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General relativistic models of binary neutron stars in quasiequilibrium
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We perform fully relativistic calculations of binary neutron stars in corotating, circular orbit. While New-
tonian gravity allows for a strict equilibrium, a relativistic binary system emits gravitational radiation, causing
the system to lose energy and slowly spiral inwards. However, since inspiral occurs on a time scale much
longer than the orbital period, we can treat the binary to be in quasiequilibrium. In this approximation, we
integrate a subset of the Einstein equations coupled to the relativistic equation of hydrostatic equilibrium to
solve the initial value problem for binaries of arbitrary separation. We adopt a polytropic equation of state to
determine the structure and maximum mass of neutron stars in close binaries for polytropic indicesn51, 1.5
and 2. We construct sequences of constant rest-mass and locate turning points along energy equilibrium curves
to identify the onset of orbital instability. In particular, we locate the innermost stable circular orbit and its
angular velocity. We construct the first contact binary systems in full general relativity. These arise whenever
the equation of state is sufficiently soft (n*1.5). A radial stability analysis reveals no tendency for neutron
stars in close binaries to collapse to black holes prior to merger.@S0556-2821~98!02112-2#

PACS number~s!: 04.40.Dq, 04.20.Ex, 04.25.Dm, 97.60.Jd
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I. INTRODUCTION

Neutron star binaries are interesting for numerous r
sons. Several neutron star binary systems are known to
even within our own galaxy@1#. For some of these system
~including PSR B1913116, B1534112! general relativistic
effects in the binary orbit have been measured to high pr
sion @2,3#. Binary neutron stars are believed to be among
most promising sources of gravitational waves for detec
such as the Laser Interferometric Gravitational Wave Ob
vatory ~LIGO!, VIRGO and GEO. This circumstance ha
triggered multiple efforts to predict the gravitational wav
form emitted during the inspiral and the final plunge of t
two stars. More fundamentally, the two-body problem is o
of the outstanding unsolved problems in classical gen
relativity.

Considerable effort has gone into understanding bin
neutron stars. Most of this work has been performed wit
the framework of Newtonian hydrodynamics. Hachisu a
Eriguchi @4# constructed hydrostatic equilibrium of binarie
in synchronized circular orbits. Rasio and Shapiro@5# studied
binary equilibrium configurations and their dynamical evo
tion, including the merger of the two stars. The coalesce
of neutron star binaries has also been investigated by
bata, Nakamura and Oohara@6#, Zhuge, Centrella and Mc
Millan @7#, Ruffert, Janka and Scha¨fer @8# and other investi-
gators.
570556-2821/98/57~12!/7299~13!/$15.00
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Many investigators have also studied the binary probl
within a post-Newtonian framework. As long as the stars
well separated they can be approximated by point source
this case hydrodynamical effects are neglected and the g
tational waveform can be calculated to second po
Newtonian order~see @9# and references therein!. Post-
Newtonian calculations that do take into accou
hydrodynamical effects are also under way: Shibata@10# and
Taniguchi and Shibata@11# have constructed equilibrium
configurations and Oohara and Nakamura@12# have studied
binary coalescence. Lai@13#, Lai and Wiseman@14# and
Lombardi, Rasio and Shapiro@15# have constructed binary
equilibrium configurations in an ellipsoidal approximation

Fully general relativistic treatments of the problem a
complicated by several factors, including the non-linearity
the partial differential equations and the requirement of v
large computational resources to solve the coupled sys
These simulations are currently only in their infancy@12#.
Recently, Wilson, Mathews and Marronetti@16# ~WMM ! re-
ported results obtained with a relativistic numerical cod
Their code assumed several simplifying physical and ma
ematical approximations. Their results suggest that the c
tral densities of the stars increase as the stars approach
other and that massive neutron stars individually collapse
black holes prior to merger. WMM therefore find that
general relativity, the presence of a companion star and
tidal field tends to destabilize the stars in a binary syste
7299 © 1998 The American Physical Society
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This conclusion is opposite to what is expected from Ne
tonian @17#, post-Newtonian@13–15,18#, perturbative@19#
and matched asymptotic expansion@20,21# treatments of the
problem. WMM also find that just prior to plunge an
merger, their binary system has a total angular momen
too large to form a Kerr black hole~see the discussion in
@22#!.

In this paper we construct fully relativistic binary neutro
stars in quasiequilibrium circular orbit~‘‘quasi’’-equilibrium
because these binaries are not strictly stationary: becau
the slow emission of gravitational radiation, general relat
istic binaries cannot be in strict equilibrium!. These models
are interesting in their own right and provide initial data f
future dynamical evolution calculations. We study the str
ture of the neutron stars in these close binary systems
determine, for example, their maximum allowed equilibriu
mass. In addition, we build quasiequilibrium binary s
quences of constant rest-mass. These sequences approx
evolutionary trajectories of neutron star binaries undergo
slow inspiral via the generation of gravitational radiation. B
locating the turning points in their total energy versus se
ration curves, we can identify the onset of orbital instabil
at the innermost stable circular orbit~ISCO! and the orbital
parameters at that critical radius. We have presented pre
nary results in@23#, and analyzed the stability of these bin
ries in@24#. We do not find any evidence for a destabilizati
of neutron stars in close binaries.

The purpose of this paper is to discuss details of our
proximations, equations and numerical method, and
present more complete results. The paper is organize
follows: In Sec. II we discuss all the underlying assumptio
and approximations made in our calculations. In Sec. III
derive all the equations describing the quasiequilibrium
relativistic binary neutron stars. The numerical implemen
tion of these equations is described in Sec. IV. We pres
results for several different polytropic equations of state
Sec. V and briefly summarize our findings in Sec. VI. W
also include an Appendix with tabulated data for some of
sequences.

II. BASIC ASSUMPTIONS AND APPROXIMATIONS

Throughout this paper we will assume that the two n
tron stars have equal mass, are corotating in a circular o
and that the matter obeys a polytropic equation of state.

Choosing a polytropic equation of state permits a w
survey of models as a function of the stiffness of the eq
tion of state and also simplifies the integration of the ma
equation~33!. However, polytropic equations could be eas
replaced by more realistic cold equations of state.

Restricting our analysis to stars with equal masses all
us to exploit spatial symmetry and solve the problem in j
one octant in our Cartesian grid~see Sec. III A below!. How-
ever, generalizing our method to stars of unequal mas
straightforward. Nevertheless, it is interesting to note that
well-determined masses of neutron stars in close binary
tems have masses remarkably close to 1.4M ( ~see, for ex-
ample,@1#!. Focussing on stars with equal mass may the
fore be physically reasonable as well as numerica
convenient.

Demanding that the stars be corotating is a much
-
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realistic assumption. Even if the stars in a binary started
corotating at a large separation, maintaining this corotat
during inspiral would require a larger viscosity than is po
sible in neutron stars@25,26#. Instead, it is more likely that
the circulation of the stars is conserved during inspiral. Ho
ever, our assumption of corotation greatly simplifies the
lution of the problem~see Sec. III B! and it is appropriate to
tackle this simpler case first. Even in Newtonian theory,
construction of nonsynchronous binaries is difficult beca
of the unknown velocity field; only in ellipsoidal models ca
one build nonsynchronous as easily as synchronous bina
@15#. Constructing more realistic sequences of constant
culation requires a dynamical treatment, as one marches
ward from one radius to the next using the full coupled se
field and hydrodynamic evolution equations to guaran
conservation of circulation.

In Newtonian gravity, a strict equilibrium solution for tw
such stars in a synchronized circular orbit always exists,
cept for very stiff equations of state~with n&1.5) near con-
tact @4#. Since this solution is stationary, the hydrodynamic
equations for the matter reduce to a single Bernoulli integ
which greatly simplifies the problem~see Section III C!.

Because of the emission of gravitational waves, a bin
in general relativity cannot be in strict equilibrium. Howeve
up to the ISCO, the time scale for orbital decay by radiat
will be much longer than the orbital period, so that the bina
can be considered to be in ‘‘quasiequilibrium.’’ This allow
us to neglect both gravitational waves and wave-induced
viations from a circular orbit to a good approximation. Th
quality of this approximation can be estimated from the ra
of the orbital time scale to the time scale for emission
gravitational radiation. For typical neutron star binaries o
side the ISCO we havetorb/t rad;(RS /R)(v/c)5;1025.
Hence our approximation~which in fact is exact up to 2.5
Post-Newtonian order! is very reliable. A similar approxima-
tion is often used in stellar evolution calculations: there
relevant evolution time scales are the nuclear or Kelv
Helmholtz time scales, while the stars maintain~quasi!hy-
drostatic equilibrium on a dynamical time scale.

We attempt to minimize the gravitational wave content
choosing the spatial metric to be conformally flat, as
WMM ~see also@27#!. Note that this still allows us to con
struct valid solutions to the initial value equations. As will b
shown in Sec. III A, the field equations then reduce to a
of coupled, quasilinear elliptic equations for the lapse,
shift and the conformal factor. If we neglect small deviatio
from circular orbit, the fluid flow is again stationary, and th
hydrodynamical equations again reduce to a relativistic B
noulli integral ~see Sec. III B!.

The conformal approximation has been carefully tested
Ref. @28# for a single rotating star in stationary equilibrium
which is the simplest numerical example in relativity f
which the equilibrium solution deviates from conformal fla
ness. In Ref.@28# it was shown that by assuming conform
flatness, the resulting deviations from the exact equilibri
solution were typically much smaller than 1%, even f
highly relativistic stars. This can be understood simply: d
viations of the true equilibrium solution from conformal fla
ness vanish identically in both the Newtonian and first Po
Newtonian limits, and so even if they arise at higher ord
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they are negligibly small in the neutron star configurations
relevance here.

Conformally flat solutions yield numerically exact sol
tions to the initial value~constraint! equations of Einstein’s
equations. These solutions are in quasiequilibrium o
within our approximations, and a self-consistent evolution
these data with the full Einstein equations would reveal
viations from true equilibrium. However, as we have argu
above, these deviations will be very small outside the ISC
In this sense we can construct sequences of initial value
figurations, which approximate the evolutionary inspiral
neutron star binaries at any given moment, prior to plung

III. BASIC EQUATIONS

A. Field equations

To construct a numerical model of a binary system
employ the Arnowitt-Deser-Misner~ADM ! decomposition
of Einstein’s equations of general relativity@29#. The deriva-
tion of our adopted equations closely follows the derivat
in @28# for rotating stars.

We write the metric in the general form

ds252a2dt21g i j ~dxi2v idt!~dxj2v jdt!. ~1!

Throughout the paper Latin indices will run from 1 to
whereas Greek indices will run from 0 to 3. We also setG
5c51. By definition of the extrinsic curvatureKi j , the
three-metricg i j satisfies the dynamical equation

] tg i j 522aKi j 2Div j2D jv i , ~2!

where Di denotes the covariant derivative associated w
g i j . This equation can be decomposed into its trace

] tlng1/252aK2Div
i , ~3!

whereg5detg i j andK5Ki
i , and its trace-free part

g1/3] t~g21/3g i j !522aS Ki j 2
1

3
g i j K D2Div j2D jv i

1
2

3
g i j Dkv

k. ~4!

In the following we will choose maximal slicing so that

K50. ~5!

We expect the gravitational wave content of the spacet
to be small~see Sec. II!, and we now want to use this expe
tation to simplify the problem. Unfortunately, the physic
fields cannot be cleanly separated into freely specifiable
namical degrees of freedom and dependent quantities, w
are determined by the constraint equations. However, s
an identification is possible with the help of a conform
decomposition@30#. We can therefore attempt to minimiz
the gravitational wave content of the~physical! spacetime by
removing the dynamical~or ‘‘wave’’ ! degrees of freedom
from the conformal fields. This can be achieved by choos
the three-metricg i j to be conformally flat, so thatg21/3g i j
5 f i j , where f i j is the flat space metric. We will later us
Cartesian coordinates, for whichf i j becomes the Kronecke
f
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deltad i j . Note that this choice can always be made to fi
initial data on one time slice without any approximation. O
approximation lies in assuming that the metric willremain
conformally flat for all times during the inspiral. Equatio
~4! then reduces to@31#

2aKi j 52Div j2D jv i1
2

3
g i j Dkv

k. ~6!

We now write the metric as

g i j 5C4f i j , ~7!

whereC is the conformal factor. The latter is determined
the Hamiltonian constraint

R2Ki j K
i j 516pr, ~8!

where the source termr is defined by

r5nanbTab . ~9!

Herena is the normal vector to at5const slice andTab is
the stress-energy tensor. For the metric~7!, the Ricci scalar
R in Eq. ~8! reduces to

R528C25¹2C, ~10!

where ¹2 is the flat space Laplacian associated withf i j .
Inserting this into Eq.~8! we find

¹2C52
1

8
C27K̃ i j K̃

i j 22pC5r. ~11!

Here we have transformedKi j according to

K̃ i j 5C10Ki j , ~12!

which, from Eq.~6!, now satisfies

K̃ i j 52
C6

2a S ¹ iv j1¹ jv i2
2

3
f i j ¹kv

kD . ~13!

Inserting this expression into the momentum constraint

D jK
i j 58p j i ~14!

yields

¹2v i1
1

3
¹ i~¹ jv

j !52¹ j ln~aC26!K̃ i j 216paC4 j i .

~15!

Here the source termj i is given by

j a52ga
bngTbg. ~16!

This equation can be simplified by writing the shift vector
a sum of a vector and a gradient@32#:
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v i5Gi2
1

4
¹ iB. ~17!

Equation~15! can then be replaced by the two equations

¹2Gi52¹ j ln~aC26!K̃ i j 216paC4 j i ~18!

and

¹2B5¹ iG
i . ~19!

Imposing the full set of dynamical equations for the ev
lution of Ki j would be inconsistent with Eq.~6! and our
approximation thatg i j remains conformally flat at all times
However, in addition to Eq.~5! we can always require tha
the maximal slicing condition be preserved,] tK50. Taking
the trace of the time evolution equation forKi j together with
Eq. ~11! then yields an equation for the lapse:

¹2~aC!5aCS 7

8
C28K̃ i j K̃

i j 12pC4~r12S! D . ~20!

Here the source termS is defined by

S5g i j Ti j . ~21!

Equations~11!, ~18!, ~19! and~20! together with the mat-
ter equations~see the next section! form a system of coupled
nonlinear elliptic equations, which have to be solved ite
tively. The boundary conditions follow from asymptotic fla
ness. Following Bowen@33#, the exterior solution to the field
equations can be expanded in terms of multipole mome
We adopt as outer boundary conditions the falloff behav
of the lowest order non-vanishing multipole moments. B
cause of the symmetries of the problem it is possible to so
it in only one octant of a Cartesian grid. The resulting boun
ary conditions on the coordinate planes together with
outer boundary conditions are summarized in Table I.

TABLE I. Boundary conditions for the outer boundariesr
→`) and on the coordinate planes in Cartesian coordinates.
equatorial plane is taken to be they50 plane and the stars are take
to be aligned with thez-axis.

r→` x50 y50 z50

Gx;
z

r3
]xG

x50 ]yG
x50 Gx50

Gy;
xyz

r7
Gy50 Gy50 Gy50

Gz;
x

r3
Gz50 ]yG

z50 ]zG
z50

B;
xz

r3
B50 ]yB 5 0 B50

a21;
1

r
]xa50 ]ya50 ]za50

C21;
1

r
]xC50 ]yC50 ]zC50
-

-

ts.
r
-
e
-
e

B. Matter equations

As we have discussed in Sec. II, we neglect wave-indu
deviations from a strictly periodic, circular orbit, and als
assume the stars to be corotating. In Cartesian coordin
we can choose the equatorial plane to be they50 plane, so
that the fluid four velocity then takes the form

ua5ut~1,Vz,0,2Vx!, ~22!

where V is the constant angular velocity. We introduce
vector

ja5~0,z,0,2x!, ~23!

in terms of which the four-velocity can also be written

ua5ut~ana1Vja2va!. ~24!

Definev to be the relative velocity between the matter an
normal observer:

1

~12v2!1/2
52naua5aut. ~25!

Then, fromuaua521, we find

v25
C4

a2
@~Vz2vx!21~vy!21~Vx1vz!2#. ~26!

For a perfect fluid the stress energy tensor is

Tab5~r01r i1P!uaub1Pgab, ~27!

wherer0 is the rest-mass density,r i is the internal energy
density andP is the pressure. The source termr in Eq. ~9!
can then be written

r5
r01r i1P

12v2
2P, ~28!

the momentum sourcej i in Eq. ~16! becomes

j i5
~r01r i1P!

a

~Vj i2v i !

12v2
, ~29!

andS in Eq. ~21! is given by

S5~r01r i1P!
v2

12v2
13P. ~30!

In order to describe the matter close to equilibrium w
will use two of our basic assumptions. Neglecting deviatio
from a strictly periodic circular orbit and taking the two sta
to be corotating is equivalent to assuming that the fluid fo
velocity is proportional to a Killing vector

]

]t
1V

]

]f
. ~31!

In this approximation, the matter equations can be integra
analytically, which yields the relativistic Bernoulli integra
~see, e.g.,@34#!

he



nl

ns
e
se

d,
o-

f the

n
. In

n

57 7303GENERAL RELATIVISTIC MODELS OF BINARY . . .
ut

h
5const. ~32!

Hereh is the enthalpy:

h5expS E dP

r01r i1PD . ~33!

For a polytropic equation of state

;1pP5kr0
111/n , ~34!

wherek is the polytropic constant andn the polytropic in-
dex, the enthalpy becomes

h5
r01r i1P

r0
. ~35!

It is very useful to introduce a dimensionless ratio

q5
P

r0
, ~36!

in terms of which we can express

r05k2nqn ~37!

r i5nk2nqn11 ~38!

P5k2nqn11. ~39!

Note that in the Newtonian limit we haveq!1. Inserting the
last three expressions together with Eqs.~25! and ~35! into
Eq. ~32! we find

q5
1

11nS 11C

a~12v2!1/2
21D , ~40!

where we have written the constant in Eq.~32! as 11C.
Also, we useq to rewrite the source terms~28!–~30! as

r5k2nqnS 11~11n!q

12v2
2qD ~41!

j i5k2nqn
@11~11n!q#

a

~Vj i2v i !

12v2

~42!

r12S5k2nqnS 11~11n!q

12v2
~112v2!15qD .

~43!

Note that physical dimensions enter our problem o
through the polytropic constantk in the equation of state
y

~34!. It is therefore useful to nondimensionalize all equatio
and eliminatek from the problem. This means that given th
polytropic indexn, we can solve the equations once and u
the results for arbitraryk. Sincekn/2 has units of length, we
can introduce dimensionless coordinatest̄ 5k2n/2t, x̄
5k2n/2x and the same fory andz. The derivative operator
scales as¹̄ i5kn/2¹ i and the extrinsic curvature asK̄ i j

5kn/2K̃ i j . The angular velocityV transforms according to
V̄5kn/2V. We also rescaleB̄5k2n/2B andj̄ i5k2n/2j i . Put-
ting terms together we find the Hamiltonian constraint

¹̄2C52
1

8
C27K̄ i j K̄

i j 22pC5qnS 11~11n!q

12v2
2qD ,

~44!

the lapse equation

¹̄2ã5ã
7

8
C28K̄ i j K̄

i j 12pãC4qn

3S ~11~n11!q!
112v2

12v2
15qD , ~45!

and the momentum constraint equations

¹̄2Gi522¹̄ j~ ãC27!K̄ i j

216pC4qn
11~11n!q

12v2
~V̄j̄ i2v i ! ~46!

and

¹̄2B̄5¹̄ iG
i . ~47!

Here we have used

ã5Ca. ~48!

Equations~44!–~47! together with Eq.~40! form a set of
seven equations for the seven unknownsC, a, Gi , B̄ andq.
More specifically, we have to find a solution to six couple
quasilinear elliptic equations for the gravitational fields, t
gether with one algebraic equation for the matter.K̄ i j andv i

in the above expressions can be expressed in terms o
unknowns with the help of Eqs.~13! and ~17!.

C. Newtonian limit

In this section we will briefly show that in the Newtonia
limit the above equations approach the expected form
particular we expect

a→eF;11F, ~49!

whereF is the Newtonian potential. Also, in the Newtonia
limit F,C,v!1, so that Eq.~40! becomes
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q5
1

n11S C2F1
1

2
v2D

5
1

n11S C2F1
1

2
V2~x21z2! D . ~50!

Here we have usedv i50 ~absence of frame dragging in th
Newtonian limit!. This limit, by Eq. ~13!, implies Ki j 50.
With q!1, Eq. ~44! now reduces to

¹2C522pC5qn. ~51!

Identifying

C→e2F/2;12
F

2
~52!

yields, to leading order, the Poisson equation

¹2F54pr0 . ~53!

Equation~45! gives the same limit.

IV. NUMERICAL METHOD

A. Constructing quasiequilibrium models

Corotating, equal mass binaries in circular orbits form
two-parameter family~just like single, uniformly rotating
stars!. A particular configuration is uniquely determined b
two independent parameters. For computational purpos
is particularly convenient to choose these parameters to
the maximum densityqmax and the relative separation of th
stars@35#.

As mentioned in Sec. III, we choose the stars to orbit
they50 plane and to be aligned with thez-axis. In this case
the surface of one star will intersect thez-axis at two differ-
ent places. We will label the intersection closer to the ori
of the coordinate systemr̄ A and the one further outr̄ B . The
ratio

zA[ r̄ A / r̄ B ~54!

then parametrizes the relative separation of the stars. We
construct an algorithm for solving the gravitational and m
ter equations by modifying the algorithm used by seve
authors for single rotating stars@47,36–38#. Making this al-
gorithm stable requires rescaling the coordinates with res
to r̄ B so that

x̂5 x̄/ r̄ B ŷ5 ȳ/ r̄ B ẑ5 z̄/ r̄ B , ~55!

which means that the outer edge of the matter will always
at r̂ B51. We also rescale
a

it
be

n

an
-
l

ct

e

K̂ i j 5K̄ i j r̄ B , B̂5B̄/ r̄ B , V̂5V̄ r̄ B . ~56!

Equations~40! and~44!–~47! are left unchanged, except tha
the matter source terms in Eqs.~44!–~46! have to be multi-

plied by r̄ B
2 and ¹̄ i has to be replaced by¹̂ i . This rescaling

then allows us to determiner̄ B as well as the angular velocit
V̂ and the matter constantC via an iteration process tha
usesqmax andzA as the two input parameters.

The iteration scheme starts with an initial guess for
rest density distribution. We chose the density profile of
isolated, spherical star; i.e., we integrate the Tolm
Oppenheimer-Volkoff equations for the central densityqmax

and rescale the profile such that it fits betweenr̂ A5zA and
r̂ B51. For this matter distribution we can then find a so
tion to the field equations~44!–~47! using a full approxima-
tion storage multigrid scheme~see, e.g.,@39#!.

Once a solution to the field equations has converged to
adequate accuracy on the finest level of the grid hierarc
we evaluate Eq.~40! at three different locations to find new

values for the constantsV̂, C andr̄ B as well as a new density
distribution. To do so we first search for the maximum de
sity along thez-axis @40# and call this locationr̂ C . We can
then evaluate Eq.~40! at the three pointsr̂ A , r̂ B and r̂ C,

@11~n11!q#@a22C4~V̂ ẑ2wx!2#1/2511C, ~57!

where we have usedx5y5vy5vz50 on thez-axis. Note
that atr̂ A and r̂ B the density vanishesq50. This set, at first
sight, looks like three equations for the two unknowsV and
C. However, changing the scaling parameterr̄ B will also
change the gravitational fields, so thata andC will implic-
itly depend onr̄ B . We determine howa andC scale from
the Newtonian limit. Rescaling the Poisson equation sho
that the Newtonian potentialF scales withr̄ B

2 . Equations
~49! and~52! therefore suggest thata andC should be res-
caled according to

a5~ â ! r̄ B
2
, C5~Ĉ!2 r̄ B

2 /2. ~58!

Inserting these scale relations into Eq.~57! then yields three
equations for the three constantsV̂, C and r̄ B , which can be
solved iteratively. Once the constants have been determ
the new matter distribution can be calculated using Eq.~40!.

The iteration can then be continued by finding the n
fields for the new matter distribution. At each step we calc
late the residuals of Eqs.~44!–~47! and integrate these ove
the numerical grid. We typically stop the iteration when t
sum of these six integrated residuals is smaller than ab
1% of the estimated truncation error on the finest grid.

Once an iteration has been completed, we can calcu
several physical quantities that characterize the config
tion. The total rest-massM0,tot is
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M0,tot5E
M

r0uad3Sa5E
M

r0utA2gd3x, ~59!

where the subscriptM denotes integration over the suppo
of the matter andA2g5aC6. In nondimensional form we
can therefore write

M̄0,tot[k2n/2M0,tot5 r̄ B
3E
M

aC6utqnd3x̂. ~60!

The total mass-energy~ADM mass! is

M tot52
1

2p R̀ ¹ iCd2Si52
1

2p È ¹2Cd3x. ~61!

Using the Hamiltonian constraint~44! this can be rewritten

M tot5
1

16p È C27K̃ i j K̃
i j d3x

1E
M

C5qnS 11~11n!q

12v2
2qD d3x ~62!

or, in nondimensional form,

M̄ tot[k2n/2M tot5
r̄ B

16p È C27K̂ i j K̂
i j d3x̂

1 r̄ B
3E
M

C5qnS 11~11n!q

12v2
2qD d3x̂. ~63!

Equation~63! is the actual form we use to evaluateM tot . The
angular momentum is aligned with they-axis and can be
defined as

FIG. 1. Rest-density contours in the equatorial plane for a n
tron star binary close to the ISCO. Each star has a rest-mas

M̄050.169, corresponding to a compaction in isolation
(M /R)`50.175. The contours show isosurfaces of the rest-den
in decreasing factors of 0.556.
Jtot5
ey jk

8p R̀ xj K̃kld2Si5
ey jk

8p È xj¹ l K̃
kld3x ~64!

~see, e.g.,@32#!. This is the total angular momentum con
tained in the spacetime and includes both the orbital and
angular momentum of the stars. Using¹ l K̃

kl5C10DlK
kl as

well as the momentum constraint~14!, this can be rewritten

Jtot5E
M

C10~z jx2x jz!d3x5E
M

C10f i j j
i j jd3x, ~65!

-
of

f
ty FIG. 2. Rest-massM̄0 versus maximum densityr̄c for separa-
tions zA50.3 ~bottom solid line!, 0.2, 0.1 and 0.0~top line!. The
dashed line is the Oppenheimer-Volkoff result for an51.0 poly-
trope. The inset is a blowup of the region around the maxim
mass.

FIG. 3. Binding energy and angular momentum as a function

the angular velocity for several different values ofM̄0. The curves
are labeled by the compaction (M /R)` of the stars in isolation at
infinity, starting with 0.05 and increasing in steps of 0.0025 up
0.2. The maximum compaction of a stable, isolated, non-rota
n51.0 polytrope is 0.217. The upper label gives the orbital f
quency for stars with a rest-mass of 1.5M (
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where we have also used definition~23!. Finally, we can
substitute Eq.~42! for j i and write the angular momentum i
the nondimensional form

J̄tot[k2nJtot

5 r̄ B
4E
M

C10

a
qn

11~11n!q

12v2
f i j ĵ

i~V̂ĵ j2v j !d3x̂,

~66!

where we have rescaledj̄ according toĵ5 j̄/ r̄ B .
In the following we will denote half the total rest-mas

mass and angular momentum byM̄05M̄0,tot/2, M̄5M̄ tot/2
and J̄5 J̄tot/2. In the limit of large separation,M̄0 and M̄
approach the corresponding values of isolated stars.

Performing numerical simulations in three dimensions
quires large computational resources. We have there
implemented our algorithm in a parallel environment us
theDAGH infrastructure@41# and run it both on the SP2 clus
ter at the Cornell Theory Center and the Origin2000 at
National Center for Supercomputing Applications at the U
versity of Illinois. We typically use grids of (64)3 or (128)3

grid points, and run the code in parallel on 8 process
DAGH has been developed as part of the Binary Black H
Grand Challenge Project and is a package of routines
computational structures that allows for a convenient imp
mentation of parallel applications on grid hierarchies.

B. Constructing quasiequilibrium sequences

In addition to constructing individual quasiequilibrium
configurations, we can also build quasiequilibrium sequen
of constant rest-massM̄0. As we will discuss in Sec. V, thes
sequences provide approximate evolutionary tracks of
spiraling neutron star binaries.

Our quasiequilibrium configurations are parametrized
their relative separationzA and maximum densityqmax. We
therefore have to find a path through this two-dimensio
parameter space along whichM̄0 is constant. This can be
achieved in several different ways. For example, for e
separationzA one could varyqmax until a configuration of
massM̄0 has been found@38#. Here we found it easier to
start with a small~and hence only mildly relativistic! qmax
for eachzA , and then incrementqmax in small steps keeping
zA constant. The results can be tabulated, and the proce
repeated for a differentzA . Once sufficient data have bee
collected one can then interpolate to a chosen rest-massM̄0.
Note that for eachzA5const sequence we adjusted the ou
boundary so that the number of grid zones covering the s
is the same for all separations.

We have performed several tests to check our code
two different regimes the results can be compared w
known solutions: for small masses and weak fields we
cover the Newtonian limit, and for large separations we
proach the Oppenheimer-Volkoff spherical solution for ea
star and its nearby field. We have also checked the f
relativistic identity@42,43#
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dM tot5VdJtot , ~67!

which holds along constant rest-mass sequences. To eva
Eq. ~67!, we have to take numerical differences between
tegrals of very similar magnitude, so that their relative er
was much larger than that of the individual integrals. Nev
theless, we found that this identity is satisfied typically
;10%~except close to turning points, where the error due
the differentiation dominates!. We expect that the numerica
data presented in this paper are typically accurate to with
few percent, and are confident that our code correctly p
dicts qualitative features, such as, for example, change
the maximum allowed mass.

V. RESULTS

A. Sequences forn51.0

In this section we discuss configurations and sequen
with a polytropic indexn51, representing a fairly stiff equa
tion of state. This is a particularly interesting example, sin
realistic neutron stars are expected to be governed by e
tions of state of similar stiffness. Results forn51.5 andn
52 will be presented in Sec. V B. Numerical values in g
ometrized units can be obtained from our nondimensio
‘‘barred’’ quantities by multiplying with appropriate power
of k, according to Eqs.~60!, ~63! and ~66! ~for exampleM

5kn/2M̄ , J5knJ̄ andr05k2nr̄0).
In Fig. 1 we show the density profile in the equator

plane of a binary neutron star. HerezA50.175, and the stars
are close to the ISCO~see below!. Each star has a rest-mas
of M̄050.169, corresponding to a compaction in isolation
(M /R)`50.175. The contours show isosurfaces of the re
density in decreasing factors of 0.556. The maximum co
paction of a stablen51.0 polytrope in isolation is (M /R)`

50.216, corresponding to a maximum rest-massM̄0

50.180 and a maximum massM̄50.164.
In Fig. 2 we plot the rest-massM̄0 versus the maximum

density r̄c5 r̄0
max1 r̄ i

max for several different separations be
tween zA50.3 ~roughly two stellar radii apart! and zA50
~touching!. As zA→1, we expect these curves to approa
the spherical Oppenheimer-Volkoff~OV! result, which we
included as the dashed line in Fig. 2. Note, however, that
exact OV curve is computed from a one-dimensional or
nary differential equation with very high accuracy, while th
binary configurations have been calculated on very coa
three-dimensional numerical grids. From convergence t
we know that we systematically underestimate masses,
accordingly, for large separations, we find masses slig
smaller than the corresponding OV masses. All graphs
within less than 2% of the OV curve, showing that the pre
ence of a companion star has only very little influence on
mass-density relationship.

As we decrease the separation, the mass supported
given central densityr̄c increases slightly. In particular, th
maximum rest-mass increases fromM̄0

max50.179 for zA

50.3 to M̄0
max50.182 for stars in contact. This trend clear

suggests thatthe maximum allowed mass of neutron stars
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close binaries is slightly larger than in isolation. This in-
crease is caused in part by the rotation of the stars and in
by the tidal fields. More specifically, we find that the i
crease of the maximum allowed mass is comparable to
corresponding increase of an isolated neutron star rota
with the same angular velocity@38#. Any destabilizing, rela-
tivistic effect in binaries therefore has to be smaller.

The collapse of binary neutron stars to black holes prio
merger reported by WMM could, in principle, be caused
ther by a decrease of the maximum allowed mass or b
dynamical instability. As we have shown, the maximum
lowed mass, within our assumptions and approximations
creases, which rules out the first possibility. Note, howev
that we are only constructing quasiequilibrium configu
tions, which may not be dynamically stable. In@24# we show
that all inspiraling binary neutron stars aresecularlystable
against radial collapse to black holes all the way down to
ISCO. While this does not completely rule out the existen
of a dynamicalinstability, we note that in Newtonian bina
ries, dynamical instabilities always occur later along equil
rium sequences than secular instabilities@44,17#. The same
result has been shown for single, rotating relativistic st
@45#. Recently, Thorne@21# has argued analytically that tida
fields stabilize systems and that stars which are stabl
isolation are stable with respect to both secular and dyna
cal modes in binary configurations.

Figure 2 demonstrates that at fixed rest-mass, the ce
density decreases as the stars approach each other an
tidally deformed. This effect, as well as the increase of
maximum allowed mass, is consistent with post-Newton
predictions@13,15,18#.

Next we construct sequences of constant rest-massM̄0,
which up to the ISCO approximate evolutionary sequenc
As discussed in Sec. II, we maintain corotation, wherea
reality it is more likely that circulation will be conserved
Nevertheless, our sequences are the first sequences o
spiraling binaries in full general relativity. Moreover, pos
Newtonian sequences of constant circulation are not va

FIG. 4. Blowup of two curves in Fig. 2: binding energy~solid
line! and angular momentum~dashed line! as a function of the

angular velocity for a binary withM̄050.169 and (M /R)`50.175.
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different from corotating sequences@15#. In Fig. 3 we plot
the binding energy (M2M`)/M0 and the angular momen
tum J̄ as a function of separation for several different re
masses. Since the separation is not an invariant quantity
have parametrized the sequence by the nondimensiona
angular velocityM0V (5M̄0V̄). Our curves do not connec
to M0V50, corresponding to infinite separation, since w
can numerically resolve only fairly close models.

In the top half of Fig. 3 we show plots for sequences
several different, increasingly relativistic rest-masses. T
curves are labeled by the compaction (M /R)` that the stars
would have in isolation at infinity. We have plotted grap
for (M /R)` between 0.05 and 0.2 in increments of 0.025.
the lower half of Fig. 3 we show corresponding plots ofJ̄.
According to Eq.~67! the minima in both curves must agre

FIG. 5. Rest-massM̄0 of a n51.5 polytrope versus maximum

densityr̄c for separationszA50.3 ~bottom solid line!, 0.2, 0.1 and
0.0 ~top line!. The dashed line is the Oppenheimer-Volkoff resu

FIG. 6. Binding energy ofn51.5 polytropes as a function of th
angular velocity for different rest-masses. The curves are labele
the compaction (M /R)` of the stars in isolation. The maximum
compaction for a stable, isolated, nonrotatingn51.5 polytrope is
0.136.
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which they do within our numerical accuracy. In Fig. 4 w
show a blowup of the two curves for stars with (M /R)`

50.175.
For infinitely separated stars, both the binding energy

the angular velocity vanish. As the stars approach each o
the angular velocity increases while the binding energy
creases. This effect is essentially Newtonian and is even
dent for two Newtonian point masses. As the stars appro
each other, however, finite size effects eventually play
important role. The energy associated with the rotation of
individual stars adds to the~negative! binding energy, and
therefore reduces it. For stiff enough equations of state,
which the moment of inertia and hence the rotational ene
of the individual stars are large~see Sec. V B!, the binding
energy goes through a minimum and then increases a
prior to contact. The location of the minimum marks t
onset of a secular instability, beyond which the binary can
longer maintain corotation. It is expected that the dynam
instability defining the ISCO occurs after, but close to, t
onset of the secular instability@44,17#. In the following we
will refer to the location of the minimum as the ISCO.

The upper labels give the orbital frequency in Hz for st
of rest-mass 1.5M ( . The corresponding gravitational wav
frequency is larger by a factor of 2 for the dominant qua
rupole mode. For small values of the compaction we fi
ISCO frequencies comparable to those reported by WM
However, for larger compaction and more relativistic co
figurations we find frequencies very similar to what is fou
from post-Newtonian calculations@46#.

We summarize our results in Table II, where we a
include the dimensionless angular momentumJtot /M tot

2

5J/2M2 at the ISCO. For small rest-masses, this value
larger than unity, in agreement with WMM. For high enou
rest-masses, however, it drops below unity, so that the
stars could plunge and form a Kerr black hole without ha
ing to lose additional angular momentum.

B. Sequences forn51.5 andn52.0

In this section we will present results for polytropic ind
ces ofn51.5 and 2.0, representing softer equations of st
Except for the absence of an ISCO prior to contact~see be-

TABLE II. Numerical values for sequences of constant re

massM̄0 and polytropic indexn51. We tabulate the total energ

M̄` and compaction (M /R)` each star would have in isolation a
well as the angular velocityM0V and the angular momentum
Jtot /M tot

2 at the ISCO. The maximum rest-mass in isolation

M̄0
max50.180.

M̄0 M̄`
(M /R)` M0V ISCO (Jtot /M tot

2 ) ISCO

0.059 0.058 0.05 0.003 1.69
0.087 0.084 0.075 0.0065 1.37
0.112 0.106 0.1 0.01 1.22
0.134 0.126 0.125 0.015 1.12
0.153 0.142 0.15 0.02 1.05
0.169 0.155 0.175 0.025 1.00
0.178 0.162 0.2 0.03 0.97
d
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low! all results are qualitatively very similar to those forn
51. In particular, we consistently find a decrease of
maximum density as the stars approach and an increas
the maximum allowed mass. The relative size of these effe
differs for three basic reasons: First, for softer equations
state, the maximum mass of a star occurs at a smaller v
of the compactionM /R, and hence relativistic effects play
smaller role. Second, for softer equations of state these s
are more centrally condensed. We therefore expect t
fields to play a less important role for the stability of the
stars in close binaries. While it is easier to deform their s
face, the bulk of the matter is very concentrated at the cor
the stars and well shielded from the tidal field of the co
panion. Third, for softer equations of state, the stars hav
smaller orbital frequency even at very small separations
that the effects of rotation are smaller. Accordingly we fi
that the maximum allowed mass still increases with decre
ing separation, but the effect is smaller than forn51.

More centrally condensed stars have a smaller momen
inertia, and hence the rotational kinetic energy associa
with the spin of the stars is smaller than for less centra

FIG. 7. Same as Fig. 5 for an52.0 polytrope.

FIG. 8. Same as Fig. 6 for an52.0 polytrope. The maximum
compaction (M /R)` for a stable, isolated, nonrotatingn51.5 poly-
trope is 0.075.
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condensed stars. Therefore a turning point in the bind
energy curve can only be expected for stars with a s
enough equation of state. This effect has been discusse
several authors in the context of Newtonian theo
@47,17,48#. We did not see a turning point forn>1.5, in
agreement with@47,48#. For these polytropic indices there
no ISCO prior to contact, and we expect the orbits to
stable until the stars touch and form a contact binary. Thi
the first construction of a contact binary in full general re
tivity. Proving the existence of a contact binary neutron s
~by, e.g., the signature of its gravitational waveform! would
indicate that the equation of state of nuclear matter is ra
soft. We do not expect this to be the case@49#.

In Fig. 5 we plot the rest-mass versus the central den
for several different separations forn51.5. Qualitatively the
result is very similar to Fig. 2 forn51: For all separations
the curve differs from the OV result by less than 1%. F
decreasing separation we find a small increase in the allo
mass that a given density can support. In particular,
maximum quasiequilibrium rest-mass increases by roug
1.2% fromM̄50.275 forzA50.3 to 0.278 for stars in con
tact. Forn51 the corresponding increase is about 2%. T
maximum density decreases as the stars approach an
tidally deformed.

In Fig. 6 we plot the binding energy ofn51.5 polytropes
as a function of the angular velocity. We show results
several different rest-masses and label them by the com
tion (M /R)` for the same stars in isolation. In contrast to t
results forn51, these curves no longer show a turning poi
This implies that the stars are secularly stable all the wa
touching.

In Figs. 7 and 8 we show the corresponding results
n52 polytropes. Again, in Fig. 7 we show the rest-ma
versus central density. The maximum quasiequilibrium re
mass increases fromM̄50.523 for zA50.3 to 0.528 for
touching stars. This relative increase of roughly 1%
smaller than even forn51.5. As expected, the binding ene
gies in Fig. 8 do not show a turning point, so that the binar
are secularly stable all the way to touching.

VI. SUMMARY AND CONCLUSIONS

We report on the first fully relativistic calculation of b
nary neutron stars in quasiequilibrium. We previously p
sented some of our preliminary results in@23#; here we de-
scribe in detail all our assumptions and approximatio
g
ff
by
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equations and numerical algorithm, as well as results for
ferent polytropic indices. We integrate a subset of Einstei
equations, coupled to the equation of hydrostatic equi
rium, to solve the initial value problem for binaries. We co
struct models of corotating binary neutron stars in close
cular orbit, including relativistic models of contact binarie
We also construct sequences of constant rest-mass con
rations parametrized by their separation and orbital ang
frequency.

We find that the maximum density of the stars decrea
as the stars approach and get tidally deformed. Simu
neously, the mass that a given maximum density can sup
increases as the stars approach each other. In particula
find that the maximum allowed mass of neutron stars in q
siequilibrium binaries increases with decreasing separat
These effects are larger for a smaller polytropic index~and
hence a stiffer equation of state!.

Searching for turning points of the binding energy of co
stant rest mass sequences, we locate, for a small en
polytropic index, the ISCO. As in the case of Newtoni
configurations, an ISCO exists only for indicesn&1.5; for
softer equations of state, contact is reached prior to the o
of orbital instability.

In @24# we presented a more careful analysis of the rad
stability of relativistic binary neutron stars against collap
We showed that all inspiraling binary neutron stars are se
larly stable against radial collapse to black holes all the w
to the ISCO~or contact, if, for large enoughn, no ISCO is
encountered!. We do not find any evidence for a destabiliz
tion of neutron stars in close binary orbits.
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APPENDIX: NUMERICAL RESULTS FOR SELECTED
SEQUENCES

In the following ~Tables III–XIII! we tabulate numerical values for selected sequences. For a given polytropic indexn and

the rest-mass~baryon mass! M̄0 of one star@or equivalently its compaction in isolation (M /R)`#, we list the relative separation

zA5 r̄ A / r̄ B , the maximal density parameterqmax, the massM̄ the angular momentumJ̄, the ~orbital! frequencyV̄, and the

locations r̄ A , r̄ B and r̄ C . We have ‘‘barred’’ these quantities as a reminder that they are dimensionless coordinate
Recall thatr, r0 andP may be obtained fromq via Eqs.~37!–~39!.
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38
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39
52
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96
00
06
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74
76
79
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560
572
587
616
662
725

227
318
642
281
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643
902
460

680
722
824
061

.47

.82

.99

.30

.52

.76

.34

.44
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TABLE III. n51, M̄050.0595, (M /R)`50.05.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0275 0.057806 0.01095 0.061 0.000 1.529 2.
0.10 0.0278 0.057806 0.01094 0.057 0.281 1.594 2.
0.15 0.0281 0.057809 0.01098 0.053 0.430 1.677 2.
0.20 0.0284 0.057815 0.01109 0.048 0.591 1.791 2.
0.25 0.0286 0.057825 0.01129 0.042 0.771 1.940 3.
0.30 0.0288 0.057836 0.01155 0.037 0.975 2.118 3.

TABLE IV. n51, M̄050.1118, (M /R)`50.1.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0658 0.105511 0.02715 0.101 0.000 1.289 2.
0.10 0.0667 0.105502 0.02707 0.094 0.238 1.346 2.
0.15 0.0676 0.105509 0.02710 0.087 0.365 1.418 2.
0.20 0.0685 0.105521 0.02729 0.079 0.502 1.516 2.
0.25 0.0693 0.105558 0.02766 0.070 0.655 1.644 2.
0.30 0.0698 0.105593 0.02818 0.062 0.828 1.797 2.

TABLE V. n51, M̄050.1341, (M /R)`50.125.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0912 0.124786 0.03496 0.122 0.000 1.172 2.
0.10 0.0926 0.124785 0.03482 0.114 0.217 1.225 2.
0.15 0.0940 0.124787 0.03482 0.106 0.332 1.291 2.
0.20 0.0954 0.124819 0.03500 0.096 0.458 1.381 2.
0.25 0.0967 0.124849 0.03538 0.086 0.597 1.498 2.
0.30 0.0976 0.124898 0.03596 0.076 0.756 1.639 2.

TABLE VI. n51, M̄050.1534, (M /R)`50.15.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.1235 0.140851 0.04188 0.146 0.000 1.056 1.
0.10 0.1256 0.140842 0.04167 0.137 0.196 1.104 1.
0.15 0.1280 0.140846 0.04162 0.127 0.300 1.163 2.
0.20 0.1303 0.140859 0.04174 0.116 0.413 1.244 2.
0.25 0.1325 0.140903 0.04210 0.104 0.539 1.350 2.
0.30 0.1341 0.140971 0.04268 0.092 0.682 1.477 2.

TABLE VII. n51, M̄050.1685, (M /R)`50.175.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.1647 0.152893 0.04719 0.173 0.000 0.944 1.
0.10 0.1683 0.152883 0.04691 0.163 0.176 0.987 1.
0.15 0.1726 0.152875 0.04677 0.152 0.268 1.038 1.
0.20 0.1769 0.152893 0.04681 0.139 0.368 1.108 1.
0.25 0.1811 0.152936 0.04708 0.125 0.480 1.201 1.
0.30 0.1844 0.152997 0.04758 0.111 0.606 1.312 2.
3
0
8
9
7
1

3
4
3
1
1
3

8
5
9
0
0
0

3
7
5
7
6
3

3
2
2
4
0
2

TABLE VIII. n51, M̄050.1781, (M /R)`50.2.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.2164 0.160183 0.05024 0.202 0.000 0.841 1.
0.10 0.2228 0.160174 0.04989 0.191 0.157 0.877 1.
0.15 0.2327 0.160137 0.04963 0.180 0.238 0.917 1.
0.20 0.2450 0.160130 0.04948 0.168 0.323 0.970 1.
0.25 0.2590 0.160145 0.04953 0.154 0.415 1.038 1.
0.30 0.2741 0.160189 0.04975 0.139 0.517 1.119 1.

TABLE IX. n51.5, M̄050.241, (M /R)`50.85.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0626 0.231583 0.13408 0.035 0.000 3.409 6.
0.10 0.0633 0.231623 0.13471 0.032 0.631 3.569 6.
0.20 0.0650 0.231708 0.13738 0.027 1.328 4.014 6.
0.30 0.0665 0.231853 0.14341 0.021 2.184 4.740 7.

TABLE X. n51.5, M̄050.258, (M /R)`50.1.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0794 0.246547 0.14275 0.042 0.000 3.038 5.
0.10 0.0802 0.246600 0.14346 0.039 0.564 3.183 5.
0.20 0.0831 0.246688 0.14574 0.033 1.180 3.564 5.
0.30 0.0855 0.246887 0.15166 0.026 1.938 4.204 6.

TABLE XI. n51.5, M̄050.2745, (M /R)`50.125.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.1119 0.260578 0.14820 0.055 0.000 2.549 4.
0.10 0.1141 0.260614 0.14830 0.051 0.472 2.658 4.
0.20 0.1237 0.260665 0.14908 0.045 0.964 2.909 4.
0.30 0.1380 0.260810 0.15227 0.038 1.518 3.291 5.

TABLE XII. n52, M̄050.495, (M /R)`50.05.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0381 0.48628 0.7204 0.0073 0.000 12.89 23
0.10 0.0383 0.48635 0.7281 0.0068 2.382 13.49 23
0.20 0.0389 0.48649 0.7508 0.0057 4.998 15.11 24
0.30 0.0395 0.48672 0.7924 0.0045 8.192 17.78 27

TABLE XIII. n52, M̄050.52, (M /R)`50.065.

zA qmax
M̄ J̄ V̄ r̄ A r̄ C r̄ B

0.00 0.0493 0.50929 0.7190 0.0095 0.000 10.70 19
0.10 0.0497 0.50936 0.7255 0.0089 1.976 11.18 19
0.20 0.0525 0.50950 0.7409 0.0077 4.069 12.30 20
0.30 0.0574 0.50969 0.7679 0.0065 6.432 13.95 21
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