1913 16, B1534+12) general relativistic Newtonian order(see [9] and references therginPost-
effects in the binary orbit have been measured to high preciNewtonian calculations that do take into account
sion[2,3]. Binary neutron stars are believed to be among thénydrodynamical effects are also under way: Shilhaej and
most promising sources of gravitational waves for detector3aniguchi and Shibat@1l1] have constructed equilibrium
such as the Laser Interferometric Gravitational Wave Obsereonfigurations and Oohara and Nakam[&d] have studied
vatory (LIGO), VIRGO and GEO. This circumstance has binary coalescence. Ldil3], Lai and Wiseman14] and
triggered multiple efforts to predict the gravitational wave- Lombardi, Rasio and Shapifd5] have constructed binary
form emitted during the inspiral and the final plunge of theequilibrium configurations in an ellipsoidal approximation.
two stars. More fundamentally, the two-body problem is one Fully general relativistic treatments of the problem are
of the outstanding unsolved problems in classical generatomplicated by several factors, including the non-linearity of
relativity. the partial differential equations and the requirement of very
Considerable effort has gone into understanding binaryarge computational resources to solve the coupled system.
neutron stars. Most of this work has been performed withinThese simulations are currently only in their infan@2].
the framework of Newtonian hydrodynamics. Hachisu andRecently, Wilson, Mathews and Marrondtti6] (WMM) re-
Eriguchi[4] constructed hydrostatic equilibrium of binaries ported results obtained with a relativistic numerical code.
in synchronized circular orbits. Rasio and Shapfpstudied  Their code assumed several simplifying physical and math-
binary equilibrium configurations and their dynamical evolu-ematical approximations. Their results suggest that the cen-
tion, including the merger of the two stars. The coalescencéal densities of the stars increase as the stars approach each
of neutron star binaries has also been investigated by Shother and that massive neutron stars individually collapse to
bata, Nakamura and Oohaf@], Zhuge, Centrella and Mc- black holes prior to merger. WMM therefore find that in
Millan [7], Ruffert, Janka and Scfex [8] and other investi- general relativity, the presence of a companion star and its
gators. tidal field tends to destabilize the stars in a binary system.
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This conclusion is opposite to what is expected from New-ealistic assumption. Even if the stars in a binary started out
tonian [17], post-Newtonian[13—15,18, perturbative[19] corotating at a large separation, maintaining this corotation
and matched asymptotic expansi@®,21] treatments of the during inspiral would require a larger viscosity than is pos-
problem. WMM also find that just prior to plunge and sible in neutron starf25,26. Instead, it is more likely that
merger, their binary system has a total angular momenturthe circulation of the stars is conserved during inspiral. How-
too large to form a Kerr black holésee the discussion in eyer, our assumption of corotation greatly simplifies the so-
[22)). ] o lution of the problem(see Sec. Il Band it is appropriate to

In this paper we construct fully relativistic binary neutron (ackje this simpler case first. Even in Newtonian theory, the
stars in quasiequilibrium circular orbitquasi™-equilibrium o hstryction of nonsynchronous binaries is difficult because
because these binaries are not strictly stationary: because gf 4. ,nknown velocity field; only in ellipsoidal models can
Fh? sI(_)w e_zmission of gra_vitati_onal ra_d_iat_ion, general relatiV'one build nonsynchronous a:s easily as synchronous binaries
istic binaries cannot be in strict equilibrigniThese models [15]. Constructing more realistic sequences of constant cir-

are interesting in their own right and provide initial data forculation requires a dvnamical treatment. as one marches in-
future dynamical evolution calculations. We study the struc- q L dy ; '
ard from one radius to the next using the full coupled set of

ture of the neutron stars in these close binary systems a 0o : ) i
determine, for example, their maximum allowed equilibrium leld and .hydrod'ynam|'c evolution equations to guarantee
mass. In addition, we build quasiequilibrium binary se-COnservation of circulation. o _

quences of constant rest-mass. These sequences approximatd’ Newtonian gravity, a strict equilibrium solution for two
evolutionary trajectories of neutron star binaries undergoinguch stars in a synchronized circular orbit always exists, ex-
slow inspiral via the generation of gravitational radiation. By ept for very stiff equations of statevith n=<1.5) near con-
locating the turning points in their total energy versus sepatact[4]. Since this solution is stationary, the hydrodynamical
ration curves, we can identify the onset of orbital instability equations for the matter reduce to a single Bernoulli integral,
at the innermost stable circular orflSCO) and the orbital ~which greatly simplifies the problerfsee Section Il ¢
parameters at that critical radius. We have presented prelimi- Because of the emission of gravitational waves, a binary
nary results if23], and analyzed the stability of these bina- in general relativity cannot be in strict equilibrium. However,
ries in[24]. We do not find any evidence for a destabilization up to the ISCO, the time scale for orbital decay by radiation
of neutron stars in close binaries. will be much longer than the orbital period, so that the binary

The purpose of this paper is to discuss details of our apcan be considered to be in “quasiequilibrium.” This allows
proximations, equations and numerical method, and tqs to neglect both gravitational waves and wave-induced de-
present more complete results. The paper is organized &gations from a circular orbit to a good approximation. The
follows: In Sec. Il we discuss all the underlying assumptionsyyality of this approximation can be estimated from the ratio
and approximations made in our calculations. In Sec. Il W&yt the orbital time scale to the time scale for emission of
derive all the equations describing the quasiequilibrium ofy o jtational radiation. For typical neutron star binaries out-
r_eIat|V|st|c binary neutron stars. The numencal mplementa—side the ISCO we havéyp/t,.q~(Rs/R)(v/c)5~10"5.
tion of these equations is descrlbed. In Sec.' IV. We PreseNlience our approximatiofwhich in fact is exact up to 2.5
results for several different polytropic equations of state inpgs Newtonian ordgis very reliable. A similar approxima-
Sec. V and briefly summarize our findings in Sec. VI. Weyjq, is often used in stellar evolution calculations: there the
also include an Appendix with tabulated data for some of OUfg|eyant evolution time scales are the nuclear or Kelvin-
sequences. Helmholtz time scales, while the stars maintéguasjhy-
drostatic equilibrium on a dynamical time scale.

We attempt to minimize the gravitational wave content by
choosing the spatial metric to be conformally flat, as in
Throughout this paper we will assume that the two neuWMM (see alsd27]). Note that this still allows us to con-
tron stars have equal mass, are corotating in a circular orbgtruct valid solutions to the initial value equations. As will be
and that the matter obeys a polytropic equation of state. shown in Sec. Il A, the field equations then reduce to a set

Choosing a polytropic equation of state permits a wideof coupled, quasilinear elliptic equations for the lapse, the
survey of models as a function of the stiffness of the equashift and the conformal factor. If we neglect small deviations
tion of state and also simplifies the integration of the mattefrom circular orbit, the fluid flow is again stationary, and the
equation(33). However, polytropic equations could be easily hydrodynamical equations again reduce to a relativistic Ber-
replaced by more realistic cold equations of state. noulli integral (see Sec. Il B.

Restricting our analysis to stars with equal masses allows The conformal approximation has been carefully tested in
us to exploit spatial symmetry and solve the problem in jusiRef. [28] for a single rotating star in stationary equilibrium,
one octant in our Cartesian grigee Sec. lll A below How-  which is the simplest numerical example in relativity for
ever, generalizing our method to stars of unequal mass iwhich the equilibrium solution deviates from conformal flat-
straightforward. Nevertheless, it is interesting to note that alhess. In Ref[28] it was shown that by assuming conformal
well-determined masses of neutron stars in close binary syslatness, the resulting deviations from the exact equilibrium
tems have masses remarkably close tdMlz4(see, for ex-  solution were typically much smaller than 1%, even for
ample,[1]). Focussing on stars with equal mass may therehighly relativistic stars. This can be understood simply: de-
fore be physically reasonable as well as numericallyviations of the true equilibrium solution from conformal flat-
convenient. ness vanish identically in both the Newtonian and first Post-

Demanding that the stars be corotating is a much lesblewtonian limits, and so even if they arise at higher order,

Il. BASIC ASSUMPTIONS AND APPROXIMATIONS
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they are negligibly small in the neutron star configurations ofdelta 5;; . Note that this choice can always be made to find
relevance here. initial data on one time slice without any approximation. Our
Conformally flat solutions yield numerically exact solu- approximation lies in assuming that the metric wiimain

tions to the initial valug(constraint equations of Einstein’'s conformally flat for all times during the inspiral. Equation
equations. These solutions are in quasiequilibrium only4) then reduces t31]

within our approximations, and a self-consistent evolution of
these data with the full Einstein equations would reveal de-
viations from true equilibrium. However, as we have argued
above, these deviations will be very small outside the ISCO.
In this sense we can construct sequences of initial value con-
figurations, which approximate the evolutionary inspiral of
neutron star binaries at any given moment, prior to plunge. We now write the metric as

2
2aKij=—Diwj—Dja)i+§7ijDkwk. (6)

Ill. BASIC EQUATIONS 4
_ _ Y=Y, (7)
A. Field equations

To construct a numerical model of a binary system we . : .
employ the Arnowitt-Deser-MisnefADM) decomposition whereW¥ is th_e conforma_l factor. The latter is determined by
of Einstein’s equations of general relativig9]. The deriva- the Hamiltonian constraint
tion of our adopted equations closely follows the derivation
in [28] for rotating stars. ki
We write the metric in the general form R=K;K"=16mp, ®

ds?= — a2dt2+ yij(dxi — w'dt)(dXi— widt). (1) where the source term is defined by
=nnA
Throughout the paper Latin indices will run from 1 to 3, pP=NINTT o ©)
whereas Greek indices will run from 0 to 3. We also Get
=c=1. By definition of the extrinsic curvatur&;;, the

three-metricy;; satisfies the dynamical equation

Heren is the normal vector to &=const slice and’ 4 is
the stress-energy tensor. For the me(rig the Ricci scalar
R in Eq. (8) reduces to

yij= —2aK;j—Djo;—Djw;, 2 R= -8V 5V2y, (10

where D; denotes the covariant derivative associated with, here v2

- X R is the flat space Laplacian associated wit).
vij - This equation can be decomposed into its trace

Inserting this into Eq(8) we find
dIny?=— aK—-D; ', (3

1 o~
. , VA =— WK KT =27%5p. (11)
where y=dety;; andK=K';, and its trace-free part 8

y . 1 Here we have transforme! according to
Yoy~ 37ij):_2a(Kij_§7in —Djwj—Djo; . )
Kl =10kl (12)
2
+ §'yijDkwk. (4)  which, from EQg.(6), now satisfies
. . . . ~ el 2
In the following we will choose maximal slicing so that Kil=— 5a Viel+Vie — §f'lvkwk . (13
o
K=0. 5

Inserting this expression into the momentum constraint

We expect the gravitational wave content of the spacetime
to be small(see Sec. )| and we now want to use this expec-
tation to simplify the problem. Unfortunately, the physical
fields cannot be cleanly separated into freely specifiable dy*
namical degrees of freedom and dependent quantities, which
are determined by the constraint equations. However, such V2w'+ ZV'(V;0!)=2VIn(a¥¢)K" - 16ma¥?j'.
an identification is possible with the help of a conformal 3
decomposition30]. We can therefore attempt to minimize
the gra_lvitational wave content of tighysica) spacetime by  are the source teri is given by
removing the dynamicalor “wave”) degrees of freedom
from the conformal fields. This can be achieved by choosing jo=— yaﬁnyTﬁ’/. (16)
the three-metricy;; to be conformally flat, so thay™ *3y;,
=fij, wheref;; is the flat space metric. We will later use This equation can be simplified by writing the shift vector as
Cartesian coordinates, for whidly becomes the Kronecker a sum of a vector and a gradigi32]:

DK =8j! (14)

ields

(15
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TABLE |. Boundary conditions for the outer boundaries ( B. Matter equations
—o) and on the coordinate planes in Cartesian coordinates. The
equatorial plane is taken to be the-0 plane and the stars are taken
to be aligned with the-axis.

As we have discussed in Sec. I, we neglect wave-induced
deviations from a strictly periodic, circular orbit, and also
assume the stars to be corotating. In Cartesian coordinates
we can choose the equatorial plane to beytked plane, so

r—oo x=0 y=0 z=0 K .
that the fluid four velocity then takes the form
Gu% 3,G*=0 3,G*=0 G*=0 u*=u'(1,02,0—Qx), (22)
r
vz where () is the constant angular velocity. We introduce a
GV~—); GY=0 GY=0 GY=0 vector
r
X gaz (012101_ X)! (23)
G~ ~ G?=0 3,G?=0 3,6%=0
r’ in terms of which the four-velocity can also be written
XZ [e3 a o o
BNﬁ B=0 B =0 B=0 ut=u'(an®+ Q&*— w%). (24
1 Definev to be the relative velocity between the matter and a
a-1~ dxa=0 dya=0 d,a=0 normal observer:
) ! a¥=0 o ¥=0 3,¥=0 1
—l~7 X Y z ————=—n,u*=au', (25)
(1_02)1/2
1 Then, fromu“u,=—1, we find
w'=G'= 7V'B. (17) .
v2=—[(02- ")+ (0))*+(Qx+0?)?].  (26)
Equation(15) can then be replaced by the two equations a
VZG‘=2VjIn(a\I"6)R” —167ra\If4ji (18) For a perfect fluid the stress energy tensor is
and T =(po+pi+P)uuP+Pg*?, (27

) i where pq is the rest-mass density; is the internal energy
VB=V,G'. (19 density andP is the pressure. The source tepmn Eq. (9)

. . . can then be written
Imposing the full set of dynamical equations for the evo-

lution of K;; would be inconsistent with Eq6) and our +p 4P

. . . . PoT Pi
approximation thaty; remains conformally flat at all times. p=——— P, (28
However, in addition to Eq(5) we can always require that 1-v

the maximal slicing condition be preserveldk =0. Taking

the trace of the time evolution equation #y; together with the momentum sourcg in Eg. (16) becomes

Eqg. (11) then yields an equation for the lapse: .i:(Po+Pi+ P) (QE—w') 29
7 o~ o 1-02
V(a¥)=aV¥ g\If‘sKin" +27V4(p+2S)|. (20
andS in Eq. (21) is given by
Here the source terr8 is defined by 5
v
o y”Ti,- . 21) S=(po+pi+P) 1,2 +3P. (30)
Equationg(11), (18), (19) and(20) together with the mat- In order to describe the matter close to equilibrium we

ter equationgsee the next sectioorm a system of coupled, will use two of our basic assumptions. Neglecting deviations
nonlinear elliptic equations, which have to be solved iterafrom a strictly periodic circular orbit and taking the two stars
tively. The boundary conditions follow from asymptotic flat- to be corotating is equivalent to assuming that the fluid four-
ness. Following Bowefi33], the exterior solution to the field velocity is proportional to a Killing vector
equations can be expanded in terms of multipole moments.

We adopt as outer boundary conditions the falloff behavior d d

of the lowest order non-vanishing multipole moments. Be- EJFQﬁ'

cause of the symmetries of the problem it is possible to solve

it in only one octant of a Cartesian grid. The resulting bound4n this approximation, the matter equations can be integrated
ary conditions on the coordinate planes together with thenalytically, which yields the relativistic Bernoulli integral
outer boundary conditions are summarized in Table I. (see, e.q.[34])

(31)
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ut (34). It is therefore useful to nondimensionalize all equations
T, = const. (32)  and eliminatex from the problem. This means that given the
polytropic indexn, we can solve the equations once and use
Hereh is the enthalpy: the results for arbitrary. Sincex™? has units_of Iength,ive
can introduce dimensionless coordinatés= k™%, x
=k "2x and the same foy andz. The derivative operator
h= exp( f (33  scales asV;=«"2V; and the extrinsic curvature aK'
p0+p.+ P =«k"?Kli. The angular velocity) transforms according to
Q=«"20. We also rescalB=x~"2B and&'= x "¢, Put-
For a po|ytropic equation of state tlng terms together we find the Hamiltonian constraint
1+ 1/n
;1pP=kp} (34) VZ«J/:—%W”EK]—ZWWW 1+(1+2n)q_ )
where « is the polytropic constant and the polytropic in- 1-v (44

dex, the enthalpy becomes

_ potpitP
Po '

(39

It is very useful to introduce a dimensionless ratio

_° (36)
a po’
in terms of which we can express
po=k "q" (37)
pi=nk "g"*1 (39
P=k "g"*?! (39

Note that in the Newtonian limit we hawp<1. Inserting the
last three expressions together with E@5) and (35) into
Eq. (32) we find

1 / 1+C )
, (40

a=717 n\ a(l_UZ)lIZ_

where we have written the constant in E§2) as 1+C.
Also, we useq to rewrite the source term28)—(30) as

ool 1T (1+n)q
p=k_"q (1_—112—(1) (41
i [1+(1+n)q] Q&)
: o 1-v?
(42
B (1 (1+n)q
p+2S=xk""g" _—(1+202)+5q
(43

the lapse equation

e~ E— ~
V2a=a§\1’78Kin” +27Ta\1,4qn

1+ 202
(1+(n+1)q) .2 +5q], (45
and the momentum constraint equations
V2G'=—2V(a¥ ~")K'
+n)g — .
—1677\P4q“—( )q( Q& -w') (46
1-v?
and
V’B=V,G' (47)
Here we have used
a=Va. (49

Equations(44)—(47) together with Eq.(40) form a set of

seven equations for the seven unknowinse, G', B andq.

More specifically, we have to find a solution to six coupled,
quasilinear elliptic equations for the gravitational fields, to-
gether with one algebraic equation for the matket.and o'

in the above expressions can be expressed in terms of the
unknowns with the help of Eq$13) and(17).

C. Newtonian limit

In this section we will briefly show that in the Newtonian
limit the above equations approach the expected form. In
particular we expect

a—e®~1+d, (49)

Note that physical dimensions enter our problem onlywhere® is the Newtonian potential. Also, in the Newtonian

through the polytropic constant in the equation of state

limit ®,C,v<1, so that Eq(40) becomes



7304 BAUMGARTE, COOK, SCHEEL, SHAPIRO, AND TEUKOLSKY 57

rs, B=BIrg, Q=0rg. (56)

a= n+1

1
C- CI>+—v )

(50) Equationg40) and(44)—(47) are left unchanged, except that
T n+1

the matter source terms in Eq€44)—(46) have to be multi-

. - - il . .
Here we have use@'=0 (absence of frame dragging in the plied byrj andV; has to.b_e replaced by, . This rescallng
Newtonian limip. This limit, by Eq. (13), implies Ki=0. tpen allows us to determirrg as well as the angular velocity
With q<1, Eq.(44) now reduces to Q) and the matter constai@ via an iteration process that
usesdmay andz, as the two input parameters.
V2P = —27P5q". (51) The iteration scheme starts with an initial guess for the
rest density distribution. We chose the density profile of an
Identifying isolated, spherical star; i.e., we integrate the Tolman-
Oppenheimer-Volkoff equations for the central densjy,

[ and rescale the profile such that it fits betwegr-z, and

Ve -1 2 (52) rg=1. For this matter distribution we can then find a solu-
tion to the field equation&44)—(47) using a full approxima-
tion storage multigrid schem@ee, e.g.[39)).
yields, to leading order, the Poisson equation Once a solution to the field equations has converged to an
adequate accuracy on the finest level of the grid hierarchy,
we evaluate Eq(40) at three different locations to find new

C-—d+ Qz(x +2%)|.

V2d=4mp,. (53 values for the constanfg, C andr_B as well as a new density
distribution. To do so we first search for the maximum den-
Equation(45) gives the same limit. sity along thez-axis [40] and call this locatiorr . We can

then evaluate E(40) at the three points,, rg andrc,
IV. NUMERICAL METHOD

A. Constructing quasiequilibrium models 5 4 AN 212
: Lo . +(n+ - - =1+
Corotating, equal mass binaries in circular orbits form a [1+(n+D)g]la”—THQ2z=w)7) 1+c. &2

two-parameter family(just like single, uniformly rotating
starg. A particular configuration is uniquely determined by Y= e
two independent parameters. For computational purposes \{\fhere we have used=y=w 0 on thez-axis. Note
is particularly convenient to choose these parameters to H@at atr , andrg the density vanisheg=0. This set, at first
the maximum density,,.« and the relative separation of the Sight, looks like three equations for the two unknasand
stars[35]. C. However, changing the scaling parametgrwill also

As mentioned in Sec. lll, we choose the stars to orbit inchange the gravitational fields, so thatand¥ will implic-
they=0 plane and to be aligned with tlzeaxis. In this case itly depend onrg. We determine howx and¥ scale from
the surface of one star will intersect theaxis at two differ-  the Newtonian limit. Rescaling the Poisson equation shows

ent places. We will label the intersection closer to the origing, 4t the Newtonian potentiab scales withrZ. Equations
of the coordinate system, and the one further ouly. The  (49) and(52) therefore suggest that and ¥ should be res-
ratio caled according to

Zp=rplrg (54)

2

a=(a)s, W=(¥) 82 (58)

then parametrizes the relative separation of the stars. We cz? fina th | lati N th Ids th
construct an algorithm for solving the gravitational and mat-"S€"ting these scale relations into E§?) then yields three

ter equations by modifying the algorithm used by severaBquations for the three constafits C andrg, which can be
authors for single rotating staf47,36—38. Making this al-  Solved iteratively. Once the constants have been determined

gorithm stable requires rescaling the coordinates with respe#fe new matter distribution can be calculated using (EQ).
The iteration can then be continued by finding the new
to rg so that
fields for the new matter distribution. At each step we calcu-
late the residuals of Eq$44)—(47) and integrate these over
A — A — A — the numerical grid. We typically stop the iteration when the
x=xlrg y=ylrg z=1rg, (55 sum of these six integrated residuals is smaller than about
1% of the estimated truncation error on the finest grid.
. _ Once an iteration has been completed, we can calculate
which means that the outer edge of the matter will always b&everal physical quantities that characterize the configura-
atrg=1. We also rescale tion. The total rest-masl g o is
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FIG. 1. Rest-density contours in the equatorial plane for a neu- 0 01 02 03 04 05
tron star binary close to the ISCO. Each star has a rest-mass of Pe

I\WO:O.169, corresponding to a compaction in isolation of

(M/R).,=0.175. The contours show isosurfaces of the rest-densit¥ FIG. 2. Rest-masil, versus maximum density; for separa-

in decreasing factors of 0.556.

Mo tor= fMpandsza: fMpout\/—gd3x, (59

where the subscripM denotes integration over the support
of the matter and/—g=a¥°®. In nondimensional form we

can therefore write
N — ,.—n/2 _ 3 6, ,t~N433
MO,tot_ K MO,tOt_ rBfMa‘P u q d X. (60)

The total mass-energyADM mas9 is

M :—ifﬁvi«vd@:—if V2wdix. (61
et 2n J. 21 ) '

ions z,=0.3 (bottom solid ling, 0.2, 0.1 and 0.Qtop line). The
dashed line is the Oppenheimer-Volkoff result fon& 1.0 poly-
trope. The inset is a blowup of the region around the maximum
mass.

€yi e~ €y P~
Jo= g jng'K"'dZSF SL:LOXJWKkldSX (64)

(see, e.9.[32]). This is the total angular momentum con-
tained in the spacetime and includes both the orbital and spin

angular momentum of the stars. UsifigkX'=¥1D KX as
well as the momentum constrai(it4), this can be rewritten

Jmt=f \Iflo(zjx—sz)d3x=J W%, £jldx, (65)
M M

M, f [Hz]
Using the Hamiltonian constraiti44) this can be rewritten O(L ‘ .2?0. , .4?0‘ ‘ ‘6?0‘ : .8?8
1 = F_005 n=L0 ]
— -7% . Kiig3 ~ - o -
| [ Sl ]
= -001[ 02
5 o 1T (1+n)q 3 ~ C TTrh—— "% ]
+ '\Pqn —2—q dX (62) Connnnn b o b
M 1_U 005 i_‘ T T | T T T ‘ T T T | T T T |_‘;+
_ . . 0.04 - - 02 3
or, in nondimensional form, 003 E 3
— 0.02 & — =
- 's TR B3l 001 -~ E
MtOtEK nIZMtOtzl%fmqf 7K|JKIJd3X 0 EII\IIO\>IOI\5‘|H|\\IHl\IIHII\Il\IHIHHE
0 0.01 0.02 003 0.04
M,Q
1+(1+n ~
+?gf \If5q" (—2)q —q) d3x. (63 FIG. 3. Binding energy and angular momentu_m as a function of
M 1-v the angular velocity for several different valuesMf. The curves

Equation(63) is the actual form we use to evaludfl,. The
angular momentum is aligned with theaxis and can be
defined as

are labeled by the compactioM(R)., of the stars in isolation at
infinity, starting with 0.05 and increasing in steps of 0.0025 up to
0.2. The maximum compaction of a stable, isolated, non-rotating
n=1.0 polytrope is 0.217. The upper label gives the orbital fre-
qguency for stars with a rest-mass of .5
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where we have also used definiti¢@3). Finally, we can dM o= Qd s, (67)

substitute Eq(42) for j' and write the angular momentum in

the nondimensional form
which holds along constant rest-mass sequences. To evaluate
Eq. (67), we have to take numerical differences between in-
tegrals of very similar magnitude, so that their relative error

Jtor=K "ot was much larger than that of the individual integrals. Never-
w10 14 (14n)q theless, we found that thisf ident_ity is satisfied typically to
:FéJ' — "1y, Q8- w)d3x, ~10% (except close to turning points, where the error due to

M @ 1-v? the differentiation dominat@sWe expect that the numerical

data presented in this paper are typically accurate to within a
few percent, and are confident that our code correctly pre-
dicts qualitative features, such as, for example, changes in
the maximum allowed mass.

(66)

where we have rescaleg_daccording to&=§/rB.
In the following we will denote half the total rest-mass,

mass and angular momentum byo=Mg {2, M =M /2 V. RESULTS

and J=J,/2. In the limit of large separationyly and M
approach the corresponding values of isolated stars. ) ) ) ) )
Performing numerical simulations in three dimensions re- _In this section we discuss configurations and sequences
quires large computational resources. We have therefor#ith @ polytropic indexn=1, representing a fairly stiff equa-
implemented our algorithm in a parallel environment usingt'on_Of_ state. This is a particularly interesting example, since
the DAGH infrastructurg41] and run it both on the SP2 clus- realistic neutron stars are expected to be governed by equa-
ter at the Cornell Theory Center and the Origin2000 at thdions of state of similar stiffness. Results for=1.5 andn
National Center for Supercomputing Applications at the Uni-=2 Will be presented in Sec. V B. Numerical values in ge-
versity of lllinois. We typically use grids of (64)or (128§ ometrized units can be ob_tamed from our no_nd|men3|onal
grid points, and run the code in parallel on 8 processors.oarred” quantities by multiplying with appropriate powers
DAGH has been developed as part of the Binary Black Hole?f «, according to Eqs(60), (63) and (66) (for exampleM
Grand Challenge Project and is a package of routines ang k"M, J=k"J and py= k" "po).
computational structures that allows for a convenient imple- In Fig. 1 we show the density profile in the equatorial
mentation of parallel applications on grid hierarchies. plane of a binary neutron star. Hezg=0.175, and the stars
are close to the ISC(see below. Each star has a rest-mass

. L N of I\W(,:O.169, corresponding to a compaction in isolation of
In addition to constructing individual quasiequilibrium (M/R)..=0.175. The contours show isosurfaces of the rest-
configurations, we can also build quasiequilibrium sequencegensity in decreasing factors of 0.556. The maximum com-

of constant rest-magd ;. As we will discuss in Sec. V, these paction of a stable=1.0 polytrope in isolation isNI/R).,
sequences provide approximate evolutionary tracks of in—q 716 corresponding to a maximum rest-makk,

spiraling neutron star binaries. _ . ol
Our quasiequilibrium configurations are parametrized by 0'18(_) and a maximum maM;—E.164. _
their relative separation, and maximum densitg,,,. We In Fig. 2 we plot the rest-madd, versus the maximum

therefore have to find a path through this two-dimensionatiensity p.= pi®+ p"® for several different separations be-

parameter space along whit, is constant. This can be tweenz,=0.3 (roughly two stellar radii apartand z,=0
achieved in several different ways. For example, for eacftouching. As z,—1, we expect these curves to approach
separationz, one could varyg,,y until a configuration of the spherical Oppenheimer-VolkofOV) result, which we
massM, has been found38]. Here we found it easier to included as the dashed line in Fig. 2. Note, however, that the
0 . . . . .
start with a smali(and hence only mildly relativisticq exact OV curve is computed from a one-dimensional ordi-

for eachz,, and then incremert, ., in small steps keeping nary differential equation with very high accuracy, while the

Z, constant. The results can be tabulated, and the procedut[-"énary configurations have been calculated on very coarse,

repeated for a differerz,. Once sufficient data have been hree-dimensional numericgl grids. From convergence tests
a _ we know that we systematically underestimate masses, and
collected one can then interpolate to a chosen rest-Mass  accordingly, for large separations, we find masses slightly
Note that for eactz,=const sequence we adjusted the outelgsmajier than the corresponding OV masses. All graphs lie
boundary so that the number of grid zones covering the staggjthin less than 2% of the OV curve, showing that the pres-

is the same for all separations. ence of a companion star has only very little influence on the
We have performed several tests to check our code. 'Pnass-density relationship.

two differen.t regimes the results can be compared with A5 we decrease the separation, the mass supported by a
known solutions: for small masses and weak fields we re-. L . .
Lo ! given central density, increases slightly. In particular, the
cover the Newtonian limit, and for large separations we ap~"" ) i
proach the Oppenheimer-Volkoff spherical solution for eacHM@Ximum rest-mass increases froly™'=0.179 for z,
star and its nearby field. We have also checked the fully=0.3 to M§®=0.182 for stars in contact. This trend clearly

relativistic identity[42,43 suggests thathe maximum allowed mass of neutron stars in

A. Sequences fom=1.0

B. Constructing quasiequilibrium sequences



57 GENERAL RELATIVISTIC MODELS OF BINARY ... 7307

M, f [Hz] I I
400 500 600 0.28 —|

700105 L\|‘II\IHI\I‘II\IHI\I|IH+
n=1.0

0.27

0.26
=]
- 0.25

0.0475

0.24

0.047
0.23 7’_ n=1.5 _
| 1 | | 1 ‘
0.02 0.04 0.06 0.08

0.02 0.03 Pe

M,Q

° FIG. 5. Rest-maskWo of an=1.5 polytrope versus maximum

~ FIG. 4. Blowup of two curves in Fig. 2: binding energyolid  densityp, for separationz,=0.3 (bottom solid ling, 0.2, 0.1 and
line) and angular momenturfdashed ling as a function of the 0.0 (top line). The dashed line is the Oppenheimer-Volkoff result.
angular velocity for a binary witthM,=0.169 and M/R).,=0.175.

S o ) o different from corotating sequencgs$s]. In Fig. 3 we plot
close binaries is slightly larger than in isolatiohis in-  the pinding energy Ml —M..)/M, and the angular momen-

Ere:a?: It? d(;alluﬁseigsm Eg;[ebitheeci:c?ctgﬁ'onvefet?iijt?rzzta?hde'r;n?atﬁmJ_as a function of separation for several different rest-
y ' P Y masses. Since the separation is not an invariant quantity, we

crease of the maximum allowed mass is comparable o th ave parametrized the sequence by the nondimensionalized
corresponding increase of an isolated neutron star rotating . —
with the same angular velocifig]. Any destabilizing, rela- angular velocityMoQ) (=Mo(2). Our curves do not connect
tivistic effect in binaries therefore has to be smaller. to MoQ2=0, corresponding to infinite separation, since we
The collapse of binary neutron stars to black holes prior tg°@n numerically resolve only fairly close models.
merger reported by WMM could, in principle, be caused ei- !N the top half of Fig. 3 we show plots for sequences for
ther by a decrease of the maximum allowed mass or by geveral different, increasingly rela.t|V|st|c rest-masses. The
dynamical instability. As we have shown, the maximum al-curves are labeled by the compactidvl/R).. that the stars
lowed mass, within our assumptions and approximations, inwould have in isolation at infinity. We have plotted graphs
creases, which rules out the first possibility. Note, however{or (M/R).. between 0.05 and 0.2 in increments of 0.025. In
that we are only constructing quasiequilibrium configura-the lower half of Fig. 3 we show corresponding plotsJof
tions, which may not be dynamically stable.[B4] we show  According to Eq(67) the minima in both curves must agree,
that all inspiraling binary neutron stars asecularly stable

against radial collapse to black holes all the way down to the M. .f [Hz]

ISCO. While this does not completely rule out the existence 0 100 7 200 300
of a dynamicalinstability, we note that in Newtonian bina- 0 ] T ]
ries, dynamical instabilities always occur later along equilib-

rium sequences than secular instabilitidd,17]. The same _0.002

result has been shown for single, rotating relativistic stars
[45]. Recently, Thorn¢21] has argued analytically that tidal

fields stabilize systems and that stars which are stable in i ~0.004

isolation are stable with respect to both secular and dynami- =

cal modes in binary configurations. 4 —0.006 0,085\
0.1

o

\

0.125

Figure 2 demonstrates that at fixed rest-mass, the central
density decreases as the stars approach each other and get ~0.008
tidally deformed. This effect, as well as the increase of the
maximum allowed mass, is consistent with post-Newtonian
predictions[13,15,18.

Next we construct sequences of constant rest-nvhgs
which up to the ISCO approximate evolutionary sequences.
As discussed in Sec. I, we maintain corotation, whereas in F|G. 6. Binding energy ofi=1.5 polytropes as a function of the
reality it is more likely that circulation will be conserved. angular velocity for different rest-masses. The curves are labeled by
Nevertheless, our sequences are the first sequences of e compaction KI/R)., of the stars in isolation. The maximum
spiraling binaries in full general relativity. Moreover, post- compaction for a stable, isolated, nonrotatimg 1.5 polytrope is
Newtonian sequences of constant circulation are not vastlg.136.

-0.01

1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 |
0.005 0.01 0.015
M,

(4

]
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TABLE Il. Numerical values for sequences of constant rest- ' ' ' '
massl\WO and polytropic indexn=1. We tabulate the total energy I i

M.. and compaction1/R).. each star would have in isolation as 0.52
well as the angular velocitiM Q) and the angular momentum
Jwt/MfOt at the ISCO. The maximum rest-mass in isolation is
MT®=0.180.
= 0.5
Mo M. (M/R.  Moisco  (Jia/Midisco
0.059 0.058 0.05 0.003 1.69
0.087 0.084 0.075 0.0065 1.37 0.48
0.112 0.106 0.1 0.01 1.22
0134 0126  0.125 0.015 1.12 f | n=2.0 | :
0.153 0.142 0.15 0.02 1.05 — '0.005‘ : ‘001 —
0.169 0.155 0.175 0.025 1.00 o,
0.178 0.162 0.2 0.03 0.97

FIG. 7. Same as Fig. 5 forma= 2.0 polytrope.

which they do within our numerical accuracy. In Fig. 4 we Jow) all results are qualitatively very similar to those for
show a blowup of the two curves for stars witM(R).. ~ =1. In particular, we consistently find a decrease of the
=0.175. maximum density as the stars approach and an increase in
For infinitely separated stars, both the binding energy anghe maximum allowed mass. The relative size of these effects
the angular velocity vanish. As the stars approach each othetliffers for three basic reasons: First, for softer equations of
the angular velocity increases while the binding energy destate, the maximum mass of a star occurs at a smaller value
creases. This effect is essentially Newtonian and is even evf the compactiotM/R, and hence relativistic effects play a
dent for two Newtonian point masses. As the stars approacémaller role. Second, for softer equations of state these stars
each other, however, finite size effects eventually play amre more centrally condensed. We therefore expect tidal
important role. The energy associated with the rotation of theields to play a less important role for the stability of these
individual stars adds to thénegative binding energy, and stars in close binaries. While it is easier to deform their sur-
therefore reduces it. For stiff enough equations of state, foface, the bulk of the matter is very concentrated at the core of
which the moment of inertia and hence the rotational energyhe stars and well shielded from the tidal field of the com-
of the individual stars are largesee Sec. V B the binding  panion. Third, for softer equations of state, the stars have a
energy goes through a minimum and then increases agaimaller orbital frequency even at very small separations, so
prior to contact. The location of the minimum marks thethat the effects of rotation are smaller. Accordingly we find
onset of a secular instability, beyond which the binary can nahat the maximum allowed mass still increases with decreas-
longer maintain corotation. It is expected that the dynamicalng separation, but the effect is smaller than e 1.
instability defining the ISCO occurs after, but close to, the More centrally condensed stars have a smaller moment of
onset of the secular instabilify#4,17. In the following we  inertia, and hence the rotational kinetic energy associated

will refer to the location of the minimum as the ISCO. with the spin of the stars is smaller than for less centrally
The upper labels give the orbital frequency in Hz for stars

of rest-mass 1. The corresponding gravitational wave M, f [Hz]
frequency is larger by a factor of 2 for the dominant quad- 0 50 100
rupole mode. For small values of the compaction we find O P T
ISCO frequencies comparable to those reported by WMM. i n==2.0 i
However, for larger compaction and more relativistic con-
figurations we find frequencies very similar to what is found i 1
from post-Newtonian calculatiorf46]. —-0.002 — -

We summarize our results in Table I, where we also
include the dimensionless angular momentuly,/M2,
=J/2M? at the ISCO. For small rest-masses, this value is
larger than unity, in agreement with WMM. For high enough _0.004 - .
rest-masses, however, it drops below unity, so that the two L
stars could plunge and form a Kerr black hole without hav-
ing to lose additional angular momentum.

(M=M_)/M,

0 0.002
B. Sequences fon=1.5 andn=2.0 M, Q2

0.004

In this section we will present results for polytropic indi-  FIG. 8. Same as Fig. 6 for a=2.0 polytrope. The maximum
ces ofn=1.5 and 2.0, representing softer equations of statecompaction M/R).. for a stable, isolated, nonrotatimg= 1.5 poly-
Except for the absence of an ISCO prior to coni@ete be- trope is 0.075.
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condensed stars. Therefore a turning point in the bindingquations and numerical algorithm, as well as results for dif-
energy curve can only be expected for stars with a stiffferent polytropic indices. We integrate a subset of Einstein’s
enough equation of state. This effect has been discussed lgguations, coupled to the equation of hydrostatic equilib-
several authors in the context of Newtonian theoryrium, to solve the initial value problem for binaries. We con-
[47,17,48. We did not see a turning point far=1.5, in  struct models of corotating binary neutron stars in close cir-
agreement with47,48. For these polytropic indices there is cular orbit, including relativistic models of contact binaries.
no ISCO prior to contact, and we expect the orbits to bé/Ve also construct sequences of constant rest-mass configu-
stable until the stars touch and form a contact binary. This igations parametrized by their separation and orbital angular
the first construction of a contact binary in full general rela-frequency.
tivity. Proving the existence of a contact binary neutron star We find that the maximum density of the stars decreases
(by, e.g., the signature of its gravitational wavefomould ~ a@s the stars approach and get tidally deformed. Simulta-
indicate that the equation of state of nuclear matter is rathefeously, the mass that a given maximum density can support
soft. We do not expect this to be the c4d8). increases as the stars approach each other. In particular, we
In Fig. 5 we plot the rest-mass versus the central densit§ind that the maximum allowed mass of neutron stars in qua-
for several different Separations foe=1.5. Qua"tative|y the Siequilibrium binaries increases with deCfeaSing Separation.
result is very similar to Fig. 2 fon=1: For all separations These effects are larger for a smaller polytropic indamd
the curve differs from the OV result by less than 1%. Forhence a stiffer equation of state
decreasing separation we find a small increase in the allowed Searching for turning points of the binding energy of con-
mass that a given density can support. In particular, thétant rest mass sequences, we locate, for a small enough
maximum quasiequilibrium rest-mass increases by roughiyolytropic index, the ISCO. As in the case of Newtonian

1.2% fromM =0.275 forz,=0.3 to 0.278 for stars in con- configurations, an ISCO exists only for indices 1.5; for

tact. Forn=1 the corresponding increase is about 2% Thesofter equations of state, contact is reached prior to the onset

. . h h orbital instability. _ _
'::zjz)l(ll)r/n ggnfocrjrirgty decreases as the stars approach and é)étln [24] we presented a more careful analysis of the radial

In Fig. 6 we plot the binding energy of= 1.5 polytropes \s/\t/abngy Oféiﬁ‘t'tv'silt'? b|r_1ar|y nebqtron star.:, aga|tnst collapse.
as a function of the angular velocity. We show results for@r?ysstg\gli ag:?inzt r'gzgﬁlor}%plsga{g E;%ioﬁofegrzlf{ﬁesfg;'

veral different rest-m nd label them h mpac- . ;
several different rest-masses and label them by the co pato the ISCO(or contact, if, for large enough, no ISCO is

tion (M/R)., for the same stars in isolation. In contrast to theenco ntered We do not find any evidence for a destabiliza-
results fom=1, these curves no longer show a turning point. u ; y evi iz

This implies that the stars are secularly stable all the way té'on of neutron stars in close binary orbits.
touching.

In Figs. 7 and 8 we show the corresponding results for
n=2 polytropes. Again, in Fig. 7 we show the rest-mass
versus central density. The maximum quasiequilibrium rest-
mass increases fronvl =0.523 for z,=0.3 to 0.528 for It is a pleasure to thank Manish Parashar for his help with
touching stars. This relative increase of roughly 1% isthe implementation obAGH and Andrew Abrahams, James
smaller than even fon=1.5. As expected, the binding ener- Lombardi and Fred Rasio for several helpful discussions. We
gies in Fig. 8 do not show a turning point, so that the binariegvould also like to thank Matthew Duez, Eric Engelhard and
are secularly stable all the way to touching. John Fregeau for helping with the visualization of our data

and the production of Fig. 1. This work was supported by
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APPENDIX: NUMERICAL RESULTS FOR SELECTED
SEQUENCES

In the following (Tables Il1-XIII) we tabulate numerical values for selected sequences. For a given polytropigiadex
the rest-maséaryon massM of one stafor equivalently its compaction in isolatiof(/R).. ], we list the relative separation
zp=r,/rg, the maximal density parametgf"® the massM the angular momenturd, the (orbital) frequency(), and the

locationsr 4, rg andr_c. We have “barred” these quantities as a reminder that they are dimensionless coordinate values.
Recall thatp, po andP may be obtained fronq via Egs.(37)—(39).
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TABLE Ill. n=1, My=0.0595, M/R)..=0.05. TABLE VIIl. n=1, My=0.1781, M/R)..=0.2.

zy Q™ M J QO  ra rc s zy Q™ M J QO  ra rc s

0.00 0.0275 0.057806 0.01095 0.061 0.000 1.529 2.773.00 0.2164 0.160183 0.05024 0.202 0.000 0.841 1.560
0.10 0.0278 0.057806 0.01094 0.057 0.281 1.594 2.81®M.10 0.2228 0.160174 0.04989 0.191 0.157 0.877 1.572
0.15 0.0281 0.057809 0.01098 0.053 0.430 1.677 2.868.15 0.2327 0.160137 0.04963 0.180 0.238 0.917 1.587
0.20 0.0284 0.057815 0.01109 0.048 0.591 1.791 2.959.20 0.2450 0.160130 0.04948 0.168 0.323 0.970 1.616
0.25 0.0286 0.057825 0.01129 0.042 0.771 1.940 3.080.25 0.2590 0.160145 0.04953 0.154 0.415 1.038 1.662
0.30 0.0288 0.057836 0.01155 0.037 0.975 2.118 3.25D.30 0.2741 0.160189 0.04975 0.139 0.517 1.119 1.725

TABLE IV. n=1, My=0.1118, M/R)..=0.1.

TABLE IX. n=1.5,My=0.241, M/R)..=0.85.

zy Q™ M J QO  ra rc s

zn Q™ M J QO ran rc rg
0.00 0.0658 0.105511 0.02715 0.101 0.000 1.289 2.353

0.10 0.0667 0.105502 0.02707 0.094 0.238 1.346 2.3849€.00 0.0626 0.231583 0.13408 0.035 0.000 3.409 6.227
0.15 0.0676 0.105509 0.02710 0.087 0.365 1.418 2.433.10 0.0633 0.231623 0.13471 0.032 0.631 3.569 6.318
0.20 0.0685 0.105521 0.02729 0.079 0.502 1.516 2.51D.20 0.0650 0.231708 0.13738 0.027 1.328 4.014 6.642
0.25 0.0693 0.105558 0.02766 0.070 0.655 1.644 2.62D.30 0.0665 0.231853 0.14341 0.021 2.184 4.740 7.281

0.30 0.0698 0.105593 0.02818 0.062 0.828 1.797 2.763

TABLE X. n=1.5,M,=0.258, M/R)..=0.1.

TABLE V. n=1, My=0.1341, M/R)..=0.125.

qmax v 0

Za M J Q [N fc s

Zp qmax '\7 J (_2 [N e s

0.00 0.0794 0.246547 0.14275 0.042 0.000 3.038 5.561

0.00 0.0912 0.124786 0.03496 0.122 0.000 1.172 2.148.10 0.0802 0.246600 0.14346 0.039 0.564 3.183 5.643
0.10 0.0926 0.124785 0.03482 0.114 0.217 1.225 2.179.20 0.0831 0.246688 0.14574 0.033 1.180 3.564 5.902
0.15 0.0940 0.124787 0.03482 0.106 0.332 1.291 2.219.30 0.0855 0.246887 0.15166 0.026 1.938 4.204 6.460

0.20 0.0954 0.124819 0.03500 0.096 0.458 1.381 2.29G
0.25 0.0967 0.124849 0.03538 0.086 0.597 1.498 2.390
0.30 0.0976 0.124898 0.03596 0.076 0.756 1.639 2.520

TABLE XI. n=1.5,M,=0.2745, M/R)..=0.125.

qmax v 0

ZA M J (_2 I’A rc I’B

0.00 0.1119 0.260578 0.14820 0.055 0.000 2.549 4.680

TABLE VI. n=1, My=0.1534, M/R)..=0.15.

zy g™ M J Q  ra rc s

0.00 0.1235 0.140851 0.04188 0.146 0.000 1.056 1.943
0.10 0.1256 0.140842 0.04167 0.137 0.196 1.104 1.967
0.15 0.1280 0.140846 0.04162 0.127 0.300 1.163 2.005 max — - -~ — — —

A q M J QO ra re s
0.20 0.1303 0.140859 0.04174 0.116 0.413 1.244 2.06%7

TABLE XIIl. n=2, My=0.495, M/R),.=0.05.

0.10 0.1141 0.260614 0.14830 0.051 0.472 2.658 4.722
0.20 0.1237 0.260665 0.14908 0.045 0.964 2.909 4.824
- - - 0.30 0.1380 0.260810 0.15227 0.038 1.518 3.291 5.061

0.25 0.1325 0.140903 0.04210 0.104 0.539 1.350 2.1560.00 0.0381 0.48628 0.7204 0.0073 0.000 12.89 23.47
0.30 0.1341 0.140971 0.04268 0.092 0.682 1.477 2.273.10 0.0383 0.48635 0.7281 0.0068 2.382 13.49 23.82

0.20 0.0389 0.48649 0.7508 0.0057 4.998 15.11 24.99

0.30 0.0395 0.48672 0.7924 0.0045 8.192 17.78 27.30

TABLE VII. n=1, My=0.1685, M/R)..=0.175.

zy, Q™ M J QO ra rc s TABLE XlIl. n=2, My=0.52, M/R).,=0.065.

0.00 0.1647 0.152893 0.04719 0.173 0.000 0.944 1.7432A gmex M 3 Q A re o

0.10 0.1683 0.152883 0.04691 0.163 0.176 0.987 1.762

0.15 0.1726 0.152875 0.04677 0.152 0.268 1.038 1.79D.00 0.0493 0.50929 0.7190 0.0095 0.000 10.70 19.52
0.20 0.1769 0.152893 0.04681 0.139 0.368 1.108 1.844€.10 0.0497 0.50936 0.7255 0.0089 1.976 11.18 19.76
0.25 0.1811 0.152936 0.04708 0.125 0.480 1.201 1.92®.20 0.0525 0.50950 0.7409 0.0077 4.069 12.30 20.34
0.30 0.1844 0.152997 0.04758 0.111 0.606 1.312 2.02D.30 0.0574 0.50969 0.7679 0.0065 6.432 13.95 21.44
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